WO2018016772A1 - Method for manufacturing multilayer-structure metal by using composite surface treatment method and multilayer-structure metal manufactured thereby - Google Patents

Method for manufacturing multilayer-structure metal by using composite surface treatment method and multilayer-structure metal manufactured thereby Download PDF

Info

Publication number
WO2018016772A1
WO2018016772A1 PCT/KR2017/007076 KR2017007076W WO2018016772A1 WO 2018016772 A1 WO2018016772 A1 WO 2018016772A1 KR 2017007076 W KR2017007076 W KR 2017007076W WO 2018016772 A1 WO2018016772 A1 WO 2018016772A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
solid particles
layer
producing
protective layer
Prior art date
Application number
PCT/KR2017/007076
Other languages
French (fr)
Korean (ko)
Inventor
한종수
오종훈
이원준
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2018016772A1 publication Critical patent/WO2018016772A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • A61C8/0013Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/38Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel

Definitions

  • the present invention relates to a method for manufacturing a multi-layered metal and a multi-layered metal produced thereby, and more particularly, to a method for manufacturing a multi-layered metal using a composite surface treatment method for improving frictional resistance of a surface of a base layer and a multi-layer manufactured thereby A structural metal.
  • the titanium surface forms a surface layer because of its own components or because of its chemical activity. If the molar volume of the resulting surface layer is greater or less than the molar volume of the original base surface, cracks occur in the resulting surface layer and the surface reaction continues. On the other hand, when the molar volume of the resulting surface layer is similar to the molar volume of the original base surface, the change is stopped at the extent to which a thin film is formed on the surface. These surface reactions can occur not only in the simple chemical reaction of the underlying solid surface and surrounding chemicals, but also in electrochemical reactions and forced collisions of energetic species.
  • Friction is derived from the forces between the atomic molecules of the two surfaces in contact, rather than the properties of the surface itself, but it is impossible to establish a theory by physical inference.
  • friction can be attributed to the mechanical engagement of the surfaces in contact and the physical attraction between two surface atoms (eg, van der Waals forces), which are called mechanical friction and physical friction, respectively.
  • the attraction between surface molecules will be proportional to the contact area in proportion to the number of surface atoms in contact with the interaction between surface atoms, and the resistance due to mechanical engagement will increase the degree of engagement under load, regardless of the area of contact. It can be expressed as an experimental result such as Amontong's first and second law observed macroscopically.
  • Mechanical friction will be related to the surface curvature, and in general, as the curvature increases, the coefficient of friction increases, lowering surface curvature to reduce friction.
  • the bending height of the surface can be lowered by using a general abrasive having a high hardness up to the micrometer area.
  • a general abrasive having a high hardness up to the micrometer area.
  • polishing with mechanical polishing and chemical reaction is necessary.
  • a method of reducing friction in large sized parts is to use fluid bearings such as ball bearings, roller bearings and air cushions.
  • fluid bearings such as ball bearings, roller bearings and air cushions.
  • many plastic materials such as nylon, high density polyethylene (HDPE), and polytetrafluoroethylene (PTFE) are used.
  • HDPE high density polyethylene
  • PTFE polytetrafluoroethylene
  • the usual way to reduce friction is to use a lubricant that sandwiches oil, water, grease, and layered solids between the two surfaces.
  • the method of using a lubricant has a disadvantage in that a surface component and a different material are put between two surfaces in contact and the concentration is maintained to some extent. And since the other layer is formed by interaction of the surface and the molecule
  • An object of the present invention is to provide a multi-layer metal manufacturing method using a complex surface treatment method that can reduce the frictional resistance of the surface of the base layer, without the use of lubricants in the small size parts.
  • the present invention comprises the steps of treating the surface of the base layer; Forming a protective layer on the surface of the base layer surface-treated; And
  • Affixing solid particles on the surface of the protective layer is achieved by providing a multi-layer metal manufacturing method using a composite surface treatment method comprising a.
  • the solid particles are characterized by having a size in the range of 10nm ⁇ 10 ⁇ m diameter.
  • the solid particles are formed of a metal.
  • the solid particles are characterized by being spherical of uniform size.
  • Attaching the solid particles on the surface of the protective layer is characterized in that it is carried out by a method of producing the solid particles directly on the surface of the protective layer.
  • the method for producing solid particles directly on the surface of the protective layer is characterized by using an electroless plating method.
  • the step of attaching the solid particles on the surface of the protective layer is characterized in that it is carried out by producing solid particles first, and then connecting the resulting solid particles to the surface of the protective layer.
  • the step of attaching the solid particles on the surface of the protective layer is characterized by physical or chemical bonding by having functional groups in affinity with both the surface of the protective layer and the surface of the solid particles at both ends of the compound serving as a bridge.
  • the step of treating the surface of the base layer includes polishing the base layer using physical polishing so that the surface curvature is 10 nm to 10 ⁇ m, and chemically treating the surface of the ground base layer. It is done.
  • Chemically treating the surface of the ground substrate layer is performed by any one selected from a mixed solution of an acid, a base, and an organic solvent.
  • the compound layer formed on the base layer surface is removed.
  • the base layer or the protective layer is characterized in that formed of a metal.
  • the metal of the base layer is characterized in that titanium.
  • the solid particles attached to the surface may act as a ball bearing to reduce the surface friction, thereby reducing the tightening torque mainly during surface contact.
  • the tightness of the fine screw screw
  • FIG. 1 is a flowchart illustrating a method of manufacturing a multilayer structure metal using the composite surface treatment method according to the present invention.
  • Figure 2 is a graph showing the results of microscopic analysis of the surface of the Ti specimen used in the present invention.
  • Figure 3 is an electron micrograph of the Pt / Ti specimen used in the present invention. (x 5,000)
  • Figure 4 is an electron micrograph of the Pt / Ti specimen used in the present invention. (x 200,000)
  • Example 8 is a scanning electron micrograph of Au nanoparticles produced in the connecting molecule solution according to Example 1 of the present invention.
  • Example 9 is a scanning electron micrograph of the Au / Pt / Ti specimen according to Example 1 of the present invention.
  • Example 10 is an AFM image of the Au / Pt / Ti specimen surface according to Example 1 of the present invention.
  • FIG. 11 is an R-LFM image of the Au / Pt / Ti specimen surface according to Example 1 of the present invention.
  • Example 12 is an L-LFM image of the Au / Pt / Ti specimen surface according to Example 1 of the present invention.
  • Example 13 is an electron micrograph of the surface of the Au / Pt / Ti specimen according to Example 2 of the present invention.
  • FIG. 15 is a graph showing ESCA measurement results of the Au / Pt / Ti specimen surface according to Example 2 of the present invention.
  • FIG. 16 is an AFM image of the Au / Pt / Ti specimen surface according to Example 2 of the present invention.
  • Example 17 is an L-LFM image of the Au / Pt / Ti specimen surface according to Example 2 of the present invention.
  • Example 18 is an R-LFM image of the Au / Pt / Ti specimen surface according to Example 2 of the present invention.
  • 21 is an AFM image of an Au / Pt / Ti specimen according to Example 3 of the present invention. (20 ⁇ m x 20 ⁇ m)
  • FIG. 22 is an L-LFM image of an Au / Pt / Ti specimen according to Example 3 of the present invention.
  • FIG. 23 is an R-LFM image of an Au / Pt / Ti specimen according to Example 3 of the present invention.
  • the size of the solid particles deposited on the surface of the protective layer may be in the range of diameter micro ( ⁇ m) or nano (nm), preferably in the range of 10 nm to 10 ⁇ m in diameter. In this range, the surface frictional resistance improving effect is excellent, and beyond this range, sufficient frictional resistance improving effect cannot be expected.
  • the solid particles are preferably spherical, and more preferably uniform in size.
  • the size of the solid particles is uniform, it is possible to substitute the properties of the uniform film without being affected by the surface irregularities.
  • Such solid particles may be formed of a metal, and may be preferably formed of gold (Au) having excellent adhesion (bondability).
  • the solid particles may be formed using a soft material, in which case the two surfaces may be deformed upon fixation to increase airtightness.
  • the surface of the multi-layered metal produced by the composite surface treatment method having such a structure reduces friction when the particles attached to the protective layer surface act as a ball bearing in the surface contact in small size parts. This reduction in surface frictional resistance can reduce the tightening torque of the screw, particularly when the base layer of titanium is a threaded component, thereby improving the tightening of fine screws, ie male and female threads, I can improve a feel.
  • the surface of the multi-layered metal produced by the composite surface treatment method of such a configuration improves the adhesion and airtightness between the surfaces formed when two surfaces are joined.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a multilayer structure metal using the composite surface treatment method according to the present invention.
  • the multi-layer metal manufacturing method using the composite surface treatment method according to the invention the base layer surface treatment step (S110), the protective layer forming step (S120) and the protective layer surface particle attachment step (S130) Include.
  • the compound layer formed on the base layer surface is removed by appropriate chemical treatment to chemically activate the base layer surface.
  • the base layer may be formed of a metal, and may be formed of titanium (Titanium), which is preferably light and strong in biocompatibility. At this time, the base layer has a bend height of approximately 1 ⁇ 1000nm.
  • Surface polishing of such a base layer can be performed using at least one of physical polishing or chemical polishing, thereby lowering the degree of curvature of the base layer surface.
  • the size of the abrasive is in the size of [mu] m and in particular cases tens of nm sized particles can be used.
  • the type of abrasive grain is determined according to the mechanical strength of the base layer surface.
  • part of the compound layer formed on the surface of the base layer for example, an oxide layer, is partially removed.
  • Titanium easily reacts with oxygen in air to form a nanometer (nm) titanium oxide (TiO 2 ) film on the surface, which causes a problem of poor adhesion when coating other materials on the titanium surface.
  • nm nanometer
  • TiO 2 titanium oxide
  • the oxide layer on the surface of the base layer is partially removed during the base layer surface polishing process, even if the base layer is formed of titanium, it is possible to prevent a decrease in adhesion due to the coating of the base layer.
  • the ground surface of the ground layer is washed several times with distilled water or an organic solvent, and then chemically treated with a mixed solution of acid, base or organic solvent in consideration of the material of the base layer. Most base layer surfaces are chemically treated with appropriate compounds to bring about surface activation.
  • the protective layer forming step (S120) may form a protective layer that may dry or wet the base layer surface and bind particles on the surface-treated base layer surface.
  • the protective layer can be formed of a metal with low chemical activity.
  • the protective layer may be formed using any one selected from physical, chemical and electrochemical methods.
  • the physical method may be vacuum deposition
  • the electrochemical method may be electroplating, but is not particularly limited thereto.
  • the protective layer may be formed of a platinum plating layer coated with platinum (Pt) having low reactivity by a conventional electroplating method.
  • platinum plating may be performed using a conventional H 2 PtCl 6 plating solution.
  • Protective layer surface particle attachment step (S130) attaches a certain size of solid particles on the surface of the protective layer.
  • the particle attachment method of the present invention is characterized by attaching a particle lubricating substance of a prescribed size, ie, solid particles, on the surface of the protective layer, as opposed to forming a conventional solid lubricating substance as a film on the surface of the protective layer.
  • the particles attached on the surface of the protective layer act as a ball bearing upon surface contact, thereby reducing the adhesive frictional force on the surface of the base layer. This is because the mechanical friction due to the engagement of the protrusions with the protrusions and the physical friction due to the physical attraction of the surface atoms are reduced compared to the surface before treatment.
  • the particle attachment method of the present invention may be a method of producing solid particles directly on the surface of the protective layer, or may be a method of first generating particles of a required size and then attaching the generated particles to the surface of the protective layer.
  • particle attachment methods have physical or chemical bonds at both ends of a compound serving as a bridge to have a functional group that has affinity with the protective layer surface and the particle surface.
  • the former particle attachment method is a method of growing solid particles on the surface of a protective layer and bonding solid particles to the surface of a protective layer.
  • This electron particle attachment method may be composed of a linking molecule bonding process, a washing process, and a solid particle growth and linking process.
  • the linking molecule binding process deposits a base layer having a protective layer surface in the linking molecule ligand solution to bind the protective layer surface and the connecting molecule.
  • the linking molecule ligand solution is a ligand solution including an organic molecule having a functional group having affinity with the protective layer surface and the particle surface.
  • the washing process may be performed by washing the base layer in which the linking molecule is bound to the protective layer surface to remove the linking molecule not bound to the protective layer surface, for example, by ultrasonic washing with distilled water and ethanol.
  • the solid particle growth and ligation process grows solid particles on the surface of the protective layer by depositing the connecting molecular binding base layer washed in the solid particle precursor compound-ligand solution, then adding a reducing agent and optionally stirring. In this process, the grown solid particles are combined with the linking molecules bonded to the protective layer surface, and as a result, the solid particles are connected (bonded, attached or bonded) to the protective layer surface.
  • the solid particle precursor compound-ligand aqueous solution may be prepared by mixing the solid particle precursor compound solution and the linking molecule ligand solution at a constant molar ratio and then stirring the mixture at room temperature for a predetermined time.
  • Another example of the former particle adhesion method is an electrolessplating method using an electroless solution.
  • This method is useful for forming metal nanoparticles on solid substrate surfaces.
  • the bonding strength is weak
  • the size of the attached particles is microscopically irregular
  • the plating solution may be toxic to the human body.
  • this method does not require useful and precise control when the size of the adhesion particles is several hundred nm to tens of micrometers.
  • a reducing agent is added to the linking molecule solution to produce solid particles first in the linking molecule solution, and then a base layer having a protective layer surface is deposited in the linking molecule solution containing the produced solid particles and optionally stirred. To connect (bond, adhere or bond) the solid particles to the surface of the protective layer.
  • the linking molecule solution may be a mixture of the linking molecule ligand solution and the solid particle-containing aqueous solution at a constant molar ratio.
  • linking molecule solution may be appropriately selected depending on the material of the protective layer and the solid particles, and conventionally known materials may be used without limitation.
  • the size of the solid particles deposited on the surface of the protective layer may be in the range of diameter micro ( ⁇ m) or nano (nm), preferably in the range of 10 nm to 10 ⁇ m in diameter. In this range, the surface frictional resistance improving effect is excellent, and beyond this range, sufficient frictional resistance improving effect cannot be expected.
  • the solid particles are preferably spherical, and more preferably uniform in size.
  • the size of the solid particles is uniform, it is possible to substitute the properties of the uniform film without being affected by the surface irregularities.
  • Such solid particles may be formed of a metal, and may be preferably formed of gold (Au) having excellent adhesion (bondability).
  • the solid particles may be formed using a soft material, in which case the two surfaces may be deformed upon fixation to increase airtightness.
  • the surface of the multi-layered metal produced by the composite surface treatment method having such a structure reduces friction when the particles attached to the protective layer surface act as a ball bearing in the surface contact in small size parts. This reduction in surface frictional resistance can reduce the tightening torque of the screw, particularly when the base layer of titanium is a threaded component, thereby improving the tightening of fine screws, ie male and female threads, I can improve a feel.
  • the surface of the multi-layered metal produced by the composite surface treatment method of such a configuration improves the adhesion and airtightness between the surfaces formed when two surfaces are joined.
  • the solid particles are a soft material
  • the deformed during mechanical bonding or fixing the two surfaces to act as a kind of gasket (gasket) to increase the airtightness between the two surfaces.
  • the most suitable example of the multi-layer metal using the composite surface treatment method of the present invention is a dental implant, a metal fixation system used in surgery, gaskets to improve the airtightness using soft particles.
  • the multi-layered metal produced by the composite surface treatment method of the present invention comprises a surface-treated base layer, a protective layer formed on the surface of the base layer, and solid particles attached on the surface of the protective layer.
  • the solid particles may have a size ranging from 10 nm to 10 ⁇ m in diameter, and may be bonded to the surface of the protective layer by a connecting molecule.
  • the rest of the configuration is the same as described above and will be omitted.
  • Ti and light bioadhesives were used as the metal of the base layer.
  • the surface was ground with sandpaper (# 100, # 200, # 400, # 800, # 1000, # 2000) and powder (1 ⁇ m, 3 ⁇ m) in order to reduce the degree of curvature of the Ti metal surface.
  • the surface polished Ti metal was immersed in 10% hydrochloric acid to remove various impurities adhering to the Ti surface, and then washed using ultrasonic waves.
  • the washed Ti metal was immersed in a mixed aqueous solution of 20% nitric acid and 2% hydrofluoric acid for 30 seconds in a volume ratio, followed by washing to obtain Ti pieces.
  • FIG. 2 An optical micrograph analysis result of the surface of the Ti specimen is shown in FIG. 2, and as shown in FIG. 2, the roughness of the surface of the Ti specimen was about 100 nm.
  • a 0.05 mol / LH 2 PtCl 6 plating solution was used for the Pt plating.
  • the electroplating conditions were 0.1 Adm -2 , 318K, pH 1.5, and the plating rate was 0.05 micrometermin -1 .
  • 3 and 4 show scanning electron micrographs of the prepared Pt / Ti specimens.
  • the frictional resistance is expressed as being proportional to the contact surface, but in the sample where Au particles are chemically attached to the surface of Pt / Ti, the circular curvature of the sample is about 100 nm and the size of the attached particles is several tens of nm, so that one measurement area is several tens of nm. Should be less than
  • the LFM measurement of a surface consists of an AFM image showing the curvature of the surface, and two LFM images showing the frictional force, that is, the degree of deflection of the probe, according to the direction of the probe.
  • 5 to 7 show AFM images, R-LFM images and L-LFM images of the prepared Pt / Ti specimen surface.
  • Au nanoparticles were first formed in the connecting molecule solution, and then Pt / Ti specimens were deposited on the connecting molecule solution containing the produced Au nanoparticles to connect the Au nanoparticles to the Pt surface.
  • the method is as follows.
  • a Au nanoparticle was first produced by adding a reducing agent to the Au gold compound-ligand aqueous solution of Example 1 in which a C 3 H 6 O 2 S ligand solution and an aqueous Au solution were mixed in a molar ratio.
  • the Pt / Ti specimen was deposited in an aqueous Au compound-ligand solution containing the produced Au nanoparticles, followed by stirring for 1 hour while maintaining the temperature at 95 ° C., where Au nanoparticles were attached to the Pt surface. A / Pt / Ti specimen was obtained.
  • FIG. 8 is a scanning electron micrograph of the Au nanoparticles produced in the solution according to Example 1 of the present invention
  • Figure 9 is a scanning electron micrograph of the Au / Pt / Ti specimen according to Example 1 of the present invention .
  • 10 to 12 are AFM images, R-LFM images, and L-LFM images of the Au / Pt / Ti specimen surfaces according to Example 1, respectively.
  • FIG. 10 it can be seen from the AFM that tens of nanoparticles are present on the Pt surface of the Au / Pt / Ti specimen according to Example 1, which can be confirmed by the two LFM images shown in FIGS. 11 and 12.
  • the spreading degree of the frictional resistance of FIG. 11 is 200 mV at the peak half height.
  • the spread from the peak half height is about 500 mV.
  • the Pt / Ti specimen was deposited on an aqueous solution of C 3 H 6 O 2 S [3-Mercaptopropionic acid] ligand to combine the Pt surface with the organic molecules. Thereafter, ultrasonic waves were washed with distilled water and ethanol to remove organic molecules not bound to the Pt surface.
  • Au compound-ligand aqueous solution is a mixture of HAuCl 4 ⁇ 3H 2 O [Gold (lll) chloride trihydrate] 20.3 mM (5.08 ⁇ 10 -4 mol) and C 3 H 6 O 2 S solution, C 3 H 6
  • the molar ratio of O 2 S and HAuCl 4 3H 2 O was 1: 25,000, and the two solutions were mixed and stirred at room temperature for 1 hour.
  • Table 1 and Figure 14 below shows the EDX measurement results of the Au / Pt / Ti specimen surface according to Example 2 of the present invention.
  • the Au / Pt / Ti specimens of Example 2 consisted of about 4%, 21%, 14%, and 61% of Ti, Pt, Au, and C in atomic percent, respectively, as a result of EDX analysis.
  • Example 2 consisted of about 4%, 21%, 14%, and 61% of Ti, Pt, Au, and C in atomic percent, respectively, as a result of EDX analysis.
  • Table 2 and Figure 15 shows the ESCA measurement results of the Au / Pt / Ti specimen surface according to Example 2 of the present invention.
  • the Au / Pt / Ti specimens of Example 2 were obtained by ESCA analysis, wherein Ti, Pt, Au, and C were about 0%, 4%, 14%, 56%, and sulfur in atomic percentages, respectively. And oxygen were about 6% and 21%, respectively.
  • the Ti seen in the EDX is not seen in the ESCA or the Pt decreases because the analysis penetration depth of the EDX is several hundred nm while the ESCA is several nm.
  • 16 to 18 are AFM images, L-LFM images, and R-LFM images of the Au / Pt / Ti specimens prepared in Example 2 above.
  • FIG. 16 it can be seen in the AFM that tens of nanoparticles exist on the Pt surface of the Au / Pt / Ti specimen according to Example 2 as shown in the SEM photograph of FIG. 14, which is represented by L shown in FIGS. 17 and 18. It could be confirmed again by -LFM image and R-LFM image.
  • the Pt / Ti specimen was deposited on an Au plating solution, and electroless Au plating was performed while maintaining 95 ° C. and a hydrogen ion concentration of 4.6.
  • the Pt / Ti specimens in which the electroless Au plating process is completed are washed three times with pure water, and then washed with ethyl alcohol (CH 3 CH 2 OH) and dried at 80 ° C., where Au particles are attached to the Pt surface. A / Pt / Ti specimen was obtained.
  • the Au plating solution contained potassium cyanide (KAu (CN) 2 ) as a source of Au, and the concentration of Au in the Au plating solution was 2.5 g / l.
  • 19 and 20 are scanning electron micrographs at x10,000 and x50,000 magnifications of Au / Pt / Ti specimen surfaces according to Example 3 of the present invention.
  • Table 3 shows the EDX measurement results of the Au / Pt / Ti specimen surface according to Example 3 of the present invention.
  • Example 3 the Au / Pt / Ti specimen of Example 3 did not show a peak of Ti as a result of EDX analysis, which means that the average Au layer is thicker than that of Examples 1 and 2.
  • Example 3 showed a peak of copper, indicating that Cu contained in the electroless plating solution was also precipitated.
  • AFM images of the Au / Pt / Ti specimen surface according to Example 3 of the present invention were measured.
  • the peak half height spread is about 200 mV, which is smaller than the surface to which the Au particles of FIG. 6 are not attached.
  • the particle generation method by the electroless plating method has a thicker particle layer and deposits impurities in the plating solution than the nanoparticle binding method by the ligand, but the frictional force is similar to that of the nanoparticle binding method by the ligand. have.
  • the solid particles attached to the surface may act as a ball bearing to reduce the surface friction, thereby reducing the tightening torque mainly during surface contact.
  • the tightness of the fine screw screw

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Dentistry (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The present invention relates to a multilayer-structure metal manufacturing method using a composite surface treatment method. A multilayer-structure metal manufacturing method using a composite surface treatment method according to the present invention comprises the steps of: treating a surface of a base layer; forming a protective layer on the surface of the surface-treated base layer; and attaching a solid particle to a surface of the protective layer.

Description

복합 표면 처리방법을 이용한 다층구조 금속 제조방법 및 이에 의하여 제조된 다층구조 금속Method for manufacturing multilayered metal using composite surface treatment method and multilayered metal produced thereby
본 발명은 다층구조 금속 제조방법 및 이에 의하여 제조된 다층 구조 금속에 관한 것으로, 더욱 상세하게는 바탕층 표면의 마찰 저항 개선을 위한 복합 표면 처리방법을 이용한 다층구조 금속 제조방법 및 이에 의하여 제조된 다층 구조 금속에 관한 것이다.The present invention relates to a method for manufacturing a multi-layered metal and a multi-layered metal produced thereby, and more particularly, to a method for manufacturing a multi-layered metal using a composite surface treatment method for improving frictional resistance of a surface of a base layer and a multi-layer manufactured thereby A structural metal.
티타늄 표면은 그 자체의 성분이나 또는 표면의 화학적 활성 때문에 표면층을 형성한다. 생성된 표면층의 몰 부피가 원 바탕 표면의 몰 부피보다 크거나 적으면 생성된 표면층에 균열이 발생하며 표면 반응이 계속된다. 반면에, 생성된 표면층의 몰 부피가 원 바탕 표면의 몰 부피와 유사할 때는 표면에 얇은 막이 형성되는 정도에서 변화가 정지된다. 이러한 표면 반응은 바탕 고체 표면과 주위 화학물질의 단순한 화학 반응뿐만 아니라 전기화학 반응, 에너지를 가진 화학종들의 강제 충돌 등에서도 일어날 수 있다.The titanium surface forms a surface layer because of its own components or because of its chemical activity. If the molar volume of the resulting surface layer is greater or less than the molar volume of the original base surface, cracks occur in the resulting surface layer and the surface reaction continues. On the other hand, when the molar volume of the resulting surface layer is similar to the molar volume of the original base surface, the change is stopped at the extent to which a thin film is formed on the surface. These surface reactions can occur not only in the simple chemical reaction of the underlying solid surface and surrounding chemicals, but also in electrochemical reactions and forced collisions of energetic species.
티타늄 표면과 티타늄 표면이 서로 접촉할 때 마찰(friction)을 통하여 접촉 시 가하는 운동에너지가 열에너지로 바뀌고 그 두 표면은 접촉에 의해 마모된다. 마찰은 표면 자신의 성질이라기보다는 접촉하고 있는 두 면의 원자 분자간의 힘에서 나오지만 물리적으로 유추하여 이론을 세우기 불가능하므로 보통 실험 결과식을 만들고 그 식을 해석하는 방향으로 연구되고 있다.When the titanium surface and the titanium surface are in contact with each other, the kinetic energy applied during the contact through friction is converted into thermal energy, and the two surfaces are worn out by the contact. Friction is derived from the forces between the atomic molecules of the two surfaces in contact, rather than the properties of the surface itself, but it is impossible to establish a theory by physical inference.
이러한 티타늄 표면의 마찰은 소위 건조 마찰 법칙(Law of dry friction)으로 표현된다. 15-18 세기에 얻어진 실험법칙은, 마찰력은 가해진 하중에 비례한다는 아몽통(Amontons)의 1법칙, 마찰력은 접촉하는 겉보기 면적에 관련되지 않는다는 아몽통의 2 법칙, 및 운동 마찰력은 미끄러지는 속도의 함수가 아니라는 쿨롱(Coulomb)의 법칙으로 정리된다.This titanium surface friction is represented by the so-called Law of dry friction. The experimental law obtained in the 15th-18th centuries states that Amontons' 1st law that frictional force is proportional to the applied load, Amontton's 2nd law that frictional force is not related to the apparent area of contact, and kinetic frictional force Not a function is summed up by Coulomb's law.
미시적으로 마찰은 접촉하는 표면들의 기계적 맞물림과 두 표면 원자들 간의 물리적 인력(예, 반 데르 발스(van der Waals) 힘)에 기인한다고 할 수 있고, 이는 각각 기계적 마찰 및 물리적 마찰이라고 일컫는다. 이상적으로 표면 분자간의 인력은 표면 원자 간의 상호작용과 접촉하는 표면 원자의 수에 비례하여 접촉 면적에 비례할 것이고, 기계적 맞물림에 의한 저항은 하중에 의해 맞물림의 정도가 증가하여 접촉면의 넓이와 관계없이 거시적으로 관찰되는 아몽통의 1,2 법칙과 같은 실험 결과로 표현될 수 있다. 기계적 마찰은 표면의 굴곡도와 관계될 것이며, 일반적으로 굴곡도가 증가하면 마찰 계수는 커지므로 마찰을 줄이기 위해 표면 굴곡을 낮춘다. 통상 표면의 굴곡 높이는 ㎛ 영역까지는 경도가 높은 일반적인 연마제를 사용하여 낮출 수 있다. 그러나, 굴곡의 높이가 1~1000㎚ 영역이 되면 기계적 연마와 화학적 반응이 수반하는 연마가 필요하다.Microscopically, friction can be attributed to the mechanical engagement of the surfaces in contact and the physical attraction between two surface atoms (eg, van der Waals forces), which are called mechanical friction and physical friction, respectively. Ideally, the attraction between surface molecules will be proportional to the contact area in proportion to the number of surface atoms in contact with the interaction between surface atoms, and the resistance due to mechanical engagement will increase the degree of engagement under load, regardless of the area of contact. It can be expressed as an experimental result such as Amontong's first and second law observed macroscopically. Mechanical friction will be related to the surface curvature, and in general, as the curvature increases, the coefficient of friction increases, lowering surface curvature to reduce friction. Usually, the bending height of the surface can be lowered by using a general abrasive having a high hardness up to the micrometer area. However, when the height of the bend is in the region of 1 to 1000 nm, polishing with mechanical polishing and chemical reaction is necessary.
큰 크기의 부품에서 마찰을 줄이는 방법은 볼 베어링(ball bearing), 롤러 베어링(roller bearing), 공기쿠션 등 유체 베어링을 사용하는 것이다. 이 경우 나일론, 고밀도 폴리에틸렌(high density polyethylene; HDPE), 폴리테트라 플루오로에틸렌(Polytetrafluoroethylene; PTFE)와 같은 많은 플라스틱류 재료가 사용된다. 보다 작고 베어링을 사용하지 못하는 부품의 경우 마찰을 줄이는 보통의 방법은 기름이나 물, 그리스(grease), 층상 구조 고체 등을 두 표면 사이에 넣는 윤활제를 이용하는 것이다.A method of reducing friction in large sized parts is to use fluid bearings such as ball bearings, roller bearings and air cushions. In this case, many plastic materials such as nylon, high density polyethylene (HDPE), and polytetrafluoroethylene (PTFE) are used. For smaller, non-bearing parts, the usual way to reduce friction is to use a lubricant that sandwiches oil, water, grease, and layered solids between the two surfaces.
그러나, 윤활제를 이용하는 방법은 접촉하는 두 표면 사이에 표면 성분과 다른 물질을 넣고 그 농도가 어느 정도 유지되어야 하는 단점이 있다. 그리고 접합 면적이 ㎚ 단위일 때 표면과 윤활제에 포함된 분자와의 상호작용에 의해 다른 층이 형성되므로 그 작용 양상은 확실하지 않다. 특히, 여러 원인에 의해 윤활제를 사용할 수 없는 경우 마땅히 마찰을 낮출 수 있는 방법이 없다.However, the method of using a lubricant has a disadvantage in that a surface component and a different material are put between two surfaces in contact and the concentration is maintained to some extent. And since the other layer is formed by interaction of the surface and the molecule | numerator contained in a lubricant when a junction area is unit of nm, the action pattern is not certain. In particular, if the lubricant cannot be used for various reasons, there is no way to lower the friction.
본 발명은 작은 크기의 부품에서 기존과 달리 윤활제의 사용 없이 바탕층 표면의 마찰 저항을 줄일 수 있는 복합 표면 처리방법을 이용한 다층구조 금속 제조방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a multi-layer metal manufacturing method using a complex surface treatment method that can reduce the frictional resistance of the surface of the base layer, without the use of lubricants in the small size parts.
본 발명은, 바탕층의 표면을 처리하는 단계; 표면 처리된 상기 바탕층의 표면 상에 보호층을 형성하는 단계; 및 The present invention comprises the steps of treating the surface of the base layer; Forming a protective layer on the surface of the base layer surface-treated; And
상기 보호층의 표면 상에 고체 입자를 부착시키는 단계;를 포함하는 복합 표면 처리방법을 이용한 다층구조 금속 제조방법이 제공됨에 의해서 달성된다.Affixing solid particles on the surface of the protective layer; is achieved by providing a multi-layer metal manufacturing method using a composite surface treatment method comprising a.
상기에서, 고체 입자는 직경 10㎚~10㎛ 범위의 크기를 가지는 것을 특징으로 한다.In the above, the solid particles are characterized by having a size in the range of 10nm ~ 10㎛ diameter.
고체 입자는 금속으로 형성하는 것을 특징으로 한다.The solid particles are formed of a metal.
고체 입자는 균일한 크기의 구형인 것을 특징으로 한다.The solid particles are characterized by being spherical of uniform size.
보호층의 표면 상에 고체 입자를 부착시키는 단계는, 보호층의 표면에서 직접 고체 입자를 생성시키는 방법으로 수행되는 것을 특징으로 한다. Attaching the solid particles on the surface of the protective layer is characterized in that it is carried out by a method of producing the solid particles directly on the surface of the protective layer.
보호층의 표면에서 직접 고체 입자를 생성시키는 방법은 무전해 도금 방법을 이용하는 것을 특징으로 한다.The method for producing solid particles directly on the surface of the protective layer is characterized by using an electroless plating method.
보호층의 표면 상에 고체 입자를 부착시키는 단계는, 고체 입자를 먼저 생성한 후, 생성된 고체 입자를 보호층의 표면에 연결시키는 방법으로 수행되는 것을 특징으로 한다.The step of attaching the solid particles on the surface of the protective layer is characterized in that it is carried out by producing solid particles first, and then connecting the resulting solid particles to the surface of the protective layer.
보호층의 표면 상에 고체 입자를 부착시키는 단계는, 다리 역할을 하는 화합물의 양쪽 끝에 보호층의 표면 및 고체 입자의 표면과 친화력이 있는 기능기를 갖도록 하여 물리적 또는 화학적 결합을 하는 것을 특징으로 한다.The step of attaching the solid particles on the surface of the protective layer is characterized by physical or chemical bonding by having functional groups in affinity with both the surface of the protective layer and the surface of the solid particles at both ends of the compound serving as a bridge.
바탕층의 표면을 처리하는 단계는, 표면 굴곡도가 10㎚~10㎛가 되도록 물리적 연마를 이용하여 바탕층을 연마하는 단계와, 연마된 바탕층의 표면을 화학 처리하는 단계를 포함하는 것을 특징으로 한다.The step of treating the surface of the base layer includes polishing the base layer using physical polishing so that the surface curvature is 10 nm to 10 μm, and chemically treating the surface of the ground base layer. It is done.
연마된 바탕층의 표면을 화학 처리하는 단계는 산, 염기 및 유기 용매의 혼합용액 중에서 선택되는 어느 하나로 수행되는 것을 특징으로 한다.Chemically treating the surface of the ground substrate layer is performed by any one selected from a mixed solution of an acid, a base, and an organic solvent.
연마된 바탕층 표면의 화학 처리 시, 바탕층 표면 상에 형성되어 있는 화합물층이 제거되는 것을 특징으로 한다.In the chemical treatment of the polished base layer surface, the compound layer formed on the base layer surface is removed.
바탕층 또는 보호층은 금속으로 형성하는 것을 특징으로 한다.The base layer or the protective layer is characterized in that formed of a metal.
바탕층의 금속은 티타늄인 것을 특징으로 한다.The metal of the base layer is characterized in that titanium.
본 발명에 따른 복합 표면 처리방법을 이용한 다층구조 금속 제조방법은 표면에 부착된 고체 입자가 볼 베어링(ball bearing) 역할을 하여 표면 마찰을 감소시킬 수 있고, 이를 통해 면 접촉 시 주로 조임 토크를 감소시켜 미세 스크류(screw)의 조임을 향상시키고, 두 면의 접합 시 면 사이의 부착성 및 기밀성을 향상시킬 수 있다.In the multi-layered metal manufacturing method using the composite surface treatment method according to the present invention, the solid particles attached to the surface may act as a ball bearing to reduce the surface friction, thereby reducing the tightening torque mainly during surface contact. In order to improve the tightness of the fine screw (screw), it is possible to improve the adhesion and airtightness between the two surfaces when bonding.
도 1은 본 발명에 따른 복합 표면 처리방법을 이용한 다층구조 금속 제조 방법을 도시한 순서도이다.1 is a flowchart illustrating a method of manufacturing a multilayer structure metal using the composite surface treatment method according to the present invention.
도 2는 본 발명에 사용된 Ti 시편 표면의 현미경 사진 분석 결과를 나타낸 그래프이다.Figure 2 is a graph showing the results of microscopic analysis of the surface of the Ti specimen used in the present invention.
도 3은 본 발명에 사용된 Pt/Ti 시편의 전자현미경 사진이다. (x 5,000)Figure 3 is an electron micrograph of the Pt / Ti specimen used in the present invention. (x 5,000)
도 4는 본 발명에 사용된 Pt/Ti 시편의 전자현미경 사진이다. (x 200,000)Figure 4 is an electron micrograph of the Pt / Ti specimen used in the present invention. (x 200,000)
도 5는 본 발명에 사용된 Pt/Ti 시편 표면의 AFM 영상이다. 5 is an AFM image of the surface of the Pt / Ti specimen used in the present invention.
도 6은 본 발명에 사용된 Pt/Ti 시편 표면의 R-LFM 영상이다.6 is an R-LFM image of the surface of the Pt / Ti specimen used in the present invention.
도 7은 본 발명에 사용된 Pt/Ti 시편 표면의 L-LFM 영상이다.7 is an L-LFM image of the surface of the Pt / Ti specimen used in the present invention.
도 8는 본 발명의 실시예1에 따른 연결 분자 용액 속에서 생성된 Au 나노입자의 주사전자현미경 사진이다.8 is a scanning electron micrograph of Au nanoparticles produced in the connecting molecule solution according to Example 1 of the present invention.
도 9는 본 발명의 실시예1에 따른 Au/Pt/Ti 시편의 주사전자현미경 사진이다.9 is a scanning electron micrograph of the Au / Pt / Ti specimen according to Example 1 of the present invention.
도 10은 본 발명의 실시예1에 따른 Au/Pt/Ti 시편 표면의 AFM 영상이다. 10 is an AFM image of the Au / Pt / Ti specimen surface according to Example 1 of the present invention.
도 11는 본 발명의 실시예1에 따른 Au/Pt/Ti 시편 표면의 R-LFM 영상이다.FIG. 11 is an R-LFM image of the Au / Pt / Ti specimen surface according to Example 1 of the present invention. FIG.
도 12은 본 발명의 실시예1에 따른 Au/Pt/Ti 시편 표면의 L-LFM 영상이다.12 is an L-LFM image of the Au / Pt / Ti specimen surface according to Example 1 of the present invention.
도 13는 본 발명의 실시예2에 따른 Au/Pt/Ti 시편 표면의 전자현미경 사진이다.13 is an electron micrograph of the surface of the Au / Pt / Ti specimen according to Example 2 of the present invention.
도 14은 본 발명의 실시예2에 따른 Au/Pt/Ti 시편 표면의 EDX 측정 결과를 나타낸 것이다.14 shows EDX measurement results on the surface of the Au / Pt / Ti specimens according to Example 2 of the present invention.
도 15은 본 발명의 실시예2에 따른 Au/Pt/Ti 시편 표면의 ESCA 측정 결과를 나타낸 그래프이다.도 16은 본 발명의 실시예2에 따른 Au/Pt/Ti 시편 표면의 AFM 영상이다.FIG. 15 is a graph showing ESCA measurement results of the Au / Pt / Ti specimen surface according to Example 2 of the present invention. FIG. 16 is an AFM image of the Au / Pt / Ti specimen surface according to Example 2 of the present invention.
도 17은 본 발명의 실시예2에 따른 Au/Pt/Ti 시편 표면의 L-LFM 영상이다.17 is an L-LFM image of the Au / Pt / Ti specimen surface according to Example 2 of the present invention.
도 18은 본 발명의 실시예2에 따른 Au/Pt/Ti 시편 표면의 R-LFM 영상이다.18 is an R-LFM image of the Au / Pt / Ti specimen surface according to Example 2 of the present invention.
도 19는 본 발명의 실시예3에 따른 Au/Pt/Ti 시편 표면의 주사전자현미경 사진이다. (x10,000)19 is a scanning electron micrograph of the surface of the Au / Pt / Ti specimen in accordance with Example 3 of the present invention. (x10,000)
도 20은 본 발명의 실시예3에 따른 Au/Pt/Ti 시편 표면의 주사전자현미경 사진이다. (x50,000)20 is a scanning electron micrograph of the surface of the Au / Pt / Ti specimen in accordance with Example 3 of the present invention. (x50,000)
도 21은 본 발명의 실시예3에 따른 Au/Pt/Ti 시편의 AFM 영상이다. (20㎛ x 20㎛)21 is an AFM image of an Au / Pt / Ti specimen according to Example 3 of the present invention. (20 μm x 20 μm)
도 22는 본 발명의 실시예3에 따른 Au/Pt/Ti 시편의 L-LFM 영상이다.FIG. 22 is an L-LFM image of an Au / Pt / Ti specimen according to Example 3 of the present invention. FIG.
도 23은 본 발명의 실시예3에 따른 Au/Pt/Ti 시편의 R-LFM 영상이다.FIG. 23 is an R-LFM image of an Au / Pt / Ti specimen according to Example 3 of the present invention. FIG.
보호층의 표면 상에 부착되는 고체 입자의 크기는 직경 마이크로(㎛) 또는 나노(㎚) 범위, 바람직하게 직경 10㎚~10㎛ 범위일 수 있다. 이 범위에서 표면 마찰 저항 개선 효과가 우수하고, 이 범위를 벗어나면 충분한 마찰 저항 개선 효과를 기대할 수 없다.The size of the solid particles deposited on the surface of the protective layer may be in the range of diameter micro (μm) or nano (nm), preferably in the range of 10 nm to 10 μm in diameter. In this range, the surface frictional resistance improving effect is excellent, and beyond this range, sufficient frictional resistance improving effect cannot be expected.
표면 마찰 저항 개선 관점에서, 고체 입자는 구형인 것이 바람직하고, 그 크기가 균일한 것이 더욱 바람직하다.From the viewpoint of improving the surface friction resistance, the solid particles are preferably spherical, and more preferably uniform in size.
고체 입자의 크기가 균일한 경우 표면의 요철에 영향을 받지 않고 균일한 막의 성질을 대신할 수 있다.If the size of the solid particles is uniform, it is possible to substitute the properties of the uniform film without being affected by the surface irregularities.
이러한 고체 입자는 금속으로 형성할 수 있고, 바람직하게는 부착성(접합성)이 우수한 금(Au)으로 형성할 수 있다.Such solid particles may be formed of a metal, and may be preferably formed of gold (Au) having excellent adhesion (bondability).
또한, 고체 입자는 무른 재료를 사용하여 형성할 수 있으며, 이 경우 두 표면 고정 시 변형되어 기밀성을 높일 수 있다.In addition, the solid particles may be formed using a soft material, in which case the two surfaces may be deformed upon fixation to increase airtightness.
이와 같은 구성의 복합 표면 처리방법에 의해 만들어진 다층구조 금속의 표면은 작은 크기의 부품에서 면 접촉 시 보호층 표면에 부착된 입자가 볼 베어링과 같은 역할을 하여 마찰을 줄인다. 이러한 표면 마찰 저항의 감소는, 특히 티타늄 재질의 바탕층이 나사 형태의 부품일 때 나사의 조임 토크를 감소시켜 미세 스크류(screw), 즉 수나사와 암나사의 조임을 향상시킬 수 있고, 사용되는 표면의 감촉을 향상시킬 수 있다.The surface of the multi-layered metal produced by the composite surface treatment method having such a structure reduces friction when the particles attached to the protective layer surface act as a ball bearing in the surface contact in small size parts. This reduction in surface frictional resistance can reduce the tightening torque of the screw, particularly when the base layer of titanium is a threaded component, thereby improving the tightening of fine screws, ie male and female threads, I can improve a feel.
또한, 이와 같은 구성의 복합 표면 처리방법에 의해 만들어진 다층구조 금속의 표면은 두 면이 접합되었을 때 된 면 사이의 부착성 및 기밀성이 향상된다.In addition, the surface of the multi-layered metal produced by the composite surface treatment method of such a configuration improves the adhesion and airtightness between the surfaces formed when two surfaces are joined.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면들과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다. 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Advantages and features of the present invention, and methods for achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention. Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.
이하, 첨부된 도면을 참조하여 본 발명에 따른 복합 표면 처리방법을 이용한 다층구조 금속 제조방법에 관하여 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings it will be described in detail with respect to a multi-layer metal manufacturing method using a composite surface treatment method according to the present invention.
도 1은 본 발명에 따른 복합 표면 처리방법을 이용한 다층구조 금속 제조 방법을 도시한 순서도이다.1 is a flowchart illustrating a method of manufacturing a multilayer structure metal using the composite surface treatment method according to the present invention.
도 1을 참조하면, 본 발명에 따른 복합 표면 처리방법을 이용한 다층구조 금속 제조방법은, 바탕층 표면 처리 단계(S110), 보호층 형성 단계(S120) 및 보호층 표면 입자 부착 단계(S130)를 포함한다.Referring to Figure 1, the multi-layer metal manufacturing method using the composite surface treatment method according to the invention, the base layer surface treatment step (S110), the protective layer forming step (S120) and the protective layer surface particle attachment step (S130) Include.
바탕층 표면 처리 단계(S110)는 바탕층의 표면을 연마한 후 적절한 화학 처리로 바탕층 표면 상에 형성된 화합물층을 제거하여 바탕층 표면을 화학적으로 활성화시킨다.In the base layer surface treatment step (S110), after polishing the surface of the base layer, the compound layer formed on the base layer surface is removed by appropriate chemical treatment to chemically activate the base layer surface.
바탕층은 금속으로 형성될 수 있으며, 바람직하게는 생체 접합성이 가볍고 강한 티타늄(Titanium, Ti)으로 형성될 수 있다. 이때, 바탕층은 대략 1~1000㎚의 굴곡 높이를 가진다.The base layer may be formed of a metal, and may be formed of titanium (Titanium), which is preferably light and strong in biocompatibility. At this time, the base layer has a bend height of approximately 1 ~ 1000nm.
이러한 바탕층의 표면 연마는 물리적 연마 또는 화학적 연마 중 적어도 어느 하나의 방법을 사용하여 수행할 수 있고, 이를 통해 바탕층 표면의 굴곡도를 낮춘다.Surface polishing of such a base layer can be performed using at least one of physical polishing or chemical polishing, thereby lowering the degree of curvature of the base layer surface.
바탕층 표면의 굴곡도를 낮추는 물리적 연마는 통상 연마제를 사용하는 기계적 연마를 이용하여 바탕층 표면의 굴곡도가 10㎚~10㎛가 되도록 실시할 수 있다. 이때, 바탕층 표면의 굴곡도가 10㎚ 미만이면 공정 구현이 어려울 수 있고, 10㎛를 초과하면 접촉하는 두 면 사이에서의 충분한 면 부착성 또는 기밀성을 기대하기 어려울 수 있다.Physical polishing which lowers the degree of curvature of the base layer surface can be carried out so that the degree of curvature of the surface of the base layer is 10 nm to 10 탆 using mechanical polishing usually using an abrasive. At this time, if the curvature of the base layer surface is less than 10nm it may be difficult to implement the process, if it exceeds 10㎛ it may be difficult to expect sufficient surface adhesion or airtightness between the two surfaces in contact.
연마제의 크기는 ㎛의 크기이며, 특별한 경우 수십 ㎚ 크기의 입자를 사용할 수 있다. 연마 입자의 종류는 바탕층 표면의 기계적 강도에 따라 결정한다.The size of the abrasive is in the size of [mu] m and in particular cases tens of nm sized particles can be used. The type of abrasive grain is determined according to the mechanical strength of the base layer surface.
바탕층 표면 연마 과정에서는 바탕층 표면 상에 형성되어 있는 화합물층, 예컨대 산화층이 일부 제거된다.In the polishing of the base layer surface, part of the compound layer formed on the surface of the base layer, for example, an oxide layer, is partially removed.
티타늄은 공기 중에서 산소와 쉽게 반응하여 표면에 수 나노미터(㎚)의 산화티타늄(TiO2)막을 형성하는데, 이 산화티타늄막은 티타늄 표면 상에 다른 물질을 코팅할 경우 밀착력 저하 문제를 야기한다.Titanium easily reacts with oxygen in air to form a nanometer (nm) titanium oxide (TiO 2 ) film on the surface, which causes a problem of poor adhesion when coating other materials on the titanium surface.
본 발명에 따르면 바탕층 표면 연마 과정에서 바탕층 표면 상의 산화층이 일부 제거되므로, 바탕층이 티타늄으로 형성되더라도 바탕층의 코팅에 따른 밀착력 저하를 방지할 수 있다.According to the present invention, since the oxide layer on the surface of the base layer is partially removed during the base layer surface polishing process, even if the base layer is formed of titanium, it is possible to prevent a decrease in adhesion due to the coating of the base layer.
연마된 바탕층 표면은 증류수나 유기 용매로 수회 세척하고, 이후 바탕층의 재질을 고려하여 산(Acid), 염기(Base) 또는 유기 용매의 혼합용액으로 화학 처리를 실시한다. 대부분의 바탕층 표면은 적절한 화합물로 화학 처리하면 표면의 활성화를 가져온다.The ground surface of the ground layer is washed several times with distilled water or an organic solvent, and then chemically treated with a mixed solution of acid, base or organic solvent in consideration of the material of the base layer. Most base layer surfaces are chemically treated with appropriate compounds to bring about surface activation.
보호층 형성 단계(S120)는 표면 처리된 바탕층 표면 상에 건식 또는 습식으로 바탕층 표면을 보호하고 입자를 결합할 수 있는 보호층을 형성한다.The protective layer forming step (S120) may form a protective layer that may dry or wet the base layer surface and bind particles on the surface-treated base layer surface.
보호층은 화학적으로 활성이 낮은 금속으로 형성할 수 있다.The protective layer can be formed of a metal with low chemical activity.
보호층은 물리적, 화학적, 전기화학적 방법 등에서 선택된 어느 하나를 사용하여 형성할 수 있다. 예를 들어, 물리적 방법은 진공 증착을 들 수 있고, 전기화학적 방법은 전해도금(electroplating)을 들 수 있으나, 특별히 이에 한정되지는 않는다.The protective layer may be formed using any one selected from physical, chemical and electrochemical methods. For example, the physical method may be vacuum deposition, and the electrochemical method may be electroplating, but is not particularly limited thereto.
일례로, 보호층은 반응성이 낮은 백금(Pt)을 통상의 전해도금 방법으로 코팅한 백금 도금층으로 형성할 수 있다. 이 경우, 백금 도금은 통상의 H2PtCl6 도금용액을 사용하여 수행할 수 있다.For example, the protective layer may be formed of a platinum plating layer coated with platinum (Pt) having low reactivity by a conventional electroplating method. In this case, platinum plating may be performed using a conventional H 2 PtCl 6 plating solution.
보호층 표면 입자 부착 단계(S130)는 보호층의 표면 상에 일정 크기의 고체 입자를 부착한다.Protective layer surface particle attachment step (S130) attaches a certain size of solid particles on the surface of the protective layer.
본 발명의 입자 부착 방법은 기존의 고체 윤활 물질을 보호층 표면에 막으로 형성하는 것과 달리, 규정된 크기의 입자 윤활 물질, 즉 고체 입자를 보호층 표면 상에 부착시키는 것을 특징으로 한다.The particle attachment method of the present invention is characterized by attaching a particle lubricating substance of a prescribed size, ie, solid particles, on the surface of the protective layer, as opposed to forming a conventional solid lubricating substance as a film on the surface of the protective layer.
이 경우, 보호층 표면 상에 부착된 입자가 면 접촉시 볼 베어링(ball bearing)과 같은 역할을 하여 바탕층 표면의 접착 마찰력을 줄인다. 이는 처리전의 표면에 비하여 돌기와 돌기의 맞물림에 기인한 기계적 마찰과 표면 원자들의 물리적 인력에 기인한 물리적 마찰이 감소되기 때문이다.In this case, the particles attached on the surface of the protective layer act as a ball bearing upon surface contact, thereby reducing the adhesive frictional force on the surface of the base layer. This is because the mechanical friction due to the engagement of the protrusions with the protrusions and the physical friction due to the physical attraction of the surface atoms are reduced compared to the surface before treatment.
구체적으로, 본 발명의 입자 부착 방법은 보호층의 표면에서 직접 고체 입자를 생성시키는 방법이거나, 혹은 필요한 크기의 입자를 먼저 생성한 후 생성된 입자를 보호층의 표면에 부착시키는 방법일 수 있다.Specifically, the particle attachment method of the present invention may be a method of producing solid particles directly on the surface of the protective layer, or may be a method of first generating particles of a required size and then attaching the generated particles to the surface of the protective layer.
이들 입자 부착 방법은 다리 역할을 하는 화합물의 양쪽 끝에 보호층 표면 및 입자 표면과 친화력이 있는 기능기를 갖도록 하여 물리적 또는 화학적 결합을 하는 것이다.These particle attachment methods have physical or chemical bonds at both ends of a compound serving as a bridge to have a functional group that has affinity with the protective layer surface and the particle surface.
일례로, 전자의 입자 부착 방법은, 보호층 표면에서 고체 입자를 성장시키는 동시에 보호층 표면에 고체 입자를 결합시키는 방법이다.In one example, the former particle attachment method is a method of growing solid particles on the surface of a protective layer and bonding solid particles to the surface of a protective layer.
이러한 전자의 입자 부착 방법은, 연결 분자 결합 공정, 세척 공정, 및 고체 입자 성장 및 연결 공정으로 구성될 수 있다.This electron particle attachment method may be composed of a linking molecule bonding process, a washing process, and a solid particle growth and linking process.
연결 분자 결합 공정은 연결 분자 리간드 용액에 보호층 표면을 가진 바탕층을 침적하여 보호층 표면과 연결 분자를 결합시킨다. 이때, 연결 분자 리간드 용액은 보호층 표면 및 입자 표면과 친화력이 있는 기능기를 갖는 유기분자를 포함하는 리간드 용액이다.The linking molecule binding process deposits a base layer having a protective layer surface in the linking molecule ligand solution to bind the protective layer surface and the connecting molecule. In this case, the linking molecule ligand solution is a ligand solution including an organic molecule having a functional group having affinity with the protective layer surface and the particle surface.
세척 공정은 보호층 표면에 연결 분자가 결합된 바탕층을 세척하여 보호층 표면에 결합하지 못한 연결 분자를 제거하며, 예컨대 증류수와 에탄올을 이용한 초음파 세척으로 수행될 수 있다.The washing process may be performed by washing the base layer in which the linking molecule is bound to the protective layer surface to remove the linking molecule not bound to the protective layer surface, for example, by ultrasonic washing with distilled water and ethanol.
고체 입자 성장 및 연결 공정은, 고체 입자 전구체 화합물-리간드 용액에 세척된 연결 분자 결합 바탕층을 침적 후 환원제를 가하고 선택적으로 교반하여 보호층 표면에서 고체 입자를 성장시킨다. 이 과정에서, 성장된 고체 입자가 보호층 표면과 결합된 연결 분자와 결합되면서, 결과적으로 보호층 표면에 고체 입자가 연결(결합, 부착 또는 접합)되게 된다.The solid particle growth and ligation process grows solid particles on the surface of the protective layer by depositing the connecting molecular binding base layer washed in the solid particle precursor compound-ligand solution, then adding a reducing agent and optionally stirring. In this process, the grown solid particles are combined with the linking molecules bonded to the protective layer surface, and as a result, the solid particles are connected (bonded, attached or bonded) to the protective layer surface.
이때, 고체 입자 전구체 화합물-리간드 수용액은 고체 입자 전구체 화합물 용액과 상기 연결 분자 리간드 용액을 일정한 몰 비율로 혼합 후 상온에서 일정 시간 동안 교반하여 제조한 것일 수 있다.In this case, the solid particle precursor compound-ligand aqueous solution may be prepared by mixing the solid particle precursor compound solution and the linking molecule ligand solution at a constant molar ratio and then stirring the mixture at room temperature for a predetermined time.
전자의 입자 부착 방법의 다른 일례는, 무전해 용액을 이용하는 무전해 도금 (Electrolessplating) 방법이다. 이 방법은 고체 기질 표면에 금속 나노입자를 형성시키는데 유용하다. 이 방법은 보호층 표면과 생성된 나노입자가 화학적으로 연결된 것이 아니므로 그 결합력은 약하고, 부착된 입자의 크기 또한 미시적으로 보면 불규칙하며, 도금 용액이 인체에 유독한 경우가 있다. 그러나, 이 방법은 부착 입자의 크기가 수 백 ㎚에서 수 십 ㎛일 때 유용하고 정밀한 제어가 필요하지 않다.Another example of the former particle adhesion method is an electrolessplating method using an electroless solution. This method is useful for forming metal nanoparticles on solid substrate surfaces. In this method, since the surface of the protective layer and the produced nanoparticles are not chemically connected, the bonding strength is weak, the size of the attached particles is microscopically irregular, and the plating solution may be toxic to the human body. However, this method does not require useful and precise control when the size of the adhesion particles is several hundred nm to tens of micrometers.
후자의 입자 부착 방법은, 연결 분자 용액에 환원제를 가하여 연결 분자 용액 중에 먼저 고체 입자를 생성시킨 후, 보호층 표면을 가진 바탕층을 생성된 고체 입자를 함유한 연결 분자 용액에 침적시키고 선택적으로 교반하여 보호층 표면에 고체 입자를 연결(결합, 부착 또는 접합)한다.In the latter method of particle attachment, a reducing agent is added to the linking molecule solution to produce solid particles first in the linking molecule solution, and then a base layer having a protective layer surface is deposited in the linking molecule solution containing the produced solid particles and optionally stirred. To connect (bond, adhere or bond) the solid particles to the surface of the protective layer.
이때, 연결 분자 용액은 상기 연결 분자 리간드 용액과 고체 입자 함유 수용액을 일정한 몰 비율로 혼합한 것일 수 있다.In this case, the linking molecule solution may be a mixture of the linking molecule ligand solution and the solid particle-containing aqueous solution at a constant molar ratio.
한편, 연결 분자 용액, 리간드 용액 등은 보호층 및 고체 입자의 재질에 따라 적절히 선택될 수 있고, 통상의 공지된 물질이 제한 없이 이용될 수 있다.Meanwhile, the linking molecule solution, the ligand solution, and the like may be appropriately selected depending on the material of the protective layer and the solid particles, and conventionally known materials may be used without limitation.
보호층의 표면 상에 부착되는 고체 입자의 크기는 직경 마이크로(㎛) 또는 나노(㎚) 범위, 바람직하게 직경 10㎚~10㎛ 범위일 수 있다. 이 범위에서 표면 마찰 저항 개선 효과가 우수하고, 이 범위를 벗어나면 충분한 마찰 저항 개선 효과를 기대할 수 없다.The size of the solid particles deposited on the surface of the protective layer may be in the range of diameter micro (μm) or nano (nm), preferably in the range of 10 nm to 10 μm in diameter. In this range, the surface frictional resistance improving effect is excellent, and beyond this range, sufficient frictional resistance improving effect cannot be expected.
표면 마찰 저항 개선 관점에서, 고체 입자는 구형인 것이 바람직하고, 그 크기가 균일한 것이 더욱 바람직하다.From the viewpoint of improving the surface friction resistance, the solid particles are preferably spherical, and more preferably uniform in size.
고체 입자의 크기가 균일한 경우 표면의 요철에 영향을 받지 않고 균일한 막의 성질을 대신할 수 있다.If the size of the solid particles is uniform, it is possible to substitute the properties of the uniform film without being affected by the surface irregularities.
이러한 고체 입자는 금속으로 형성할 수 있고, 바람직하게는 부착성(접합성)이 우수한 금(Au)으로 형성할 수 있다.Such solid particles may be formed of a metal, and may be preferably formed of gold (Au) having excellent adhesion (bondability).
또한, 고체 입자는 무른 재료를 사용하여 형성할 수 있으며, 이 경우 두 표면 고정 시 변형되어 기밀성을 높일 수 있다.In addition, the solid particles may be formed using a soft material, in which case the two surfaces may be deformed upon fixation to increase airtightness.
이와 같은 구성의 복합 표면 처리방법에 의해 만들어진 다층구조 금속의 표면은 작은 크기의 부품에서 면 접촉 시 보호층 표면에 부착된 입자가 볼 베어링과 같은 역할을 하여 마찰을 줄인다. 이러한 표면 마찰 저항의 감소는, 특히 티타늄 재질의 바탕층이 나사 형태의 부품일 때 나사의 조임 토크를 감소시켜 미세 스크류(screw), 즉 수나사와 암나사의 조임을 향상시킬 수 있고, 사용되는 표면의 감촉을 향상시킬 수 있다.The surface of the multi-layered metal produced by the composite surface treatment method having such a structure reduces friction when the particles attached to the protective layer surface act as a ball bearing in the surface contact in small size parts. This reduction in surface frictional resistance can reduce the tightening torque of the screw, particularly when the base layer of titanium is a threaded component, thereby improving the tightening of fine screws, ie male and female threads, I can improve a feel.
또한, 이와 같은 구성의 복합 표면 처리방법에 의해 만들어진 다층구조 금속의 표면은 두 면이 접합되었을 때 된 면 사이의 부착성 및 기밀성이 향상된다.In addition, the surface of the multi-layered metal produced by the composite surface treatment method of such a configuration improves the adhesion and airtightness between the surfaces formed when two surfaces are joined.
한편, 고체 입자가 무른 재질일 경우, 두 면의 기계적인 접합 또는 고정 시 변형되어 일종의 개스킷(gasket) 역할을 하여 두 표면 간의 기밀성을 높인다.On the other hand, if the solid particles are a soft material, the deformed during mechanical bonding or fixing the two surfaces to act as a kind of gasket (gasket) to increase the airtightness between the two surfaces.
본 발명의 복합 표면 처리방법을 이용한 다층구조 금속의 가장 적합한 예는 치과에서 쓰이는 임플란트, 외과에서 쓰이는 금속 고정 시스템이고, 무른 입자를 사용하여 기밀성을 향상하는 개스킷 등에도 사용 가능하다.The most suitable example of the multi-layer metal using the composite surface treatment method of the present invention is a dental implant, a metal fixation system used in surgery, gaskets to improve the airtightness using soft particles.
도시하지는 않았지만, 본 발명의 복합 표면 처리방법에 의해 제조된 다층구조 금속은, 표면 처리된 바탕층, 바탕층 표면 상에 형성된 보호층 및 보호층의 표면 상에 부착된 고체 입자를 포함하여 구성된다.Although not shown, The multi-layered metal produced by the composite surface treatment method of the present invention comprises a surface-treated base layer, a protective layer formed on the surface of the base layer, and solid particles attached on the surface of the protective layer.
이때, 고체 입자는 직경 10㎚~10㎛ 범위의 크기를 가지며, 연결 분자에 의해 보호층 표면에 결합될 수 있다. 나머지 구성은 전술한 바와 동일하므로 생략하기로 한다.In this case, the solid particles may have a size ranging from 10 nm to 10 μm in diameter, and may be bonded to the surface of the protective layer by a connecting molecule. The rest of the configuration is the same as described above and will be omitted.
실시예Example
이하, 본 발명의 바람직한 실시 예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.
1. 시편의 제조1. Preparation of Specimen
본 실시예에 사용된 Ti 시편Ti specimen used in this example
바탕층의 금속으로 생체 접합성이 가볍고 강한 Ti을 사용하였다.As the metal of the base layer, Ti and light bioadhesives were used.
먼저, Ti 금속 표면의 굴곡도를 낮추기 위하여 샌드페이퍼(sandpaper)(#100, #200, #400, #800, #1000, #2000)와 파우더(1㎛, 3㎛)로 표면을 연마하였다.First, the surface was ground with sandpaper (# 100, # 200, # 400, # 800, # 1000, # 2000) and powder (1 μm, 3 μm) in order to reduce the degree of curvature of the Ti metal surface.
이어서, 표면 연마가 완료된 Ti 금속을 10% 염산에 침적하여 Ti 표면에 부착되어 있는 다양한 불순물을 제거한 후 초음파를 사용하여 세척하였다.Subsequently, the surface polished Ti metal was immersed in 10% hydrochloric acid to remove various impurities adhering to the Ti surface, and then washed using ultrasonic waves.
이후, 세척이 완료된 Ti금속을 부피 비율로 20% 질산과 2% 불산의 혼합 수용액에 30초 동안 침적한 후 세척하여 Ti 편을 얻었다.Thereafter, the washed Ti metal was immersed in a mixed aqueous solution of 20% nitric acid and 2% hydrofluoric acid for 30 seconds in a volume ratio, followed by washing to obtain Ti pieces.
이 Ti 시편 표면의 광학 현미경 사진 분석 결과를 도 2에 도시하였으며, 도 2에서 보는 바와 같이 Ti 시편 표면의 거칠기가 100㎚ 정도였다.An optical micrograph analysis result of the surface of the Ti specimen is shown in FIG. 2, and as shown in FIG. 2, the roughness of the surface of the Ti specimen was about 100 nm.
보호층으로서의 Pt 층 형성 시편Pt layered specimen as protective layer
산화막이 제거된 Ti 표면은 반응성이 높아 불안정하므로, 상기 Ti 시편의 표면에 보호층을 형성하기 위해 전해도금으로 Pt를 코팅하여 Pt/Ti 시편을 얻었다. Since the Ti surface from which the oxide film was removed is unstable due to its high reactivity, Pt was coated by electroplating to obtain a Pt / Ti specimen to form a protective layer on the surface of the Ti specimen.
Pt 도금은 0.05 mol/L H2PtCl6 도금용액을 사용하였다. 전해도금 조건은 0.1Adm-2, 318K, pH 1.5, 도금 속도는 0.05㎛min-1 이었다. For the Pt plating, a 0.05 mol / LH 2 PtCl 6 plating solution was used. The electroplating conditions were 0.1 Adm -2 , 318K, pH 1.5, and the plating rate was 0.05 micrometermin -1 .
<실험예> SEM 사진 측정 Experimental Example
제조된 Pt/Ti 시편의 주사전자현미경 사진을 도 3, 4에 도시하였다.3 and 4 show scanning electron micrographs of the prepared Pt / Ti specimens.
<실험예> AFM 영상 측정 Experimental Example AFM Image Measurement
마찰 저항은 접촉면에 비례하는 것으로 표현되나 Au 입자가 화학적으로 Pt/Ti 표면에 부착된 시료에서는 시료의 원 굴곡도가 100 ㎚ 정도이고 부착된 입자의 크기가 수십 ㎚ 이므로 1 회의 측정 면적은 수십 ㎚ 이하여야 한다. The frictional resistance is expressed as being proportional to the contact surface, but in the sample where Au particles are chemically attached to the surface of Pt / Ti, the circular curvature of the sample is about 100 nm and the size of the attached particles is several tens of nm, so that one measurement area is several tens of nm. Should be less than
이러한 조건을 만족하는 측정법으로서, AFM에서 주사기 탐침과 표면의 마찰에 의해 휘어지는 정도를 측정하는 LFM이 있다. 어떤 표면의 LFM 측정 결과는 표면의 굴곡을 표시하는 AFM 영상과 탐침의 진행 방향에 따른 마찰력 즉 탐침의 휘어짐의 정도를 표시하는 두 장의 LFM 영상으로 구성된다.As a measuring method that satisfies these conditions, there is an LFM that measures the degree of warpage caused by friction between the syringe probe and the surface in the AFM. The LFM measurement of a surface consists of an AFM image showing the curvature of the surface, and two LFM images showing the frictional force, that is, the degree of deflection of the probe, according to the direction of the probe.
도 5 내지 도 7은 상기 제조된 Pt/Ti 시편 표면의 AFM 영상, R-LFM 영상 및 L-LFM 영상을 나타낸다. 5 to 7 show AFM images, R-LFM images and L-LFM images of the prepared Pt / Ti specimen surface.
실시예 1Example 1
연결 분자 용액 중에 먼저 Au 나노입자를 형성시킨 후, Pt/Ti 시편을 생성된 Au 나노입자를 함유한 연결 분자 용액에 침적시켜 Pt 표면에 Au나노입자를 연결하였다. 방법은 다음과 같다.Au nanoparticles were first formed in the connecting molecule solution, and then Pt / Ti specimens were deposited on the connecting molecule solution containing the produced Au nanoparticles to connect the Au nanoparticles to the Pt surface. The method is as follows.
먼저, C3H6O2S 리간드 용액과 Au 수용액을 몰 비율로 혼합한 실시예 1의 Au금 화합물-리간드 수용액에 환원제를 넣어 먼저 Au 나노입자를 생성시켰다.first, A Au nanoparticle was first produced by adding a reducing agent to the Au gold compound-ligand aqueous solution of Example 1 in which a C 3 H 6 O 2 S ligand solution and an aqueous Au solution were mixed in a molar ratio.
이어서, 생성된 Au 나노입자를 함유한 Au 화합물-리간드 수용액에 상기 Pt/Ti 시편을 침적시킨 후 온도를 95℃로 유지한 상태에서 1시간 동안 교반하여, Pt 표면에 Au 나노입자가 부착된 Au/Pt/Ti 시편을 얻었다.Subsequently, the Pt / Ti specimen was deposited in an aqueous Au compound-ligand solution containing the produced Au nanoparticles, followed by stirring for 1 hour while maintaining the temperature at 95 ° C., where Au nanoparticles were attached to the Pt surface. A / Pt / Ti specimen was obtained.
<< 실험예Experimental Example > > SEMSEM 사진 측정  Photo measurement
도 8는 본 발명의 실시예1에 따른 용액 속에서 생성된 Au 나노입자의 주사전자현미경 사진이고, 도 9 는 본 발명의 실시예1에 따른 Au/Pt/Ti 시편의 주사전자현미경 사진을 나타낸다. 8 is a scanning electron micrograph of the Au nanoparticles produced in the solution according to Example 1 of the present invention, Figure 9 is a scanning electron micrograph of the Au / Pt / Ti specimen according to Example 1 of the present invention .
<< 실험예Experimental Example > > AFMAFM 영상 측정  Image measurement
도 10 내지 도 12 각각은 실시예1에 따른 Au/Pt/Ti 시편 표면의 AFM 영상, R-LFM 영상 및 L-LFM 영상이다. 10 to 12 are AFM images, R-LFM images, and L-LFM images of the Au / Pt / Ti specimen surfaces according to Example 1, respectively.
도 10에서는 실시예 1에 따른 Au/Pt/Ti 시편의 Pt 표면에 수십 나노 입자가 존재함을 AFM 에서 볼 수 있었고, 이를 도 11 및 도 12에 도시된 두 LFM 영상에 의해 다시 확인할 수 있었다.In FIG. 10, it can be seen from the AFM that tens of nanoparticles are present on the Pt surface of the Au / Pt / Ti specimen according to Example 1, which can be confirmed by the two LFM images shown in FIGS. 11 and 12.
도 11의 마찰 저항의 퍼짐 정도는 피이크 반쪽 높이에서 200mV 이다. 반면에, Au 나노입자가 부착되지 않은 도 6의 LFM 영상에서 피이크 반쪽 높이에서 퍼진 정도는 500mV 정도이다. The spreading degree of the frictional resistance of FIG. 11 is 200 mV at the peak half height. On the other hand, in the LFM image of FIG. 6 to which Au nanoparticles are not attached, the spread from the peak half height is about 500 mV.
Au 나노입자가 백금 표면에 부착될 때 마찰저항의 변화는 처리 전 후에 같은 표면을 찾아낸다는 것은 불가능한 일이므로, Pt 표면의 LFM 영상(도 5 내지 도 7)과 Au 입자가 표면에 결합된 Pt/Ti 표면의 LFM(도 10 내지 도 12)을 비교하였다. 도 5 내지 도 7과 대비하여 볼때, 본 발명의 실시예 1에서 제조된 Au/Pt/Ti 시편은 Au 나노입자의 부착에 의해 전반적으로 마찰력이 감소함을 알 수 있었다.When Au nanoparticles are attached to the platinum surface, it is impossible to find the same surface before and after the treatment, so the LFM image of the Pt surface (Figs. 5 to 7) and the Pt / LFMs of Ti surfaces (Figs. 10-12) were compared. Compared with FIGS. 5 to 7, it was found that the Au / Pt / Ti specimen prepared in Example 1 of the present invention reduced the overall frictional force by the adhesion of Au nanoparticles.
실시예 2Example 2
보호층인 Pt 표면에서 Au 나노입자를 성장시키는 동시에 Pt 표면에 Au을 연결하기 위하여 황(S)을 포함하는 유기분자 C3H6O2S[3-Mercaptopropionic acid, ALDRICH](리간드)를 사용하였다. 방법은 다음과 같다.Organic molecules containing sulfur (S) C 3 H 6 O 2 S [3-Mercaptopropionic acid, ALDRICH] (ligand) are used to grow Au nanoparticles on the Pt surface as a protective layer and to connect Au to the Pt surface. It was. The method is as follows.
우선, 상기 Pt/Ti 시편을 C3H6O2S[3-Mercaptopropionic acid] 리간드 수용액에 침적시켜 Pt 표면과 유기분자를 결합시켰다. 이후, 증류수와 에탄올로 초음파 세척하여 Pt 표면에 결합하지 못한 유기분자를 제거하였다.First, the Pt / Ti specimen was deposited on an aqueous solution of C 3 H 6 O 2 S [3-Mercaptopropionic acid] ligand to combine the Pt surface with the organic molecules. Thereafter, ultrasonic waves were washed with distilled water and ethanol to remove organic molecules not bound to the Pt surface.
이어서, 세척된 유기분자 결합 Pt/Ti 시편을 Au 화합물-리간드 수용액에 침적하면서 환원제로서 880 mM NaBH4[Sodium borohydride] 72㎖를 첨가하여 Pt 표면에서 Au 입자를 성장시켜, Pt 표면에 Au 입자가 부착된 Au/Pt/Ti 시편을 얻었다.Subsequently, 72 mL of 880 mM NaBH 4 [Sodium borohydride] was added as a reducing agent while the washed organic molecule-bound Pt / Ti specimen was deposited in an aqueous Au compound-ligand solution to grow Au particles on the Pt surface. An attached Au / Pt / Ti specimen was obtained.
여기서, Au 화합물-리간드 수용액은 HAuCl4·3H2O [Gold (lll) chloride trihydrate] 20.3 mM(5.08 × 10-4 mol)와 C3H6O2S 용액과 혼합한 것이며, C3H6O2S와 HAuCl4·3H2O의 몰 비는 1:25,000였고, 두 용액을 혼합 후 상온에서 1 시간 동안 교반하였다.Here, Au compound-ligand aqueous solution is a mixture of HAuCl 4 · 3H 2 O [Gold (lll) chloride trihydrate] 20.3 mM (5.08 × 10 -4 mol) and C 3 H 6 O 2 S solution, C 3 H 6 The molar ratio of O 2 S and HAuCl 4 3H 2 O was 1: 25,000, and the two solutions were mixed and stirred at room temperature for 1 hour.
<실험예> SEM 사진 측정 Experimental Example
실시예 2에 따라 제조된 Au/Pt/Ti 시편 표면의 주사전자현미경(SEM) 사진을 측정하고 그 결과를 도 13에 나타내었다. Scanning electron microscope (SEM) images of the Au / Pt / Ti specimen surfaces prepared according to Example 2 were measured and the results are shown in FIG. 13.
도 13을 참조하면, Pt 표면에서 Au 입자를 성장시킨 후 부착한 실시예 2의 Au/Pt/Ti 시편에 부착된 Au 입자의 크기는 ~50㎚ 정도였다.Referring to FIG. 13, the size of the Au particles attached to the Au / Pt / Ti specimens of Example 2, which was grown after Au particles were grown on the Pt surface, was about 50 nm.
<실험예> EDX 측정 Experimental Example EDX Measurement
아래 표 1 및 도 14는 본 발명의 실시예 2에 따른 Au/Pt/Ti 시편 표면의 EDX 측정 결과를 나타낸 것이다.Table 1 and Figure 14 below shows the EDX measurement results of the Au / Pt / Ti specimen surface according to Example 2 of the present invention.
구분division 원소element 무게%weight% 원자%atom%
실시예1Example 1 CC 9.369.36 60.8160.81
TiTi 2.492.49 4.064.06
PtPt 53.2853.28 21.3121.31
AuAu 34.8734.87 13.8213.82
합계Sum 100.00100.00 100.00100.00
표 1 및 도 14를 참조하면, 실시예 2의 Au/Pt/Ti 시편은 EDX 분석 결과, Ti, Pt, Au, C가 원자 백분율로 각각 약 4%, 21%, 14% 및 61%로 구성됨을 확인할 수 있었다.Referring to Table 1 and FIG. 14, the Au / Pt / Ti specimens of Example 2 consisted of about 4%, 21%, 14%, and 61% of Ti, Pt, Au, and C in atomic percent, respectively, as a result of EDX analysis. Could confirm.
<실험예> ESCA 측정 Experimental Example ESCA Measurement
표 2 및 도 15는 본 발명의 실시예2에 따른 Au/Pt/Ti 시편 표면의 ESCA 측정 결과를 나타낸 것이다.Table 2 and Figure 15 shows the ESCA measurement results of the Au / Pt / Ti specimen surface according to Example 2 of the present invention.
구분division 피크 이름Peak name Pt4f7Pt4f7 Au4fAu4f S2pS2p C1sC1s O1sO1s
실시예 1Example 1 결합에너지(eV)Binding energy (eV) 73.9173.91 84.3284.32 162.97162.97 284.99284.99 532.05532.05
피크 면적(N)Peak area (N) 3748.663748.66 14660.0514660.05 6095.086095.08 59276.1159276.11 21914.3321914.33
원자 %Atomic% 3.553.55 13.8713.87 5.775.77 56.0856.08 20.7320.73
표 2 및 도 15를 참조하면, 실시예 2의 Au/Pt/Ti 시편은 ESCA 분석 결과, Ti, Pt, Au, C가 원자 백분율로 각각 약 0%, 4%, 14%, 56% 그리고 황과 산소가 각각 약 6%와 21%로 구성됨을 확인할 수 있었다.Referring to Table 2 and FIG. 15, the Au / Pt / Ti specimens of Example 2 were obtained by ESCA analysis, wherein Ti, Pt, Au, and C were about 0%, 4%, 14%, 56%, and sulfur in atomic percentages, respectively. And oxygen were about 6% and 21%, respectively.
여기서, EDX에서 보이던 Ti이 ESCA에서 보이지 않거나 Pt이 줄어드는 것은 EDX의 분석 침투 깊이가 수 백 ㎚인 반면 ESCA는 수 ㎚이기 때문이다.Here, the Ti seen in the EDX is not seen in the ESCA or the Pt decreases because the analysis penetration depth of the EDX is several hundred nm while the ESCA is several nm.
이를 종합해 볼 때, 실시예 2의 Au/Pt/Ti 시편의 경우, Ti은 Pt에 의해 거의 덮여지고, Au 나노입자는 Pt의 일부 표면에 존재한다고 볼 수 있다.Taken together, in the case of the Au / Pt / Ti specimen of Example 2, it can be seen that Ti is almost covered by Pt, Au nanoparticles are present on some surface of Pt.
한편, EDX에서 나타나지 않던 산소와 황이 ESCA에서 분석되는 것은 산소 및 황으로 이루어진 분자가 Pt 표면과 Au나노입자를 연결하고 있는 것으로 해석된다.On the other hand, the analysis of oxygen and sulfur in ESCA, which did not appear in EDX, is interpreted that the molecules composed of oxygen and sulfur connect the Au nanoparticles with the Pt surface.
<< 실험예Experimental Example >> AFMAFM 영상 측정 Image measurement
도 16 내지 도 18은 상기 실시예 2에서 제조된 Au/Pt/Ti 시편의 AFM 영상, L-LFM 영상 및 R-LFM 영상이다.16 to 18 are AFM images, L-LFM images, and R-LFM images of the Au / Pt / Ti specimens prepared in Example 2 above.
도 16 에서는 도 14의 SEM 사진에서 보는 바와 같은 실시예 2에 따른 Au/Pt/Ti 시편의 Pt 표면에 수십 나노 입자가 존재함을 AFM 에서 볼 수 있었고, 이를 도 17 및 도 18에 도시된 L-LFM 영상 및 R-LFM 영상에 의해 다시 확인할 수 있었다.In FIG. 16, it can be seen in the AFM that tens of nanoparticles exist on the Pt surface of the Au / Pt / Ti specimen according to Example 2 as shown in the SEM photograph of FIG. 14, which is represented by L shown in FIGS. 17 and 18. It could be confirmed again by -LFM image and R-LFM image.
실시예 3Example 3
Au 도금 용액에 상기 Pt/Ti 시편을 침적시키고 95℃, 수소이온 농도 4.6을 유지하면서 무전해 Au도금 공정을 수행하였다.The Pt / Ti specimen was deposited on an Au plating solution, and electroless Au plating was performed while maintaining 95 ° C. and a hydrogen ion concentration of 4.6.
이어서, 무전해 Au도금 공정이 완료된 Pt/Ti 시편을 순수로 3번 세척하고, 이후 에틸알코올(CH3CH2OH)로 세척한 다음 80℃에서 건조하여, Pt 표면에 Au입자가 부착된 Au/Pt/Ti 시편을 얻었다.Subsequently, the Pt / Ti specimens in which the electroless Au plating process is completed are washed three times with pure water, and then washed with ethyl alcohol (CH 3 CH 2 OH) and dried at 80 ° C., where Au particles are attached to the Pt surface. A / Pt / Ti specimen was obtained.
여기서, Au 도금 용액은 Au의 공급원인 시안화금칼륨(KAu(CN)2)을 함유하고 있었으며, Au 도금 용액 중에 Au의 농도는 2.5g/l이었다.Here, the Au plating solution contained potassium cyanide (KAu (CN) 2 ) as a source of Au, and the concentration of Au in the Au plating solution was 2.5 g / l.
<< 실험예Experimental Example > > SEMSEM 사진 측정  Photo measurement
도 19및 도 20 각각은 본 발명의 실시예3에 따른 Au/Pt/Ti 시편 표면의 x10,000, x50,000 배율에서의 주사전자현미경 사진이다.19 and 20 are scanning electron micrographs at x10,000 and x50,000 magnifications of Au / Pt / Ti specimen surfaces according to Example 3 of the present invention.
도 19 및 도 20을 참조하면, 실시예 3에 따른 Au/Pt/Ti 시편의 백금 표면에는 60㎚ 정도의 입자들과 이들로 이루어진 1㎛ 범위의 클러스터가 발견되었다. 이는 Pt 표면에 리간드를 통하여 나노 입자를 결합시킨 실시예 1, 2의 SEM 사진에서 볼 수 있는 분리된 나노 입자들의 형태와 다르다.19 and 20, on the platinum surface of the Au / Pt / Ti specimen according to Example 3, particles having a diameter of about 60 nm and clusters of 1 μm were formed. This is different from the shape of the separated nanoparticles that can be seen in the SEM photographs of Examples 1 and 2 in which the nanoparticles are bonded to the Pt surface through a ligand.
<< 실험예Experimental Example > > EDXEDX 측정  Measure
표 3은 본 발명의 실시예 3에 따른 Au/Pt/Ti 시편 표면의 EDX 측정 결과를 나타낸다. Table 3 shows the EDX measurement results of the Au / Pt / Ti specimen surface according to Example 3 of the present invention.
원소element 질량%mass% 원자 %Atomic%
실시예 3Example 3 CuCu 6.686.68 18.0818.08
PtPt 52.4452.44 46.2346.23
AuAu 40.8840.88 35.7035.70
합계Sum 100.00100.00 100.00100.00
표 3을 참조하면, 실시예 3의 Au/Pt/Ti 시편은 EDX 분석 결과 Ti의 피이크를 보이지 않았는데, 이는 실시예 3이 실시예 1, 2에 비해 평균적인 Au층이 두껍다는 것을 의미한다.Referring to Table 3, the Au / Pt / Ti specimen of Example 3 did not show a peak of Ti as a result of EDX analysis, which means that the average Au layer is thicker than that of Examples 1 and 2.
또한, 실시예 3의 Au/Pt/Ti 시편은 구리의 피이크를 보이고 있는데, 이는 무전해 도금액에 들어있는 Cu도 석출되었음을 나타낸다.In addition, the Au / Pt / Ti specimen of Example 3 showed a peak of copper, indicating that Cu contained in the electroless plating solution was also precipitated.
<< 실험예Experimental Example > > AFMAFM 사진 측정  Photo measurement
본 발명의 실시예 3에 따른 Au/Pt/Ti 시편 표면의AFM 사진을 측정한 결과를 AFM images of the Au / Pt / Ti specimen surface according to Example 3 of the present invention were measured.
도 21 내지 도 23을 참조하면, 피이크 반쪽 높이 퍼짐이 ~200mV 정도로서 도 6의 Au 입자가 부착되지 않은 표면보다 그 퍼짐 정도가 작아지는 것을 볼 수 있다.21 to 23, it can be seen that the peak half height spread is about 200 mV, which is smaller than the surface to which the Au particles of FIG. 6 are not attached.
이를 종합해 볼때, 무전해 도금법에 의한 입자 생성법은 리간드에 의한 나노 입자 결합법에 비해 입자층이 두껍고, 도금 용액의 불순물이 석출되지만, 리간드에 의한 나노 입자 결합법과 유사한 마찰력의 감소를 가져옴을 알 수 있다.Taken together, it can be seen that the particle generation method by the electroless plating method has a thicker particle layer and deposits impurities in the plating solution than the nanoparticle binding method by the ligand, but the frictional force is similar to that of the nanoparticle binding method by the ligand. have.
이상에서 설명한 본 발명의 바람직한 실시예들은 예시의 목적을 위해 개시된 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러가지 치환, 변형 및 변경이 가능할 것이나, 이러한 치환, 변경 등은 이하의 특허청구범위에 속하는 것으로 보아야 할 것이다.Preferred embodiments of the present invention described above are disclosed for the purpose of illustration, and various substitutions, modifications, and changes within the scope without departing from the spirit of the present invention for those skilled in the art to which the present invention pertains. It will be possible, but such substitutions, changes and the like should be regarded as belonging to the following claims.
본 발명에 따른 복합 표면 처리방법을 이용한 다층구조 금속 제조방법은 표면에 부착된 고체 입자가 볼 베어링(ball bearing) 역할을 하여 표면 마찰을 감소시킬 수 있고, 이를 통해 면 접촉 시 주로 조임 토크를 감소시켜 미세 스크류(screw)의 조임을 향상시키고, 두 면의 접합 시 면 사이의 부착성 및 기밀성을 향상시킬 수 있다.In the multi-layered metal manufacturing method using the composite surface treatment method according to the present invention, the solid particles attached to the surface may act as a ball bearing to reduce the surface friction, thereby reducing the tightening torque mainly during surface contact. In order to improve the tightness of the fine screw (screw), it is possible to improve the adhesion and airtightness between the two surfaces when bonding.

Claims (14)

  1. 바탕층의 표면을 처리하는 단계;Treating the surface of the base layer;
    표면 처리된 상기 바탕층의 표면 상에 보호층을 형성하는 단계; 및Forming a protective layer on the surface of the base layer surface-treated; And
    상기 보호층의 표면 상에 고체 입자를 부착시키는 단계;를 포함하는 복합 표면 처리방법을 이용한 다층구조 금속 제조방법.Attaching solid particles on the surface of the protective layer; a multi-layer metal manufacturing method using a composite surface treatment method comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 고체 입자는 The solid particles are
    직경 10㎚~10㎛ 범위의 크기를 가지는 복합 표면 처리방법을 이용한 다층구조 금속 제조방법.Method for producing a multilayer structure metal using a composite surface treatment method having a size in the range of 10nm ~ 10㎛ diameter.
  3. 제1항에 있어서,The method of claim 1,
    상기 보호층의 표면 상에 고체 입자를 부착시키는 단계는,Attaching the solid particles on the surface of the protective layer,
    상기 보호층의 표면에서 직접 상기 고체 입자를 생성시키는 방법으로 수행되는 복합 표면 처리방법을 이용한 다층구조 금속 제조방법.Method for producing a multi-layered metal using a composite surface treatment method performed by the method of producing the solid particles directly on the surface of the protective layer.
  4. 제1항에 있어서,The method of claim 1,
    상기 보호층의 표면 상에 고체 입자를 부착시키는 단계는,Attaching the solid particles on the surface of the protective layer,
    상기 고체 입자를 먼저 생성한 후, 생성된 상기 고체 입자를 상기 보호층의 표면에 연결시키는 방법으로 수행되는 복합 표면 처리방법을 이용한 다층구조 금속 제조방법.Method for producing a multi-layered metal using a composite surface treatment method which is produced by first producing the solid particles, and then connecting the generated solid particles to the surface of the protective layer.
  5. 제3항 또는 제4항에 있어서,The method according to claim 3 or 4,
    상기 보호층의 표면 상에 고체 입자를 부착시키는 단계는,Attaching the solid particles on the surface of the protective layer,
    다리 역할을 하는 화합물의 양쪽 끝에 상기 보호층의 표면 및 상기 고체 입자의 표면과 친화력이 있는 기능기를 갖도록 하여 물리적 또는 화학적 결합을 하는 것인 복합 표면 처리방법을 이용한 다층구조 금속 제조방법.Method of producing a multi-layer metal structure using a composite surface treatment method to have a physical or chemical bond by having a functional group having affinity with the surface of the protective layer and the surface of the solid particles at both ends of the compound acting as a bridge.
  6. 제3항에 있어서,The method of claim 3,
    상기 보호층의 표면에서 직접 상기 고체 입자를 생성시키는 방법은The method for producing the solid particles directly on the surface of the protective layer
    무전해 도금 방법을 이용하는 것인 복합 표면 처리방법을 이용한 다층구조 금속 제조방법.Method for producing a multilayer structure metal using a composite surface treatment method using an electroless plating method.
  7. 제1항에 있어서,The method of claim 1,
    상기 고체 입자는The solid particles are
    금속으로 형성하는 복합 표면 처리방법을 이용한 다층구조 금속 제조방법.Method for producing a multi-layer metal using a composite surface treatment method of forming a metal.
  8. 제1항에 있어서,The method of claim 1,
    상기 고체 입자는 The solid particles are
    균일한 크기의 구형인 것인 복합 표면 처리방법을 이용한 다층구조 금속 제조방법.Method for producing a multilayer structure metal using a composite surface treatment method that is a spherical shape of uniform size.
  9. 제1항에 있어서,The method of claim 1,
    상기 바탕층의 표면을 처리하는 단계는Treating the surface of the base layer is
    표면 굴곡도가 10 ㎚ ~ 10 ㎛가 되도록 물리적 연마를 이용하여 상기 바탕층을 연마하는 단계와,Polishing the base layer using physical polishing so that surface curvature is 10 nm to 10 μm,
    연마된 상기 바탕층의 표면을 화학 처리하는 단계를 포함하는 복합 표면 처리방법을 이용한 다층구조 금속 제조방법.A method of producing a multilayer structure metal using a composite surface treatment method comprising the step of chemically treating the surface of the ground layer polished.
  10. 제9항에 있어서,The method of claim 9,
    상기 연마된 바탕층의 표면을 화학 처리하는 단계는Chemically treating the surface of the ground base layer
    산, 염기 및 유기 용매의 혼합용액 중에서 선택되는 어느 하나로 수행되는 복합 표면 처리방법을 이용한 다층구조 금속 제조방법.Method for producing a multilayer structure metal using a composite surface treatment method performed by any one selected from a mixed solution of acid, base and organic solvent.
  11. 제9항에 있어서,The method of claim 9,
    상기 연마된 바탕층 표면의 화학 처리 시,In chemical treatment of the ground surface of the ground,
    상기 바탕층 표면 상에 형성되어 있는 화합물층이 제거되는 복합 표면 처리 방법을 이용한 다층구조 금속 제조방법.Method for producing a multi-layered metal using a composite surface treatment method in which the compound layer formed on the surface of the base layer is removed.
  12. 제1항에 있어서,The method of claim 1,
    상기 바탕층은The base layer is
    금속으로 형성하는 복합 표면 처리방법을 이용한 다층구조 금속 제조방법.Method for producing a multi-layer metal using a composite surface treatment method of forming a metal.
  13. 제12항에 있어서,The method of claim 12,
    상기 바탕층의 금속은The metal of the base layer is
    티타늄인 것인 복합 표면 처리방법을 이용한 다층구조 금속 제조방법.Method for producing a multilayer structure metal using a composite surface treatment method that is titanium.
  14. 제1항에 있어서,The method of claim 1,
    상기 보호층은The protective layer
    금속으로 형성하는 복합 표면 처리방법을 이용한 다층구조 금속 제조방법.Method for producing a multi-layer metal using a composite surface treatment method of forming a metal.
PCT/KR2017/007076 2016-07-19 2017-07-04 Method for manufacturing multilayer-structure metal by using composite surface treatment method and multilayer-structure metal manufactured thereby WO2018016772A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160091321A KR101841471B1 (en) 2016-07-19 2016-07-19 Manufacturing method for multilayer metal structure using composite surface treatment method
KR10-2016-0091321 2016-07-19

Publications (1)

Publication Number Publication Date
WO2018016772A1 true WO2018016772A1 (en) 2018-01-25

Family

ID=60993163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007076 WO2018016772A1 (en) 2016-07-19 2017-07-04 Method for manufacturing multilayer-structure metal by using composite surface treatment method and multilayer-structure metal manufactured thereby

Country Status (2)

Country Link
KR (1) KR101841471B1 (en)
WO (1) WO2018016772A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248463A (en) * 1993-02-26 1994-09-06 Mitsubishi Electric Corp Surface preparation for surface treatment on titanium and titanium alloy
KR20080110574A (en) * 2006-04-19 2008-12-18 로팔 아게 Process for producing a corrosion-protected and high-gloss substrate
JP2009102676A (en) * 2007-10-22 2009-05-14 Japan Carlit Co Ltd:The Corrosion-resistant conductive-coated material and its use
KR20090112657A (en) * 2007-01-26 2009-10-28 가부시키가이샤 엘티티 바이오파마 Metal surface treatment method
KR20130011087A (en) * 2011-07-20 2013-01-30 (주)루미나노 Preparing method of metal film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248463A (en) * 1993-02-26 1994-09-06 Mitsubishi Electric Corp Surface preparation for surface treatment on titanium and titanium alloy
KR20080110574A (en) * 2006-04-19 2008-12-18 로팔 아게 Process for producing a corrosion-protected and high-gloss substrate
KR20090112657A (en) * 2007-01-26 2009-10-28 가부시키가이샤 엘티티 바이오파마 Metal surface treatment method
JP2009102676A (en) * 2007-10-22 2009-05-14 Japan Carlit Co Ltd:The Corrosion-resistant conductive-coated material and its use
KR20130011087A (en) * 2011-07-20 2013-01-30 (주)루미나노 Preparing method of metal film

Also Published As

Publication number Publication date
KR101841471B1 (en) 2018-05-04
KR20180011895A (en) 2018-02-05

Similar Documents

Publication Publication Date Title
US3990860A (en) High temperature oxidation resistant cermet compositions
EP2659017A2 (en) High corrosion resistant hot dip zn alloy plated steel sheet and method of manufacturing the same
JP2010133021A (en) Particle for thermal spraying
WO2018016772A1 (en) Method for manufacturing multilayer-structure metal by using composite surface treatment method and multilayer-structure metal manufactured thereby
Woo et al. Electrodeposition of organofunctional silanes and its influence on structural adhesive bonding
WO2019124927A1 (en) Aluminum alloy-plated steel sheet having excellent resistance to welding liquation brittleness and excellent plating adhesion
WO2019125020A1 (en) Hot-dip galvanized steel sheet having excellent low-temperature adhesion and workability, and manufacturing method therefor
Peng et al. Effect of annealing treatment on the tribological performance of hydrogenated amorphous diamond coatings doped with nitrogen
EP3459729B1 (en) Multilayer structure and method for producing same
KR20080017309A (en) Process for minimizing electromigration in an electronic device
US20190378773A1 (en) Glass article having a metallic nanofilm and method of increasing adhesion between metal and glass
WO2020171289A1 (en) Method for manufacturing zirconia slurry for forming porous surface on ceramic implant and crown, and method for manufacturing implant using same
WO2023163323A1 (en) Method for simultaneously achieving superhydrophobic and superoleophobic surface on 5,000 series aluminum alloy in anodic oxidation process without pre-patterning step
WO2023182607A1 (en) Method for simultaneously achieving superhydrophobic and superoleophobic surface on 3,000 series aluminum alloy in anodic oxidation process without pre-patterning step
WO2023191242A1 (en) Method for forming simultaneously superhydrophobic and superoleophobic surface on 6000-series aluminum alloy omitting pre-patterning step in anodization process
JP2014117815A (en) Release polyester film for molding
WO2023195594A1 (en) Method for simultaneously achieving superhydrophobic and superoleophobic surface on 1000 series aluminum alloy in anodic oxidation process without pre-patterning step
JP3218956B2 (en) Surface treatment method for aluminum material and treated film
Irinah et al. On the role of substrate temperature into bonding mechanism of cold sprayed titanium dioxide
WO2022208981A1 (en) Composite member and method for producing same
Goldberg et al. A quantitative adhesion test for thin polymer films on silicon substrates
WO2023128330A1 (en) Orthopedic support structure and manufacturing method therefor
WO2024043401A1 (en) Zirconia implant with immobilized nano hydroxyapatite and type i collagen, and manufacturing method thereof
WO2021241787A1 (en) Conductive oxide particles and method for producing same
WO2023214857A1 (en) Conductive hollow metal particles and preparation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17831245

Country of ref document: EP

Kind code of ref document: A1