WO2018016889A1 - Vision inspection module and element handler having same - Google Patents

Vision inspection module and element handler having same Download PDF

Info

Publication number
WO2018016889A1
WO2018016889A1 PCT/KR2017/007823 KR2017007823W WO2018016889A1 WO 2018016889 A1 WO2018016889 A1 WO 2018016889A1 KR 2017007823 W KR2017007823 W KR 2017007823W WO 2018016889 A1 WO2018016889 A1 WO 2018016889A1
Authority
WO
WIPO (PCT)
Prior art keywords
vision inspection
pair
unit
semiconductor device
rotation
Prior art date
Application number
PCT/KR2017/007823
Other languages
French (fr)
Korean (ko)
Inventor
유홍준
이명국
Original Assignee
(주)제이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제이티 filed Critical (주)제이티
Publication of WO2018016889A1 publication Critical patent/WO2018016889A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8803Visual inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/103Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements

Definitions

  • the present invention relates to an element handler, and more particularly, to a vision inspection module for performing a vision inspection on a semiconductor device and a device handler having the same.
  • the semiconductor device device is shipped to the customer tray after inspection such as burn-in test.
  • the semiconductor device that is shipped is subjected to a marking process in which a label such as a serial number and a manufacturer's logo is displayed on a surface of the semiconductor device.
  • the semiconductor device device finally inspects whether the lead device or ball grid is damaged, cracks, scratches, etc., the appearance of the semiconductor device device and whether the marking formed on the surface is good. It will go through the process.
  • the inspection time and the arrangement of each module affect the time and the size of the device for the entire process execution.
  • the size of the device depends on the loading of a tray loaded with a plurality of elements, one or more modules for vision inspection of each element, and the configuration and arrangement of the unloading module according to the inspection result after the inspection.
  • the size of the device limits the number of device handlers that can be installed in the device inspection line, or affects the installation cost for device production according to the installation of a predetermined number of device handlers.
  • An object of the present invention is to provide a vision inspection module and a device handler having the vision inspection module capable of performing vision inspection by acquiring images of the surface of the semiconductor device and a plurality of side surfaces adjacent to the surface by recognizing the above points. To provide.
  • the present invention was created in order to achieve the object of the present invention as described above, the present invention is a pair of two pairs of large sides facing each other in the semiconductor device 10 of the planar rectangular shape for vision inspection
  • a first vision inspection unit 40 for acquiring side images of the sides of the opposite sides;
  • a second vision inspection unit 50 obtaining side images of sides of the other pair of opposite sides of the pair of large sides facing each other is provided.
  • a vision inspection module comprising a.
  • the first vision inspection unit 40 includes: an image acquisition unit 600 for acquiring side images of the pair of opposite sides; It may include an optical system 300 for forming the first optical path (L1) for each of the side images of the pair of opposing sides to reach the image acquisition unit 600.
  • the second vision inspection unit 50 includes an image acquisition unit 600 for acquiring side images of the pair of opposite sides; It may include an optical system 300 for forming the first optical path (L1) for each of the side images of the pair of opposing sides to reach the image acquisition unit 600.
  • the image acquisition unit 600 may simultaneously acquire a first plane image of the first plane of the semiconductor device 10.
  • the optical system 300 may form a second optical path L2 to allow the first plane image of the first plane of the semiconductor device 10 to reach the image acquisition unit 100.
  • the optical system 300 may include a pair of auxiliary reflecting members 320 for reflecting each of the side images of the pair of opposing sides toward the image acquisition unit 600.
  • the pair of auxiliary reflecting members 320 may be formed on a center line of the pair of opposing sides to enable vision inspection according to the size of the width of the pair of opposing sides according to the size of the semiconductor device 10. It can be installed to enable linear symmetrical movement.
  • the optical system 300 may further include a width adjusting unit 330 for adjusting the width formed by the pair of auxiliary reflecting members 320.
  • the second vision inspection unit 50 includes an image acquisition unit 600 for acquiring side images of the pair of opposite sides; It may include an optical system 300 for forming the first optical path (L1) for each of the side images of the pair of opposing sides to reach the image acquisition unit 600.
  • the optical system 300 may further include a focal length compensator 340 for correcting a focal length difference between the first optical path L1 and the second optical path L2.
  • the focal length correction unit 340 may include a medium unit 342 installed on at least one of the first optical path L1 and the second optical path L2 and having a transparent material capable of light transmission. have.
  • the optical system 300 may include a pair of auxiliary reflecting members 320 for reflecting each of the side images of the pair of opposing sides toward the image acquisition unit 600.
  • the focal length correction unit 340 may be integrally formed with the pair of auxiliary reflection members 320.
  • the wafer ring 20 is loaded by receiving the wafer ring 20 from the wafer ring loading unit 100 is loaded with a wafer ring 20 is loaded with a plurality of elements (10) ) And a wafer ring movement table 200 for moving to the withdrawal position;
  • An element unloading unit 400 which unloads the element 10 by seating the elements 10 extracted from the wafer ring 20 on the unloading member 30;
  • the unloading member 30 is picked up at the loading position P2 of the device unloading unit 400 by picking up the device 10 at the withdrawal position P1 from the wafer ring 20 on the wafer ring movement table 200.
  • At least one transfer tool 500 is loaded on the), the vision inspection module according to any one of claims 1 to 3, which is installed on the transfer path by the at least one transfer tool 500 element ( Disclosed is a device handler comprising a vision inspection module for performing vision inspection for 10).
  • the vision inspection module may be installed between the withdrawal position P1 and the unloading position P2 in the rotational movement path of the picker 730 around the rotation shaft 711.
  • the element handler picks up the semiconductor element 10 from the wafer ring 20 at the withdrawal position P1 and transfers the semiconductor element 10 to the first transfer tool 700 at the transfer position P3.
  • the semiconductor device 10 may further include a second transfer tool 800 for flipping.
  • the second transfer tool 800 the rotary drive unit 810 having a horizontal axis of rotation 811; A plurality of rotation arms 820 coupled to the rotation shaft 811 and disposed along the rotation direction of the rotation shaft 811; Pickers coupled to each of the plurality of rotation arms 820 to be sequentially positioned at the lead position P1 and the transfer position P3 by rotation of the rotation shaft 811 (pickers for picking up the semiconductor element 10) 830).
  • the vision inspection module and the device handler having the same according to the present invention have the advantage of being able to perform various and rapid vision inspections by performing the vision inspection by acquiring an image of the surface of the semiconductor device and a plurality of side surfaces adjacent to the surface of the semiconductor device. have.
  • a pair of auxiliary reflecting members for performing vision inspection corresponding to a pair of opposing sides of the semiconductor device is installed to allow width adjustment between the pair of auxiliary reflecting members according to the specifications of the semiconductor device. Even if the specification of the device is changed, vision inspection can be performed without changing the device, thereby increasing the utilization of the device.
  • the element handler when the element is picked up from the loading member loaded with a plurality of elements in the withdrawal position and unloading the element from the unloading position to the unloading member, a plurality of elements around the rotation axis of the rotary drive device Rotate the pickers to sequentially position them in the withdrawal and unloading positions, and install a vision inspection module between the withdrawal and unloading positions, simplifying and minimizing the picker's movement structure for pick-up, vision inspection and transfer of devices.
  • a vision inspection module between the withdrawal and unloading positions
  • FIG. 1 is a plan view showing an example of an element handler according to the present invention.
  • FIG. 2A and 2B are a perspective view and a cross-sectional view showing an example of a loading member used in the element handler of FIG.
  • FIG. 3 is a perspective view illustrating an example of an unloading member used in the element handler of FIG. 1.
  • FIG. 4 is a side view of the element handler of FIG. 1.
  • 5A is a conceptual diagram illustrating a distance adjusting process of an auxiliary reflection member according to a horizontal length of a semiconductor device of a vision inspection module installed in the device handler of FIG. 1.
  • 5B is a conceptual diagram illustrating a distance adjusting process of the auxiliary reflection member according to the length of the semiconductor device of the vision inspection module installed in the device handler of FIG. 1.
  • FIG. 6 is a plan view illustrating an embodiment of a width adjusting unit of a vision inspection module installed in the device handler of FIG. 1.
  • FIG. 7 is a plan view illustrating another embodiment of the width adjusting unit of the vision inspection module installed in the device handler of FIG. 1.
  • FIG. 8 is a side view illustrating an example of an optical system configuration of a vision inspection module installed in the device handler of FIG. 1.
  • the wafer ring 20 from the wafer ring loading unit 100 is loaded with a wafer ring 20 loaded with a plurality of elements 10
  • a wafer ring movement table 200 for receiving the wafers and moving the wafer rings 20 loaded with each element to a withdrawal position;
  • An element unloading unit 400 which unloads the element 10 by seating the elements 10 extracted from the wafer ring 20 on the unloading member 30; Picking up the element 10 at the withdrawal position P1 from the wafer ring 20 on the wafer ring movement table 200 and loading it on the unloading member 30 at the loading position P2 of the element unloading unit 400.
  • One or more transfer tools 500 It includes a vision inspection module is installed on the transfer path by at least one transfer tool 500 to perform a vision inspection for the device (10).
  • the semiconductor device 10 may be any object that is a semiconductor device that has completed a semiconductor process such as a memory, an SD RAM, a flash RAM, a CPU, and a GPU.
  • the wafer ring loading unit 100 is configured to load a plurality of wafer rings 20 loaded with a plurality of semiconductor elements 10, and various configurations are possible.
  • the wafer ring loading unit 100 for transferring the wafer ring 20 from the wafer ring loading unit 100 to the wafer ring movement table 200 withdraws the wafer ring 20 from the wafer ring cassette and withdraws the wafer ring 20 from the wafer ring cassette. Any configuration can be used as long as the wafer ring 20 can be transferred to the wafer ring movement table 200.
  • the wafer ring cassette may have any configuration as long as the wafer ring 20 can be stacked up and down as a configuration for stacking the plurality of wafer rings 20.
  • the wafer ring loading unit 100 may be configured as a clamping device and a linear driving device, or may be configured as a pusher and a linear driving device for linearly moving the pusher.
  • the semiconductor device 10 loaded on the wafer ring 20 may be a device that is classified by a separate device handler through a semiconductor inspection and sawing process in a wafer state, and vision inspection in a wafer state.
  • the semiconductor device that is, the device 10
  • a so-called wafer level device that does not require a packaging process may be the object.
  • the wafer ring 20 is a configuration in which the device 10 is completed after the semiconductor process and sawing process, the tape 11a and the tape to which the device 10 is attached It may be configured to include a frame member (11b) for fixing (11a).
  • the tape 11a is a member to which the semiconductor elements 10 can be attached, any member may be used, and a so-called attachment tape may be used.
  • the frame member 11b is configured to fix the tape 11a to which the semiconductor elements 10 are attached, as shown in FIGS. 2A and 2B, and a circular ring, a square ring as shown in FIG. 3, and the like. Configuration is possible.
  • the wafer ring movement table 200 is configured to move the wafer ring 20 in a horizontal direction by receiving the wafer ring 20 from the wafer ring loading unit 100.
  • the wafer ring movement table 200 receives a wafer ring 20 from the wafer ring loading unit 100 by a wafer ring loading unit (not shown) so that the semiconductor device 10 can be picked up.
  • a wafer ring loading unit not shown
  • various configurations such as an XY table and an XY- ⁇ table are possible.
  • the wafer ring movement table 200 may be moved in the vertical direction, that is, the Z-axis direction.
  • a needle pin is preferably installed below the wafer ring movement table 200 at the withdrawal position P1 for smooth device pickup.
  • the device unloading unit 400 is installed spaced apart from the wafer ring movement table 200 in the horizontal direction and is provided with an unloading member 30 for receiving and loading the semiconductor device 10 from the wafer ring 20.
  • an unloading member 30 for receiving and loading the semiconductor device 10 from the wafer ring 20.
  • the device unloading unit 400 is configured according to the configuration of the unloading member 30 such as a tape and reel (carrier tape and cover tape).
  • the unloading member 30 may be any configuration as long as the device is loaded, and includes a tape and reel (carrier tape and cover tape) as shown in FIG. 1, and an adhesive tape as shown in FIG. 3.
  • Various members may be used that are temporarily loaded for shipping or performing other processes, such as a plate and a tray having a plurality of insertion grooves in which the semiconductor device 10 is contained.
  • the unloading member 30 includes a lead frame for manufacturing a substrate, a strip, and a chip, such as a PCB, on which the semiconductor device 10 is mounted. Etc. can be used for chip mounting and packaging processes.
  • the device unloading unit 400 may include a pocket in which the semiconductor device 10 is loaded, formed along the length direction and sealed by a tape (not shown) after device loading.
  • a release roll unit (not shown) is rotatably installed at one end and the carrier tape on which the semiconductor element 10 is to be loaded, and is rotatably installed at the other end, and after device loading.
  • a winding roll portion (not shown) to which the carrier tape sealed by the tape is wound, and a carrier tape guide portion (not shown) for guiding the movement of the carrier tape so that the carrier tape unwound from the release roll portion (not shown) passes the loading position. It can be configured to include.
  • the device unloading unit 400 in the case of a plate (see FIG. 3) to which the unloading member 30 is attached, the device unloading unit 400 may be positioned at one end and may include a plurality of semiconductor devices ( 10) a plate loading portion on which the plate to which the plates are attached are mounted, an XY table for supporting and moving the plate at the semiconductor device 10 loading position P2, and a tray moving portion for transferring the plate from the tray loading portion to the XY table (not shown) It may be configured to include).
  • the plate as shown in Figure 3, has a configuration similar to the wafer ring 20, the tape is attached to the device 10, and a frame member having a mark such as LOT number, classification grade while fixing the tape Or a tray formed of a plurality of insertion grooves in which the semiconductor element 10 is contained.
  • a tray standardized according to the type of the semiconductor element 10, that is, a JEDEC tray, may be used.
  • the one or more transfer tools 500 pick up the element 10 at the withdrawal position P1 from the wafer ring 20 on the wafer ring movement table 200 to place the loading position P2 of the element unloading unit 400.
  • the configuration to load on the unloading member 30 in a variety of configurations are possible.
  • the one or more transfer tools 500 may be provided with the device 10 at the withdrawal position P1 from the wafer ring 20 in which the plurality of semiconductor devices 10 are loaded, as shown in FIGS. 1 and 4.
  • Picking up may include a first transfer tool 700 for transferring the semiconductor device 10 in order to unload the semiconductor device 10 to the unloading member 30 in the unloading position (P2).
  • the first transfer tool 700, the rotary drive unit 710 having a vertical axis of rotation 711; A plurality of rotation arms 720 coupled to the rotation shaft 711 and disposed along the rotation direction of the rotation shaft 711;
  • the picker 730 coupled to each of the plurality of rotation arms 720 so as to be sequentially positioned at the withdrawal position P1 and the unloading position P2 by the rotation of the rotation shaft 711, and picks up the semiconductor device 10. It may include.
  • the rotation driving unit 710 is provided with a rotating shaft 711 in the vertical direction, and any configuration can be used as long as the rotation driving device is a configuration for rotating the rotating arm 720 coupled to the rotating shaft 711.
  • the rotary drive unit 710, the picker 730 coupled to the rotary arm 720 picks up the semiconductor element 10 by the vacuum pressure bar while being capable of transmitting the vacuum pressure to the picker 730 It is desirable to have a pneumatic rotary joint for delivering pneumatics.
  • the rotating arm 720 may be any structure as long as it is coupled to the rotating shaft 711 and rotates and supports the picker 730.
  • the picker 730 is coupled to each of the plurality of rotation arms 520 so as to be sequentially positioned at the withdrawal position P1 and the unloading position P2 by the rotation of the rotation shaft 711. Any configuration can be used as long as it can pick up the semiconductor element 10 as a configuration for picking up.
  • the picker 730 may be configured to pick up the semiconductor device 10 from the wafer ring 20 by vacuum pressure.
  • the picker 730 may be moved up and down by a vertical drive device installed in the rotary arm 720.
  • the picker 730 is preferably installed in 4n (n is a natural number of 1 or more) so as to have an equiangular center around the axis of rotation (711) for regular pickup of the device pickup and place.
  • the device handler by inverting (flip) the top and bottom of the picked-up semiconductor device 10 of the semiconductor device 10 to perform a vision inspection of one surface (top or bottom) of the semiconductor device 10 A second transfer tool 800 for flipping may be included.
  • the second transfer tool 800 is configured to transfer the semiconductor device 10 to the first transfer tool 700 after picking up and flipping the device 10 from the wafer ring 20.
  • the second transfer tool 800 picks up the semiconductor element 1 from the wafer ring 20 at the withdrawal position P1 and transfers the semiconductor element 1 to the first transfer tool at the transfer position P3.
  • the semiconductor device 1 may be flipped by transferring the data to 700.
  • the second transfer tool 800 may be installed between the withdrawal position P1 and the delivery position P3.
  • the delivery position P3 is preferably set at a position spaced apart from the drawing position P1 in the vertical direction (Z-axis direction).
  • the second transfer tool 800, the rotary drive unit 810 having a horizontal axis of rotation (811); A plurality of rotation arms 820 coupled to the rotation shaft 811 and disposed along the rotation direction of the rotation shaft 811; A picker 830 coupled to each of the plurality of rotation arms 820 so as to be sequentially positioned at the lead position P1 and the transfer position P3 by rotation of the rotary shaft 811, and picking up the semiconductor device 10. can do.
  • the second transfer tool 800 has a horizontal axis of rotation 811 and the upper surface of the semiconductor device 10 picked up at the withdrawal position P1 is downward (-Z direction). Can be reversed to face.
  • the second transfer tool 800 is configured in the same manner as the first transfer tool 700 except that the rotation axis 811 is in the horizontal direction, and is a rotation axis 811 between the withdrawal position P1 and the transfer position P3. It can be rotated around.
  • the element handler the picked-up device 10 to calculate the horizontal error of the semiconductor device 10 picked up at the withdrawal position (P1) by the transfer tool, that is, the picker 700 of the first transfer tool 700
  • the first lower image is obtained by horizontally receiving the semiconductor device 10 from the picker 730 passing through the first lower image acquisition unit 910 and the first lower image acquisition unit 910 for acquiring an image of the bottom surface of the first lower image.
  • the element aligning unit 920 for correcting the horizontal error calculated from the image acquired by the acquiring unit 910, the vision inspection module described later, and the like, may have the withdrawal position P1 and the unloading position ( It can be installed sequentially between the P2).
  • the first lower image acquisition unit 910 is a semiconductor device 10 picked up at the extraction position P1 in order to calculate a horizontal error of the semiconductor device 10 picked up at the extraction position P1 by the picker 730.
  • a configuration for acquiring an image of the bottom of the various configurations such as a scanner and a camera are possible.
  • the device alignment unit 920 is obtained by the first lower image acquisition unit 910 by horizontally receiving the semiconductor device 10 from the picker 730 that has passed through the first lower image acquisition unit 910.
  • Various configurations are possible as the configuration for correcting the horizontal error calculated from the image.
  • the device aligning unit 920 may be a device fixing part for fixing the semiconductor device 10 by receiving the semiconductor device 10 from the picker 730, as disclosed in Korean Patent Application Publication No. 10-2014-0027970. 922 and a horizontal shifter 924 which horizontally shifts the device fixing part 922 fixing the semiconductor device 10 to correct the horizontal error calculated from the image acquired by the first lower image acquirer 910. It may include.
  • the device fixing unit 922 may be configured to receive and fix the semiconductor device 10 from the picker 730 to fix and fix the semiconductor device 10 by vacuum pressure.
  • the horizontal shifting unit 924 is configured to horizontally shift the device fixing part 922 fixing the semiconductor device 10 to correct the horizontal error calculated from the image acquired by the first lower image acquisition unit 910.
  • the device fixing part 922 may be configured to move in the XY direction and in the XY- ⁇ direction.
  • the device handler includes a picker 730 having a second lower image acquisition unit (not shown) which acquires an image of the bottom surface of the semiconductor device 10 picked up by the device alignment unit 920 around the rotation axis 711. It may be installed between the element alignment unit 920 and the unloading position (P2) in the rotational movement path of the).
  • the picker 730 picking up the semiconductor device 10 from the device alignment unit 920 may have a bottom surface state and a horizontal error of the semiconductor device 10 from an image acquired by a second lower image acquisition unit (not shown). It is preferable that the picker 730 places the semiconductor device 10 into the unloading member 30 at the unloading position P2 only when it is determined to be normal by calculating.
  • the second lower image acquisition unit (not shown) is disposed between the element alignment unit 920 and the unloading position P2 in the movement path of the picker 730, for example, in the rotation movement path.
  • a configuration for acquiring an image of a bottom surface a configuration similar to that of the first lower image acquisition unit 910 is possible, and various configurations such as a scanner and a camera are possible.
  • the element handler is installed between the unloading position (P2) and the withdrawal position (P1) in the movement path of the picker 730 around the rotation axis 711, for example, the rotation movement path, and acquires a second lower image. If the bottom state and the horizontal error of the device 10 is determined to be abnormal by calculating the bottom state and the horizontal error from the image obtained by the (not shown) element recovery unit 930 for recovering the semiconductor device 10 from the picker 730 It can be installed additionally.
  • the element recovery unit 930 is not necessarily provided, but is installed on the movement path of the picker 730, for example, on the rotation movement path, in particular between the unloading position P2 and the extraction position P2. Any configuration may be used as long as the device 10 can receive and recover the elements 10 from the picker 730.
  • the device handler may further include a vision inspection module that performs vision inspection on the semiconductor device 10.
  • the vision inspection module may be configured in various ways according to the type of vision inspection, and performs vision inspection on any one surface (hereinafter, referred to as a 'first plane') of the upper and lower surfaces of the semiconductor device 10 and adjacent sides thereof. It is preferred to be configured to perform all.
  • the vision inspection module is a semiconductor device installed between the withdrawal position (P1) and the unloading position (P2) in the movement path of the picker 730 around the rotation axis 711, for example in the rotation movement path
  • the configuration for performing the vision inspection for (10) various configurations are possible.
  • the vision inspection module is configured to acquire an image of the appearance of the bottom surface of the semiconductor device 10 by using a camera, a scanner, or the like.
  • the image acquired by the vision inspection module is used for non-point inspection, such as whether the defect after image analysis using a program or the like.
  • the vision inspection module has a surface opposite to that of the semiconductor device 10 having a rectangular planar shape in the state of being picked up by the first transfer tool 700. It is preferred to be configured to perform vision inspection on both the first plane) and the four sides.
  • the vision inspection module includes a first vision inspection unit 40 for acquiring side images of sides of a pair of opposite sides of the four sides of the semiconductor device 10 having a planar rectangular shape for vision inspection. )Wow;
  • the second vision inspection unit 50 which is arranged perpendicular to the opposite sides of the four sides of the semiconductor device 10 that pass through the first vision inspection unit 40 and acquires side images of the sides of the other pair of opposite sides facing each other. ) May be included.
  • the first vision inspection unit 40 and the second vision inspection unit 50 rotate the picker 730 that picks up the element 10, for example, the rotation of the picker 730 around the rotation axis 711.
  • the moving path may be sequentially installed between the withdrawal position P1 and the unloading position P2.
  • the first vision inspection unit 40 and the second vision inspection unit 50 are sequentially installed between the element alignment unit 920 and the stacking position P2 to sequentially perform vision inspection on opposite sides. Do.
  • the first vision inspection unit 40 is configured to acquire side images of side surfaces of a pair of opposing sides (first opposing sides) of the four sides of the semiconductor device 10 having a planar rectangular shape. Various configurations are possible.
  • the second vision inspection unit 50 may include side images of sides of a pair of opposing sides (second opposing sides) of the four opposite sides of the semiconductor device 10 that have passed through the first vision inspection unit 40. Various configurations are possible with the configuration to obtain.
  • the first vision inspection unit 40 and the second vision inspection unit 50 have a common in performing side vision inspection for four sides of the semiconductor device 10 having a rectangular planar shape. It may be configured, but need not necessarily be similarly configured.
  • At least one of the first vision inspection unit 40 and the second vision inspection unit 50 includes: an image acquisition unit 600 for acquiring side images of a pair of opposite sides;
  • the optical system 300 may include a plurality of first optical paths L1 that allow each of the side images of the pair of opposite sides to reach the image acquisition unit 600.
  • the image acquisition unit 600 is configured to acquire side images of the corresponding sides (sides of the first opposing sides or sides of the second opposing sides) of four sides of the semiconductor device 10. This is possible.
  • the image acquisition unit 600 may be a camera, a scanner, or the like.
  • At least one image acquisition unit 600 of the first vision inspection unit 40 and the second vision inspection unit 50 may simultaneously acquire a first plane image of the first plane of the semiconductor device 10. have.
  • the image acquisition unit 600 controls the first plane image of the first plane of the semiconductor device 10 and the side images of the sides of the opposite sides of the semiconductor device 10 to analyze the acquired images. (Not shown), and the delivered images may be used for vision inspection, such as whether the defect after image analysis using a program or the like.
  • the optical system 300 includes an image acquisition unit 600 each of the side images of the side surfaces (side surfaces of the first opposite sides or sides of the second opposite sides) of the four sides of the semiconductor device 10.
  • image acquisition unit 600 each of the side images of the side surfaces (side surfaces of the first opposite sides or sides of the second opposite sides) of the four sides of the semiconductor device 10.
  • Various configurations are possible as the configuration for forming the plurality of first optical paths L1 to reach the.
  • the optical system 300 includes the numbers of the lens 302, the reflecting members 310 and 320, the transflective member, the prism, and the like according to the installation positions of the semiconductor device 10 and the image acquisition unit 600.
  • the installation location can be selected.
  • the optical system 300 reaches the image acquisition unit 600.
  • the second optical path L2 may be further formed.
  • the optical system 300, the main reflection member 310 for reflecting the first plane image of the first plane toward the image acquisition unit 600, and the side surface of the semiconductor device 10 may include a pair of auxiliary reflecting member 320 to reflect the side image toward the main reflecting member (310).
  • the main reflecting member 310 as a configuration for reflecting the first plane image on the first plane toward the image acquisition unit 600, various members such as a reflective member, a semi-transmissive member may be used.
  • the main reflection member 310 is configured to reflect the first plane image of the semiconductor device 10 toward the image acquisition unit 600, and only when the image acquisition unit 600 acquires the first plane image. As a matter of course, it does not correspond to the essential configuration of the present invention.
  • the pair of auxiliary reflecting members 320 are installed to correspond to a pair of side surfaces of the semiconductor device 10 that are opposite to each other of the semiconductor device 10.
  • various members such as a reflective member, a transflective member, and the like may be used.
  • the pair of auxiliary reflection members 320 may include a semiconductor device. The side image of each side of 10 may be reflected to face the main reflection member 310.
  • the pair of auxiliary reflecting members 320 may be symmetrically installed with respect to the centerlines C and N passing through the center of the pair of opposite sides and parallel to the pair of opposite sides.
  • the pair of auxiliary reflecting members 320, the center line (C) formed by a pair of opposing sides to enable vision inspection according to the size of the width of the pair of opposing sides according to the specification of the semiconductor device 10 , N) can be installed to enable linear symmetrical movement.
  • the pair of auxiliary reflecting members 320 of the first vision inspection unit 40 is installed symmetrically with respect to the center line (C) formed by a pair of opposing sides opposing sides They may be installed so as to be linearly symmetrical movement with respect to the center line formed by them.
  • the pair of auxiliary reflecting members 320 of the second vision inspection unit 50 has a pair of opposing sides that have been inspected by the first vision inspection unit 40 (first). It can be installed symmetrically with respect to the center line (N) formed by the other pair of opposing sides (the second opposing sides) except for the opposite sides) so as to be linearly symmetrical with respect to the center line formed by the pair of opposing sides. have.
  • the optical system 300 is provided with an illumination system 360 for irradiating light to the first plane and side surfaces for vision inspection, and the illumination system 360 may be variously installed according to the irradiation method.
  • the illumination system 360 may irradiate various types of light, such as monochromatic light such as laser light, tricolor light such as R, G, and B, and white light, depending on the form of vision inspection, and various light sources such as an LED element may be used.
  • monochromatic light such as laser light
  • tricolor light such as R, G, and B
  • white light depending on the form of vision inspection
  • various light sources such as an LED element may be used.
  • the illumination system 360 may be variously disposed according to the configuration of the optical system.
  • the main reflective member 310 may have a transflective material through which light can pass
  • the illumination system 360 includes: It may be configured to irradiate light on each side of the first plane and the opposite sides at the back surface of the reflective surface reflecting the first plane image.
  • the illumination system 360 may be configured such that irradiation on the first plane and irradiation on each side of the side surfaces is performed by a separate light source (not shown), wherein the auxiliary reflection member 320 described above is It may be configured to have a transflective material that can transmit light, and to irradiate the light on each side of the opposite sides or opposite sides of the semiconductor device 10 on the back side of the reflective surface reflecting the side image.
  • the side images and the first plane image are obtained through different optical paths, that is, the first optical path L1 and the second optical path L2, so that the focal lengths are different from each other due to the path difference of the optical paths.
  • an image is acquired by an acquiring device, that is, a camera, one of the first planar image and the side image is out of focus, which causes blur.
  • the optical system 300 further includes a focal length correction unit 340 for correcting a focal length difference between the first optical path L1 and the second optical path L2, as shown in FIG. 8. can do.
  • the focal length correction unit 340 Since the focal length correction unit 340 is obtained through the first optical path L1 and the second optical path L2, various configurations are possible as corrections for changing the focal lengths due to the path difference of the optical paths. .
  • the focal length compensator 340 may include a medium part 342 installed on the light paths L1 and L2 and having a transparent material capable of light transmission.
  • the medium part 342 is provided on the optical paths L1 and L2 to correct the focal length, and is installed on the optical paths L1 and L2 such as transparent glass and quartz and has a focal length due to a difference in refractive index. It is a configuration to correct.
  • the medium part 342 is preferably installed in the first optical path L1 of the first optical path L1 and the second optical path L2.
  • the medium part 342 may have a column shape such as a cylinder, a polygonal column, and the like, in which the incident surface and the transmissive surface of the light form a plane perpendicular to the optical path and have a predetermined thickness t.
  • the medium portion 342 is preferably formed integrally with the auxiliary reflection member 320.
  • the thickness t of the medium portion 342 is an image acquisition working distance A with respect to the side surface of the semiconductor device 10 disposed between the pair of auxiliary reflection members 320 as shown in Equation 1 below. It may vary.
  • t is the thickness of the medium portion 342 in the optical path direction
  • n is the refractive index of the medium portion 342
  • A is This is the working distance for acquiring the image on the side.
  • the image acquisition working distance A on the side surface refers to the distance from the auxiliary reflection member 320 to the side surface of the semiconductor device 10.
  • the thickness t of the medium part 342 may be determined based on the semiconductor device 10 having a standard of the maximum measurable size.
  • the medium portion 342 having a constant thickness t may be formed of a semiconductor device having various standards. In order to utilize the vision inspection of 10), it is necessary to adjust the image acquisition working distance A on the side of the semiconductor device 10 according to the specification of the semiconductor device 10.
  • the medium unit 342 is integrated with a pair of auxiliary reflecting members 320 to adjust the image acquisition working distance A on the side surface according to the standard of the semiconductor device 10 to be measured. It is preferable to be formed so as to be movable.
  • the medium part 342 is formed in a pair and installed on the first optical path L1, and is formed integrally with each of the pair of auxiliary reflecting members 320, and thus, the pair of auxiliary reflecting members 320. ) And linearly symmetrical movement with respect to the center line (C, N) formed by the sides (first opposite sides or the second opposite sides) associated with.
  • the optical system 300 may further include a width adjusting unit 330 for adjusting the width formed by the pair of auxiliary reflecting members 320.
  • the width adjusting part 330 may include the pair of auxiliary reflecting members 320 based on the center lines C and N of the side surfaces (the first opposing sides or the second opposing sides) of the semiconductor device 10.
  • Various configurations are possible by adjusting the width formed by the pair of auxiliary reflecting members 320 by moving in the direction away from or near the center line (C, N).
  • the width adjusting part 330 is installed in parallel to the arrangement direction of the pair of auxiliary reflecting members 320 and passes through the center of the semiconductor device 10.
  • Left and right threaded lines are formed on the outer circumferential surface of the pair of auxiliary reflecting members 320 with respect to the center lines C and N parallel to the side surfaces (the first opposite sides or the second opposite sides).
  • Rotating shafts 332 which are respectively screwed together;
  • a rotation driving unit 334 coupled to one end of the rotation shaft to rotate the rotation shaft; It may include a guide portion 336 coupled to the other end of the pair of auxiliary reflecting member 320 to guide the movement path of the pair of auxiliary reflecting member 320, respectively.
  • the width adjusting unit 330 is rotated by a pair of belt pulleys 333 installed on both sides of the pair of auxiliary reflecting members 320, as shown in FIG.
  • Each of the pair of auxiliary reflecting members 320 may include a belt 335 coupled to the opposite side.
  • the width adjusting part 330 is a pair of auxiliary reflecting members 320 installed symmetrically with respect to the center line C of the pair of opposing sides is coupled to the opposite side of the belt 335, belt pulley 333 ) Rotates in a clockwise direction, the pair of sub-reflective members 320 move toward each other, and when the belt pulley 333 rotates counter-clockwise, the pair of sub-reflective members 320 move away from each other. Can be moved.
  • the width adjusting unit 330 having the configuration described above includes a pair of auxiliary reflecting members 320 or a pair of auxiliary reflecting members 320 and a pair of medium portions 342, respectively. May be coupled to the medium portion 342.
  • the width adjusting unit 330 is a semiconductor having a shorter length in the W direction or the H direction than the semiconductor device 10 having the maximum size Wm and Hm.
  • the pair of auxiliary reflection members 320 and the medium part 342 may be moved in the direction toward the semiconductor device 10, and thus the side surfaces of the semiconductor device 10 may be moved.
  • Image acquisition working distance (A) can be adjusted.
  • the focal length is different from each other due to the path difference of the optical path, that is, a single image acquisition device
  • one of the first planar image and the side image may be out of focus and may be blurred.
  • the first vision inspection unit 40 may perform vision inspection by acquiring images of three surfaces of the first plane and two opposite sides of the semiconductor device 10.
  • the second vision inspection unit 50 acquires images of three surfaces of the first plane of the semiconductor device 10 and opposite sides of the first vision inspection unit 40 where vision inspection is not performed. Can be done.
  • the two sides facing each other are opposed to each other, instead of acquiring an image of the first plane and four sides at once.
  • the image is obtained by separating the opposite sides facing each other, and by configuring the optical system for the image acquisition of the opposite sides and the opposite sides to be movable, various specifications without structural changes of the optical system Vision inspection of the semiconductor device 10 may be performed.
  • the vision inspection module according to the present invention is not limited to the device handler having the above configuration, and may be applied to any vision inspection system that inspects the side surface of the semiconductor device 10 having a rectangular planar shape.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

The present invention relates to an element handler and, more specifically, to a vision inspection module for performing vision inspection on a semiconductor element, and to an element handler having the vision inspection module. The present invention provides a vision inspection module comprising: a first vision inspection part (40) for obtaining, for vision inspection, side images of the sides at one pair of opposite edges, among two pairs of mutually opposite edges, of a semiconductor element (10) having a rectangular planar shape; and a second vision inspection part (50) for obtaining side images of the sides at the other pair of opposite edges, among the two pairs of mutually opposite edges, of the semiconductor element (10) which has gone through the first vision inspection part (40).

Description

비전검사모듈 및 그를 가지는 소자핸들러Vision Inspection Module and Device Handler Having It
본 발명은 소자핸들러에 관한 것으로서, 보다 상세하게는 반도체소자에 대한 비전검사를 수행하는 비전검사모듈 및 그를 가지는 소자핸들러에 관한 것이다.The present invention relates to an element handler, and more particularly, to a vision inspection module for performing a vision inspection on a semiconductor device and a device handler having the same.
패키지 공정을 마친 반도체디바이스 소자는 번인테스트 등의 검사를 마친 후에 고객 트래이에 적재되어 출하된다.After the packaging process, the semiconductor device device is shipped to the customer tray after inspection such as burn-in test.
그리고 출하되는 반도체디바이스 소자는 그 표면에 레이저 등에 의하여 일련번호, 제조사 로고 등의 표지가 표시되는 마킹공정을 거치게 된다.In addition, the semiconductor device that is shipped is subjected to a marking process in which a label such as a serial number and a manufacturer's logo is displayed on a surface of the semiconductor device.
또한 반도체디바이스 소자는 최종적으로 리드(lead)나 볼 그리드(ball grid)의 파손여부, 크랙(crack), 스크래치(scratch) 여부 등과 같은 반도체디바이스 소자의 외관상태 및 표면에 형성된 마킹의 양호여부를 검사하는 공정을 거치게 된다.In addition, the semiconductor device device finally inspects whether the lead device or ball grid is damaged, cracks, scratches, etc., the appearance of the semiconductor device device and whether the marking formed on the surface is good. It will go through the process.
한편 상기와 같은 반도체디바이스 소자의 외관상태 및 마킹의 양호여부의 검사가 추가되면서 그 검사시간 및 각 모듈들의 배치에 따라서 전체 공정수행을 위한 시간 및 장치의 크기에 영향을 미치게 된다.On the other hand, as the inspection of the appearance state of the semiconductor device device and whether the marking is satisfactory is added, the inspection time and the arrangement of each module affect the time and the size of the device for the entire process execution.
특히 다수의 소자들이 적재된 트레이의 로딩, 각 소자들에 대한 비전검사를 위한 하나 이상의 모듈, 검사 후 검사결과에 따른 언로딩모듈의 구성 및 배치에 따라서 장치의 크기가 달라진다.In particular, the size of the device depends on the loading of a tray loaded with a plurality of elements, one or more modules for vision inspection of each element, and the configuration and arrangement of the unloading module according to the inspection result after the inspection.
그리고 장치의 크기는 소자검사라인 내에 설치될 수 있는 소자핸들러의 숫자를 제한하거나, 미리 정해진 숫자의 소자핸들러의 설치에 따라서 소자 생산을 위한 설치비용에 영향을 주게 된다.In addition, the size of the device limits the number of device handlers that can be installed in the device inspection line, or affects the installation cost for device production according to the installation of a predetermined number of device handlers.
본 발명의 목적은, 상기와 같은 점들을 인식하여 반도체소자의 표면 및 그 표면에 인접하는 복수의 측면들에 대한 이미지를 획득하여 비전검사를 효과적으로 수행할 수 있는 비전검사모듈 및 그를 가지는 소자핸들러를 제공하는 데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a vision inspection module and a device handler having the vision inspection module capable of performing vision inspection by acquiring images of the surface of the semiconductor device and a plurality of side surfaces adjacent to the surface by recognizing the above points. To provide.
본 발명은 상기와 같은 본 발명의 목적을 달성하기 위하여 창출된 것으로서, 본 발명은, 비전검사를 위하여 평면형상이 직사각형인 반도체소자(10)에서 서로 대향하는 두 쌍의 대형변들 중 한 쌍의 대향변들의 측면들에 대한 측면이미지들을 획득하는 제1비전검사부(40)와; 상기 제1비전검사부(40)를 거친 반도체소자(10)에서 서로 대향하는 두 쌍의 대형변들 중 나머지 한 쌍의 대향변들의 측면들에 대한 측면이미지들을 획득하는 제2비전검사부(50)를 포함하는 것을 특징으로 하는 비전검사모듈을 개시한다.The present invention was created in order to achieve the object of the present invention as described above, the present invention is a pair of two pairs of large sides facing each other in the semiconductor device 10 of the planar rectangular shape for vision inspection A first vision inspection unit 40 for acquiring side images of the sides of the opposite sides; In the semiconductor device 10 that has passed through the first vision inspection unit 40, a second vision inspection unit 50 obtaining side images of sides of the other pair of opposite sides of the pair of large sides facing each other is provided. Disclosed is a vision inspection module comprising a.
상기 제1비전검사부(40)는, 상기 한 쌍의 대향변들의 측면이미지들을 획득하는 이미지획득부(600)와; 상기 한 쌍의 대향변들의 측면이미지들 각각을 상기 이미지획득부(600)에 도달하도록 하는 제1광경로(L1)들을 형성하는 광학계(300)를 포함할 수 있다.The first vision inspection unit 40 includes: an image acquisition unit 600 for acquiring side images of the pair of opposite sides; It may include an optical system 300 for forming the first optical path (L1) for each of the side images of the pair of opposing sides to reach the image acquisition unit 600.
상기 제2비전검사부(50)는, 상기 한 쌍의 대향변들의 측면이미지들을 획득하는 이미지획득부(600)와; 상기 한 쌍의 대향변들의 측면이미지들 각각을 상기 이미지획득부(600)에 도달하도록 하는 제1광경로(L1)들을 형성하는 광학계(300)를 포함할 수 있다.The second vision inspection unit 50 includes an image acquisition unit 600 for acquiring side images of the pair of opposite sides; It may include an optical system 300 for forming the first optical path (L1) for each of the side images of the pair of opposing sides to reach the image acquisition unit 600.
상기 이미지획득부(600)는, 상기 반도체소자(10)의 제1평면에 대한 제1평면이미지를 동시에 획득할 수 있다.The image acquisition unit 600 may simultaneously acquire a first plane image of the first plane of the semiconductor device 10.
이때, 상기 광학계(300)는, 상기 반도체소자(10)의 제1평면에 대한 제1평면이미지가 상기 이미지획득부(100)에 도달하도록 하는 제2광경로(L2)를 형성할 수 있다.In this case, the optical system 300 may form a second optical path L2 to allow the first plane image of the first plane of the semiconductor device 10 to reach the image acquisition unit 100.
상기 광학계(300)는, 상기 한 쌍의 대향변들의 측면이미지들 각각을 상기 이미지획득부(600)를 향하도록 반사시키는 한 쌍의 보조반사부재(320)를 포함할 수 있다.The optical system 300 may include a pair of auxiliary reflecting members 320 for reflecting each of the side images of the pair of opposing sides toward the image acquisition unit 600.
상기 한 쌍의 보조반사부재(320)는, 상기 반도체소자(10)의 규격에 따라서 상기 한 쌍의 대향변들이 이루는 폭의 크기에 맞춰 비전검사가 가능하도록 상기 한 쌍의 대향변들이 이루는 중심선에 대하여 선형대칭이동이 가능하도록 설치될 수 있다.The pair of auxiliary reflecting members 320 may be formed on a center line of the pair of opposing sides to enable vision inspection according to the size of the width of the pair of opposing sides according to the size of the semiconductor device 10. It can be installed to enable linear symmetrical movement.
상기 광학계(300)는, 상기 한 쌍의 보조반사부재(320)들이 이루는 폭을 조절하는 폭조절부(330)를 추가로 포함할 수 있다.The optical system 300 may further include a width adjusting unit 330 for adjusting the width formed by the pair of auxiliary reflecting members 320.
상기 제2비전검사부(50)는, 상기 한 쌍의 대향변들의 측면이미지들을 획득하는 이미지획득부(600)와; 상기 한 쌍의 대향변들의 측면이미지들 각각을 상기 이미지획득부(600)에 도달하도록 하는 제1광경로(L1)들을 형성하는 광학계(300)를 포함할 수 있다.The second vision inspection unit 50 includes an image acquisition unit 600 for acquiring side images of the pair of opposite sides; It may include an optical system 300 for forming the first optical path (L1) for each of the side images of the pair of opposing sides to reach the image acquisition unit 600.
상기 광학계(300)는, 상기 제1광경로(L1) 및 상기 제2광경로(L2)의 초점거리 차이를 보정하는 초점거리보정부(340)를 추가로 포함할 수 있다.The optical system 300 may further include a focal length compensator 340 for correcting a focal length difference between the first optical path L1 and the second optical path L2.
상기 초점거리보정부(340)는, 상기 제1광경로(L1) 및 상기 제2광경로(L2) 중 적어도 하나에 설치되어 광투과가 가능한 투명재질을 가지는 매질부(342)를 포함할 수 있다.The focal length correction unit 340 may include a medium unit 342 installed on at least one of the first optical path L1 and the second optical path L2 and having a transparent material capable of light transmission. have.
상기 광학계(300)는, 상기 한 쌍의 대향변들의 측면이미지들 각각을 상기 이미지획득부(600)를 향하도록 반사시키는 한 쌍의 보조반사부재(320)를 포함할 수 있다.The optical system 300 may include a pair of auxiliary reflecting members 320 for reflecting each of the side images of the pair of opposing sides toward the image acquisition unit 600.
상기 초점거리보정부(340)는, 상기 한 쌍의 보조반사부재(320)와 일체로 형성될 수 있다.The focal length correction unit 340 may be integrally formed with the pair of auxiliary reflection members 320.
다른 측면에서, 본 발명은, 다수의 소자(10)들이 적재된 웨이퍼링(20)이 로딩되는 웨이퍼링로딩부(100)로부터 웨이퍼링(20)을 공급받아 각 소자가 적재된 웨이퍼링(20)을 인출위치로 이동시키는 웨이퍼링이동테이블(200)과; 상기 웨이퍼링(20)으로부터 인출된 소자(10)들을 언로딩부재(30)에 안착시켜 소자(10)를 언로딩하는 소자언로딩부(400)와; 상기 웨이퍼링이동테이블(200) 상의 웨이퍼링(20)에서 상기 인출위치(P1)에서 소자(10)를 픽업하여 상기 소자언로딩부(400)의 적재위치(P2)에서 상기 언로딩부재(30)에 적재하는 하나 이상의 이송툴(500)을 포함하며, 청구항 1 내지 청구항 3 중 어느 하나의 항에 따른 비전검사모듈로서, 상기 하나 이상의 이송툴(500)에 의한 이송경로 상에 설치되어 소자(10)에 대한 비전검사를 수행하는 비전검사모듈을 포함하는 것을 특징으로 하는 소자핸들러를 개시한다.In another aspect, the present invention, the wafer ring 20 is loaded by receiving the wafer ring 20 from the wafer ring loading unit 100 is loaded with a wafer ring 20 is loaded with a plurality of elements (10) ) And a wafer ring movement table 200 for moving to the withdrawal position; An element unloading unit 400 which unloads the element 10 by seating the elements 10 extracted from the wafer ring 20 on the unloading member 30; The unloading member 30 is picked up at the loading position P2 of the device unloading unit 400 by picking up the device 10 at the withdrawal position P1 from the wafer ring 20 on the wafer ring movement table 200. At least one transfer tool 500 is loaded on the), the vision inspection module according to any one of claims 1 to 3, which is installed on the transfer path by the at least one transfer tool 500 element ( Disclosed is a device handler comprising a vision inspection module for performing vision inspection for 10).
상기 하나 이상의 이송툴(500)은, 수직방향의 회전축(711)을 가지는 회전구동부(710)와; 상기 회전축(711)에 결합되어 회전되며 상기 회전축(711)의 회전방향을 따라서 배치된 복수의 회전암(720)들과; 상기 회전축(711)의 회전에 의하여 상기 인출위치(P1) 및 상기 언로딩위치(P2)에 순차적으로 위치되도록 상기 복수의 회전암(720)들 각각에 결합되며 반도체소자(10)를 픽업하는 픽커(730)를 포함하는 제1이송툴(700)을 포함할 수 있다.The one or more transfer tools 500, the rotary drive unit 710 having a vertical axis of rotation 711; A plurality of rotation arms 720 coupled to the rotation shaft 711 and disposed along the rotation direction of the rotation shaft 711; Pickers coupled to each of the plurality of rotation arms 720 to pick up the semiconductor device 10 so as to be sequentially positioned at the withdrawal position P1 and the unloading position P2 by the rotation of the rotation shaft 711. It may include a first transfer tool 700 including a (730).
상기 비전검사모듈은, 상기 회전축(711)을 중심으로 한 픽커(730)의 회전이동경로에서 상기 인출위치(P1) 및 상기 언로딩위치(P2) 사이에 설치될 수 있다.The vision inspection module may be installed between the withdrawal position P1 and the unloading position P2 in the rotational movement path of the picker 730 around the rotation shaft 711.
상기 소자핸들러는, 상기 웨이퍼링(20)으로부터 상기 인출위치(P1)에서 반도체소자(10)를 픽업하여 전달위치(P3)에서 반도체소자(10)를 상기 제1이송툴(700)로 전달하여 반도체소자(10)가 플립되도록 하는 제2이송툴(800)을 추가로 포함할 수 있다.The element handler picks up the semiconductor element 10 from the wafer ring 20 at the withdrawal position P1 and transfers the semiconductor element 10 to the first transfer tool 700 at the transfer position P3. The semiconductor device 10 may further include a second transfer tool 800 for flipping.
이때, 상기 제2이송툴(800)은, 수평방향의 회전축(811)을 가지는 회전구동부(810)와; 상기 회전축(811)에 결합되어 회전되며 상기 회전축(811)의 회전방향을 따라서 배치된 복수의 회전암(820)들과; 상기 회전축(811)의 회전에 의하여 상기 인출위치(P1) 및 상기 전달위치(P3)에 순차적으로 위치되도록 상기 복수의 회전암(820)들 각각에 결합되며 반도체소자(10)를 픽업하는 픽커(830)를 포함할 수 있다.At this time, the second transfer tool 800, the rotary drive unit 810 having a horizontal axis of rotation 811; A plurality of rotation arms 820 coupled to the rotation shaft 811 and disposed along the rotation direction of the rotation shaft 811; Pickers coupled to each of the plurality of rotation arms 820 to be sequentially positioned at the lead position P1 and the transfer position P3 by rotation of the rotation shaft 811 (pickers for picking up the semiconductor element 10) 830).
본 발명에 따른 비전검사모듈 및 그를 가지는 소자핸들러는, 반도체소자의 표면 및 그 표면에 인접하는 복수의 측면들에 대한 이미지를 획득하여 비전검사를 수행함으로써 다양하고 신속한 비전검사의 수행이 가능한 이점이 있다.The vision inspection module and the device handler having the same according to the present invention have the advantage of being able to perform various and rapid vision inspections by performing the vision inspection by acquiring an image of the surface of the semiconductor device and a plurality of side surfaces adjacent to the surface of the semiconductor device. have.
특히, 반도체소자의 한 쌍의 대향변들에 대응되어 설치된 비전검사수행을 위한 한 쌍의 보조반사부재가 반도체소자의 규격에 따라 한 쌍의 보조반사부재 사이의 폭조절이 가능하게 설치됨으로써, 반도체소자의 규격이 달라져도 장치의 변경없이 비전검사의 수행가능하여 장치의 활용도를 높일 수 있는 이점이 있다.In particular, a pair of auxiliary reflecting members for performing vision inspection corresponding to a pair of opposing sides of the semiconductor device is installed to allow width adjustment between the pair of auxiliary reflecting members according to the specifications of the semiconductor device. Even if the specification of the device is changed, vision inspection can be performed without changing the device, thereby increasing the utilization of the device.
또한, 본 발명에 따른 소자핸들러는, 다수의 소자들이 적재된 로딩부재로부터 인출위치에서 소자를 픽업하여 언로딩위치에서 언로딩부재로 소자를 언로딩함에 있어서, 회전구동장치의 회전축을 중심으로 복수의 픽커들을 회전시켜 순차적으로 인출위치 및 언로딩위치에 위치시키고 인출위치와 언로딩위치 사이에 비전검사모듈을 설치함으로써, 소자의 픽업, 비전검사 및 이송을 위한 픽커의 이동구조를 간단화 및 최소화하여 시스템 처리속도를 현저히 높일 수 있는 이점이 있다.In addition, the element handler according to the present invention, when the element is picked up from the loading member loaded with a plurality of elements in the withdrawal position and unloading the element from the unloading position to the unloading member, a plurality of elements around the rotation axis of the rotary drive device Rotate the pickers to sequentially position them in the withdrawal and unloading positions, and install a vision inspection module between the withdrawal and unloading positions, simplifying and minimizing the picker's movement structure for pick-up, vision inspection and transfer of devices. There is an advantage that can significantly increase the system processing speed.
도 1은, 본 발명에 따른 소자핸들러의 일예를 보여주는 평면도이다.1 is a plan view showing an example of an element handler according to the present invention.
도 2a 및 도 2b는, 도 1의 소자핸들러에서 사용되는 로딩부재의 일예를 보여주는 사시도 및 단면도이다.2A and 2B are a perspective view and a cross-sectional view showing an example of a loading member used in the element handler of FIG.
도 3은, 도 1의 소자핸들러에서 사용되는 언로딩부재의 일예를 보여주는 사시도이다.3 is a perspective view illustrating an example of an unloading member used in the element handler of FIG. 1.
도 4는, 도 1의 소자핸들러의 측면도이다.4 is a side view of the element handler of FIG. 1.
도 5a는, 도 1의 소자핸들러에 설치되는 비전검사모듈의 반도체소자의 가로길이에 따른 보조반사부재의 거리조절 과정을 보여주는 개념도이다.5A is a conceptual diagram illustrating a distance adjusting process of an auxiliary reflection member according to a horizontal length of a semiconductor device of a vision inspection module installed in the device handler of FIG. 1.
도 5b은, 도 1의 소자핸들러에 설치되는 비전검사모듈의 반도체소자의 세로길이에 따른 보조반사부재의 거리조절 과정을 보여주는 개념도이다.5B is a conceptual diagram illustrating a distance adjusting process of the auxiliary reflection member according to the length of the semiconductor device of the vision inspection module installed in the device handler of FIG. 1.
도 6은, 도 1의 소자핸들러에 설치되는 비전검사모듈의 폭조절부의 일 실시예를 보여주는 평면도이다.FIG. 6 is a plan view illustrating an embodiment of a width adjusting unit of a vision inspection module installed in the device handler of FIG. 1.
도 7은, 도 1의 소자핸들러에 설치되는 비전검사모듈의 폭조절부의 다른 일 실시예를 보여주는 평면도이다.7 is a plan view illustrating another embodiment of the width adjusting unit of the vision inspection module installed in the device handler of FIG. 1.
도 8은, 도 1의 소자핸들러에 설치되는 비전검사모듈의 광학계 구성의 일 예를 보여주는 측면도이다.8 is a side view illustrating an example of an optical system configuration of a vision inspection module installed in the device handler of FIG. 1.
이하, 본 발명에 따른 비전검사모듈 및 그를 포함하는 소자핸들러에 관하여 첨부된 도면을 참조하여 설명하면 다음과 같다.Hereinafter, a vision inspection module and a device handler including the same according to the present invention will be described with reference to the accompanying drawings.
본 발명의 일실시예에 따른 소자핸들러는, 도 1에 도시된 바와 같이, 다수의 소자(10)들이 적재된 웨이퍼링(20)이 로딩되는 웨이퍼링로딩부(100)로부터 웨이퍼링(20)을 공급받아 각 소자가 적재된 웨이퍼링(20)을 인출위치로 이동시키는 웨이퍼링이동테이블(200)과; 웨이퍼링(20)으로부터 인출된 소자(10)들을 언로딩부재(30)에 안착시켜 소자(10)를 언로딩하는 소자언로딩부(400)와; 웨이퍼링이동테이블(200) 상의 웨이퍼링(20)에서 인출위치(P1)에서 소자(10)를 픽업하여 소자언로딩부(400)의 적재위치(P2)에서 언로딩부재(30)에 적재하는 하나 이상의 이송툴(500)과; 하나 이상의 이송툴(500)에 의한 이송경로 상에 설치되어 소자(10)에 대한 비전검사를 수행하는 비전검사모듈을 포함한다.The device handler according to an embodiment of the present invention, as shown in Figure 1, the wafer ring 20 from the wafer ring loading unit 100 is loaded with a wafer ring 20 loaded with a plurality of elements 10 A wafer ring movement table 200 for receiving the wafers and moving the wafer rings 20 loaded with each element to a withdrawal position; An element unloading unit 400 which unloads the element 10 by seating the elements 10 extracted from the wafer ring 20 on the unloading member 30; Picking up the element 10 at the withdrawal position P1 from the wafer ring 20 on the wafer ring movement table 200 and loading it on the unloading member 30 at the loading position P2 of the element unloading unit 400. One or more transfer tools 500; It includes a vision inspection module is installed on the transfer path by at least one transfer tool 500 to perform a vision inspection for the device (10).
여기서 반도체소자(10)는, 메모리, SD램, 플래쉬램, CPU, GPU 등 반도체 공정을 마친 반도체소자들이면 모두 그 대상이 될 수 있다.Here, the semiconductor device 10 may be any object that is a semiconductor device that has completed a semiconductor process such as a memory, an SD RAM, a flash RAM, a CPU, and a GPU.
상기 웨이퍼링로딩부(100)는, 다수의 반도체소자(10)들이 적재된 복수의 웨이퍼링(20)들을 로딩하는 구성으로서 다양한 구성이 가능하다.The wafer ring loading unit 100 is configured to load a plurality of wafer rings 20 loaded with a plurality of semiconductor elements 10, and various configurations are possible.
한편 상기 웨이퍼링로딩부(100)로부터 웨이퍼링이동테이블(200)로 웨이퍼링(20)를 전달하기 위한 웨이퍼링로딩부(100)는, 웨이퍼링카세트로부터 웨이퍼링(20)를 인출하고 인출된 웨이퍼링(20)를 웨이퍼링이동테이블(200)로 전달할 수 있는 구성이면 어떠한 구성도 가능하다.Meanwhile, the wafer ring loading unit 100 for transferring the wafer ring 20 from the wafer ring loading unit 100 to the wafer ring movement table 200 withdraws the wafer ring 20 from the wafer ring cassette and withdraws the wafer ring 20 from the wafer ring cassette. Any configuration can be used as long as the wafer ring 20 can be transferred to the wafer ring movement table 200.
상기 웨이퍼링카세트는, 복수의 웨이퍼링(20)들의 적재를 위한 구성으로서 웨이퍼링(20)들이 상하로 적층될 수 있는 구성이면 어떠한 구성도 가능하다.The wafer ring cassette may have any configuration as long as the wafer ring 20 can be stacked up and down as a configuration for stacking the plurality of wafer rings 20.
일예로서, 상기 웨이퍼링로딩부(100)는, 클램핑 장치 및 선형구동장치로 구성되거나, 푸셔 및 푸셔를 선형이동시키기 위한 선형구동장치로 구성되는 등 다양한 구성이 가능하다.For example, the wafer ring loading unit 100 may be configured as a clamping device and a linear driving device, or may be configured as a pusher and a linear driving device for linearly moving the pusher.
여기서 상기 웨이퍼링(20)에 적재되는 반도체소자(10)는, 웨이퍼상태에서 반도체공정 및 소잉공정을 마친 소자, 웨이퍼 상태에서 비전검사 등을 통하여 별도의 소자핸들러에 의하여 분류된 소자 등 다양하다.Herein, the semiconductor device 10 loaded on the wafer ring 20 may be a device that is classified by a separate device handler through a semiconductor inspection and sawing process in a wafer state, and vision inspection in a wafer state.
특히 상기 반도체소자, 즉 소자(10)는, 반도체공정 후 패키징공정을 거치는 기존 소자와는 달리, 패키징공정을 요하지 않은 소위, 웨이퍼레벨소자가 그 대상이 될 수 있다.In particular, the semiconductor device, that is, the device 10, unlike the conventional device that goes through the packaging process after the semiconductor process, a so-called wafer level device that does not require a packaging process may be the object.
한편 상기 웨이퍼링(20)는, 도 2a 및 도 2b에 도시된 바와 같이, 반도체공정 및 소잉공정을 마친 소자(10)가 적재되는 구성으로서, 소자(10)가 부착되는 테이프(11a) 및 테이프(11a)를 고정하는 프레임부재(11b)를 포함하여 구성될 수 있다.On the other hand, the wafer ring 20, as shown in Figures 2a and 2b, is a configuration in which the device 10 is completed after the semiconductor process and sawing process, the tape 11a and the tape to which the device 10 is attached It may be configured to include a frame member (11b) for fixing (11a).
그리고 상기 테이프(11a)는 반도체소자(10)들이 부착될 수 있는 부재이면 어떠한 부재도 가능하며 소위 부착테이프가 사용될 수 있다.As long as the tape 11a is a member to which the semiconductor elements 10 can be attached, any member may be used, and a so-called attachment tape may be used.
상기 프레임부재(11b)는 반도체소자(10)들이 부착된 테이프(11a)를 고정하기 위한 구성으로서 도 2a 및 도 2b에 도시된 바와 같이, 원형링, 도 3에 도시된 바와 같은 사각링 등 다양한 구성이 가능하다.The frame member 11b is configured to fix the tape 11a to which the semiconductor elements 10 are attached, as shown in FIGS. 2A and 2B, and a circular ring, a square ring as shown in FIG. 3, and the like. Configuration is possible.
상기 웨이퍼링이동테이블(200)은, 웨이퍼링로딩부(100)로부터 웨이퍼링(20)를 공급받아 웨이퍼링(20)를 수평방향으로 이동시키는 구성으로서 다양한 구성이 가능하다.The wafer ring movement table 200 is configured to move the wafer ring 20 in a horizontal direction by receiving the wafer ring 20 from the wafer ring loading unit 100.
예로서, 상기 웨이퍼링이동테이블(200)은, 웨이퍼링로딩부(미도시)에 의하여 웨이퍼링로딩부(100)로부터 웨이퍼링(20)를 전달받아 반도체소자(10)가 픽업될 수 있도록 웨이퍼링(20)를 수평방향으로 이동시키는 구성으로서, X-Y테이블, X-Y-Θ테이블 등 다양한 구성이 가능하다.For example, the wafer ring movement table 200 receives a wafer ring 20 from the wafer ring loading unit 100 by a wafer ring loading unit (not shown) so that the semiconductor device 10 can be picked up. As the configuration for moving the ring 20 in the horizontal direction, various configurations such as an XY table and an XY-Θ table are possible.
또한 상기 웨이퍼링이동테이블(200)은, 상하방향 즉, Z축방향으로 이동될 수도 있다.In addition, the wafer ring movement table 200 may be moved in the vertical direction, that is, the Z-axis direction.
또한 상기 인출위치(P1)에서 웨이퍼링이동테이블(200)의 하측에는, 원활한 소자픽업을 위하여 니들핀이 설치됨이 바람직하다.In addition, a needle pin is preferably installed below the wafer ring movement table 200 at the withdrawal position P1 for smooth device pickup.
상기 소자언로딩부(400)는, 웨이퍼링이동테이블(200)로부터 수평방향으로 이격되어 설치되며 웨이퍼링(20)로부터 반도체소자(10)를 전달받아 적재하는 언로딩부재(30)가 설치된 구성으로서 다양한 구성이 가능하다The device unloading unit 400 is installed spaced apart from the wafer ring movement table 200 in the horizontal direction and is provided with an unloading member 30 for receiving and loading the semiconductor device 10 from the wafer ring 20. Various configurations are possible as
특히 상기 소자언로딩부(400)는, 테이프앤릴(캐리어테이프 및 커버테이프) 등 언로딩부재(30)의 구성에 따라서 그 구성이 결정된다.In particular, the device unloading unit 400 is configured according to the configuration of the unloading member 30 such as a tape and reel (carrier tape and cover tape).
한편 상기 언로딩부재(30)는, 소자가 적재되는 구성이면 어떠한 구성도 가능하며, 도 1에 도시된 바와 같은 테이프앤릴(캐리어테이프 및 커버테이프), 도 3에 도시된 바와 같이 부착테이프를 구비한 플레이트, 반도체소자(10)가 담기는 복수의 삽입홈들이 형성된 트레이 등 시장출하 또는 타공정 수행을 위하여 임시로 적재되는 다양한 부재가 사용될 수 있다.On the other hand, the unloading member 30 may be any configuration as long as the device is loaded, and includes a tape and reel (carrier tape and cover tape) as shown in FIG. 1, and an adhesive tape as shown in FIG. 3. Various members may be used that are temporarily loaded for shipping or performing other processes, such as a plate and a tray having a plurality of insertion grooves in which the semiconductor device 10 is contained.
또한 상기 언로딩부재(30)는, 반도체소자(10)가 임시로 적재되는 부재 이외에, 반도체소자(10)가 실장되는 PCB와 같은 기판, 스트립(strip), 칩제조를 위한 리드프레임(Lead Frame) 등 칩실장, 패키징 공정을 위한 부재가 사용될 수 있다.In addition to the member in which the semiconductor device 10 is temporarily loaded, the unloading member 30 includes a lead frame for manufacturing a substrate, a strip, and a chip, such as a PCB, on which the semiconductor device 10 is mounted. Etc. can be used for chip mounting and packaging processes.
예로서, 상기 소자언로딩부(400)는, 도 1에 도시된 바와 같이, 반도체소자(10)가 적재되는 포켓부가 길이방향을 따라서 형성되며 소자적재 후 테이프(미도시)에 의하여 밀봉되는 캐리어테이프가 언로딩부재(30)를 구성하는 경우 일단에 회전가능하게 설치되어 반도체소자(10)가 적재될 캐리어테이프가 감겨진 풀림롤부(미도시)와, 타단에 회전가능하게 설치되며 소자적재 후 테이프에 의하여 밀봉된 캐리어테이프가 감기는 감길롤부(미도시)와, 풀림롤부(미도시)로부터 풀린 캐리어테이프가 적재위치를 지나도록 캐리어테이프의 이동을 안내하는 캐리어테이프가이드부(미도시)를 포함하여 구성될 수 있다.For example, as shown in FIG. 1, the device unloading unit 400 may include a pocket in which the semiconductor device 10 is loaded, formed along the length direction and sealed by a tape (not shown) after device loading. When the tape constitutes the unloading member 30, a release roll unit (not shown) is rotatably installed at one end and the carrier tape on which the semiconductor element 10 is to be loaded, and is rotatably installed at the other end, and after device loading. A winding roll portion (not shown) to which the carrier tape sealed by the tape is wound, and a carrier tape guide portion (not shown) for guiding the movement of the carrier tape so that the carrier tape unwound from the release roll portion (not shown) passes the loading position. It can be configured to include.
상기 소자언로딩부(400)의 다른 예로서, 언로딩부재(30)가 부착되는 플레이트(도 3 참조)인 경우로서, 소자언로딩부(400)는, 일단에 위치되어 복수의 반도체소자(10)들이 부착되는 플레이트가 적재되는 플레이트적재부와, 반도체소자(10) 적재위치(P2)에서 플레이트를 지지하여 이동시키는 X-Y테이블과, 트레이적재부로부터 플레이트를 X-Y테이블로 전달하는 트레이이동부(미도시)를 포함하여 구성될 수 있다. As another example of the device unloading unit 400, in the case of a plate (see FIG. 3) to which the unloading member 30 is attached, the device unloading unit 400 may be positioned at one end and may include a plurality of semiconductor devices ( 10) a plate loading portion on which the plate to which the plates are attached are mounted, an XY table for supporting and moving the plate at the semiconductor device 10 loading position P2, and a tray moving portion for transferring the plate from the tray loading portion to the XY table (not shown) It may be configured to include).
여기서 상기 플레이트는, 도 3에 도시된 바와 같이, 웨이퍼링(20)과 유사한 구성으로서 소자(10)가 부착되는 테이프와, 테이프를 고정시키면서 LOT번호, 분류등급 등의 표식이 있는 프레임부재를 포함하여 구성되거나, 반도체소자(10)가 담기는 삽입홈들이 복수 개로 형성된 트레이로서, 반도체소자(10)의 종류에 따라서 규격화된 트레이, 즉, JEDEC 트레이가 사용될 수 있다.Here, the plate, as shown in Figure 3, has a configuration similar to the wafer ring 20, the tape is attached to the device 10, and a frame member having a mark such as LOT number, classification grade while fixing the tape Or a tray formed of a plurality of insertion grooves in which the semiconductor element 10 is contained. A tray standardized according to the type of the semiconductor element 10, that is, a JEDEC tray, may be used.
상기 하나 이상의 이송툴(500)은, 웨이퍼링이동테이블(200) 상의 웨이퍼링(20)에서 인출위치(P1)에서 소자(10)를 픽업하여 소자언로딩부(400)의 적재위치(P2)에서 언로딩부재(30)에 적재하는 구성으로 다양한 구성이 가능하다.The one or more transfer tools 500 pick up the element 10 at the withdrawal position P1 from the wafer ring 20 on the wafer ring movement table 200 to place the loading position P2 of the element unloading unit 400. In the configuration to load on the unloading member 30 in a variety of configurations are possible.
예로서, 상기 하나 이상의 이송툴(500)은, 도 1 및 도 4에 도시된 바와 같이, 다수의 반도체소자(10)들이 적재된 웨이퍼링(20)로부터 인출위치(P1)에서 소자(10)를 픽업하여 언로딩위치(P2)에서 언로딩부재(30)로 반도체소자(10)를 언로딩하기 위하여 반도체소자(10)를 이송하는 제1이송툴(700)를 포함할 수 있다.For example, the one or more transfer tools 500 may be provided with the device 10 at the withdrawal position P1 from the wafer ring 20 in which the plurality of semiconductor devices 10 are loaded, as shown in FIGS. 1 and 4. Picking up may include a first transfer tool 700 for transferring the semiconductor device 10 in order to unload the semiconductor device 10 to the unloading member 30 in the unloading position (P2).
일 실시예에서, 상기 제1이송툴(700)은, 수직방향의 회전축(711)을 가지는 회전구동부(710)와; 회전축(711)에 결합되어 회전되며 회전축(711)의 회전방향을 따라서 배치된 복수의 회전암(720)들과; 회전축(711)의 회전에 의하여 인출위치(P1) 및 언로딩위치(P2)에 순차적으로 위치되도록 복수의 회전암(720)들 각각에 결합되며 반도체소자(10)를 픽업하는 픽커(730)를 포함할 수 있다.In one embodiment, the first transfer tool 700, the rotary drive unit 710 having a vertical axis of rotation 711; A plurality of rotation arms 720 coupled to the rotation shaft 711 and disposed along the rotation direction of the rotation shaft 711; The picker 730 coupled to each of the plurality of rotation arms 720 so as to be sequentially positioned at the withdrawal position P1 and the unloading position P2 by the rotation of the rotation shaft 711, and picks up the semiconductor device 10. It may include.
상기 회전구동부(710)는, 수직방향의 회전축(711)을 구비하여, 회전축(711)에 결합된 회전암(720)을 회전구동하는 구성으로서 회전구동장치이면 어떠한 구성도 가능하다.The rotation driving unit 710 is provided with a rotating shaft 711 in the vertical direction, and any configuration can be used as long as the rotation driving device is a configuration for rotating the rotating arm 720 coupled to the rotating shaft 711.
한편 상기 회전구동부(710)는, 회전암(720)에 결합된 픽커(730)가 진공압에 의하여 반도체소자(10)를 픽업하는바 픽커(730)에 진공압을 전달할 수 있는 회전축이 가능하면서 공압을 전달하는 공압로터리조인트를 구비함이 바람직하다.On the other hand, the rotary drive unit 710, the picker 730 coupled to the rotary arm 720 picks up the semiconductor element 10 by the vacuum pressure bar while being capable of transmitting the vacuum pressure to the picker 730 It is desirable to have a pneumatic rotary joint for delivering pneumatics.
상기 회전암(720)은, 회전축(711)과 결합되어 회전됨과 아울러 픽커(730)를 지지하는 구성으로서 픽커(730)를 지지할 수 있는 구조이면 어떠한 구조도 가능하다.The rotating arm 720 may be any structure as long as it is coupled to the rotating shaft 711 and rotates and supports the picker 730.
상기 픽커(730)는, 회전축(711)의 회전에 의하여 인출위치(P1) 및 언로딩위치(P2)에 순차적으로 위치되도록 복수의 회전암(520)들 각각에 결합되며 반도체소자(10)를 픽업하는 구성으로서 반도체소자(10)를 픽업할 수 있는 구성이면 어떠한 구성도 가능하다.The picker 730 is coupled to each of the plurality of rotation arms 520 so as to be sequentially positioned at the withdrawal position P1 and the unloading position P2 by the rotation of the rotation shaft 711. Any configuration can be used as long as it can pick up the semiconductor element 10 as a configuration for picking up.
일예로서, 상기 픽커(730)는, 진공압에 의하여 웨이퍼링(20)로부터 반도체소자(10)를 픽업하도록 구성될 수 있다.As an example, the picker 730 may be configured to pick up the semiconductor device 10 from the wafer ring 20 by vacuum pressure.
또한 상기 픽커(730)는, 회전암(720)에 설치된 상하구동장치에 의하여 상하로 이동될 수도 있다.In addition, the picker 730 may be moved up and down by a vertical drive device installed in the rotary arm 720.
또한 상기 픽커(730)는, 소자픽업 및 플레이스의 규칙적이 수행을 위하여 회전축(711)을 중심으로 등각을 가지도록 4n 개(n은 1 이상의 자연수)로 설치되는 것이 바람직하다.In addition, the picker 730 is preferably installed in 4n (n is a natural number of 1 or more) so as to have an equiangular center around the axis of rotation (711) for regular pickup of the device pickup and place.
한편, 본 발명에 따른 소자핸들러는, 픽업된 반도체소자(10)의 상하를 반전(플립)시켜 반도체소자(10)의 일면(상면 또는 저면)의 비전검사를 수행하기 위해 반도체소자(10)의 플립을 위한 제2이송툴(800)을 포함할 수 있다.On the other hand, the device handler according to the present invention, by inverting (flip) the top and bottom of the picked-up semiconductor device 10 of the semiconductor device 10 to perform a vision inspection of one surface (top or bottom) of the semiconductor device 10 A second transfer tool 800 for flipping may be included.
상기 제2이송툴(800)은, 웨이퍼링(20)으로부터 소자(10)를 픽업하여 플립한 후 제1이송툴(700)로 반도체소자(10)가 전달하는 구성으로 다양한 구성이 가능하다.The second transfer tool 800 is configured to transfer the semiconductor device 10 to the first transfer tool 700 after picking up and flipping the device 10 from the wafer ring 20.
예로서, 상기 제2이송툴(800)은, 웨이퍼링(20)로부터 인출위치(P1)에서 반도체소자(1)를 픽업하여 전달위치(P3)에서 반도체소자(1)를 제1이송툴(700)로 전달하여 반도체소자(1)가 플립되도록 할 수 있다.For example, the second transfer tool 800 picks up the semiconductor element 1 from the wafer ring 20 at the withdrawal position P1 and transfers the semiconductor element 1 to the first transfer tool at the transfer position P3. The semiconductor device 1 may be flipped by transferring the data to 700.
상기 제2이송툴(800)은, 인출위치(P1)와 전달위치(P3) 사이에 설치될 수 있다.The second transfer tool 800 may be installed between the withdrawal position P1 and the delivery position P3.
여기서, 상기 전달위치(P3)는, 인출위치(P1)에서 수직방향(Z축 방향)으로 이격된 위치에 설정됨이 바람직하다.Here, the delivery position P3 is preferably set at a position spaced apart from the drawing position P1 in the vertical direction (Z-axis direction).
일 실시예에서, 상기 제2이송툴(800)은, 수평방향의 회전축(811)을 가지는 회전구동부(810)와; 회전축(811)에 결합되어 회전되며 회전축(811)의 회전방향을 따라서 배치된 복수의 회전암(820)들과; 회전축(811)의 회전에 의하여 인출위치(P1) 및 전달위치(P3)에 순차적으로 위치되도록 복수의 회전암(820)들 각각에 결합되며 반도체소자(10)를 픽업하는 픽커(830)를 포함할 수 있다.In one embodiment, the second transfer tool 800, the rotary drive unit 810 having a horizontal axis of rotation (811); A plurality of rotation arms 820 coupled to the rotation shaft 811 and disposed along the rotation direction of the rotation shaft 811; A picker 830 coupled to each of the plurality of rotation arms 820 so as to be sequentially positioned at the lead position P1 and the transfer position P3 by rotation of the rotary shaft 811, and picking up the semiconductor device 10. can do.
상기 제2이송툴(800)은, 도 4에 도시된 바와 같이, 수평방향의 회전축(811)을 가져 인출위치(P1)에서 픽업된 반도체소자(10)의 상면이 아래방향(-Z방향)을 향하도록 반전시킬 수 있다.As shown in FIG. 4, the second transfer tool 800 has a horizontal axis of rotation 811 and the upper surface of the semiconductor device 10 picked up at the withdrawal position P1 is downward (-Z direction). Can be reversed to face.
상기 제2이송툴(800)은, 회전축(811)이 수평방향인 것을 제외하면, 제1이송툴(700)과 동일하게 구성되어 인출위치(P1)과 전달위치(P3) 사이에서 회전축(811)을 중심으로 회전이동될 수 있다.The second transfer tool 800 is configured in the same manner as the first transfer tool 700 except that the rotation axis 811 is in the horizontal direction, and is a rotation axis 811 between the withdrawal position P1 and the transfer position P3. It can be rotated around.
한편 상기 소자핸들러는, 이송툴, 즉 제1이송툴(700)의 픽커(700)에 의하여 인출위치(P1)에서 픽업된 반도체소자(10)의 수평오차를 계산하기 위하여 픽업된 소자(10)의 저면에 대한 이미지를 획득하는 제1하부이미지획득부(910), 제1하부이미지획득부(910)를 통과한 픽커(730)로부터 반도체소자(10)를 전달받아 수평이동시킴으로써 제1하부이미지획득부(910)에 의하여 획득된 이미지로부터 계산된 수평오차를 보정하는 소자정렬부(920), 후술하는 비전검사모듈 등이 픽커(730)의 이동경로 상에서 인출위치(P1) 및 언로딩위치(P2) 사이에 순차적으로 설치될 수 있다.On the other hand, the element handler, the picked-up device 10 to calculate the horizontal error of the semiconductor device 10 picked up at the withdrawal position (P1) by the transfer tool, that is, the picker 700 of the first transfer tool 700 The first lower image is obtained by horizontally receiving the semiconductor device 10 from the picker 730 passing through the first lower image acquisition unit 910 and the first lower image acquisition unit 910 for acquiring an image of the bottom surface of the first lower image. The element aligning unit 920 for correcting the horizontal error calculated from the image acquired by the acquiring unit 910, the vision inspection module described later, and the like, may have the withdrawal position P1 and the unloading position ( It can be installed sequentially between the P2).
상기 제1하부이미지획득부(910)는, 픽커(730)에 의하여 인출위치(P1)에서 픽업된 반도체소자(10)의 수평오차를 계산하기 위하여 인출위치(P1)에서 픽업된 반도체소자(10)의 저면에 대한 이미지를 획득하는 구성으로서 스캐너, 카메라 등 다양한 구성이 가능하다.The first lower image acquisition unit 910 is a semiconductor device 10 picked up at the extraction position P1 in order to calculate a horizontal error of the semiconductor device 10 picked up at the extraction position P1 by the picker 730. As a configuration for acquiring an image of the bottom of the), various configurations such as a scanner and a camera are possible.
상기 소자정렬부(920)는, 제1하부이미지획득부(910)를 통과한 픽커(730)로부터 반도체소자(10)를 전달받아 수평이동시킴으로써 제1하부이미지획득부(910)에 의하여 획득된 이미지로부터 계산된 수평오차를 보정하는 구성으로서 다양한 구성이 가능하다.The device alignment unit 920 is obtained by the first lower image acquisition unit 910 by horizontally receiving the semiconductor device 10 from the picker 730 that has passed through the first lower image acquisition unit 910. Various configurations are possible as the configuration for correcting the horizontal error calculated from the image.
일예로서, 상기 소자정렬부(920)는, 한국 공개특허 10-2014-0027970에 개시된 바와 같이, 반도체소자(10)를 픽커(730)로부터 전달받아 반도체소자(10)를 고정하기 위한 소자고정부(922)와, 반도체소자(10)를 고정한 소자고정부(922)를 수평이동시켜 제1하부이미지획득부(910)에 의하여 획득된 이미지로부터 계산된 수평오차를 보정하는 수평이동부(924)를 포함할 수 있다.For example, the device aligning unit 920 may be a device fixing part for fixing the semiconductor device 10 by receiving the semiconductor device 10 from the picker 730, as disclosed in Korean Patent Application Publication No. 10-2014-0027970. 922 and a horizontal shifter 924 which horizontally shifts the device fixing part 922 fixing the semiconductor device 10 to correct the horizontal error calculated from the image acquired by the first lower image acquirer 910. It may include.
상기 소자고정부(922)는, 반도체소자(10)를 픽커(730)로부터 전달받아 반도체소자(10)를 고정하기 위한 구성으로 진공압에 의하여 흡착고정하도록 구성될 수 있다.The device fixing unit 922 may be configured to receive and fix the semiconductor device 10 from the picker 730 to fix and fix the semiconductor device 10 by vacuum pressure.
상기 수평이동부(924)는, 반도체소자(10)를 고정한 소자고정부(922)를 수평이동시켜 제1하부이미지획득부(910)에 의하여 획득된 이미지로부터 계산된 수평오차를 보정하는 구성으로서, 소자고정부(922)를 X-Y방향이동, X-Y-Θ방향이동을 하도록 구성될 수 있다.The horizontal shifting unit 924 is configured to horizontally shift the device fixing part 922 fixing the semiconductor device 10 to correct the horizontal error calculated from the image acquired by the first lower image acquisition unit 910. The device fixing part 922 may be configured to move in the XY direction and in the XY-Θ direction.
한편 상기 소자핸들러는, 소자정렬부(920)에서 픽업된 반도체소자(10)의 저면에 대한 이미지를 획득하는 제2하부이미지획득부(미도시)가 회전축(711)을 중심으로 한 픽커(730)의 회전이동경로에서 소자정렬부(920) 및 언로딩위치(P2) 사이에 설치될 수 있다.The device handler includes a picker 730 having a second lower image acquisition unit (not shown) which acquires an image of the bottom surface of the semiconductor device 10 picked up by the device alignment unit 920 around the rotation axis 711. It may be installed between the element alignment unit 920 and the unloading position (P2) in the rotational movement path of the).
이때 상기 소자정렬부(920)에서 반도체소자(10)를 픽업한 픽커(730)는, 제2하부이미지획득부(미도시)에 의하여 획득된 이미지로부터 반도체소자(10)의 저면상태 및 수평오차를 계산하여 정상인 것으로 판단되는 경우에만 픽커(730)가 언로딩위치(P2)에서 반도체소자(10)를 언로딩부재(30)로 반도체소자(10)를 플레이스함이 바람직하다.In this case, the picker 730 picking up the semiconductor device 10 from the device alignment unit 920 may have a bottom surface state and a horizontal error of the semiconductor device 10 from an image acquired by a second lower image acquisition unit (not shown). It is preferable that the picker 730 places the semiconductor device 10 into the unloading member 30 at the unloading position P2 only when it is determined to be normal by calculating.
상기 제2하부이미지획득부(미도시)는, 픽커(730)의 이동경로, 예로서 회전이동경로에서 소자정렬부(920) 및 언로딩위치(P2) 사이에 설치되어 반도체소자(10)의 저면에 대한 이미지를 획득하는 구성으로서 제1하부이미지획득부(910)과 유사한 구성을 가지며 스캐너, 카메라 등 다양한 구성이 가능하다.The second lower image acquisition unit (not shown) is disposed between the element alignment unit 920 and the unloading position P2 in the movement path of the picker 730, for example, in the rotation movement path. As a configuration for acquiring an image of a bottom surface, a configuration similar to that of the first lower image acquisition unit 910 is possible, and various configurations such as a scanner and a camera are possible.
한편 상기 소자핸들러는, 회전축(711)을 중심으로 한 픽커(730)의 이동경로, 예로서 회전이동경로에서 언로딩위치(P2) 및 인출위치(P1) 사이에 설치되며, 제2하부이미지획득부(미도시)에 의하여 획득된 이미지로부터 소자(10)의 저면상태 및 수평오차를 계산하여 비정상인 것으로 판단되는 경우 픽커(730)로부터 반도체소자(10)를 회수하는 소자회수부(930)가 추가로 설치될 수 있다.On the other hand, the element handler is installed between the unloading position (P2) and the withdrawal position (P1) in the movement path of the picker 730 around the rotation axis 711, for example, the rotation movement path, and acquires a second lower image. If the bottom state and the horizontal error of the device 10 is determined to be abnormal by calculating the bottom state and the horizontal error from the image obtained by the (not shown) element recovery unit 930 for recovering the semiconductor device 10 from the picker 730 It can be installed additionally.
상기 소자회수부(930)는, 반드시 설치될 필요는 없지만 픽커(730)의 이동경로, 예로서 회전이동경로 상, 특히 언로딩위치(P2) 및 인출위치(P2) 사이에 설치되어 불량의 반도체소자(10)들을 픽커(730)로부터 전달받아 회수할 수 있는 구성이면 어떠한 구성도 가능하다.The element recovery unit 930 is not necessarily provided, but is installed on the movement path of the picker 730, for example, on the rotation movement path, in particular between the unloading position P2 and the extraction position P2. Any configuration may be used as long as the device 10 can receive and recover the elements 10 from the picker 730.
한편, 상기 소자핸들러는, 반도체소자(10)에 대한 비전검사를 수행하는 비전검사모듈을 추가로 포함할 수 있다.Meanwhile, the device handler may further include a vision inspection module that performs vision inspection on the semiconductor device 10.
상기 비전검사모듈은, 비전검사의 종류에 따라서 다양한 구성이 가능하며, 반도체소자(10)의 상면 및 저면 중 어느 일면(이하 '제1평면'이라 한다) 및 그에 인접된 측면에 대한 비전검사를 모두 수행하도록 구성됨이 바람직하다.The vision inspection module may be configured in various ways according to the type of vision inspection, and performs vision inspection on any one surface (hereinafter, referred to as a 'first plane') of the upper and lower surfaces of the semiconductor device 10 and adjacent sides thereof. It is preferred to be configured to perform all.
구체적으로, 상기 비전검사모듈은, 상기 회전축(711)을 중심으로 한 픽커(730)의 이동경로, 예로서 회전이동경로에서 인출위치(P1) 및 언로딩위치(P2) 사이에 설치되어 반도체소자(10)에 대한 비전검사를 수행하는 구성으로서 다양한 구성이 가능하다.Specifically, the vision inspection module is a semiconductor device installed between the withdrawal position (P1) and the unloading position (P2) in the movement path of the picker 730 around the rotation axis 711, for example in the rotation movement path As the configuration for performing the vision inspection for (10), various configurations are possible.
특히 상기 비전검사모듈은, 반도체소자(10)의 저면 등에 대한 외관을 카메라, 스캐너 등을 이용하여 이미지를 획득하는 구성으로서 비전검사방식 등에 따라서 다양한 구성이 가능하다.In particular, the vision inspection module is configured to acquire an image of the appearance of the bottom surface of the semiconductor device 10 by using a camera, a scanner, or the like.
여기서 상기 비전검사모듈에 의하여 획득된 이미지는, 프로그램 등을 이용하여 이미지 분석 후 불량여부 등의 비점검사에 활용된다.Here, the image acquired by the vision inspection module is used for non-point inspection, such as whether the defect after image analysis using a program or the like.
보다 구체적으로, 상기 비전검사모듈은, 도 2a 및 도 8에 도시된 바와 같이, 평면형상이 직사각형인 반도체소자(10)에 대하여, 제1이송툴(700)에 픽업된 상태에서 그 반대면(제1평면) 및 네 개의 측면들에 대한 비전검사를 모두 수행하도록 구성됨이 바람직하다.More specifically, the vision inspection module, as shown in FIGS. 2A and 8, has a surface opposite to that of the semiconductor device 10 having a rectangular planar shape in the state of being picked up by the first transfer tool 700. It is preferred to be configured to perform vision inspection on both the first plane) and the four sides.
즉, 상기 비전검사모듈은, 비전검사를 위하여 평면형상이 직사각형인 반도체소자(10)의 네 변 중 서로 대향하는 한 쌍의 대향변들의 측면들에 대한 측면이미지들을 획득하는 제1비전검사부(40)와; 제1비전검사부(40)를 거친 반도체소자(10)의 네 변 중 대향변에 수직을 이루어 배치되며 서로 대향하는 나머지 한 쌍의 대향변의 측면들에 대한 측면이미지들을 획득하는 제2비전검사부(50)를 포함 수 있다.That is, the vision inspection module includes a first vision inspection unit 40 for acquiring side images of sides of a pair of opposite sides of the four sides of the semiconductor device 10 having a planar rectangular shape for vision inspection. )Wow; The second vision inspection unit 50, which is arranged perpendicular to the opposite sides of the four sides of the semiconductor device 10 that pass through the first vision inspection unit 40 and acquires side images of the sides of the other pair of opposite sides facing each other. ) May be included.
상기 제1비전검사부(40)와 제2비전검사부(50)는, 소자(10)를 픽업한 픽커(730)의 이동경로, 예를 들면 회전축(711)을 중심으로 한 픽커(730)의 회전이동경로에서 인출위치(P1) 및 언로딩위치(P2) 사이에 순차적으로 설치될 수 있다.The first vision inspection unit 40 and the second vision inspection unit 50 rotate the picker 730 that picks up the element 10, for example, the rotation of the picker 730 around the rotation axis 711. The moving path may be sequentially installed between the withdrawal position P1 and the unloading position P2.
특히, 상기 제1비전검사부(40)와 제2비전검사부(50)는, 소자정렬부(920)와 적재위치(P2) 사이에 순차적으로 설치되어 대향변들에 대한 비전검사를 차례로 수행함이 바람직하다.Particularly, the first vision inspection unit 40 and the second vision inspection unit 50 are sequentially installed between the element alignment unit 920 and the stacking position P2 to sequentially perform vision inspection on opposite sides. Do.
상기 제1비전검사부(40)는, 평면형상이 직사각형인 반도체소자(10)의 네 변 중 서로 대향하는 한 쌍의 대향변들(제1대향변)의 측면들에 대한 측면이미지들을 획득하는 구성으로 다양한 구성이 가능하다.The first vision inspection unit 40 is configured to acquire side images of side surfaces of a pair of opposing sides (first opposing sides) of the four sides of the semiconductor device 10 having a planar rectangular shape. Various configurations are possible.
상기 제2비전검사부(50)는, 제1비전검사부(40)를 거친 반도체소자(10)의 네 변 중 나머지 대향하는 한 쌍의 대향변(제2대향변)의 측면들에 대한 측면이미지들을 획득하는 구성으로 다양한 구성이 가능하다.The second vision inspection unit 50 may include side images of sides of a pair of opposing sides (second opposing sides) of the four opposite sides of the semiconductor device 10 that have passed through the first vision inspection unit 40. Various configurations are possible with the configuration to obtain.
한편 상기 제1비전검사부(40) 및 상기 제2비전검사부(50)는, 평면형상이 직사각형인 반도체소자(10)의 네 변에 대한 측면 비전검사를 수행하는데 공통점이 있는바 그 구성이 유사하게 구성될 수 있으나, 반드시 유사하게 구성될 필요는 없다.On the other hand, the first vision inspection unit 40 and the second vision inspection unit 50 have a common in performing side vision inspection for four sides of the semiconductor device 10 having a rectangular planar shape. It may be configured, but need not necessarily be similarly configured.
보다 구체적으로, 상기 제1비전검사부(40) 및 제2비전검사부(50) 중 적어도 하나는, 한 쌍의 대향변들의 측면이미지들을 획득하는 이미지획득부(600)와; 한 쌍의 대향변들의 측면이미지들 각각을 상기 이미지획득부(600)에 도달하도록 하는 복수의 제1광경로(L1)들을 형성하는 광학계(300)를 포함할 수 있다.More specifically, at least one of the first vision inspection unit 40 and the second vision inspection unit 50 includes: an image acquisition unit 600 for acquiring side images of a pair of opposite sides; The optical system 300 may include a plurality of first optical paths L1 that allow each of the side images of the pair of opposite sides to reach the image acquisition unit 600.
상기 이미지획득부(600)는, 반도체소자(10)의 네 변들의 측면들 중 해당 측면들(제1대향변들의 측면 또는 제2대향변들의 측면)에 대한 측면이미지들을 획득하는 구성으로서 다양한 구성이 가능하다.The image acquisition unit 600 is configured to acquire side images of the corresponding sides (sides of the first opposing sides or sides of the second opposing sides) of four sides of the semiconductor device 10. This is possible.
예로서, 상기 이미지획득부(600)는, 카메라, 스캐너 등이 사용될 수 있다.For example, the image acquisition unit 600 may be a camera, a scanner, or the like.
한편, 상기 제1비전검사부(40) 및 제2비전검사부(50) 중 적어도 하나의 이미지획득부(600)는, 반도체소자(10)의 제1평면에 대한 제1평면이미지를 동시에 획득할 수 있다.Meanwhile, at least one image acquisition unit 600 of the first vision inspection unit 40 and the second vision inspection unit 50 may simultaneously acquire a first plane image of the first plane of the semiconductor device 10. have.
그리고 상기 이미지획득부(600)는, 획득된 이미지들의 분석을 위하여 반도체소자(10)의 제1평면에 대한 제1평면이미지 및 반도체소자(10)의 대향변들의 측면들에 대한 측면이미지들을 제어부(미도시)로 전달하며, 전달된 이미지들은, 프로그램 등을 이용하여 이미지 분석 후 불량여부 등의 비전검사에 활용될 수 있다.The image acquisition unit 600 controls the first plane image of the first plane of the semiconductor device 10 and the side images of the sides of the opposite sides of the semiconductor device 10 to analyze the acquired images. (Not shown), and the delivered images may be used for vision inspection, such as whether the defect after image analysis using a program or the like.
상기 광학계(300)는, 반도체소자(10)의 네 변들의 측면들 중 해당 측면들(제1대향변들의 측면 또는 제2대향변들의 측면)에 대한 측면이미지들 각각이 이미지획득부(600)에 도달하도록 하는 복수의 제1광경로(L1)들을 형성하는 구성으로서 다양한 구성이 가능하다.The optical system 300 includes an image acquisition unit 600 each of the side images of the side surfaces (side surfaces of the first opposite sides or sides of the second opposite sides) of the four sides of the semiconductor device 10. Various configurations are possible as the configuration for forming the plurality of first optical paths L1 to reach the.
구체적으로, 상기 광학계(300)는, 반도체소자(10) 및 이미지획득부(600)의 설치위치에 따라서 렌즈(302), 반사부재(310, 320), 반투과부재, 프리즘 등이 그 숫자 및 설치위치가 선택될 수 있다.In detail, the optical system 300 includes the numbers of the lens 302, the reflecting members 310 and 320, the transflective member, the prism, and the like according to the installation positions of the semiconductor device 10 and the image acquisition unit 600. The installation location can be selected.
한편, 상기 광학계(300)는, 이미지획득부(600)가 반도체소자(10)의 제1평면에 대한 제1평면이미지를 동시에 획득하는 경우, 제1평면이미지가 이미지획득부(600)에 도달하도록 하는 제2광경로(L2)를 추가로 형성할 수 있다.Meanwhile, when the image acquisition unit 600 simultaneously acquires the first plane image of the first plane of the semiconductor device 10, the optical system 300 reaches the image acquisition unit 600. The second optical path L2 may be further formed.
일 실시예에서, 상기 광학계(300)는, 제1평면에 대한 제1평면이미지를 이미지획득부(600)를 향하도록 반사시키는 주반사부재(310)와, 반도체소자(10)의 측면에 대한 측면이미지를 주반사부재(310)로 향하도록 반사시키는 한 쌍의 보조반사부재(320)를 포함할 수 있다.In one embodiment, the optical system 300, the main reflection member 310 for reflecting the first plane image of the first plane toward the image acquisition unit 600, and the side surface of the semiconductor device 10 It may include a pair of auxiliary reflecting member 320 to reflect the side image toward the main reflecting member (310).
상기 주반사부재(310)는, 제1평면에 대한 제1평면이미지를 이미지획득부(600)를 향하도록 반사시키는 구성으로서 반사부재, 반투과부재 등 다양한 부재가 사용될 수 있다.The main reflecting member 310, as a configuration for reflecting the first plane image on the first plane toward the image acquisition unit 600, various members such as a reflective member, a semi-transmissive member may be used.
상기 주반사부재(310)는, 반도체소자(10)의 제1평면이미지를 이미지획득부(600)를 향하도록 반사시키는 구성으로, 이미지획득부(600)가 제1평면이미지를 획득하는 경우에만 필요하므로, 본 발명의 필수적인 구성에 해당하지 않음은 물론이다.The main reflection member 310 is configured to reflect the first plane image of the semiconductor device 10 toward the image acquisition unit 600, and only when the image acquisition unit 600 acquires the first plane image. As a matter of course, it does not correspond to the essential configuration of the present invention.
상기 한 쌍의 보조반사부재(320)는, 도 1 및 도 5a 내지 도 8에 도시된 바와 같이, 반도체소자(10)의 대향하는 한 쌍의 측면에 대응되어 설치되어 반도체소자(10)의 각 측면에 대한 측면이미지를 이미지획득부(600)로 향하도록 반사시키는 구성으로서, 반사부재, 반투과부재 등 다양한 부재가 사용될 수 있다.As shown in FIGS. 1 and 5A to 8, the pair of auxiliary reflecting members 320 are installed to correspond to a pair of side surfaces of the semiconductor device 10 that are opposite to each other of the semiconductor device 10. As a configuration for reflecting the side image on the side toward the image acquisition unit 600, various members such as a reflective member, a transflective member, and the like may be used.
상기 광학계(300)가 반도체소자(10)의 제1평면이미지를 이미지획득부(600)로 반사시키는 주반사부재(310)를 포함하는 경우, 한 쌍의 보조반사부재(320)는, 반도체소자(10)의 각 측면에 대한 측면이미지를 주반사부재(310)로 향하도록 반사시킬 수 있다.When the optical system 300 includes a main reflection member 310 for reflecting the first plane image of the semiconductor device 10 to the image acquisition unit 600, the pair of auxiliary reflection members 320 may include a semiconductor device. The side image of each side of 10 may be reflected to face the main reflection member 310.
상기 한 쌍의 보조반사부재(320)는, 한 쌍의 대향변들 중심을 지나며 한 쌍의 대향변들에 평행한 중심선(C, N)에 대해 대칭으로 설치될 수 있다.The pair of auxiliary reflecting members 320 may be symmetrically installed with respect to the centerlines C and N passing through the center of the pair of opposite sides and parallel to the pair of opposite sides.
이때, 상기 한 쌍의 보조반사부재(320)는, 반도체소자(10)의 규격에 따라서 한 쌍의 대향변들이 이루는 폭의 크기에 맞춰 비전검사가 가능하도록 한 쌍의 대향변들이 이루는 중심선(C, N)에 대하여 선형대칭이동이 가능하도록 설치될 수 있다.At this time, the pair of auxiliary reflecting members 320, the center line (C) formed by a pair of opposing sides to enable vision inspection according to the size of the width of the pair of opposing sides according to the specification of the semiconductor device 10 , N) can be installed to enable linear symmetrical movement.
구체적으로, 상기 제1비전검사부(40)의 한 쌍의 보조반사부재(320)는, 도 5a에 도시된 바와 같이, 한 쌍의 대향변들이 이루는 중심선(C)에 대하여 대칭으로 설치되어 대향변들이 이루는 중심선에 대하여 선형대칭이동 가능하도록 설치될 수 있다.Specifically, the pair of auxiliary reflecting members 320 of the first vision inspection unit 40, as shown in Figure 5a, is installed symmetrically with respect to the center line (C) formed by a pair of opposing sides opposing sides They may be installed so as to be linearly symmetrical movement with respect to the center line formed by them.
마찬가지로, 상기 제2비전검사부(50)의 한 쌍의 보조반사부재(320)는, 도 5b에 도시된 바와 같이, 제1비전검사부(40)에서 검사를 마친 한 쌍의 대향변들(제1대향변들)을 제외한 나머지 한 쌍의 대향변들(제2대향변들)이 이루는 중심선(N)에 대하여 대칭으로 설치되어 한 쌍의 대향변들이 이루는 중심선에 대하여 선형대칭이동 가능하도록 설치될 수 있다.Similarly, the pair of auxiliary reflecting members 320 of the second vision inspection unit 50, as shown in FIG. 5B, has a pair of opposing sides that have been inspected by the first vision inspection unit 40 (first). It can be installed symmetrically with respect to the center line (N) formed by the other pair of opposing sides (the second opposing sides) except for the opposite sides) so as to be linearly symmetrical with respect to the center line formed by the pair of opposing sides. have.
한편, 상기 광학계(300)는, 비전검사를 위하여 제1평면 및 측면들에 광을 조사하는 조명계(360)가 설치되는데, 조명계(360)는, 그 조사방식에 따라서 다양하게 설치될 수 있다.Meanwhile, the optical system 300 is provided with an illumination system 360 for irradiating light to the first plane and side surfaces for vision inspection, and the illumination system 360 may be variously installed according to the irradiation method.
상기 조명계(360)는, 비전검사의 형태에 따라서, 레이저광 등의 단색광, R, G, B 등의 삼색광, 백색광 등 다양한 광을 조사할 수 있으며, 엘이디소자 등 다양한 광원이 사용될 수 있다.The illumination system 360 may irradiate various types of light, such as monochromatic light such as laser light, tricolor light such as R, G, and B, and white light, depending on the form of vision inspection, and various light sources such as an LED element may be used.
아울러, 상기 조명계(360)는, 광학계의 구성에 따라서 다양한 배치가 가능하다.In addition, the illumination system 360 may be variously disposed according to the configuration of the optical system.
예로서, 상기 광학계(300)가 앞서 설명한 주반사부재(310)를 포함할 때, 주반사부재(310)가 광이 투과할 수 있는 반투과재질을 가질 수 있으며, 이때 조명계(360)는, 제1평면이미지를 반사시키는 반사면의 이면에서 제1평면 및 대향변들의 각 측면에 광을 조사하도록 구성될 수 있다.For example, when the optical system 300 includes the main reflective member 310 described above, the main reflective member 310 may have a transflective material through which light can pass, and the illumination system 360 includes: It may be configured to irradiate light on each side of the first plane and the opposite sides at the back surface of the reflective surface reflecting the first plane image.
또한, 상기 조명계(360)는, 제1평면에 대한 조사 및 측면들의 각 측면에 대한 조사가 별도의 광원(미도시)에 의하여 수행되도록 구성될 수 있으며, 이때 앞서 설명한 보조반사부재(320)가 광이 투과할 수 있는 반투과재질을 가지도록 하고, 측면이미지를 반사시키는 반사면의 이면에서 반도체소자(10)의 대향변들 또는 대향변들의 각 측면에 광을 조사하도록 구성될 수 있다.In addition, the illumination system 360 may be configured such that irradiation on the first plane and irradiation on each side of the side surfaces is performed by a separate light source (not shown), wherein the auxiliary reflection member 320 described above is It may be configured to have a transflective material that can transmit light, and to irradiate the light on each side of the opposite sides or opposite sides of the semiconductor device 10 on the back side of the reflective surface reflecting the side image.
한편 측면이미지들 및 제1평면이미지는, 서로 다른 광경로, 즉 제1광경로(L1) 및 제2광경로(L2)를 거쳐 획득되므로 광경로의 경로차로 인하여 초점거리가 서로 달라 단일의 이미지획득장치, 즉 카메라에 의하여 이미지가 획득될 때 제1평면이미지 및 측면이미지들 중 어느 한쪽에 대한 초점이 맞지 않아 흐릿하게 되는 문제점이 있다.On the other hand, the side images and the first plane image are obtained through different optical paths, that is, the first optical path L1 and the second optical path L2, so that the focal lengths are different from each other due to the path difference of the optical paths. When an image is acquired by an acquiring device, that is, a camera, one of the first planar image and the side image is out of focus, which causes blur.
이에, 상기 광학계(300)는, 도 8에 도시된 바와 같이, 제1광경로(L1) 및 제2광경로(L2)의 초점거리 차이를 보정하는 초점거리보정부(340)를 추가로 포함할 수 있다.Accordingly, the optical system 300 further includes a focal length correction unit 340 for correcting a focal length difference between the first optical path L1 and the second optical path L2, as shown in FIG. 8. can do.
상기 초점거리보정부(340)는, 제1광경로(L1) 및 제2광경로(L2)를 거쳐 획득되므로 광경로의 경로차로 인하여 초점거리가 서로 달라지는 것을 보정하는 구성으로서 다양한 구성이 가능하다.Since the focal length correction unit 340 is obtained through the first optical path L1 and the second optical path L2, various configurations are possible as corrections for changing the focal lengths due to the path difference of the optical paths. .
일예로서, 상기 초점거리보정부(340)는, 해당 광경로(L1, L2)에 설치되어 광투과가 가능한 투명재질을 가지는 매질부(342)를 포함할 수 있다.For example, the focal length compensator 340 may include a medium part 342 installed on the light paths L1 and L2 and having a transparent material capable of light transmission.
상기 매질부(342)는, 해당 광경로(L1, L2)에 설치되어 초점거리를 보정하기 위한 구성으로서, 투명유리, 석영 등 광경로(L1, L2) 상에 설치되어 굴절률 상의 차이로 초점거리를 보정하는 구성이다.The medium part 342 is provided on the optical paths L1 and L2 to correct the focal length, and is installed on the optical paths L1 and L2 such as transparent glass and quartz and has a focal length due to a difference in refractive index. It is a configuration to correct.
특히 상기 매질부(342)는, 제1광경로(L1) 및 제2광경로(L2) 중 제1광경로(L1)에 설치됨이 바람직하다.In particular, the medium part 342 is preferably installed in the first optical path L1 of the first optical path L1 and the second optical path L2.
여기서 상기 매질부(342)는, 광경로를 기준으로 광의 입사면 및 투과면은 광경로와 수직인 평면을 이루며 미리 설정된 두께(t)를 가지는 원기둥, 다각기둥 등 기둥 형상을 가진다.Here, the medium part 342 may have a column shape such as a cylinder, a polygonal column, and the like, in which the incident surface and the transmissive surface of the light form a plane perpendicular to the optical path and have a predetermined thickness t.
그리고, 상기 매질부(342)는, 보조반사부재(320)와 일체로 형성됨이 바람직하다.In addition, the medium portion 342 is preferably formed integrally with the auxiliary reflection member 320.
상기 매질부(342)의 두께(t)는, 하기의 수학식 1과 같이, 한 쌍의 보조반사부재(320) 사이에 배치된 반도체소자(10)의 측면에 대한 이미지획득작업거리(A)에 따라 달라질 수 있다.The thickness t of the medium portion 342 is an image acquisition working distance A with respect to the side surface of the semiconductor device 10 disposed between the pair of auxiliary reflection members 320 as shown in Equation 1 below. It may vary.
Figure PCTKR2017007823-appb-M000001
Figure PCTKR2017007823-appb-M000001
여기서 t는 광경로 방향으로의 매질부(342)의 두께, n은 매질부(342)의 굴절율, A는 측면에 대한 이미지획득을 위한 작업거리이다.Where t is the thickness of the medium portion 342 in the optical path direction, n is the refractive index of the medium portion 342, and A is This is the working distance for acquiring the image on the side.
상기 측면에 대한 이미지획득작업거리(A)란, 보조반사부재(320)에서 반도체소자(10)의 측면까지의 거리를 의미한다.The image acquisition working distance A on the side surface refers to the distance from the auxiliary reflection member 320 to the side surface of the semiconductor device 10.
상기 매질부(342)의 두께(t)는, 측정가능한 최대 크기의 규격을 가지는 반도체소자(10)를 기준으로 결정될 수 있다.The thickness t of the medium part 342 may be determined based on the semiconductor device 10 having a standard of the maximum measurable size.
따라서, 측정가능한 최대 크기의 규격을 가지는 반도체소자(10)를 기준으로 매질부(342)의 두께(t)가 결정된 경우, 두께(t)가 일정한 매질부(342)를 다양한 규격의 반도체소자(10)의의 비전검사에 활용하기 위해서는 반도체소자(10)의 측면에 대한 이미지획득작업거리(A)를 반도체소자(10)의 규격에 따라 조절할 필요가 있다.Therefore, when the thickness t of the medium portion 342 is determined based on the semiconductor device 10 having the largest sizeable standard, the medium portion 342 having a constant thickness t may be formed of a semiconductor device having various standards. In order to utilize the vision inspection of 10), it is necessary to adjust the image acquisition working distance A on the side of the semiconductor device 10 according to the specification of the semiconductor device 10.
즉, 상기 매질부(342)는, 측정대상이 되는 반도체소자(10)의 규격에 따라 상기 측면에 대한 이미지획득작업거리(A)를 조절하기 위해 한 쌍의 보조반사부재(320)와 함께 일체로 형성되어 이동가능하게 설치됨이 바람직하다.That is, the medium unit 342 is integrated with a pair of auxiliary reflecting members 320 to adjust the image acquisition working distance A on the side surface according to the standard of the semiconductor device 10 to be measured. It is preferable to be formed so as to be movable.
다시 말하면, 상기 매질부(342)는 한 쌍으로 구성되어 제1광경로(L1) 상에 설치되며, 한 쌍의 보조반사부재(320) 각각과 일체로 형성되어 한 쌍의 보조반사부재(320)와 연관된 측면들(제1대향변들 또는 제2대향변들)이 이루는 중심선(C, N)에 대하여 선형대칭이동이 가능하도록 설치될 수 있다. In other words, the medium part 342 is formed in a pair and installed on the first optical path L1, and is formed integrally with each of the pair of auxiliary reflecting members 320, and thus, the pair of auxiliary reflecting members 320. ) And linearly symmetrical movement with respect to the center line (C, N) formed by the sides (first opposite sides or the second opposite sides) associated with.
이에, 상기 광학계(300)는, 한 쌍의 보조반사부재(320)들이 이루는 폭을 조절하는 폭조절부(330)를 추가로 포함할 수 있다.Thus, the optical system 300 may further include a width adjusting unit 330 for adjusting the width formed by the pair of auxiliary reflecting members 320.
상기 폭조절부(330)는, 한 쌍의 보조반사부재(320)를 반도체소자(10)의 측면들(제1대향변들 또는 제2대향변들)의 중심선(C, N)을 기준으로 중심선(C, N)에서 멀어지거나 또는 가까워지는 방향으로 이동시켜 한 쌍의 보조반사부재(320)이 이루는 폭을 조절하는 구성으로 다양한 구성이 가능하다.The width adjusting part 330 may include the pair of auxiliary reflecting members 320 based on the center lines C and N of the side surfaces (the first opposing sides or the second opposing sides) of the semiconductor device 10. Various configurations are possible by adjusting the width formed by the pair of auxiliary reflecting members 320 by moving in the direction away from or near the center line (C, N).
일 실시예에서, 상기 폭조절부(330)는, 도 6에 도시된 바와 같이, 한 쌍의 보조반사부재(320)의 배치방향에 평행하게 설치되며, 반도체소자(10)의 중심을 지나며 대응되는 측면들(제1대향변들 또는 제2대향변들)에 평행한 중심선(C, N)을 기준으로 왼나사선과 오른나사선이 외주면에 각각 형성되어 한 쌍의 보조반사부재(320)의 일단과 각각 나사결합되는 회전축(332)과; 회전축의 일단에 결합되어 회전축을 회전시키는 회전구동부(334)와; 한 쌍의 보조반사부재(320)의 타단과 각각 결합되어 한 쌍의 보조반사부재(320)의 이동경로를 가이드하는 가이드부(336)을 포함할 수 있다.In one embodiment, as shown in FIG. 6, the width adjusting part 330 is installed in parallel to the arrangement direction of the pair of auxiliary reflecting members 320 and passes through the center of the semiconductor device 10. Left and right threaded lines are formed on the outer circumferential surface of the pair of auxiliary reflecting members 320 with respect to the center lines C and N parallel to the side surfaces (the first opposite sides or the second opposite sides). Rotating shafts 332 which are respectively screwed together; A rotation driving unit 334 coupled to one end of the rotation shaft to rotate the rotation shaft; It may include a guide portion 336 coupled to the other end of the pair of auxiliary reflecting member 320 to guide the movement path of the pair of auxiliary reflecting member 320, respectively.
다른 일 실시예에서, 상기 폭조절부(330)는, 도 7에 도시된 바와 같이, 한 쌍의 보조반사부재(320)의 양측에 설치된 한 쌍의 벨트풀리(333)에 의해 회전되며, 한 쌍의 보조반사부재(320)와 각각 반대측에서 결합된 벨트(335)를 포함할 수 있다.In another embodiment, the width adjusting unit 330 is rotated by a pair of belt pulleys 333 installed on both sides of the pair of auxiliary reflecting members 320, as shown in FIG. Each of the pair of auxiliary reflecting members 320 may include a belt 335 coupled to the opposite side.
상기 폭조절부(330)는, 한 쌍의 대향변들의 중심선(C)을 기준으로 대칭으로 설치된 한 쌍의 보조반사부재(320) 각각이 벨트(335)의 반대측에서 결합되므로, 벨트풀리(333)가 시계방향으로 회전하면 한 쌍의 보조반사부재(320)는 서로 가까워지는 방향으로 이동되고 벨트풀리(333)이 반시계방향으로 회전하면 한 쌍의 보조반사부재(320)는 서로 멀어지는 방향으로 이동될 수 있다.The width adjusting part 330 is a pair of auxiliary reflecting members 320 installed symmetrically with respect to the center line C of the pair of opposing sides is coupled to the opposite side of the belt 335, belt pulley 333 ) Rotates in a clockwise direction, the pair of sub-reflective members 320 move toward each other, and when the belt pulley 333 rotates counter-clockwise, the pair of sub-reflective members 320 move away from each other. Can be moved.
상기와 같은 구성을 가지는 폭조절부(330)는, 한 쌍의 보조반사부재(320)와 한 쌍의 매질부(342)가 각각 일체로 구성되는 경우, 한 쌍의 보조반사부재(320) 또는 매질부(342)에 결합될 수 있다.The width adjusting unit 330 having the configuration described above includes a pair of auxiliary reflecting members 320 or a pair of auxiliary reflecting members 320 and a pair of medium portions 342, respectively. May be coupled to the medium portion 342.
상기 폭조절부(330)는, 도 5a 내지 도 5b에 도시된 바와 같이, 측정가능한 최대 크기의 규격(Wm, Hm)을 가지는 반도체소자(10)보다 W방향 또는 H방향의 길이가 더 짧은 반도체소자(10)에 대한 비전검사가 수행되는 경우, 반도체소자(10)를 향하는 방향으로 상기 한 쌍의 보조반사부재(320) 및 매질부(342)을 이동시켜 반도체소자(10)의 측면에 대한 이미지획득작업거리(A)를 조절할 수 있다.As shown in FIGS. 5A to 5B, the width adjusting unit 330 is a semiconductor having a shorter length in the W direction or the H direction than the semiconductor device 10 having the maximum size Wm and Hm. When the vision inspection is performed on the device 10, the pair of auxiliary reflection members 320 and the medium part 342 may be moved in the direction toward the semiconductor device 10, and thus the side surfaces of the semiconductor device 10 may be moved. Image acquisition working distance (A) can be adjusted.
상기와 같은 한 쌍의 보조반사부재(320), 초점거리보정부(340) 및 폭조절부(330)의 설치에 의하여, 광경로의 경로차로 인하여 초점거리가 서로 달라 단일의 이미지획득장치, 즉 카메라에 의하여 이미지가 획득될 때 제1평면이미지 및 측면이미지들 중 어느 한쪽에 대한 초점이 맞지 않아 흐릿하게 되는 문제점을 해결할 수 있다.By installing the pair of auxiliary reflecting members 320, the focal length correction unit 340 and the width adjusting unit 330 as described above, the focal length is different from each other due to the path difference of the optical path, that is, a single image acquisition device When the image is acquired by the camera, one of the first planar image and the side image may be out of focus and may be blurred.
상기와 같은 구성에 따라, 제1비전검사부(40)는, 반도체소자(10)의 제1평면과 두 개의 대향변들에 대한 3면의 이미지를 획득하여 비전검사를 수행할 수 있다.According to the above configuration, the first vision inspection unit 40 may perform vision inspection by acquiring images of three surfaces of the first plane and two opposite sides of the semiconductor device 10.
상기 제2비전검사부(50)는, 반도체소자(10)의 제1평면과 상기 제1비전검사부(40)에서 비전검사가 수행되지 않은 대향변들에 대한 3면의 이미지를 획득하여 비전검사를 수행할 수 있다.The second vision inspection unit 50 acquires images of three surfaces of the first plane of the semiconductor device 10 and opposite sides of the first vision inspection unit 40 where vision inspection is not performed. Can be done.
본 발명에 따른 비전검사모듈은, 평면형상이 사각형인 반도체소자(10)의 비전검사에 있어서, 제1평면과 네 변들에 대한 이미지를 한번에 획득하는 것이 아닌, 네 변들 중 서로 대향하는 두 변인 대향변들과 대향변에 수직을 이루어 배치되며 서로 대향하는 대향변들을 분리하여 이미지를 획득하고, 대향변들 및 대향변들의 이미지획득을 위한 광학계를 이동가능하게 구성함으로써, 광학계의 구조적 변경 없이 다양한 규격의 반도체소자(10)에 대한 비전검사를 수행할 수 있다.In the vision inspection module according to the present invention, in the vision inspection of the semiconductor device 10 having a planar quadrangular shape, the two sides facing each other are opposed to each other, instead of acquiring an image of the first plane and four sides at once. Arranged perpendicular to the sides and the opposite sides, the image is obtained by separating the opposite sides facing each other, and by configuring the optical system for the image acquisition of the opposite sides and the opposite sides to be movable, various specifications without structural changes of the optical system Vision inspection of the semiconductor device 10 may be performed.
또한, 본 발명에 따른 비전검사모듈은, 상기의 구성을 가지는 소자핸들러에 한정되어 적용되는 것이 아니라, 평면형상이 직사각형인 반도체소자(10)의 측면을 검사하는 비전검사시스템이라면 모두 적용될 수 있다.In addition, the vision inspection module according to the present invention is not limited to the device handler having the above configuration, and may be applied to any vision inspection system that inspects the side surface of the semiconductor device 10 having a rectangular planar shape.
이상에서는 본 발명의 바람직한 실시예들에 대하여 예시적으로 설명하였으나, 본 발명의 범위는 이와 같은 특정 실시예들에만 한정되는 것이 아니며, 특허청구범위에 기재된 범주 내에서 적절하게 변경될 수 있다.The exemplary embodiments of the present invention have been described above by way of example, but the scope of the present invention is not limited to these specific embodiments, and may be appropriately changed within the scope of the claims.

Claims (15)

  1. 비전검사를 위하여 평면형상이 직사각형인 반도체소자(10)에서 서로 대향하는 두 쌍의 대형변들 중 한 쌍의 대향변들의 측면들에 대한 측면이미지들을 획득하는 제1비전검사부(40)와;A first vision inspection unit 40 for acquiring side images of sides of a pair of opposing sides of two pairs of large sides facing each other in the semiconductor device 10 having a rectangular planar shape for vision inspection;
    상기 제1비전검사부(40)를 거친 반도체소자(10)에서 서로 대향하는 두 쌍의 대형변들 중 나머지 한 쌍의 대향변들의 측면들에 대한 측면이미지들을 획득하는 제2비전검사부(50)를 포함하는 것을 특징으로 하는 비전검사모듈.In the semiconductor device 10 that has passed through the first vision inspection unit 40, a second vision inspection unit 50 obtaining side images of sides of the other pair of opposite sides of the pair of large sides facing each other is provided. Vision inspection module comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제1비전검사부(40)는,The first vision inspection unit 40,
    상기 한 쌍의 대향변들의 측면이미지들을 획득하는 이미지획득부(600)와;An image acquisition unit 600 for acquiring side images of the pair of opposite sides;
    상기 한 쌍의 대향변들의 측면이미지들 각각을 상기 이미지획득부(600)에 도달하도록 하는 제1광경로(L1)들을 형성하는 광학계(300)를 포함하는 것을 특징으로 하는 비전검사모듈.And an optical system (300) forming first optical paths (L1) for reaching each of the side images of the pair of opposing sides to reach the image acquisition unit (600).
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 제2비전검사부(50)는,The second vision inspection unit 50,
    상기 한 쌍의 대향변들의 측면이미지들을 획득하는 이미지획득부(600)와;An image acquisition unit 600 for acquiring side images of the pair of opposite sides;
    상기 한 쌍의 대향변들의 측면이미지들 각각을 상기 이미지획득부(600)에 도달하도록 하는 제1광경로(L1)들을 형성하는 광학계(300)를 포함하는 것을 특징으로 하는 비전검사모듈.And an optical system (300) forming first optical paths (L1) for reaching each of the side images of the pair of opposing sides to reach the image acquisition unit (600).
  4. 청구항 2 및 청구항 3 중 어느 하나의 항에 있어서,The method according to any one of claims 2 and 3,
    상기 이미지획득부(600)는,The image acquisition unit 600,
    상기 반도체소자(10)의 제1평면에 대한 제1평면이미지를 동시에 획득하며,Simultaneously acquiring a first plane image of the first plane of the semiconductor device 10,
    상기 광학계(300)는,The optical system 300,
    상기 반도체소자(10)의 제1평면에 대한 제1평면이미지가 상기 이미지획득부(100)에 도달하도록 하는 제2광경로(L2)를 형성하는 것을 특징으로 하는 비전검사모듈. Vision inspection module, characterized in that to form a second optical path (L2) for the first planar image of the first plane of the semiconductor device 10 to reach the image acquisition unit (100).
  5. 청구항 2 및 청구항 3 중 어느 하나의 항에 있어서,The method according to any one of claims 2 and 3,
    상기 광학계(300)는,The optical system 300,
    상기 한 쌍의 대향변들의 측면이미지들 각각을 상기 이미지획득부(600)를 향하도록 반사시키는 한 쌍의 보조반사부재(320)를 포함하는 것을 특징으로 하는 비전검사모듈.Vision inspection module, characterized in that it comprises a pair of auxiliary reflecting member (320) for reflecting each of the side images of the pair of opposite sides facing the image acquisition unit (600).
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 한 쌍의 보조반사부재(320)는,The pair of auxiliary reflecting members 320,
    상기 반도체소자(10)의 규격에 따라서 상기 한 쌍의 대향변들이 이루는 폭의 크기에 맞춰 비전검사가 가능하도록 상기 한 쌍의 대향변들이 이루는 중심선에 대하여 선형대칭이동이 가능하도록 설치된 것을 특징으로 하는 비전검사모듈.According to the specification of the semiconductor device 10 characterized in that installed in the linear symmetrical movement with respect to the center line formed by the pair of opposing sides to enable vision inspection according to the size of the width formed by the pair of opposing sides Vision Inspection Module.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 광학계(300)는,The optical system 300,
    상기 한 쌍의 보조반사부재(320)들이 이루는 폭을 조절하는 폭조절부(330)를 추가로 포함하는 것을 특징으로 하는 비전검사모듈.Vision inspection module, characterized in that it further comprises a width adjusting portion 330 for adjusting the width of the pair of auxiliary reflecting member (320).
  8. 청구항 2 내지 청구항 7 중 어느 하나의 항에 있어서,The method according to any one of claims 2 to 7,
    상기 제2비전검사부(50)는,The second vision inspection unit 50,
    상기 한 쌍의 대향변들의 측면이미지들을 획득하는 이미지획득부(600)와;An image acquisition unit 600 for acquiring side images of the pair of opposite sides;
    상기 한 쌍의 대향변들의 측면이미지들 각각을 상기 이미지획득부(600)에 도달하도록 하는 제1광경로(L1)들을 형성하는 광학계(300)를 포함하는 것을 특징으로 하는 비전검사모듈.And an optical system (300) forming first optical paths (L1) for reaching each of the side images of the pair of opposing sides to reach the image acquisition unit (600).
  9. 청구항 4에 있어서,The method according to claim 4,
    상기 광학계(300)는,The optical system 300,
    상기 제1광경로(L1) 및 상기 제2광경로(L2)의 초점거리 차이를 보정하는 초점거리보정부(340)를 추가로 포함하는 비전검사모듈.And a focal length correction unit (340) for correcting a focal length difference between the first optical path (L1) and the second optical path (L2).
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 초점거리보정부(340)는, The focal length correction unit 340,
    상기 제1광경로(L1) 및 상기 제2광경로(L2) 중 적어도 하나에 설치되어 광투과가 가능한 투명재질을 가지는 매질부(342)를 포함하는 것을 특징으로 하는 비전검사모듈.Vision inspection module, characterized in that it comprises a medium portion 342 is installed on at least one of the first optical path (L1) and the second optical path (L2) having a transparent material capable of light transmission.
  11. 청구항 9에 있어서,The method according to claim 9,
    상기 광학계(300)는,The optical system 300,
    상기 한 쌍의 대향변들의 측면이미지들 각각을 상기 이미지획득부(600)를 향하도록 반사시키는 한 쌍의 보조반사부재(320)를 포함하며,It includes a pair of auxiliary reflecting member 320 for reflecting each of the side images of the pair of opposite sides facing the image acquisition unit 600,
    상기 초점거리보정부(340)는,The focal length correction unit 340,
    상기 한 쌍의 보조반사부재(320)와 일체로 형성되는 것을 특징으로 하는 비전검사모듈.Vision inspection module, characterized in that formed integrally with the pair of auxiliary reflecting member (320).
  12. 다수의 소자(10)들이 적재된 웨이퍼링(20)이 로딩되는 웨이퍼링로딩부(100)로부터 웨이퍼링(20)을 공급받아 각 소자가 적재된 웨이퍼링(20)을 인출위치로 이동시키는 웨이퍼링이동테이블(200)과;A wafer which receives the wafer ring 20 from the wafer ring loading unit 100 on which the wafer rings 20 loaded with the plurality of elements 10 are loaded, and moves the wafer rings 20 loaded with the respective elements to a withdrawal position. A ring moving table 200;
    상기 웨이퍼링(20)으로부터 인출된 소자(10)들을 언로딩부재(30)에 안착시켜 소자(10)를 언로딩하는 소자언로딩부(400)와;An element unloading unit 400 which unloads the element 10 by seating the elements 10 extracted from the wafer ring 20 on the unloading member 30;
    상기 웨이퍼링이동테이블(200) 상의 웨이퍼링(20)에서 상기 인출위치(P1)에서 소자(10)를 픽업하여 상기 소자언로딩부(400)의 적재위치(P2)에서 상기 언로딩부재(30)에 적재하는 하나 이상의 이송툴(500)을 포함하며,The unloading member 30 is picked up at the loading position P2 of the device unloading unit 400 by picking up the device 10 at the withdrawal position P1 from the wafer ring 20 on the wafer ring movement table 200. At least one transfer tool 500 for loading in),
    청구항 1 내지 청구항 3 중 어느 하나의 항에 따른 비전검사모듈로서, 상기 하나 이상의 이송툴(500)에 의한 이송경로 상에 설치되어 소자(10)에 대한 비전검사를 수행하는 비전검사모듈을 포함하는 것을 특징으로 하는 소자핸들러.A vision inspection module according to any one of claims 1 to 3, comprising a vision inspection module installed on a transport path by the one or more transfer tools 500 to perform a vision inspection for the device 10. Device handler, characterized in that.
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 하나 이상의 이송툴(500)은,The one or more transfer tools 500,
    수직방향의 회전축(711)을 가지는 회전구동부(710)와; 상기 회전축(711)에 결합되어 회전되며 상기 회전축(711)의 회전방향을 따라서 배치된 복수의 회전암(720)들과; 상기 회전축(711)의 회전에 의하여 상기 인출위치(P1) 및 상기 언로딩위치(P2)에 순차적으로 위치되도록 상기 복수의 회전암(720)들 각각에 결합되며 반도체소자(10)를 픽업하는 픽커(730)를 포함하는 제1이송툴(700)을 포함하는 것을 특징으로 하는 소자핸들러.A rotary drive unit 710 having a vertical axis of rotation 711; A plurality of rotation arms 720 coupled to the rotation shaft 711 and disposed along the rotation direction of the rotation shaft 711; Pickers coupled to each of the plurality of rotation arms 720 to pick up the semiconductor device 10 so as to be sequentially positioned at the withdrawal position P1 and the unloading position P2 by the rotation of the rotation shaft 711. A device handler comprising a first transfer tool (700) comprising a (730).
  14. 청구항 13에 있어서,The method according to claim 13,
    상기 비전검사모듈은,The vision inspection module,
    상기 회전축(711)을 중심으로 한 픽커(730)의 회전이동경로에서 상기 인출위치(P1) 및 상기 언로딩위치(P2) 사이에 설치되는 것을 특징으로 하는 소자핸들러.Device handler, characterized in that installed between the withdrawal position (P1) and the unloading position (P2) in the rotational movement path of the picker (730) around the rotation axis (711).
  15. 청구항 13에 있어서,The method according to claim 13,
    상기 소자핸들러는,The device handler,
    상기 웨이퍼링(20)으로부터 상기 인출위치(P1)에서 반도체소자(10)를 픽업하여 전달위치(P3)에서 반도체소자(10)를 상기 제1이송툴(700)로 전달하여 반도체소자(10)가 플립되도록 하는 제2이송툴(800)을 추가로 포함하며,The semiconductor device 10 is picked up from the wafer ring 20 at the withdrawal position P1, and the semiconductor device 10 is transferred to the first transfer tool 700 at the transfer position P3. Further comprising a second transfer tool 800 to cause the flip,
    상기 제2이송툴(800)은,The second transfer tool 800,
    수평방향의 회전축(811)을 가지는 회전구동부(810)와; 상기 회전축(811)에 결합되어 회전되며 상기 회전축(811)의 회전방향을 따라서 배치된 복수의 회전암(820)들과; 상기 회전축(811)의 회전에 의하여 상기 인출위치(P1) 및 상기 전달위치(P3)에 순차적으로 위치되도록 상기 복수의 회전암(820)들 각각에 결합되며 반도체소자(10)를 픽업하는 픽커(830)를 포함하는 것을 특징으로 하는 소자핸들러.A rotary drive unit 810 having a horizontal axis of rotation 811; A plurality of rotation arms 820 coupled to the rotation shaft 811 and disposed along the rotation direction of the rotation shaft 811; Pickers coupled to each of the plurality of rotation arms 820 to be sequentially positioned at the lead position P1 and the transfer position P3 by rotation of the rotation shaft 811 (pickers for picking up the semiconductor element 10) 830, the device handler comprising a.
PCT/KR2017/007823 2016-07-21 2017-07-20 Vision inspection module and element handler having same WO2018016889A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0092677 2016-07-21
KR1020160092677A KR20180010492A (en) 2016-07-21 2016-07-21 Vision inspection module and device handler having the same

Publications (1)

Publication Number Publication Date
WO2018016889A1 true WO2018016889A1 (en) 2018-01-25

Family

ID=60992343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007823 WO2018016889A1 (en) 2016-07-21 2017-07-20 Vision inspection module and element handler having same

Country Status (3)

Country Link
KR (1) KR20180010492A (en)
TW (1) TWI666437B (en)
WO (1) WO2018016889A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109470704A (en) * 2018-05-31 2019-03-15 武汉深海弈智科技有限公司 A kind of automobile brake support defects of vision detection system and its detection method
TWI680292B (en) * 2018-03-30 2019-12-21 大陸商上海微電子裝備(集團)股份有限公司 Detection system and detection method
CN113281345A (en) * 2020-02-19 2021-08-20 均华精密工业股份有限公司 Three-dimensional surface detection method and semiconductor detection equipment
CN113447435A (en) * 2020-03-24 2021-09-28 由田新技股份有限公司 Workpiece detection system and workpiece detection method
CN114486737A (en) * 2022-01-17 2022-05-13 东莞市合易自动化科技有限公司 Visual detection equipment capable of high-precision positioning MiniLED wafer lighting effect

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190106098A (en) * 2018-03-07 2019-09-18 (주)제이티 Vision inspection module, device inspection system having the same and device inspection method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039307A (en) * 1998-07-22 2000-02-08 Hitachi Ltd Semiconductor inspection device
KR20090133097A (en) * 2008-06-23 2009-12-31 세미컨덕터 테크놀로지스 앤드 인스트루먼츠 피티이 엘티디 System and method for inspection of semiconductor packages
KR101275134B1 (en) * 2012-04-27 2013-06-17 한미반도체 주식회사 Semiconductor package inspecting device and semiconductor package inspecting method using the same
JP2015219035A (en) * 2014-05-14 2015-12-07 株式会社サキコーポレーション Inspection device
JP2015230257A (en) * 2014-06-05 2015-12-21 上野精機株式会社 Appearance inspection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102155346B1 (en) * 2014-03-10 2020-09-14 (주)제이티 Device handler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039307A (en) * 1998-07-22 2000-02-08 Hitachi Ltd Semiconductor inspection device
KR20090133097A (en) * 2008-06-23 2009-12-31 세미컨덕터 테크놀로지스 앤드 인스트루먼츠 피티이 엘티디 System and method for inspection of semiconductor packages
KR101275134B1 (en) * 2012-04-27 2013-06-17 한미반도체 주식회사 Semiconductor package inspecting device and semiconductor package inspecting method using the same
JP2015219035A (en) * 2014-05-14 2015-12-07 株式会社サキコーポレーション Inspection device
JP2015230257A (en) * 2014-06-05 2015-12-21 上野精機株式会社 Appearance inspection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI680292B (en) * 2018-03-30 2019-12-21 大陸商上海微電子裝備(集團)股份有限公司 Detection system and detection method
CN109470704A (en) * 2018-05-31 2019-03-15 武汉深海弈智科技有限公司 A kind of automobile brake support defects of vision detection system and its detection method
CN113281345A (en) * 2020-02-19 2021-08-20 均华精密工业股份有限公司 Three-dimensional surface detection method and semiconductor detection equipment
CN113447435A (en) * 2020-03-24 2021-09-28 由田新技股份有限公司 Workpiece detection system and workpiece detection method
CN114486737A (en) * 2022-01-17 2022-05-13 东莞市合易自动化科技有限公司 Visual detection equipment capable of high-precision positioning MiniLED wafer lighting effect
CN114486737B (en) * 2022-01-17 2022-11-15 东莞市合易自动化科技有限公司 Visual detection equipment capable of high-precision positioning of MiniLED wafer lighting effect

Also Published As

Publication number Publication date
TWI666437B (en) 2019-07-21
TW201805614A (en) 2018-02-16
KR20180010492A (en) 2018-01-31

Similar Documents

Publication Publication Date Title
WO2018016889A1 (en) Vision inspection module and element handler having same
CN111554601B (en) Wafer front end transfer system
WO2018146658A1 (en) Inspection device and inspection method employing device
KR100894051B1 (en) Device for inspecting and rotating electronic components
WO2018143506A1 (en) Transfer location-measuring test dummy used in semiconductor or display system field and precise transfer measuring method using transfer location-measuring test dummy used in semiconductor or display system field
WO2019172689A1 (en) Vision inspection module, device inspection system including same, and device inspection method using same
WO2018131921A1 (en) Device handler
WO2012033301A4 (en) Wafer inspection device and wafer inspection system comprising same
US8461857B2 (en) Distance adjustment system for use in solar wafer inspection machine and inspection machine provided with same
WO2017119786A1 (en) Transfer tool module and device handler having same
KR101980849B1 (en) Apparatus for inspecting display cells
WO2018146657A1 (en) Inspection device and inspection method employing device
WO2016204513A1 (en) Inline handler and inspection method using same
KR20170031122A (en) Substrate processing apparatus, substrate processing method, and computer-readable recording medium having program for executing the substrate processing method recorded therein
WO2017052090A1 (en) Element handler
WO2021033895A1 (en) Calibration panel, calibration device for panel inspection, and method for calibrating panel inspection device
WO2015167104A1 (en) Apparatus and method of detecting foreign material on upper surface of transparent substrate using polarized light
WO2017126854A1 (en) Vision inspection module, focal distance adjustment module of vision inspection module and element inspection system having same
WO2024043403A1 (en) Semiconductor wafer defect inspection device and defect inspection method
WO2017034184A1 (en) Vision inspection module and element inspection system having same
WO2023008637A1 (en) Round-battery inspection device
WO2024039231A1 (en) Vision inspection module, device inspection system including same, and vision inspection method
WO2017023130A1 (en) Probe pin bonding apparatus
KR100582695B1 (en) Method for positioning a substrate and inspecting apparatus using same
WO2016129870A1 (en) Component handler and vision inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17831362

Country of ref document: EP

Kind code of ref document: A1