WO2018018669A1 - Static charge reduction system - Google Patents

Static charge reduction system Download PDF

Info

Publication number
WO2018018669A1
WO2018018669A1 PCT/CN2016/095289 CN2016095289W WO2018018669A1 WO 2018018669 A1 WO2018018669 A1 WO 2018018669A1 CN 2016095289 W CN2016095289 W CN 2016095289W WO 2018018669 A1 WO2018018669 A1 WO 2018018669A1
Authority
WO
WIPO (PCT)
Prior art keywords
air delivery
delivery tubing
tubing
primary
returned
Prior art date
Application number
PCT/CN2016/095289
Other languages
French (fr)
Inventor
Kek Hing Kow
Original Assignee
Esd Technology Consulting & Licensing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Esd Technology Consulting & Licensing Co., Ltd. filed Critical Esd Technology Consulting & Licensing Co., Ltd.
Priority to CN201680004010.XA priority Critical patent/CN107223365B/en
Priority to TW106119350A priority patent/TWI644596B/en
Publication of WO2018018669A1 publication Critical patent/WO2018018669A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air

Definitions

  • the present invention relates to static charge reduction technique, and more specific, to a static charge reduction system for static charge reduction in localized spots.
  • PCT/CN/2011/076825 describes a methodology of static charge mitigation using humid air flow inside an enclosed enclosure.
  • PCT/CN/2013/087133 describes the way humid air is being used to mitigate static charge generation in open-space localized area in an ambient environment.
  • an ordinary person skilled in the art can apply the open-space system in PCT/CN/2013/087133 in repeated manner according to the exact number of mitigating points to solve the problem accordingly.
  • a static charge reduction system comprising a humidifier, a primary outflow air delivery tubing connected to an outlet of the humidifier, wherein, at least one secondary outflow air delivery tubing is branched out from the primary outflow air delivery tubing, wherein the secondary outflow air delivery tubing is directed to a targeted position for delivering humid air from the humidifier to the targeted position.
  • the static charge reduction system further comprises a primary returned air delivery tubing connected to an inlet of the humidifier, at least one secondary returned air delivery tubing is branched out from the primary returned air delivery tubing, wherein, the secondary returned air delivery tubing is sucking the humid air from the targeted position back to the humidifier.
  • At least one tiny capillary tubing can be attached to the primary outflow air delivery tubing, and directed to a specific targeted position.
  • the primary outflow air delivery tubing and the primary returned air delivery tubing are connected to form a closed loop or are respectively sealed at one or both of their tubing ends to form an open loop.
  • a valve plug is provided at a tip end of the primary outflow air delivery tubing, and/or a tip end of the primary returned air delivery tubing.
  • the valve plug comprises a hollow cylindrical inserting portion and an outer flat-head stopper, wherein an opening is provided on the hollow cylindrical inserting portion.
  • the primary outflow air delivery tubing and the primary returned air delivery tubing can be the same piece of a signle one tubing with a cut-off wall to form tip-end openings.
  • the secondary outflow air delivery tubing and the secondary returned air delivery tubing can be the same piece of one single tubing with a cut-off wall to form the tip-end openings.
  • a plurality of secondary outflow air delivery tubings are branched out from the primary outflow air delivery tubing, and a plurality of secondary returned air delivery tubings are branched out from the primary returned air delivery tubing.
  • each pair of the secondary outflow air delivery tubing and the secondary returned air delivery tubing is directed to a same targeted position in forming a secondary air delivery loop.
  • the primary outflow air delivery tubing and the primary returned air delivery tubing are provided with a number of openings at various points along their lengths, respectively, at least one secondary tubing is inserted into one opening on the primary outflow air delivery tubing to form the secondary outflow air delivery tubing, and at least one secondary tubing is inserted into one opening on the primary returned air delivery tubing to form the secondary returned air delivery tubing.
  • an air controller can be provided to cover at least one of the openings on the primary outflow air delivery tubing and the primary returned air delivery tubing.
  • the air controller can be a cylindrical rotatable tubing mounted onto the primary outflow air delivery tubing and the primary returned air delivery tubing.
  • a primary tube holder can be provided for holding the primary outflow air delivery tubing and the primary returned air delivery tubing, wherein the primary tube holder has a U-shape structure with at least two grooves for holding the primary outflow air delivery tubing and the primary returned air delivery tubing in parallel ar-rangement.
  • a plurality of grooves can be provided and the primary tube holder can be slideable.
  • a secondary tube holder can be provided for holding the secondary outflow air delivery tubing and the secondary returned air delivery tubing
  • the secondary tube holder can have a base plate and two sidewalls wherein, the two sidewalls are each provided with at least one holding opening for holding the secondary outflow air delivery tubing and the secondary returned air delivery tubing.
  • the two sidewalls are slideable on the base plate towards each other.
  • the two sidewalls are fixed on two ends of the base plate, and the base plate is telescopic, at least two grooves are provided on each sidewall for holding the secondary outflow air delivery tubing and the secondary returned air delivery tubing.
  • the two sidewalls are wired-like structure provided with at least two grooves for holding the secondary outflow air delivery tubing and the secondary returned air delivery tubing.
  • the primary outflow air delivery tubing and the primary returned air delivery tubing are attached to a double-wall tubing structure, or the secondary outflow air delivery tubing and the secondary returned air delivery tubing are attached to a double-wall tubing structure, wherein, the double-wall tubing structure comprises a bigger diameter tubing and a smaller diameter tubing placed inside the bigger diameter tubing to form an outer humid air flow and an inner humid air flow travel in opposite directions.
  • the smaller diameter tubing is slideable.
  • a ring-shape plate is attached at a mouth of the double-wall tubing structure.
  • the humidifier comprises a hollow cylindrical chamber with a mist generator placed inside at the bottom of the hollow cylindrical chamber for generating a continuous stream of humid air, a suction fan placed between the primary outflow air delivery tubing and the mist generator for forming the continuous stream of humid air with the stream of incoming air into a cyclonic air flow which spiral upward towards the primary outflow air delivery tubing, so as to eliminate accumulation of water droplets or condensation at an outlet region of the hollow cylindrical chamber.
  • the humidifier can further comprise an inlet tubing attached to the hollow cylindrical chamber for feeding a stream of incoming air.
  • the hollow cylindrical chamber has a vertical cylindrical lower chamber and a tilted taper upper chamber attached to the top of the vertical cylindrical lower chamber, the primary outflow air delivery tubing is attached to the tilted taper upper chamber, and the suction fan is placed in the vertical cylindrical lower chamber.
  • the hollow cylindrical chamber has a vertical cylindrical lower chamber and an extended outlet flow channel branched out from the vertical cylindrical lower chamber, the primary outflow air delivery tubing is attached to the outlet flow channel, and the suction fan is placed inside the outlet flow channel.
  • the suction fan is a centrifugal fan that is attached securely onto a circular plate with a centre hole on the circular plate to allow the continuous stream of humid air and the stream of incoming air to pass through the centrifugal fan, so as to mix them together in forming the cyclonic air flow.
  • the centrifugal fan has a drum housing with fins arranged at its middle point, wherein, the drum housing further comprises an air outlet which discharges mixed air in a direction in parallel with or tilted at a small angle to a tangent of the drum housing at the air outlet so as to form the cyclonic air flow along a circumference of an inner wall of the hollow cylindrical chamber.
  • the circular plate is attached securely onto an inner wall of the hollow cylindrical chamber, wherein the fins of the centrifugal fan is right above the centre hole of the circular plate.
  • the centrifugal fan is tilted to a horizontal axis at an angle from 0 degree to 80 degree upwards or downwards from the horizontal axis, preferred from 5 degree to 75 degree, more preferred from 25 degree to 60 degree, most preferred from 35 degree to 50 degree.
  • the cyclonic air flow has its flow angle increase as it spiral up, wherein, the flow angle increases from as low as 5 degree up to a maximum of 80 degree as it spiral upwards until it reaches the extreme top of the hollow cylindrical chamber.
  • Fig. 1 is a diagram showing an open loop of the static charge reduction system according to an embodiment of the present application.
  • Fig. 2 is a diagram showing the static charge reduction system according to another embodiment of the present application.
  • Fig. 3 is a diagram showing one secondary air delivery loop of the static charge reduction system shown in Fig. 2.
  • Fig. 4 is a diagram showing the valve plug of the static charge reduction system according to an embodiment of the present application.
  • Fig. 5 is a diagram showing the primary tube holder of the static charge reduction system according to an embodiment of the present application.
  • Fig. 6A is a diagram showing the first embodiment of the secondary tube holder of the static charge reduction system according to an embodiment of the present ap-plication.
  • Fig. 6B is a diagram showing the second embodiment of the secondary tube holder of the static charge reduction system according to an embodiment of the present ap-plication.
  • Fig. 6C is a diagram showing the third embodiment of the secondary tube holder of the static charge reduction system according to an embodiment of the present ap-plication.
  • Fig. 7 is a diagram showing the static charge reduction system according to a further embodiment of the present application.
  • Fig. 8 is a diagram showing the air controller of the static charge reduction system according to an embodiment of the present application.
  • Fig. 9 is a diagram showing the humidifier of the static charge reduction system according to an embodiment of the present application.
  • Fig. 10 is a diagram showing the centrifugal fan and circular plate of the humidifier as shown in Fig. 9.
  • Fig. 11 is a diagram showing the centrifugal fan generates a circular air flow along the circumference of the inner wall of the hollow cylindrical chamber.
  • Fig. 12 is a diagram showing a cross-section of the humidifier as shown in Fig. 9.
  • Fig. 13 is a diagram showing air flow conditions that generate the spinning effect of the cyclonic air flow
  • Fig. 14 is a diagram showing the humidifier of the static charge reduction system according to another embodiment of the present application.
  • Fig. 15 is a diagram showing the double-wall tubing structure of the static charge reduction system according to an embodiment of the present application.
  • Fig. 16 is a diagram showing the ring-shape plate of the double-wall tubing structure shown in Fig. 15.
  • Fig. 17 is a diagram showing a preferable embodiment of the primary/secondary outflow air delivery tubing and the primary/secondary returned air delivery tubing.
  • the static charge reduction system comprises a humidifier 100, a primary outflow air delivery tubing 200 connected to an outlet 110 of the humidifier 100, a primary returned air delivery tubing 300 connected to an inlet 120 of the humidifier 100.
  • the tip end of the primary outflow air delivery tubing 200 can be affixed with a valve plug 210, and the tip end of the primary returned air delivery tubing 300 is also affixed with an valve plug 310, thereby an open or closed loop humid air flow delivery system can be formed.
  • the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300 can be formed by one closed loop tubing.
  • the tip end of the primary outflow air delivery tubing 200 and the tip end of the primary returned air delivery tubing 300 are sealed to form an open loop.
  • the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300 can be the same piece of a signle one tubing with a cut-off wall to form the tip-end openings, wherein such humid air flow at the openings is used as a static charge mitigation column of humid air to cut down or reduce static charge.
  • the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300 can be arranged in parallel at the same side of the hu-midifier 100. Further, the primary outflow air delivery tubing 200 is provided with several outflow openings 220 at various points along its length. Meanwhile, the primary returned air delivery tubing 300 is provided with same a number of returned openings 320 at various points along its length. One tubing is inserted into one outflow opening 220 to form a secondary outflow air delivery tubing 230, which is directed to a targeted position for delivering humid air from the humidifier 100 to the targeted position for cutting down or reduce the static charge generation at the targeted position.
  • One tubing is inserted into one returned opening 320 to form a secondary returned air delivery tubing 330, which is directed to the same targeted position for sucking the humid air from the targeted position back to the humidifier.
  • a secondary returned air delivery tubing 330 As shown in Fig. 3, the tip end of the secondary outflow air delivery tubing 230 and the tip end the secondary returned air delivery tubing 330 are directed to a same targeted position and form an open secondary air delivery loop.
  • the number of the outflow openings 220 and the numbers of the returned opening 320 can be same or different.
  • the pair number of the secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 330 can be determined according to an actual requirement.
  • just one primary outflow air delivery tubing 200 and just one secondary outflow air delivery tubing 230 can be arranged, and no primary returned air delivery tubing 300 and/or secondary returned air delivery tubing 330 is provided for special uses.
  • the returned opening 320 and outflow openings 220 are incisions made on the primary outflow air delivery tubing 200 and primary returned air delivery tubing 300.
  • glues, adhesives, agglutinant, sealers or other sealing elements can be arranged for sealing the insertion of the secondary outflow air delivery tubings 230 into the outflow openings 220, or of the secondary returned air delivery tubing 330 into the returned opening 320.
  • the primary outflow air delivery tubing 200 can be a main tubing provided with several branched tubings, which means the primary outflow air delivery tubing 200 and the secondary outflow air delivery tubings 230 can be formed in one-piece.
  • the primary returned air delivery tubing 300 can also be made in a same way.
  • the secondary outflow air delivery tubings 230 and the secondary returned air delivery tubing 330 can be the same piece of one single tubing with a cut-off wall to form the tip-end openings.
  • the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300 can be the same piece of a signle one tubing with a cut-off wall to form the tip-end openings
  • the secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 330 can be the same piece of one single tubing with a cut-off wall to form the tip-end openings.
  • humid air flow at the openings is used as a static charge mitigation column of humid air to cut down or reduce static charge.
  • Fig. 4 has shown a preferable embodiment of the valve plugs 210, 310, which can be an OPEN/CLOSE connecting valve plug 500.
  • the OPEN/CLOSE connecting valve plug 500 has a hollow cylindrical inserting portion 520 and an outer flat-head stopper 510.
  • the outer flat-head stopper 510 can be a cylindrical base having a diameter which is bigger than the diameter of the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300.
  • the outer flat-head stopper 510 can also have other shapes, such as a square, a rectangle, a round, an oval or any other shape.
  • the hollow cylindrical inserting portion 520 has a diameter which is slightly smaller than the diameter of the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300, such that it can be inserted in without resulting leakage of moist air.
  • An opening 530 is provided on the hollow cylindrical inserting portion 520, by a sliding movement of the valve plug 500 along the length of the cylindrical inserting portion 520 the humid air in the primary outflow air delivery tubing 200 and/or the primary returned air delivery tubing 300 can be blocked or delivered.
  • the opening 530 can have a square, a rectangle, a round, an oval or any other shape that permits the flow of humid air.
  • valve plugs 210, 310 can also be formed by a common know gas plug without any openings, which means the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300 can be totally sealed.
  • Fig. 6A-C has shown preferable embodiments of the secondary tube holder 400.
  • the secondary tube holder 400 can have a base plate 410 and two sidewalls 420 which is slideable on the base plate 410 towards each other.
  • the two sidewalls 420 are each provided with at least one holding opening 440 for holding the secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 230.
  • holding opening 440 can be round holes, elliptical grooves, or any openings in any shape which can receive and accommodate the secondary outflow air delivery tubing and the secondary returned air delivery tubing.
  • Fig. 6A-C has shown preferable embodiments of the secondary tube holder 400.
  • the secondary tube holder 400 can have a base plate 410 and two sidewalls 420 which is slideable on the base plate 410 towards each other.
  • the two sidewalls 420 are each provided with at least one holding opening 440 for holding the secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 230.
  • the secondary tube holder 400’ can have a base plate 410’ and two sidewalls 420’ .
  • the two sidewalls 420’a re fixed on two ends of the base plate 410’ , and the base plate 410’ is telescopic.
  • the secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 230 are soft, so can be moved from one groove to another groove for adjusting the height of the secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 230.
  • the secondary tube holder 400 can have a base plate 410” and two sidewalls 420” .
  • the base plate 410” is telescopic.
  • the base plate 410” and the sidewalls 420” have a wire-like structure.
  • the sidewalls 420” can be at least two grooves 440” formed by a wire.
  • the secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 230 can be inserted into the grooves, and moved from one groove to another groove for holding and adjusting the height of the same.
  • a simple clipper can be used as the secondary tube holder 400 for clipping the secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 330.
  • a primary tube holder 600 can be provided for holding the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300.
  • Fig. 5 has shown a preferable embodiment of the primary tube holder 600.
  • the primary tube holder 600 has a U-shape structure with at least two grooves 610 for holding the primary outflow air delivery tubing 200 and the primary returned air delivery tubing in parallel 300.
  • a plurality of grooves 610 can be provided such that, the primary outflow air delivery tubing 200 and the primary returned air delivery tubing in parallel 300 can be holed in parallel at a certain distance.
  • the primary tube holder 600 can be slideable along the length of the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300.
  • an air controller 800 can be provided to cover at least one of the outflow openings 220 on the primary outflow air delivery tubing 200.
  • a further air controller 800 can be provided to cover at least one of the returned openings 320 on the primary returned air delivery tubing 300.
  • the air controller 800 can be a cylindrical rotatable tubing mounted onto (such as encasing, attaching, adhering and so on) the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300. In such a way, the static charge reduction system according to the present application can have more control over the amount of humid air flow in achieving a more precise static charge mitigation objective.
  • the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300 can be flexible and posse a ′′swing-back′′ action that allow any dis-placement of the tubings to swing back to its original position (not shown) .
  • the secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 330 can also be flexible and posse a ′′swing-back′′ action that allow any dis-placement of the tubings to swing back to its original position. This is useful in ap-plications that involve high intensity of process movements or process displacement where space availability is very limited.
  • Fig. 7 is a diagram showing the static charge reduction system according to a further embodiment of the present application. As shown in Fig. 7, several tiny capillary tubing 700 can be attached to the primary outflow air delivery tubing 200 and directed to a specific targeted position without returned loop for very specialized application to provide extra static charge mitigation. In other embodiment of the present application, there also can be several tiny capillary tubing 700 can be attached to the primary returned air delivery tubing 300 for special usage.
  • one primary outflow air delivery tubing 210 and one primary returned air delivery tubing 310 are attached to a double-wall tubing structure 900.
  • two primary outflow air delivery tubings 210 and one primary returned air delivery tubing 310 are attached to the double-wall tubing structure 900.
  • two secondary outflow air delivery tubings and one secondary returned air delivery tubing are attached to the double-wall tubing structure 900.
  • the double-wall tubing structure 900 comprises a bigger diameter tubing 920 and a smaller diameter tubing 930 placed inside the bigger diameter tubing 920 to form an outer flow path and an inner flow path.
  • the outer humid air flow in the outer flow path and the inner humid air flow in the inner flow path travel in opposite directions.
  • the primary outflow air delivery tubing 210 is attached to an opening mouth of the outer flow path, and the primary returned air delivery tubing 310 is attached to an opening mouth of the inner flow path.
  • Such unique humid air flow design is well suited for localized spot static charge removal ap-plication.
  • the smaller diameter tubing 930 is slide-able to allow more precise control of the amount and strength of the humid air flow to achieve more specific static charge mitigation objective.
  • the double-wall tubing structure 900 further comprises a ring-shape plate 910 attached to the opening mouth of the outer flow path.
  • Two primary outflow air delivery tubing 210 is attached to the ring-shape plate 910.
  • the ring-shape plate 910 enables the humid air to travel a broader distance inwards covering more area before it is being sucked into the outer humid air flow.
  • the primary returned air delivery tubing 310 is attached to the inner flow path formed by the smaller diameter tubing 930 placed at the middle of the bigger diameter tubing 920.
  • the humidifier 100 can be any common known humidifier. However, in a preferable embodiment of the present application, a special humidifier is provided, referring Fig. 9-13.
  • the humidifier 100 comprises a hollow cylindrical chamber 2 with a mist generator 21 placed inside at the bottom of the hollow cylindrical chamber 2 for generating a continuous stream of humid air, a suction fan 4 placed between the primary outflow air delivery tubing 200 and the mist generator 21 for forming the continuous stream of humid air and the stream of incoming air into a cyclonic air flow which spiral upward towards the primary outflow air delivery tubing 200, surprisingly eliminates accumulation of water droplets or condensation at an outlet region of the hollow cylindrical chamber 2.
  • the humidifier 100 can further comprises an incoming tubing 22 which can be the primary returned air delivery tubing 300, or another incoming tubing for feeding a stream of incoming air. It dependents on the actual requirements.
  • the suction fan 4 is a centrifugal fan that is attached securely onto a circular plate 3 with a centre hole 31 on the circular plate 3 to allow the continuous stream of humid air and the stream of incoming air to pass through the centrifugal fan, so as to mix them together in forming the cyclonic air flow.
  • the humid air produced by the mist generator 21 is being sucked and passed through the suction fan 4 that is placed at a position around the centre region inside the hollow cylindrical chamber 2.
  • the centrifugal fan 4 can be any type on the market.
  • the centrifugal fan 4 can be arranged by itself at a position around the centre region inside the hollow cylindrical chamber 2 independently, so the circular plate 3 can be omitted.
  • the centrifugal fan 4 on the circular plate 3 can be placed in a lay-flat position as shown in Fig. 9.
  • the centrifugal fan can be tilted by tilting its attached circular plate 3 at a suitable angle with reference to the horizontal axis marked AA′in Fig 13 to provide more design flexibilities in the applications of the current application.
  • the tilting angle is in the range of 0 degree to 80 degree upwards from the horizontal axis or 0 degree to 80 degree downwards from the horizontal axis.
  • the tilting angle is in the range from 5 degree to 75 degree upwards or downwards from the horizontal axis.
  • the tilting angle is in the range from 25 degree to 60 degree upwards or downwards from the horizontal axis. More preferably, the tilting angle is in the range from 35 degree to 50 degree upwards or downwards from the horizontal axis.
  • the hollow cylindrical chamber can be any cylindrical shape.
  • Fig. 9 has shown a preferred arrangement of the hollow cylindrical chamber 2.
  • the hollow cylindrical chamber 2 has a vertical cylindrical lower chamber 24 and a tilted taper upper chamber 25 attached to the vertical cylindrical lower chamber 24.
  • the suction fan 4 is arranged in the middle of the vertical cylindrical lower chamber 24.
  • the accumulation of water droplets or condensation at the tilted taper upper chamber 25 as well as the inner wall of the curving tubing 26 is surprisingly disappeared.
  • Fig. 10 is a diagram showing the centrifugal fan and circular plate of the humidifier.
  • the centrifugal fan 4 has a drum housing with fins 41 arranged at its middle point 43.
  • the drum housing further comprises an air outlet 42 which discharge mixed air in a direction in parallel with or tilted at a small angle to a tangent of the drum housing at the air outlet so as to generate the cyclonic air flow along a cir-cumference of an inner wall of the hollow cylindrical chamber 2.
  • the circular plate 3 is attached securely onto an inner wall of the hollow cylindrical chamber 2, wherein the fins of the centrifugal fan 4 is right above the centre hole 31 of the circular plate 3.
  • the centrifugal fan and circular plate of present ap-plication can be arranged in any other variation as if they can generate a cyclonic air flow.
  • the centrifugal fan 4 shown in Fig. 10 can generate a circular air flow along the circumference of the inner wall of the hollow cylindrical chamber 2.
  • the cyclonic air flow has its flow angle increase as it spiral up, wherein, the flow angle increases from as low as 5 degree up to a maximum of 80 degree to the horizontal axis as it spiral upwards until it reaches the extreme top of the hollow cylindrical chamber 2.
  • Fig. 13 is a diagram showing air flow conditions that generate the spinning effect of the cyclonic air flow. As shown in Fig. 13, there is no cyclonic air flow when the air direction is blown from the centre point A in any direction. Referring Fig. 13, there is also no cyclonic air flow when the air direction is blown from the point B to point 0 in forming point B to point 0′.
  • the air flow spins under the following conditions: 1) Air direction from point B to point 1.2) Air direction from point B to point 2.3) Air direction from point B to point 3.
  • the cyclonic air flow generates in a direction in parallel with or tilted at a small angle to a tangent of the centrifugal fan 4 so as to form the cyclonic air flow along a circumference of an inner wall of the hollow cylindrical chamber 2.
  • the flow angle of the cyclonic air flow that spiraled along the inside wall of the hollow cylindrical chamber 2 is in the range of 5 degree to 80 degree to the horizontal axis; preferably 25 degree to 60 degree to the horizontal axis and more preferably 35 degree to 50 degree to the horizontal axis.
  • Fig. 14 is a diagram showing the humidifier of the static charge reduction system according to another embodiment of the present application.
  • the humidifier comprises a hollow cylindrical chamber 5 with a mist generator 21 placed inside at the bottom of the hollow cylindrical chamber 5 for generating a continuous stream of humid air, an inlet tubing 22 attached to the hollow cylindrical chamber 5 for feeding a stream of incoming air, an outlet tubing (unshown) attached to the hollow cylindrical chamber 5, a suction fan 4 placed between the extended outlet flow channel 52 and the mist generator 21 for forming the continuous stream of humid air and the stream of incoming air into a cyclonic air flow which spiral upward towards the outlet tubing, surprisingly eliminates accumulation of water droplets or condensation at an outlet region of the hollow cylindrical chamber 5.
  • the stream of incoming air can be returned air or ambient air.
  • the hollow cylindrical chamber 5 has a vertical cylindrical lower chamber 51 and the extended outlet flow channel 52 branched out from the vertical cylindrical lower chamber 51.
  • the primary outflow air delivery tubing 200 connected can be connected to the extended outlet flow channel 52.
  • the suction fan 4 is placed in the extended outlet flow channel 52.
  • the accumulation of water droplets or condensation in the extended outlet flow channel 52 above the suction fan 4 is surprisingly disappeared.
  • the accumulation of water droplets or condensation in the outlet tubing attached to the extended outlet flow channel 52 is also surprisingly disappeared.
  • the work principle has been described above and is not recited here for conciseness.
  • the centrifugal fan 4 on the circular plate 3 can be placed vertical to the axis of the extended outlet flow channel 52. In other embodiment, the centrifugal fan 4 can be arranged in other direction.
  • the structure and arrangement of the suction fan 4 can be completed according to the above description and are not recited here for conciseness.
  • the extended outlet flow channel 52 is removable and replaceable so as to achieve more variation and flexibility in the ap-plication of such invention.
  • Fig. 14 just shows one extended outlet flow channel 52, one skilled in the art knows that more than one extended outlet flow channels can be branched out from the vertical cylindrical lower chamber to achieve multi-outlet flow points for attractive commercial advantage.
  • the inventor does not know why the surprised disappearance of water condensation at the inside wall of the primary outflow air delivery tubing and the hollow cylindrical chamber by just arranging a suction fan for generating a cyclonic air flow. This is probably due to the centrifugal effect of the spiral airflow created by arranging the suction fan or tilting the angle of the fan which causes the bigger and heavier mist droplets to spin outwards and collide onto the wall and stay at the surface of the wall. This process continues until the bigger and heavier water droplets are progressively di-minished and eliminated as it progressively spirals upwards towards the air outlet at the top end of the hollow cylindrical chamber.
  • This air flow design not only permits the humidifier equipment to achieves a con-densation-free humid air stream, it is also a simple design that is technically superior and easy to maintain without the need to incur modification of the equipment like adding heater, etc in the air flow system to overcome the condensation problem.
  • the invention effectively eliminate the unwanted water droplets or condensation formed at the inside wall of the outflow tubing and the inside wall of the upper outflow region of the humidifier in a simple and unconventional methodology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Humidification (AREA)

Abstract

A static charge reduction system, comprises a humidifier (100), a primary outflow air delivery tubing (200), a primary returned air delivery tubing (300), at least one secondary outflow air delivery tubing (230) branched out from the primary outflow air delivery tubing (200), and at least one secondary returned air delivery tubing (330) branched out from the primary returned air delivery tubing (300). In that way, the use of a single outflow tubing with at least one outlet opening and a single returned tubing with at least one opening arranged in parallel surprisingly achieves the equivalent of many units of mini air ionizers for the same static charge mitigation objective.

Description

STATIC CHARGE REDUCTION SYSTEM Technical Field
The present invention relates to static charge reduction technique, and more specific, to a static charge reduction system for static charge reduction in localized spots.
Background Art
The continuous scaling of circuitry density in the device miniaturization market trend has driven the microchip manufacturers to continuously improve product performance, drive cost down and squeeze billions of transistors into a single chip. Such device miniaturization trend poses new challenge that lead to the need of more static neu-tralizing air ionizers in solving more critical device failures due to electrostatic discharge (ESD) damage.
It has become a common practice to see the installation of numerous air ionizers si-multaneously in a typical microchip test handler machine to mitigate the static charge generation in minimizing or eliminating the micro-chip damage due to electrostatic discharge (ESD) .
In an attempt to overcome both the cost and increasingly device sensitivity problems, more specialized air ionizers are being produced and try to keep pace with the in-dustrial miniaturization trend to address more demanding and more stringent re-quirements.
However, there is a limit it can go. The highly ESD-sensitive parts or components that are used to fabricate the microchips become so sensitive that even the slightest imbalance of the positive and negative air ions emitted from the air ionizers will cause quality issues and low yield problems in the production of many of the new generation ESD-sensitive devices.
PCT/CN/2011/076825 describes a methodology of static charge mitigation using humid air flow inside an enclosed enclosure. PCT/CN/2013/087133 describes the way humid air is being used to mitigate static charge generation in open-space localized area in an ambient environment. When come to mitigate static charge at a few points simultaneously, an ordinary person skilled in the art can apply the open-space system in PCT/CN/2013/087133 in repeated manner according to the exact number of mitigating points to solve the problem accordingly.
However, such solution through the conventional means is clumsy and it is not cost effective. Not only it suffers large space occupation issue, it also suffers system up-keep and comprehensive maintenance work too.
Therefore, the cost of microchip protection from ESD damage has been very much higher tremendously compared to the old days where the microchips are much less sus- ceptible to the ESD damage.
Technical Problem
Therefore, further research is necessary and needed in overcoming the high cost and the new challenge of micro-chip protection by seeking a better and more feasible solution in addressing such shortcomings as highlighted in the aforesaid paragraphs.
Solution to Problem
Technical Solution
According to one aspect, a static charge reduction system is provided, which comprising a humidifier, a primary outflow air delivery tubing connected to an outlet of the humidifier, wherein, at least one secondary outflow air delivery tubing is branched out from the primary outflow air delivery tubing, wherein the secondary outflow air delivery tubing is directed to a targeted position for delivering humid air from the humidifier to the targeted position.
Optionally, the static charge reduction system further comprises a primary returned air delivery tubing connected to an inlet of the humidifier, at least one secondary returned air delivery tubing is branched out from the primary returned air delivery tubing, wherein, the secondary returned air delivery tubing is sucking the humid air from the targeted position back to the humidifier.
Optionally, at least one tiny capillary tubing can be attached to the primary outflow air delivery tubing, and directed to a specific targeted position.
Optionally, the primary outflow air delivery tubing and the primary returned air delivery tubing are connected to form a closed loop or are respectively sealed at one or both of their tubing ends to form an open loop.
Optionally, a valve plug is provided at a tip end of the primary outflow air delivery tubing, and/or a tip end of the primary returned air delivery tubing. Optionally, the valve plug comprises a hollow cylindrical inserting portion and an outer flat-head stopper, wherein an opening is provided on the hollow cylindrical inserting portion. By a sliding movement of the valve plug along the length of the cylindrical inserting portion, the humid air in the primary outflow air delivery tubing and/or the primary returned air delivery tubing can be blocked or delivered.
Optionally, the primary outflow air delivery tubing and the primary returned air delivery tubing can be the same piece of a signle one tubing with a cut-off wall to form tip-end openings. Optionally, the secondary outflow air delivery tubing and the secondary returned air delivery tubing can be the same piece of one single tubing with a cut-off wall to form the tip-end openings.
Optionally, a plurality of secondary outflow air delivery tubings are branched out from the primary outflow air delivery tubing, and a plurality of secondary returned air  delivery tubings are branched out from the primary returned air delivery tubing.
Optionally, each pair of the secondary outflow air delivery tubing and the secondary returned air delivery tubing is directed to a same targeted position in forming a secondary air delivery loop.
Optionally, the primary outflow air delivery tubing and the primary returned air delivery tubing are provided with a number of openings at various points along their lengths, respectively, at least one secondary tubing is inserted into one opening on the primary outflow air delivery tubing to form the secondary outflow air delivery tubing, and at least one secondary tubing is inserted into one opening on the primary returned air delivery tubing to form the secondary returned air delivery tubing.
Optionally, an air controller can be provided to cover at least one of the openings on the primary outflow air delivery tubing and the primary returned air delivery tubing. Optionally, the air controller can be a cylindrical rotatable tubing mounted onto the primary outflow air delivery tubing and the primary returned air delivery tubing.
Optionally, a primary tube holder can be provided for holding the primary outflow air delivery tubing and the primary returned air delivery tubing, wherein the primary tube holder has a U-shape structure with at least two grooves for holding the primary outflow air delivery tubing and the primary returned air delivery tubing in parallel ar-rangement. Optionally, a plurality of grooves can be provided and the primary tube holder can be slideable.
Optionally, a secondary tube holder can be provided for holding the secondary outflow air delivery tubing and the secondary returned air delivery tubing, wherein, the secondary tube holder can have a base plate and two sidewalls wherein, the two sidewalls are each provided with at least one holding opening for holding the secondary outflow air delivery tubing and the secondary returned air delivery tubing. Optionally, the two sidewalls are slideable on the base plate towards each other. Op-tionally, the two sidewalls are fixed on two ends of the base plate, and the base plate is telescopic, at least two grooves are provided on each sidewall for holding the secondary outflow air delivery tubing and the secondary returned air delivery tubing. Optionally, the two sidewalls are wired-like structure provided with at least two grooves for holding the secondary outflow air delivery tubing and the secondary returned air delivery tubing.
Optionally, the primary outflow air delivery tubing and the primary returned air delivery tubing are attached to a double-wall tubing structure, or the secondary outflow air delivery tubing and the secondary returned air delivery tubing are attached to a double-wall tubing structure, wherein, the double-wall tubing structure comprises a bigger diameter tubing and a smaller diameter tubing placed inside the bigger diameter tubing to form an outer humid air flow and an inner humid air flow travel in opposite  directions. Optionally, the smaller diameter tubing is slideable. Optionally, a ring-shape plate is attached at a mouth of the double-wall tubing structure.
Optionally, the humidifier comprises a hollow cylindrical chamber with a mist generator placed inside at the bottom of the hollow cylindrical chamber for generating a continuous stream of humid air, a suction fan placed between the primary outflow air delivery tubing and the mist generator for forming the continuous stream of humid air with the stream of incoming air into a cyclonic air flow which spiral upward towards the primary outflow air delivery tubing, so as to eliminate accumulation of water droplets or condensation at an outlet region of the hollow cylindrical chamber. Op-tionally, the humidifier can further comprise an inlet tubing attached to the hollow cylindrical chamber for feeding a stream of incoming air.
Optionally, the hollow cylindrical chamber has a vertical cylindrical lower chamber and a tilted taper upper chamber attached to the top of the vertical cylindrical lower chamber, the primary outflow air delivery tubing is attached to the tilted taper upper chamber, and the suction fan is placed in the vertical cylindrical lower chamber.
Optionally, the hollow cylindrical chamber has a vertical cylindrical lower chamber and an extended outlet flow channel branched out from the vertical cylindrical lower chamber, the primary outflow air delivery tubing is attached to the outlet flow channel, and the suction fan is placed inside the outlet flow channel.
Optionally, the suction fan is a centrifugal fan that is attached securely onto a circular plate with a centre hole on the circular plate to allow the continuous stream of humid air and the stream of incoming air to pass through the centrifugal fan, so as to mix them together in forming the cyclonic air flow.
Optionally, the centrifugal fan has a drum housing with fins arranged at its middle point, wherein, the drum housing further comprises an air outlet which discharges mixed air in a direction in parallel with or tilted at a small angle to a tangent of the drum housing at the air outlet so as to form the cyclonic air flow along a circumference of an inner wall of the hollow cylindrical chamber.
Optionally, the circular plate is attached securely onto an inner wall of the hollow cylindrical chamber, wherein the fins of the centrifugal fan is right above the centre hole of the circular plate.
Optionally, the centrifugal fan is tilted to a horizontal axis at an angle from 0 degree to 80 degree upwards or downwards from the horizontal axis, preferred from 5 degree to 75 degree, more preferred from 25 degree to 60 degree, most preferred from 35 degree to 50 degree.
Optionally, the cyclonic air flow has its flow angle increase as it spiral up, wherein, the flow angle increases from as low as 5 degree up to a maximum of 80 degree as it spiral upwards until it reaches the extreme top of the hollow cylindrical chamber..
Advantageous Effects of Invention
Advantageous Effects
By the use of a single primary outflow air delivery tubing and at least one secondary outflow air delivery tubing, surprisingly achieves the effective static charge reduction of the targeted position. Further, by the use of pairs of primary air delivery tubing loop and secondary air delivery tubing loop, surprisingly achieves the effective static charge reduction of multiple targeted positions.
Brief Description of Drawings
Description of Drawings
So as to further explain the invention, an exemplary embodiment of the present invention will be described with reference to the below drawings, wherein:
Fig. 1 is a diagram showing an open loop of the static charge reduction system according to an embodiment of the present application.
Fig. 2 is a diagram showing the static charge reduction system according to another embodiment of the present application.
Fig. 3 is a diagram showing one secondary air delivery loop of the static charge reduction system shown in Fig. 2.
Fig. 4 is a diagram showing the valve plug of the static charge reduction system according to an embodiment of the present application.
Fig. 5 is a diagram showing the primary tube holder of the static charge reduction system according to an embodiment of the present application.
Fig. 6A is a diagram showing the first embodiment of the secondary tube holder of the static charge reduction system according to an embodiment of the present ap-plication.
Fig. 6B is a diagram showing the second embodiment of the secondary tube holder of the static charge reduction system according to an embodiment of the present ap-plication.
Fig. 6C is a diagram showing the third embodiment of the secondary tube holder of the static charge reduction system according to an embodiment of the present ap-plication.
Fig. 7 is a diagram showing the static charge reduction system according to a further embodiment of the present application.
Fig. 8 is a diagram showing the air controller of the static charge reduction system according to an embodiment of the present application.
Fig. 9 is a diagram showing the humidifier of the static charge reduction system according to an embodiment of the present application.
Fig. 10 is a diagram showing the centrifugal fan and circular plate of the humidifier  as shown in Fig. 9.
Fig. 11 is a diagram showing the centrifugal fan generates a circular air flow along the circumference of the inner wall of the hollow cylindrical chamber.
Fig. 12 is a diagram showing a cross-section of the humidifier as shown in Fig. 9.
Fig. 13 is a diagram showing air flow conditions that generate the spinning effect of the cyclonic air flow;
Fig. 14 is a diagram showing the humidifier of the static charge reduction system according to another embodiment of the present application;
Fig. 15 is a diagram showing the double-wall tubing structure of the static charge reduction system according to an embodiment of the present application.
Fig. 16 is a diagram showing the ring-shape plate of the double-wall tubing structure shown in Fig. 15.
Fig. 17 is a diagram showing a preferable embodiment of the primary/secondary outflow air delivery tubing and the primary/secondary returned air delivery tubing.
Best Mode for Carrying out the Invention
Best Mode
These and other advantage, aspect and novel features of the present invention, as well as details of an illustrated embodiment thereof will be more fully understood from the following description and drawings, while various embodiments of the present invention are presented by way of examples only, not limitation. In the following figures, the arrowhead refers to the direction of the air flow.
Fig. 1-3 has shown the static charge reduction system according to an embodiment of the present application. As shown in Fig. 1-3, the static charge reduction system comprises a humidifier 100, a primary outflow air delivery tubing 200 connected to an outlet 110 of the humidifier 100, a primary returned air delivery tubing 300 connected to an inlet 120 of the humidifier 100.
The tip end of the primary outflow air delivery tubing 200 can be affixed with a valve plug 210, and the tip end of the primary returned air delivery tubing 300 is also affixed with an valve plug 310, thereby an open or closed loop humid air flow delivery system can be formed. However, in one other embodiment of the present application, the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300 can be formed by one closed loop tubing. In another embodiment of the present application, the tip end of the primary outflow air delivery tubing 200 and the tip end of the primary returned air delivery tubing 300 are sealed to form an open loop.
According to an preferable embodiment of the present application as shown in Fig. 17, the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300 can be the same piece of a signle one tubing with a cut-off wall to  form the tip-end openings, wherein such humid air flow at the openings is used as a static charge mitigation column of humid air to cut down or reduce static charge.
As shown in Fig. 2, the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300 can be arranged in parallel at the same side of the hu-midifier 100. Further, the primary outflow air delivery tubing 200 is provided with several outflow openings 220 at various points along its length. Meanwhile, the primary returned air delivery tubing 300 is provided with same a number of returned openings 320 at various points along its length. One tubing is inserted into one outflow opening 220 to form a secondary outflow air delivery tubing 230, which is directed to a targeted position for delivering humid air from the humidifier 100 to the targeted position for cutting down or reduce the static charge generation at the targeted position. One tubing is inserted into one returned opening 320 to form a secondary returned air delivery tubing 330, which is directed to the same targeted position for sucking the humid air from the targeted position back to the humidifier. As shown in Fig. 3, the tip end of the secondary outflow air delivery tubing 230 and the tip end the secondary returned air delivery tubing 330 are directed to a same targeted position and form an open secondary air delivery loop.
In one embodiment of the present application, the number of the outflow openings 220 and the numbers of the returned opening 320 can be same or different. Ac-cordingly, the pair number of the secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 330 can be determined according to an actual requirement.
However, in a simple embodiment of the present application, just one primary outflow air delivery tubing 200 and just one secondary outflow air delivery tubing 230 can be arranged, and no primary returned air delivery tubing 300 and/or secondary returned air delivery tubing 330 is provided for special uses.
In some embodiment, the returned opening 320 and outflow openings 220 are incisions made on the primary outflow air delivery tubing 200 and primary returned air delivery tubing 300. In some preferable embodiment, glues, adhesives, agglutinant, sealers or other sealing elements can be arranged for sealing the insertion of the secondary outflow air delivery tubings 230 into the outflow openings 220, or of the secondary returned air delivery tubing 330 into the returned opening 320.
In another embodiment, the primary outflow air delivery tubing 200 can be a main tubing provided with several branched tubings, which means the primary outflow air delivery tubing 200 and the secondary outflow air delivery tubings 230 can be formed in one-piece. Similarly, the primary returned air delivery tubing 300 can also be made in a same way.
According to a preferable embodiment of the present application, the secondary  outflow air delivery tubings 230 and the secondary returned air delivery tubing 330 can be the same piece of one single tubing with a cut-off wall to form the tip-end openings. According to a more preferable embodiment, the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300 can be the same piece of a signle one tubing with a cut-off wall to form the tip-end openings, and the secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 330 can be the same piece of one single tubing with a cut-off wall to form the tip-end openings. In such a way, humid air flow at the openings is used as a static charge mitigation column of humid air to cut down or reduce static charge.
Fig. 4 has shown a preferable embodiment of the valve plugs 210, 310, which can be an OPEN/CLOSE connecting valve plug 500. As shown in Fig. 4, the OPEN/CLOSE connecting valve plug 500 has a hollow cylindrical inserting portion 520 and an outer flat-head stopper 510. The outer flat-head stopper 510 can be a cylindrical base having a diameter which is bigger than the diameter of the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300. Of course, the outer flat-head stopper 510 can also have other shapes, such as a square, a rectangle, a round, an oval or any other shape. The hollow cylindrical inserting portion 520 has a diameter which is slightly smaller than the diameter of the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300, such that it can be inserted in without resulting leakage of moist air. An opening 530 is provided on the hollow cylindrical inserting portion 520, by a sliding movement of the valve plug 500 along the length of the cylindrical inserting portion 520 the humid air in the primary outflow air delivery tubing 200 and/or the primary returned air delivery tubing 300 can be blocked or delivered. In one embodiment, the opening 530 can have a square, a rectangle, a round, an oval or any other shape that permits the flow of humid air.
In other embodiment of the present application, the valve plugs 210, 310 can also be formed by a common know gas plug without any openings, which means the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300 can be totally sealed.
As shown in Fig. 2, several secondary tube holders 400 can be arranged for holding the secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 330.
Fig. 6A-C has shown preferable embodiments of the secondary tube holder 400. As shown in Fig. 6A, the secondary tube holder 400 can have a base plate 410 and two sidewalls 420 which is slideable on the base plate 410 towards each other. As shown in Fig. 6A, the two sidewalls 420 are each provided with at least one holding opening 440 for holding the secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 230. Optionally, holding opening 440 can be round holes, elliptical  grooves, or any openings in any shape which can receive and accommodate the secondary outflow air delivery tubing and the secondary returned air delivery tubing. As shown in Fig. 6B, the secondary tube holder 400’ can have a base plate 410’ and two sidewalls 420’ . The two sidewalls 420’a re fixed on two ends of the base plate 410’ , and the base plate 410’ is telescopic. At least two grooves 440’ a re provided on each sidewall 420’ for holding the secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 230. The secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 230 are soft, so can be moved from one groove to another groove for adjusting the height of the secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 230.
As shown in Fig. 6C, the secondary tube holder 400” can have a base plate 410” and two sidewalls 420” . The base plate 410” is telescopic. The base plate 410” and the sidewalls 420” have a wire-like structure. The sidewalls 420” can be at least two grooves 440” formed by a wire. The secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 230 can be inserted into the grooves, and moved from one groove to another groove for holding and adjusting the height of the same.
Of course, in another embodiment of the present application, a simple clipper can be used as the secondary tube holder 400 for clipping the secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 330.
In a preferable embodiment, a primary tube holder 600 can be provided for holding the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300. Fig. 5 has shown a preferable embodiment of the primary tube holder 600. As shown in Fig. 5, the primary tube holder 600 has a U-shape structure with at least two grooves 610 for holding the primary outflow air delivery tubing 200 and the primary returned air delivery tubing in parallel 300. Optionally, a plurality of grooves 610 can be provided such that, the primary outflow air delivery tubing 200 and the primary returned air delivery tubing in parallel 300 can be holed in parallel at a certain distance. In the present embodiment, the primary tube holder 600 can be slideable along the length of the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300.
In a preferable embodiment as shown in Fig. 8, an air controller 800 can be provided to cover at least one of the outflow openings 220 on the primary outflow air delivery tubing 200. Preferably, a further air controller 800 can be provided to cover at least one of the returned openings 320 on the primary returned air delivery tubing 300. Further, the air controller 800 can be a cylindrical rotatable tubing mounted onto (such as encasing, attaching, adhering and so on) the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300. In such a way, the static charge reduction system according to the present application can have more control over the  amount of humid air flow in achieving a more precise static charge mitigation objective.
Optionally, the primary outflow air delivery tubing 200 and the primary returned air delivery tubing 300 can be flexible and posse a ″swing-back″ action that allow any dis-placement of the tubings to swing back to its original position (not shown) . Similarly, the secondary outflow air delivery tubing 230 and the secondary returned air delivery tubing 330 can also be flexible and posse a ″swing-back″ action that allow any dis-placement of the tubings to swing back to its original position. This is useful in ap-plications that involve high intensity of process movements or process displacement where space availability is very limited.
In that way, the use of a single outflow tubing with at least one outlet opening and a single returned tubing with at least one opening arranged in parallel surprisingly achieves the equivalent of many units of mini air ionizers for the same static charge mitigation objective.
Fig. 7 is a diagram showing the static charge reduction system according to a further embodiment of the present application. As shown in Fig. 7, several tiny capillary tubing 700 can be attached to the primary outflow air delivery tubing 200 and directed to a specific targeted position without returned loop for very specialized application to provide extra static charge mitigation. In other embodiment of the present application, there also can be several tiny capillary tubing 700 can be attached to the primary returned air delivery tubing 300 for special usage.
In a preferable embodiment as shown in Fig. 15, one primary outflow air delivery tubing 210 and one primary returned air delivery tubing 310 are attached to a double-wall tubing structure 900. In another preferable embodiment as shown in Fig. 16, two primary outflow air delivery tubings 210 and one primary returned air delivery tubing 310 are attached to the double-wall tubing structure 900. In a further preferable em-bodiment, two secondary outflow air delivery tubings and one secondary returned air delivery tubing are attached to the double-wall tubing structure 900.
As shown in Fig. 15, the double-wall tubing structure 900 comprises a bigger diameter tubing 920 and a smaller diameter tubing 930 placed inside the bigger diameter tubing 920 to form an outer flow path and an inner flow path. The outer humid air flow in the outer flow path and the inner humid air flow in the inner flow path travel in opposite directions. The primary outflow air delivery tubing 210 is attached to an opening mouth of the outer flow path, and the primary returned air delivery tubing 310 is attached to an opening mouth of the inner flow path. Such unique humid air flow design is well suited for localized spot static charge removal ap-plication.
Optionally, the smaller diameter tubing 930 is slide-able to allow more precise  control of the amount and strength of the humid air flow to achieve more specific static charge mitigation objective.
In the preferable embodiment as shown in Fig. 16, the double-wall tubing structure 900 further comprises a ring-shape plate 910 attached to the opening mouth of the outer flow path. Two primary outflow air delivery tubing 210 is attached to the ring-shape plate 910. The ring-shape plate 910 enables the humid air to travel a broader distance inwards covering more area before it is being sucked into the outer humid air flow. The primary returned air delivery tubing 310 is attached to the inner flow path formed by the smaller diameter tubing 930 placed at the middle of the bigger diameter tubing 920.
In the present application, the humidifier 100 can be any common known humidifier. However, in a preferable embodiment of the present application, a special humidifier is provided, referring Fig. 9-13.
As shown in Fig. 9, the humidifier 100 comprises a hollow cylindrical chamber 2 with a mist generator 21 placed inside at the bottom of the hollow cylindrical chamber 2 for generating a continuous stream of humid air, a suction fan 4 placed between the primary outflow air delivery tubing 200 and the mist generator 21 for forming the continuous stream of humid air and the stream of incoming air into a cyclonic air flow which spiral upward towards the primary outflow air delivery tubing 200, surprisingly eliminates accumulation of water droplets or condensation at an outlet region of the hollow cylindrical chamber 2.
The humidifier 100 can further comprises an incoming tubing 22 which can be the primary returned air delivery tubing 300, or another incoming tubing for feeding a stream of incoming air. It dependents on the actual requirements.
It is discovered that when the mixed air flow is created in a cyclonic flow pattern moving along the inside wall of the hollow cylindrical chamber 2 and spiral upwards from the lower outflow region L to the upper airflow region U, and then towards the primary outflow air delivery tubing 200 at the upper end of the hollow cylindrical chamber 2 as shown in Fig. 9, the accumulation of water droplets or condensation at the outflow outlet (s) region of the hollow cylindrical chamber 2 as well as the inner wall of the hollow cylindrical chamber 2 are surprisingly disappeared.
As shown in Fig. 9, the suction fan 4 is a centrifugal fan that is attached securely onto a circular plate 3 with a centre hole 31 on the circular plate 3 to allow the continuous stream of humid air and the stream of incoming air to pass through the centrifugal fan, so as to mix them together in forming the cyclonic air flow. The humid air produced by the mist generator 21 is being sucked and passed through the suction fan 4 that is placed at a position around the centre region inside the hollow cylindrical chamber 2.
The centrifugal fan 4 can be any type on the market. Optionally, the centrifugal fan 4  can be arranged by itself at a position around the centre region inside the hollow cylindrical chamber 2 independently, so the circular plate 3 can be omitted.
In an embodiment, the centrifugal fan 4 on the circular plate 3 can be placed in a lay-flat position as shown in Fig. 9. In another embodiment, the centrifugal fan can be tilted by tilting its attached circular plate 3 at a suitable angle with reference to the horizontal axis marked AA′in Fig 13 to provide more design flexibilities in the applications of the current application. The tilting angle is in the range of 0 degree to 80 degree upwards from the horizontal axis or 0 degree to 80 degree downwards from the horizontal axis. Optionally, the tilting angle is in the range from 5 degree to 75 degree upwards or downwards from the horizontal axis. Preferably, the tilting angle is in the range from 25 degree to 60 degree upwards or downwards from the horizontal axis. More preferably, the tilting angle is in the range from 35 degree to 50 degree upwards or downwards from the horizontal axis.
In the present application, the hollow cylindrical chamber can be any cylindrical shape. Fig. 9 has shown a preferred arrangement of the hollow cylindrical chamber 2. As shown in Fig. 9, the hollow cylindrical chamber 2 has a vertical cylindrical lower chamber 24 and a tilted taper upper chamber 25 attached to the vertical cylindrical lower chamber 24. As shown in Fig. 9, the suction fan 4 is arranged in the middle of the vertical cylindrical lower chamber 24. As shown in Fig. 9, the accumulation of water droplets or condensation at the tilted taper upper chamber 25 as well as the inner wall of the curving tubing 26 is surprisingly disappeared.
The idea of placing the suction fan around the centre region inside the vertical cylindrical lower chamber 24 in between the mist generator 21 at the bottom and the outflow region at the top in blowing out the air at such an unexpected short gap at 0 degree angle directly onto the inside wall in creating a spinning air flow as illustrated in Fig 2 is technically unique and unobvious.
Fig. 10 is a diagram showing the centrifugal fan and circular plate of the humidifier. As shown in Fig. 10, the centrifugal fan 4 has a drum housing with fins 41 arranged at its middle point 43. The drum housing further comprises an air outlet 42 which discharge mixed air in a direction in parallel with or tilted at a small angle to a tangent of the drum housing at the air outlet so as to generate the cyclonic air flow along a cir-cumference of an inner wall of the hollow cylindrical chamber 2. As shown in Fig. 10, the circular plate 3 is attached securely onto an inner wall of the hollow cylindrical chamber 2, wherein the fins of the centrifugal fan 4 is right above the centre hole 31 of the circular plate 3. Of course, the centrifugal fan and circular plate of present ap-plication can be arranged in any other variation as if they can generate a cyclonic air flow.
As shown in Fig. 11, the centrifugal fan 4 shown in Fig. 10 can generate a circular air  flow along the circumference of the inner wall of the hollow cylindrical chamber 2. The cyclonic air flow has its flow angle increase as it spiral up, wherein, the flow angle increases from as low as 5 degree up to a maximum of 80 degree to the horizontal axis as it spiral upwards until it reaches the extreme top of the hollow cylindrical chamber 2.
Fig. 13 is a diagram showing air flow conditions that generate the spinning effect of the cyclonic air flow. As shown in Fig. 13, there is no cyclonic air flow when the air direction is blown from the centre point A in any direction. Referring Fig. 13, there is also no cyclonic air flow when the air direction is blown from the point B to point 0 in forming point B to point 0′.
However, for example, the air flow spins under the following conditions: 1) Air direction from point B to point 1.2) Air direction from point B to point 2.3) Air direction from point B to point 3.
Accordingly, the cyclonic air flow generates in a direction in parallel with or tilted at a small angle to a tangent of the centrifugal fan 4 so as to form the cyclonic air flow along a circumference of an inner wall of the hollow cylindrical chamber 2. The flow angle of the cyclonic air flow that spiraled along the inside wall of the hollow cylindrical chamber 2 is in the range of 5 degree to 80 degree to the horizontal axis; preferably 25 degree to 60 degree to the horizontal axis and more preferably 35 degree to 50 degree to the horizontal axis.
Fig. 14 is a diagram showing the humidifier of the static charge reduction system according to another embodiment of the present application. As shown in Fig. 14, the humidifier comprises a hollow cylindrical chamber 5 with a mist generator 21 placed inside at the bottom of the hollow cylindrical chamber 5 for generating a continuous stream of humid air, an inlet tubing 22 attached to the hollow cylindrical chamber 5 for feeding a stream of incoming air, an outlet tubing (unshown) attached to the hollow cylindrical chamber 5, a suction fan 4 placed between the extended outlet flow channel 52 and the mist generator 21 for forming the continuous stream of humid air and the stream of incoming air into a cyclonic air flow which spiral upward towards the outlet tubing, surprisingly eliminates accumulation of water droplets or condensation at an outlet region of the hollow cylindrical chamber 5. The stream of incoming air can be returned air or ambient air.
As shown in Fig. 14, the hollow cylindrical chamber 5 has a vertical cylindrical lower chamber 51 and the extended outlet flow channel 52 branched out from the vertical cylindrical lower chamber 51. The primary outflow air delivery tubing 200 connected can be connected to the extended outlet flow channel 52. In present embodiment, the suction fan 4 is placed in the extended outlet flow channel 52. As shown in Fig. 14, the accumulation of water droplets or condensation in the extended outlet flow channel 52  above the suction fan 4 is surprisingly disappeared. Similarly, the accumulation of water droplets or condensation in the outlet tubing attached to the extended outlet flow channel 52 is also surprisingly disappeared. The work principle has been described above and is not recited here for conciseness.
In present embodiment, the centrifugal fan 4 on the circular plate 3 can be placed vertical to the axis of the extended outlet flow channel 52. In other embodiment, the centrifugal fan 4 can be arranged in other direction. The structure and arrangement of the suction fan 4 can be completed according to the above description and are not recited here for conciseness.
In one embodiment of present application, the extended outlet flow channel 52 is removable and replaceable so as to achieve more variation and flexibility in the ap-plication of such invention.
Although Fig. 14 just shows one extended outlet flow channel 52, one skilled in the art knows that more than one extended outlet flow channels can be branched out from the vertical cylindrical lower chamber to achieve multi-outlet flow points for attractive commercial advantage.
The inventor does not know why the surprised disappearance of water condensation at the inside wall of the primary outflow air delivery tubing and the hollow cylindrical chamber by just arranging a suction fan for generating a cyclonic air flow. This is probably due to the centrifugal effect of the spiral airflow created by arranging the suction fan or tilting the angle of the fan which causes the bigger and heavier mist droplets to spin outwards and collide onto the wall and stay at the surface of the wall. This process continues until the bigger and heavier water droplets are progressively di-minished and eliminated as it progressively spirals upwards towards the air outlet at the top end of the hollow cylindrical chamber.
This air flow design not only permits the humidifier equipment to achieves a con-densation-free humid air stream, it is also a simple design that is technically superior and easy to maintain without the need to incur modification of the equipment like adding heater, etc in the air flow system to overcome the condensation problem.
Such technical design not only simplifies and minimizes the product component parts required in the creation and formation of a spinning air flow, it also shorten the height of the vertical cylindrical chamber due to optimum spinning efficiency to reduce material cost and saving space in the real-life application of such product in a often space limited compact production facility.
The invention effectively eliminate the unwanted water droplets or condensation formed at the inside wall of the outflow tubing and the inside wall of the upper outflow region of the humidifier in a simple and unconventional methodology.

Claims (20)

  1. A static charge reduction system comprising a humidifier, a primary outflow air delivery tubing connected to an outlet of the humidifier, wherein, at least one secondary outflow air delivery tubing is branched out from the primary outflow air delivery tubing, wherein the secondary outflow air delivery tubing is directed to a targeted position for delivering humid air from the humidifier to the targeted position.
  2. The static charge reduction system according to claim 1, wherein, further comprising a primary returned air delivery tubing connected to an inlet of the humidifier, at least one secondary returned air delivery tubing is branched out from the primary returned air delivery tubing, wherein, the secondary returned air delivery tubing is for sucking the humid air from the targeted position back to the humidifier.
  3. The static charge reduction system according to claim 2, wherein, at least one tiny capillary tubing can be attached to the primary outflow air delivery tubing, and directed to a specific targeted position.
  4. The static charge reduction system according to claim 3, wherein, the primary outflow air delivery tubing and the primary returned air delivery tubing are connected to form a closed loop or are respectively sealed at one or both of their tubing ends to form an open loop.
  5. The static charge reduction system according to claim 3, wherein, a valve plug is provided at a tip end of the primary outflow air delivery tubing, and/or a tip end of the primary returned air delivery tubing, wherein the valve plug comprises a hollow cylindrical inserting portion and an outer flat-head stopper, wherein an opening is provided on the hollow cylindrical inserting portion, by a sliding movement of the valve plug along the length of the cylindrical inserting portion, the humid air in the primary outflow air delivery tubing and/or the primary returned air delivery tubing can be blocked or delivered.
  6. The static charge reduction system according to claim 2, wherein, a plurality of secondary outflow air delivery tubings are branched out from the primary outflow air delivery tubing, and a plurality of secondary returned air delivery tubings are branched out from the primary returned air delivery tubing.
  7. The static charge reduction system according to claim 6, wherein, each pair of the secondary outflow air delivery tubing and the secondary returned air delivery tubing are directed to a same targeted position in  forming a secondary air delivery loop.
  8. The static charge reduction system according to claim 7, wherein, the primary outflow air delivery tubing and the primary returned air delivery tubing are provided with a number of openings at various points along their lengths, respectively, at least one secondary tubing is inserted into one opening on the primary outflow air delivery tubing to form the secondary outflow air delivery tubing, and at least one secondary tubing is inserted into one opening on the primary returned air delivery tubing to form the secondary returned air delivery tubing.
  9. The static charge reduction system according to claim 8, wherein, an air controller can be provided to cover at least one of the openings on the primary outflow air delivery tubing and the primary returned air delivery tubing. Optionally, the air controller can be a cylindrical rotatable tubing encasing the primary outflow air delivery tubing and the primary returned air delivery tubing.
  10. The static charge reduction system according to claim 6, wherein, a primary tube holder can be provided for holding the primary outflow air delivery tubing and the primary returned air delivery tubing, wherein the primary tube holder comprises a U-shape structure with at least two grooves for holding the primary outflow air delivery tubing and the primary returned air delivery tubing in parallel arrangement. 
  11. The static charge reduction system according to claim 6, wherein, a secondary tube holder can be provided for holding the secondary outflow air delivery tubing and the secondary returned air delivery tubing, wherein, the secondary tube holder can have a base plate and two sidewalls, wherein, the two sidewalls are each provided with at least one holding opening for holding the secondary outflow air delivery tubing and the secondary returned air delivery tubing.
  12. The static charge reduction system according to claim 2, wherein, the primary outflow air delivery tubing and the primary returned air delivery tubing are attached to a double-wall tubing structure, or the secondary outflow air delivery tubing and the secondary returned air delivery tubing are attached to a double-wall tubing structure, wherein, the double-wall tubing structure comprises a bigger diameter tubing and a smaller diameter tubing placed inside the bigger diameter tubing to form an outer humid air flow and an inner humid air flow travel in opposite directions.
  13. The static charge reduction system according to claim 2, wherein, the  primary outflow air delivery tubing and the primary returned air delivery tubing belong to a signle one tubing with a cut-off wall to form tip-end openings, and/or the secondary outflow air delivery tubing and the secondary returned air delivery tubing belong to a signle one tubing with a cut-off wall to form tip-end openings.
  14. The static charge reduction system according to any one of claims 2-13, wherein, the humidifier comprises a hollow cylindrical chamber with a mist generator placed inside at the bottom of the hollow cylindrical chamber for generating a continuous stream of humid air, a suction fan placed between the primary outflow air delivery tubing and the mist generator for forming the continuous stream of humid air with the stream of incoming air into a cyclonic air flow which spiral upward towards the primary outflow air delivery tubing, so as to eliminate ac-cumulation of water droplets or condensation at an outlet region of the hollow cylindrical chamber.
  15. The static charge reduction system according to claim 14, wherein, the suction fan is a centrifugal fan that is attached securely onto a circular plate with a centre hole on the circular plate to allow the continuous stream of humid air and the stream of incoming air to pass through the centrifugal fan, so as to mix them together in forming the cyclonic air flow.
  16. The static charge reduction system according to claim 15, wherein, the centrifugal fan has a drum housing with fins arranged at its middle point, wherein, the drum housing further comprises an air outlet which discharges mixed air in a direction in parallel with or tilted at a small angle to a tangent of the drum housing at the air outlet so as to form the cyclonic air flow along a circumference of an inner wall of the hollow cylindrical chamber.
  17. The static charge reduction system according to claim 16, wherein, the circular plate is attached securely onto an inner wall of the hollow cylindrical chamber, wherein the fins of the centrifugal fan is right above the centre hole of the circular plate; the centrifugal fan is tilted to a horizontal axis at an angle from 0 degree to 80 degree upwards or downwards from the horizontal axis, preferred from 5 degree to 75 degree, more preferred from 25 degree to 60 degree, most preferred from 35 degree to 50 degree.
  18. The static charge reduction system according to claim 17, wherein, the cyclonic air flow has its flow angle increase as it spiral up, wherein, the  flow angle increases from as low as 5 degree up to a maximum of 80 degree as it spiral upwards until it reaches the extreme top of the hollow cylindrical chamber.
  19. The static charge reduction system according to claim 14, wherein, the hollow cylindrical chamber has a vertical cylindrical lower chamber and a tilted taper upper chamber attached to the top of the vertical cylindrical lower chamber, the primary outflow air delivery tubing is attached to the tilted taper upper chamber, and the suction fan is placed in the vertical cylindrical lower chamber.
  20. The static charge reduction system according to claim 14, wherein, the hollow cylindrical chamber has a vertical cylindrical lower chamber and an extended outlet flow channel branched out from the vertical cylindrical lower chamber, the primary outflow air delivery tubing is attached to the outlet flow channel, and the suction fan is placed inside the outlet flow channel.
PCT/CN2016/095289 2016-07-28 2016-08-15 Static charge reduction system WO2018018669A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680004010.XA CN107223365B (en) 2016-07-28 2016-08-15 Electrostatic charge reduces system
TW106119350A TWI644596B (en) 2016-07-28 2017-06-09 Static charge reduction system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016092044 2016-07-28
CNPCT/CN2016/092044 2016-07-28

Publications (1)

Publication Number Publication Date
WO2018018669A1 true WO2018018669A1 (en) 2018-02-01

Family

ID=61015907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095289 WO2018018669A1 (en) 2016-07-28 2016-08-15 Static charge reduction system

Country Status (2)

Country Link
TW (1) TWI644596B (en)
WO (1) WO2018018669A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112544123A (en) * 2018-08-10 2021-03-23 大科防静电技术咨询(深圳)有限公司 Electrostatic charge reduction system using wet gas
WO2021097700A1 (en) * 2019-11-20 2021-05-27 Esd Technology Consulting & Licensing Co., Ltd Static charge reduction device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040003079A (en) * 2002-05-27 2004-01-13 주식회사 래디언테크 Cleaning apparatus using the atmospheric pressure plasma
JP2004139998A (en) * 2003-12-25 2004-05-13 Matsushita Ecology Systems Co Ltd Electricity removal method
CN101722063A (en) * 2009-12-04 2010-06-09 河南科技大学 Environmental humidity control method and device for sealed cavity
JP2013033866A (en) * 2011-08-02 2013-02-14 Sharp Corp Cleaning method of deposition apparatus, and manufacturing apparatus of semiconductor
CN103608911A (en) * 2011-07-04 2014-02-26 大科防静电技术咨询(深圳)有限公司 Device for static charge reduction
CN103715119A (en) * 2013-12-31 2014-04-09 上海集成电路研发中心有限公司 Humidification device and gas humidifying method
CN104396349A (en) * 2012-11-28 2015-03-04 大科防静电技术咨询(深圳)有限公司 Air stream controller and system for static charge reduction

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE038555T2 (en) * 2010-04-21 2018-10-29 Chiesi Farm Spa "process for providing particles with reduced electrostatic charges"

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040003079A (en) * 2002-05-27 2004-01-13 주식회사 래디언테크 Cleaning apparatus using the atmospheric pressure plasma
JP2004139998A (en) * 2003-12-25 2004-05-13 Matsushita Ecology Systems Co Ltd Electricity removal method
CN101722063A (en) * 2009-12-04 2010-06-09 河南科技大学 Environmental humidity control method and device for sealed cavity
CN103608911A (en) * 2011-07-04 2014-02-26 大科防静电技术咨询(深圳)有限公司 Device for static charge reduction
JP2013033866A (en) * 2011-08-02 2013-02-14 Sharp Corp Cleaning method of deposition apparatus, and manufacturing apparatus of semiconductor
CN104396349A (en) * 2012-11-28 2015-03-04 大科防静电技术咨询(深圳)有限公司 Air stream controller and system for static charge reduction
CN103715119A (en) * 2013-12-31 2014-04-09 上海集成电路研发中心有限公司 Humidification device and gas humidifying method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112544123A (en) * 2018-08-10 2021-03-23 大科防静电技术咨询(深圳)有限公司 Electrostatic charge reduction system using wet gas
CN112544123B (en) * 2018-08-10 2024-01-30 大科防静电技术咨询(深圳)有限公司 Electrostatic charge reduction system using wet gas
WO2021097700A1 (en) * 2019-11-20 2021-05-27 Esd Technology Consulting & Licensing Co., Ltd Static charge reduction device

Also Published As

Publication number Publication date
TWI644596B (en) 2018-12-11
TW201824956A (en) 2018-07-01

Similar Documents

Publication Publication Date Title
US10654654B2 (en) Suction device
WO2018018669A1 (en) Static charge reduction system
CN101145508B (en) Plasma processing device and method
US9474141B1 (en) Arc atmospheric pressure plasma device
BR112015029600B1 (en) TIP FINISHING ELEMENT
WO2019049890A1 (en) Suction device
KR101839125B1 (en) Wire tensioner
TWI606865B (en) Substrate processing apparatus
US10731880B2 (en) Humid air stream generator
CN102160898A (en) Ion generating device
JP2019055439A (en) Suction device
KR20020045512A (en) Method and air baffle for improving air flow over ionizing pins
US10214814B2 (en) Substrate treating apparatus and treatment gas supplying nozzle
CN109156966A (en) Trichoxerosis device
CN209171534U (en) Trichoxerosis device
TWI554733B (en) Air stream controller and system for static charge reduction
CN107223365B (en) Electrostatic charge reduces system
JP2019027675A5 (en) Liquid atomizer
CN109794109A (en) A kind of gas-filtering device
JP5461107B2 (en) Substrate processing equipment
CN211970924U (en) Multi-outlet backflow type disc with static electricity eliminating device
JP6926483B2 (en) Water spouting device
KR20130094055A (en) Spin rinse dry apparatus
KR20140039458A (en) Vortex type substrate cleaning nozzle and apparatus using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16910249

Country of ref document: EP

Kind code of ref document: A1