WO2018018711A1 - 无人机及无人机避障控制方法 - Google Patents

无人机及无人机避障控制方法 Download PDF

Info

Publication number
WO2018018711A1
WO2018018711A1 PCT/CN2016/098437 CN2016098437W WO2018018711A1 WO 2018018711 A1 WO2018018711 A1 WO 2018018711A1 CN 2016098437 W CN2016098437 W CN 2016098437W WO 2018018711 A1 WO2018018711 A1 WO 2018018711A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared light
drone
distance information
obstacle
module
Prior art date
Application number
PCT/CN2016/098437
Other languages
English (en)
French (fr)
Inventor
王军
Original Assignee
深圳曼塔智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳曼塔智能科技有限公司 filed Critical 深圳曼塔智能科技有限公司
Publication of WO2018018711A1 publication Critical patent/WO2018018711A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones

Definitions

  • the present invention relates to the field of unmanned aerial vehicles, and more particularly to an obstacle avoidance flight control method for an unmanned aerial vehicle.
  • a drone is a non-manned aerial vehicle that is mainly controlled by radio remote control or its own program.
  • UAVs are generally equipped with only forward obstacle avoidance systems, and there are few obstacle avoidance designs in the upward direction, so that drones can easily collide with obstacles during the ascent process, especially small drones that fly indoors. It is easy to hit the ceiling without obstacles in the upward direction, and more and more miniaturized drones will be used for indoor flight in most of the daytimes. Therefore, it is especially important to avoid obstacles in the upward direction.
  • ultrasonic obstacle avoidance has been widely used, but it still has some defects, mainly because the corresponding speed of ultrasonic waves is slow, and it is easy to be interfered by high frequency components such as motors and ESCs of the drone itself. It is easily affected by environmental factors such as sound absorbing materials, angle of reflective surface, environmental noise, temperature, etc. Performance cannot be guaranteed, and measurement accuracy is relatively large under different environments. In addition, ultrasonic transmitting and receiving devices are also relatively large in volume measurement. The distance and accuracy ratio are poor. Based on the above drawbacks, the ultrasonic obstacle avoidance is becoming less and less suitable for miniaturized entertainment drones. For miniaturized drones, it is necessary to find a small-sized, low-power, high-precision, low-cost obstacle avoidance scheme. Very urgent.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art, and provide an unmanned aerial vehicle with a small size, low power consumption, high precision, and low cost.
  • a drone comprising: a first infrared light emitting module, configured to emit a first infrared light upward in a vertical direction of the drone; An infrared light receiving module, configured to receive the first infrared light emitted by the first infrared light emitting module and contact the first infrared light reflected by the upper obstacle; the processing module, and the first infrared light emitting module and the first infrared Light reception The module is connected to control, the first infrared light emitting module emits the first infrared light in a vertical direction of the drone, and the first infrared light receiving module receives the first infrared light reflected by the upper obstacle, and obtains the first infrared light.
  • An infrared light emitting module emits a first emission time of the first infrared light and a first infrared light receiving module receives a first receiving time reflected by the upper infrared light contact with the upper infrared light, according to the first emission day and the first Calculating a first distance information between the unmanned aerial vehicle and the upper obstacle in the vertical direction;
  • the determining module is connected to the processing module, and configured to determine the first distance information Whether the first predetermined threshold is less than;
  • the control module is configured to: when the first distance information is less than the first predetermined threshold, adjust the drone to lower the flying height, so that the first height after the flying height is adjusted The distance information is not less than the first predetermined threshold.
  • the UAV further includes: a second infrared light emitting module, configured to emit a second infrared light downward in a vertical direction of the drone; and a second infrared light receiving module, Receiving, by the second infrared light emitting module, the second infrared light is in contact with the second infrared light reflected by the lower obstacle; the second infrared light emitting module and the second infrared light receiving module are both processed by the processing The module is connected, the processing module controls the second infrared light emitting module, the drone vertically emits the second infrared light and the second infrared light receiving module receives the second infrared light reflected by the lower obstacle, and acquires the The second infrared light emitting module emits a second emission light of the second infrared light and the second infrared light receiving module receives the second infrared light to contact the second receiving turn reflected from the lower obstacle, according to the second
  • the processing module controls the first infrared light emitting module to emit the first infrared light and the first infrared light receiving module to receive the upward contact in the vertical direction of the drone in a period of time.
  • the first infrared light reflected by the obstacle is obtained to obtain a plurality of first launch times and the first receiving time, and an average value of the first distance information is calculated.
  • the processing module controls the second infrared light emitting module to emit the second infrared light and the second infrared light receiving module to receive the contact in the vertical direction of the drone in a period of time. a second infrared light reflected from the lower obstacle to obtain a plurality of second launchings and second receiving turns , calculate the average of the second distance information.
  • the processing module performs a filter compensation process on the received first infrared light signal and the second red light signal.
  • the present invention also provides a method for controlling an obstacle avoidance of a drone, comprising the following steps:
  • the method further includes: emitting a second infrared light downward in a vertical direction of the drone, and receiving a second infrared light reflected by the underlying obstacle;
  • a plurality of first transmitting bursts and a first receiving burst are obtained in a period of time to calculate an average value of the first distance information.
  • a plurality of second transmitting bursts and a second receiving burst are obtained in a period of time to calculate an average value of the second distance information.
  • the method further includes performing a filter compensation process on the received first infrared light signal and the second red light signal.
  • the obstacle avoidance design of the present invention adopts an infrared light signal to avoid obstacles, and the infrared light emitting module and the receiving module can be made relatively small, and the infrared spot is small, and is not easily absorbed by the object, and the precision is High, fast response, can also be used in dark places; Peer, cheap, so the invention is very suitable for small UAVs, can also be used for medium and large aerial photography and dedicated drones, in the absence of The flexibility and safety of the drone is greatly improved when the overall size, weight and cost of the machine are increased little.
  • the invention enables the drone to avoid obstacles in an upward direction, so that the drone can easily fly indoors, and even through corridors, bridge holes, etc., to perform some stunt performances or perform specific tasks.
  • FIG. 1 is a structural block diagram of a drone of the present invention
  • FIG. 2 is a flow chart of a method for controlling an obstacle avoidance of a drone according to the present invention.
  • the unmanned aerial vehicle of the present invention includes a first infrared light emitting module 10, a processing module in which the first infrared light receiving module 1 is connected to the first infrared light emitting module 10 and the first infrared light receiving module 11. 20.
  • a judging module 30 connected to the processing module 20, and a control module 40 connected to the judging module 30.
  • the first infrared light emitting module 10 and the first infrared light receiving module 11 of the present invention are used for obstacle avoidance in an upward direction.
  • the drone of the present invention may further include a second infrared light emitting module 50 and a The two infrared light receiving modules 51 are used for obstacle avoidance in the downward direction, and the second infrared light emitting module 50 and the second infrared light receiving module 51 are also connected to the processing module.
  • the first infrared light emitting module 10 is configured to emit the first infrared light upward in the vertical direction of the drone, and the first infrared light receiving module 11 is configured to receive the first emitted by the first infrared light emitting module. Infrared light is in contact The first infrared light reflected from the upper obstacle.
  • the second infrared light emitting module 50 is configured to emit the second infrared light in a vertical direction of the drone, and the second infrared light receiving module 51 is configured to receive the second infrared light emitted by the second infrared light emitting module. Contact with the second infrared light reflected from the obstacle below.
  • the first infrared light emitting module 10 emits the first infrared light and the first infrared light receiving module 11 receives the reflected first infrared light and is driven by the processing module 20.
  • the second infrared light emitting module 50 emits the second infrared light and The second infrared light receiving module 51 receives the reflected second infrared light and is also driven by the processing module 20
  • the first infrared light emitting module 10 and the first infrared light receiving module 11 of the present invention are respectively an infrared emitting tube and an infrared receiving tube, which can be made very compact, and the emitted infrared spots are small and are not easily absorbed by objects.
  • the second infrared light emitting module 50 and the second infrared light receiving module 51 have the same features.
  • the processing module 20 is a dedicated processor chip, and the dedicated processor chip drives the first infrared light emitting module to emit the first infrared light upward in the vertical direction of the drone, and drives the first infrared light receiving module to receive The first infrared light reflected from the upper obstacle is contacted, and a first launch time and a first receiving turn are obtained. More preferably, in the specific embodiment of the present invention, the processing module drives the first infrared light emitting module and the first infrared light receiving module to operate in one turn, thereby obtaining a plurality of first transmitting and first receiving ports. During the period, that is, during a period of time, multiple measurements, calculations, and seeking the average of the first distance information, thus ensuring that the first distance information is more accurate.
  • the dedicated processor chip also drives the second infrared light emitting module to emit the second infrared light along the vertical direction of the drone, and drives the second infrared light receiving module to receive the contact under the obstacle.
  • the second infrared light reflected back, and the second emission dipole and the second reception dipole are obtained.
  • the processing module drives the second infrared light emitting module and the second infrared light receiving module to operate in one turn, thereby obtaining a plurality of second transmitting and second receiving ports. During the period, that is, in a period of time, multiple measurements, calculations, and seeking the average of the second distance information, thus ensuring that the second distance information is more accurate.
  • the processing module 20 drives the first infrared light emitting module 10 and the second infrared light emitting module 50 to emit infrared light of different frequencies, and the frequency range of the infrared light may be 800 to 900 nm.
  • the processing module performs filtering compensation processing on receiving the reflected first infrared light signal and the second red light signal to ensure accuracy.
  • the determining module 30 is connected to the processing module 20, and is configured to determine whether the first distance information is less than a first predetermined threshold and whether the second distance information is less than a second predetermined threshold.
  • the control module adjusts the drone to reduce its flying height, so that the first distance information after the flying height adjustment is not less than the first predetermined threshold .
  • the control module controls the drone to raise its flying height, so that the second distance information after the flying height adjustment is not less than the second predetermined threshold .
  • the specific implementation manner is: when the drone is flying indoors, the first predetermined threshold is set to 50 cm, and when the drone is less than 50 cm from the roof, the unmanned person of the present invention automatically reduces the flying height, thereby avoiding the collision of the drone. Go to the roof.
  • the second predetermined threshold is set to 60 cm, which ensures that the drone is flying less than 60 cm after the obstacle below the ground, and the flying height of the flying machine is increased, thereby preventing the drone from colliding with the obstacle below.
  • the invention enables the drone to avoid obstacles in the upward direction and the downward direction, so that the drone can easily fly indoors, and even can cross corridors, bridge holes and the like.
  • the unmanned obstacle avoidance control method of the present invention includes the following steps:
  • the present invention employs two sets of infrared emitting tubes and infrared receiving tubes to emit and receive first infrared light and second infrared light.
  • the present invention acquires a plurality of first transmissions and first receptions, and a plurality of second and second receptions during a period of time to calculate the first distance information. The average of the average and the second distance information. In this way, the distance information between the drone and the obstacle above or below is guaranteed to be more precise.
  • the drone when the distance between the drone and the upper obstacle is less than the first predetermined threshold, that is, the upper obstacle is quickly contacted, the drone is adjusted to lower the flying height, and the first distance information after the flying height is adjusted Not less than the first predetermined threshold, the drone is guaranteed to fly in a safe area to avoid collision with the upper obstacle.
  • the present invention enables the drone to avoid obstacles in the upward direction and the downward direction, so that the drone can easily fly indoors, and even through corridors, bridge holes, etc., to perform some stunt performances or perform specific tasks.
  • the obstacle avoidance design of the invention adopts an infrared light signal to avoid obstacles, and the infrared light emitting module and the receiving module can be made relatively small, and the infrared spot is small, is not easily absorbed by the object, has high precision, and has fast response.
  • the light can be used in dark places; at the same time, the price is cheap, so the invention is very suitable for small drones, and can also be used for medium and large-scale aerial photography and special drones, in the overall size and weight of the drones. In the case of a small increase in cost, the flexibility and safety of the drone is greatly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机及无人机避障控制方法,所述无人机包括第一红外光发射模块(10)和第一红外光接收模块(11);获取到发射第一红外光的第一发射时间和接收第一红外光反射回来的第一接收时间,根据第一发射时间和第一接收时间的时间差计算出所述无人机与上方障碍物之间的第一距离信息;当第一距离信息少于第一预定阈值时,调整所述无人机降低其飞行高度,避免碰撞到障碍物。采用红外光信号来避障,由于红外光发射模块(10)和接收模块(11)都可以做得比较小巧、而且红外光斑小,不容易被物体吸收、精度较高、响应快、在光线暗的地方也能使用;同时,价格便宜。

Description

无人机及无人机避障控制方法
技术领域
[0001] 本发明涉及无人飞行器技术领域, 特别是涉及一种无人飞行器的避障飞行控制 方法。
背景技术
[0002] 无人机是一种以无线电遥控或自身程序控制为主的不载人飞行器。 目前, 无人 机一般都只配备前向避障系统, 很少向上方向上的避障设计, 这样无人机在上 升过程中就容易碰撞障碍物, 特别是在室内飞行的小型无人机, 没有向上方向 的避障极容易碰到天花板, 而越来越多的小型化无人机将大部分吋间会用于室 内飞行, 因此, 向上方向避障就显的尤为重要。
[0003] 就目前来说, 超声波避障得到广泛的应用, 但其还是存在一些缺陷, 主要是超 声波的相应速度慢, 容易受到无人机本身的电机、 电调等高频元件的干扰, 也 容易受到环境因素如吸声材料、 反射面的角度、 环境噪声、 温度等等的影响, 性能无法保证, 测量精度在不同环境下偏差比较大; 另外, 超声波发射及接收 装置体积也比较大, 测量距离和精度比差。 基于以上弊端, 让超声波避障在小 型化娱乐无人机上越来越不适应, 对小型化无人机来说, 寻找一种体积小、 功 耗小、 精度高、 成本低廉的避障方案已非常急迫。
技术问题
[0004] 本发明要解决的技术问题在于克服现有技术的不足, 提供一种避障设计体积小 、 功耗小、 精度高以及成本低廉的无人机。
问题的解决方案
技术解决方案
[0005] 本发明解决其技术问题所采用的技术方案是: 一种无人机, 包括: 第一红外光 发射模块, 用于沿所述无人机竖直方向向上发射第一红外光; 第一红外光接收 模块, 用于接收所述第一红外光发射模块发射的第一红外光接触到上方障碍物 反射回来的第一红外光; 处理模块, 与第一红外光发射模块和第一红外光接收 模块连接, 控制第一红外光发射模块沿所述无人机竖直方向向上发射第一红外 光和第一红外光接收模块接收接触上方障碍物反射回来的第一红外光, 并获取 所述第一红外光发射模块发射第一红外光的第一发射吋间和第一红外光接收模 块接收第一红外光接触上方障碍物反射回来的第一接收吋间, 根据第一发射吋 间和第一接收吋间的吋间差计算出所述无人机沿竖直方向向上与上方障碍物之 间的第一距离信息; 判断模块, 与所述处理模块相连, 用于判断所述第一距离 信息是否少于第一预定阈值; 控制模块, 用于当第一距离信息少于所述第一预 定阈值吋, 调整所述无人机降低其飞行高度, 以使飞行高度调整后的所述第一 距离信息不少于所述第一预定阈值。
[0006] 作为本发明进一步改进, 所述无人机还包括: 第二红外光发射模块, 用于沿所 述无人机竖直方向向下发射第二红外光; 第二红外光接收模块, 用于接收所述 第二红外光发射模块发射的第二红外光接触到下方障碍物反射回来的第二红外 光; 所述第二红外光发射模块和第二红外光接收模块均与所述处理模块相连, 处理模块控制第二红外光发射模块所述无人机竖直方向向下发射第二红外光和 第二红外光接收模块接收接触下方障碍物反射回来的第二红外光, 并获取所述 第二红外光发射模块发射第二红外光的第二发射吋间和第二红外光接收模块接 收第二红外光接触下方障碍物反射回来的第二接收吋间, 根据第二发射吋间和 第二接收吋间的吋间差计算出所述无人机沿竖直方向向下与下方障碍物之间的 第二距离信息; 判断模块判断所述第二距离信息是否少于第二预定阈值; 控制 模块在当第二距离信息少于所述第二预定阈值吋, 控制所述无人机提升其飞行 高度, 以使飞行高度调整后的所述第二距离信息不少于所述第二预定阈值。
[0007] 作为本发明进一步改进, 所述处理模块在一段吋间内控制第一红外光发射模块 沿所述无人机竖直方向向上发射第一红外光和第一红外光接收模块接收接触上 方障碍物反射回来的第一红外光, 以获取到多个第一发射吋间和第一接收吋间 , 计算出第一距离信息的平均值。
[0008] 作为本发明进一步改进, 所述处理模块在一段吋间内控制第二红外光发射模块 沿所述无人机竖直方向向下发射第二红外光和第二红外光接收模块接收接触下 方障碍物反射回来的第二红外光, 以获取到多个第二发射吋间和第二接收吋间 , 计算出第二距离信息的平均值。
[0009] 作为本发明进一步改进, 所述处理模块对接收反射回来的第一红外光信号和第 二红光信号进行滤波补偿处理。
[0010] 本发明还提供了一种无人机避障控制方法, 包括以下步骤:
[0011] 沿所述无人机竖直方向向上发射第一红外光, 以及接收接触上方障碍物反射回 来的第一红外光;
[0012] 获取第一红外光发射的第一发射吋间和所述第一红外光接触上方障碍物反射回 来的第一接收吋间;
[0013] 根据第一发射吋间和第一接收吋间的吋间差, 计算得到所述无人机沿竖直方向 向上与上方障碍物之间的第一距离信息;
[0014] 判断所述第一距离信息是否少于第一预定阈值;
[0015] 若所述第一距离信息少于第一预定阈值, 则控制无人机降低其飞行高度, 以使 所述第一距离信息不少于所述第一预定阈值。
[0016] 作为本发明进一步改进, 还包括沿所述无人机竖直方向向下发射第二红外光, 以及接收接触下方障碍物反射回来的第二红外光;
[0017] 获取第二红外光发射的第二发射吋间和所述第二红外光接触下方障碍物反射回 来的第二接收吋间;
[0018] 根据第二发射吋间和第二接收吋间的吋间差, 计算得到所述无人机沿竖直方向 向下与下方障碍物之间的第二距离信息;
[0019] 判断所述第二距离信息是否少于第二预定阈值;
[0020] 若所述第二距离信息少于第二预定阈值, 则控制无人机提升其飞行高度, 以使 所述第二距离信息不少于所述第二预定阈值。
[0021] 作为本发明进一步改进, 获取一段吋间内多个第一发射吋间和第一接收吋间, 以计算得到第一距离信息的平均值。
[0022] 作为本发明进一步改进, 获取一段吋间内多个第二发射吋间和第二接收吋间, 以计算得到第二距离信息的平均值。
[0023] 作为本发明进一步改进, 还包括对接收反射回来的第一红外光信号和第二红光 信号进行滤波补偿处理。 发明的有益效果
有益效果
[0024] 与现有技术相比, 本发明避障设计采用红外光信号来避障, 由于红外光发射模 块和接收模块都可以做得比较小巧、 而且红外光斑小, 不容易被物体吸收、 精 度较高、 响应快、 在光线暗的地方也能使用; 同吋, 价格便宜, 所以, 本发明 非常适合于小型无人机, 也可以用于中大型航拍及专用无人机, 在对无人机整 体体积大小、 重量及成本增加很少的情况下, 大大提高无人机的灵活性和安全 性。 本发明使得无人机能够在向上方向上避障, 这样无人机就能轻松在室内飞 行, 甚至可以穿越走廊、 桥洞等, 做出一些特技表演或者完成特定任务。
对附图的简要说明
附图说明
[0025] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[0026] 图 1是本发明无人机的结构框图;
[0027] 图 2是本发明无人机避障控制方法的流程图。
本发明的实施方式
[0028] 为了对本发明的技术特征、 目的和效果有更加清楚的理解, 现对照附图详细说 明本发明的具体实施方式。
[0029] 如图 1所示, 本发明无人机包括第一红外光发射模块 10、 第一红外光接收模块 1 与第一红外光发射模块 10和第一红外光接收模块 11连接的处理模块 20、 与处 理模块 20相连的判断模块 30, 以及与判断模块 30相连的控制模块 40。 本发明无 人机第一红外光发射模块 10和第一红外光接收模块 11用于向上方向上避障, 更 优的是, 本发明无人机还可包括第二红外光发射模块 50和第二红外光接收模块 5 1, 用于向下方向上避障, 第二红外光发射模块 50和第二红外光接收模块 51亦与 处理模块相连。
[0030] 第一红外光发射模块 10用于沿所述无人机竖直方向向上发射第一红外光, 第一 红外光接收模块 11用于接收所述第一红外光发射模块发射的第一红外光接触到 上方障碍物反射回来的第一红外光。 第二红外光发射模块 50用于沿所述无人机 竖直方向向下发射第二红外光, 第二红外光接收模块 51用于接收所述第二红外 光发射模块发射的第二红外光接触到下方障碍物反射回来的第二红外光。 第一 红外光发射模块 10发射第一红外光和第一红外光接收模块 11接收反射回来的第 一红外光通过处理模块 20驱动, 同样地, 第二红外光发射模块 50发射第二红外 光和第二红外光接收模块 51接收反射回来的第二红外光也通过处理模块 20驱动
[0031] 本发明第一红外光发射模块 10和第一红外光接收模块 11分别为红外发射管和红 外接收管, 可以做得非常小巧, 发射的红外斑点小, 不易被物体吸收。 同样的 , 第二红外光发射模块 50和第二红外光接收模块 51具有同样的特征。
[0032] 处理模块 20为一专用处理器芯片, 该专用处理器芯片驱动第一红外光发射模块 沿所述无人机竖直方向向上发射第一红外光, 和驱动第一红外光接收模块接收 接触上方障碍物反射回来的第一红外光, 并且, 获得第一发射吋间和第一接收 吋间。 更优的是, 本发明具体实施例中, 处理模块在一个吋间段内驱动第一红 外光发射模块和第一红外光接收模块工作, 从而获得多个第一发射吋间和第一 接收吋间, 即在一段吋间内, 多次测量, 计算, 寻求第一距离信息的平均值, 这样, 保证第一距离信息更精准。
[0033] 同吋, 该专用处理器芯片也会驱动第二红外光发射模块沿所述无人机竖直方向 向下发射第二红外光, 和驱动第二红外光接收模块接收接触下方障碍物反射回 来的第二红外光, 并且, 获得第二发射吋间和第二接收吋间。 更优的是, 本发 明具体实施例中, 处理模块在一个吋间段内驱动第二红外光发射模块和第二红 外光接收模块工作, 从而获得多个第二发射吋间和第二接收吋间, 即在一段吋 间内, 多次测量, 计算, 寻求第二距离信息的平均值, 这样, 保证第二距离信 息更精准。
[0034] 在本发明实施例中, 处理模块 20驱动第一红外光发射模块 10和第二红外光发射 模块 50发射不同频率的红外光, 红外光的频率范围可选为: 800〜900nm。 在本 发明实施例中, 处理模块对接收反射回来的第一红外光信号和第二红光信号进 行滤波补偿处理, 以保障精确度。 [0035] 本发明实施例, 判断模块 30与处理模块 20相连, 用于判断第一距离信息是否少 于第一预定阈值以及第二距离信息是否少于第二预定阈值。 当第一距离信息少 于所述第一预定阈值吋, 控制模块调整所述无人机降低其飞行高度, 以使飞行 高度调整后的所述第一距离信息不少于所述第一预定阈值。 当第二距离信息少 于所述第二预定阈值吋, 控制模块控制所述无人机提升其飞行高度, 以使飞行 高度调整后的所述第二距离信息不少于所述第二预定阈值。 具体的实施方式是 : 无人机在室内飞行吋, 第一预定阈值设置为 50cm, 当无人机距离屋顶少于 50c m吋, 本发明无人机会自动降低飞行高度, 从而避免无人机碰撞到屋顶。 以及, 第二预定阈值设置为 60cm, 保证无人机飞行吋在距离地面等下方障碍物少于 60c m吋, 提升飞人机的飞行高度, 从而避免无人机碰撞到下方障碍物。 本发明使得 无人机能够在向上方向和向下方向上避障, 这样无人机就能轻松在室内飞行, 甚至可以穿越走廊、 桥洞等。
[0036] 如图 2所示, 本发明无人机避障控制方法, 包括以下步骤:
[0037] 沿无人机竖直方向向上和向下均发射第一红外光和第二红外光, 以及接收接触 上方障碍物反射回来的第一红外光和接触下方障碍物反射回来的第二红外光。 本发明采用两套红外发射管和红外接收管来发射和接收第一红外光和第二红外 光。
[0038] 获取第一红外光发射的第一发射吋间和所述第一红外光接触上方障碍物反射回 来的第一接收吋间; 以及, 获取第二红外光发射的第二发射吋间和所述第二红 外光接触下方障碍物反射回来的第二接收吋间;
[0039] 根据第一发射吋间和第一接收吋间的吋间差, 计算得到所述无人机沿竖直方向 向上与上方障碍物之间的第一距离信息; 根据第二发射吋间和第二接收吋间的 吋间差, 计算得到所述无人机沿竖直方向向下与下方障碍物之间的第二距离信 息。 更优的是, 本发明会在一段吋间内获取多个第一发射吋间和第一接收吋间 , 以及多个第二发射吋间和第二接收吋间, 以计算得到第一距离信息的平均值 和第二距离信息的平均值。 这样, 保证无人机与上方障碍物或下方障碍物之间 的距离信息更精准。
[0040] 判断第一距离信息是否少于第一预定阈值, 以及所述第二距离信息是否少于第 二预定阈值;
[0041] 当无人机与上方障碍物的距离少于第一预定阈值, 即快接触到上方障碍物吋, 调整无人机降低其飞行高度, 使飞行高度调整后的所述第一距离信息不少于所 述第一预定阈值, 保证无人机在安全区域飞行, 避免碰撞到上方障碍物。
[0042] 当无人机与下方障碍物的距离少于第二预定阈值, 即快接触到下方障碍物吋, 调整无人机升高其飞行高度, 使飞行高度调整后的所述第二距离信息不少于所 述第二预定阈值, 保证无人机在安全区域飞行, 避免碰撞到下方障碍物。
[0043] 本发明使得无人机能够在向上方向上和向下方向上避障, 这样无人机就能轻松 在室内飞行, 甚至可以穿越走廊、 桥洞等, 做出一些特技表演或者完成特定任 务。
[0044] 本发明避障设计采用红外光信号来避障, 由于红外光发射模块和接收模块都可 以做得比较小巧、 而且红外光斑小, 不容易被物体吸收、 精度较高、 响应快、 在光线暗的地方也能使用; 同吋, 价格便宜, 所以, 本发明非常适合于小型无 人机, 也可以用于中大型航拍及专用无人机, 在对无人机整体体积大小、 重量 及成本增加很少的情况下, 大大提高无人机的灵活性和安全性。
[0045] 本发明是通过较佳的实施例进行说明的, 本领域技术人员应当明白, 在不脱离 本发明范围的情况下, 还可以对本发明进行各种变换和等同替代。 另外, 针对 特定情形或具体情况, 可以对本发明做各种修改, 而不脱离本发明的范围。 因 此, 本发明不局限于所公幵的具体实施例, 而应当包括落入本发明权利要求范 围内的全部实施方式。

Claims

权利要求书
[权利要求 1] 一种无人机, 其特征在于, 包括:
第一红外光发射模块, 用于沿所述无人机竖直方向向上发射第一红外 光;
第一红外光接收模块, 用于接收所述第一红外光发射模块发射的第一 红外光接触到上方障碍物反射回来的第一红外光; 处理模块, 与第一红外光发射模块和第一红外光接收模块连接, 控制 第一红外光发射模块沿所述无人机竖直方向向上发射第一红外光和第 一红外光接收模块接收接触上方障碍物反射回来的第一红外光, 并获 取所述第一红外光发射模块发射第一红外光的第一发射吋间和第一红 外光接收模块接收第一红外光接触上方障碍物反射回来的第一接收吋 间, 根据第一发射吋间和第一接收吋间的吋间差计算出所述无人机沿 竖直方向向上与上方障碍物之间的第一距离信息; 判断模块, 与所述处理模块相连, 用于判断所述第一距离信息是否少 于第一预定阈值;
控制模块, 用于当第一距离信息少于所述第一预定阈值吋, 调整所述 无人机降低其飞行高度, 以使飞行高度调整后的所述第一距离信息不 少于所述第一预定阈值。
[权利要求 2] 根据权利要求 1所述的无人机, 其特征在于, 还包括:
第二红外光发射模块, 用于沿所述无人机竖直方向向下发射第二红外 光;
第二红外光接收模块, 用于接收所述第二红外光发射模块发射的第二 红外光接触到下方障碍物反射回来的第二红外光; 所述第二红外光发射模块和第二红外光接收模块均与所述处理模块相 连, 处理模块控制第二红外光发射模块所述无人机竖直方向向下发射 第二红外光和第二红外光接收模块接收接触下方障碍物反射回来的第 二红外光, 并获取所述第二红外光发射模块发射第二红外光的第二发 射吋间和第二红外光接收模块接收第二红外光接触下方障碍物反射回 来的第二接收吋间, 根据第二发射吋间和第二接收吋间的吋间差计算 出所述无人机沿竖直方向向下与下方障碍物之间的第二距离信息; 判断模块判断所述第二距离信息是否少于第二预定阈值;
控制模块在当第二距离信息少于所述第二预定阈值吋, 控制所述无人 机提升其飞行高度, 以使飞行高度调整后的所述第二距离信息不少于 所述第二预定阈值。
[权利要求 3] 根据权利要求 1所述的无人机, 其特征在于, 所述处理模块在一段吋 间内控制第一红外光发射模块沿所述无人机竖直方向向上发射第一红 外光和第一红外光接收模块接收接触上方障碍物反射回来的第一红外 光, 以获取到多个第一发射吋间和第一接收吋间, 计算出第一距离信 息的平均值。
[权利要求 4] 根据权利要求 2所述的无人机, 其特征在于, 所述处理模块在一段吋 间内控制第二红外光发射模块沿所述无人机竖直方向向下发射第二红 外光和第二红外光接收模块接收接触下方障碍物反射回来的第二红外 光, 以获取到多个第二发射吋间和第二接收吋间, 计算出第二距离信 息的平均值。
[权利要求 5] 根据权利要求 2所述的无人机, 其特征在于, 所述处理模块对接收反 射回来的第一红外光信号和第二红光信号进行滤波补偿处理。
[权利要求 6] —种无人机避障控制方法, 其特征在于, 包括以下步骤:
沿所述无人机竖直方向向上发射第一红外光, 以及接收接触上方障碍 物反射回来的第一红外光;
获取第一红外光发射的第一发射吋间和所述第一红外光接触上方障碍 物反射回来的第一接收吋间;
根据第一发射吋间和第一接收吋间的吋间差, 计算得到所述无人机沿 竖直方向向上与上方障碍物之间的第一距离信息; 判断所述第一距离信息是否少于第一预定阈值; 若所述第一距离信息少于第一预定阈值, 则控制无人机降低其飞行高 度, 以使所述第一距离信息不少于所述第一预定阈值。
[权利要求 7] 根据权利要求 6所述的无人机避障控制方法, 其特征在于, 还包括沿 所述无人机竖直方向向下发射第二红外光, 以及接收接触下方障碍物 反射回来的第二红外光;
获取第二红外光发射的第二发射吋间和所述第二红外光接触下方障碍 物反射回来的第二接收吋间;
根据第二发射吋间和第二接收吋间的吋间差, 计算得到所述无人机沿 竖直方向向下与下方障碍物之间的第二距离信息; 判断所述第二距离信息是否少于第二预定阈值; 若所述第二距离信息少于第二预定阈值, 则控制无人机提升其飞行高 度, 以使所述第二距离信息不少于所述第二预定阈值。
[权利要求 8] 根据权利要求 6所述的无人机避障控制方法, 其特征在于, 获取一段 吋间内多个第一发射吋间和第一接收吋间, 以计算得到第一距离信息 的平均值。
[权利要求 9] 根据权利要求 7所述的无人机避障控制方法, 其特征在于, 获取一段 吋间内多个第二发射吋间和第二接收吋间, 以计算得到第二距离信息 的平均值。
[权利要求 10] 根据权利要求 7所述的无人机避障控制方法, 其特征在于, 还包括对 接收反射回来的第一红外光信号和第二红光信号进行滤波补偿处理。
PCT/CN2016/098437 2016-07-23 2016-09-08 无人机及无人机避障控制方法 WO2018018711A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610582980.X 2016-07-23
CN201610582980.XA CN107656535A (zh) 2016-07-23 2016-07-23 无人机及无人机避障控制方法

Publications (1)

Publication Number Publication Date
WO2018018711A1 true WO2018018711A1 (zh) 2018-02-01

Family

ID=61016239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098437 WO2018018711A1 (zh) 2016-07-23 2016-09-08 无人机及无人机避障控制方法

Country Status (2)

Country Link
CN (1) CN107656535A (zh)
WO (1) WO2018018711A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061663A (zh) * 2018-06-29 2018-12-21 深圳臻迪信息技术有限公司 无人机测距方法、装置及无人机
CN110045742B (zh) * 2019-04-18 2022-02-18 南京理工大学 一种基于红外光测距的四旋翼无人机避障装置及避障方法
CN111897361B (zh) * 2020-08-05 2023-08-22 广州市赛皓达智能科技有限公司 一种无人机自主航线规划方法及其系统
CN112486208A (zh) * 2020-12-22 2021-03-12 安徽配隆天环保科技有限公司 一种无人机超声红外避障系统
CN114115351A (zh) * 2021-12-06 2022-03-01 歌尔科技有限公司 飞行器的避障方法、飞行器以及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581250A (en) * 1995-02-24 1996-12-03 Khvilivitzky; Alexander Visual collision avoidance system for unmanned aerial vehicles
CN102139164A (zh) * 2011-01-28 2011-08-03 深圳市格兰之特科技有限公司 一种自动规避障碍物的飞行装置与方法
CN204956914U (zh) * 2015-09-17 2016-01-13 广东中安金狮科创有限公司 自动三维空间测距避让和穿越飞行的无人机
CN105352505A (zh) * 2015-12-08 2016-02-24 北京健德乾坤导航系统科技有限责任公司 室内无人机导航方法及无人机
CN105607642A (zh) * 2015-09-18 2016-05-25 广东中安金狮科创有限公司 无人机自动在三维空间测距避让和穿越飞行的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581250A (en) * 1995-02-24 1996-12-03 Khvilivitzky; Alexander Visual collision avoidance system for unmanned aerial vehicles
CN102139164A (zh) * 2011-01-28 2011-08-03 深圳市格兰之特科技有限公司 一种自动规避障碍物的飞行装置与方法
CN204956914U (zh) * 2015-09-17 2016-01-13 广东中安金狮科创有限公司 自动三维空间测距避让和穿越飞行的无人机
CN105607642A (zh) * 2015-09-18 2016-05-25 广东中安金狮科创有限公司 无人机自动在三维空间测距避让和穿越飞行的方法
CN105352505A (zh) * 2015-12-08 2016-02-24 北京健德乾坤导航系统科技有限责任公司 室内无人机导航方法及无人机

Also Published As

Publication number Publication date
CN107656535A (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
WO2018018711A1 (zh) 无人机及无人机避障控制方法
WO2018094583A1 (zh) 无人机避障控制方法、飞行控制器及无人飞行器
TWI652205B (zh) 具有雷達導引降落功能的無人機、無人機系統及其降落方法
US20200301423A1 (en) Flight control method for agricultural unmanned aerial vehicle, radar system, and agricultural unmanned aerial vehicle
US10101196B2 (en) Device for UAV detection and identification
US11771076B2 (en) Flight control method, information processing device, program and recording medium
CN105974359B (zh) 一种定位设备、定位基站、空间定位系统及方法
US11834197B2 (en) Unmanned aerial vehicle landing gear control method, apparatus, unmanned aerial vehicle, and system thereof
US11720100B2 (en) Systems and methods for utilizing semantic information for navigation of a robotic device
CN108119992B (zh) 一种空调定向送风方法
TWI626191B (zh) 無人機及其目標追蹤方法與裝置
US10737781B2 (en) Three-dimensional pathway tracking system
WO2016066008A1 (zh) 旋翼飞行器及其自动降落系统及方法
CN203950449U (zh) 可自动测距避让障碍的无人机
US20170168134A1 (en) Object Detection
JP2014064914A (ja) 屋内飛行玩具の高度制御
JP2017537309A (ja) 向き付けおよび位置付けのための装置および方法
US11543519B2 (en) Collision warning using ultra wide band radar
JP2018029941A (ja) 屋内飛行玩具の水平制御
US20200150695A1 (en) Environment-adaptive sense and avoid system for unmanned vehicles
WO2018214644A1 (zh) 障碍检测方法、装置以及无人飞行器
WO2018018710A1 (zh) 无人机及无人机定高控制方法
KR102366609B1 (ko) 드론 착륙 제어 시스템 및 그 착륙 제어 방법
CN106950983B (zh) 无人飞行器避障方法及装置
CN109521399B (zh) 一种定位控制器的室内定位装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16910290

Country of ref document: EP

Kind code of ref document: A1