WO2018018710A1 - 无人机及无人机定高控制方法 - Google Patents

无人机及无人机定高控制方法 Download PDF

Info

Publication number
WO2018018710A1
WO2018018710A1 PCT/CN2016/098436 CN2016098436W WO2018018710A1 WO 2018018710 A1 WO2018018710 A1 WO 2018018710A1 CN 2016098436 W CN2016098436 W CN 2016098436W WO 2018018710 A1 WO2018018710 A1 WO 2018018710A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared light
drone
module
distance information
unmanned aerial
Prior art date
Application number
PCT/CN2016/098436
Other languages
English (en)
French (fr)
Inventor
王军
Original Assignee
深圳曼塔智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳曼塔智能科技有限公司 filed Critical 深圳曼塔智能科技有限公司
Publication of WO2018018710A1 publication Critical patent/WO2018018710A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/042Control of altitude or depth specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D45/04Landing aids; Safety measures to prevent collision with earth's surface
    • B64D45/08Landing aids; Safety measures to prevent collision with earth's surface optical
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the present invention relates to the field of unmanned aerial vehicles, and more particularly to a flight control method for an unmanned aerial vehicle.
  • a drone is a non-manned aerial vehicle that is mainly controlled by radio remote control or its own program.
  • UAVs are generally used for aerial photography, especially in the sky, down to the ground.
  • the drone needs to maintain a stable height with the ground, that is, a fixed height. It is difficult to manually maintain the altitude mode of the drone. While using GPS to maintain a fixed height, but the GPS signal is not good, it is difficult to achieve a fixed height.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a drone with a low design power consumption, high precision, and low cost.
  • an unmanned aerial vehicle comprising an infrared light emitting module for emitting infrared light downward along the vertical direction of the drone; infrared light receiving module The infrared light emitted by the infrared light emitting module is in contact with the infrared light reflected by the obstacle below; the processing module is connected with the infrared light emitting module and the infrared light receiving module, and the infrared light emitting module is controlled along the unmanned light.
  • the infrared light is emitted from the vertical direction of the machine and the infrared light receiving module receives the infrared light reflected by the obstacle under the contact, and obtains the infrared light emitting module to emit the infrared light, and the infrared light receiving module receives the infrared light under the contact.
  • the receiving time reflected by the obstacle is calculated according to the inter-turn difference between the transmitting day and the receiving time, and the distance information between the downward direction and the lower obstacle in the vertical direction is calculated; the determining module is used for judging Whether the distance information satisfies a predetermined height value; a control module, configured to adjust a flying height of the drone, so that the distance information Flight with the condition that the predetermined height value is met.
  • the predetermined height value is a fixed value.
  • the processing module controls the infrared light emitting module to emit infrared light along the vertical direction of the drone and the infrared light receiving module to receive the reflection under the contact obstacle under a period of time. Infrared light to obtain the average of the distance information between multiple launch times and receiving turns
  • the processing module performs filtering compensation processing on receiving the reflected infrared light signal.
  • the present invention also provides a drone height control method, the method comprising the following steps:
  • the drone is controlled to adjust its flying height to fly the condition that the distance information satisfies a predetermined height value.
  • the predetermined height value is a fixed value.
  • a plurality of transmission periods and reception periods in a period of time are acquired to calculate an average value of the distance information.
  • the method further includes performing a filter compensation process on receiving the reflected infrared light.
  • the present invention enables the drone to fly in a high mode, so that the drone can acquire an image at a stable angle. Since the infrared light emitting module and the receiving module can be made relatively small, and the infrared spot is small, it is not easily absorbed by the object, the precision is high, the response is fast, and the light can be used in a dark place; the same, the price is cheap, so,
  • the invention is very suitable for small unmanned aerial vehicles, and can also be used for medium and large-scale aerial photography and special drones, and greatly improves the flexibility of the drone when the overall size, weight and cost of the drone increase little. And security. Brief description of the drawing
  • FIG. 1 is a structural block diagram of a drone of the present invention
  • FIG. 2 is a flow chart of a drone height control method of the present invention.
  • the unmanned aerial vehicle of the present invention includes an infrared light emitting module 10, an infrared light receiving module 11, a processing module 20 connected to the infrared light emitting module 10 and the infrared light receiving module 11, and is connected to the processing module 20.
  • the judging module 30 and the control module 40 connected to the judging module 30.
  • the infrared light emitting module 10 of the present invention is configured to emit infrared light downward in a vertical direction of the drone, and the infrared light receiving module 11 is configured to receive infrared light emitted by the infrared light emitting module to contact an obstacle below Infrared light reflected back.
  • the infrared light emitting module 10 emits infrared light and the infrared light receiving module 11 receives the reflected infrared light and is driven by the processing module 20.
  • the infrared light emitting module 10 and the infrared light receiving module 11 of the present invention are an infrared emitting tube and an infrared receiving tube, respectively.
  • the processing module 20 is a dedicated processor chip, and the dedicated processor chip drives the infrared light emitting module to emit infrared light along the vertical direction of the drone, and drives the infrared light receiving module to receive the obstacle reflection under the contact.
  • the processing module drives the infrared light emitting module and the infrared light receiving module to work in one turn, thereby obtaining a plurality of transmitting turns and receiving turns, that is, in a period of time. , multiple measurements, calculation
  • the processing module 20 drives the infrared light emitting module 10 to emit infrared light, and the frequency range of the infrared light may be 800 to 900 nm. In the embodiment of the present invention, the processing module performs filtering compensation processing on the received infrared light signal to ensure accuracy.
  • the determining module 30 is connected to the processing module 20, and is used to determine whether the distance information satisfies the pre- The height value; when the distance information does not satisfy the predetermined height value, the control module adjusts the flying height of the drone to fly the condition that the distance information satisfies the predetermined height value.
  • the predetermined height value is a fixed value, for example, the predetermined height value is set to 10 meters, 20 meters, 30 meters or 50 meters.
  • the specific implementation manner is: when the drone is in flight, the predetermined height value is set to 20 meters, and when the drone is less than or greater than 20 meters from the ground (ie, the lower obstacle), the altitude mode is activated, and the present invention has no The person automatically adjusts the flying height to ensure that the drone can fly under the condition that the distance information between the ground and the ground (ie the lower obstacle) meets 20 meters, that is, the flight is kept at a height of 20 meters relative to the ground, which is beneficial to the same shooting angle. Stable image.
  • the drone height control method of the present invention comprises the following steps:
  • the present invention calculates, according to the inter-turn difference between the transmitting and receiving turns, the distance information between the downward and the lower obstacles in the vertical direction of the drone; more preferably, the present invention is in a period of time.
  • the inter-band acquisition interval and the reception time are obtained in order to calculate the average value of the distance information, so as to ensure the distance information between the drone and the obstacle below is more accurate.
  • the present invention adjusts the flying height of the drone so that the drone is in its The flight is performed under the condition that the distance information of the obstacle below satisfies the predetermined height value, that is, the predetermined altitude value is maintained with respect to the lower obstacle.
  • the infrared light emitting module and the receiving module of the invention can be made relatively small, and the infrared spot is small, and is not easily absorbed by the object, has high precision, fast response, and can be used in a place with dark light;
  • the price is cheap, therefore, the invention is very suitable for small unmanned aerial vehicles, and can also be used for medium and large-scale aerial photography and special drones, and greatly improves without increasing the overall size, weight and cost of the drone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机及无人机定高控制方法,该无人机包括红外光发射模块(10)和红外光接收模块(11),获取到红外光的发射时间和接收时间,根据发射时间和接收时间的时间差计算出所述无人机与下方障碍物之间的距离信息;当距离信息不满足预定高度值时,调整所述无人机的飞行高度,以使所述距离信息满足预定高度值的条件飞行。由于红外光发射模块(10)和接收模块(11)都可以做得比较小巧、而且红外光斑小,不容易被物体吸收、精度较高、响应快、在光线暗的地方也能使用;同时,价格便宜。

Description

无人机及无人机定高控制方法
技术领域
[0001] 本发明涉及无人飞行器技术领域, 特别是涉及一种无人飞行器的飞行控制方法 背景技术
[0002] 无人机是一种以无线电遥控或自身程序控制为主的不载人飞行器。 目前, 无人 机一般都用于航拍, 尤其在高空中, 向下俯拍地面情况。 当需要稳定的图像吋 , 无人机则需要与地面保持一个稳定的高度, 即定高。 人为操作无人机保持定 高模式, 难度大。 而利用 GPS保持定高, 但又会出现 GPS信号不好, 导致定高很 难实现的问题。
技术问题
[0003] 本发明要解决的技术问题在于克服现有技术的不足, 提供一种定高设计功耗小 、 精度高以及成本低廉的无人机。
问题的解决方案
技术解决方案
[0004] 本发明解决其技术问题所采用的技术方案是: 一种无人机, 其包括红外光发射 模块, 用于沿所述无人机竖直方向向下发射红外光; 红外光接收模块, 用于接 收所述红外光发射模块发射的红外光接触到下方障碍物反射回来的红外光; 处 理模块, 与红外光发射模块和红外光接收模块连接, 控制红外光发射模块沿所 述无人机竖直方向向下发射红外光和红外光接收模块接收接触下方障碍物反射 回来的红外光, 并获取所述红外光发射模块发射红外光的发射吋间和红外光接 收模块接收红外光接触下方障碍物反射回来的接收吋间, 根据发射吋间和接收 吋间的吋间差计算出所述无人机沿竖直方向向下与下方障碍物之间的距离信息 ; 判断模块, 用于判断距离信息是否满足预定高度值; 控制模块, 用于调整所 述无人机的飞行高度, 以使所述距离信息满足预定高度值的条件飞行。
[0005] 作为本发明进一步改进, 所述预定高度值为一固定值。 [0006] 作为本发明进一步改进, 所述处理模块在一段吋间内控制红外光发射模块沿所 述无人机竖直方向向下发射红外光和红外光接收模块接收接触下方障碍物反射 回来的红外光, 以获取到多个发射吋间和接收吋间, 计算出距离信息的平均值
[0007] 作为本发明进一步改进, 所述处理模块对接收反射回来的红外光信号进行滤波 补偿处理。
[0008] 本发明还提供了一种无人机定高控制方法, 所述方法包括以下步骤:
[0009] 沿所述无人机竖直方向向下发射红外光, 以及接收接触下方障碍物反射回来的 红外光;
[0010] 获取红外光发射的发射吋间和所述红外光接触下方障碍物反射回来的接收吋间 [0011] 根据发射吋间和接收吋间的吋间差, 计算得到所述无人机沿竖直方向向下与下 方障碍物之间的距离信息;
[0012] 判断所述距离信息是否满足预定高度值;
[0013] 若所述距离信息不满足预定高度值, 则控制无人机调整其飞行高度, 以使所述 距离信息满足预定高度值的条件飞行。
[0014] 作为本发明进一步改进, 所述预定高度值为一固定值。
[0015] 作为本发明进一步改进, 获取一段吋间内多个发射吋间和接收吋间, 以计算得 到距离信息的平均值。
[0016] 作为本发明进一步改进, 还包括对接收反射回来的红外光进行滤波补偿处理。
发明的有益效果
有益效果
[0017] 与现有技术相比, 本发明使得无人机能够定高模式下飞行, 这样无人机就能获 取稳定角度下的图像。 由于红外光发射模块和接收模块都可以做得比较小巧、 而且红外光斑小, 不容易被物体吸收、 精度较高、 响应快、 在光线暗的地方也 能使用; 同吋, 价格便宜, 所以, 本发明非常适合于小型无人机, 也可以用于 中大型航拍及专用无人机, 在对无人机整体体积大小、 重量及成本增加很少的 情况下, 大大提高无人机的灵活性和安全性。 对附图的简要说明
附图说明
[0018] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[0019] 图 1是本发明无人机的结构框图;
[0020] 图 2是本发明无人机定高控制方法的流程图。
本发明的实施方式
[0021] 为了对本发明的技术特征、 目的和效果有更加清楚的理解, 现对照附图详细说 明本发明的具体实施方式。
[0022] 如图 1所示, 本发明无人机包括红外光发射模块 10、 红外光接收模块 11、 与红 外光发射模块 10和红外光接收模块 11连接的处理模块 20、 与处理模块 20相连的 判断模块 30, 以及与判断模块 30相连的控制模块 40。
[0023] 本发明红外光发射模块 10用于沿所述无人机竖直方向向下发射红外光, 红外光 接收模块 11用于接收所述红外光发射模块发射的红外光接触到下方障碍物反射 回来的红外光。 红外光发射模块 10发射红外光和红外光接收模块 11接收反射回 来的红外光通过处理模块 20驱动。
[0024] 本发明红外光发射模块 10和红外光接收模块 11分别为红外发射管和红外接收管
, 可以做得非常小巧, 发射的红外斑点小, 不易被物体吸收。
[0025] 处理模块 20为一专用处理器芯片, 该专用处理器芯片驱动红外光发射模块沿所 述无人机竖直方向向下发射红外光, 和驱动红外光接收模块接收接触下方障碍 物反射回来的红外光, 并且, 获得发射吋间和接收吋间。 更优的是, 本发明具 体实施例中, 处理模块在一个吋间段内驱动红外光发射模块和红外光接收模块 工作, 从而获得多个发射吋间和接收吋间, 即在一段吋间内, 多次测量, 计算
, 寻求距离信息的平均值, 这样, 保证距离信息更精准。
[0026] 在本发明实施例中, 处理模块 20驱动红外光发射模块 10发射红外光, 红外光的 频率范围可选为: 800〜900nm。 在本发明实施例中, 处理模块对接收反射回来 的红外光信号进行滤波补偿处理, 以保障精确度。
[0027] 本发明实施例, 判断模块 30与处理模块 20相连, 用于判断距离信息是否满足预 定高度值; 当距离信息不满足预定高度值吋, 控制模块则调整无人机的飞行高 度, 以使所述距离信息满足预定高度值的条件飞行。 在本实施例中, 所述预定 高度值为一固定值, 比如, 该预定高度值设置为 10米, 20米, 30米或 50米。 具 体的实施方式是: 无人机在飞行吋, 预定高度值设置为 20米, 当无人机距离地 面 (即下方障碍物) 少于或大于 20米飞行吋, 启动定高模式, 本发明无人机会 自动调整飞行高度, 保证无人机在其与地面 (即下方障碍物) 之间的距离信息 满足 20米的条件下飞行, 即相对地面保持在 20米的高度飞行, 有利于拍摄角度 相同的稳定图像。
[0028] 如图 2所示, 本发明无人机定高控制方法, 包括以下步骤:
[0029] 沿无人机竖直方向向下发射红外光, 以及接收接触下方障碍物反射回来的红外 光。
[0030] 获取红外光发射的发射吋间和所述红外光接触下方障碍物反射回来的接收吋间
[0031] 根据发射吋间和接收吋间的吋间差, 计算得到所述无人机沿竖直方向向下与下 方障碍物之间的距离信息; 更优的是, 本发明会在一段吋间内获取多个发射吋 间和接收吋间, 以计算得到距离信息的平均值这样, 保证无人机与下方障碍物 之间的距离信息更精准。
[0032] 判断距离信息是否满足预定高度值;
[0033] 当无人机与下方障碍物的距离不满足预定高度值, 即无人机没有在预先设定的 高度值飞行, 本发明调整无人机的飞行高度, 以使无人机在其与下方障碍物的 距离信息满足预定高度值的条件下飞行, 即相对与下方障碍物保持预定高度值 飞行。
[0034] 本发明由于红外光发射模块和接收模块都可以做得比较小巧、 而且红外光斑小 , 不容易被物体吸收、 精度较高、 响应快、 在光线暗的地方也能使用; 同吋, 价格便宜, 所以, 本发明非常适合于小型无人机, 也可以用于中大型航拍及专 用无人机, 在对无人机整体体积大小、 重量及成本增加很少的情况下, 大大提 高无人机的灵活性和安全性。
[0035] 本发明是通过较佳的实施例进行说明的, 本领域技术人员应当明白, 在不脱离 本发明范围的情况下, 还可以对本发明进行各种变换和等同替代。 另外, 针对 特定情形或具体情况, 可以对本发明做各种修改, 而不脱离本发明的范围。 因 此, 本发明不局限于所公幵的具体实施例, 而应当包括落入本发明权利要求范 围内的全部实施方式。

Claims

权利要求书
[权利要求 1] 一种无人机, 其特征在于, 包括:
红外光发射模块, 用于沿所述无人机竖直方向向下发射红外光; 红外光接收模块, 用于接收所述红外光发射模块发射的红外光接触到 下方障碍物反射回来的红外光;
处理模块, 与红外光发射模块和红外光接收模块连接, 控制红外光发 射模块沿所述无人机竖直方向向下发射红外光和红外光接收模块接收 接触下方障碍物反射回来的红外光, 并获取所述红外光发射模块发射 红外光的发射吋间和红外光接收模块接收红外光接触下方障碍物反射 回来的接收吋间, 根据发射吋间和接收吋间的吋间差计算出所述无人 机沿竖直方向向下与下方障碍物之间的距离信息; 判断模块, 用于判断距离信息是否满足预定高度值;
控制模块, 用于调整所述无人机的飞行高度, 以使所述距离信息满足 预定高度值的条件飞行。
[权利要求 2] 根据权利要求 1所述的无人机, 其特征在于, 所述预定高度值为一固 定值。
[权利要求 3] 根据权利要求 1所述的无人机, 其特征在于, 所述处理模块在一段吋 间内控制红外光发射模块沿所述无人机竖直方向向下发射红外光和红 外光接收模块接收接触下方障碍物反射回来的红外光, 以获取到多个 发射吋间和接收吋间, 计算出距离信息的平均值。
[权利要求 4] 根据权利要求 1所述的无人机, 其特征在于, 所述处理模块对接收反 射回来的红外光信号进行滤波补偿处理。
[权利要求 5] —种无人机定高控制方法, 其特征在于, 包括以下步骤:
沿所述无人机竖直方向向下发射红外光, 以及接收接触下方障碍物反 射回来的红外光;
获取红外光发射的发射吋间和所述红外光接触下方障碍物反射回来的 接收吋间;
根据发射吋间和接收吋间的吋间差, 计算得到所述无人机沿竖直方向 向下与下方障碍物之间的距离信息;
判断所述距离信息是否满足预定高度值;
若所述距离信息不满足预定高度值, 则控制无人机调整其飞行高度, 以使所述距离信息满足预定高度值的条件飞行。
[权利要求 6] 根据权利要求 5所述的无人机定高控制方法, 其特征在于, 所述预定 高度值为一固定值。
[权利要求 7] 根据权利要求 5所述的无人机定高控制方法, 其特征在于, 获取一段 吋间内多个发射吋间和接收吋间, 以计算得到距离信息的平均值。
[权利要求 8] 根据权利要求 7所述的无人机定高控制方法, 其特征在于, 还包括对 接收反射回来的红外光进行滤波补偿处理。
PCT/CN2016/098436 2016-07-23 2016-09-08 无人机及无人机定高控制方法 WO2018018710A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610582982.9 2016-07-23
CN201610582982.9A CN107656529A (zh) 2016-07-23 2016-07-23 无人机及无人机定高控制方法

Publications (1)

Publication Number Publication Date
WO2018018710A1 true WO2018018710A1 (zh) 2018-02-01

Family

ID=61015378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098436 WO2018018710A1 (zh) 2016-07-23 2016-09-08 无人机及无人机定高控制方法

Country Status (2)

Country Link
CN (1) CN107656529A (zh)
WO (1) WO2018018710A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109407681B (zh) * 2018-12-13 2021-10-08 广州极飞科技股份有限公司 无人机飞行控制方法、飞行控制装置、无人机和存储介质
CN111381289A (zh) * 2018-12-27 2020-07-07 北京奇虎科技有限公司 红外灯自适应环境的障碍物检测方法及移动设备
CN112748740A (zh) * 2020-12-25 2021-05-04 深圳供电局有限公司 多旋翼无人机自动航线规划方法及其系统、设备、介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101746504A (zh) * 2008-12-01 2010-06-23 厦门市罗普特科技有限公司 带红外线测距空中悬停警用侦察飞行器
CN102762264A (zh) * 2009-11-14 2012-10-31 齐晓燕 玩具装置
US8577520B1 (en) * 2012-09-26 2013-11-05 Silverlit Limited Altitude control of an indoor flying toy
CN104056456A (zh) * 2014-06-11 2014-09-24 赵旭 一种红外线感应的玩具飞行器结构及其应用
CN105311839A (zh) * 2014-06-25 2016-02-10 上海本星电子科技有限公司 气球空中高度定位装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201334116Y (zh) * 2008-12-01 2009-10-28 厦门市罗普特科技有限公司 带红外线测距空中悬停警用侦察飞行器
CN102442424A (zh) * 2011-10-21 2012-05-09 北京工业大学 一种固定翼无人机的定高飞行控制系统与方法
KR20130009893A (ko) * 2013-01-05 2013-01-23 이상윤 무인항공기 도킹 및 자동회수시스템
CN203727639U (zh) * 2013-02-08 2014-07-23 上海科斗电子科技有限公司 空中定位飞行设备
CN103914075B (zh) * 2013-12-13 2017-05-03 深圳市大疆创新科技有限公司 一种无人飞行器的控制方法及装置
CN105182992A (zh) * 2015-06-30 2015-12-23 深圳一电科技有限公司 无人机的控制方法、装置
CN204956914U (zh) * 2015-09-17 2016-01-13 广东中安金狮科创有限公司 自动三维空间测距避让和穿越飞行的无人机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101746504A (zh) * 2008-12-01 2010-06-23 厦门市罗普特科技有限公司 带红外线测距空中悬停警用侦察飞行器
CN102762264A (zh) * 2009-11-14 2012-10-31 齐晓燕 玩具装置
US8577520B1 (en) * 2012-09-26 2013-11-05 Silverlit Limited Altitude control of an indoor flying toy
CN104056456A (zh) * 2014-06-11 2014-09-24 赵旭 一种红外线感应的玩具飞行器结构及其应用
CN105311839A (zh) * 2014-06-25 2016-02-10 上海本星电子科技有限公司 气球空中高度定位装置

Also Published As

Publication number Publication date
CN107656529A (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
US11771076B2 (en) Flight control method, information processing device, program and recording medium
WO2018094583A1 (zh) 无人机避障控制方法、飞行控制器及无人飞行器
US11776413B2 (en) Aerial vehicle flight control method and device thereof
US11604479B2 (en) Methods and system for vision-based landing
US9676480B2 (en) Flying machine capable of blocking light autonomously
US11720100B2 (en) Systems and methods for utilizing semantic information for navigation of a robotic device
JP2020098567A (ja) 適応検知・回避システム
US20180090016A1 (en) Methods and apparatus to navigate drones based on weather data
WO2018018711A1 (zh) 无人机及无人机避障控制方法
US20190278303A1 (en) Method of controlling obstacle avoidance for unmanned aerial vehicle and unmanned aerial vehicle
US20170154203A1 (en) Ranging Obstacle Avoidance Instrument and Ranging Obstacle Avoidance Method for Unmanned Aerial Vehicle
WO2019119184A1 (zh) 地形预测方法、设备、系统和无人机
EP3859480A1 (en) Unmanned aerial vehicle control method, device and spraying system, and unmanned aerial vehicle and storage medium
WO2018018710A1 (zh) 无人机及无人机定高控制方法
US8577520B1 (en) Altitude control of an indoor flying toy
WO2019000345A1 (zh) 控制方法、无人机和计算机可读存储介质
CN111766900A (zh) 无人机高精度自主降落的系统、方法及存储介质
US10341573B1 (en) Aircraft control method and apparatus and aircraft
US20200150695A1 (en) Environment-adaptive sense and avoid system for unmanned vehicles
US10399699B1 (en) Aircraft control method and apparatus and aircraft
US20210394923A1 (en) Aircraft control method and apparatus and aircraft
KR102366609B1 (ko) 드론 착륙 제어 시스템 및 그 착륙 제어 방법
JP2018029941A (ja) 屋内飛行玩具の水平制御
WO2018214644A1 (zh) 障碍检测方法、装置以及无人飞行器
CN107300704B (zh) 无人飞行器室内定位方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16910289

Country of ref document: EP

Kind code of ref document: A1