WO2018016919A1 - 무선 통신 시스템에서 단말이 rrm을 측정하는 방법 및 이를 지원하는 장치 - Google Patents

무선 통신 시스템에서 단말이 rrm을 측정하는 방법 및 이를 지원하는 장치 Download PDF

Info

Publication number
WO2018016919A1
WO2018016919A1 PCT/KR2017/007898 KR2017007898W WO2018016919A1 WO 2018016919 A1 WO2018016919 A1 WO 2018016919A1 KR 2017007898 W KR2017007898 W KR 2017007898W WO 2018016919 A1 WO2018016919 A1 WO 2018016919A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrm measurement
rrm
base station
terminal
measurement method
Prior art date
Application number
PCT/KR2017/007898
Other languages
English (en)
French (fr)
Inventor
박한준
이윤정
김기준
김은선
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/319,733 priority Critical patent/US10581506B2/en
Publication of WO2018016919A1 publication Critical patent/WO2018016919A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/065Variable contents, e.g. long-term or short-short
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0643Feedback on request
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the following description relates to a wireless communication system, and relates to a method for a terminal to measure RRM (Radio Resource Management) in a wireless communication system to which a plurality of analog beams are applied, and apparatuses for supporting the same.
  • RRM Radio Resource Management
  • the following description is a method of measuring a short term (RM) RRM for measuring instantaneous channel conditions of analog beams, or a method of measuring long term (RM) RRM for measuring average channel states of a plurality of analog beams. It includes a description of a method for measuring RRM in accordance with one or more of the RRM measurement method and devices supporting the same.
  • Wireless access systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • Massive Machine Type Communications which connects multiple devices and objects to provide various services anytime, anywhere, is also being considered in next-generation communications.
  • MTC Massive Machine Type Communications
  • a communication system design considering a service / UE that is sensitive to reliability and latency is being considered.
  • An object of the present invention is to provide a method for a UE to measure RRM in a newly proposed communication system.
  • an object of the present invention is to provide an RRM measurement method of a terminal considering a signal transmission method when a base station transmits a signal through a different (or independently determined) analog beam for each symbol by using a beamforming method. It is done.
  • the present invention provides a method for measuring a radio resource management (RRM) by a terminal in a wireless communication system to which a plurality of analog beams is applied, and an apparatus therefor.
  • RRM radio resource management
  • a method for measuring a radio resource management (RRM) by a terminal in a wireless communication system to which a plurality of analog beams is applied the first RRM measuring method for measuring the channel state for each analog beam And calculating an RRM measurement value using a beam reference signal (BRS) resource according to at least one of a second RRM measurement method for measuring an average channel state for a plurality of analog beams; and the first RRM If the reporting of the RRM measurement value calculated according to one or more of the measurement method and the second RRM measurement method is triggered, reporting the RRM measurement value calculated according to the triggered RRM measurement method; Suggest.
  • RRM radio resource management
  • a terminal for measuring Radio Resource Management (RRM) in a wireless communication system to which a plurality of analog beams is applied comprising: a transmitter; Receiving unit; And a processor operating in connection with the transmitter and the receiver, wherein the processor comprises: a first RRM measurement method for measuring channel states for analog beams and a second RRM measurement for measuring average channel states for a plurality of analog beams; Calculating an RRM measurement value using a beam reference signal (BRS) resource according to one or more of the methods; And when the reporting of the RRM measurement value calculated according to one or more of the first RRM measurement method and the second RRM measurement method is triggered, reporting the RRM measurement value calculated according to the triggered RRM measurement method.
  • RRM Radio Resource Management
  • calculating the RRM measurement value according to the first RRM measurement method may include measuring a channel state for each analog beam applied to each transmission reception point (TRP) within a specific time interval. Can be.
  • the terminal when the terminal receives control information indicating the report of the RRM measurement value measured according to the first RRM measurement method from the network, the terminal uses the transmission time and transmission resources indicated by the control information
  • the RRM measurement value may be reported to one or more base stations through first layer signaling or second layer signaling.
  • the at least one base station is a base station to which the terminal has established a radio resource control (RRC) connection, a base station to which the terminal receives downlink control information or system information, and a base station to which the second control information is transmitted. And one or more base stations indicated by the second control information.
  • RRC radio resource control
  • calculating the RRM measurement value according to the second RRM measurement method may include measuring, on average, channel states of one or more analog beams applied to a specific base station at a plurality of measurement time points.
  • the terminal measuring the channel state of the at least one analog beam applied to the specific base station on the basis of each of the plurality of measurement time points, the at least one analog beam applied to the specific base station for each measurement time point may include determining a maximum value of received power values in a BRS resource for a and calculating an average value of the maximum values for each measurement time point.
  • the terminal measuring an average channel state of at least one analog beam applied to the specific base station at each of the plurality of measurement time points is one of the antenna ports of the BRS for the specific base station by the terminal at each measurement time point.
  • the method may include determining a maximum value of received power values of BRS resources for the analog beam and calculating an average value of the maximum values at each measurement time point for each antenna port of the BRS.
  • the terminal measuring an average of channel states of one or more analog beams applied to the specific base station at each of the plurality of measurement time points is an RRM measurement value calculated according to the first RRM measurement method within a predetermined time interval. May include calculating an average value as an RRM measurement value according to the second RRM measurement method.
  • the terminal when the terminal receives control information indicating the report of the RRM measurement value measured according to the second RRM measurement method from the network, the terminal uses the transmission time and transmission resources indicated by the control information
  • the RRM measurement value calculated according to the second RRM measurement method may be transmitted to one or more base stations through third layer signaling.
  • the one or more base stations may include one or more base stations of a base station to which the terminal establishes a Radio Resource Control (RRC) connection, a base station supporting communication with a mobility management entity (MME).
  • RRC Radio Resource Control
  • MME mobility management entity
  • the terminal when the terminal establishes or establishes a Radio Resource Control (RRC) connection for a Long Term Evolution (LTE) base station and an NR (New RAT) base station (Dual Connectivity, DC), the terminal
  • RRC Radio Resource Control
  • LTE Long Term Evolution
  • NR New RAT
  • DC Dual Connectivity
  • Reporting of the RRM measurement value calculated according to the second RRM measurement method may be triggered when a specific event occurs.
  • the base station when a base station transmits a signal by applying a beamforming method in a newly proposed wireless communication system, the base station can provide an available RRM measurement value.
  • the base station distinguishes between the RRM measurement method for supporting the analog beam management of the terminal and the RRM measurement method for supporting the handover of the terminal
  • the terminal is the RRM measurement method according to the instructions of the base station According to the calculated RRM result value can be transmitted to the corresponding TRP.
  • 1 is a diagram illustrating a physical channel and a signal transmission method using the same.
  • FIG. 2 is a diagram illustrating an example of a structure of a radio frame.
  • 3 is a diagram illustrating a resource grid for a downlink slot.
  • FIG. 4 is a diagram illustrating an example of a structure of an uplink subframe.
  • 5 is a diagram illustrating an example of a structure of a downlink subframe.
  • FIG. 6 is a view for explaining the concept of dual connectivity (dual connectivity) that can be used in the present invention.
  • FIG. 7 is a diagram illustrating a self-contained subframe structure applicable to the present invention.
  • FIGS. 8 and 9 illustrate exemplary connection schemes of a TXRU and an antenna element.
  • FIG. 10 is a simplified diagram of a hybrid beamforming structure in terms of TXRU and physical antenna.
  • FIG. 11 is a diagram briefly illustrating a beam sweeping operation for a synchronization signal (SS) and system information during downlink (DL) transmission.
  • SS synchronization signal
  • DL downlink
  • FIG. 12 is a diagram schematically illustrating a method for measuring long term RRM (LT RRM) when four beam groups in a TRP are used.
  • LT RRM long term RRM
  • FIG. 13 is a diagram illustrating an RRM reporting method when a terminal configures an RRC connection or dual connectivity with an LTE base station and an NR base station according to the present invention.
  • FIG. 14 is a diagram illustrating a configuration of a terminal and a base station in which the proposed embodiments can be implemented.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some of the components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
  • the base station is meant as a terminal node of a network that directly communicates with a mobile station.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an advanced base station (ABS), or an access point.
  • a terminal may be a user equipment (UE), a mobile station (MS), a subscriber station (SS), or a mobile subscriber station (MSS). It may be replaced with terms such as a mobile terminal or an advanced mobile station (AMS).
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service
  • the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the IEEE 802.xx system, the 3rd Generation Partnership Project (3GPP) system, the 3GPP LTE system, and the 3GPP2 system, which are wireless access systems, and in particular, the present invention.
  • Embodiments of the may be supported by 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321 and 3GPP TS 36.331 documents. That is, obvious steps or portions not described among the embodiments of the present invention may be described with reference to the above documents.
  • all terms disclosed in the present document can be described by the above standard document.
  • Transmission Opportunity Period may be used in the same meaning as the term transmission period, transmission burst (Tx burst) or RRP (Reserved Resource Period).
  • LBT process may be performed for the same purpose as a carrier sensing process, a clear channel access (CCA), and a channel access procedure (CAP) for determining whether a channel state is idle.
  • CCA clear channel access
  • CAP channel access procedure
  • 3GPP LTE / LTE-A system will be described as an example of a wireless access system in which embodiments of the present invention can be used.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP Long Term Evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (Advanced) system is an improved system of the 3GPP LTE system.
  • embodiments of the present invention will be described based on the 3GPP LTE / LTE-A system, but can also be applied to IEEE 802.16e / m system and the like.
  • a terminal receives information from a base station through downlink (DL) and transmits information to the base station through uplink (UL).
  • the information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type / use of the information they transmit and receive.
  • FIG. 1 is a diagram for explaining physical channels that can be used in embodiments of the present invention and a signal transmission method using the same.
  • the initial cell search operation such as synchronizing with the base station is performed in step S11.
  • the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain broadcast information in a cell.
  • PBCH physical broadcast channel
  • the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to confirm the downlink channel state.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S12. Specific system information can be obtained.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the terminal may perform a random access procedure as in steps S13 to S16 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S13), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S14).
  • PRACH physical random access channel
  • the UE may perform contention resolution such as transmitting an additional physical random access channel signal (S15) and receiving a physical downlink control channel signal and a corresponding physical downlink shared channel signal (S16). Procedure).
  • the UE After performing the above-described procedure, the UE subsequently receives a physical downlink control channel signal and / or a physical downlink shared channel signal (S17) and a physical uplink shared channel (PUSCH) as a general uplink / downlink signal transmission procedure.
  • a transmission (Uplink Shared Channel) signal and / or a Physical Uplink Control Channel (PUCCH) signal may be transmitted (S18).
  • UCI uplink control information
  • HARQ-ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK
  • SR Scheduling Request
  • CQI Channel Quality Indication
  • PMI Precoding Matrix Indication
  • RI Rank Indication
  • UCI is generally transmitted periodically through the PUCCH, but may be transmitted through the PUSCH when control information and traffic data should be transmitted at the same time.
  • the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • FIG. 2 shows a structure of a radio frame used in embodiments of the present invention.
  • the type 1 frame structure can be applied to both full duplex Frequency Division Duplex (FDD) systems and half duplex FDD systems.
  • FDD Frequency Division Duplex
  • One subframe is defined as two consecutive slots, and the i-th subframe includes slots corresponding to 2i and 2i + 1. That is, a radio frame consists of 10 subframes.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • the slot includes a plurality of OFDM symbols or SC-FDMA symbols in the time domain and a plurality of resource blocks in the frequency domain.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain. Since 3GPP LTE uses OFDMA in downlink, the OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • 10 subframes may be used simultaneously for downlink transmission and uplink transmission during each 10ms period. At this time, uplink and downlink transmission are separated in the frequency domain.
  • the terminal cannot transmit and receive at the same time.
  • the structure of the radio frame described above is just one example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • the type 2 frame includes a special subframe consisting of three fields: a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • the DwPTS is used for initial cell search, synchronization or channel estimation in the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • Table 1 below shows the structure of the special frame (length of DwPTS / GP / UpPTS).
  • FIG. 3 is a diagram illustrating a resource grid for a downlink slot that can be used in embodiments of the present invention.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block includes 12 ⁇ 7 resource elements.
  • the number NDL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 4 shows a structure of an uplink subframe that can be used in embodiments of the present invention.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • the control region is allocated a PUCCH carrying uplink control information.
  • a PUSCH carrying user data is allocated.
  • one UE does not simultaneously transmit a PUCCH and a PUSCH.
  • the PUCCH for one UE is allocated an RB pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the two slots.
  • the RB pair assigned to this PUCCH is said to be frequency hopping at the slot boundary.
  • FIG. 5 shows a structure of a downlink subframe that can be used in embodiments of the present invention.
  • up to three OFDM symbols from the OFDM symbol index 0 in the first slot in the subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which the PDSCH is allocated. to be.
  • a downlink control channel used in 3GPP LTE includes a Physical Control Format Indicator Channel (PCFICH), a PDCCH, and a Physical Hybrid-ARQ Indicator Channel (PHICH).
  • PCFICH Physical Control Format Indicator Channel
  • PDCCH Physical Hybrid-ARQ Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • the PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Negative-Acknowledgement) signal for a hybrid automatic repeat request (HARQ).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
  • a user equipment has been defined to report channel state information (CSI) to a base station (BS or eNB).
  • CSI channel state information
  • BS base station
  • eNB base station
  • the channel state information collectively refers to information representing the quality of a radio channel (or link) formed between the UE and the antenna port.
  • the channel state information may include a rank indicator (RI), a precoding matrix indicator (PMI), a channel quality indicator (CQI), and the like.
  • RI rank indicator
  • PMI precoding matrix indicator
  • CQI channel quality indicator
  • RI represents rank information of a corresponding channel, which means the number of streams received by the UE through the same time-frequency resource. This value is determined dependent on the long term fading of the channel.
  • the RI may then be fed back to the BS by the UE in a period longer than PMI and CQI.
  • PMI is a value reflecting channel spatial characteristics and indicates a precoding index preferred by the UE based on a metric such as SINR.
  • CQI is a value indicating the strength of a channel and generally refers to a reception SINR obtained when a BS uses PMI.
  • the base station may configure a plurality of CSI processes to the UE, and may receive a CSI report for each process from the UE.
  • the CSI process is composed of CSI-RS for signal quality specification from a base station and CSI-interference measurement (CSI-IM) resources for interference measurement.
  • CSI-IM CSI-interference measurement
  • the serving cell may request RRM measurement information, which is a measurement value for performing an RRM operation, to the UE.
  • RRM measurement information which is a measurement value for performing an RRM operation
  • the UE may measure and report information such as cell search information, reference signal received power (RSRP), and reference signal received quality (RSRQ) for each cell.
  • the UE receives 'measConfig' as a higher layer signal for RRM measurement from the serving cell, and the UE may measure RSRP or RSRQ according to the information of the 'measConfig'.
  • RSRP reference to Physical Uplink Reference Signal
  • RSRQ reference to Physical Uplink Reference Signal
  • RSSI RSSI
  • RSRP is defined as the linear average of the power contribution (in [W] units) of the resource elements that transmit the cell-specific reference signal in the measured frequency band under consideration.
  • Reference signal received power (RSRP) is defined as the linear average over the power contributions (in [W]) of the resource elements that carry cell-specific reference signals within the considered measurement frequency bandwidth.
  • the cell-specific reference signal R 0 may be utilized for this purpose. (For RSRP determination the cell-specific reference signals R 0 shall be used.) If the UE detects that the cell-specific reference signal R 1 is available, the UE may additionally use R 1 to determine RSRP. (If the UE can reliably detect that R 1 is available it may use R 1 in addition to R 0 to determine RSRP.)
  • the reference point for RSRP may be the antenna connector of the UE. (The reference point for the RSRP shall be the antenna connector of the UE.)
  • the value reported should not be less than the RSRP corresponding to the individual diversity branch. (If receiver diversity is in use by the UE, the reported value shall not be lower than the corresponding RSRP of any of the individual diversity branches.)
  • RSRQ is defined as N * RSRP / (E-UTRA carrier RSSI) as a ratio of RSRP to E-UTRA carrier RSSI.
  • RSRQ Reference Signal Received Quality
  • N is the number of RB's of the E-UTRA carrier RSSI measurement bandwidth.
  • the E-UTRA Carrier RSSI is used in the measurement bandwidth, across N resource blocks, for received signals from all sources, including co-channel serving and non-serving cells, adjacent channel interference, thermal noise, and so on. It includes a linear average of the total received power (in [W]) measured by the terminal in OFDM symbols including the reference symbol for antenna port 0 only.
  • E-UTRA Carrier Received Signal Strength Indicator comprises the linear average of the total received power (in [W]) observed only in OFDM symbols containing reference symbols for antenna port 0, in the measurement bandwidth, over N number of resource blocks by the UE from all sources, including co-channel serving and non-serving cells, adjacent channel interference, thermal noise etc.) If higher layer signaling indicates some subframes for RSRQ measurement, the indicated sub RSSI is measured for all OFDM symbols in the frames. (If higher-layer signaling indicates certain subframes for performing RSRQ measurements, then RSSI is measured over all OFDM symbols in the indicated subframes.)
  • the reference point for RSRQ may be an antenna connector of the UE. (The reference point for the RSRQ shall be the antenna connector of the UE.)
  • the reported value should not be less than the RSRQ corresponding to the individual diversity branch. (If receiver diversity is in use by the UE, the reported value shall not be lower than the corresponding RSRQ of any of the individual diversity branches.)
  • RSSI is then defined as the received wideband power including thermal noise within the bandwidth defined by the receiver pulse shape filter and noise generated at the receiver.
  • RSSI Received Signal Strength Indicator
  • the reference point for the measurement may be the antenna connector of the UE. (The reference point for the measurement shall be the antenna connector of the UE.)
  • the reported value should not be smaller than the UTRA carrier RSSI corresponding to the individual diversity branch. (If receiver diversity is in use by the UE, the reported value shall not be lower than the corresponding UTRA carrier RSSI of any of the individual receive antenna branches.)
  • the UE operating in the LTE system includes information related to allowed measurement bandwidth (IE) related to the allowed measurement bandwidth transmitted in (system information block type 3) in SIB3 in case of intra-frequency measurement.
  • IE allowed measurement bandwidth
  • RSRP can be measured at the bandwidth indicated by element).
  • the terminal may perform at a bandwidth corresponding to one of 6, 15, 25, 50, 75, and 100 RB (resource block) indicated through the allowed measurement bandwidth transmitted in SIB5.
  • RSRP can be measured.
  • the terminal can measure RSRP in the frequency band of the downlink (DL) system as a default operation.
  • the terminal when the terminal receives information on the allowed measurement bandwidth, the terminal may consider the value as the maximum measurement bandwidth and may freely measure the value of RSRP within the value. However, if the serving cell transmits the IE defined by the WB-RSRQ to the terminal and the allowed measurement bandwidth is set to 50 RB or more, the terminal should calculate the RSRP value for the total allowed measurement bandwidth. Meanwhile, when measuring the RSSI, the terminal measures the RSSI using the frequency band of the receiver of the terminal according to the definition of the RSSI bandwidth.
  • FIG. 6 is a view for explaining the concept of dual connectivity (dual connectivity) that can be used in the present invention.
  • carrier aggregation may be performed between the macro cell 610 and the small cells 620 and 630. That is, a macro cell may use any number of n carriers (n is any positive integer) and a small cell may have any k number (k is any amount). Integer) carrier can be used. At this time, the carriers of the macro cell and the small cell may have any same frequency carriers or any other frequency carriers. For example, a macro cell may use arbitrary F1 and F2 frequencies, and a small cell may use any F2 and F3 frequencies.
  • Any UE located in small cell coverage may be simultaneously connected to a macro cell and a small cell, and may be a macro cell and a small cell.
  • the service can be simultaneously received or received by TDM (Time Division Multiplexing).
  • TDM Time Division Multiplexing
  • the functions provided by the control plane (C-plane) (ex: connection management, mobility) can be serviced, and the user plane data path is provided.
  • C-plane control plane
  • a macro cell or a small cell, or a macro cell and a small cell may be selected.
  • VoIP voice over LTE
  • a macro cell which guarantees mobility rather than a small cell, and provides a high efficiency service service
  • the connection between the macro cell and the small cell may be made with a backhaul, which may be ideal or non ideal backhaul.
  • the macro cell and the small cell may be configured with the same TDD or FDD system or differently from the TDD and FDD system.
  • FIG. 6 illustrates a case where a U-plane data path is set to a small cell.
  • a certain UE referred to the dual connectivity (dual connectivity) to the macro cell (Macro cell) and small cell (small cell), but this is for convenience and the present invention is a cell type (cell type)
  • the macro, micro, pico, femto (macro, micro, pico, femto) and the like is not limited.
  • a dual connectivity UE is configured to establish a carrier coupling (CA) to a small cell (small cell) to a small cell (Scell) to a macro cell (Pcell) as a primary cell (Pcell)
  • CA carrier coupling
  • Scell small cell
  • Pcell macro cell
  • Pcell primary cell
  • one terminal includes a dual connection with a base station based on a Long Term Evolution (LTE) system and a transmission reception point based on an NR system.
  • LTE Long Term Evolution
  • MTC Massive Machine Type Communications
  • FIG. 7 is a diagram illustrating a self-contained subframe structure applicable to the present invention.
  • an independent subframe structure as shown in FIG. 6 is proposed to minimize data transmission delay in a TDD system.
  • the feature of this structure is to sequentially perform DL transmission and UL transmission in one subframe, and can also transmit and receive DL data and UL ACK / NACK for this in one subframe. As a result, this structure reduces the time taken to retransmit data in the event of a data transmission error, thereby minimizing the delay of the final data transfer.
  • a time gap is required for a base station and a UE to switch from a transmission mode to a reception mode or to switch from a reception mode to a transmission mode.
  • some OFDM symbols at the time of switching from DL to UL in an independent subframe structure may be set to a guard period (GP).
  • the self-contained subframe structure includes a case in which both the DL control region and the UL control region are included.
  • the control regions may be selectively included in the independent subframe structure.
  • the independent subframe structure according to the present invention may include not only a case in which both the DL control region and the UL control region are included as shown in FIG.
  • the above-described frame structure is collectively referred to as a subframe, but a corresponding configuration may be named as a frame or a slot.
  • a frame or a slot For example, in an NR system, one unit composed of a plurality of symbols may be called a slot, and in the following description, a subframe or a frame may be replaced with the slot described above.
  • the NR system uses an OFDM transmission scheme or a similar transmission scheme.
  • the NR system may have an OFDM numerology as shown in Table 2.
  • the NR system uses an OFDM transmission scheme or a similar transmission scheme and may use an OFDM numerology selected from a plurality of OFDM numerologies as shown in Table 3. Specifically, as disclosed in Table 3, the NR system is based on the 15kHz subcarrier spacing used in the LTE system (OF subcarrier spacing) OFDM numerology with 30, 60, 120 kHz subcarrier spacing in a multiple of the 15kHz subcarrier spacing Can be used.
  • OF subcarrier spacing OFDM numerology with 30, 60, 120 kHz subcarrier spacing in a multiple of the 15kHz subcarrier spacing Can be used.
  • the cyclic prefix, the system bandwidth (System BW), and the number of available subcarriers available in Table 3 are just examples applicable to the NR system according to the present invention. Values can be modified. Representatively, in case of 60kHz subcarrier spacing, the system bandwidth may be set to 100MHz, and in this case, the number of available subcarriers may exceed 1500 and have a value less than 1666.
  • the subframe length and the number of OFDM symbols per subframe disclosed in Table 4 are also just examples applicable to the NR system according to the present invention, and the values may be modified according to an implementation scheme.
  • millimeter wave the short wavelength allows the installation of multiple antenna elements in the same area. That is, since the wavelength is 1 cm in the 30 GHz band, a total of 100 antenna elements can be installed in a 2-dimension array at 0.5 lambda intervals on a 5 * 5 cm panel. Accordingly, in millimeter wave (mmW), a plurality of antenna elements may be used to increase beamforming (BF) gain to increase coverage or to increase throughput.
  • BF beamforming
  • each antenna element may include a TXRU (Transceiver Unit) to enable transmission power and phase adjustment for each antenna element.
  • TXRU Transceiver Unit
  • each antenna element may perform independent beamforming for each frequency resource.
  • hybrid beamforming having B TXRUs which is smaller than Q antenna elements, may be considered as an intermediate form between digital beamforming and analog beamforming.
  • the direction of the beam that can be transmitted simultaneously may be limited to B or less.
  • the TXRU virtualization model represents the relationship between the output signal of the TXRU and the output signal of the antenna element.
  • FIG. 8 is a diagram illustrating how a TXRU is connected to a sub-array. In the case of FIG. 7, the antenna element is connected to only one TXRU.
  • FIG. 9 shows how the TXRU is connected to all antenna elements.
  • the antenna element is connected to all TXRUs.
  • the antenna element requires a separate adder as shown in FIG. 15 to be connected to all TXRUs.
  • W denotes a phase vector multiplied by an analog phase shifter.
  • W is a main parameter that determines the direction of analog beamforming.
  • the mapping between the CSI-RS antenna port and the TXRUs may be 1: 1 or 1: 1-to-many.
  • the base station when the base station operates analog beamforming, which can be arbitrarily changed according to time, based on the above technical configuration, the base station is different from each other (or promised) with each symbol (or a specific time unit).
  • the present invention proposes a method of transmitting DL control information to a UE through a DL control region (hereinafter, referred to as a beam sweeping DL control region) capable of applying and transmitting an analog beam.
  • a network slicing technique for implementing a plurality of logical networks on a single physical network is considered.
  • the logical network should be able to support various purposes services (eg, enhanced mobile broadband (eMBB), massive machine type communication (mMTC), ultra-reliable low latency communication (URLLC), etc.).
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC ultra-reliable low latency communication
  • the wireless communication system (or physical layer) of the NR system is considering a flexible structure that can be applied to the orthogonal frequency division multiplexing (OFDM) method having a numerology (Numerology) suitable for the service to be provided.
  • OFDM orthogonal frequency division multiplexing
  • the NR system may consider an OFDM scheme (or multiple access scheme) having different numerologies for each time and frequency resource region.
  • the NR system is required to support higher communication capacity (eg, data yield).
  • a method of performing data transmission using a plurality of transmit (or receive) antennas may be considered.
  • a radio frequency (RF) chain for example, a chain composed of RF elements such as a power amplifier and a down converter
  • D for each antenna A / A (or A / D) converter (i.e. digital to analog or analog to digital) is required and such a structure can lead to high hardware complexity and high power consumption, which may not be practical.
  • analog beamforming refers to an operation of performing precoding (or combining) at an RF stage.
  • the hybrid beamforming refers to an operation of precoding (or combining) at baseband and RF stages, thereby reducing the number of RF chains and the number of D / A (or A / D) converters.
  • the advantage is that the performance can be approximated to digital beamforming.
  • the hybrid beamforming structure may be represented by N transceiver units (TXRUs) and M physical antennas.
  • TXRUs transceiver units
  • the digital beamforming for the L data layers to be transmitted by the transmitting end may be represented by an N * L matrix, and then the converted N digital signals are converted into analog signals via TXRU and then represented by an M * N matrix.
  • Analog beamforming may be applied.
  • FIG. 10 is a simplified diagram of a hybrid beamforming structure in terms of TXRU and physical antenna.
  • the number of digital beams is L and the number of analog beams is N.
  • the base station is designed to change the analog beamforming in units of symbols, thereby considering supporting more efficient beamforming for a terminal located in a specific region. Furthermore, when defining specific N TXRUs and M RF antennas as one antenna panel, as shown in FIG. 10, in a NR system to which the present invention is applicable, a plurality of hybrid beamforming independent of each other may be applied. Considering how to introduce an antenna panel.
  • the analog beams advantageous for signal reception may be different for each terminal. Accordingly, in the NR system to which the present invention is applicable, an operation of changing a plurality of analog beams to be applied by a base station in a specific subframe per symbol for at least a synchronization signal (SS), system information, paging, etc. (aka, beam sweeping) (Beam sweeping) is being considered. Through this, the base station can provide a signal receiving opportunity for all the terminals.
  • SS synchronization signal
  • Beam sweeping Beam sweeping
  • FIG. 11 is a diagram briefly illustrating a beam sweeping operation for a synchronization signal (SS) and system information during downlink (DL) transmission.
  • SS synchronization signal
  • DL downlink
  • a physical resource or physical channel
  • xPBCH physical broadcast channel
  • analog beams belonging to different antenna panels in one symbol may be transmitted simultaneously.
  • RS reference signal
  • BRS reference signals
  • the BRS may be defined for a plurality of antenna ports, and each antenna port of the BRS may correspond to a single analog beam.
  • the synchronization signal (SS) or xPBCH may be transmitted by applying all the analog beams in the analog beam group so that any terminal can receive well.
  • the UE needs to measure a channel for RRM purposes. Accordingly, it is necessary to define how the UE performs the RRM measurement based on what resources.
  • the present invention proposes an RRM measurement method considering an analog beam group applicable to an NR system.
  • the average reception power (per resource element) for a specific measurement resource for RRM measurement in the NR system is defined as xRSRP
  • the average reception considering all signals in the symbol Power is defined as xRSSI
  • an index indicating a relative ratio between xRSRP and xRSSI is defined as xRSRQ.
  • the xRSRQ, xRSRP, and xRSSI may have a relationship as shown in the following equation.
  • RS radio resource management
  • TRP transmission and reception point
  • the TRP may correspond to a specific physical cell or a plurality of physical cell groups or a specific analog beam (or analog beam group).
  • an antenna port means a virtual antenna element capable of assuming the same channel characteristics (eg, a delay profile, a Doppler spread, etc.) (at least in the same resource block).
  • a synchronization signal refers to a reference signal that the UE synchronizes with time synchronization for a transmission / reception operation for a specific TRP
  • a subframe refers to a transmission basic unit having a predetermined length of time.
  • the definition of SF may be different for each applied numerology.
  • the absolute length of SF may be set differently for each numerology.
  • the configuration information that the TRP informs the UE by using a higher layer signal for RRM measurement is referred to as measurement configuration
  • the measurement configuration is resource allocation information for a TRP index (a measurement target) and an RRM RS. And sequence information, bandwidth for RRM measurement, and the like.
  • the UE may perform the ST RRM measurement on the TRP receiving the DL control signal (or system information) and / or the TRP set configured by the network (as the upper layer signal). .
  • the terminal may transmit an xRSRP (or xRSRQ) for each analog beam in the TRP to the RRM RS (eg, BRS) resource (single slot) in a specific transmission time point or an RRM RS (eg, in a specific time interval) for the above objects. It can be measured and calculated using BRS resources (single period).
  • a specific transmission time or a specific time interval utilizing the RRM RS (eg, BRS) resource may be relatively determined based on a report time point of a corresponding ST RRM measurement or a time point for requesting a corresponding report.
  • hybrid beamforming or analog beamforming may be applied. Accordingly, one TRP may operate a plurality of analog beams.
  • the base station eg, serving TRP
  • the base station transmits data to the terminal
  • the terminal In order to support analog beam management of the base station, the terminal should be able to measure and report the channel state for each analog beam to the base station.
  • the present invention defines an operation of measuring and reporting an instantaneous channel state of analog beams by ST RRM measurement, and proposes a method in which the UE performs the ST RRM measurement on TRPs capable of receiving actual data. .
  • the UE may measure xRSRP (or xRSRQ) for a specific analog beam based on RRM RS at one time or RRM RS resources in a relatively short time interval. If the network supports or configures a multi-TRP operation capable of receiving data from a plurality of TRPs, the network informs the UE of the RRM RS resource information for the TRPs, and the UE ST for each TRP. RRM measurements can be performed.
  • the base station When the UE performs the RRM measurement, the base station indicates the ST RRM measurement result report (along with UL transmission time and UL resource to transmit the report) with a specific control signal (eg DCI) and receives the specific control signal.
  • the UE may report the ST RRM measurement result as first layer signaling (L1 signaling, eg PHY) or second layer signaling (eg, MAC) as the next TRP.
  • L1 signaling eg PHY
  • second layer signaling eg, MAC
  • the UE measures ST RRM for M best analog beams (or M analog beams previously promised with the base station) in terms of reception at a transmission time and UL resource previously promised (or indicated) with the base station.
  • xRSRP, xRSRQ can be reported.
  • the terminal since the ST RRM measurement is information used by a base station (eg, serving TRP) for the purpose of selecting an analog beam for data transmission, the terminal performs ST RRM measurement and reporting at the time required by the base station. It may be desirable to perform.
  • a base station eg, serving TRP
  • the terminal may report the ST RRM measurement result to the TRP making an RRC connection, but the ST RRM measurement is not a measurement value reported for mobility management purpose at the mobility management entity (MME) stage, but data transmission. It is a measurement value reported for the purpose of determining the time-scheduling analog beam, wherein the UE performs a data transmission to the UE and transmits the data to the TRP capable of communicating by first layer signaling (L1 signaling) or second layer signaling (L2 signaling). You can also report RRM measurements.
  • the UE may report the ST RRM measurement result for the beam group in the TRP to the TRP transmitting the control signal (or indicated by the control signal) requesting the ST RRM measurement report.
  • the UE When the UE performs the RRM measurement, the UE indicates the TRP aggregation for performing the RRM for the cell selection and / or the base station indicates the LT RRM (as a higher layer signal) for HO (handover) purposes.
  • LT RRM measurement may be performed on one neighbor TRP set.
  • the terminal may perform LT RRM measurement on the above objects by one of the following methods.
  • First option (Option 1): The UE measures the received power value of the best beam at every measurement time point using an RRM RS (eg, BRS) resource for the beam group in the TRP and then on the time axis Calculate the average value.
  • RRM RS eg, BRS
  • the terminal may calculate an average value on the time axis for the maximum values at each time point among the received power values for the beam group in the TRP. Subsequently, the terminal calculates xRSRP (or xRSRQ) based on the average value.
  • Second option (Option 2) The UE uses the RRM RS resources for the beam group for each antenna port of the RRM RS (eg, BRS) in the TRP to receive the received power value of the best beam at every measurement time point. After the measurement, the mean value is calculated for the time axis. In other words, the terminal may calculate an average value on a time axis with respect to the maximum values at each time point among the received power values of the beam groups for each antenna port of the RRM RS. Subsequently, the terminal calculates xRSRP (or xRSRQ) for each antenna port of the RRM RS (eg, BRS) based on the average value.
  • xRSRP or xRSRQ
  • the terminal may report xRSRP (or xRSRQ) for all antenna ports of the RRM RS (eg, BRS) through the LT RRM measurement.
  • each antenna port of the RRM RS eg, BRS
  • the UE LTs an average value (or xRSRP, xRSRQ calculated based on the average value) of the ST RRM measurement (for each RRM RS antenna port) within a predetermined time interval (for example, 100 ms). It is used as an RRM measurement value.
  • the RRM RS resource for LT RRM measurement may be the same as the RRM RS resource for ST RRM measurement.
  • the terminal obtains an average value on the time axis for the maximum values of every measurement time point among the received power values for the beam group, the calculation of the average value on the time axis is performed for a specific time window. Can be.
  • the reception power measurement for the beam group at each measurement time point includes the reception power measurement for the beams generated by the beam sweeping operation.
  • the beam group for each antenna port may mean a beam group according to a beam sweeping operation, and the terminal may measure reception power of all beams in the beam group at one measurement time point.
  • the present invention proposes a method for the UE to perform LT RRM measurement for measuring the average channel state for the beam group in the TRP, different from the above-described ST RRM measurement.
  • the LT RRM measurement for a specific TRP the UE measures the received power of the best beam at each measurement time point for the beam group in the TRP and calculates the average value of the received power values for the best beam on the time axis Can be defined as a value.
  • the operation of the UE obtaining a time axis average value for an envelope of received power values in the specific beam group may be applied to a beam group for each antenna port of an RRM RS.
  • the LT RRM measurement may be an operation of measuring a time axis average value for the envelope (envelope) for a plurality of RRM RS antenna ports.
  • FIG. 12 is a diagram schematically illustrating a method for measuring long term RRM (LT RRM) when four beam groups in a TRP are used.
  • LT RRM long term RRM
  • the terminal performs three reception power measurements within a time window for obtaining an average on a time axis.
  • the best beam in the first measurement is # 2
  • the terminal measures the received power by P 0 for the first time window.
  • the best beam in the second measurement is # 3
  • the UE measures the received power by P 1 for the second time window.
  • the best beam in the third measurement is # 1, and the UE measures the received power by P 2 for the third time window.
  • the terminal may utilize a value obtained by averaging the received power values (for example, P 0 , P 1 , P 2 ) for the best-view beams at each time point as an LT RRM measurement value.
  • the terminal may use a synchronization signal (SS) and / or xPBCH demodulation-reference signal (DM-RS) as the RRM RS resources for LT RRM measurement.
  • SS synchronization signal
  • DM-RS xPBCH demodulation-reference signal
  • the RRM RS resource for the LT RRM measurement may be distinguished from the RRM RS resource for the ST RRM measurement.
  • the RRM RS resource for measuring the LT RRM may be transmitted in a single frequency network (SFN) manner from TRPs performing a multi-TRP operation.
  • TRPs performing a multi-TRP operation may transmit the same RRM RS at the same resource and at the same time.
  • a multi-TRP (Multi-TRP) operation in which a network is configured to allow a terminal to receive data from a plurality of TRPs may be considered.
  • the HO (handover) target from the perspective of the terminal may be a TRP group that performs a multi-TRP operation, not a specific TRP in the multi-TRP.
  • the base station when the base station needs to perform (or support) HO between a specific TRP that does not perform a multi-TRP operation for a specific UE and a TRP group that performs the multi-TRP operation, the base station performs the multi-TRP operation by the terminal. It may be more preferable to the HO to the TRP group in terms of data transmission of the terminal. In this regard, LT RRM measurements should be able to reflect the weights for multiple TRP operations.
  • the UE may utilize RS resources transmitted in the SFN method from TRPs performing a multi-TRP operation to the RRM RS for the LT RRM measurement.
  • the RRM RS for the ST RRM measurement and the RS resources for the LT RRM measurement may be different.
  • the base station may allocate the UL transmission resource to the terminal in one of the following ways to report the LT RRM measurement results.
  • UL data transmission resource (eg PUSCH) indicated to be transmitted by UL grant
  • the UE may perform LT RRM measurement according to an event triggering method using TRP, which will be described below, using third layer signaling (L3 signaling, eg, RRC) (or first / second layer signaling (L1 / L2). signaling may be reported as a higher layer signal).
  • L3 signaling eg, RRC
  • first / second layer signaling L1 / L2
  • signaling may be reported as a higher layer signal.
  • TRP that supports communication with the mobility management entity (e.g., can deliver non-access spectrum (NAS) messages)
  • NAS non-access spectrum
  • the MME may be defined as an entity between the TRP mobility of the terminal.
  • LT RRM measurement may be performed for the purpose of HO (handover), etc. between the TRP of the terminal, the measurement result should be collected and managed by an entity (eg, MME) of a higher layer than the TRP. .
  • entity eg, MME
  • the LT RRM measurement result may be reported as a TRP supporting communication between a specific UE and the MME (or supporting a signaling radio bearer).
  • the terminal reports the LT RRM measurement to the TRP to which the RRC connection is established. You may.
  • FIG. 13 is a diagram illustrating an RRM reporting method when a terminal configures an RRC connection or dual connectivity with an LTE base station and an NR base station according to the present invention.
  • the terminal when the UE performs a dual connectivity (DC) operation in which an RRC connection or a signaling radio bearer (SRB) is formed only with an LTE base station for an LTE base station and an NR TRP, the terminal may perform an analog beam of the base station.
  • ST RRM measurement results for switching are reported only as NR TRP through first / second layer signaling (L1 / L2 procedure), and indicate HO or RLF (radio link failure), etc.
  • LT RRM measurement result for management may be reported to the LTE base station. That is, the beam switching process for the UE of the NR cell may be transparent to the LTE base station (eg, MeNB).
  • the UE may request UL resource allocation (eg, PUSCH) for reporting the LT RRM measurement result.
  • UL resource allocation eg, PUSCH
  • the terminal may perform the report of the LT RRM measurement in the form of On-demand (on demand). That is, the terminal may send a request to report the LT RRM measurement result because its link quality is not good to the current serving TRP.
  • the UE may first trigger resource allocation for the LT RRM measurement report to the base station. Through such an operation, the base station can more quickly support a HO (handover) operation of the terminal.
  • the terminal according to the present invention can perform the ST RRM measurement and / or LT RRM measurement, it can report the RRM measurement value according to the corresponding TRP.
  • the RRM measurement method of the terminal for this purpose according to at least one of the first RRM measurement method for measuring the channel state for each analog beam or the second RRM measurement method for measuring the average channel state for a plurality of analog beams
  • a RRM measurement value is calculated using a beam reference signal (BRS) resource, and reporting of the RRM measurement value calculated according to at least one of the first RRM measurement method and the second RRM measurement method is triggered.
  • the method may include reporting an RRM measurement value calculated according to the triggered RRM measurement method.
  • calculating the RRM measurement value according to the first RRM measurement method may include measuring, by the terminal, the channel state for each analog beam applied to each base station within a specific time interval.
  • the target of the RRM measurement by the terminal may be composed of one or more of the base station that the terminal receives the DL control signal or system information, the base station set by the network.
  • the terminal when the terminal receives control information indicating the report of the RRM measurement value measured according to the first RRM measurement method from the network, the terminal uses the transmission time and transmission resources indicated by the control information to the
  • the RRM measurement value calculated according to the first RRM measurement method may be transmitted to one or more base stations through first layer signaling or second layer signaling.
  • the at least one base station is a base station to which the terminal establishes an RRC connection, a base station to which the terminal receives downlink control information or system information, a base station to transmit the second control information, and the second control information.
  • One or more base stations indicated by may include one or more base stations.
  • calculating the RRM measurement value according to the second RRM measurement method may include the terminal measuring an average of channel states of at least one analog beam applied to a specific base station at a plurality of measurement time points. Can be.
  • the terminal determines the maximum value of the received power values in the BRS resources for one or more analog beams applied to the specific base station for each measurement time point, and the average value for the maximum value for each measurement time point Can be calculated.
  • the terminal determines the maximum value of the received power values of the BRS resources for one or more analog beams for each antenna port of the BRS for the specific base station at each measurement time point, and for each antenna port of the BRS.
  • the average value for the maximum values at each measurement time point can be calculated.
  • the terminal calculates an average value of the RRM measurement values calculated according to the first RRM measurement method within a predetermined time interval (for example, 100 ms) as the RRM measurement value according to the second RRM measurement method. can do.
  • a predetermined time interval for example, 100 ms
  • the terminal when the terminal receives control information indicating a report of the RRM measurement value measured according to the second RRM measurement method from the network, the terminal uses the first transmission time and transmission resources indicated by the control information.
  • the RRM measurement value calculated according to the 2 RRM measurement method may be transmitted to one or more base stations through third layer signaling.
  • the one or more base stations may include one or more base stations of a base station to which the terminal establishes an RRC connection, a base station supporting communication with an MME.
  • the terminal when the terminal establishes or dual-connects an RRC connection between the LTE base station and the NR base station, the terminal uses the BRS resource according to the first RRM measurement method and calculates an RRM measurement value. May be transmitted to the NR base station through first layer signaling or second layer signaling, and the calculated RRM measurement value of the BRS resource may be transmitted to the LTE base station according to the second RRM measurement method.
  • the reporting of the RRM measurement value calculated according to the second RRM measurement method may be triggered when a specific event occurs.
  • the specific event may be defined similarly to the Intra / Inter system measurement report event in the LTE system.
  • Event A1 serving cell becomes better than a threshold
  • Event A2 serving cell becomes worse than a threshold
  • Event A3 neighbor cell becomes better than the serving cell by an offset
  • Event A4 neighbor cell becomes better than a threshold
  • Event A5 serving cell becomes worse than threshold 1 while neighbor cell becomes better than threshold 2
  • Event B1 inter-system neighboring cell becomes better than a threshold
  • Event B2 serving cell becomes worse than threshold 1 while inter-system neighbor cell becomes better than threshold 2
  • the specific event is triggered. Can be.
  • examples of the proposed scheme described above may also be regarded as a kind of proposed schemes as they may be included as one of the implementation methods of the present invention.
  • the above-described proposed schemes may be independently implemented, some proposed schemes may be implemented in a combination (or merge) form.
  • Information on whether the proposed methods are applied may be defined so that the base station informs the terminal through a predefined signal (eg, a physical layer signal or a higher layer signal). have.
  • FIG. 14 is a diagram illustrating the configuration of a terminal and a base station in which the proposed embodiment can be implemented.
  • the UE illustrated in FIG. 14 operates to implement embodiments of the RRM measurement method of the UE described above.
  • a UE (UE) 1 may operate as a transmitting end in uplink and a receiving end in downlink.
  • UE UE 1
  • e-Node B (eNB) 100 may operate as a receiving end in uplink and a transmitting end in downlink.
  • the terminal and the base station may include transmitters 10 and 110 and receivers 20 and 120, respectively, to control transmission and reception of information, data and / or messages.
  • the antenna may include antennas 30 and 130 for transmitting and receiving messages.
  • the terminal and the base station may each include a processor 40 and 140 for performing the above-described embodiments of the present invention, and memories 50 and 150 capable of temporarily or continuously storing the processing of the processor. Can be.
  • the terminal 1 configured as described above may perform the beam reference signal according to at least one of a first RRM measuring method for measuring channel states for analog beams and a second RRM measuring method for measuring average channel states for a plurality of analog beams.
  • the RRM measurement value can be calculated using a Beam Reference Signal (BRS) resource.
  • BRS Beam Reference Signal
  • the terminal 1 measures the RRM measured according to the triggered RRM measuring method.
  • the value may be transmitted to a corresponding base station (eg, LTE base station, NR base station, etc.).
  • the transmitter and the receiver included in the terminal and the base station include a packet modulation and demodulation function, a high speed packet channel coding function, an orthogonal frequency division multiple access (OFDMA) packet scheduling, and a time division duplex (TDD) for data transmission. Packet scheduling and / or channel multiplexing may be performed.
  • the terminal and the base station of FIG. 14 may further include a low power radio frequency (RF) / intermediate frequency (IF) unit.
  • RF radio frequency
  • IF intermediate frequency
  • the terminal is a personal digital assistant (PDA), a cellular phone, a personal communication service (PCS) phone, a GSM (Global System for Mobile) phone, a WCDMA (Wideband CDMA) phone, an MBS.
  • PDA personal digital assistant
  • PCS personal communication service
  • GSM Global System for Mobile
  • WCDMA Wideband CDMA
  • MBS Multi Mode-Multi Band
  • a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and may mean a terminal incorporating data communication functions such as schedule management, fax transmission and reception, which are functions of a personal mobile terminal, in a mobile communication terminal.
  • a multimode multiband terminal can be equipped with a multi-modem chip to operate in both portable Internet systems and other mobile communication systems (e.g., code division multiple access (CDMA) 2000 systems, wideband CDMA (WCDMA) systems, etc.). Speak the terminal.
  • CDMA code division multiple access
  • WCDMA wideband CDMA
  • Embodiments of the invention may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), Field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors and the like can be implemented.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors and the like can be implemented.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above.
  • software code may be stored in memory units 50 and 150 and driven by processors 40 and 140.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention can be applied to various wireless access systems.
  • various radio access systems include 3rd Generation Partnership Project (3GPP) or 3GPP2 systems.
  • 3GPP 3rd Generation Partnership Project
  • Embodiments of the present invention can be applied not only to the various wireless access systems, but also to all technical fields to which the various wireless access systems are applied.
  • the proposed method can be applied to mmWave communication system using ultra high frequency band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명에서는 복수의 아날로그 빔이 적용되는 무선 통신 시스템에서 단말이 RRM (Radio Resource Management)를 측정하는 방법 및 이를 지원하는 장치들을 개시한다. 보다 구체적으로, 본 발명에서는 단말이 순시적인 아날로그 빔별 채널 상태를 측정하는 ST (Short Term) RRM 측정 방법, 또는 복수의 아날로그 빔에 대한 평균적인 채널 상태를 측정하는 LT (Long Term) RRM 측정 방법 중 하나 이상의 RRM 측정 방법에 따라 RRM을 측정하는 방법 및 이를 지원하는 장치들을 개시한다.

Description

무선 통신 시스템에서 단말이 RRM을 측정하는 방법 및 이를 지원하는 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 복수의 아날로그 빔이 적용되는 무선 통신 시스템에서 단말이 RRM (Radio Resource Management)를 측정하는 방법 및 이를 지원하는 장치들에 대한 것이다.
보다 구체적으로, 이하의 설명은 단말이 순시적인 아날로그 빔별 채널 상태를 측정하는 ST (Short Term) RRM 측정 방법, 또는 복수의 아날로그 빔에 대한 평균적인 채널 상태를 측정하는 LT (Long Term) RRM 측정 방법 중 하나 이상의 RRM 측정 방법에 따라 RRM을 측정하는 방법 및 이를 지원하는 장치들에 대한 설명을 포함한다.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
또한, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT (radio access technology) 에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (Machine Type Communications) 역시 차세대 통신에서 고려되고 있다. 뿐만 아니라 신뢰성 (reliability) 및 지연(latency) 에 민감한 서비스/UE 를 고려한 통신 시스템 디자인이 고려되고 있다.
이와 같이 향상된 모바일 브로드밴드 통신, 매시프 MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있다.
본 발명의 목적은 새로이 제안되는 통신 시스템에서의 단말이 RRM을 측정하는 방법을 제공하는 것이다.
특히, 본 발명은 기지국이 빔포밍 방법을 이용하여 심볼 별로 서로 다른 (또는 독립적으로 결정되는) 아날로그 빔을 통해 신호를 전송하는 경우, 이러한 신호 전송 방법을 고려한 단말의 RRM 측정 방법을 제공하는 것을 목적으로 한다.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시 예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 발명은 복수의 아날로그 빔 (analog beam)이 적용되는 무선 통신 시스템에서 단말이 RRM (Radio Resource Management)을 측정하는 방법 및 이를 위한 장치를 제공한다.
본 발명의 일 양태로서, 복수의 아날로그 빔 (analog beam)이 적용되는 무선 통신 시스템에서 단말이 RRM (Radio Resource Management)을 측정하는 방법에 있어서, 아날로그 빔 별 채널 상태를 측정하는 제1 RRM 측정 방법 및 복수의 아날로그 빔에 대한 평균적인 채널 상태를 측정하는 제2 RRM 측정 방법 중 하나 이상의 방법에 따라 빔 참조 신호 (Beam Reference Signal, BRS) 자원을 이용하여 RRM 측정 값을 산출;및 상기 제1 RRM 측정 방법 및 상기 제2 RRM 측정 방법 중 하나 이상의 방법에 따라 산출된 RRM 측정 값의 보고가 트리거링되는 경우, 트리거링된 RRM 측정 방법에 따라 산출된 RRM 측정 값을 보고;하는 것을 포함하는, RRM 측정 방법을 제안한다.
본 발명의 다른 양태로서, 복수의 아날로그 빔 (analog beam)이 적용되는 무선 통신 시스템에서 RRM (Radio Resource Management)을 측정하는 단말에 있어서, 상기 단말은 송신부; 수신부; 및 상기 송신부 및 수신부와 연결되어 동작하는 프로세서를 포함하되, 상기 프로세서는, 아날로그 빔 별 채널 상태를 측정하는 제1 RRM 측정 방법 및 복수의 아날로그 빔에 대한 평균적인 채널 상태를 측정하는 제2 RRM 측정 방법 중 하나 이상의 방법에 따라 빔 참조 신호 (Beam Reference Signal, BRS) 자원을 이용하여 RRM 측정 값을 산출; 및 상기 제1 RRM 측정 방법 및 상기 제2 RRM 측정 방법 중 하나 이상의 방법에 따라 산출된 RRM 측정 값의 보고가 트리거링되는 경우, 트리거링된 RRM 측정 방법에 따라 산출된 RRM 측정 값을 보고;하도록 구성되는, 단말을 제안한다.
여기서, 본 발명에 있어 상기 제1 RRM 측정 방법에 따라 RRM 측정 값을 산출하는 것은, 특정 시간 구간 내 각 전송 수신 포인트 (Transmission Reception Point, TRP)에 적용된 아날로그 빔 별 채널 상태를 측정하는 것을 포함할 수 있다.
이 경우, 상기 단말이 네트워크로부터 상기 제1 RRM 측정 방법에 따라 측정된 RRM 측정 값의 보고를 지시하는 제어 정보를 수신하는 경우, 상기 단말은 상기 제어 정보가 지시하는 전송 시점 및 전송 자원을 이용하여 상기 RRM 측정 값을 제1 계층 시그널링 또는 제2 계층 시그널링을 통해 하나 이상의 기지국으로 보고할 수 있다.
이때, 상기 하나 이상의 기지국은, 상기 단말이 RRC (Radio Resource Control) 연결을 수립한(establish) 기지국, 상기 단말이 하향링크 제어 정보 또는 시스템 정보를 수신 받는 기지국, 상기 제2 제어 정보를 전송한 기지국, 상기 제2 제어 정보가 지시한 기지국, 중 하나 이상의 기지국을 포함할 수 있다.
또한, 본 발명에 있어 상기 제2 RRM 측정 방법에 따라 RRM 측정 값을 산출하는 것은, 복수의 측정 시점마다 특정 기지국에 적용된 하나 이상의 아날로그 빔에 대한 채널 상태를 평균적으로 측정하는 것을 포함할 수 있다.
이를 위한 구체적인 예로, 상기 단말이 상기 복수의 측정 시점마다 상기 특정 기지국에 적용된 하나 이상의 아날로그 빔에 대한 채널 상태를 평균적으로 측정하는 것은, 상기 단말이 각 측정 시점별 상기 특정 기지국에 적용된 하나 이상의 아날로그 빔에 대한 BRS 자원에서의 수신 전력 값들 중 최대 값을 결정하고, 상기 각 측정 시점 별 최대 값들에 대한 평균 값을 산출하는 것을 포함할 수 있다.
다른 예로, 상기 단말이 상기 복수의 측정 시점마다 상기 특정 기지국에 적용된 하나 이상의 아날로그 빔에 대한 채널 상태를 평균적으로 측정하는 것은, 상기 단말이 각 측정 시점별 상기 특정 기지국에 대한 BRS의 안테나 포트 별 하나 이상의 아날로그 빔에 대한 BRS 자원에서의 수신 전력 값들 중 최대 값을 결정하고, 상기 BRS의 안테나 포트 별로 각 측정 시점에서의 최대 값들에 대한 평균 값을 산출하는 것을 포함할 수 있다.
또 다른 예로, 상기 단말이 상기 복수의 측정 시점마다 상기 특정 기지국에 적용된 하나 이상의 아날로그 빔에 대한 채널 상태를 평균적으로 측정하는 것은, 일정 시간 구간 내 상기 제1 RRM 측정 방법에 따라 산출된 RRM 측정 값을 평균 값을 상기 제2 RRM 측정 방법에 따라 RRM 측정 값으로 산출하는 것을 포함할 수 있다.
또한, 상기 단말이 네트워크로부터 상기 제2 RRM 측정 방법에 따라 측정된 RRM 측정 값의 보고를 지시하는 제어 정보를 수신하는 경우, 상기 단말은 상기 제어 정보가 지시하는 전송 시점 및 전송 자원을 이용하여 상기 제2 RRM 측정 방법에 따라 산출된 상기 RRM 측정 값을 제3 계층 시그널링을 통해 하나 이상의 기지국으로 전송할 수 있다.
이때, 상기 하나 이상의 기지국은, 상기 단말이 RRC (Radio Resource Control) 연결을 수립한(establish) 기지국, MME (Mobility Management Entity)와의 통신을 지원하는 기지국, 중 하나 이상의 기지국을 포함할 수 있다.
또 다른 예로, 상기 단말이 LTE (Long Term Evolution) 기지국과 NR (New RAT) 기지국에 대해 RRC (Radio Resource Control) 연결을 수립(establish)하거나 이중 연결 (Dual Connectivity, DC)하는 경우, 상기 단말은 상기 제1 RRM 측정 방법에 따라 상기 BRS 자원을 이용하여 산출된 RRM 측정 값은 제1 계층 시그널링 또는 제2 계층 시그널링을 통해 상기 NR 기지국으로 전송하고, 상기 제2 RRM 측정 방법에 따라 상기 BRS 자원을 산출된 RRM 측정 값은 상기 LTE 기지국으로 전송할 수 있다.
상기 제2 RRM 측정 방법에 따라 산출된 RRM 측정 값의 보고는 특정 이벤트 발생시 트리거링될 수 있다.
상술한 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명의 실시 예들에 따르면 다음과 같은 효과가 있다.
본 발명에 따르면, 새로이 제안되는 무선 통신 시스템에서 기지국이 빔포밍 방법을 적용하여 신호를 전송하는 경우, 상기 기지국이 활용 가능한 RRM 측정 값을 제공할 수 있다.
특히, 본 발명에 따르면, 기지국은 단말의 아날로그 빔 관리 등을 지원하기 위한 RRM 측정 방법과 상기 단말의 핸드 오버 등을 지원하기 위한 RRM 측정 방법을 구분하고, 단말은 기지국의 지시에 따른 RRM 측정 방법에 따라 산출된 RRM 결과 값을 대응하는 TRP로 전송할 수 있다.
본 발명의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시 예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시 예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미한다.
도 1은 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
도 2는 무선 프레임의 구조의 일례를 나타내는 도면이다.
도 3는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 4는 상향링크 서브 프레임의 구조의 일례를 나타내는 도면이다.
도 5는 하향링크 서브 프레임의 구조의 일례를 나타내는 도면이다.
도 6은 본 발명에서 이용될 수 있는 이중 연결(Dual Connectivity)의 개념을 설명하기 위한 도면이다.
도 7은 본 발명에 적용 가능한 자립적 서브프레임 구조 (Self-contained subframe structure)를 나타낸 도면이다.
도 8 및 도 9는 TXRU와 안테나 요소 (element)의 대표적인 연결 방식을 나타낸 도면이다.
도 10은 TXRU 및 물리적 안테나 관점에서 하이브리드 빔포밍 구조를 간단히 나타낸 도면이다.
도 11은 하향링크 (DL) 전송 과정에서 동기 신호 (SS)와 시스템 정보에 대한 빔 스위핑 동작을 간단히 나타낸 도면이다.
도 12은 TRP 내 빔 그룹이 4개인 경우의 LT RRM (Long Term RRM) 측정 방법을 간단히 나타낸 도면이다.
도 13은 본 발명에 따른 단말이 LTE 기지국과 NR 기지국과 RRC 연결 또는 DC (dual connectivity)를 구성한 경우의 RRM 보고 방법을 나타낸 도면이다.
도 14는 제안하는 실시 예들이 구현될 수 있는 단말 및 기지국의 구성을 도시하는 도면이다.
이하의 실시 예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성할 수도 있다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 발명의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, 본 발명의 실시예들에서 단말(Terminal)은 사용자 기기(UE: User Equipment), 이동국(MS: Mobile Station), 가입자 단말(SS: Subscriber Station), 이동 가입자 단말(MSS: Mobile Subscriber Station), 이동 단말(Mobile Terminal) 또는 발전된 이동단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 발명의 실시예들은 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321 및 3GPP TS 36.331 문서들에 의해 뒷받침 될 수 있다. 즉, 본 발명의 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 발명의 실시예들에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
예를 들어, 전송기회구간(TxOP: Transmission Opportunity Period)라는 용어는 전송구간, 전송 버스트(Tx burst) 또는 RRP(Reserved Resource Period)라는 용어와 동일한 의미로 사용될 수 있다. 또한, LBT(Listen Before Talk) 과정은 채널 상태가 유휴인지 여부를 판단하기 위한 캐리어 센싱 과정, CCA(Clear Channel Accessment), 채널 접속 과정(CAP: Channel Access Procedure)과 동일한 목적으로 수행될 수 있다.
이하에서는 본 발명의 실시예들이 사용될 수 있는 무선 접속 시스템의 일례로 3GPP LTE/LTE-A 시스템에 대해서 설명한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.
CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다.
UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced) 시스템은 3GPP LTE 시스템이 개량된 시스템이다. 본 발명의 기술적 특징에 대한 설명을 명확하게 하기 위해, 본 발명의 실시예들을 3GPP LTE/LTE-A 시스템을 위주로 기술하지만 IEEE 802.16e/m 시스템 등에도 적용될 수 있다.
1. 3GPP LTE/LTE_A 시스템
1.1. 물리 채널들 및 이를 이용한 신호 송수신 방법
무선 접속 시스템에서 단말은 하향링크(DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크(UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 본 발명의 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 S11 단계에서 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널 (P-SCH: Primary Synchronization Channel) 및 부동기 채널 (S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다.
그 후, 단말은 기지국으로부터 물리방송채널 (PBCH: Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다.
한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 S12 단계에서 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S13 내지 단계 S16과 같은 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)을 통해 프리앰블 (preamble)을 전송하고(S13), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S14). 경쟁 기반 임의 접속의 경우, 단말은 추가적인 물리임의접속채널 신호의 전송(S15) 및 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신(S16)과 같은 충돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및/또는 물리하향링크공유채널 신호의 수신(S17) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및/또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송(S18)을 수행할 수 있다.
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: Uplink Control Information)라고 지칭한다. UCI는 HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication) 정보 등을 포함한다.
LTE 시스템에서 UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 제어정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
1.2. 자원 구조
도 2는 본 발명의 실시예들에서 사용되는 무선 프레임의 구조를 나타낸다.
도 2(a)는 타입 1 프레임 구조(frame structure type 1)를 나타낸다. 타입 1 프레임 구조는 전이중(full duplex) FDD(Frequency Division Duplex) 시스템과 반이중(half duplex) FDD 시스템 모두에 적용될 수 있다.
하나의 무선 프레임(radio frame)은 Tf = 307200*Ts = 10ms의 길이를 가지고, Tslot = 15360*Ts = 0.5ms의 균등한 길이를 가지며 0부터 19의 인덱스가 부여된 20개의 슬롯으로 구성된다. 하나의 서브프레임은 2개의 연속된 슬롯으로 정의되며, i 번째 서브프레임은 2i 와 2i+1에 해당하는 슬롯으로 구성된다. 즉, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 서브프레임을 전송하는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. 여기서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼 또는 SC-FDMA 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block)을 포함한다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부반송파(subcarrier)를 포함한다.
전이중 FDD 시스템에서는 각 10ms 구간 동안 10개의 서브프레임은 하향링크 전송과 상향링크 전송을 위해 동시에 이용될 수 있다. 이때, 상향링크와 하향링크 전송은 주파수 영역에서 분리된다. 반면, 반이중 FDD 시스템의 경우 단말은 전송과 수신을 동시에 할 수 없다.
상술한 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 서브 프레임의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2(b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다. 타입 2 프레임 구조는 TDD 시스템에 적용된다. 하나의 무선 프레임(radio frame)은 Tf = 307200*Ts = 10ms의 길이를 가지며, 153600*Ts = 5ms 길이를 가지는 2개의 하프프레임(half-frame)으로 구성된다. 각 하프프레임은 30720*Ts = 1ms의 길이를 가지는 5개의 서브프레임으로 구성된다. i 번째 서브프레임은 2i 와 2i +1에 해당하는 각 Tslot = 15360*Ts = 0.5ms의 길이를 가지는 2개의 슬롯으로 구성된다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다.
타입 2 프레임에는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot)인 3가지의 필드로 구성되는 특별 서브프레임을 포함한다. 여기서, DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
다음 표 1은 특별 프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
Figure PCTKR2017007898-appb-T000001
도 3은 본 발명의 실시예들에서 사용될 수 있는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3을 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 NDL은 하향링크 전송 대역폭(bandwidth)에 종속한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 4는 본 발명의 실시예들에서 사용될 수 있는 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH가 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH가 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH에는 서브 프레임 내에 RB 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이러한 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
도 5는 본 발명의 실시예들에서 사용될 수 있는 하향링크 서브 프레임의 구조를 나타낸다.
도 5를 참조하면, 서브 프레임내의 첫번째 슬롯에서 OFDM 심볼 인덱스 0부터 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH, PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫 번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Negative-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
1.3. CSI 피드백
3GPP LTE 또는 LTE-A 시스템에서는, 사용자 기기(UE)가 채널 상태 정보(CSI)를 기지국(BS 또는 eNB)으로 보고하도록 정의되었다. 여기서, 채널 상태 정보(CSI)는 UE와 안테나 포트 사이에 형성되는 무선 채널(또는 링크)의 품질을 나타내는 정보를 통칭한다.
예를 들어, 상기 채널 상태 정보 (CSI)는 랭크 지시자(rank indicator, RI), 프리코딩 행렬 지시자(precoding matrix indicator, PMI), 채널 품질 지시자(channel quality indicator, CQI) 등을 포함할 수 있다.
여기서, RI는 해당 채널의 랭크(rank) 정보를 나타내며, 이는 UE가 동일 시간-주파수 자원을 통해 수신하는 스트림의 개수를 의미한다. 이 값은 채널의 롱 텀 페이딩(Long Term Fading)에 의해 종속되어 결정된다. 이어, 상기 RI는 PMI, CQI보다 보통 더 긴 주기로 상기 UE에 의해 BS로 피드백될 수 있다.
PMI는 채널 공간 특성을 반영한 값으로 SINR 등의 메트릭(metric)을 기준으로 UE가 선호하는 프리코딩 인덱스를 나타낸다.
CQI는 채널의 세기를 나타내는 값으로 일반적으로 BS가 PMI를 이용했을 때 얻을 수 있는 수신 SINR을 의미한다.
3GPP LTE 또는 LTE-A 시스템에서 기지국은 다수개의 CSI 프로세스를 UE에게 설정해 주고, 각 프로세스에 대한 CSI를 UE로부터 보고 받을 수 있다. 여기서 CSI 프로세스는 기지국으로부터의 신호 품질 특정을 위한 CSI-RS와 간섭 측정을 위한 CSI 간섭 측정 (CSI-interference measurement, CSI-IM) 자원으로 구성된다.
1.4. RRM 측정
LTE 시스템에서는 전력 제어 (Power control), 스케줄링 (Scheduling), 셀 검색 (Cell search), 셀 재선택 (Cell reselection), 핸드오버 (Handover), 라디오 링크 또는 연결 모니터링 (Radio link or Connection monitoring), 연결 수립/재수립 (Connection establish/re-establish) 등을 포함하는 RRM (Radio Resource Management) 동작을 지원한다. 이때, 서빙 셀은 단말에게 RRM 동작을 수행하기 위한 측정 값인 RRM 측정 (measurement) 정보를 요청할 수 있다. 대표적인 정보로, LTE 시스템에서 단말은 각 셀에 대한 셀 검색 (Cell search) 정보, RSRP (reference signal received power), RSRQ (reference signal received quality) 등의 정보를 측정하여 보고할 수 있다. 구체적으로, LTE 시스템에서 단말은 서빙 셀로부터 RRM 측정을 위한 상위 계층 신호로 'measConfig'를 전달 받고, 상기 단말은 상기 'measConfig'의 정보에 따라 RSRP 또는 RSRQ를 측정할 수 있다.
여기서 LTE 시스템에서 정의하는 RSRP, RSRQ, RSSI는 다음과 같이 정의될 수 있다.
먼저, RSRP는 고려되는 측정 주파수 대역 내 셀-특정 참조 신호를 전송하는 자원 요소들의 전력 분포(power contribution, [W] 단위)의 선형 평균으로 정의된다. (Reference signal received power (RSRP), is defined as the linear average over the power contributions (in [W]) of the resource elements that carry cell-specific reference signals within the considered measurement frequency bandwidth.) 일 예로, RSRP 결정을 위해 셀-특정 참조 신호 R0가 활용될 수 있다. (For RSRP determination the cell-specific reference signals R0 shall be used.) 만약 UE가 셀-특정 참조 신호 R1이 이용 가능하다고 검출하면, 상기 UE는 R1을 추가적으로 이용하여 RSRP를 결정할 수 있다. (If the UE can reliably detect that R1 is available it may use R1 in addition to R0 to determine RSRP.)
RSRP를 위한 참조 포인트는 UE의 안테나 커넥터가 될 수 있다. (The reference point for the RSRP shall be the antenna connector of the UE.)
만약 UE가 수신기 다이버시티를 이용하면, 보고되는 값은 개별적인 다이버시티 브랜치에 대응하는 RSRP보다 작으면 안 된다. (If receiver diversity is in use by the UE, the reported value shall not be lower than the corresponding RSRP of any of the individual diversity branches.)
이어, N이 E-UTRA 반송파 RSSI 측정 대역폭의 RB의 개수일 때, RSRQ는 E-UTRA 반송파 RSSI에 대한 RSRP의 비율로써, N*RSRP/(E-UTRA carrier RSSI)로 정의된다. (Reference Signal Received Quality (RSRQ) is defined as the ratio N*RSRP/(E-UTRA carrier RSSI), where N is the number of RB's of the E-UTRA carrier RSSI measurement bandwidth.) 상기 측정 값 내 분모 및 분자는 자원 블록의 동일한 세트에 의해 결정될 수 있다. (The measurements in the numerator and denominator shall be made over the same set of resource blocks.)
E-UTRA 반송파 RSSI는 공동-채널(co-channel) 서빙 및 비-서빙 셀, 인접 채널 간섭, 열 잡음 등을 포함하는 모든 소스로부터의 수신 신호에 대해, N 개의 자원 블록에 걸쳐, 측정 대역폭에서 안테나 포트 0 에 대한 참조 심볼을 포함하는 OFDM 심볼들만에서 단말에 의해 측정된 총 수신 전력([W] 단위)의 선형 평균을 포함한다. (E-UTRA Carrier Received Signal Strength Indicator (RSSI), comprises the linear average of the total received power (in [W]) observed only in OFDM symbols containing reference symbols for antenna port 0, in the measurement bandwidth, over N number of resource blocks by the UE from all sources, including co-channel serving and non-serving cells, adjacent channel interference, thermal noise etc.) 만약 상위 계층 시그널링이 RSRQ 측정을 위해 어떤 서브프레임들을 지시한 경우, 상기 지시된 서브프레임들 내 모든 OFDM 심볼들에 대해 RSSI가 측정된다. (If higher-layer signalling indicates certain subframes for performing RSRQ measurements, then RSSI is measured over all OFDM symbols in the indicated subframes.)
RSRQ를 위한 참조 포인트는 UE의 안테나 커넥터가 될 수 있다. (The reference point for the RSRQ shall be the antenna connector of the UE.)
만약, UE가 수신기 다이버시티를 이용하면, 보고되는 값은 개별적인 다이버시티 브랜치에 대응하는 RSRQ보다 작으면 안 된다. (If receiver diversity is in use by the UE, the reported value shall not be lower than the corresponding RSRQ of any of the individual diversity branches.)
이어, RSSI는 수신기 펄스 모양 필터에 의해 정의된 대역폭 내 열 잡음 및 수신기에서 생성된 잡음을 포함하는 수신된 광대역 전력으로 정의된다. (Received Signal Strength Indicator (RSSI) is defined as the received wide band power, including thermal noise and noise generated in the receiver, within the bandwidth defined by the receiver pulse shaping filter.)
측정을 위한 참조 포인트는 UE의 안테나 커넥터가 될 수 있다. (The reference point for the measurement shall be the antenna connector of the UE.)
만약, UE가 수신기 다이버시티를 이용하면, 보고되는 값은 개별적인 다이버시티 브랜치에 대응하는 UTRA 반송파 RSSI 보다 작으면 안 된다. (If receiver diversity is in use by the UE, the reported value shall not be lower than the corresponding UTRA carrier RSSI of any of the individual receive antenna branches.)
상기와 같은 정의에 따라, LTE 시스템에서 동작하는 단말은 주파수 간 측정 (Intra-frequency measurement)의 경우 SIB3에는 (system information block type 3)에서 전송되는 허용된 측정 대역폭 (Allowed measurement bandwidth) 관련 IE (information element)를 통해 지시되는 대역폭에서 RSRP를 측정할 수 있다. 또는, 주파수 내 측정 (Inter-frequency measurement)인 경우 상기 단말은 SIB5에서 전송되는 허용된 측정 대역폭을 통해 지시된 6, 15, 25, 50, 75, 100RB (resource block) 중 하나에 대응되는 대역폭에서 RSRP를 측정할 수 있다. 또는, 상기와 같은 IE가 없을 경우 상기 단말은 디폴트 동작으로써 전체 DL (downlink) 시스템의 주파수 대역에서 RSRP를 측정할 수 있다.
이때, 단말이 허용된 측정 대역폭에 대한 정보를 수신하는 경우, 상기 단말은 해당 값을 최대 측정 대역폭 (maximum measurement bandwidth)으로 생각하고 해당 값 이내에서 자유롭게 RSRP의 값을 측정할 수 있다. 다만, 서빙 셀이 WB-RSRQ로 정의되는 IE을 상기 단말에게 전송하고, 허용된 측정 대역폭을 50RB 이상으로 설정하면, 상기 단말은 전체 허용된 측정 대역폭에 대한 RSRP 값을 계산하여야 한다. 한편, 상기 단말은 RSSI 측정시 RSSI 대역폭의 정의에 따라 단말의 수신기가 갖는 주파수 대역을 이용해 RSSI를 측정한다.
1.5. 이중 연결 (Dual Connectivity)
도 6은 본 발명에서 이용될 수 있는 이중 연결(Dual Connectivity)의 개념을 설명하기 위한 도면이다.
도 6을 참고하면, 매크로 셀(Macro cell, 610)과 스몰 셀(small cell, 620, 630) 간에는 캐리어 결합(carrier aggregation)을 수행하고 있을 수 있다. 즉, 매크로 셀(Macro cell)은 임의의 n 개(n은 임의의 양의 정수)의 캐리어(carrier)를 사용 할 수 있으며 스몰 셀(small cell) 은 임의의 k개(k는 임의의 양의 정수)의 캐리어(carrier)를 사용 할 수 있다. 이 때 매크로 셀(Macro cell)과 스몰 셀(small cell)의 캐리어(carrier)들은 임의의 같은 주파수 캐리어(frequency carrier)들이 있을 수도 있고 혹은 임의의 다른 주파수 캐리어(frequency carrier)들이 있을 수도 있다. 예를 들어 매크로 셀(Macro cell)이 임의의 F1, F2 주파수(frequency)를 사용하며 스몰 셀(small cell) 이 임의의 F2, F3 주파수(frequency)를 사용할 수 있다.
스몰 셀(small cell) 커버리지(coverage) 안에 위치한 임의의 단말(UE)은 매크로 셀(Macro cell)과 스몰 셀(small cell) 에 동시에 연결될 수 있으며 매크로 셀(Macro cell)과 스몰 셀(small cell) 로부터 서비스를 동시에 받거나 혹은 TDM(Time Division Multiplexing) 방식으로 받을 수 있다. 매크로 셀 계층(Macro cell layer)을 통해서는 제어 평명(C-plane)에서 제공되는 기능 (ex: 연결관리(connection management), 이동성(mobility))을 서비스(service) 받을 수 있고, 사용자 평면 데이터 경로(U-plane data path)의 경우에는 매크로 셀(Macro cell) 또는 스몰 셀(small cell) 또는 매크로 셀(Macro cell)과 스몰 셀(small cell)로 선택 할 수 있다. 예를 들어 VoLTE(voice over LTE)와 같이 실시간 데이터의 경우에는 스몰 셀(small cell) 보다 이동성(mobility)이 보장되는 매크로 셀(Macro cell)로 전송/수신을 받을 수가 있으며, 고효율 서비스(best effect service)의 경우에는 스몰 셀(small cell) 로부터 서비스를 받을 수 있다. 매크로 셀(Macro cell)과 스몰 셀(small cell)사이의 연결은 백홀(backhaul)로 이루어질 수 있으며, 상기 백홀은 이상적(ideal backhaul)이거나 혹은 비 이상적(non ideal backhaul)일 수도 있다.
또한 매크로 셀(Macro cell)과 스몰 셀(small cell)의 경우에 동일한 TDD 혹은 FDD 시스템이거나 서로 다르게 TDD, FDD 시스템으로 구성될 수 있다.
도 6에서 이중 연결(dual connectivity)의 개념을 살펴볼 수 있다. 매크로 셀(Macro cell)과 스몰 셀(small cell)이 서로 동일한 주파수 대역을 사용하거나 혹은 서로 다른 주파수 대역을 사용 하는 것을 볼 수 있다. 이중 연결(dual connectivity)이 설정(configuration)된 임의의 단말(UE)은 매크로 셀(Macro cell)과 스몰 셀(small cell)에 동시에 연결될 수 있다. 도 6에서는 사용자 평명 데이터 경로(U-plane data path)를 스몰 셀(small cell)로 설정한 경우를 나타낸다.
본 발명에서는 임의의 단말(UE)이 매크로 셀(Macro cell)과 스몰 셀(small cell)로 이중 연결(dual connectivity)을 하는 것에 대해서 언급하였으나 이는 편의에 의한 것이며 본 발명은 셀 타입(cell type) 예를 들어, 매크로, 마이크로, 피코, 펨토(macro, micro, pico, femto) 등에 의해서 제한되지 않는다. 또한 임의의 이중 연결(dual connectivity) 단말(UE)이 매크로 셀(Macro cell)을 Pcell(Primary Cell)로 스몰 셀(small cell)을 Scell(Secondary Cell)로 캐리어 결합(CA)를 설정하는 경우로 설명하고 있으나 이는 편의에 의한 것으로 이와 다르게 설정되는 경우에도 본 발명의 적용이 제한되지는 않는다.
특히, 본 발명에서는 하나의 단말이 LTE (Long Term Evolution) 시스템 기반의 기지국과 NR 시스템 기반 전송 수신 포인트 (Transmission Reception Point)와 이중 연결을 하는 것도 포함한다.
2. 새로운 무선 접속 기술 (New Radio Access Technology) 시스템
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 접속 기술 (radio access technology, RAT)에 비해 향상된 단말 광대역 (mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 (massive) MTC (Machine Type Communications) 역시 고려되고 있다. 뿐만 아니라 신뢰성 (reliability) 및 지연 (latency) 에 민감한 서비스/UE 를 고려한 통신 시스템 디자인 또한 논의되고 있다.
이와 같이 향상된 단말 광대역 통신 (enhanced mobile broadband communication), 매시브 MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 새로운 무선 접속 기술의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술을 New RAT 또는 NR (New Radio)이라 명명한다.
2.1. 자립적 서브프레임 구조 (Self-contained subframe structure)
도 7은 본 발명에 적용 가능한 자립적 서브프레임 구조 (Self-contained subframe structure)를 나타낸 도면이다.
본 발명이 적용 가능한 NR 시스템에서는 TDD 시스템에서 데이터 전송 지연을 최소화하기 위해 도 6과 같은 자립적 서브프레임 구조를 제안한다.
도 7에서 빗금친 영역 (예: symbol index =0)은 하향링크 제어 (downlink control) 영역을 나타내고, 검정색 영역 (예: symbol index =13)은 상향링크 제어 (uplink control) 영역을 나타낸다. 이외 영역 (예: symbol index = 1 ~ 12)은 하향링크 데이터 전송을 위해 사용될 수도 있고, 상향링크 데이터 전송을 위해 사용될 수도 있다.
이러한 구조의 특징은 한 개의 서브프레임 내에서 DL 전송과 UL 전송을 순차적으로 진행할 수 있으며, 상기 하나의 서브프레임 내에서 DL 데이터를 송수신하고 이에 대한 UL ACK/NACK도 송수신할 수 있다. 결과적으로 이러한 구조는 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 지연을 최소화할 수 있다.
이와 같은 자립적 서브프레임 (self-contained subframe) 구조에서 기지국과 UE가 송신 모드에서 수신모드로 전환 또는 수신모드에서 송신모드로 전환을 위해서는 일정 시간 길이의 타입 갭(time gap)이 필요하다. 이를 위하여 자립적 서브프레임 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼은 가드 구간 (guard period, GP)로 설정될 수 있다.
앞서 상세한 설명에서는 자립적 서브프레임 (self-contained subframe) 구조가 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우를 설명하였으나, 상기 제어 영역들은 상기 자립적 서브프레임 구조에 선택적으로 포함될 수 있다. 다시 말해, 본 발명에 따른 자립적 서브프레임 구조는 도 7과 같이 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우 뿐만 아니라 DL 제어 영역 또는 UL 제어 영역만을 포함하는 경우도 포함할 수 있다.
또한, 설명의 편의상 상기와 같은 프레임 구조를 서브프레임으로 통칭하였으나, 해당 구성은 프레임 또는 슬롯 등으로 달리 명명될 수도 있다. 일 예로, NR 시스템에서는 복수의 심볼들로 구성된 하나의 단위를 슬롯이라고 명명할 수 있고, 이하 설명에서 서브프레임 또는 프레임은 앞서 설명한 슬롯으로 대체될 수 있다.
2.2. OFDM 수비학 (numerology)
NR 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용한다. 이때, NR 시스템은 대표적으로 표 2와 같은 OFDM 수비학을 가질 수 있다.
Figure PCTKR2017007898-appb-T000002
또는 NR 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용하며 표 3과 같은 다수의 OFDM 수비학 중에서 선택된 OFDM 수비학을 사용할 수 있다. 구체적으로, 표 3에서 개시된 바와 같이, NR 시스템은 LTE시스템에서 사용되었던 15kHz 부반송파 스페이싱 (subcarrier-spacing)을 기본으로 상기 15kHz 부반송파 스페이싱의 배수 관계에 있는 30, 60, 120 kHz 부반송파 스페이싱을 갖는 OFDM 수비학을 사용할 수 있다.
이때, 표 3에 개시된 순환 전치 (Cyclic Prefix) 및 시스템 대역폭 (System BW), 그리고 이용 가능한 부반송파 (available subcarriers) 개수는 본 발명에 따른 NR 시스템에 적용 가능한 일 예에 불과하며, 구현 방식에 따라 상기 값들은 변형될 수 있다. 대표적으로 60kHz 부반송파 스페이싱의 경우 시스템 대역폭은 100MHz로 설정될 수 있으며, 이 경우 이용 가능한 부반송파 개수는 1500을 초과하여 1666보다 작은 값을 가질 수 있다. 또한 표 4에서 개시된 서브프레임 길이 (Subframe length) 및 서브프레임 당 OFDM 심볼 개수 또한 본 발명에 따른 NR 시스템에 적용 가능한 일 예에 불과하며, 구현 방식에 따라 상기 값들은 변형될 수 있다.
Figure PCTKR2017007898-appb-T000003
2.3. 아날로그 빔포밍 (Analog beamforming )
밀리미터 파 (Millimeter Wave, mmW)에서는 파장이 짧아 동일 면적에 다수개의 안테나 요소(element)의 설치가 가능하다. 즉, 30GHz 대역에서 파장은 1cm이므로, 5 * 5 cm의 패널(panel)에 0.5 lambda(파장) 간격으로 2-차원 (2-dimension) 배열을 하는 경우 총 100개의 안테나 요소를 설치할 수 있다. 이에 따라, 밀리미터 파 (mmW)에서는 다수개의 안테나 요소를 사용하여 빔포밍 (beamforming, BF) 이득을 높여 커버리지를 증가시키거나, 쓰루풋 (throughput)을 높일 수 있다.
이때, 안테나 요소 별로 전송 파워 및 위상 조절이 가능하도록 각 안테나 요소는 TXRU(Transceiver Unit)을 포함할 수 있다. 이를 통해, 각 안테나 요소는 주파수 자원 별로 독립적인 빔포밍을 수행할 수 있다.
그러나 100여개의 안테나 요소 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다. 그러므로 하나의 TXRU에 다수개의 안테나 요소를 매핑하고 아날로그 위상 시프터 (analog phase shifter)로 빔(beam)의 방향을 조절하는 방식이 고려되고 있다. 이러한 아날로그 빔포밍 방식은 전 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍이 어렵다는 단점을 갖는다.
이에 대한 해결 방안으로, 디지털 빔포밍과 아날로크 빔포밍의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 TXRU를 갖는 하이브리드 빔포밍 (hybrid BF)를 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔(beam)의 방향은 B개 이하로 제한될 수 있다.
도 8 및 도 9는 TXRU와 안테나 요소 (element)의 대표적인 연결 방식을 나타낸 도면이다. 여기서 TXRU 가상화 (virtualization) 모델은 TXRU의 출력 신호와 안테나 요소의 출력 신호의 관계를 나타낸다.
도 8은 TXRU가 서브 어레이 (sub-array)에 연결된 방식을 나타낸 도면이다. 도 7의 경우, 안테나 요소는 하나의 TXRU에만 연결된다.
반면, 도 9는 TXRU가 모든 안테나 요소에 연결된 방식을 나타낸 도면이다. 도 8의 경우, 안테나 요소는 모든 TXRU에 연결된다. 이때, 안테나 요소가 모든 TXRU에 연결되기 위하여 도 15에 도시된 바와 같이 별도의 덧셈기를 필요로 한다.
도 8 및 도 9에서, W는 아날로그 위상 시프터 (analog phase shifter)에 의해 곱해지는 위상 벡터를 나타낸다. 즉, W는 아날로그 빔포밍의 방향을 결정하는 주요 파라미터이다. 여기서 CSI-RS 안테나 포트와 TXRU들과의 매핑은 1:1 또는 1:다(多) (1-to-many) 일 수 있다.
도 8의 구성에 따르면, 빔포밍의 포커싱이 어려운 단점이 있으나, 전체 안테나 구성을 적은 비용으로 구성할 수 있다는 장점이 있다.
도 9의 구성에 따르면, 빔포밍의 포커싱이 쉽다는 장점이 있다. 다만, 모든 안테나 요소에 TXRU가 연결되는 바, 전체 비용이 증가한다는 단점이 있다.
3. 제안하는 실시예
이하, 본 발명에서는 상기와 같은 기술적 구성을 바탕으로 기지국이 시간에 따라 임의로 변경할 수 있는 아날로그 빔포밍을 운용할 때, 기지국이 심볼 (또는 특정 시간 단위) 별로 (단말과 약속된) 서로 다른 (또는 독립적인) 아날로그 빔을 적용하여 전송할 수 있는 DL 제어 영역 (이하, 빔 스위핑 DL 제어 (Beam sweeping DL control) 영역)을 통해 단말에게 DL 제어 정보를 전송하는 방안을 제안한다.
앞서 상술한 NR 시스템에서는 단일 물리 네트워크 상에 복수의 논리 네트워크를 구현하는 네트워크 슬라이싱 (Network slicing) 기법이 고려되고 있다. 상기 논리 네트워크는 다양한 목적의 서비스 (예: eMBB (enhanced Mobile Broadband), mMTC (massive Machine Type Communication), URLLC (ultra-reliable low latency communication) 등)를 지원할 수 있어야 한다. 이때, NR 시스템의 무선 통신 시스템 (또는 물리 계층)에서는 제공할 서비스에 적합한 수비학 (Numerology)를 갖는 OFDM (orthogonal frequency division multiplexing) 방식을 적용할 수 있는 유연한 구조를 고려하고 있다. 다시 말해서, 상기 NR 시스템에서는 시간 및 주파수 자원 영역마다 서로 다른 수비학을 갖는 OFDM 방식 (또는 다중 접근 (Multiple access) 방식)을 고려할 수 있다.
또한, 최근 스마트 기기들의 등장으로 데이터 트래픽이 급격하게 증가함에 따라 상기 NR 시스템에서는 더욱 높은 통신 용량 (예: 데이터 수율 등)을 지원하도록 요구되고 있다. 이때, 통신 용량을 높이는 한 가지 방안으로 다수의 송신 (또는 수신) 안테나를 활용하여 데이터 전송을 수행하는 방안이 고려될 수 있다. 상기 다수의 안테나에 대해 디지털 빔포밍을 적용하고자 하는 경우, 각 안테나마다 RF (Radio Frequency) 체인 (예: 전력 증폭기 (power amplifier), 하향 변환기 (down converter) 등 RF 소자들로 이루어진 체인)과 D/A (또는 A/D) 컨버터 (즉, 디지털에서 아날로그로 또는 아날로그에서 디지털로 변환)가 필요하며 이와 같은 구조는 높은 하드웨어 복잡도와 높은 전력 소모를 유발하여 실용적이지 않을 수 있다.
따라서 본 발명이 적용 가능한 NR 시스템에서는 다수의 안테나가 사용되는 경우, 디지털 빔포밍과 아날로그 빔포밍을 혼용하는 하이브리드 빔포밍 기법을 고려하고 있다. 여기서 아날로그 빔포밍 (또는 RF 빔포밍)은 RF 단에서 프리코딩 (또는 콤바이닝 (Combining))을 수행하는 동작을 의미한다.
상기 하이브리드 빔포밍은 베이스밴드 (Baseband) 단과 RF 단에서 각각 프리코딩 (또는 콤바이닝)을 수행하는 동작을 의미하며, 이로 인해 RF 체인 수와 D/A (또는 A/D) 컨버터 수를 줄이면서도 디지털 빔포밍에 근접하는 성능을 낼 수 있다는 장점이 있다. 이하, 설명의 편의상 상기 하이브리드 빔포밍 구조는 N개 송수신 유닛 (Transceiver unit, TXRU)와 M개의 물리적 안테나로 표현될 수 있다. 이 경우, 송신 단에서 전송할 L개 데이터 계층에 대한 디지털 빔포밍은 N * L 행렬로 표현될 수 있고, 이후 변환된 N개 디지털 신호는 TXRU를 거쳐 아날로그 신호로 변환된 다음 M * N 행렬로 표현되는 아날로그 빔포밍이 적용될 수 있다.
도 10은 TXRU 및 물리적 안테나 관점에서 하이브리드 빔포밍 구조를 간단히 나타낸 도면이다. 상기 도 10에서는, 디지털 빔의 개수가 L개 이고, 아날로그 빔의 개수가 N개인 경우를 도시한다.
이때, 본 발명이 적용 가능한 NR 시스템에서는 기지국이 아날로그 빔포밍을 심볼 단위로 변경할 수 있도록 설계하여 특정한 지역에 위치한 단말에게 보다 효율적인 빔포밍을 지원하는 것을 고려하고 있다. 더 나아가, 도 10에 도시된 바와 같이 특정 N개의 TXRU와 M개의 RF 안테나를 하나의 안테나 패널(panel)로 정의할 때, 본 발명이 적용 가능한 NR 시스템에서는 서로 독립적인 하이브리드 빔포밍이 적용 가능한 복수의 안테나 패널을 도입하는 방안까지 고려하고 있다.
상기와 같이 기지국이 복수의 아날로그 빔을 활용하는 경우, 단말 별로 신호 수신에 유리한 아날로그 빔이 다를 수 있다. 이에, 본 발명이 적용 가능한 NR 시스템에서는 적어도 동기 신호 (Synchronization signal, SS), 시스템 정보, 페이징 (Paging) 등에 대해 특정 서브프레임에서 기지국이 적용할 복수 아날로그 빔들을 심볼 별로 바꾸는 동작 (일명, 빔 스위핑 (Beam sweeping))을 지원하는 것을 고려하고 있다. 이를 통해, 기지국은 어 모든 단말에 대해 신호 수신 기회를 제공할 수 있다.
도 11은 하향링크 (DL) 전송 과정에서 동기 신호 (SS)와 시스템 정보에 대한 빔 스위핑 동작을 간단히 나타낸 도면이다. 도 11에서는, 본 발명이 적용 가능한 NR 시스템에서 시스템 정보가 브로드캐스팅 방식으로 전송되는 물리적 자원 (또는 물리 채널)을 xPBCH (physical broadcast channel)으로 명명한다.
이때, 한 심볼 내에서 서로 다른 안테나 패널에 속하는 아날로그 빔들은 동시 전송될 수 있다.
이어 본 발명이 적용 가능한 NR 시스템에서는 아날로그 빔 별 채널을 측정하기 위해 도 11에 도시된 바와 같이 (특정 안테나 패널에 대응되는) 단일 아날로그 빔이 적용되어 전송되는 참조 신호 (Reference signal, RS)인 빔 참조 신호 (Beam RS, BRS)를 도입하는 방안이 고려되고 있다. 상기 BRS는 복수의 안테나 포트에 대해 정의될 수 있으며, BRS의 각 안테나 포트는 단일 아날로그 빔에 대응될 수 있다. 이때, BRS와는 달리 동기 신호 (SS) 또는 xPBCH는 임의의 단말이 잘 수신할 수 있도록 아날로그 빔 그룹 내 모든 아날로그 빔이 적용되어 전송될 수 있다.
이와 같이, 본 발명이 적용 가능한 NR 시스템에 대해서도 단말이 RRM 목적으로 채널을 측정해야 할 필요가 있다. 이에 따라, 상기 단말이 어떤 자원을 토대로 어떻게 RRM 측정을 수행할 것인지가 정의될 필요가 있다.
이에, 본 발명에서는 NR 시스템에 적용 가능한 아날로그 빔 그룹을 고려한 RRM 측정 방법을 제안한다. 이하 본 발명에서는 LTE 시스템의 RSRP, RSSI, RSRQ 개념에 대응하여 NR 시스템에서 RRM 측정 용도의 특정 측정 자원에 대한 (자원 요소 당) 평균 수신 전력을 xRSRP로 정의하고, 심볼 내 모든 신호를 고려한 평균 수신 전력을 xRSSI로 정의하며, xRSRP와 xRSSI 간의 상대적인 비율을 나타내는 지표를 xRSRQ로 정의한다. 이에 따라, 상기 xRSRQ, xRSRP, xRSSI 간에는 다음의 수학식과 같은 관계를 가질 수 있다.
Figure PCTKR2017007898-appb-M000001
이하에서는 설명의 편의 상, RRM 측정 용도로 활용되는 RS (또는 알려진 신호 (Known signal))는 RRM RS라 명명하고, 단말에게 DL/UL 전송을 수행하는 지점을 TRP (transmission and reception point)라 명명한다. 상기 TRP는 특정 물리적 셀 (physical cell) 또는 복수의 물리적 셀 그룹 또는 특정 아날로그 빔 (또는 아날로그 빔 그룹)에 대응될 수 있다.
또한, 이하에서 안테나 포트는 (적어도 동일 자원 블록 내) 동일한 채널 특성 (예: 지연 프로필 (delay profile), 도플러 확산 (Doppler spread) 등)을 가정할 수 있는 가상의 안테나 요소 (Antenna element)를 의미한다. 아래에서 동기 신호 (Synchronization signal, SS)은 단말이 특정 TRP에 대한 송수신 동작을 위해 시간 동기를 맞추는 기준 신호를 의미하고, 서브프레임 (Subframe, SF)은 일정 시간 길이를 갖는 전송 기본 단위를 의미한다. 이때, 적용되는 수비학 (Numerology) 별로 SF의 정의가 다를 수 있다. 일 예로, 수비학 별로 SF의 절대적인 길이는 상이하게 설정될 수 있다.
또한, RRM 측정을 위해 TRP가 상위 계층 신호 등으로 단말에게 알려주는 설정 정보는 측정 설정 (Measurement configuration)으로 명명하며, 상기 측정 설정은 (측정 대상이 되는) TRP 인덱스, RRM RS에 대한 자원 할당 정보 및 시퀀스 정보, RRM 측정을 위한 대역폭 등을 포함할 수 있다.
이하에서는, 상기와 같은 기술적 특징들에 기반하여 단말의 짧은 구간 RRM 측정 (Short term RRM measurement) 및 긴 구간 RRM 측정 (Long term RRM measurement) 방법과 상기와 같은 방법들을 통해 측정된 RRM 결과 값을 보고하는 방법에 대해 상세히 설명한다.
3.1. 짧은 구간 RRM (Short Term RRM , 이하 ST RRM ) 측정 및 보고 방법
3.1.1. 제1 짧은 구간 RRM 측정 및 보고 방법
단말이 RRM 측정을 수행할 때, 상기 단말은 DL 제어 신호 (또는 시스템 정보)을 수신 받고 있는 TRP 및/또는 네트워크가 (상위 계층 신호로) 설정한 TRP 집합에 대해 ST RRM 측정을 수행할 수 있다.
보다 구체적으로, 상기 단말은 상기와 같은 대상들에 대해 TRP 내 아날로그 빔 별 xRSRP (또는 xRSRQ)를 특정 전송 시점 내 RRM RS (예: BRS) 자원 (단일 슬롯) 또는 특정 시간 구간 내 RRM RS (예: BRS) 자원 (단일 구간 (single period))을 활용하여 측정 및 계산할 수 있다. 여기서, 상기 RRM RS (예: BRS) 자원을 활용하는 특정 전송 시점 또는 특정 시간 구간은 해당 ST RRM 측정의 보고 시점 또는 해당 보고를 요청한 시점을 기준으로 상대적으로 결정될 수 있다.
본 발명이 적용 가능한 NR 시스템에서는 하이브리드 빔포밍 또는 아날로그 빔포밍이 적용될 수 있으며, 이에 따라 하나의 TRP는 복수의 아날로그 빔들을 운용할 수 있다. 이때, 기지국 (예: 서빙 TRP)이 단말에게 데이터를 전송할 때, 상기 기지국이 단말 수신 관점에서의 최적 아날로그 빔으로 데이터를 전송해 주는 것이 바람직한 동작일 수 있다. 상기 기지국의 아날로그 빔 관리 (Analog beam management)를 지원하기 위해 단말은 아날로그 빔 별 채널 상태를 측정하여 기지국에게 보고할 수 있어야 한다.
이에, 본 발명에서는 단말이 순시적인 아날로그 빔 별 채널 상태를 측정 및 보고하는 동작을 ST RRM 측정으로 정의하며, 단말이 상기 ST RRM 측정을 실제 데이터 수신이 가능한 TRP들에 대해 수행하는 방안을 제안한다.
구체적인 ST RRM 측정 방법으로, 단말은 한 시점의 RRM RS 또는 상대적으로 짧은 시간 구간 내 RRM RS 자원을 기반으로 특정 아날로그 빔에 대한 xRSRP (또는 xRSRQ)를 측정할 수 있다. 만약 네트워크가 복수의 TRP로부터 데이터를 전송 받을 수 있는 다중 TRP (Multi-TRP) 동작을 지원 또는 설정하는 경우, 네트워크는 상기 TRP들에 대한 RRM RS 자원 정보를 단말에게 알려주고 단말은 각 TRP에 대해 ST RRM 측정을 수행할 수 있다.
3.1.2. 제2 짧은 구간 RRM 측정 및 보고 방법
단말이 RRM 측정을 수행할 때, 기지국은 특정 제어 신호(예: DCI)로 ST RRM 측정 결과 보고를 (해당 보고를 전송할 UL 전송 시점 및 UL 자원과 함께) 지시하고, 상기 특정 제어 신호를 수신한 단말은 ST RRM 측정 결과를 다음의 TRP로 제1 계층 시그널링 (L1 signaling, 예: PHY) 또는 제2 계층 시그널링 (L2 signaling, 예: MAC)으로 보고할 수 있다.
(1) RRC (radio resource control) 연결을 맺고 있는 TRP
(2) 단말이 DL 제어 신호 (또는 시스템 정보)을 수신 받고 있는 TRP
(3) ST RRM 측정 결과 보고를 요청하는 제어 신호를 전송한 TRP
(4) ST RRM 측정 결과 보고를 요청하는 제어 신호로 지시된 TRP
여기서, 단말은 기지국과 사전에 약속된 (또는 지시된) 전송 시점 및 UL 자원에서 수신 관점에서의 M개 베스트 아날로그 빔들 (또는 기지국과 사전에 약속된 M개 아날로그 빔들)에 대한 ST RRM 측정 (예: xRSRP, xRSRQ) 결과를 보고할 수 있다.
본 발명에 있어, ST RRM 측정은 기지국 (예: 서빙 TRP)이 데이터 전송을 위한 아날로그 빔을 선별하기 위한 목적으로 활용하는 정보이므로, 상기 기지국이 필요로 하는 시점에 단말이 ST RRM 측정 및 보고를 수행하는 것이 바람직할 수 있다.
이에, 단말은 RRC 연결을 맺고 있는 TRP로 상기 ST RRM 측정 결과를 보고할 수도 있지만, 상기 ST RRM 측정은 MME (mobility management entity) 단에서 이동성 (Mobility) 관리 목적으로 보고되는 측정 값이 아니라 데이터 전송 시 스케줄링 아날로그 빔을 결정하기 위한 목적으로 보고되는 측정 값인 바, 단말은 상기 단말에게 데이터 전송을 수행하고 제1 계층 시그널링 (L1 signaling) 또는 제2 계층 시그널링 (L2 signaling)으로 통신이 가능한 TRP로 상기 RRM 측정 값을 보고할 수도 있다. 이러한 관점에서 단말은 ST RRM 측정 보고를 요청하는 제어 신호를 전송한 (또는 제어 신호로 지시된) TRP로 해당 TRP 내 빔 그룹에 대한 ST RRM 측정 결과를 보고할 수 있다.
3.2. 긴 구간 RRM (Long Term RRM , 이하 LT RRM ) 측정 및 보고 방법
3.2.1. 제1 긴 구간 RRM 측정 및 보고 방법
단말이 RRM 측정을 수행할 떄, 상기 단말은 상기 단말이 셀 선택 (Cell selection)을 위해 RRM을 수행할 TRP 집합 및/또는 기지국이 HO (handover) 목적으로 (상위 계층 신호로) LT RRM을 지시한 이웃 TRP 집합에 대해 LT RRM 측정을 수행할 수 있다.
보다 구체적으로, 상기 단말은 상기와 같은 대상들에 대해 다음 중 하나의 방법으로 LT RRM 측정을 수행할 수 있다.
(1) 제1 옵션 (Option 1): 단말은 상기 TRP 내 빔 그룹에 대해 RRM RS (예: BRS) 자원을 이용하여 매 측정 시점마다 베스트 빔에 대한 수신 전력 값을 측정한 뒤 시간 축에 대해 평균 값을 산출한다. 다시 말해, 상기 단말은 TRP 내 빔 그룹에 대한 수신 전력 값들 중 매 시점의 최대 값들에 대한 시간 축 상 평균 값을 산출할 수 있다. 이어, 상기 단말은 상기 평균 값을 토대로 xRSRP (또는 xRSRQ)을 계산한다.
(2) 제2 옵션 (Option 2): 단말은 상기 TRP 내 RRM RS (예: BRS)의 각 안테나 포트 별 빔 그룹에 대해 RRM RS 자원을 이용하여 매 측정 시점마다 베스트 빔에 대한 수신 전력 값을 측정한 뒤 시간 축에 대해 평균 값을 산출한다. 다시 말해, 상기 단말은 RRM RS의 안테나 포트 별 빔 그룹에 대한 수신 전력 값들 중 매 시점의 최대 값들에 대한 시간 축 상 평균 값을 산출할 수 있다. 이어, 상기 단말은 상기 평균 값을 값을 토대로 RRM RS (예: BRS)의 각 안테나 포트 별 xRSRP (또는 xRSRQ)을 계산한다.
이때, 상기 단말은 LT RRM 측정을 통해 RRM RS (예: BRS)의 모든 안테나 포트들에 대한 xRSRP (또는 xRSRQ)를 보고할 수 있다. 또한, 상기 RRM RS (예: BRS)의 각 안테나 포트는 안테나 패널에 대응될 수 있다.
(3) 제3 옵션 (Option 3): 단말은 일정 시간 구간 (예: 100ms) 내 ST RRM 측정의 (RRM RS 안테나 포트 별) 평균 값 (또는 상기 평균 값을 토대로 산출된 xRSRP, xRSRQ)을 LT RRM 측정 값으로 활용한다.
앞서 상술한 방법에 있어, LT RRM 측정을 위한 RRM RS 자원은 ST RRM 측정을 위한 RRM RS 자원과 동일할 수 있다.
또한, 단말이 상기 빔 그룹에 대한 수신 전력 값들 중 매 측정 시점의 최대 값들에 대한 시간 축 상 평균 값을 구할 때, 상기 시간 축 상 평균 값의 산출은 특정 시간 윈도우 (Time window)에 대해 수행될 수 있다.
또한, 상기 매 측정 시점에서의 빔 그룹에 대한 수신 전력 측정은 빔 스위핑 동작으로 발생하는 빔들에 대한 수신 전력 측정을 포함한다. 특히, 안테나 포트 별 빔 그룹은 빔 스위핑 동작에 따른 빔 그룹을 의미할 수 있으며, 단말은 한 번의 측정 시점에서 상기 빔 그룹 내 모든 빔에 대한 수신 전력을 측정할 수 있다.
보다 구체적으로, TRP 간 단말의 HO (handover)를 수행하고자 하는 경우, 기지국 (예: 서빙 TRP)는 인접 TRP에 대한 평균적인 채널 상태를 평가할 수 있어야 한다. 따라서 본 발명에서는 앞서 상술한 ST RRM 측정과는 구분되게 단말이 TRP 내 빔 그룹에 대한 평균적인 채널 상태를 측정하는 LT RRM 측정을 수행하는 방안을 제안한다. 이때, 특정 TRP에 대한 LT RRM 측정은 단말이 해당 TRP 내 빔 그룹에 대해 매 측정 시점마다 베스트 빔의 수신 전력을 측정한 뒤 시간 축에 대해 상기 베스트 빔에 대한 수신 전력 값들의 평균 값을 산출한 값으로 정의될 수 있다.
상기 단말이 상기 특정 빔 그룹 내 수신 전력 값들의 엔벨로프 (Envelop)에 대한 시간 축 상 평균 값을 구하는 동작은 RRM RS의 안테나 포트 별 빔 그룹에 대해 적용될 수도 있다. 이때, LT RRM 측정은 복수의 RRM RS 안테나 포트들에 대한 상기 엔벨로프 (Envelop)에 대한 시간 축 상 평균 값을 측정하는 동작이 적용될 수 있다.
도 12은 TRP 내 빔 그룹이 4개인 경우의 LT RRM (Long Term RRM) 측정 방법을 간단히 나타낸 도면이다.
도 12에 있어, 단말은 시간 축 상 평균을 구하기 위한 시간 윈도우 내에서 3번의 수신 전력 측정을 수행한다. 이때, 첫 번째 측정에서의 베스트 빔은 #2번으로 상기 단말은 상기 첫 번째 시간 윈도우에 대해 P0만큼의 수신 전력을 측정한다. 이어, 두 번째 측정에서의 베스트 빔은 #3번으로 상기 단말은 상기 두 번째 시간 윈도우에 대해 P1만큼의 수신 전력을 측정한다. 마지막으로, 세 번째 측정에서의 베스트 빔은 #1번으로 상기 단말은 상기 세 번째 시간 윈도우에 대해 P2만큼의 수신 전력을 측정한다.
이어, 상기 단말은 LT RRM 측정 값으로 상기 매 시점 베스트 빔들에 대한 수신 전력 값들 (예: P0, P1, P2)을 시간 축 상에서 평균한 값을 활용할 수 있다.
3.2.2. 제2 긴 구간 RRM 측정 및 보고 방법
단말이 RRM 측정을 수행할 때, 상기 단말은 LT RRM 측정을 위한 RRM RS 자원으로 동기 신호 (SS) 및/또는 xPBCH DM-RS (demodulation - reference signal)를 사용할 수 있다.
이때, 상기 LT RRM 측정을 RRM RS 자원은 ST RRM 측정을 위한 RRM RS 자원과 구별될 수 있다.
단, 상기 LT RRM 측정을 위한 RRM RS 자원은 다중 TRP (Multi-TRP) 동작을 수행하는 TRP들로부터 SFN (single frequency network) 방식으로 전송될 수 있다. 다시 말해, 다중 TRP 동작을 수행하는 TRP들은 동일 RRM RS를 동일 자원 및 동일 시점에 전송할 수 있다.
구체적으로, 3.1.1. 절에서 언급한 바와 같이 네트워크가 단말이 복수의 TRP로부터 데이터를 전송 받을 수 있도록 설정 하는 다중 TRP (Multi-TRP) 동작이 고려될 수 있다. 이때, 단말의 관점에서 HO (handover) 대상은 상기 다중 TRP 내 특정 TRP가 아니라 다중 TRP 동작을 수행하는 TRP 그룹일 수 있다.
일 예로, 기지국이 특정 단말에 대해 다중 TRP 동작을 수행하지 않는 특정 TRP와 다중 TRP 동작을 수행하는 TRP 그룹 간 HO를 수행(또는 지원)해야 하는 경우, 상기 기지국은 상기 단말을 다중 TRP 동작을 수행하는 TRP 그룹으로 HO를 시키는 것이 단말의 데이터 전송 측면에서 보다 바람직할 수 있다. 이러한 관점에서 LT RRM 측정은 다중 TRP 동작에 대한 가중치를 반영할 수 있어야 한다.
이를 위한 한 가지 방안으로 단말은 상기 LT RRM 측정을 위한 RRM RS로 다중 TRP 동작을 수행하는 TRP들로부터 SFN 방식으로 전송되는 RS 자원을 활용할 수 있다. 이때, ST RRM 측정을 위한 RRM RS와 LT RRM 측정을 위한 RS 자원은 서로 다를 수 있다.
3.2.3. 제3 긴 구간 RRM 측정 및 보고 방법
단말이 RRM 측정을 수행할 때, 기지국은 LT RRM 측정 결과 보고를 위해 단말에게 다음의 방법 중 하나로 UL 전송 자원을 할당할 수 있다.
(1) UL 그랜트로 전송 지시된 UL 데이터 전송 자원 (예: PUSCH)
(2) 사전에 전송 자원 및 시점이 (상위 계층 신호로) 약속된 UL 데이터 전송 자원 (예: PUSCH)
이에 대응하여, 단말은 아래에서 제안하는 TRP로 이벤트 트리거링 (Event triggering) 방식에 따라 LT RRM 측정을 제3 계층 시그널링 (L3 signaling, 예: RRC) (또는 제1/제2 계층 시그널링 (L1/L2 signaling) 보다 상위 계층 신호)으로 보고할 수 있다.
1) RRC (radio resource control) 연결을 맺고 있는 TRP
2) MME(mobility management entity)와의 통신을 지원하는 (예: NAS (non-access spectrum) 메시지를 전달해 줄 수 있는) TRP
이때, MME는 단말의 TRP 간 이동성을 엔티티로 정의될 수 있다.
본 발명에 있어, LT RRM 측정은 단말의 TRP 간 HO (handover) 등의 목적으로 수행될 수 있는 바, 해당 측정 결과는 TRP 보다 상위 계층의 엔티티 (예: MME)가 수집하여 관리할 수 있어야 한다.
따라서 상기 LT RRM 측정 결과는 특정 단말과 MME 간 통신을 지원하는 (또는 시그널링 라디오 베어러 (Signaling radio bearer)를 지원하는) TRP로 보고될 수 있다.
또는, 상기 단말과 MME 간 주고 받는 정보를 NAS 메시지라고 할 때, 만약 상기 NAS 메시지가 단말과 기지국 간 RRC 시그널링으로 캡슐화되어 전송된다면 단말은 자신이 RRC 연결을 맺고 있는 TRP에게 상기 LT RRM 측정을 보고할 수도 있다.
도 13은 본 발명에 따른 단말이 LTE 기지국과 NR 기지국과 RRC 연결 또는 DC (dual connectivity)를 구성한 경우의 RRM 보고 방법을 나타낸 도면이다.
도 13에 도시된 바와 같이, LTE 기지국과 NR TRP에 대해 단말이 RRC 연결 또는 SRB (signaling radio bearer)가 LTE 기지국과만 형성하는 DC (dual connectivity) 동작을 수행할 경우, 단말은 기지국의 아날로그 빔 스위칭 (또는 아날로그 빔 관리 (Analog beam management))을 위한 ST RRM 측정 결과는 제1/제2 계층 시그널링 (L1/L2 procedure)를 통해서 NR TRP로만 보고되고, HO 또는 RLF (radio link failure) 등을 관리하기 위한 LT RRM 측정 결과는 LTE 기지국으로 보고될 수 있다. 즉, NR 셀의 단말에 대한 빔 스위칭 과정은 LTE 기지국 (예: MeNB)에게 트랜스패런트 (Transparent)할 수 있다.
3.2.4. 제4 긴 구간 RRM 측정 및 보고 방법
단말이 RRM 측정을 수행할 때, 단말은 LT RRM 측정 결과 보고를 위한 UL 자원 할당 (예: PUSCH)을 요청할 수 있다.
보다 구체적으로, 단말이 LT RRM 측정을 수행하는 경우, 단말은 해당 LT RRM 측정의 보고를 온 디맨드 (On-demand, 요구시 즉시 수행) 형태로 수행할 수 있다. 즉, 단말은 현재 서빙 TRP에게 자신의 링크 품질이 좋지 않으므로, LT RRM 측정 결과를 보고하고 싶다는 요청을 보낼 수 있다. 다시 말해, 단말이 먼저 기지국한테 LT RRM 측정 보고를 위한 자원 할당을 트리거링할 수 있다. 이와 같은 동작을 통해 기지국은 단말의 HO (handover) 동작을 보다 신속하게 지원할 수 있다.
앞서 상술한 바와 같이, 본 발명에 따른 단말은 ST RRM 측정 및/또는 LT RRM 측정을 수행할 수 있고, 이에 따른 RRM 측정 값을 대응하는 TRP로 보고할 수 있다.
이를 위한 단말의 RRM 측정 방법은, 상기 단말이 아날로그 빔 별 채널 상태를 측정하는 제1 RRM 측정 방법 또는 복수의 아날로그 빔에 대한 평균적인 채널 상태를 측정하는 제2 RRM 측정 방법 중 하나 이상의 방법에 따라 빔 참조 신호 (Beam Reference Signal, BRS) 자원을 이용하여 RRM 측정 값을 산출하고, 상기 제1 RRM 측정 방법 및 상기 제2 RRM 측정 방법 중 하나 이상의 방법에 따라 산출된 RRM 측정 값의 보고가 트리거링되는 경우, 트리거링된 RRM 측정 방법에 따라 산출된 RRM 측정 값을 보고하는 것을 포함할 수 있다.
여기서, 본 발명에 있어 상기 제1 RRM 측정 방법에 따라 RRM 측정 값을 산출하는 것은, 상기 단말이 특정 시간 구간 내 각 기지국에 적용된 아날로그 빔 별 채널 상태를 측정하는 것을 포함할 수 있다. 이때, 상기 단말이 RRM 측정을 수행하는 대상은 상기 단말이 DL 제어 신호 또는 시스템 정보를 수신 받는 기지국, 네트워크가 설정한 기지국 집합 중 하나 이상으로 구성될 수 있다.
이때, 상기 단말이 네트워크로부터 상기 제1 RRM 측정 방법에 따라 측정된 RRM 측정 값의 보고를 지시하는 제어 정보를 수신하는 경우, 상기 단말은 상기 제어 정보가 지시하는 전송 시점 및 전송 자원을 이용하여 상기 제1 RRM 측정 방법에 따라 산출된 상기 RRM 측정 값을 제1 계층 시그널링 또는 제2 계층 시그널링을 통해 하나 이상의 기지국으로 전송할 수 있다.
여기서, 상기 하나 이상의 기지국 이라 함은, 상기 단말이 RRC 연결을 수립한 기지국, 상기 단말이 하향링크 제어 정보 또는 시스템 정보를 수신 받는 기지국, 상기 제2 제어 정보를 전송한 기지국, 상기 제2 제어 정보가 지시한 기지국, 중 하나 이상의 기지국을 포함할 수 있다.
또한, 본 발명에 있어 상기 제2 RRM 측정 방법에 따라 RRM 측정 값을 산출하는 것은, 상기 단말이 복수의 측정 시점마다 특정 기지국에 적용된 하나 이상의 아날로그 빔에 대한 채널 상태를 평균적으로 측정하는 것을 포함할 수 있다.
이에 대한 구체적인 제1 예로, 상기 단말은 각 측정 시점별 상기 특정 기지국에 적용된 하나 이상의 아날로그 빔에 대한 BRS 자원에서의 수신 전력 값들 중 최대 값을 결정하고, 상기 각 측정 시점 별 최대 값들에 대한 평균 값을 산출할 수 있다.
이에 대한 구체적인 제2 예로, 상기 단말은 각 측정 시점별 상기 특정 기지국에 대한 BRS의 안테나 포트 별 하나 이상의 아날로그 빔에 대한 BRS 자원에서의 수신 전력 값들 중 최대 값을 결정하고, 상기 BRS의 안테나 포트 별로 각 측정 시점에서의 최대 값들에 대한 평균 값을 산출할 수 있다.
이에 대한 구체적인 제3 예로, 상기 단말은 일정 시간 구간 (예: 100 ms) 내 상기 제1 RRM 측정 방법에 따라 산출된 RRM 측정 값의 평균 값을 상기 제2 RRM 측정 방법에 따라 RRM 측정 값으로 산출할 수 있다.
이때, 상기 단말이 네트워크로부터 상기 제2 RRM 측정 방법에 따라 측정된 RRM 측정 값의 보고를 지시하는 제어 정보를 수신는 경우, 상기 단말은 상기 제어 정보가 지시하는 전송 시점 및 전송 자원을 이용하여 상기 제2 RRM 측정 방법에 따라 산출된 상기 RRM 측정 값을 제3 계층 시그널링을 통해 하나 이상의 기지국으로 전송할 수 있다.
여기서, 상기 하나 이상의 기지국이라 함은, 상기 단말이 RRC 연결을 수립한기지국, MME와의 통신을 지원하는 기지국, 중 하나 이상의 기지국을 포함할 수 있다.
또 다른 예로, 상기 단말이 LTE 기지국과 NR 기지국에 대해 RRC 연결을 수립하거나 이중 연결 (Dual Connectivity)하는 경우, 상기 단말은 상기 제1 RRM 측정 방법에 따라 상기 BRS 자원을 이용하여 산출된 RRM 측정 값은 제1 계층 시그널링 또는 제2 계층 시그널링을 통해 상기 NR 기지국으로 전송하고, 상기 제2 RRM 측정 방법에 따라 상기 BRS 자원을 산출된 RRM 측정 값은 상기 LTE 기지국으로 전송할 수 있다.
여기서, 상기 제2 RRM 측정 방법에 따라 산출된 RRM 측정 값의 보고는 특정 이벤트 발생시 트리거링될 수도 있다.
이 때, 상기 특정 이벤트는 LTE 시스템에서의 Intra/Inter 시스템 측정 보고 이벤트와 유사하게 정의될 수 있다.
< Intra system measurement reporting events >
- Event A1: serving cell becomes better than a threshold
- Event A2: serving cell becomes worse than a threshold
- Event A3: neighbor cell becomes better than the serving cell by an offset
- Event A4: neighbor cell becomes better than a threshold
- Event A5: serving cell becomes worse than threshold 1 while neighbor cell becomes better than threshold 2
< Inter system measurement reporting events >
- Event B1: inter-system neighboring cell becomes better than a threshold
- Event B2: serving cell becomes worse than threshold 1 while inter-system neighbor cell becomes better than threshold 2
구체적인 예로, LTE 시스템에서의 EVENT A3과 유사하게 특정 NR 기지국 (또는 Cell)에 대한 제 2 RRM 측정 값이 단말의 데이터 서빙 NR 기지국에 대한 제 2 RRM 측정 값 보다 일정 오프셋 이상인 경우 상기 특정 이벤트가 트리거링될 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
4. 장치 구성
도 14는 제안하는 실시 예가 구현될 수 있는 단말 및 기지국의 구성을 도시하는 도면이다. 도 14에 도시된 단말은 앞서 설명한 단말의 RRM 측정 방법의 실시 예들을 구현하기 위해 동작한다.
단말(UE: User Equipment, 1)은 상향링크에서는 송신단으로 동작하고, 하향링크에서는 수신단으로 동작할 수 있다. 또한, 기지국(eNB: e-Node B, 100)은 상향링크에서는 수신단으로 동작하고, 하향링크에서는 송신단으로 동작할 수 있다.
즉, 단말 및 기지국은 정보, 데이터 및/또는 메시지의 전송 및 수신을 제어하기 위해 각각 송신기(Transmitter: 10, 110) 및 수신기(Receiver: 20, 120)를 포함할 수 있으며, 정보, 데이터 및/또는 메시지를 송수신하기 위한 안테나(30, 130) 등을 포함할 수 있다.
또한, 단말 및 기지국은 각각 상술한 본 발명의 실시 예들을 수행하기 위한 프로세서(Processor: 40, 140)와 프로세서의 처리 과정을 임시적으로 또는 지속적으로 저장할 수 있는 메모리(50, 150)를 각각 포함할 수 있다.
이와 같이 구성된 단말(1)은 아날로그 빔 별 채널 상태를 측정하는 제1 RRM 측정 방법 및 복수의 아날로그 빔에 대한 평균적인 채널 상태를 측정하는 제2 RRM 측정 방법 중 하나 이상의 방법에 따라 빔 참조 신호 (Beam Reference Signal, BRS) 자원을 이용하여 RRM 측정 값을 산출할 수 있다. 이어, 상기 단말(1)은 상기 제1 RRM 측정 방법 및 상기 제2 RRM 측정 방법 중 하나 이상의 방법에 따라 산출된 RRM 측정 값의 보고가 트리거링되는 경우, 트리거링된 RRM 측정 방법에 따라 산출된 RRM 측정 값을 대응하는 기지국 (예: LTE 기지국, NR 기지국 등)으로 전송할 수 있다.
단말 및 기지국에 포함된 송신기 및 수신기는 데이터 전송을 위한 패킷 변복조 기능, 고속 패킷 채널 코딩 기능, 직교주파수분할다중접속(OFDMA: Orthogonal Frequency Division Multiple Access) 패킷 스케줄링, 시분할듀플렉스(TDD: Time Division Duplex) 패킷 스케줄링 및/또는 채널 다중화 기능을 수행할 수 있다. 또한, 도 14의 단말 및 기지국은 저전력 RF(Radio Frequency)/IF(Intermediate Frequency) 유닛을 더 포함할 수 있다.
한편, 본 발명에서 단말로 개인휴대단말기(PDA: Personal Digital Assistant), 셀룰러폰, 개인통신서비스(PCS: Personal Communication Service) 폰, GSM(Global System for Mobile) 폰, WCDMA(Wideband CDMA) 폰, MBS(Mobile Broadband System) 폰, 핸드헬드 PC(Hand-Held PC), 노트북 PC, 스마트(Smart) 폰 또는 멀티모드 멀티밴드(MM-MB: Multi Mode-Multi Band) 단말기 등이 이용될 수 있다.
여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 혼합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기란 멀티 모뎀칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템(예를 들어, CDMA(Code Division Multiple Access) 2000 시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.
본 발명의 실시 예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시 예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시 예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시 예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 예를 들어, 소프트웨어 코드는 메모리 유닛(50, 150)에 저장되어 프로세서(40, 140)에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
본 발명의 실시 예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등이 있다. 본 발명의 실시 예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다.

Claims (20)

  1. 복수의 아날로그 빔 (analog beam)이 적용되는 무선 통신 시스템에서 단말이 RRM (Radio Resource Management)을 측정하는 방법에 있어서,
    아날로그 빔 별 채널 상태를 측정하는 제1 RRM 측정 방법 및 복수의 아날로그 빔에 대한 평균적인 채널 상태를 측정하는 제2 RRM 측정 방법 중 하나 이상의 방법에 따라 빔 참조 신호 (Beam Reference Signal, BRS) 자원을 이용하여 RRM 측정 값을 산출; 및
    상기 제1 RRM 측정 방법 및 상기 제2 RRM 측정 방법 중 하나 이상의 방법에 따라 산출된 RRM 측정 값의 보고가 트리거링되는 경우, 트리거링된 RRM 측정 방법에 따라 산출된 RRM 측정 값을 보고;하는 것을 포함하는, RRM 측정 방법.
  2. 제 1항에 있어서,
    상기 제1 RRM 측정 방법에 따라 RRM 측정 값을 산출하는 것은, 특정 시간 구간 내 각 기지국에 적용된 아날로그 빔 별 채널 상태를 측정하는, RRM 측정 방법.
  3. 제 2항에 있어서,
    네트워크로부터 상기 제1 RRM 측정 방법에 따라 산출된 RRM 측정 값의 보고를 지시하는 제어 정보를 수신하는 경우, 상기 단말은 상기 제어 정보가 지시하는 전송 시점 및 전송 자원을 이용하여 상기 제1 RRM 측정 방법에 따라 산출된 상기 RRM 측정 값을 제1 계층 시그널링 또는 제2 계층 시그널링을 통해 하나 이상의 기지국으로 보고하는, RRM 측정 방법.
  4. 제 3항에 있어서,
    상기 하나 이상의 기지국은,
    상기 단말이 RRC (Radio Resource Control) 연결을 수립한(establish) 기지국,
    상기 단말이 하향링크 제어 정보 또는 시스템 정보를 수신 받는 기지국,
    상기 제1 RRM 측정 방법에 따라 산출된 RRM 측정 값의 보고를 지시하는 제어 정보를 전송한 기지국,
    상기 제어 정보가 지시한 기지국, 중 하나 이상의 기지국을 포함하는, RRM 측정 방법.
  5. 제 1항에 있어서,
    상기 제2 RRM 측정 방법에 따라 RRM 측정 값을 산출하는 것은, 복수의 측정 시점마다 특정 기지국에 적용된 하나 이상의 아날로그 빔에 대한 채널 상태를 평균적으로 측정하는, RRM 측정 방법.
  6. 제 5항에 있어서,
    상기 복수의 측정 시점마다 상기 특정 기지국에 적용된 하나 이상의 아날로그 빔에 대한 채널 상태를 평균적으로 측정하는 것은,
    각 측정 시점별 상기 특정 기지국에 적용된 하나 이상의 아날로그 빔에 대한 BRS 자원에서의 수신 전력 값들 중 최대 값을 결정; 및
    상기 각 측정 시점 별 최대 값들에 대한 평균 값을 산출;하는 것을 포함하는, RRM 측정 방법.
  7. 제 5항에 있어서,
    상기 복수의 측정 시점마다 상기 특정 기지국에 적용된 하나 이상의 아날로그 빔에 대한 채널 상태를 평균적으로 측정하는 것은,
    각 측정 시점별 상기 특정 기지국에 대한 BRS의 안테나 포트 별 하나 이상의 아날로그 빔에 대한 BRS 자원에서의 수신 전력 값들 중 최대 값을 결정; 및
    상기 BRS의 안테나 포트 별로 각 측정 시점에서의 최대 값들에 대한 평균 값을 산출;하는 것을 포함하는, RRM 측정 방법.
  8. 제 5항에 있어서,
    상기 복수의 측정 시점마다 상기 특정 기지국에 적용된 하나 이상의 아날로그 빔에 대한 채널 상태를 평균적으로 측정하는 것은,
    일정 시간 구간 내 상기 제1 RRM 측정 방법에 따라 산출된 RRM 측정 값을 평균 값을 상기 제2 RRM 측정 방법에 따라 RRM 측정 값으로 산출;하는 것을 포함하는, RRM 측정 방법.
  9. 제 5항에 있어서,
    네트워크로부터 상기 제2 RRM 측정 방법에 따라 산출된 RRM 측정 값의 보고를 지시하는 제어 정보를 수신하는 경우, 상기 단말은 상기 제어 정보가 지시하는 전송 시점 및 전송 자원을 이용하여 상기 제2 RRM 측정 방법에 따라 산출된 상기 RRM 측정 값을 제3 계층 시그널링을 통해 하나 이상의 기지국으로 전송; 하는 것을 더 포함하는, RRM 측정 방법.
  10. 제 9항에 있어서,
    상기 하나 이상의 기지국은,
    상기 단말이 RRC (Radio Resource Control) 연결을 수립한(establish) 기지국,
    MME (Mobility Management Entity)와의 통신을 지원하는 기지국, 중 하나 이상의 기지국을 포함하는, RRM 측정 방법.
  11. 제 1항에 있어서,
    상기 단말이 LTE (Long Term Evolution) 기지국과 NR (New RAT) 기지국에 대해 RRC (Radio Resource Control) 연결을 수립(establish)하거나 이중 연결 (Dual Connectivity, DC)하는 경우,
    상기 제1 RRM 측정 방법에 따라 상기 BRS 자원을 이용하여 산출된 RRM 측정 값은 제1 계층 시그널링 또는 제2 계층 시그널링을 통해 상기 NR 기지국으로 전송되고,
    상기 제2 RRM 측정 방법에 따라 상기 BRS 자원을 산출된 RRM 측정 값은 상기 LTE 기지국으로 전송되는, RRM 측정 방법.
  12. 제 1항에 있어서,
    상기 제2 RRM 측정 방법에 따라 산출된 RRM 측정 값의 보고는 특정 이벤트 발생시 트리거링되는, RRM 측정 방법.
  13. 복수의 아날로그 빔 (analog beam)이 적용되는 무선 통신 시스템에서 RRM (Radio Resource Management)을 측정하는 단말에 있어서,
    송신부;
    수신부; 및
    상기 송신부 및 수신부와 연결되어 동작하는 프로세서를 포함하되,
    상기 프로세서는,
    아날로그 빔 별 채널 상태를 측정하는 제1 RRM 측정 방법 및 복수의 아날로그 빔에 대한 평균적인 채널 상태를 측정하는 제2 RRM 측정 방법 중 중 하나 이상의 방법에 따라 빔 참조 신호 (Beam Reference Signal, BRS) 자원을 이용하여 RRM 측정 값을 산출; 및
    상기 제1 RRM 측정 방법 및 상기 제2 RRM 측정 방법 중 하나 이상의 방법에 따라 산출된 RRM 측정 값의 보고가 트리거링되는 경우, 트리거링된 RRM 측정 방법에 따라 산출된 RRM 측정 값을 보고;하도록 구성되는, 단말.
  14. 제 13항에 있어서,
    상기 제1 RRM 측정 방법에 따라 RRM 값을 산출하는 것은, 특정 시간 구간 내 각 기지국에 적용된 아날로그 빔 별 채널 상태를 측정하는, 단말.
  15. 제 14항에 있어서,
    상기 프로세서가 네트워크로부터 상기 제1 RRM 측정 방법에 따라 산출된 RRM 측정 값의 보고를 지시하는 제어 정보를 수신하는 경우, 상기 프로세서는
    상기 제어 정보가 지시하는 전송 시점 및 전송 자원을 이용하여 상기 제1 RRM 측정 방법에 따라 산출된 상기 RRM 측정 값을 제1 계층 시그널링 또는 제2 계층 시그널링을 통해 하나 이상의 기지국으로 보고 하도록 구성되는, 단말.
  16. 제 13항에 있어서,
    상기 제2 RRM 측정 방법에 따라 RRM 측정 값을 산출하는 것은,
    복수의 측정 시점마다 특정 기지국에 적용된 하나 이상의 아날로그 빔에 대한 채널 상태를 평균적으로 측정하는, 단말.
  17. 제 16항에 있어서,
    상기 프로세서가 상기 복수의 측정 시점마다 상기 특정 기지국에 적용된 하나 이상의 아날로그 빔에 대한 채널 상태를 평균적으로 측정하는 것은,
    각 측정 시점별 상기 특정 기지국에 적용된 하나 이상의 아날로그 빔에 대한 BRS 자원에서의 수신 전력 값들 중 최대 값을 결정; 및
    상기 각 측정 시점 별 최대 값들에 대한 평균 값을 산출;하는 것을 포함하는, 단말.
  18. 제 16항에 있어서,
    상기 프로세서가 상기 복수의 측정 시점마다 상기 특정 기지국에 적용된 하나 이상의 아날로그 빔에 대한 채널 상태를 평균적으로 측정하는 것은,
    각 측정 시점별 상기 특정 기지국에 대한 BRS의 안테나 포트 별 하나 이상의 아날로그 빔에 대한 BRS 자원에서의 수신 전력 값들 중 최대 값을 결정; 및
    상기 BRS의 안테나 포트 별로 각 측정 시점에서의 최대 값들에 대한 평균 값을 산출;하는 것을 포함하는, 단말.
  19. 제 16항에 있어서,
    상기 프로세서가 상기 복수의 측정 시점마다 상기 특정 기지국에 적용된 하나 이상의 아날로그 빔에 대한 채널 상태를 평균적으로 측정하는 것은,
    일정 시간 구간 내 상기 제1 RRM 측정 방법에 따라 산출된 RRM 측정 값을 평균 값을 상기 제2 RRM 측정 방법에 따라 RRM 측정 값으로 산출;하는 것을 포함하는, 단말.
  20. 제 13항에 있어서,
    상기 단말이 LTE (Long Term Evolution) 기지국과 NR (New RAT) 기지국에 대해 RRC (Radio Resource Control) 연결을 수립(establish)하거나 이중 연결 (Dual Connectivity, DC)하는 경우,
    상기 프로세서는,
    상기 제1 RRM 측정 방법에 따라 상기 BRS 자원을 이용하여 산출된 RRM 측정 값은 제1 계층 시그널링 또는 제2 계층 시그널링을 통해 상기 NR 기지국으로 전송하고,
    상기 제2 RRM 측정 방법에 따라 상기 BRS 자원을 산출된 RRM 측정 값은 상기 LTE 기지국으로 전송하도록 구성되는, 단말.
PCT/KR2017/007898 2016-07-22 2017-07-21 무선 통신 시스템에서 단말이 rrm을 측정하는 방법 및 이를 지원하는 장치 WO2018016919A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/319,733 US10581506B2 (en) 2016-07-22 2017-07-21 Method whereby terminal measures RRM in wireless communication system, and devices for supporting same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662365430P 2016-07-22 2016-07-22
US62/365,430 2016-07-22

Publications (1)

Publication Number Publication Date
WO2018016919A1 true WO2018016919A1 (ko) 2018-01-25

Family

ID=60992363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007898 WO2018016919A1 (ko) 2016-07-22 2017-07-21 무선 통신 시스템에서 단말이 rrm을 측정하는 방법 및 이를 지원하는 장치

Country Status (2)

Country Link
US (1) US10581506B2 (ko)
WO (1) WO2018016919A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10616787B2 (en) * 2016-08-11 2020-04-07 Lg Electronics Inc. Method for reporting reference signal measurement information by terminal in wireless communication system, and apparatus supporting same
US11395169B2 (en) * 2016-10-13 2022-07-19 Huawei Technologies Co., Ltd. Measurement reporting method and related device
US10582397B2 (en) * 2016-11-09 2020-03-03 Qualcomm Incorporated Beam refinement reference signal transmissions during control symbol
US10979949B2 (en) * 2017-03-22 2021-04-13 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication method, and integrated circuit
US11737140B2 (en) * 2020-02-13 2023-08-22 Qualcomm Incorporated Long term sensing for exception to medium access restriction
US11576188B2 (en) * 2020-12-17 2023-02-07 T-Mobile Usa, Inc. External interference radar

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130028101A (ko) * 2010-04-13 2013-03-18 퀄컴 인코포레이티드 이종 네트워크에서 사용자 장비의 라디오 리소스 관리 측정들을 위한 방법 및 장치
KR20130095785A (ko) * 2010-11-10 2013-08-28 알까뗄 루슨트 측정 시그널링을 시그널링하기 위한 방법 및 장치
US20140198676A1 (en) * 2013-01-17 2014-07-17 Seunghee Han Fast small cell discovery
US20150215856A1 (en) * 2014-01-24 2015-07-30 Electronics And Telecommunications Research Institute Method and apparatus for measuring radio resource management, and method and apparatus for signalling signal to measure radio resource management
WO2016089146A1 (ko) * 2014-12-05 2016-06-09 엘지전자(주) 무선 통신 시스템에서 셀 선택 방법 및 이를 위한 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI119346B (fi) * 2006-09-28 2008-10-15 Teliasonera Ab Resurssien allokointi langattomassa viestintäjärjestelmässä
US20160302230A1 (en) * 2015-04-10 2016-10-13 Samsung Electronics Co., Ltd Methods and apparatus for rrm measurement on unlicensed spectrum
CN105916208B (zh) * 2016-04-14 2019-10-22 华为技术有限公司 一种资源分配方法及通信终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130028101A (ko) * 2010-04-13 2013-03-18 퀄컴 인코포레이티드 이종 네트워크에서 사용자 장비의 라디오 리소스 관리 측정들을 위한 방법 및 장치
KR20130095785A (ko) * 2010-11-10 2013-08-28 알까뗄 루슨트 측정 시그널링을 시그널링하기 위한 방법 및 장치
US20140198676A1 (en) * 2013-01-17 2014-07-17 Seunghee Han Fast small cell discovery
US20150215856A1 (en) * 2014-01-24 2015-07-30 Electronics And Telecommunications Research Institute Method and apparatus for measuring radio resource management, and method and apparatus for signalling signal to measure radio resource management
WO2016089146A1 (ko) * 2014-12-05 2016-06-09 엘지전자(주) 무선 통신 시스템에서 셀 선택 방법 및 이를 위한 장치

Also Published As

Publication number Publication date
US10581506B2 (en) 2020-03-03
US20190253115A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
WO2018021865A1 (ko) 무선 통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 이를 지원하는 장치
WO2018231030A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널을 송수신하는 방법 및 이를 지원하는 장치
WO2018030841A1 (ko) 무선 통신 시스템에서 단말이 참조 신호 측정 정보를 보고하는 방법 및 이를 지원하는 장치
WO2018230984A1 (ko) 동기 신호 블록을 측정하는 방법 및 이를 위한 장치
WO2018147700A1 (ko) 무선 통신 시스템에서 단말과 복수의 trp (transmission and reception point)를 포함하는 기지국의 신호 송수신 방법 및 이를 위한 장치
WO2018230879A1 (ko) 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
WO2018084660A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2018062841A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치
WO2018143771A1 (ko) 무선 통신 시스템에서 단말과 기지국간 신호 송수신 방법 및 이를 지원하는 장치
WO2018143776A1 (ko) 무선 통신 시스템에서 단말의 무선 링크 모니터링 수행 방법 및 이를 지원하는 장치
WO2018062937A1 (ko) 무선 통신 시스템에서의 데이터 송수신 방법 및 이를 위한 장치
WO2018143760A1 (ko) 측정 수행 방법 및 사용자기기
WO2018225989A1 (ko) 무선 통신 시스템에서, 시스템 정보를 수신하는 방법 및 이를 위한 장치
WO2018030744A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 상향링크 채널 송수신 방법 및 이를 지원하는 장치
WO2019031917A1 (ko) 무선 통신 시스템에서, 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2018164553A2 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 단말의 임의 접속 절차 수행 방법 및 이를 수행하는 단말
WO2019203526A1 (ko) 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2018016921A1 (ko) 무선 통신 시스템에서 기지국과 단말 간 하향링크 제어 정보를 송수신하는 방법 및 이를 지원하는 장치
WO2018147527A1 (ko) 차세대 이동통신 시스템에서 측정 수행 방법 및 단말
WO2018199584A1 (ko) 무선 통신 시스템에서 단말의 위상 트래킹 참조 신호 수신 방법 및 이를 지원하는 장치
WO2017222207A1 (ko) 전송 파워를 결정하는 방법 및 무선 기기
WO2017209505A1 (ko) 무선 통신 시스템에서 rrm 보고 방법 및 이를 지원하는 장치
WO2018016919A1 (ko) 무선 통신 시스템에서 단말이 rrm을 측정하는 방법 및 이를 지원하는 장치
WO2019066624A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2016052911A1 (ko) 탐색 신호에 기반한 소규모 셀 측정 방법 및 사용자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17831391

Country of ref document: EP

Kind code of ref document: A1