WO2018016483A1 - Method for producing mogrol or mogrol glycoside - Google Patents

Method for producing mogrol or mogrol glycoside Download PDF

Info

Publication number
WO2018016483A1
WO2018016483A1 PCT/JP2017/025963 JP2017025963W WO2018016483A1 WO 2018016483 A1 WO2018016483 A1 WO 2018016483A1 JP 2017025963 W JP2017025963 W JP 2017025963W WO 2018016483 A1 WO2018016483 A1 WO 2018016483A1
Authority
WO
WIPO (PCT)
Prior art keywords
mogrol
mogroside
glucoside bond
glycoside
added
Prior art date
Application number
PCT/JP2017/025963
Other languages
French (fr)
Japanese (ja)
Inventor
美佐 落合
栄一郎 小埜
Original Assignee
サントリーホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サントリーホールディングス株式会社 filed Critical サントリーホールディングス株式会社
Priority to JP2018528551A priority Critical patent/JP6845244B2/en
Priority to US16/318,268 priority patent/US11008600B2/en
Priority to ES17830999T priority patent/ES2844427T3/en
Priority to CN201780044407.6A priority patent/CN109477126B/en
Priority to EP17830999.3A priority patent/EP3502265B1/en
Publication of WO2018016483A1 publication Critical patent/WO2018016483A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/56Preparation of O-glycosides, e.g. glucosides having an oxygen atom of the saccharide radical directly bound to a condensed ring system having three or more carbocyclic rings, e.g. daunomycin, adriamycin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group

Definitions

  • the present invention relates to a method for producing mogrol or mogrol glycoside.
  • Lacanka (Siraitia grosvenorii) is a cucurbitaceae plant originating in Guangxi, China.
  • Lacanca fruit exhibits strong sweetness, and its extract is used as a natural sweetener.
  • dried lakanka fruit is also used as a herbal medicine.
  • Lacanka fruit is known to contain mogrol glycoside as a sweetening ingredient.
  • a mogrol glycoside is a glycoside in which glucose is bound to mogrol, which is an aglycone.
  • Mogrol glycosides are classified into various mogrol glycosides depending on the binding position and number of glucose.
  • Mogrol glycosides contained in the fruits of Lacanca are mogroside V, mogroside IV, siamenoside I and 11-oxomogroside.
  • mogrosides I, mogrosides IVA, mogroside III, mogroside IIIA 1, mogroside IIIA 2, mogroside IIIE, mogroside IIA, mogroside IIA 1, mogroside IIA 2, mogroside IIB, mogroside IIE, mogroside IA 1 And mogroside IE 1 are known. It is known that mogrol, which is an aglycon, has an anticancer action as a physiologically active action (Non-patent Document 1).
  • Non-Patent Document 1 There are several known methods for preparing mogrol from mogrol glycosides, for example, a method of acid hydrolysis by heating mogrol glycosides in 0.5N HCl at 95-100 ° C. for 10 hours is disclosed. (Non-Patent Document 1).
  • Patent Document 1 a method of hydrolyzing mogrol glycoside with an enzyme is known (Patent Document 1).
  • pectinase derived from Aspergillus niger is added and reacted at 50 ° C. for 48 hours.
  • yeast Sacharomyces cerevisiae
  • EXG1 GH5 family, ⁇ -1,3 glucanase
  • AOBGL11p which is a glycoside hydrolase derived from Aspergillus oryzae, has an activity of hydrolyzing mogroside V to produce mogrol and mogrol glycoside.
  • the present invention has been completed.
  • the present invention is as follows. (1) A step of reacting a protein selected from the group consisting of the following (a) to (c) with a mogrol glycoside to hydrolyze at least one glucoside bond of the mogrol glycoside, and / or A method for producing mogrol glycoside.
  • A a protein comprising the amino acid sequence of SEQ ID NO: 2;
  • B The amino acid sequence of SEQ ID NO: 2 consists of an amino acid sequence in which 1 to 83 amino acids are deleted, substituted, inserted and / or added, and hydrolyzes at least one glucoside bond of the mogrol glycoside.
  • the mogrol glycoside to be reacted with the protein is mogroside V, mogroside IV, siamenoside I, 11-oxomogroside, and mogroside includes mogroside I, mogroside IVA, mogroside III, mogroside IIIA 1 , mogroside
  • the above-mentioned (1) which is at least one selected from the group consisting of IIIA 2 , mogroside IIIE, mogroside IIA, mogroside IIA 1 , mogroside IIA 2 , mogroside IIB, mogroside IIE, mogroside IA 1 , mogroside IE 1 Method.
  • the at least one glucoside bond is a ⁇ -1,6-glucoside bond of gentiobiose added at the 3-position of mogrol, a glucoside bond between glucose added at the 3-position of mogrol and mogrol which is an aglycone, and at the 24-position of mogrol.
  • An enzyme agent derived from a non-human transformed cell into which a polynucleotide selected from the group consisting of the following (a) to (e) is introduced into a host cell is contacted with the mogrol glycoside, and the mogrol
  • A a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1;
  • B a polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2;
  • C The amino acid sequence of SEQ ID NO: 2 consists of an amino acid sequence in which 1 to 83 amino acids are deleted, substituted, inserted, and / or added, and at least one glucoside bond of the mogrol glycoside is hydrolyzed.
  • a polynucleotide encoding a protein having an activity of degrading (D) encoding a protein having an amino acid sequence having a sequence identity of 90% or more with respect to the amino acid sequence of SEQ ID NO: 2 and having an activity of hydrolyzing at least one glucoside bond of the mogrol glycoside.
  • a polynucleotide encoding a protein having an activity of hydrolyzing a glucoside bond (7) The method according to (6) above, wherein the polynucleotide is inserted into an expression vector.
  • the transformed cell is a transformed gonococcus, a transformed yeast, a transformed bacterium, or a transformed plant.
  • the mogrol glycoside to be brought into contact with the enzyme agent is mogroside V, mogroside IV, siamenoside I, 11-oxomogroside
  • mogroside includes mogroside I, mogroside IVA, mogroside III, mogroside IIIA 1 , mogroside IIIA 2 , mogroside IIIE, mogroside IIA, mogroside IIA 1 , mogroside IIA 2 , mogroside IIB, mogroside IIE, mogroside IA 1 , mogroside IE 1 are any one of the above (6) to (8) The method described.
  • the at least one glucoside bond is a ⁇ -1,6-glucoside bond of gentiobiose added at the 3-position of mogrol, a glucoside bond between glucose added at the 3-position of mogrol and mogrol which is an aglycone, and at the 24-position of mogrol.
  • a method for producing mogrol and / or mogrol glycoside comprising culturing a non-human transformant into which a polynucleotide selected from the group consisting of the following (a) to (e) is introduced.
  • A a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1;
  • B a polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2;
  • C The amino acid sequence of SEQ ID NO: 2 consists of an amino acid sequence in which 1 to 83 amino acids are deleted, substituted, inserted, and / or added, and at least one glucoside bond of the mogrol glycoside is hydrolyzed.
  • a polynucleotide encoding a protein having an activity of degrading (D) encoding a protein having an amino acid sequence having a sequence identity of 90% or more with respect to the amino acid sequence of SEQ ID NO: 2 and having an activity of hydrolyzing at least one glucoside bond of the mogrol glycoside.
  • the at least one glucoside bond is a ⁇ -1,6-glucoside bond of gentiobiose added at the 3-position of mogrol, a ⁇ -1,6-glucoside bond of a branched trisaccharide added at the 24-position of mogrol, and / or mogrol
  • the method of the present invention provides a new method for producing mogrol and mogrol glycoside.
  • various mogrol glycosides can be produced by selecting reaction conditions.
  • the production amount of mogrol and / or mogrol glycoside can be increased by selecting reaction conditions such as enzyme concentration.
  • A Optimum temperature of AOBGL11p using pNP- ⁇ -Glc as a substrate.
  • B Optimum pH of AOBGL11p using pNP- ⁇ -Glc as a substrate.
  • C Thermal stability of AOBGL11p using pNP- ⁇ -Glc as a substrate.
  • D pH stability of AOBGL11p using pNP- ⁇ -Glc as a substrate.
  • mogrol glycosides are ⁇ -glucosidase derived from Aspergillus oryzae
  • the cDNA sequence is shown in SEQ ID NO: 1
  • the amino acid sequence is shown in SEQ ID NO: 2
  • the genomic DNA sequence is shown in SEQ ID NO: 3.
  • the present invention relates to a protein selected from the group consisting of the following (a) to (c) (hereinafter referred to as “protein of the present invention”), and a mogrol glycoside.
  • a method for producing mogrol and / or mogrol glycoside which comprises reacting and hydrolyzing at least one glucoside bond.
  • the present invention provides a method for producing mogrol comprising the step of cleaving all glucoside bonds of the mogrol glycoside.
  • the present invention provides specific linkages of mogrol glycosides, such as the ⁇ -1,6-glucoside bond of gentiobiose added at position 3 of mogrol and / or the branching added at position 24 of mogrol.
  • a method for producing mogrol and / or mogrol glycoside which comprises a step of preferentially cleaving a ⁇ -1,6-glucoside bond of a trisaccharide.
  • a step of cleaving the ⁇ -1,6-glucoside bond of the branched trisaccharide may be included.
  • A a protein comprising the amino acid sequence of SEQ ID NO: 2;
  • B The amino acid sequence of SEQ ID NO: 2 consists of an amino acid sequence in which 1 to 83 amino acids are deleted, substituted, inserted and / or added, and hydrolyzes at least one glucoside bond of the mogrol glycoside.
  • a protein having the activity of: (C) a protein having an amino acid sequence having 90% or more sequence identity to the amino acid sequence of SEQ ID NO: 2 and having an activity of hydrolyzing at least one glucoside bond of mogrol glycoside
  • the protein described in the above (b) or (c) is typically a variant of a protein consisting of the amino acid sequence of SEQ ID NO: 2, for example, “Sambrook & Russell, Molecular Cloning: A Laboratory Manual Vol. 4, Cold Spring Harbor Laboratory Press 2012 ”,“ Ausubel, Current Protocols in Molecular Biology, John Wiley & Sons 1987-1997 ”,“ Nuc. Acids. Res., 10, 6487 (1982) ”,” Proc. Natl. Acad .Sci. USA, 79, 6409 (1982) ”,“ Gene, 34, 315 (1985) ”,“ Nuc. Acids. Res., 13, 4431 (1985) ”,“ Proc. Natl. Acad. Sci. USA , 82, 488 (1985) ”and the like, which can be obtained artificially using the site-directed mutagenesis method described in the above.
  • the amino acid sequence of SEQ ID NO: 2 consists of an amino acid sequence in which 1 to 83 amino acids are deleted, substituted, inserted and / or added, and an activity of hydrolyzing at least one glucoside bond of the mogrol glycoside.
  • Such a protein includes the amino acid sequence of SEQ ID NO: 2, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% 99% or more, 99.1% or more, 99.2% or more, 99.3% or more, 99.4% or more, 99.5% or more, 99.6% or more, 99.7% or more, 99.
  • examples thereof include a protein having an amino acid sequence having a sequence identity of 8% or more, or 99.9% or more and having an activity of hydrolyzing at least one glucoside bond of a mogrol glycoside. In general, the larger the sequence identity value, the better.
  • “at least one glucoside bond of mogrol glycoside” means a glucoside bond between mogrol, which is an aglycon, and a side chain in mogrol glycoside, which is a glycoside in which sugar is bound to mogrol, and Means a glucoside bond in the side chain.
  • the “activity of hydrolyzing at least one glucoside bond of a mogrol glycoside” means that the mogrol glycoside is a glycoside in which sugar is bound to mogrol, between mogrol that is an aglycone and the side chain. It means an activity of cleaving (hydrolyzing) at least one of a glucoside bond and a glucoside bond in a side chain.
  • glucoside linkages in the side chain include ⁇ -1,6-glucoside linkage of gentiobiose added at position 3 of mogrol, ⁇ -1,6-glucoside linkage of branched trisaccharide at position 24 of mogrol, position 24 of mogrol ⁇ -1,2-glucoside bond of branched trisaccharide, ⁇ -1,6-glucoside bond of gentiobiose added at position 24 of mogrol, and / or ⁇ -1,2- of sophorose added at position 24 of mogrol A glucoside bond is mentioned. In certain embodiments, all glucoside bonds are hydrolyzed to yield mogrol from the mogrol glycoside.
  • the ⁇ -1,6-glucoside bond of gentiobiose added at position 3 of mogrol and / or the ⁇ -1,6-glucoside bond of the branched trisaccharide at position 24 of mogrol is preferentially hydrolyzed. Is done. In this way, mogrol glycosides in which only some of the sugars are cleaved are produced.
  • the activity of hydrolyzing at least one glucosidic bond of mogrol glycosides can be achieved with the protein of the present invention, for example, mogroside V, mogroside IV, siamenoside I, 11-oxomogroside, mogroside I, mogroside IVA, mogroside III, mogroside IIIA 1 , Reacting at least one mogrol glycoside selected from the group consisting of mogroside IIIA 2 , mogroside IIIE, mogroside IIA, mogroside IIA 1 , mogroside IIA 2 , mogroside IIB, mogroside IIE, mogroside IA 1 , mogroside IE 1
  • the obtained reaction product mogrol and / or mogrol glycoside
  • LC liquid chromatography
  • amino acid residues that can be substituted with each other are shown below. Amino acid residues contained in the same group can be substituted for each other.
  • Group A leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, o-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;
  • Group B aspartic acid, glutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;
  • Group C asparagine, glutamine;
  • Group D lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;
  • Group E proline, 3-hydroxyproline, 4-hydroxyproline;
  • Group F serine, threonine, homoserine;
  • Group G phenylalanine, tyrosine.
  • the protein of the present invention can be obtained by, for example, expressing a polynucleotide encoding the same (see “polynucleotide of the present invention” described later) in an appropriate host cell.
  • the Fmoc method fluorenylmethyl
  • the Fmoc method can also be produced by chemical synthesis methods such as the oxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method).
  • AAPPPec LLC Perkin Elmer Inc. Manufactured by Protein Technologies Inc. Chemical synthesis can also be carried out using a peptide synthesizer such as manufactured by PerSeptive Biosystems, Applied Biosystems, or SHIMADZU CORPORATION.
  • the “mogrol glycoside” is a glycoside in which a sugar is bound to mogrol.
  • Examples of mogrol and mogrol glycoside are represented by the following general formula (I). The 3rd position of mogrol and the 24th position of mogrol are shown in the formula.
  • the “branched trisaccharide” refers to those constituting a trisaccharide among those added to the R 2 moiety in the following general formula (I).
  • mogrol glycosides are mogroside V, mogroside IV, siamenoside I, 11-oxomogroside, mogroside I, mogroside IVA, mogroside III, mogroside IIIA 1 , mogroside IIIA 2 , mogroside IIIE, mogroside IIA, mogroside IIA 1 , mogroside Examples include, but are not limited to, IIA 2 , mogroside IIB, mogroside IIE, mogroside IA 1 , mogroside IE 1 and the like.
  • the enzyme of the present invention uses a protein consisting of the amino acid sequence of SEQ ID NO: 2 and / or a protein consisting of a variant thereof.
  • mogrol glycosides can be utilized as a substrate.
  • the example of a mogrol glycoside is as above-mentioned.
  • the reaction conditions can be adjusted by adjusting the amount of enzyme added to the reaction, adding an organic solvent to the reaction solution, or adjusting the reaction temperature.
  • mogroside V which is the most abundant mogrol glycoside in Lacanca fruit, as a substrate, it is rare such as mogroside IIIE and mogroside II (mogroside IIA, mogroside IIA 1 , mogroside IIA 2 , mogroside IIB, mogroside IIE). It is also possible to produce mogrol glycosides.
  • the enzyme amount, substrate / enzyme ratio, temperature, pH, presence / absence of a solvent, reaction time, etc. of the reaction using mogrol glycoside as a substrate can be adjusted as appropriate by those skilled in the art. It is possible to control the degree of degradation to what extent the sugar bound to the saccharide is cleaved.
  • the method for producing mogrol and / or mogrol glycoside according to the present invention hydrolyzes at least one glucoside bond of mogrol glycoside.
  • the starting mogrol glycoside is obtained from Siraitia grosvenorii as an appropriate solvent (aqueous solvent such as water or organic such as alcohol, ether and acetone). Solvent) extraction, ethyl acetate and other organic solvents: water gradient, high performance liquid chromatography (HPLC), ultra high performance liquid chromatography (ultra (liquid) liquid chromatography: UPLC), etc. It can obtain by extracting and refine
  • the starting mogrol glycoside may be commercially available.
  • Mogrol glycosides as starting materials of the present invention include mogroside V, mogroside IV, siamenoside I, 11-oxomogroside, mogroside I, mogroside IVA, mogroside III, mogroside IIIA 1 , mogroside IIIA 2 , mogroside IIIE, mogroside IIA, Mogroside IIA 1 , mogroside IIA 2 , mogroside IIB, mogroside IIE, mogroside IA 1 , mogroside IE 1 and various mogrol glycosides by cleavage of ⁇ -1,6-glucoside bond or ⁇ -1,2-glucoside bond Such as siamenoside I, mogroside IIIE, and mogrol disaccharide glycoside.
  • the method for producing mogrol and / or mogrol glycoside according to the present invention includes a step of hydrolyzing at least one glucoside bond of mogrol glycoside by reacting the protein of the present invention with mogrol glycoside.
  • the method of the present invention may further comprise a step of purifying the mogrol and / or mogrol glycoside of the present invention produced in the above step.
  • the mogrol and / or mogrol glycoside of the present invention is extracted with an appropriate solvent (aqueous solvent such as water, or organic solvent such as alcohol, ether, and acetone), ethyl acetate and other organic solvents: water gradient, high speed It can be purified by known methods such as liquid chromatography (HPLC), ultra high performance liquid chromatography (Ultra (High) Performance Chromatography: UPLC), and the like.
  • solvent aqueous solvent such as water, or organic solvent such as alcohol, ether, and acetone
  • ethyl acetate and other organic solvents water gradient, high speed
  • HPLC liquid chromatography
  • Ultra (High) Performance Chromatography: UPLC ultra high performance liquid chromatography
  • the method for producing a mogrol glycoside and / or mogrol according to the present invention can be performed under a condition in which an organic solvent is added to a reaction solution containing a substrate.
  • the organic solvent can be in the range of 1% to 20% with respect to the total amount of the reaction solution, preferably 5% to 15%, 6 to 12%, more preferably 8%.
  • the organic solvent may be generally available, preferably mixed with water in an arbitrary ratio, and acetonitrile or the like can be used.
  • the organic solvent may be added in advance to the reaction solution, or may be added in the middle of the reaction.
  • polynucleotide means DNA or RNA.
  • Examples of the polynucleotide encoding the protein consisting of the amino acid sequence of SEQ ID NO: 2 include a polynucleotide consisting of the base sequence of SEQ ID NO: 1.
  • the amino acid sequence of SEQ ID NO: 2 consists of an amino acid sequence in which 1 to 83 amino acids are deleted, substituted, inserted and / or added, and an activity of hydrolyzing at least one glucoside bond of the mogrol glycoside.
  • Examples of the “protein having” include those described above.
  • a protein having an amino acid sequence having 90% or more sequence identity with respect to the amino acid sequence of SEQ ID NO: 2 and having an activity of hydrolyzing at least one glucoside bond of a mogrol glycoside Can be mentioned.
  • a polynucleotide that hybridizes under highly stringent conditions encodes a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO: 1 or the amino acid sequence of SEQ ID NO: 2.
  • high stringent conditions means, for example, 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, 50 ° C., or 0.2 ⁇ SSC, 0.1% SDS, The conditions are 60 ° C., 0.2 ⁇ SSC, 0.1% SDS, 62 ° C., or 0.2 ⁇ SSC, 0.1% SDS, 65 ° C., but are not limited thereto. Under these conditions, it can be expected that DNA having high sequence identity can be efficiently obtained as the temperature is increased.
  • factors affecting the stringency of hybridization include multiple factors such as temperature, probe concentration, probe length, ionic strength, time, and salt concentration, and those skilled in the art can select these factors as appropriate. By doing so, it is possible to achieve the same stringency.
  • Alkphos Direct Labeling and Detection System (GE Healthcare) can be used, for example.
  • the membrane was subjected to a primary wash containing 0.1% (w / v) SDS at 55-60 ° C. After washing with a buffer, the hybridized DNA can be detected.
  • a probe based on a base sequence complementary to the base sequence of SEQ ID NO: 1 or a base sequence complementary to the base sequence encoding the amino acid sequence of SEQ ID NO: 2 commercially available
  • DIG digoxigenin
  • a reagent for example, PCR labeling mix (Roche Diagnostics)
  • hybridization is performed using a DIG nucleic acid detection kit (Roche Diagnostics). Can be detected.
  • hybridizable polynucleotide encodes the DNA of the nucleotide sequence of SEQ ID NO: 1 or the amino acid sequence of SEQ ID NO: 2, when calculated by the BLAST homology search software using the default parameters.
  • sequence identity of amino acid sequences and nucleotide sequences is determined by the algorithm BLAST (Basic Local Alignment Search Tool) by Carlin and Arthur (Proc. Natl. Acad. Sci. USA 872264-2268, 1990; Proc Natl Acad Sci USA 90: 5873, 1993).
  • BLAST Basic Local Alignment Search Tool
  • Carlin and Arthur Proc. Natl. Acad. Sci. USA 872264-2268, 1990; Proc Natl Acad Sci USA 90: 5873, 1993.
  • BLAST Basic Local Alignment Search Tool
  • the above-described polynucleotide of the present invention can be obtained by a known genetic engineering technique or a known synthesis technique.
  • the polynucleotide of the present invention may further include a polynucleotide consisting of a base sequence encoding a secretory signal peptide.
  • a polynucleotide consisting of a base sequence encoding a secretory signal peptide is included at the 5 'end of the polynucleotide of the present invention.
  • the polynucleotide from the secretory signal peptide and the base sequence encoding it is the same as described above.
  • the polynucleotide of the present invention is preferably introduced into a host while being inserted into an appropriate expression vector.
  • Suitable expression vectors are usually (I) a promoter capable of transcription in a host cell; (Ii) a polynucleotide of the present invention linked to the promoter; and (iii) an expression cassette comprising, as a component, a signal that functions in a host cell for transcription termination and polyadenylation of an RNA molecule. .
  • the method for producing the expression vector includes, but is not limited to, a method using a plasmid, phage, cosmid or the like.
  • the specific type of the vector is not particularly limited, and a vector that can be expressed in the host cell can be appropriately selected. That is, according to the type of the host cell, a promoter sequence is appropriately selected in order to reliably express the polynucleotide of the present invention, and a vector in which this and the polynucleotide of the present invention are incorporated into various plasmids or the like is used as an expression vector. Good.
  • the expression vector of the present invention contains an expression control region (for example, a promoter, a terminator and / or a replication origin) depending on the type of host to be introduced.
  • an expression control region for example, a promoter, a terminator and / or a replication origin
  • Conventional promoters eg, trc promoter, tac promoter, lac promoter, etc.
  • yeast promoters include glyceraldehyde 3-phosphate dehydrogenase promoter, PH05 promoter, etc.
  • Examples of the promoter for filamentous fungi include amylase and trpC.
  • promoters for expressing a target gene in plant cells include the cauliflower mosaic virus 35S RNA promoter, the rd29A gene promoter, the rbcS promoter, and the enhancer sequence of the cauliflower mosaic virus 35S RNA promoter derived from Agrobacterium. And the mac-1 promoter added to the 5 'side of the mannopine synthase promoter sequence.
  • animal cell host promoters include viral promoters (eg, SV40 early promoter, SV40 late promoter, etc.).
  • MMTV mouse mammary tumor virus
  • the expression vector preferably contains at least one selectable marker.
  • markers include auxotrophic markers (ura5, niaD), drug resistance markers (hygromycin, zeocin), geneticin resistance gene (G418r), copper resistance gene (CUP1) (Marin et al., Proc. Natl. Acad. Sci. USA, vol. 81, p. 337, ⁇ ⁇ 1984), cerulenin resistance gene (fas2m, PDR4) (respectively, Koshiwa ⁇ ⁇ et al., Biochemistry, vol. 64, p. , Gene, vol. 101, p. 149, 1991) can be used.
  • the production method (production method) of the transformant of the present invention is not particularly limited, and examples thereof include a method of transforming by introducing an expression vector containing the polynucleotide of the present invention into a host.
  • cells or organisms to be transformed various conventionally known cells or organisms can be suitably used.
  • cells to be transformed include bacteria such as Escherichia coli, yeast (budding yeast Saccharomyces cerevisiae, fission yeast Schizosaccharomyces pombe), filamentous fungi (gonococci Aspergillus oryzae, Aspergillus sojae), plant cells, and humans. Excluding animal cells and the like.
  • the organism to be transformed is not particularly limited, and examples thereof include various microorganisms exemplified in the host cell, animals other than plants or animals.
  • the transformant is preferably a filamentous fungus, a yeast or a plant.
  • a host used in transformation a host that produces any of mogrol glycosides can also be used.
  • a host used in transformation a host that produces any of mogrol glycosides can also be used.
  • a host used in transformation a host that produces any of mogrol glycosides can also be used.
  • Lacanca not only plants that originally produce at least one mogrol glycoside, but also cells or organisms that do not naturally produce mogrol glycoside have been introduced with a gene necessary for the production of at least one mogrolol glycoside.
  • Examples of the “gene necessary for the production of mogrol glycoside” include genes having mogrol glycoside synthesis activity described in WO2016 / 050890 and the like.
  • a host cell transformation method As a host cell transformation method, a commonly known method can be used. For example, an electroporation method (Mackenxie, D. A. et al., Appl. Environ. Microbiol., Vol. 66, p. 4655-4661, ⁇ ⁇ ⁇ ⁇ 2000), particle delivery method (Japanese Patent Laid-Open No. 2005-287403, “lipid producing bacteria”) ), Spheroplast method (Proc. Natl. Acad. Sci. USA, vol. 75, p. 1929, 1978), lithium acetate method (J. Bacteriology, vol. 153, p. 163, 1983), Methods inyeast genetics, 2000 Edition: A Cold Spring Harbor Laboratory Course Manual), but is not limited thereto.
  • an electroporation method Mackenxie, D. A. et al., Appl. Environ. Microbiol., Vol. 66, p. 4655-4661, ⁇ ⁇ ⁇ ⁇ 2000
  • the yeast or koji mold transformed with the polynucleotide of the present invention expresses more of the protein of the present invention than the wild type.
  • the expressed protein of the present invention reacts with a mogrol glycoside produced in yeast or koji mold, and mogrol and / or mogrol glycoside is preferably cultured in the yeast or koji mold cells or in the culture solution. Produced in liquid.
  • the plant to be transformed in the present invention is the whole plant, plant organ (eg, leaf, petal, stem, root, seed, etc.), plant tissue (eg, epidermis, phloem) , Soft tissue, xylem, vascular bundle, palisade tissue, spongy tissue, etc.) or plant culture cells, or various forms of plant cells (eg, suspension culture cells), protoplasts, leaf sections, callus, etc. Also means.
  • the plant used for the transformation may be any plant belonging to the monocotyledonous plant class or the dicotyledonous plant class.
  • Whether or not the polynucleotide of the present invention has been introduced into a plant can be confirmed by PCR, Southern hybridization, Northern hybridization, or the like.
  • offspring can be obtained by sexual or asexual reproduction of the plant.
  • seeds, fruits, cuttings, tubers, tuberous roots, strains, callus, protoplasts, and the like can be obtained from the plant or its progeny, or clones thereof, and the plant can be mass-produced based on them. it can.
  • plant of the present invention contains more of the protein of the present invention than its wild type. For this reason, the protein of this invention reacts with the mogrol glycoside produced
  • the hydrolysis reaction of the glucoside bond of the mogrol glycoside is suppressed, and the mogrol glycoside or glucoside bond is maintained without breaking the glucoside bond. Mogrol glycosides that are cleaved only in part are produced.
  • the present invention provides a method for producing mogrol and / or mogrol glycoside, which comprises culturing a non-human transformant introduced with the polynucleotide of the present invention.
  • the transformant of some aspects of the present invention or its culture solution has a higher content of the mogrol and / or mogrol glycoside of the present invention than its wild type, and the extract or culture solution contains The inventive mogrols and / or mogrol glycosides are included in high concentrations.
  • the extract of the transformant of the present invention can be obtained by crushing the transformant using glass beads, a homogenizer, a sonicator or the like, centrifuging the crushed material, and collecting the supernatant. it can.
  • the transformant and the culture supernatant are separated by a usual method (for example, centrifugation, filtration, etc.) after completion of the culture. By doing so, a culture supernatant containing the mogrol and / or mogrol glycoside of the present invention can be obtained.
  • the thus obtained extract or culture supernatant may be further subjected to a purification step.
  • the purification of mogrol and / or mogrol glycoside of the present invention can be carried out according to ordinary separation and purification methods. The specific method is the same as described above.
  • the protein of the present invention is expressed by expressing the protein of the present invention in a host cell and disrupting the cell. Obtainable. By allowing the protein of the present invention to act, the mogrol glycoside and / or mogrol of the present invention can also be produced. Specifically, mogrol can be produced by contacting an enzyme agent derived from the transformed cell of the present invention with a mogrol glycoside having at least one glucoside bond. It has been confirmed in the Examples that the protein of the present invention exhibits the same activity when expressed in yeast as in the case of expression in Aspergillus.
  • Enzyme agent derived from transformed cells is not limited as long as it is prepared using transformed cells and contains the protein of the present invention.
  • transformed cells themselves pulverized products of transformed cells themselves, The culture supernatant of the transformed cell itself, and purified products thereof.
  • the present invention provides an enzyme agent derived from a non-human transformed cell into which a polynucleotide selected from the group consisting of the following (a) to (e) is introduced into a host cell, and at least one glucoside bond:
  • a method for producing mogrol and / or mogrol glycoside comprising the step of hydrolyzing at least one glucoside bond by contacting with the mogrol glycoside having the formula: (A) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1; (B) a polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2; (C)
  • the amino acid sequence of SEQ ID NO: 2 consists of an amino acid sequence in which 1 to 83 amino acids are deleted, substituted, inserted, and / or added, and hydrolyzes at least one glucoside bond of the mogrol glycoside.
  • the polynucleotide selected from the group consisting of (a) to (e) above is the polynucleotide of the present invention and is the same as described above.
  • Contact means that an enzyme agent derived from the transformed cell of the present invention and a mogrol glycoside having at least one glucoside bond are present in the same reaction system or culture system. Addition of a mogrol glycoside having at least one glucoside bond to a container containing an enzyme agent derived from the transformed cell of the invention, an enzyme agent derived from the transformed cell of the present invention and mogrol having at least one glucoside bond Mixing with a glycoside and adding an enzyme agent derived from the transformed cell of the present invention to a container containing a mogrol glycoside having at least one glucoside bond are included.
  • mogrol glycoside “mogrol glycoside having at least one glucoside bond”, and “activity for hydrolyzing at least one glucoside bond” are the same as described above.
  • the thus obtained mogrol and / or mogrol glycoside of the present invention can be produced, for example, according to a conventional method such as production of foods, sweeteners, fragrances, pharmaceuticals, industrial raw materials (raw materials such as cosmetics and soaps). Can be used for applications.
  • foods examples include nutritional supplements, health foods, functional foods, infant foods, and elderly foods.
  • food is a general term for solids, fluids, liquids, and mixtures thereof that can be consumed.
  • Example 1 Search for ⁇ -glucosidase gene of Aspergillus by searching for ⁇ -glucosidase homologue from Aspergillus genome data (PRJNA28175), AO090700024044 (CDS sequence: SEQ ID NO: 1, deduced amino acid sequence: SEQ ID NO: 2, The ORF sequence: SEQ ID NO: 3, and the genomic DNA sequence: SEQ ID NO: 4) were found. We decided to clone this as AOBGL11. The cDNA sequence and amino acid sequence of AOBGL11 are shown in FIG.
  • AOBGL11-F 5′-ATGCCTCGTCTAGACCGTCGAGAA-3 ′ (SEQ ID NO: 4)
  • AOBGL11-R 5'-TCACAGACCCAACCAGTAGGCGA-3 '(SEQ ID NO: 5)
  • Conidia of Aspergillus oryzae var. Brunneus (IFO30102) were added to a liquid medium (1 g, glucose 20 g, bactotryptone 1 g, yeast extract 5 g, NaNO 3 1 g, K 2 HPO 4 0.5 g, MgSO 4 ⁇ 7H 2 O 0 0.5 g, FeSO 4 ⁇ 7H 2 O 0.01 g) was inoculated into 10 ml, and cultured at 30 ° C. for 1 day. Bacteria were collected by filtration, ground in liquid nitrogen, and then genomic DNA was prepared using DNeasy Plant Mini Kit (QIAGEN).
  • PCR was performed with KOD-plus (Toyobo) using genomic DNA as a template and primers AOBGL11-F and AOBGL11-R.
  • the obtained DNA fragment of about 2.57 kbp was cloned using Zero Blunt TOPO PCR Cloning Kit (Invitrogen) to obtain plasmid pCR-AOBGL11g.
  • Example 2 Production of AOBGL11p by Aspergillus Construction of a vector for expressing Aspergillus oryzae DNA fragment obtained by digestion of Aspergillus oryzae vector pUNA (Liquor Research Institute) with restriction enzyme SmaI and plasmid pCR-AOBGL11g with restriction enzyme EcoRI and blunting ends
  • the DNA fragment of about 2.57 kbp obtained by blunting with Kit (Takara Bio) was ligated to obtain 11 g of plasmid pUNA-AOBGL.
  • Koji molds were transformed as follows. As a host, Aspergillus oryzae niaD300 strain (Liquor Research Institute) was used. Host strains were inoculated on PDA plates and cultured at 30 ° C. for approximately 1 week. To obtain a conidial suspension, 0.1% tween 80, 0.8% NaCl was added to suspend the conidia. After filtration through Miracloth, conidia were collected by centrifugation, further washed with 0.1% tween 80, 0.8% NaCl, and suspended in sterile water.
  • Conidia were added to CD plates (6 g NaNO 3 , 0.52 g KCl 2, 1.52 g KH 2 PO 4 , 2 g glucose, 1 ml MgSO 4 , trace element solution (1 g FeSO 4 ⁇ 7H 2 O, 1 g ZnSO).
  • Agar 20 g (pH 6.5) was applied, and DNA was introduced by a particle delivery method.
  • a liquid medium for enzyme production (100 g of maltose, 1 g of bactotryptone, 5 g of yeast extract, 1 g of NaNO 3 , 0.5 g of K 2 HPO 4, 0.5 g of MgSO 4 .7H 2 O, FeSO 4 7H 2 O (0.01 g) was inoculated and cultured with shaking at 30 ° C. for 2 days. The cells were collected by filtration through Miracloth (registered trademark). About 4 g of the obtained wet cells were frozen with liquid nitrogen and ground in a mortar. The ground cells were suspended in 50 mM sodium phosphate buffer (pH 7.0), mixed well, and then centrifuged.
  • the obtained supernatant is concentrated by ultrafiltration with Amicon (registered trademark) Ultra-15 50k (Merck) and replaced with 50 mM sodium phosphate buffer pH 7.0 (buffer A) containing 0.1% CHAPS. As a result, about 1 ml of a crude enzyme solution was obtained.
  • Amicon registered trademark
  • Ultra-15 50k Merck
  • buffer A 50 mM sodium phosphate buffer pH 7.0
  • the protein concentration of the crude enzyme solution was quantified using a protein assay CBB solution (concentrated 5 times) (Nacalai Tesque). As a result, the BGL11-1 crude enzyme solution was 6.46 mg / ml and the C-1 crude enzyme solution was 4 mg / ml.
  • Example 3 pNP- ⁇ -Glc degradation activity The degradation activity of pNP- ⁇ -Glc was examined. 10 ⁇ L of the crude enzyme solution, 50 ⁇ L of 0.2 M sodium phosphate buffer (pH 7.0), 50 ⁇ L of 20 mM pNP- ⁇ -Glc aqueous solution and water were added to make a total of 200 ⁇ L, followed by reaction at 37 ° C. Since the BGL11-1 crude enzyme solution had high activity, the crude enzyme solution diluted 100-fold with 50 mM sodium phosphate buffer (pH 7.0) containing 0.1% CHAPS was used.
  • the reaction solution was 20 ⁇ l of crude enzyme solution (1.3 ⁇ g / ml), 100 ⁇ l of 0.2 M sodium phosphate buffer (pH 6.5), 20 mM pNP- ⁇ -Glc, and water to make a total of 400 ⁇ l, 15 minutes after the start of the reaction 100 ⁇ l was sampled at 30 minutes and 45 minutes and mixed with 100 ⁇ l 0.2 M sodium carbonate solution, and the absorbance at 405 nm was measured to obtain ⁇ 405.
  • FIG. 2A shows the ratio of ⁇ 405 when the reaction is performed at each temperature with 45 ° C. at which ⁇ 405 is maximized as 1. As a result, it was found that 45-50 ° C. was the optimum temperature for the reaction.
  • Optimum pH The reaction solution was adjusted to a total of 400 ⁇ l by adding 20 ⁇ l of crude enzyme solution (1.3 ⁇ g / ml), 100 ⁇ l of 0.2M buffer, 20 mM pNP- ⁇ -Glc, and water.
  • As the buffer sodium acetate buffer was used at pH 4.0-6.0, and sodium phosphate buffer was used at pH 6.0-8.0. Sampling and measurement were performed in the same manner as described above, and the ratio of ⁇ 405 when reacted at each pH with respect to the maximum value of ⁇ 405 is shown in FIG. 2B. As a result, it was found that pH 6.0-7.0 was the optimum reaction pH.
  • the crude enzyme solution (1.3 ⁇ g / ml) diluted 5000 times was kept at 30 ° C., 37 ° C., 45 ° C. and 50 ° C. for 10 minutes, and then cooled with ice.
  • the reaction solution was 5 ⁇ l of crude enzyme solution (1.3 ⁇ g / ml), 100 ⁇ l of 0.2 M sodium phosphate buffer (pH 6.5), 20 mM pNP- ⁇ -Glc, and water to make a total of 100 ⁇ l, and at 37 ° C. for 45 minutes. After the reaction, 100 ⁇ l of 0.2 M sodium carbonate solution was added and the absorbance at 405 nm was measured.
  • AOBGL11p was stable up to 37 ° C. when treated for 10 minutes, but was deactivated to about half when treated at 45 ° C., and the activity was almost lost when treated at 50 ° C.
  • pH stability The crude enzyme solution was added at pH 4.5, 5.0, 5.5, 6.0 (0.2 M acetate buffer), pH 6.0, 6.5, 7.0, 7.5, 8.0 (0.0. 2M sodium phosphate buffer) was diluted 5000 times with each buffer, kept at 37 ° C. for 1 hour, and then ice-cooled.
  • the reaction solution was 5 ⁇ l of crude enzyme solution (1.3 ⁇ g / ml), 100 ⁇ l of 0.2 M sodium phosphate buffer (pH 6.5), 20 mM pNP- ⁇ -Glc, and water to make a total of 100 ⁇ l, and at 37 ° C. for 45 minutes.
  • Example 4 Cloning of AOBGL11 cDNA The BGL11-1 strain was cultured in 10 ml of enzyme production medium, and the cells were collected by filtration. The cells were frozen with liquid nitrogen, ground in a mortar, and then total RNA was extracted with RNeasy (QIAGEN). CDNA was synthesized by SuperScript Double-Stranded cDNA Synthesis Kit (Life Technologies). Using this as a template, PCR was performed with KOD-plus (Toyobo) using primers AOBGL11-F and AOBGL11-R.
  • the obtained DNA fragment of about 2.52 kbp was cloned by using Zero Blunt TOPO PCR Cloning Kit (Invitrogen) to obtain the cDNA of AOBGL11 to obtain plasmid pCR-AOBGL11 cDNA.
  • the base sequence was confirmed, it was as shown in SEQ ID NO: 1.
  • FIG. 3 shows a comparison between the genomic DNA sequence of AOBGL11 and the cDNA sequence.
  • Example 5 Production of AOBGL11p in Yeast Construction of Yeast Expression Vector and Transformation of Yeast About 2.52 kbp of DNA fragment obtained by digesting plasmid pCR-AOBGL11 cDNA with EcoRI was transformed into yeast expression vector pYE22m (Biosci. Biotech. Biochem , 59, 1221-1228, 1995), and the one in which AOBGL11 was inserted in the direction of expression from the GAPDH promoter of the vector pYE22m was selected and designated pYE-AOBGL3c. S. cerevisiae EH13-15 strain (trp1, MAT ⁇ ) (Appl. Microbiol.
  • Biotechnol., 30, 515-520, 1989 was used as a parent strain for transformation.
  • EH13-15 strain was transformed by lithium acetate method using plasmids pYE22m (control) and pYE-AOBGL11 (for AOBGL11 expression), respectively.
  • the transformed strain was SC-Trp (per 1 L, yeast nitrogen base w / o amino acids (DIFCO) 6.7 g, glucose 20 g, and amino acid powder (adenine sulfate 1.25 g, arginine 0.6 g, aspartic acid 3 g, Glutamic acid 3 g, histidine 0.6 g, leucine 1.8 g, lysine 0.9 g, methionine 0.6 g, phenylalanine 1.5 g, serine 11.25 g, tyrosine 0.9 g, valine 4.5 g, threonine 6 g, uracil 0.6 g 1) containing 1.3 g) and those growing on an agar medium (2% agar) were selected.
  • SC-Trp per 1 L, yeast nitrogen base w / o amino acids (DIFCO) 6.7 g, glucose 20 g, and amino acid powder (adenine sulfate 1.25 g, arginine
  • the strain obtained by transformation with plasmid pYE22m was designated as CY strain, and the strain obtained by transformation with plasmid pYE-AOBGL11 was designated as AOBGL11-Y strain.
  • the selected CY strain and AOBGL11-Y strain were inoculated with 1 platinum ear in 10 mL of SC-Trp liquid medium supplemented with 1/10 volume of 1M potassium phosphate buffer, and cultured with shaking at 30 ° C. and 125 rpm for 2 days. .
  • the obtained culture was separated into a culture supernatant and cells by centrifugation.
  • the culture supernatant was concentrated to ultrafiltration with Amicon (registered trademark) Ultra-15 50k (Merck), buffer-substituted with 50 mM sodium phosphate buffer (pH 7.0) containing 0.1% CHAPS, and about 1 ml of culture was obtained.
  • a supernatant concentrate was obtained.
  • the cells are suspended in 1 ml of 50 mM sodium phosphate buffer (pH 7.0) and 0.1% CHAPS solution.
  • the cells are disrupted with glass beads, and the supernatant obtained by centrifugation is disrupted. Liquid. Take 20 ⁇ l of the culture supernatant concentrate or cell disruption solution, add 1 ⁇ l of 2% X- ⁇ -Glc / DMF solution and react at room temperature for 5 minutes. Only the cell disruption solution derived from AOBGL11-Y strain is blue. And was suggested to have X- ⁇ -Glc activity.
  • the absorbance change at 405 nm per minute ( ⁇ 405) based on p-nitrophenol (pNP) released by hydrolysis of pNP- ⁇ -Glc was 0.068 in the AOBGL11-Y crude enzyme solution, and CY crude enzyme.
  • the liquid was 0.000.
  • Mogrol glycoside hydrolysis activity of AOBGL11p produced by Aspergillus mogroside V was used as a substrate.
  • Mogroside V was 50 ⁇ g / mL, 50 mM sodium phosphate buffer (pH 7.0), the above BGL11-1 crude enzyme solution or its diluted solution (20 ⁇ L) to a total volume of 100 ⁇ L, and reacted at 37 ° C. for 1 hour.
  • As a control the above C-1 crude enzyme solution was reacted in the same manner.
  • the reaction solution was subjected to SepPakC18 500 mg (Waters) washed with methanol and equilibrated with water. After washing with 40% methanol, elution was performed with 80% methanol, followed by drying at a speed bag. Dissolved in 100 ⁇ L of water and subjected to HPLC.
  • the present invention provides a method for producing mogrol and / or mogrol glycoside by hydrolyzing mogroside V using AOBGL11p which is a glucoside hydrolase derived from Aspergillus.

Abstract

A novel method for producing a mogrol glycoside and mogrol has been required. The present invention provides a method for producing a mogrol glycoside and/or mogrol, said method comprising a step for cleaving at least one glucoside bond in a mogrol glycoside.

Description

モグロールまたはモグロール配糖体の生産方法Method for producing mogrol or mogrol glycoside
 本発明は、モグロールまたはモグロール配糖体の生産方法に関する。 The present invention relates to a method for producing mogrol or mogrol glycoside.
 ラカンカ(Siraitia grosvenorii)は、中国広西チワン族自治区を原産地とするウリ科の植物である。ラカンカの果実は、強い甘味を呈し、その抽出物は、天然甘味料として利用されている。また、ラカンカの果実を乾燥したものは、漢方の生薬としても利用されている。
 ラカンカの果実は、甘味成分として、モグロール配糖体を含むことが知られている。モグロール配糖体は、アグリコンであるモグロールにグルコースが結合した配糖体である。モグロール配糖体は、グルコースの結合位置や数の違いで各種モグロール配糖体に分類される。ラカンカの果実に含まれるモグロール配糖体は、モグロシドV、モグロシドIV、シアメノシドIおよび11-オキソモグロシドである。この他、モグロール配糖体には、モグロシドI、モグロシドIVA、モグロシドIII、モグロシドIIIA、モグロシドIIIA、モグロシドIIIE、モグロシドIIA、モグロシドIIA、モグロシドIIA、モグロシドIIB、モグロシドIIE、モグロシドIA、モグロシドIEなどがあることが知られている。
 アグリコンであるモグロールには生理活性作用として、抗ガン作用があることが知られている(非特許文献1)。
Lacanka (Siraitia grosvenorii) is a cucurbitaceae plant originating in Guangxi, China. Lacanca fruit exhibits strong sweetness, and its extract is used as a natural sweetener. In addition, dried lakanka fruit is also used as a herbal medicine.
Lacanka fruit is known to contain mogrol glycoside as a sweetening ingredient. A mogrol glycoside is a glycoside in which glucose is bound to mogrol, which is an aglycone. Mogrol glycosides are classified into various mogrol glycosides depending on the binding position and number of glucose. Mogrol glycosides contained in the fruits of Lacanca are mogroside V, mogroside IV, siamenoside I and 11-oxomogroside. In addition, the Moguroru glycosides, mogrosides I, mogrosides IVA, mogroside III, mogroside IIIA 1, mogroside IIIA 2, mogroside IIIE, mogroside IIA, mogroside IIA 1, mogroside IIA 2, mogroside IIB, mogroside IIE, mogroside IA 1 And mogroside IE 1 are known.
It is known that mogrol, which is an aglycon, has an anticancer action as a physiologically active action (Non-patent Document 1).
 モグロール配糖体からモグロールを調製する方法はいくつか知られており、例えば、モグロール配糖体を0.5N HCl中で95-100℃で10時間加熱し、酸加水分解する方法が開示されている(非特許文献1)。 There are several known methods for preparing mogrol from mogrol glycosides, for example, a method of acid hydrolysis by heating mogrol glycosides in 0.5N HCl at 95-100 ° C. for 10 hours is disclosed. (Non-Patent Document 1).
 その他に、モグロール配糖体を酵素で加水分解する方法が知られている(特許文献1)。この方法では、具体的には、Aspergillus niger由来のペクチナーゼを加えて50℃、48時間反応させる。しかしながら、この活性を担っている酵素タンパク質やそれをコードする遺伝子についいては明らかになっていない。 In addition, a method of hydrolyzing mogrol glycoside with an enzyme is known (Patent Document 1). In this method, specifically, pectinase derived from Aspergillus niger is added and reacted at 50 ° C. for 48 hours. However, it is not clear about the enzyme protein responsible for this activity and the gene encoding it.
  酵母(Saccharomyces cerevisiae)にモグロシドVをモグロシドIIIEに変換する活性があること、また、その活性を担う酵素の遺伝子がEXG1(GH5ファミリー、β-1,3グルカナーゼ)であることが開示されている(非特許文献2)。 It is disclosed that yeast (Saccharomyces cerevisiae) has an activity of converting mogroside V to mogroside IIIE, and that the gene of the enzyme responsible for the activity is EXG1 (GH5 family, β-1,3 glucanase) ( Non-patent document 2).
WO2013/076577WO2013 / 07577
 上記のような状況の下、モグロールおよび/またはモグロール配糖体の新たな生産方法が求められていた。 Under such circumstances, a new production method of mogrol and / or mogrol glycoside has been demanded.
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、麹菌由来のグリコシドヒドロラーゼであるAOBGL11pが、モグロシドVを加水分解しモグロールおよびモグロール配糖体を生成する活性を有することなどを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that AOBGL11p, which is a glycoside hydrolase derived from Aspergillus oryzae, has an activity of hydrolyzing mogroside V to produce mogrol and mogrol glycoside. As a result, the present invention has been completed.
 すなわち、本発明は、以下の通りである。
(1)
 以下の(a)~(c)からなる群から選択されるタンパク質と、モグロール配糖体を反応させて、モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する工程を含む、モグロールおよび/またはモグロール配糖体の製造方法。
(a)配列番号2のアミノ酸配列からなるタンパク質;
(b)配列番号2のアミノ酸配列において、1~83個のアミノ酸が欠失、置換、挿入、および/または付加されたアミノ酸配列からなり、かつモグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質;
(c)配列番号2のアミノ酸配列に対して、90%以上の配列同一性を有するアミノ酸配列を有し、かつ前記モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質
(2)
 前記(1)の製造方法において、タンパク質と反応させるモグロール配糖体が、モグロシドV、モグロシドIV、シアメノシドI、11-オキソモグロシド、モグロシドには、モグロシドI、モグロシドIVA、モグロシドIII、モグロシドIIIA、モグロシドIIIA、モグロシドIIIE、モグロシドIIA、モグロシドIIA、モグロシドIIA、モグロシドIIB、モグロシドIIE、モグロシドIA、モグロシドIEからなる群より選択される少なくとも1つである、前記(1)に記載の方法。
(3)
 前記モグロール配糖体が、モグロシドV、モグロシドIIIE、シアメノシドIからなる群より選択される少なくとも1つである、前記(1)または(2)に記載の方法。
(4)
 前記モグロール配糖体がモグロールVである、前記(1)~(3)のいずれか1つに記載の方法。
(5)
 前記少なくとも1つのグルコシド結合が、モグロール3位に付加されたゲンチオビオースのβ-1,6-グルコシド結合、モグロール3位に付加されたグルコースとアグリコンであるモグロールとの間のグルコシド結合、モグロール24位に付加された分岐三糖のβ-1,6-グルコシド結合、モグロール24位に付加されたゲンチオビオースのβ-1,6-グルコシド結合、モグロール24位に付加されたソホロースのβ-1,2-グルコシド結合、および/またはモグロール24位に付加されたグルコースとアグリコンであるモグロールとの間のグルコシド結合のいずれかである、前記(1)~(4)のいずれか1つに記載の方法。
       
(6)
 宿主細胞に、以下の(a)~(e)からなる群から選択されるポリヌクレオチドが導入された非ヒト形質転換細胞に由来する酵素剤を、前記モグロール配糖体と接触させて、前記モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する工程を含む、モグロールおよび/またはモグロール配糖体の製造方法。
(a)配列番号1の塩基配列からなるポリヌクレオチド;
(b)配列番号2のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(c)配列番号2のアミノ酸配列において、1~83個のアミノ酸が欠失、置換、挿入、および/または付加されたアミノ酸配列からなり、かつ前記モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質をコードするポリヌクレオチド;
(d)配列番号2のアミノ酸配列に対して、90%以上の配列同一性を有するアミノ酸配列を有し、かつ前記モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質をコードするポリヌクレオチド;
(e)配列番号1の塩基配列からなるポリヌクレオチドと相補的な塩基配列からなるポリヌクレオチドと高ストリンジェントな条件下でハイブリダイズするポリヌクレオチドであって、かつ前記モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質をコードするポリヌクレオチド
(7)
 前記ポリヌクレオチドが、発現ベクターに挿入されたものである、前記(6)に記載の方法。
(8)
 前記形質転換細胞が、形質転換麹菌、形質転換酵母、形質転換細菌または形質転換植物である、前記(6)または(7)に記載の方法。
(9)
 前記酵素剤と接触させるモグロール配糖体が、モグロシドV、モグロシドIV、シアメノシドI、11-オキソモグロシド、モグロシドには、モグロシドI、モグロシドIVA、モグロシドIII、モグロシドIIIA、モグロシドIIIA、モグロシドIIIE、モグロシドIIA、モグロシドIIA、モグロシドIIA、モグロシドIIB、モグロシドIIE、モグロシドIA、モグロシドIEからなる群より選択される少なくとも1つである、前記(6)~(8)のいずれか1つに記載の方法。
(10)
 前記モグロール配糖体が、モグロシドV、モグロシドIIIE、シアメノシドIからなる群より選択される少なくとも1つである、前記(6)~(9)のいずれか1つに記載の方法。
(11)
 前記少なくとも1つのグルコシド結合が、モグロール3位に付加されたゲンチオビオースのβ-1,6-グルコシド結合、モグロール3位に付加されたグルコースとアグリコンであるモグロールとの間のグルコシド結合、モグロール24位に付加された分岐三糖のβ-1,6-グルコシド結合、モグロール24位に付加されたゲンチオビオースのβ-1,6-グルコシド結合、モグロール24位に付加されたソホロースのβ-1,2-グルコシド結合、および/またはモグロール24位に付加されたグルコースとアグリコンであるモグロールとの間のグルコシド結合のいずれかである、前記(6)~(10)のいずれか1つに記載の方法。
(12)
 以下の(a)~(e)からなる群から選択されるポリヌクレオチドが導入された非ヒト形質転換体を培養することを含む、モグロールおよび/またはモグロール配糖体の生産方法。
(a)配列番号1の塩基配列からなるポリヌクレオチド;
(b)配列番号2のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(c)配列番号2のアミノ酸配列において、1~83個のアミノ酸が欠失、置換、挿入、および/または付加されたアミノ酸配列からなり、かつ前記モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質をコードするポリヌクレオチド;
(d)配列番号2のアミノ酸配列に対して、90%以上の配列同一性を有するアミノ酸配列を有し、かつ前記モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質をコードするポリヌクレオチド;
(e)配列番号1の塩基配列からなるポリヌクレオチドと相補的な塩基配列からなるポリヌクレオチドと高ストリンジェントな条件下でハイブリダイズするポリヌクレオチドであって、かつ前記モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質をコードするポリヌクレオチド
(13)
 前記ポリヌクレオチドが、発現ベクターに挿入されたものである、前記(10)に記載の方法。
(14)
 前記形質転換体が、形質転換麹菌、形質転換酵母、形質転換細菌または形質転換植物である、前記(12)または(13)に記載の方法。
(15)
 前記少なくとも1つのグルコシド結合が、モグロール3位に付加されたゲンチオビオースのβ-1,6-グルコシド結合、モグロール24位に付加された分岐三糖のβ-1,6-グルコシド結合、および/またはモグロール24位に付加された分岐三糖のβ-1,2-グルコシド結合のいずれかである、前記(12)~(14)のいずれか1つに記載の方法。
That is, the present invention is as follows.
(1)
A step of reacting a protein selected from the group consisting of the following (a) to (c) with a mogrol glycoside to hydrolyze at least one glucoside bond of the mogrol glycoside, and / or A method for producing mogrol glycoside.
(A) a protein comprising the amino acid sequence of SEQ ID NO: 2;
(B) The amino acid sequence of SEQ ID NO: 2 consists of an amino acid sequence in which 1 to 83 amino acids are deleted, substituted, inserted and / or added, and hydrolyzes at least one glucoside bond of the mogrol glycoside. A protein having the activity of:
(C) a protein having an amino acid sequence having a sequence identity of 90% or more with respect to the amino acid sequence of SEQ ID NO: 2 and having an activity of hydrolyzing at least one glucoside bond of the mogrol glycoside (2) )
In the production method of (1), the mogrol glycoside to be reacted with the protein is mogroside V, mogroside IV, siamenoside I, 11-oxomogroside, and mogroside includes mogroside I, mogroside IVA, mogroside III, mogroside IIIA 1 , mogroside The above-mentioned (1), which is at least one selected from the group consisting of IIIA 2 , mogroside IIIE, mogroside IIA, mogroside IIA 1 , mogroside IIA 2 , mogroside IIB, mogroside IIE, mogroside IA 1 , mogroside IE 1 Method.
(3)
The method according to (1) or (2), wherein the mogrol glycoside is at least one selected from the group consisting of mogroside V, mogroside IIIE, and siamenoside I.
(4)
The method according to any one of (1) to (3), wherein the mogrol glycoside is mogrol V.
(5)
The at least one glucoside bond is a β-1,6-glucoside bond of gentiobiose added at the 3-position of mogrol, a glucoside bond between glucose added at the 3-position of mogrol and mogrol which is an aglycone, and at the 24-position of mogrol. Β-1,6-glucoside bond of added branched trisaccharide, β-1,6-glucoside bond of gentiobiose added at position 24 of mogrol, β-1,2-glucoside of sophorose added at position 24 of mogrol The method according to any one of (1) to (4) above, which is any one of a bond and / or a glucoside bond between glucose added to position 24 of mogrol and mogrol which is an aglycone.

(6)
An enzyme agent derived from a non-human transformed cell into which a polynucleotide selected from the group consisting of the following (a) to (e) is introduced into a host cell is contacted with the mogrol glycoside, and the mogrol A method for producing mogrol and / or mogrol glycoside, comprising hydrolyzing at least one glucoside bond of the glycoside.
(A) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1;
(B) a polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2;
(C) The amino acid sequence of SEQ ID NO: 2 consists of an amino acid sequence in which 1 to 83 amino acids are deleted, substituted, inserted, and / or added, and at least one glucoside bond of the mogrol glycoside is hydrolyzed. A polynucleotide encoding a protein having an activity of degrading;
(D) encoding a protein having an amino acid sequence having a sequence identity of 90% or more with respect to the amino acid sequence of SEQ ID NO: 2 and having an activity of hydrolyzing at least one glucoside bond of the mogrol glycoside. A polynucleotide to:
(E) a polynucleotide that hybridizes under high stringency conditions with a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, and at least one of the mogrol glycosides A polynucleotide encoding a protein having an activity of hydrolyzing a glucoside bond (7)
The method according to (6) above, wherein the polynucleotide is inserted into an expression vector.
(8)
The method according to (6) or (7), wherein the transformed cell is a transformed gonococcus, a transformed yeast, a transformed bacterium, or a transformed plant.
(9)
The mogrol glycoside to be brought into contact with the enzyme agent is mogroside V, mogroside IV, siamenoside I, 11-oxomogroside, mogroside includes mogroside I, mogroside IVA, mogroside III, mogroside IIIA 1 , mogroside IIIA 2 , mogroside IIIE, mogroside IIA, mogroside IIA 1 , mogroside IIA 2 , mogroside IIB, mogroside IIE, mogroside IA 1 , mogroside IE 1 are any one of the above (6) to (8) The method described.
(10)
The method according to any one of (6) to (9), wherein the mogrol glycoside is at least one selected from the group consisting of mogroside V, mogroside IIIE, and siamenoside I.
(11)
The at least one glucoside bond is a β-1,6-glucoside bond of gentiobiose added at the 3-position of mogrol, a glucoside bond between glucose added at the 3-position of mogrol and mogrol which is an aglycone, and at the 24-position of mogrol. Β-1,6-glucoside bond of added branched trisaccharide, β-1,6-glucoside bond of gentiobiose added at position 24 of mogrol, β-1,2-glucoside of sophorose added at position 24 of mogrol The method according to any one of (6) to (10) above, which is any one of a bond and / or a glucoside bond between glucose added to position 24 of mogrol and mogrol which is an aglycone.
(12)
A method for producing mogrol and / or mogrol glycoside, comprising culturing a non-human transformant into which a polynucleotide selected from the group consisting of the following (a) to (e) is introduced.
(A) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1;
(B) a polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2;
(C) The amino acid sequence of SEQ ID NO: 2 consists of an amino acid sequence in which 1 to 83 amino acids are deleted, substituted, inserted, and / or added, and at least one glucoside bond of the mogrol glycoside is hydrolyzed. A polynucleotide encoding a protein having an activity of degrading;
(D) encoding a protein having an amino acid sequence having a sequence identity of 90% or more with respect to the amino acid sequence of SEQ ID NO: 2 and having an activity of hydrolyzing at least one glucoside bond of the mogrol glycoside. A polynucleotide to:
(E) a polynucleotide that hybridizes under high stringency conditions with a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, and at least one of the mogrol glycosides Polynucleotide encoding protein having activity of hydrolyzing glucoside bond (13)
The method according to (10) above, wherein the polynucleotide is inserted into an expression vector.
(14)
The method according to (12) or (13), wherein the transformant is a transformed gonococcus, a transformed yeast, a transformed bacterium, or a transformed plant.
(15)
The at least one glucoside bond is a β-1,6-glucoside bond of gentiobiose added at the 3-position of mogrol, a β-1,6-glucoside bond of a branched trisaccharide added at the 24-position of mogrol, and / or mogrol The method according to any one of (12) to (14) above, which is any one of β-1,2-glucoside bonds of a branched trisaccharide added at position 24.
 本発明の方法により、モグロールおよびモグロール配糖体の新たな製造方法が提供される。 The method of the present invention provides a new method for producing mogrol and mogrol glycoside.
 また、反応条件を選択することで、各種モグロール配糖体を製造することができる。本願発明の一実施形態では、酵素濃度等の反応条件を選択することで、モグロールおよび/またはモグロール配糖体の生成量を増加させることができる。また、本願発明の一実施形態により、シアメノシドIなどのモグロール四糖配糖体、モグロシドIIIEなどのモグロール三糖配糖体、モグロール二糖配糖体などの生成量を選択的に増加させることができる。 Moreover, various mogrol glycosides can be produced by selecting reaction conditions. In one embodiment of the present invention, the production amount of mogrol and / or mogrol glycoside can be increased by selecting reaction conditions such as enzyme concentration. Further, according to one embodiment of the present invention, it is possible to selectively increase the production amount of mogrol tetrasaccharide glycosides such as siamenoside I, mogrol trisaccharide glycosides such as mogroside IIIE, and mogrol disaccharide glycoside. it can.
AOBGL11のcDNA配列とアミノ酸配列。CDNA sequence and amino acid sequence of AOBGL11. AOBGL11のcDNA配列とアミノ酸配列。CDNA sequence and amino acid sequence of AOBGL11. A:pNP-β-Glcを基質とした、AOBGL11pの至適温度。B:pNP-β-Glcを基質とした、AOBGL11pの至適pH。C:pNP-β-Glcを基質とした、AOBGL11pの熱安定性。D:pNP-β-Glcを基質とした、AOBGL11pのpH安定性。A: Optimum temperature of AOBGL11p using pNP-β-Glc as a substrate. B: Optimum pH of AOBGL11p using pNP-β-Glc as a substrate. C: Thermal stability of AOBGL11p using pNP-β-Glc as a substrate. D: pH stability of AOBGL11p using pNP-β-Glc as a substrate. AOBGL11のゲノムDNA配列とcDNA配列の比較。Comparison of AOBGL11 genomic and cDNA sequences. AOBGL11のゲノムDNA配列とcDNA配列の比較。Comparison of AOBGL11 genomic and cDNA sequences. BGL11-1粗酵素液とモグロシドVの反応。A:基質なし、BGL11-1粗酵素液希釈なし。B:基質としてモグロシドVを添加、BGL11-1粗酵素液の希釈倍率は100倍。C:基質としてモグロシドVを添加、BGL11-1粗酵素液の希釈倍率は10倍。D:基質としてモグロシドVを添加、BGL11-1粗酵素液は希釈なし。Reaction of BGL11-1 crude enzyme solution with mogroside V. A: No substrate, no dilution of BGL11-1 crude enzyme solution. B: Mogroside V was added as a substrate, and the dilution ratio of the BGL11-1 crude enzyme solution was 100 times. C: Mogroside V was added as a substrate, and the dilution ratio of the BGL11-1 crude enzyme solution was 10 times. D: Mogroside V was added as a substrate, and BGL11-1 crude enzyme solution was not diluted. C-1粗酵素とモグロシドVの反応。A:基質なし、B:基質としてモグロシドVを添加。C-1粗酵素液はいずれも希釈なしで用いた。Reaction of C-1 crude enzyme with mogroside V. A: No substrate, B: Mogroside V added as substrate. All C-1 crude enzyme solutions were used without dilution.
 以下、本発明を詳細に説明する。以下の実施の形態は、本発明を説明するための例示であり、本発明をこの実施の形態のみに限定する趣旨ではない。本発明は、その要旨を逸脱しない限り、様々な形態で実施をすることができる。
 なお、本明細書において引用した全ての文献、および公開公報、特許公報その他の特許文献は、参照として本明細書に組み込むものとする。また、本明細書は、2016年7月19日に出願された本願優先権主張の基礎となる日本国特許出願(特願2016-141685号)の明細書及び図面に記載の内容を包含する。
Hereinafter, the present invention will be described in detail. The following embodiment is an example for explaining the present invention, and is not intended to limit the present invention to this embodiment alone. The present invention can be implemented in various forms without departing from the gist thereof.
It should be noted that all documents cited in the present specification, as well as published publications, patent gazettes, and other patent documents are incorporated herein by reference. In addition, this specification includes the contents described in the specification and drawings of the Japanese patent application (Japanese Patent Application No. 2016-1416885), which is the basis of the priority claim of the present application filed on July 19, 2016.
 以下において基質としてのモグロール配糖体を「基質モグロール配糖体」と呼び、生成物としてのモグロール配糖体を「生成モグロール配糖体」と呼ぶこともある。また、両者を「モグロール配糖体」と総称することもある。
 「AOBGL11p」は麹菌由来のβ-グルコシダーゼであり、そのcDNA配列は配列番号1に、アミノ酸配列は配列番号2に、そしてゲノムDNA配列は配列番号3に示される。
Hereinafter, the mogrol glycoside as a substrate is sometimes referred to as “substrate mogrol glycoside”, and the mogrol glycoside as a product is sometimes referred to as “produced mogrol glycoside”. In addition, both may be collectively referred to as “mogrol glycosides”.
“AOBGL11p” is β-glucosidase derived from Aspergillus oryzae, the cDNA sequence is shown in SEQ ID NO: 1, the amino acid sequence is shown in SEQ ID NO: 2, and the genomic DNA sequence is shown in SEQ ID NO: 3.
1.モグロールおよび/またはモグロール配糖体の製造方法
 本発明は、以下の(a)~(c)からなる群から選択されるタンパク質(以下、「本発明のタンパク質」という)と、モグロール配糖体を反応させて、少なくとも1つのグルコシド結合を加水分解する工程を含む、モグロールおよび/またはモグロール配糖体の製造方法を提供する。一実施形態において、本発明は、モグロール配糖体のすべてのグルコシド結合を切断する工程を含むモグロールの製造方法を提供する。別の実施態様では、本発明はモグロール配糖体の特定の結合、例えば、モグロール3位に付加されたゲンチオビオースのβ-1,6-グルコシド結合、および/または、モグロール24位に付加された分岐三糖のβ-1,6-グルコシド結合を優先して切断する工程を含む、モグロールおよび/またはモグロール配糖体の製造方法を提供する。この場合、β-1,6-グルコシド結合の切断に加えて、分岐三糖のβ-1,2-グルコシド結合を切断する工程を含んでもよい。
1. The present invention relates to a protein selected from the group consisting of the following (a) to (c) (hereinafter referred to as “protein of the present invention”), and a mogrol glycoside. There is provided a method for producing mogrol and / or mogrol glycoside, which comprises reacting and hydrolyzing at least one glucoside bond. In one embodiment, the present invention provides a method for producing mogrol comprising the step of cleaving all glucoside bonds of the mogrol glycoside. In another embodiment, the present invention provides specific linkages of mogrol glycosides, such as the β-1,6-glucoside bond of gentiobiose added at position 3 of mogrol and / or the branching added at position 24 of mogrol. Provided is a method for producing mogrol and / or mogrol glycoside, which comprises a step of preferentially cleaving a β-1,6-glucoside bond of a trisaccharide. In this case, in addition to cleaving the β-1,6-glucoside bond, a step of cleaving the β-1,2-glucoside bond of the branched trisaccharide may be included.
(a)配列番号2のアミノ酸配列からなるタンパク質;
(b)配列番号2のアミノ酸配列において、1~83個のアミノ酸が欠失、置換、挿入、および/または付加されたアミノ酸配列からなり、かつモグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質;
(c)配列番号2のアミノ酸配列に対して、90%以上の配列同一性を有するアミノ酸配列を有し、かつモグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質
(A) a protein comprising the amino acid sequence of SEQ ID NO: 2;
(B) The amino acid sequence of SEQ ID NO: 2 consists of an amino acid sequence in which 1 to 83 amino acids are deleted, substituted, inserted and / or added, and hydrolyzes at least one glucoside bond of the mogrol glycoside. A protein having the activity of:
(C) a protein having an amino acid sequence having 90% or more sequence identity to the amino acid sequence of SEQ ID NO: 2 and having an activity of hydrolyzing at least one glucoside bond of mogrol glycoside
 上記(b)または(c)に記載のタンパク質は、代表的には、配列番号2のアミノ酸配列からなるタンパク質の変異体であるが、例えば、”Sambrook & Russell, Molecular Cloning: A Laboratory Manual Vol.4,Cold Spring Harbor Laboratory Press 2012”、”Ausubel, Current Protocols in Molecular Biology, John Wiley & Sons 1987-1997”、”Nuc. Acids. Res., 10, 6487 (1982)”、”Proc. Natl. Acad. Sci. USA, 79, 6409 (1982)”、”Gene, 34, 315 (1985)”、”Nuc. Acids. Res., 13, 4431 (1985)”、”Proc. Natl. Acad. Sci. USA, 82, 488 (1985)”等に記載の部位特異的変異導入法を用いて、人為的に取得することができるものも含まれる。 The protein described in the above (b) or (c) is typically a variant of a protein consisting of the amino acid sequence of SEQ ID NO: 2, for example, “Sambrook & Russell, Molecular Cloning: A Laboratory Manual Vol. 4, Cold Spring Harbor Laboratory Press 2012 ”,“ Ausubel, Current Protocols in Molecular Biology, John Wiley & Sons 1987-1997 ”,“ Nuc. Acids. Res., 10, 6487 (1982) ”,” Proc. Natl. Acad .Sci. USA, 79, 6409 (1982) ”,“ Gene, 34, 315 (1985) ”,“ Nuc. Acids. Res., 13, 4431 (1985) ”,“ Proc. Natl. Acad. Sci. USA , 82, 488 (1985) ”and the like, which can be obtained artificially using the site-directed mutagenesis method described in the above.
 「配列番号2のアミノ酸配列において、1~83個のアミノ酸が欠失、置換、挿入、および/または付加されたアミノ酸配列からなり、かつモグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質」としては、配列番号2のアミノ酸配列において、例えば、1~83個、1~80個、1~75個、1~70個、1~65個、1~60個、1~55個、1~50個、1~49個、1~48個、1~47個、1~46個、1~45個、1~44個、1~43個、1~42個、1~41個、1~40個、1~39個、1~38個、1~37個、1~36個、1~35個、1~34個、1~33個、1~32個、1~31個、1~30個、1~29個、1~28個、1~27個、1~26個、1~25個、1~24個、1~23個、1~22個、1~21個、1~20個、1~19個、1~18個、1~17個、1~16個、1~15個、1~14個、1~13個、1~12個、1~11個、1~10個、1~9個(1~数個)、1~8個、1~7個、1~6個、1~5個、1~4個、1~3個、1~2個、または1個のアミノ酸残基が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、かつモグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質が挙げられる。上記アミノ酸残基の欠失、置換、挿入および/または付加の数は、一般的には小さい程好ましい。 “The amino acid sequence of SEQ ID NO: 2 consists of an amino acid sequence in which 1 to 83 amino acids are deleted, substituted, inserted and / or added, and an activity of hydrolyzing at least one glucoside bond of the mogrol glycoside. As the “protein having”, in the amino acid sequence of SEQ ID NO: 2, for example, 1 to 83, 1 to 80, 1 to 75, 1 to 70, 1 to 65, 1 to 60, 1 to 55 1 to 50, 1 to 49, 1 to 48, 1 to 47, 1 to 46, 1 to 45, 1 to 44, 1 to 43, 1 to 42, 1 to 41 1 to 40 1 to 39 1 to 38 1 to 37 1 to 36 1 to 35 1 to 34 1 to 33 1 to 32 1 to 31 1 to 30, 1 to 29, 1 to 28, 1 to 27, 1 to 26, 1 to 25, 1 to 4, 1 to 23, 1 to 22, 1 to 21, 1 to 20, 1 to 19, 1 to 18, 1 to 17, 1 to 16, 1 to 15, 1 to 14, 1-13, 1-12, 1-11, 1-10, 1-9 (1 to several), 1-8, 1-7, 1-6 Consisting of amino acid sequences in which ˜5, 1-4, 1-3, 1-2, or 1 amino acid residues are deleted, substituted, inserted and / or added, and of mogrol glycosides Examples include proteins having an activity of hydrolyzing at least one glucoside bond. In general, the smaller the number of amino acid residue deletions, substitutions, insertions and / or additions, the better.
 また、このようなタンパク質としては、配列番号2のアミノ酸配列と90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、99.1%以上、99.2%以上、99.3%以上、99.4%以上、99.5%以上、99.6%以上、99.7%以上、99.8%以上、または99.9%以上の配列同一性を有するアミノ酸配列を有し、かつモグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質が挙げられる。上記配列同一性の数値は一般的に大きい程好ましい。 Such a protein includes the amino acid sequence of SEQ ID NO: 2, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% 99% or more, 99.1% or more, 99.2% or more, 99.3% or more, 99.4% or more, 99.5% or more, 99.6% or more, 99.7% or more, 99. Examples thereof include a protein having an amino acid sequence having a sequence identity of 8% or more, or 99.9% or more and having an activity of hydrolyzing at least one glucoside bond of a mogrol glycoside. In general, the larger the sequence identity value, the better.
 ここで、「モグロール配糖体の少なくとも1つのグルコシド結合」とは、モグロールに糖が結合した配糖体であるモグロール配糖体において、アグリコンであるモグロールと側鎖との間のグルコシド結合、および側鎖内のグルコシド結合を意味する。また、「モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性」とは、モグロールに糖が結合した配糖体であるモグロール配糖体において、アグリコンであるモグロールと側鎖との間のグルコシド結合、および側鎖内のグルコシド結合のうち少なくとも1つを切断(加水分解)する活性を意味する。側鎖内のグルコシド結合の例としては、モグロール3位に付加されたゲンチオビオースのβ-1,6-グルコシド結合、モグロール24位の分岐三糖のβ-1,6-グルコシド結合、モグロール24位の分岐三糖のβ-1,2-グルコシド結合、モグロール24位に付加されたゲンチオビオースのβ-1,6-グルコシド結合、および/または、モグロール24位に付加されたソホロースのβ-1,2-グルコシド結合が挙げられる。ある実施形態において、すべてのグルコシド結合が加水分解され、モグロール配糖体からモグロールを生じる。別の実施形態では、モグロール3位に付加されたゲンチオビオースのβ-1,6-グルコシド結合、および/または、モグロール24位の分岐三糖のβ-1,6-グルコシド結合が優先して加水分解される。このようにして、一部の糖のみ切断されたモグロール配糖体が生じる。 Here, “at least one glucoside bond of mogrol glycoside” means a glucoside bond between mogrol, which is an aglycon, and a side chain in mogrol glycoside, which is a glycoside in which sugar is bound to mogrol, and Means a glucoside bond in the side chain. In addition, the “activity of hydrolyzing at least one glucoside bond of a mogrol glycoside” means that the mogrol glycoside is a glycoside in which sugar is bound to mogrol, between mogrol that is an aglycone and the side chain. It means an activity of cleaving (hydrolyzing) at least one of a glucoside bond and a glucoside bond in a side chain. Examples of glucoside linkages in the side chain include β-1,6-glucoside linkage of gentiobiose added at position 3 of mogrol, β-1,6-glucoside linkage of branched trisaccharide at position 24 of mogrol, position 24 of mogrol Β-1,2-glucoside bond of branched trisaccharide, β-1,6-glucoside bond of gentiobiose added at position 24 of mogrol, and / or β-1,2- of sophorose added at position 24 of mogrol A glucoside bond is mentioned. In certain embodiments, all glucoside bonds are hydrolyzed to yield mogrol from the mogrol glycoside. In another embodiment, the β-1,6-glucoside bond of gentiobiose added at position 3 of mogrol and / or the β-1,6-glucoside bond of the branched trisaccharide at position 24 of mogrol is preferentially hydrolyzed. Is done. In this way, mogrol glycosides in which only some of the sugars are cleaved are produced.
 モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性は、本発明のタンパク質と、たとえばモグロシドV、モグロシドIV、シアメノシドI、11-オキソモグロシド、モグロシドI、モグロシドIVA、モグロシドIII、モグロシドIIIA、モグロシドIIIA、モグロシドIIIE、モグロシドIIA、モグロシドIIA、モグロシドIIA、モグロシドIIB、モグロシドIIE、モグロシドIA、モグロシドIEからなる群より選択される少なくとも1つのモグロール配糖体を反応させて、得られた反応生成物(モグロールおよび/またはモグロール配糖体)を精製し、精製したものを液体クロマトグラフィー(Liquid Chromatography:LC)等の公知の手法により分析することで確認することができる。 The activity of hydrolyzing at least one glucosidic bond of mogrol glycosides can be achieved with the protein of the present invention, for example, mogroside V, mogroside IV, siamenoside I, 11-oxomogroside, mogroside I, mogroside IVA, mogroside III, mogroside IIIA 1 , Reacting at least one mogrol glycoside selected from the group consisting of mogroside IIIA 2 , mogroside IIIE, mogroside IIA, mogroside IIA 1 , mogroside IIA 2 , mogroside IIB, mogroside IIE, mogroside IA 1 , mogroside IE 1 The obtained reaction product (mogrol and / or mogrol glycoside) is purified, and the purified product is purified by a known technique such as liquid chromatography (LC). It can be confirmed by analysis.
 「配列番号2のアミノ酸配列において、1~83個のアミノ酸残基が欠失、置換、挿入および/または付加された」とは、同一配列中の任意かつ1~83個のアミノ酸配列中の位置において、1~83個のアミノ酸残基の欠失、置換、挿入および/または付加があることを意味し、欠失、置換、挿入および付加のうち2種以上が同時に生じてもよい。 “In the amino acid sequence of SEQ ID NO: 2, 1 to 83 amino acid residues are deleted, substituted, inserted and / or added” means any position in the same sequence and 1 to 83 amino acid sequences Means that there are deletion, substitution, insertion and / or addition of 1 to 83 amino acid residues, and two or more of deletion, substitution, insertion and addition may occur simultaneously.
 以下に、相互に置換可能なアミノ酸残基の例を示す。同一群に含まれるアミノ酸残基は相互に置換可能である。 Examples of amino acid residues that can be substituted with each other are shown below. Amino acid residues contained in the same group can be substituted for each other.
A群:ロイシン、イソロイシン、ノルロイシン、バリン、ノルバリン、アラニン、2-アミノブタン酸、メチオニン、o-メチルセリン、t-ブチルグリシン、t-ブチルアラニン、シクロヘキシルアラニン;
B群:アスパラギン酸、グルタミン酸、イソアスパラギン酸、イソグルタミン酸、2-アミノアジピン酸、2-アミノスベリン酸;
C群:アスパラギン、グルタミン;
D群:リジン、アルギニン、オルニチン、2,4-ジアミノブタン酸、2,3-ジアミノプロピオン酸;
E群:プロリン、3-ヒドロキシプロリン、4-ヒドロキシプロリン;
F群:セリン、スレオニン、ホモセリン;
G群:フェニルアラニン、チロシン。
Group A: leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, o-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;
Group B: aspartic acid, glutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;
Group C: asparagine, glutamine;
Group D: lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;
Group E: proline, 3-hydroxyproline, 4-hydroxyproline;
Group F: serine, threonine, homoserine;
Group G: phenylalanine, tyrosine.
 本発明のタンパク質は、これをコードするポリヌクレオチド(後述する「本発明のポリヌクレオチド」を参照)を適切な宿主細胞内で発現させることなどにより得ることができるが、Fmoc法(フルオレニルメチルオキシカルボニル法)、tBoc法(t-ブチルオキシカルボニル法)等の化学合成法によっても製造することができる。また、AAPPTec LLC製、Perkin Elmer Inc.製、Protein Technologies Inc.製、PerSeptive Biosystems製、Applied Biosystems製、SHIMADZU CORPORATION製等のペプチド合成機を利用して化学合成することもできる。 The protein of the present invention can be obtained by, for example, expressing a polynucleotide encoding the same (see “polynucleotide of the present invention” described later) in an appropriate host cell. The Fmoc method (fluorenylmethyl) It can also be produced by chemical synthesis methods such as the oxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method). Also, AAPPPec LLC, Perkin Elmer Inc. Manufactured by Protein Technologies Inc. Chemical synthesis can also be carried out using a peptide synthesizer such as manufactured by PerSeptive Biosystems, Applied Biosystems, or SHIMADZU CORPORATION.
 本発明において、「モグロール配糖体」とは、モグロールに糖が結合した配糖体である。モグロールおよびモグロール配糖体の例は、下記一般式(I)で示される。なお、モグロール3位およびモグロール24位を式中に示した。本発明において、「分岐三糖」とは、下記一般式(I)においてRの部分に付加されるもののうち三糖を構成するものをいう。

Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-T000002
 
In the present invention, the “mogrol glycoside” is a glycoside in which a sugar is bound to mogrol. Examples of mogrol and mogrol glycoside are represented by the following general formula (I). The 3rd position of mogrol and the 24th position of mogrol are shown in the formula. In the present invention, the “branched trisaccharide” refers to those constituting a trisaccharide among those added to the R 2 moiety in the following general formula (I).

Figure JPOXMLDOC01-appb-C000001

Figure JPOXMLDOC01-appb-T000002
モグロール配糖体の例としては、モグロシドV、モグロシドIV、シアメノシドI、11-オキソモグロシド、モグロシドI、モグロシドIVA、モグロシドIII、モグロシドIIIA、モグロシドIIIA、モグロシドIIIE、モグロシドIIA、モグロシドIIA、モグロシドIIA、モグロシドIIB、モグロシドIIE、モグロシドIA、モグロシドIE等が挙げられるが、これらに限定されるものではない。 Examples of mogrol glycosides are mogroside V, mogroside IV, siamenoside I, 11-oxomogroside, mogroside I, mogroside IVA, mogroside III, mogroside IIIA 1 , mogroside IIIA 2 , mogroside IIIE, mogroside IIA, mogroside IIA 1 , mogroside Examples include, but are not limited to, IIA 2 , mogroside IIB, mogroside IIE, mogroside IA 1 , mogroside IE 1 and the like.
 本発明の一実施形態では本発明の酵素は配列番号2のアミノ酸配列からなるタンパク質および/またはその変異体からなるタンパク質を用いる。別の実施形態では、基質としてモグロール配糖体が利用可能である。ここで、モグロール配糖体の例は前述のとおりである。本発明の一実施形態では、本発明の酵素を用いて、反応に添加する酵素量を調節したり、反応液中に有機溶媒を添加したり、反応温度を調節したりすることで反応条件を調節することにより、ラカンカ果実にもっとも多く含まれるモグロール配糖体であるモグロシドVを基質として、モグロシドIIIEやモグロシドII(モグロシドIIA、モグロシドIIA、モグロシドIIA、モグロシドIIB、モグロシドIIE)といった希少なモグロール配糖体を生成することも可能である。 In one embodiment of the present invention, the enzyme of the present invention uses a protein consisting of the amino acid sequence of SEQ ID NO: 2 and / or a protein consisting of a variant thereof. In another embodiment, mogrol glycosides can be utilized as a substrate. Here, the example of a mogrol glycoside is as above-mentioned. In one embodiment of the present invention, using the enzyme of the present invention, the reaction conditions can be adjusted by adjusting the amount of enzyme added to the reaction, adding an organic solvent to the reaction solution, or adjusting the reaction temperature. By adjusting the mogroside V, which is the most abundant mogrol glycoside in Lacanca fruit, as a substrate, it is rare such as mogroside IIIE and mogroside II (mogroside IIA, mogroside IIA 1 , mogroside IIA 2 , mogroside IIB, mogroside IIE). It is also possible to produce mogrol glycosides.
 本発明において、モグロール配糖体を基質とした反応の酵素量、基質/酵素比、温度、pH、溶媒の有無、反応時間等は、当業者が適宜調整でき、これらを調整することによりモグロール配糖体に結合している糖をどこまで切断するか分解度合を制御することが可能である。 In the present invention, the enzyme amount, substrate / enzyme ratio, temperature, pH, presence / absence of a solvent, reaction time, etc. of the reaction using mogrol glycoside as a substrate can be adjusted as appropriate by those skilled in the art. It is possible to control the degree of degradation to what extent the sugar bound to the saccharide is cleaved.
 本発明に係るモグロールおよび/またはモグロール配糖体の製造方法によって、モグロール配糖体の少なくとも1つのグルコシド結合が加水分解される。 The method for producing mogrol and / or mogrol glycoside according to the present invention hydrolyzes at least one glucoside bond of mogrol glycoside.
 本発明のモグロールおよび/またはモグロール配糖体の製造方法において、出発物質となるモグロール配糖体は、ラカンカ(Siraitia grosvenorii)から適切な溶媒(水等の水性溶媒又はアルコール、エーテル及びアセトン等の有機溶媒)による抽出、酢酸エチルやその他の有機溶媒:水の勾配、高速液体クロマトグラフィー(High Performance Liquid Chromatography:HPLC)、超高性能液体クロマトグラフィー (Ultra (High) Performance Liquid chromatography:UPLC) 等の公知の方法によって抽出し、精製することによって入手することができる。あるいは、出発物質となるモグロール配糖体は、市販のものでもよい。本発明の出発物質となるモグロール配糖体としては、モグロシドV、モグロシドIV、シアメノシドI、11-オキソモグロシド、モグロシドI、モグロシドIVA、モグロシドIII、モグロシドIIIA、モグロシドIIIA、モグロシドIIIE、モグロシドIIA、モグロシドIIA、モグロシドIIA、モグロシドIIB、モグロシドIIE、モグロシドIA、モグロシドIEの他、β-1,6-グルコシド結合または、β-1,2-グルコシド結合の切断により種々のモグロール配糖体、例えばシアメノシドI、モグロシドIIIE、モグロール二糖配糖体等を得ることができるものを含む。 In the method for producing mogrol and / or mogrol glycoside of the present invention, the starting mogrol glycoside is obtained from Siraitia grosvenorii as an appropriate solvent (aqueous solvent such as water or organic such as alcohol, ether and acetone). Solvent) extraction, ethyl acetate and other organic solvents: water gradient, high performance liquid chromatography (HPLC), ultra high performance liquid chromatography (ultra (liquid) liquid chromatography: UPLC), etc. It can obtain by extracting and refine | purifying by the method of this. Alternatively, the starting mogrol glycoside may be commercially available. Mogrol glycosides as starting materials of the present invention include mogroside V, mogroside IV, siamenoside I, 11-oxomogroside, mogroside I, mogroside IVA, mogroside III, mogroside IIIA 1 , mogroside IIIA 2 , mogroside IIIE, mogroside IIA, Mogroside IIA 1 , mogroside IIA 2 , mogroside IIB, mogroside IIE, mogroside IA 1 , mogroside IE 1 and various mogrol glycosides by cleavage of β-1,6-glucoside bond or β-1,2-glucoside bond Such as siamenoside I, mogroside IIIE, and mogrol disaccharide glycoside.
 本発明に係るモグロールおよび/またはモグロール配糖体の製造方法は、本発明のタンパク質と、モグロール配糖体を反応させて、モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する工程を含む。本発明の方法は、さらに、前記工程で生成した本発明のモグロールおよび/またはモグロール配糖体を精製する工程を含んでいてもよい。
 本発明のモグロールおよび/またはモグロール配糖体は、適切な溶媒(水等の水性溶媒、またはアルコール、エーテル、アセトン等の有機溶媒)による抽出、酢酸エチルやその他の有機溶媒:水の勾配、高速液体クロマトグラフィー(High Performance Liquid Chromatography:HPLC)、超高性能液体クロマトグラフィー(Ultra (High) Performance Liquid chromatography:UPLC)等の公知の方法によって精製することができる。
The method for producing mogrol and / or mogrol glycoside according to the present invention includes a step of hydrolyzing at least one glucoside bond of mogrol glycoside by reacting the protein of the present invention with mogrol glycoside. The method of the present invention may further comprise a step of purifying the mogrol and / or mogrol glycoside of the present invention produced in the above step.
The mogrol and / or mogrol glycoside of the present invention is extracted with an appropriate solvent (aqueous solvent such as water, or organic solvent such as alcohol, ether, and acetone), ethyl acetate and other organic solvents: water gradient, high speed It can be purified by known methods such as liquid chromatography (HPLC), ultra high performance liquid chromatography (Ultra (High) Performance Chromatography: UPLC), and the like.
 本発明に係るモグロール配糖体および/またはモグロールの製造方法は、基質を含む反応液に有機溶媒を添加した条件下で行うことができる。有機溶媒は、反応液全量に対し1%~20%の範囲とすることができ、好ましくは5%~15%、6~12%、より好ましくは8%である。有機溶媒は、一般的に入手可能なものでよく、好ましくは水と任意の割合で混合するものがよく、アセトニトリル等を用いることができる。有機溶媒は、反応液に予め添加してもよく、また反応の途中段階で添加してもよい。 The method for producing a mogrol glycoside and / or mogrol according to the present invention can be performed under a condition in which an organic solvent is added to a reaction solution containing a substrate. The organic solvent can be in the range of 1% to 20% with respect to the total amount of the reaction solution, preferably 5% to 15%, 6 to 12%, more preferably 8%. The organic solvent may be generally available, preferably mixed with water in an arbitrary ratio, and acetonitrile or the like can be used. The organic solvent may be added in advance to the reaction solution, or may be added in the middle of the reaction.
 本明細書中、「ポリヌクレオチド」とは、DNAまたはRNAを意味する。 In the present specification, “polynucleotide” means DNA or RNA.
 配列番号2のアミノ酸配列からなるタンパク質をコードするポリヌクレオチドとしては、例えば、配列番号1の塩基配列からなるポリヌクレオチドが挙げられる。 Examples of the polynucleotide encoding the protein consisting of the amino acid sequence of SEQ ID NO: 2 include a polynucleotide consisting of the base sequence of SEQ ID NO: 1.
 「配列番号2のアミノ酸配列において、1~83個のアミノ酸が欠失、置換、挿入、および/または付加されたアミノ酸配列からなり、かつモグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質」としては、前述のものが挙げられる。 “The amino acid sequence of SEQ ID NO: 2 consists of an amino acid sequence in which 1 to 83 amino acids are deleted, substituted, inserted and / or added, and an activity of hydrolyzing at least one glucoside bond of the mogrol glycoside. Examples of the “protein having” include those described above.
 「配列番号2のアミノ酸配列に対して、90%以上の配列同一性を有するアミノ酸配列を有し、かつモグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質」としては、前述のものが挙げられる。 “A protein having an amino acid sequence having 90% or more sequence identity with respect to the amino acid sequence of SEQ ID NO: 2 and having an activity of hydrolyzing at least one glucoside bond of a mogrol glycoside” Can be mentioned.
 本明細書中、「高ストリンジェントな条件下でハイブリダイズするポリヌクレオチド」とは、例えば、配列番号1の塩基配列と相補的な塩基配列からなるポリヌクレオチド、または配列番号2のアミノ酸配列をコードする塩基配列と相補的な塩基配列からなるポリヌクレオチドの全部または一部をプローブとして、コロニーハイブリダイゼーション法、プラークハイブリダイゼーション法またはサザンハイブリダイゼーション法などを用いることにより得られるポリヌクレオチドをいう。ハイブリダイゼーションの方法としては、例えば、”Sambrook & Russell, Molecular Cloning: A Laboratory Manual Vol. 4, Cold Spring Harbor, Laboratory Press 2012”、”Ausubel, Current Protocols in Molecular Biology, John Wiley & Sons 1987-1997”などに記載されている方法を利用することができる。
 本明細書中、「高ストリンジェントな条件」とは、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、50℃、または0.2xSSC、0.1%SDS、60℃、または0.2xSSC、0.1%SDS、62℃、または0.2xSSC、0.1%SDS、65℃の条件であるが、これに限定されるものではない。これらの条件において、温度を上げるほど高い配列同一性を有するDNAが効率的に得られることが期待できる。ただし、ハイブリダイゼーションのストリンジェンシーに影響する要素としては温度、プローブ濃度、プローブの長さ、イオン強度、時間、塩濃度等の複数の要素が考えられ、当業者であればこれらの要素を適宜選択することで同様のストリンジェンシーを実現することが可能である。
In the present specification, “a polynucleotide that hybridizes under highly stringent conditions”, for example, encodes a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO: 1 or the amino acid sequence of SEQ ID NO: 2. A polynucleotide obtained by using a colony hybridization method, a plaque hybridization method, a Southern hybridization method, or the like using as a probe all or part of a polynucleotide comprising a base sequence complementary to the base sequence to be detected. Examples of the hybridization method include “Sambrook & Russell, Molecular Cloning: A Laboratory Manual Vol. 4, Cold Spring Harbor, Laboratory Press 2012”, “Ausubel, Current Protocols in Molecular Biology, John Wiley & Sons 1987-1997”. Can be used.
In the present specification, “high stringent conditions” means, for example, 5 × SSC, 5 × Denhardt's solution, 0.5% SDS, 50% formamide, 50 ° C., or 0.2 × SSC, 0.1% SDS, The conditions are 60 ° C., 0.2 × SSC, 0.1% SDS, 62 ° C., or 0.2 × SSC, 0.1% SDS, 65 ° C., but are not limited thereto. Under these conditions, it can be expected that DNA having high sequence identity can be efficiently obtained as the temperature is increased. However, factors affecting the stringency of hybridization include multiple factors such as temperature, probe concentration, probe length, ionic strength, time, and salt concentration, and those skilled in the art can select these factors as appropriate. By doing so, it is possible to achieve the same stringency.
 なお、ハイブリダイゼーションに市販のキットを用いる場合は、例えばAlkphos Direct Labelling and Detection System(GE Healthcare)を用いることができる。この場合は、キットに添付のプロトコルにしたがい、標識したプローブとのインキュベーションを一晩行った後、メンブレンを55~60℃の条件下で0.1%(w/v)SDSを含む1次洗浄バッファーで洗浄後、ハイブリダイズしたDNAを検出することができる。あるいは、配列番号1の塩基配列と相補的な塩基配列、または配列番号2のアミノ酸配列をコードする塩基配列と相補的な塩基配列の全部または一部に基づいてプローブを作製する際に、市販の試薬(例えば、PCRラベリングミックス(ロシュ・ダイアグノスティクス社)等)を用いて該プローブをジゴキシゲニン(DIG)ラベルした場合には、DIG核酸検出キット(ロシュ・ダイアグノスティクス社)を用いてハイブリダイゼーションを検出することができる。 In addition, when using a commercially available kit for hybridization, Alkphos Direct Labeling and Detection System (GE Healthcare) can be used, for example. In this case, according to the protocol attached to the kit, after overnight incubation with the labeled probe, the membrane was subjected to a primary wash containing 0.1% (w / v) SDS at 55-60 ° C. After washing with a buffer, the hybridized DNA can be detected. Alternatively, when preparing a probe based on a base sequence complementary to the base sequence of SEQ ID NO: 1 or a base sequence complementary to the base sequence encoding the amino acid sequence of SEQ ID NO: 2, commercially available When the reagent is labeled with digoxigenin (DIG) using a reagent (for example, PCR labeling mix (Roche Diagnostics)), hybridization is performed using a DIG nucleic acid detection kit (Roche Diagnostics). Can be detected.
 上記以外にハイブリダイズ可能なポリヌクレオチドとしては、BLASTの相同性検索ソフトウェアにより、デフォルトのパラメーターを用いて計算したときに、配列番号1の塩基配列のDNA、または配列番号2のアミノ酸配列をコードするDNAと60%以上、61%以上、62%以上、63%以上、64%以上、65%以上、66%以上、67%以上、68%以上、69%以上、70%以上、71%以上、72%以上、73%以上、74%以上、75%以上、76%以上、77%以上、78%以上、79%以上、80%以上、81%以上、82%以上、83%以上、84%以上、85%以上、86%以上、87%以上、88%以上、89%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、99.1%以上、99.2%以上、99.3%以上、99.4%以上、99.5%以上、99.6%以上、99.7%以上、99.8%以上、または99.9%以上の配列同一性を有するDNAを挙げることができる。 In addition to the above, the hybridizable polynucleotide encodes the DNA of the nucleotide sequence of SEQ ID NO: 1 or the amino acid sequence of SEQ ID NO: 2, when calculated by the BLAST homology search software using the default parameters. 60% or more, 61% or more, 62% or more, 63% or more, 64% or more, 65% or more, 66% or more, 67% or more, 68% or more, 69% or more, 70% or more, 71% or more, 72% or more, 73% or more, 74% or more, 75% or more, 76% or more, 77% or more, 78% or more, 79% or more, 80% or more, 81% or more, 82% or more, 83% or more, 84% 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% Above, 97% or more, 98% or more, 99% or more, 99.1% or more, 99.2% or more, 99.3% or more, 99.4% or more, 99.5% or more, 99.6% or more, Mention may be made of DNA having a sequence identity of 99.7% or more, 99.8% or more, or 99.9% or more.
 なお、アミノ酸配列や塩基配列の配列同一性は、カーリンおよびアルチュールによるアルゴリズムBLAST(Basic Local Alignment Search Tool)(Proc. Natl. Acad. Sci. USA 872264-2268, 1990; Proc Natl Acad Sci USA 90:5873, 1993)を用いて決定できる。BLASTを用いる場合は、各プログラムのデフォルトパラメーターを用いる。 The sequence identity of amino acid sequences and nucleotide sequences is determined by the algorithm BLAST (Basic Local Alignment Search Tool) by Carlin and Arthur (Proc. Natl. Acad. Sci. USA 872264-2268, 1990; Proc Natl Acad Sci USA 90: 5873, 1993). When using BLAST, the default parameters of each program are used.
 上記した本発明のポリヌクレオチドは、公知の遺伝子工学的手法または公知の合成手法によって取得することが可能である。 The above-described polynucleotide of the present invention can be obtained by a known genetic engineering technique or a known synthesis technique.
 本発明のポリヌクレオチドは、さらに、分泌シグナルペプチドをコードする塩基配列からなるポリヌクレオチドを含んでもよい。好ましくは、分泌シグナルペプチドをコードする塩基配列からなるポリヌクレオチドは、本発明のポリヌクレオチドの5’末端に含まれる。分泌シグナルペプチドおよびそれをコードする塩基配列からポリヌクレオチドは、前記と同様である。 The polynucleotide of the present invention may further include a polynucleotide consisting of a base sequence encoding a secretory signal peptide. Preferably, a polynucleotide consisting of a base sequence encoding a secretory signal peptide is included at the 5 'end of the polynucleotide of the present invention. The polynucleotide from the secretory signal peptide and the base sequence encoding it is the same as described above.
 本発明のポリヌクレオチドは、好ましくは、適切な発現ベクターに挿入された状態で宿主に導入される。 The polynucleotide of the present invention is preferably introduced into a host while being inserted into an appropriate expression vector.
 適切な発現ベクターは、通常、
(i)宿主細胞内で転写可能なプロモーター;
(ii)該プロモーターに結合した、本発明のポリヌクレオチド;および
(iii)RNA分子の転写終結およびポリアデニル化に関し、宿主細胞内で機能するシグナルを構成要素として含む発現カセット
 を含むように構成される。
Suitable expression vectors are usually
(I) a promoter capable of transcription in a host cell;
(Ii) a polynucleotide of the present invention linked to the promoter; and (iii) an expression cassette comprising, as a component, a signal that functions in a host cell for transcription termination and polyadenylation of an RNA molecule. .
 発現ベクターの作製方法としては、プラスミド、ファージまたはコスミドなどを用いる方法が挙げられるが特に限定されない。 The method for producing the expression vector includes, but is not limited to, a method using a plasmid, phage, cosmid or the like.
 ベクターの具体的な種類は特に限定されず、宿主細胞中で発現可能なベクターが適宜選択され得る。すなわち、宿主細胞の種類に応じて、確実に本発明のポリヌクレオチドを発現させるために適宜プロモーター配列を選択し、これと本発明のポリヌクレオチドを各種プラスミド等に組み込んだベクターを発現ベクターとして用いればよい。 The specific type of the vector is not particularly limited, and a vector that can be expressed in the host cell can be appropriately selected. That is, according to the type of the host cell, a promoter sequence is appropriately selected in order to reliably express the polynucleotide of the present invention, and a vector in which this and the polynucleotide of the present invention are incorporated into various plasmids or the like is used as an expression vector. Good.
 本発明の発現ベクターは、導入されるべき宿主の種類に依存して、発現制御領域(例えば、プロモーター、ターミネーターおよび/または複製起点等)を含有する。細菌用発現ベクターのプロモーターとしては、慣用的なプロモーター(例えば、trcプロモーター、tacプロモーター、lacプロモーター等)が使用され、酵母用プロモーターとしては、例えば、グリセルアルデヒド3リン酸デヒドロゲナーゼプロモーター、PH05プロモーター等が挙げられ、糸状菌用プロモーターとしては、例えば、アミラーゼ、trpC等が挙げられる。また、植物細胞内で目的遺伝子を発現させるためのプロモーターの例としては、カリフラワーモザイクウィルスの35S RNAプロモーター、rd29A遺伝子プロモーター、rbcSプロモーター、前記カリフラワーモザイクウィルスの35S RNAプロモーターのエンハンサー配列をアグロバクテリウム由来のマンノピン合成酵素プロモーター配列の5’側に付加したmac-1プロモーター等が挙げられる。動物細胞宿主用プロモーターとしては、ウイルス性プロモーター(例えば、SV40初期プロモーター、SV40後期プロモーター等)が挙げられる。外的な刺激によって誘導性に活性化されるプロモーターの例としては、mouse mammary tumor virus(MMTV)プロモーター、テトラサイクリン応答性プロモーター、メタロチオネインプロモーター及びヒートショックプロテインプロモーター等が挙げられる。 The expression vector of the present invention contains an expression control region (for example, a promoter, a terminator and / or a replication origin) depending on the type of host to be introduced. Conventional promoters (eg, trc promoter, tac promoter, lac promoter, etc.) are used as promoters for bacterial expression vectors, and examples of yeast promoters include glyceraldehyde 3-phosphate dehydrogenase promoter, PH05 promoter, etc. Examples of the promoter for filamentous fungi include amylase and trpC. Examples of promoters for expressing a target gene in plant cells include the cauliflower mosaic virus 35S RNA promoter, the rd29A gene promoter, the rbcS promoter, and the enhancer sequence of the cauliflower mosaic virus 35S RNA promoter derived from Agrobacterium. And the mac-1 promoter added to the 5 'side of the mannopine synthase promoter sequence. Examples of animal cell host promoters include viral promoters (eg, SV40 early promoter, SV40 late promoter, etc.). Examples of promoters that are inducibly activated by external stimuli include a mouse mammary tumor virus (MMTV) promoter, a tetracycline responsive promoter, a metallothionein promoter, a heat shock protein promoter, and the like.
 発現ベクターは、少なくとも1つの選択マーカーを含むことが好ましい。このようなマーカーとしては、栄養要求性マーカー(ura5、niaD)、薬剤耐性マーカー(ハイグロマイシン、ゼオシン)、ジェネチシン耐性遺伝子(G418r)、銅耐性遺伝子(CUP1)(Marin et al., Proc. Natl. Acad. Sci. USA, vol. 81, p. 337, 1984)、セルレニン耐性遺伝子(fas2m, PDR4)(それぞれ、猪腰淳嗣ら,生化学,vol. 64, p. 660, 1992; Hussain et al., Gene, vol. 101, p. 149, 1991)などが利用可能である。 The expression vector preferably contains at least one selectable marker. Such markers include auxotrophic markers (ura5, niaD), drug resistance markers (hygromycin, zeocin), geneticin resistance gene (G418r), copper resistance gene (CUP1) (Marin et al., Proc. Natl. Acad. Sci. USA, vol. 81, p. 337, セ ル 1984), cerulenin resistance gene (fas2m, PDR4) (respectively, Koshiwa 淳 嗣 et al., Biochemistry, vol. 64, p. , Gene, vol. 101, p. 149, 1991) can be used.
 本発明の形質転換体の作製方法(生産方法)は特に限定されないが、例えば、本発明のポリヌクレオチドを含む発現ベクターを宿主に導入して形質転換する方法が挙げられる。形質転換の対象となる細胞または生物としては、従来公知の各種細胞または生物を好適に用いることができる。形質転換の対象となる細胞としては、例えば、大腸菌(Escherichia coli)等の細菌、酵母(出芽酵母Saccharomyces cerevisiae、分裂酵母Schizosaccharomyces pombe)、糸状菌(麹菌Aspergillus oryzae、Aspergillus sojae)、植物細胞、ヒトを除く動物細胞等が挙げられる。上記の宿主細胞のための適切な培養培地および条件は当分野で周知である。また、形質転換の対象となる生物も、特に限定されるものではなく、上記宿主細胞で例示した各種微生物または植物またはヒトを除く動物が挙げられる。形質転換体は、好ましくは、糸状菌、酵母または植物である。
形質転換で用いられる宿主として、モグロール配糖体のいずれかを生成するものを用いることもできる。ラカンカのように、元来少なくとも1つのモグロール配糖体を生成する植物だけではなく、本来モグロール配糖体を生成しない細胞または生物に少なくとも1つのモグロール配糖体の生成に必要な遺伝子を導入したものを宿主として用いることができる。「モグロール配糖体の生成に必要な遺伝子」は、例えば、WO2016/050890などに記載のモグロール配糖体合成活性を有する遺伝子が挙げられる。
The production method (production method) of the transformant of the present invention is not particularly limited, and examples thereof include a method of transforming by introducing an expression vector containing the polynucleotide of the present invention into a host. As cells or organisms to be transformed, various conventionally known cells or organisms can be suitably used. Examples of cells to be transformed include bacteria such as Escherichia coli, yeast (budding yeast Saccharomyces cerevisiae, fission yeast Schizosaccharomyces pombe), filamentous fungi (gonococci Aspergillus oryzae, Aspergillus sojae), plant cells, and humans. Excluding animal cells and the like. Appropriate culture media and conditions for the above-described host cells are well known in the art. In addition, the organism to be transformed is not particularly limited, and examples thereof include various microorganisms exemplified in the host cell, animals other than plants or animals. The transformant is preferably a filamentous fungus, a yeast or a plant.
As a host used in transformation, a host that produces any of mogrol glycosides can also be used. Like Lacanca, not only plants that originally produce at least one mogrol glycoside, but also cells or organisms that do not naturally produce mogrol glycoside have been introduced with a gene necessary for the production of at least one mogrolol glycoside. Can be used as a host. Examples of the “gene necessary for the production of mogrol glycoside” include genes having mogrol glycoside synthesis activity described in WO2016 / 050890 and the like.
 宿主細胞の形質転換方法としては一般に用いられる公知の方法が利用できる。例えば、エレクトロポレーション法(Mackenxie, D. A. et al., Appl. Environ. Microbiol., vol. 66, p. 4655-4661, 2000)、パーティクルデリバリー法(特開2005-287403「脂質生産菌の育種方法」に記載の方法)、スフェロプラスト法(Proc. Natl. Acad. Sci. USA, vol. 75, p. 1929, 1978)、酢酸リチウム法(J. Bacteriology, vol. 153, p. 163, 1983)、Methods in yeast genetics, 2000 Edition: A Cold Spring Harbor Laboratory Course Manualなどに記載の方法)で実施可能であるが、これらに限定されない。また、植物、もしくは植物に由来する組織や細胞への遺伝子導入の際には、例えばアグロバクテリウム法(Plant Molecular Biology Manual, Gelvin, S. B. et al., Academic Press Publishers)、パーティクルガン法、PEG法、エレクトロポーレーション法などを適宜選択して用いることができる。 As a host cell transformation method, a commonly known method can be used. For example, an electroporation method (Mackenxie, D. A. et al., Appl. Environ. Microbiol., Vol. 66, p. 4655-4661, デ リ バ リ ー 2000), particle delivery method (Japanese Patent Laid-Open No. 2005-287403, “lipid producing bacteria”) ), Spheroplast method (Proc. Natl. Acad. Sci. USA, vol. 75, p. 1929, 1978), lithium acetate method (J. Bacteriology, vol. 153, p. 163, 1983), Methods inyeast genetics, 2000 Edition: A Cold Spring Harbor Laboratory Course Manual), but is not limited thereto. In addition, for gene transfer into plants or tissues or cells derived from plants, for example, Agrobacterium method (PlantMolecular Biology Manual, Gelvin, vinS. B. et al., Academic Press Publishers), particle gun method PEG method, electroporation method and the like can be appropriately selected and used.
 形質転換体が、酵母または麹菌である場合、本発明のポリヌクレオチドで形質転換された酵母または麹菌は、野生型と比べて本発明のタンパク質を多く発現する。このため、発現した本発明のタンパク質が、酵母または麹菌で生成されたモグロール配糖体と反応し、モグロールおよび/またはモグロール配糖体が酵母または麹菌の細胞内または培養液中、好ましくは、培養液中に生成される。 When the transformant is yeast or koji mold, the yeast or koji mold transformed with the polynucleotide of the present invention expresses more of the protein of the present invention than the wild type. For this reason, the expressed protein of the present invention reacts with a mogrol glycoside produced in yeast or koji mold, and mogrol and / or mogrol glycoside is preferably cultured in the yeast or koji mold cells or in the culture solution. Produced in liquid.
 形質転換体が、植物である場合、本発明において形質転換の対象となる植物は、植物体全体、植物器官(例えば葉、花弁、茎、根、種子など)、植物組織(例えば表皮、師部、柔組織、木部、維管束、柵状組織、海綿状組織など)または植物培養細胞、あるいは種々の形態の植物細胞(例えば、懸濁培養細胞)、プロトプラスト、葉の切片、カルスなどのいずれをも意味する。形質転換に用いられる植物としては、単子葉植物綱または双子葉植物綱に属する植物のいずれでもよい。本発明のポリヌクレオチドが植物に導入されたか否かの確認は、PCR法、サザンハイブリダイゼーション法、ノーザンハイブリダイゼーション法などによって行うことができる。本発明のポリヌクレオチドがゲノム内に組み込まれた形質転換植物体が一旦取得されれば、当該植物体の有性生殖または無性生殖によって子孫を得ることができる。また、当該植物体またはその子孫、あるいはこれらのクローンから、例えば、種子、果実、切穂、塊茎、塊根、株、カルス、プロトプラストなどを得て、それらを基に当該植物体を量産することができる。本発明のポリヌクレオチドで形質転換された植物(以下、「本発明の植物」)は、その野生型と比べて本発明のタンパク質を多く含む。このため、本発明のタンパク質が、本発明の植物で生成されたモグロール配糖体と反応し、モグロールが植物中に生成する。また、植物体のなかの環境が加水分解反応に最適でない場合は、モグロール配糖体のグルコシド結合の加水分解反応は抑制され、グルコシド結合が切断されずに維持されたモグロール配糖体やグルコシド結合の一部のみが切断されたモグロール配糖体が生成する。 When the transformant is a plant, the plant to be transformed in the present invention is the whole plant, plant organ (eg, leaf, petal, stem, root, seed, etc.), plant tissue (eg, epidermis, phloem) , Soft tissue, xylem, vascular bundle, palisade tissue, spongy tissue, etc.) or plant culture cells, or various forms of plant cells (eg, suspension culture cells), protoplasts, leaf sections, callus, etc. Also means. The plant used for the transformation may be any plant belonging to the monocotyledonous plant class or the dicotyledonous plant class. Whether or not the polynucleotide of the present invention has been introduced into a plant can be confirmed by PCR, Southern hybridization, Northern hybridization, or the like. Once a transformed plant in which the polynucleotide of the present invention has been integrated into the genome is obtained, offspring can be obtained by sexual or asexual reproduction of the plant. Further, for example, seeds, fruits, cuttings, tubers, tuberous roots, strains, callus, protoplasts, and the like can be obtained from the plant or its progeny, or clones thereof, and the plant can be mass-produced based on them. it can. A plant transformed with the polynucleotide of the present invention (hereinafter, “plant of the present invention”) contains more of the protein of the present invention than its wild type. For this reason, the protein of this invention reacts with the mogrol glycoside produced | generated with the plant of this invention, and mogrol produces | generates in a plant. In addition, when the environment in the plant body is not optimal for the hydrolysis reaction, the hydrolysis reaction of the glucoside bond of the mogrol glycoside is suppressed, and the mogrol glycoside or glucoside bond is maintained without breaking the glucoside bond. Mogrol glycosides that are cleaved only in part are produced.
 そこで、本発明は別の実施態様として、本発明のポリヌクレオチドが導入された非ヒト形質転換体を培養することを含む、モグロールおよび/またはモグロール配糖体の生産方法を提供する。 Thus, as another embodiment, the present invention provides a method for producing mogrol and / or mogrol glycoside, which comprises culturing a non-human transformant introduced with the polynucleotide of the present invention.
 本発明のいくつかの態様の形質転換体またはその培養液は、その野生型と比べて本発明のモグロールおよび/またはモグロール配糖体の含有量が高く、その抽出物または培養液には、本発明のモグロールおよび/またはモグロール配糖体が高濃度で含まれる。本発明の形質転換体の抽出物は、形質転換体をガラスビーズ、ホモジェナイザーまたはソニケーター等を用いて破砕し、当該破砕物を遠心処理し、その上清を回収することにより、得ることができる。本発明のモグロールおよび/またはモグロール配糖体が培養液中に蓄積される場合には、培養終了後、通常の方法(例えば、遠心分離、ろ過など)により形質転換体と培養上清とを分離することにより、本発明のモグロールおよび/またはモグロール配糖体を含む培養上清を得ることができる。 The transformant of some aspects of the present invention or its culture solution has a higher content of the mogrol and / or mogrol glycoside of the present invention than its wild type, and the extract or culture solution contains The inventive mogrols and / or mogrol glycosides are included in high concentrations. The extract of the transformant of the present invention can be obtained by crushing the transformant using glass beads, a homogenizer, a sonicator or the like, centrifuging the crushed material, and collecting the supernatant. it can. When the mogrol and / or mogrol glycoside of the present invention is accumulated in the culture solution, the transformant and the culture supernatant are separated by a usual method (for example, centrifugation, filtration, etc.) after completion of the culture. By doing so, a culture supernatant containing the mogrol and / or mogrol glycoside of the present invention can be obtained.
 このようにして得られた抽出液もしくは培養上清は、さらに精製工程に供してもよい。本発明のモグロールおよび/またはモグロール配糖体の精製は、通常の分離および精製方法に従って行うことができる。具体的な方法は、前記と同様である。 The thus obtained extract or culture supernatant may be further subjected to a purification step. The purification of mogrol and / or mogrol glycoside of the present invention can be carried out according to ordinary separation and purification methods. The specific method is the same as described above.
非ヒト形質転換細胞に由来する酵素剤を用いた本発明のモグロール配糖体および/またはモグロールの製造方法
 本発明のタンパク質を宿主細胞内で発現させ、細胞を破砕することにより本発明のタンパク質を得ることができる。本発明のタンパク質を作用させることで、本発明のモグロール配糖体および/またはモグロールを生成することもできる。
 具体的には、本発明の形質転換細胞に由来する酵素剤を、グルコシド結合を少なくとも1つを有するモグロール配糖体と接触させることによりモグロールを生成することができる。本発明のタンパク質は、酵母で発現させた場合にも麹菌で発現させた場合と同等の活性を示すことが実施例においても確認されている。 「形質転換細胞に由来する酵素剤」は、形質転換細胞を用いて調製され、本発明のタンパク質を含むものであれば限定されないが、例えば、形質転換細胞自体、形質転換細胞の粉砕物自体、形質転換細胞の培養上清自体、およびこれらの精製物である。そこで、本発明は、宿主細胞に、以下の(a)~(e)からなる群から選択されるポリヌクレオチドが導入された非ヒト形質転換細胞に由来する酵素剤を、グルコシド結合を少なくとも1つを有するモグロール配糖体と接触させて、少なくとも1つのグルコシド結合を加水分解する工程を含むモグロールおよび/またはモグロール配糖体の製造方法を提供する。
(a)配列番号1の塩基配列からなるポリヌクレオチド;
(b)配列番号2のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(c)配列番号2のアミノ酸配列において、1~83個のアミノ酸が欠失、置換、挿入、および/または付加されたアミノ酸配列からなり、かつモグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質をコードするポリヌクレオチド;
(d)配列番号2のアミノ酸配列に対して、90%以上の配列同一性を有するアミノ酸配列を有し、かつモグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質タンパク質をコードするポリヌクレオチド;
(e)配列番号1の塩基配列からなるポリヌクレオチドと相補的な塩基配列からなるポリヌクレオチドと高ストリンジェントな条件下でハイブリダイズするポリヌクレオチドであって、かつモグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質をコードするポリヌクレオチド
Method for producing mogrol glycoside and / or mogrol of the present invention using an enzyme agent derived from a non-human transformed cell The protein of the present invention is expressed by expressing the protein of the present invention in a host cell and disrupting the cell. Obtainable. By allowing the protein of the present invention to act, the mogrol glycoside and / or mogrol of the present invention can also be produced.
Specifically, mogrol can be produced by contacting an enzyme agent derived from the transformed cell of the present invention with a mogrol glycoside having at least one glucoside bond. It has been confirmed in the Examples that the protein of the present invention exhibits the same activity when expressed in yeast as in the case of expression in Aspergillus. "Enzyme agent derived from transformed cells" is not limited as long as it is prepared using transformed cells and contains the protein of the present invention. For example, transformed cells themselves, pulverized products of transformed cells themselves, The culture supernatant of the transformed cell itself, and purified products thereof. Accordingly, the present invention provides an enzyme agent derived from a non-human transformed cell into which a polynucleotide selected from the group consisting of the following (a) to (e) is introduced into a host cell, and at least one glucoside bond: A method for producing mogrol and / or mogrol glycoside comprising the step of hydrolyzing at least one glucoside bond by contacting with the mogrol glycoside having the formula:
(A) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1;
(B) a polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2;
(C) The amino acid sequence of SEQ ID NO: 2 consists of an amino acid sequence in which 1 to 83 amino acids are deleted, substituted, inserted, and / or added, and hydrolyzes at least one glucoside bond of the mogrol glycoside. A polynucleotide encoding a protein having the activity of:
(D) a protein protein having an amino acid sequence having a sequence identity of 90% or more with respect to the amino acid sequence of SEQ ID NO: 2 and having an activity of hydrolyzing at least one glucoside bond of mogrol glycoside A polynucleotide to:
(E) a polynucleotide that hybridizes under high stringency conditions with a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 and at least one glucoside of a mogrol glycoside Polynucleotide encoding a protein having activity of hydrolyzing a bond
 上記(a)~(e)からなる群から選択されるポリヌクレオチドは、本発明のポリヌクレオチドであり、前記と同様である。 The polynucleotide selected from the group consisting of (a) to (e) above is the polynucleotide of the present invention and is the same as described above.
 「接触」とは、本発明の形質転換細胞に由来する酵素剤とグルコシド結合を少なくとも1つを有するモグロール配糖体とを同一の反応系または培養系に存在させることを意味し、例えば、本発明の形質転換細胞に由来する酵素剤を含む容器に少なくとも1つのグルコシド結合を有するモグロール配糖体を添加すること、本発明の形質転換細胞に由来する酵素剤と少なくとも1つのグルコシド結合を有するモグロール配糖体とを混合すること、本発明の形質転換細胞に由来する酵素剤を少なくとも1つのグルコシド結合を有するモグロール配糖体を含む容器に添加することが含まれる。 “Contact” means that an enzyme agent derived from the transformed cell of the present invention and a mogrol glycoside having at least one glucoside bond are present in the same reaction system or culture system. Addition of a mogrol glycoside having at least one glucoside bond to a container containing an enzyme agent derived from the transformed cell of the invention, an enzyme agent derived from the transformed cell of the present invention and mogrol having at least one glucoside bond Mixing with a glycoside and adding an enzyme agent derived from the transformed cell of the present invention to a container containing a mogrol glycoside having at least one glucoside bond are included.
 「モグロール配糖体」、「少なくとも1つのグルコシド結合を有するモグロール配糖体」、及び「少なくとも1つのグルコシド結合を加水分解する活性」は、前記と同様である。 The “mogrol glycoside”, “mogrol glycoside having at least one glucoside bond”, and “activity for hydrolyzing at least one glucoside bond” are the same as described above.
 その他、一般的な分子生物学的な手法に関しては、“Sambrook & Russell, Molecular Cloning: A Laboratory Manual Vol. 4, Cold Spring Harbor Laboratory Press 2012”、“Methods in Yeast Genetics, A laboratory manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY)”等を参照することができる。 Other general molecular biology methods include “Sambrook & Russell, Molecular Cloning: A Laboratory Manual Vol. 4, Cold Spring Harbor Laboratory Press 2012”, “Methods in Yeast Genetics, A laboratory manual (Cold Spring Hual "Laboratory (Press, Cold, Spring, Harbor, NY)".
 このようにして得られた本発明のモグロールおよび/またはモグロール配糖体は、常法に従って、例えば、食品、甘味料、香料、医薬品、工業原料(化粧料、石鹸等の原料)の製造等の用途に使用することができる。 The thus obtained mogrol and / or mogrol glycoside of the present invention can be produced, for example, according to a conventional method such as production of foods, sweeteners, fragrances, pharmaceuticals, industrial raw materials (raw materials such as cosmetics and soaps). Can be used for applications.
 食品の例としては、栄養補助食品、健康食品、機能性食品、幼児用食品、老人用食品等が挙げられる。本明細書中、食品は、固体、流動体、および液体、並びにそれらの混合物であって、摂食可能なものの総称である。 Examples of foods include nutritional supplements, health foods, functional foods, infant foods, and elderly foods. In the present specification, food is a general term for solids, fluids, liquids, and mixtures thereof that can be consumed.
 なお、本明細書において引用した全ての文献、および公開公報、特許公報その他の特許文献は、参照として本明細書に組み込むものとする。 It should be noted that all documents cited in the present specification, as well as published publications, patent gazettes, and other patent documents are incorporated herein by reference.
 以下、実施例を用いて本発明をより具体的に説明するが、本発明の範囲は、これらの実施例によって限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited by these examples.
[実施例1]
麹菌のβ-グルコシダーゼ遺伝子の探索
 麹菌ゲノムデータ(PRJNA28175)より、β-グルコシダーゼホモログを探索し、菌体内β-グルコシダーゼのホモログであるAO090701000244(CDS配列:配列番号1、推定アミノ酸配列:配列番号2、ORF配列:配列番号3、ゲノムDNA配列:配列番号4)を見出した。これをAOBGL11としてクローン化することにした。AOBGL11のcDNA配列とアミノ酸配列を図1に示す。
[Example 1]
Search for β-glucosidase gene of Aspergillus by searching for β-glucosidase homologue from Aspergillus genome data (PRJNA28175), AO090700024044 (CDS sequence: SEQ ID NO: 1, deduced amino acid sequence: SEQ ID NO: 2, The ORF sequence: SEQ ID NO: 3, and the genomic DNA sequence: SEQ ID NO: 4) were found. We decided to clone this as AOBGL11. The cDNA sequence and amino acid sequence of AOBGL11 are shown in FIG.
AOBGL11のゲノムDNAのクローニング
 AOBGL11をクローニングするために、以下のプライマーを設計した。
AOBGL11-F:
 5´‐ATGCCTCGTCTAGACGTCGAGAA‐3´(配列番号4)
AOBGL11-R:
 5´‐TCACAGACCCAACCAGTAGCGA‐3´(配列番号5)
Cloning of AOBGL11 genomic DNA In order to clone AOBGL11, the following primers were designed.
AOBGL11-F:
5′-ATGCCTCGTCTAGACCGTCGAGAA-3 ′ (SEQ ID NO: 4)
AOBGL11-R:
5'-TCACAGACCCAACCAGTAGGCGA-3 '(SEQ ID NO: 5)
 麹菌 Aspergillus oryzae var. Brunneus(IFO30102)の分生子を液体培地(1Lあたり、グルコース 20g、バクトトリプトン 1g、酵母エキス 5g、NaNO 1g、KHPO 0.5g、MgSO・7HO 0.5g、FeSO・7HO 0.01g)10mlに植菌し、30℃で1日間培養した。ろ過により菌体を集め、液体窒素中ですりつぶしたあと、DNeasy Plant Mini Kit(QIAGEN)を用いて、ゲノムDNAを調製した。
 ゲノムDNAを鋳型として、プライマーAOBGL11-FとAOBGL11-Rを用いて、KOD-plus(東洋紡)でPCRを行った。得られた約2.57kbpのDNA断片を、Zero Blunt TOPO PCR Cloning Kit(インビトロジェン)を使ってクローン化し、プラスミドpCR-AOBGL11gを得た。
Conidia of Aspergillus oryzae var. Brunneus (IFO30102) were added to a liquid medium (1 g, glucose 20 g, bactotryptone 1 g, yeast extract 5 g, NaNO 3 1 g, K 2 HPO 4 0.5 g, MgSO 4 · 7H 2 O 0 0.5 g, FeSO 4 · 7H 2 O 0.01 g) was inoculated into 10 ml, and cultured at 30 ° C. for 1 day. Bacteria were collected by filtration, ground in liquid nitrogen, and then genomic DNA was prepared using DNeasy Plant Mini Kit (QIAGEN).
PCR was performed with KOD-plus (Toyobo) using genomic DNA as a template and primers AOBGL11-F and AOBGL11-R. The obtained DNA fragment of about 2.57 kbp was cloned using Zero Blunt TOPO PCR Cloning Kit (Invitrogen) to obtain plasmid pCR-AOBGL11g.
[実施例2]
麹菌によるAOBGL11pの生産
麹菌発現用ベクターの構築
 麹菌用ベクターpUNA(酒類総合研究所)を制限酵素SmaIで消化して得られたDNA断片と、プラスミドpCR-AOBGL11gを制限酵素EcoRIで消化し末端をBlunting Kit(タカラバイオ)によって平滑化して得られた約2.57kbpのDNA断片を連結し、プラスミドpUNA-AOBGL11gを得た。
[Example 2]
Production of AOBGL11p by Aspergillus Construction of a vector for expressing Aspergillus oryzae DNA fragment obtained by digestion of Aspergillus oryzae vector pUNA (Liquor Research Institute) with restriction enzyme SmaI and plasmid pCR-AOBGL11g with restriction enzyme EcoRI and blunting ends The DNA fragment of about 2.57 kbp obtained by blunting with Kit (Takara Bio) was ligated to obtain 11 g of plasmid pUNA-AOBGL.
麹菌の形質転換
 麹菌の形質転換は以下のとおり実施した。
 宿主として、Aspergillus oryzae niaD300株(酒類総合研究所)を使用した。宿主株をPDAプレートに植菌し、30℃でおよそ1週間培養した。分生子懸濁液を得るために、0.1% tween80, 0.8% NaClを加え、分生子を懸濁した。ミラクロスでろ過後、遠心分離により分生子を回収し、さらに、0.1% tween80, 0.8% NaClで洗浄し、滅菌水に懸濁した。
 分生子をCDプレート(1Lあたり、NaNO 6g、KCl 0.52g、KHPO 1.52g、グルコース 10g、1M MgSO 2ml、Trace element solution(1Lあたり、FeSO・7HO 1g、ZnSO・7HO 8.8g、CuSO・5HO 0.4g、NaB・10HO 0.1g、(NHMo24・4HO 0.05g ) 1ml、アガー 20g(pH6.5))に塗布し、パーティクルデリバリー法により、DNAの導入を行った。PDS-1000/He(バイオラッド)を使って、パーティクル:タングステンM-10、ラプチャーディスク:1100psi、距離:3cmとした。形質転換株として、CDプレートで生育するものを選抜した。プラスミドpUNA-AOBGL11gにより形質転換して得られた形質転換株をBGL11-1株、コントロールベクターpUNAにより形質転換して得られた形質転換株をC-1株とした。
Transformation of koji molds Koji molds were transformed as follows.
As a host, Aspergillus oryzae niaD300 strain (Liquor Research Institute) was used. Host strains were inoculated on PDA plates and cultured at 30 ° C. for approximately 1 week. To obtain a conidial suspension, 0.1% tween 80, 0.8% NaCl was added to suspend the conidia. After filtration through Miracloth, conidia were collected by centrifugation, further washed with 0.1% tween 80, 0.8% NaCl, and suspended in sterile water.
Conidia were added to CD plates (6 g NaNO 3 , 0.52 g KCl 2, 1.52 g KH 2 PO 4 , 2 g glucose, 1 ml MgSO 4 , trace element solution (1 g FeSO 4 · 7H 2 O, 1 g ZnSO). 4.8 g of 4 · 7H 2 O, 0.4 g of CuSO 4 · 5H 2 O, 0.1 g of NaB 4 O 7 · 10H 2 O, (NH 4 ) 6 Mo 7 O 24 · 4H 2 O 0.05 g) 1 ml, Agar 20 g (pH 6.5) was applied, and DNA was introduced by a particle delivery method. Using PDS-1000 / He (Bio-Rad), particle: tungsten M-10, rupture disk: 1100 psi, distance: 3 cm. As a transformant, one that grows on a CD plate was selected. The transformant obtained by transforming with plasmid pUNA-AOBGL11g was designated as BGL11-1 strain, and the transformant obtained by transformation with control vector pUNA was designated as C-1 strain.
麹菌によるAOBGL11pの発現
 BGL11-1株またはC-1株をCDプレートに植菌し、30℃で7日間培養し、分生子を形成させた。分生子懸濁液を得るために、0.1% tween80, 0.8% NaClを加え、分生子を懸濁した。ミラクロス(登録商標)でろ過後、遠心分離により分生子を回収し、さらに、0.1% tween80, 0.8% NaClで洗浄し、滅菌水に懸濁し、分生子懸濁液としたこの分生子懸濁液を酵素生産用液体培地(1Lあたり、マルトース 100g、バクトトリプトン 1g、酵母エキス 5g、NaNO 1g、KHPO 0.5g、MgSO・7HO 0.5g、FeSO・7HO 0.01g) に植菌し、30℃で2日間振とう培養を行った。ミラクロス(登録商標)によりろ過して菌体を集めた。得られた湿菌体 約4gを液体窒素で凍結し、乳鉢ですりつぶした。すりつぶした菌体を50mMリン酸ナトリウムバッファー(pH7.0)に懸濁し、よく混合した後、遠心分離した。得られた上清を、アミコン(登録商標)ウルトラ-15 50k(メルク)で、限外ろ過により濃縮し、0.1% CHAPSを含む50mM リン酸ナトリウムバッファーpH7.0(バッファーA)で置換することにより、約1mlの粗酵素液を得た。
Expression of AOBGL11p by Aspergillus BGL11-1 or C-1 strain was inoculated on a CD plate and cultured at 30 ° C. for 7 days to form conidia. To obtain a conidial suspension, 0.1% tween 80, 0.8% NaCl was added to suspend the conidia. After filtration through Miracloth (registered trademark), conidia are collected by centrifugation, further washed with 0.1% tween 80, 0.8% NaCl, suspended in sterilized water to obtain a conidia suspension. A liquid medium for enzyme production (100 g of maltose, 1 g of bactotryptone, 5 g of yeast extract, 1 g of NaNO 3 , 0.5 g of K 2 HPO 4, 0.5 g of MgSO 4 .7H 2 O, FeSO 4 7H 2 O (0.01 g) was inoculated and cultured with shaking at 30 ° C. for 2 days. The cells were collected by filtration through Miracloth (registered trademark). About 4 g of the obtained wet cells were frozen with liquid nitrogen and ground in a mortar. The ground cells were suspended in 50 mM sodium phosphate buffer (pH 7.0), mixed well, and then centrifuged. The obtained supernatant is concentrated by ultrafiltration with Amicon (registered trademark) Ultra-15 50k (Merck) and replaced with 50 mM sodium phosphate buffer pH 7.0 (buffer A) containing 0.1% CHAPS. As a result, about 1 ml of a crude enzyme solution was obtained.
タンパク質濃度の測定
 粗酵素液のタンパク質濃度は、プロテインアッセイCBB溶液(5倍濃縮)(ナカライテスク)を用いて定量した。その結果、BGL11-1粗酵素液 6.46mg/ml、C-1粗酵素液4mg/mlであった。
Measurement of protein concentration The protein concentration of the crude enzyme solution was quantified using a protein assay CBB solution (concentrated 5 times) (Nacalai Tesque). As a result, the BGL11-1 crude enzyme solution was 6.46 mg / ml and the C-1 crude enzyme solution was 4 mg / ml.
[実施例3]
pNP-β-Glc分解活性
 pNP-β-Glcの分解活性を検討した。粗酵素液10μL、0.2M リン酸ナトリウムバッファー(pH7.0)50μL、20mM pNP-β-Glc水溶液 50μL、水を加えてトータル200μLとし、37℃で反応させた。なお、BGL11-1粗酵素液は活性が高かったため、粗酵素液を0.1% CHAPSを含む50mM リン酸ナトリウムバッファー(pH7.0)バッファーで100倍に希釈したものを用いた。pNP-β-Glc が加水分解して遊離したp-ニトロフェノール(pNP)に基づく1分間あたりの405nmの吸光度変化(Δ405)は、BGL11-1粗酵素液で0.244、C-1粗酵素液で0.000であった。
 以上のことからも、AOBGL11pがβ-グルコシダーゼ活性を担っていることが示唆された。
[Example 3]
pNP-β-Glc degradation activity The degradation activity of pNP-β-Glc was examined. 10 μL of the crude enzyme solution, 50 μL of 0.2 M sodium phosphate buffer (pH 7.0), 50 μL of 20 mM pNP-β-Glc aqueous solution and water were added to make a total of 200 μL, followed by reaction at 37 ° C. Since the BGL11-1 crude enzyme solution had high activity, the crude enzyme solution diluted 100-fold with 50 mM sodium phosphate buffer (pH 7.0) containing 0.1% CHAPS was used. The absorbance change at 405 nm per minute (Δ405) based on p-nitrophenol (pNP) liberated by hydrolysis of pNP-β-Glc was 0.244 for the BGL11-1 crude enzyme solution, and C-1 crude enzyme The liquid was 0.000.
From the above, it was suggested that AOBGL11p has β-glucosidase activity.
 pNP-β-Glcを基質として、AOBGL11pの至適温度、至適pHおよび熱安定性、pH安定性を調べた(図2(図2A-図2D))。
 なお、BGL11-1粗酵素液はバッファーAで5000倍希釈したもの(タンパク質濃度 1.3μg/ml)を使用した。
Using pNP-β-Glc as a substrate, the optimum temperature, optimum pH, thermal stability and pH stability of AOBGL11p were examined (FIG. 2 (FIGS. 2A to 2D)).
The BGL11-1 crude enzyme solution was diluted 5000 times with buffer A (protein concentration 1.3 μg / ml).
至適温度:
 反応液は、粗酵素液(1.3μg/ml) 20μl、0.2M リン酸ナトリウムバッファー(pH6.5) 100μl、20mM pNP-β-Glc、水を加えてトータル400μlとし、反応開始から15分、30分、45分に100μlをサンプリングして100μl 0.2M 炭酸ナトリウム溶液と混合してから、405nmの吸光度を測定し、Δ405を求めた。Δ405が最大となった45℃を1として、各温度で反応させたときのΔ405の比率を図2Aに示した。これにより、45-50℃が反応至適温度であることが分かった。
Optimal temperature:
The reaction solution was 20 μl of crude enzyme solution (1.3 μg / ml), 100 μl of 0.2 M sodium phosphate buffer (pH 6.5), 20 mM pNP-β-Glc, and water to make a total of 400 μl, 15 minutes after the start of the reaction 100 μl was sampled at 30 minutes and 45 minutes and mixed with 100 μl 0.2 M sodium carbonate solution, and the absorbance at 405 nm was measured to obtain Δ405. FIG. 2A shows the ratio of Δ405 when the reaction is performed at each temperature with 45 ° C. at which Δ405 is maximized as 1. As a result, it was found that 45-50 ° C. was the optimum temperature for the reaction.
至適pH:
 反応液は、粗酵素液(1.3μg/ml) 20μl、0.2M バッファー 100μl、20mM pNP-β-Glc、水を加えてトータル400μlとした。バッファーは、pH4.0-6.0のとき酢酸ナトリウムバッファーを、pH6.0-8.0のときリン酸ナトリウムバッファーを用いた。上記と同様にサンプリング、測定を行い、Δ405の最大値に対する各pHで反応させたときのΔ405の比率を図2Bに示した。これにより、pH6.0-7.0が反応至適pHであることが分かった。
Optimum pH:
The reaction solution was adjusted to a total of 400 μl by adding 20 μl of crude enzyme solution (1.3 μg / ml), 100 μl of 0.2M buffer, 20 mM pNP-β-Glc, and water. As the buffer, sodium acetate buffer was used at pH 4.0-6.0, and sodium phosphate buffer was used at pH 6.0-8.0. Sampling and measurement were performed in the same manner as described above, and the ratio of Δ405 when reacted at each pH with respect to the maximum value of Δ405 is shown in FIG. 2B. As a result, it was found that pH 6.0-7.0 was the optimum reaction pH.
熱安定性:
 5000倍希釈した粗酵素液(1.3μg/ml)を30℃、37℃、45℃、50℃でそれぞれ10分間保持したあと氷冷した。反応液は、粗酵素液(1.3μg/ml) 5μl、0.2M リン酸ナトリウムバッファー(pH6.5) 100μl、20mM pNP-β-Glc、水を加えてトータル100μlとし、37℃で45分間反応させたあと、0.2M炭酸ナトリウム溶液 100μlを添加し、405nmの吸光度を測定した。熱処理しなかった酵素液による45分後の405nmの吸光度に対する各温度で処理したときの比率を求め、図2Cに示した。AOBGL11pは、10分間の処理では37℃まで安定であるが、45℃での処理で約半分にまで失活し、50℃の処理では、活性がほぼ失われることが分かった。
Thermal stability:
The crude enzyme solution (1.3 μg / ml) diluted 5000 times was kept at 30 ° C., 37 ° C., 45 ° C. and 50 ° C. for 10 minutes, and then cooled with ice. The reaction solution was 5 μl of crude enzyme solution (1.3 μg / ml), 100 μl of 0.2 M sodium phosphate buffer (pH 6.5), 20 mM pNP-β-Glc, and water to make a total of 100 μl, and at 37 ° C. for 45 minutes. After the reaction, 100 μl of 0.2 M sodium carbonate solution was added and the absorbance at 405 nm was measured. The ratio when treated at each temperature to the absorbance at 405 nm after 45 minutes with the enzyme solution that was not heat-treated was determined and is shown in FIG. 2C. AOBGL11p was stable up to 37 ° C. when treated for 10 minutes, but was deactivated to about half when treated at 45 ° C., and the activity was almost lost when treated at 50 ° C.
pH安定性:
 粗酵素液を、pH4.5、5.0、5.5、6.0(0.2M酢酸バッファー)、pH6.0、6.5、7.0、7.5、8.0(0.2M リン酸ナトリウムバッファー)の各バッファーで5000倍希釈し、37℃で1時間保持したあと氷冷した。反応液は、粗酵素液(1.3μg/ml) 5μl、0.2M リン酸ナトリウムバッファー(pH6.5) 100μl、20mM pNP-β-Glc、水を加えてトータル100μlとし、37℃で45分間反応させたあと、0.2M炭酸ナトリウム溶液 100μlを添加し、405nmの吸光度を測定した。活性のもっとも高かったpH6.5で保持したときの吸光度に対する各pHで保持したときの吸光度の比率を求め、図2Dに示した。AOBGL11pは、pH6.5付近で最も安定であることがわかった。
pH stability:
The crude enzyme solution was added at pH 4.5, 5.0, 5.5, 6.0 (0.2 M acetate buffer), pH 6.0, 6.5, 7.0, 7.5, 8.0 (0.0. 2M sodium phosphate buffer) was diluted 5000 times with each buffer, kept at 37 ° C. for 1 hour, and then ice-cooled. The reaction solution was 5 μl of crude enzyme solution (1.3 μg / ml), 100 μl of 0.2 M sodium phosphate buffer (pH 6.5), 20 mM pNP-β-Glc, and water to make a total of 100 μl, and at 37 ° C. for 45 minutes. After the reaction, 100 μl of 0.2 M sodium carbonate solution was added and the absorbance at 405 nm was measured. The ratio of the absorbance when held at each pH to the absorbance when held at pH 6.5, which had the highest activity, was determined and is shown in FIG. 2D. AOBGL11p was found to be most stable around pH 6.5.
[実施例4]
AOBGL11のcDNAのクローニング
 BGL11-1株を酵素生産用培地10mlで培養し、ろ過により菌体を集めた。菌体を液体窒素で凍結し、乳鉢で菌体をすりつぶしてから、RNeasy(QIAGEN)でトータルRNAを抽出した。SuperScript Double-Stranded cDNA Synthesis Kit(ライフテクノロジーズ)により、cDNAを合成した。これを鋳型として、プライマーAOBGL11-FとAOBGL11-Rを用いて、KOD-plus(東洋紡)でPCRを行った。得られた約2.52kbpのDNA断片を、Zero Blunt TOPO PCR Cloning Kit(インビトロジェン)を使ってAOBGL11のcDNAをクローン化し、プラスミドpCR-AOBGL11cDNAを得た。塩基配列を確認したところ、配列番号1の通りであった。AOBGL11のゲノムDNA配列とcDNA配列を比較したものを図3に示す。
[Example 4]
Cloning of AOBGL11 cDNA The BGL11-1 strain was cultured in 10 ml of enzyme production medium, and the cells were collected by filtration. The cells were frozen with liquid nitrogen, ground in a mortar, and then total RNA was extracted with RNeasy (QIAGEN). CDNA was synthesized by SuperScript Double-Stranded cDNA Synthesis Kit (Life Technologies). Using this as a template, PCR was performed with KOD-plus (Toyobo) using primers AOBGL11-F and AOBGL11-R. The obtained DNA fragment of about 2.52 kbp was cloned by using Zero Blunt TOPO PCR Cloning Kit (Invitrogen) to obtain the cDNA of AOBGL11 to obtain plasmid pCR-AOBGL11 cDNA. When the base sequence was confirmed, it was as shown in SEQ ID NO: 1. FIG. 3 shows a comparison between the genomic DNA sequence of AOBGL11 and the cDNA sequence.
[実施例5]
酵母でのAOBGL11pの生産
酵母用発現ベクターの構築と酵母の形質転換
 プラスミドpCR-AOBGL11 cDNAをEcoRIで消化して得られた約2.52kbpのDNA断片を、酵母発現ベクターpYE22m(Biosci. Biotech. Biochem., 59, 1221-1228, 1995)のEcoRIサイトに挿入し、AOBGL11がベクターpYE22mのGAPDHプロモーターから発現する向きに挿入されたものを選抜し、pYE-AOBGL3cとした。形質転換の親株として、S. cerevisiaeのEH13-15株(trp1,MATα)(Appl. Microbiol. Biotechnol., 30, 515-520, 1989)を用いた。
 プラスミドpYE22m(コントロール)、pYE-AOBGL11(AOBGL11発現用)をそれぞれ用いて酢酸リチウム法により、EH13-15株を形質転換した。形質転換株は、SC-Trp(1Lあたり、Yeast nitrogen base w/o amino acids(DIFCO)6.7g、グルコース20g、およびアミノ酸パウダー(アデニン硫酸塩1.25g、アルギニン0.6g、アスパラギン酸3g、グルタミン酸3g、ヒスチジン0.6g、ロイシン1.8g、リジン0.9g、メチオニン0.6g、フェニルアラニン1.5g、セリン11.25g、チロシン0.9g、バリン4.5g、スレオニン6g、ウラシル0.6gを混合したもの)1.3gを含む)寒天培地(2%アガー)上で生育するものを選抜した。
[Example 5]
Production of AOBGL11p in Yeast Construction of Yeast Expression Vector and Transformation of Yeast About 2.52 kbp of DNA fragment obtained by digesting plasmid pCR-AOBGL11 cDNA with EcoRI was transformed into yeast expression vector pYE22m (Biosci. Biotech. Biochem , 59, 1221-1228, 1995), and the one in which AOBGL11 was inserted in the direction of expression from the GAPDH promoter of the vector pYE22m was selected and designated pYE-AOBGL3c. S. cerevisiae EH13-15 strain (trp1, MATα) (Appl. Microbiol. Biotechnol., 30, 515-520, 1989) was used as a parent strain for transformation.
EH13-15 strain was transformed by lithium acetate method using plasmids pYE22m (control) and pYE-AOBGL11 (for AOBGL11 expression), respectively. The transformed strain was SC-Trp (per 1 L, yeast nitrogen base w / o amino acids (DIFCO) 6.7 g, glucose 20 g, and amino acid powder (adenine sulfate 1.25 g, arginine 0.6 g, aspartic acid 3 g, Glutamic acid 3 g, histidine 0.6 g, leucine 1.8 g, lysine 0.9 g, methionine 0.6 g, phenylalanine 1.5 g, serine 11.25 g, tyrosine 0.9 g, valine 4.5 g, threonine 6 g, uracil 0.6 g 1) containing 1.3 g) and those growing on an agar medium (2% agar) were selected.
 プラスミドpYE22mで形質転換して得られた株をC-Y株、プラスミドpYE-AOBGL11で形質転換して得られた株をAOBGL11-Y株とした。
 選抜したC-Y株とAOBGL11-Y株を、1Mリン酸カリウムバッファーを1/10量添加したSC-Trp液体培地10mLに1白金耳植菌し、30℃、125rpmで2日間振とう培養した。得られた培養物を遠心分離により、培養上清と菌体に分けた。培養上清は、アミコン(登録商標)ウルトラ-15 50k(メルク)で限界ろ過に濃縮して0.1% CHAPSを含む50mM リン酸ナトリウムバッファー(pH7.0)でバッファー置換し、約1mlの培養上清濃縮液を得た。
 菌体は、50mMリン酸ナトリウムバッファー(pH7.0)、0.1%CHAPS溶液 1mlに懸濁して、ガラスビーズにて菌体を破砕し、遠心分離して得られた上清を菌体破砕液とした。
 培養上清濃縮液または菌体破砕液を20μlとり、2% X‐β‐Glc/DMF溶液を1μl添加し、室温で5分間反応させたところ、AOBGL11-Y株由来の菌体破砕液のみ青色を呈し、X-β-Glc活性を有することが示唆された。
The strain obtained by transformation with plasmid pYE22m was designated as CY strain, and the strain obtained by transformation with plasmid pYE-AOBGL11 was designated as AOBGL11-Y strain.
The selected CY strain and AOBGL11-Y strain were inoculated with 1 platinum ear in 10 mL of SC-Trp liquid medium supplemented with 1/10 volume of 1M potassium phosphate buffer, and cultured with shaking at 30 ° C. and 125 rpm for 2 days. . The obtained culture was separated into a culture supernatant and cells by centrifugation. The culture supernatant was concentrated to ultrafiltration with Amicon (registered trademark) Ultra-15 50k (Merck), buffer-substituted with 50 mM sodium phosphate buffer (pH 7.0) containing 0.1% CHAPS, and about 1 ml of culture was obtained. A supernatant concentrate was obtained.
The cells are suspended in 1 ml of 50 mM sodium phosphate buffer (pH 7.0) and 0.1% CHAPS solution. The cells are disrupted with glass beads, and the supernatant obtained by centrifugation is disrupted. Liquid.
Take 20 μl of the culture supernatant concentrate or cell disruption solution, add 1 μl of 2% X-β-Glc / DMF solution and react at room temperature for 5 minutes. Only the cell disruption solution derived from AOBGL11-Y strain is blue. And was suggested to have X-β-Glc activity.
pNP-β-Glc活性測定
 pNP-β-Glcの分解活性を検討した。粗酵素液10μL、0.2M リン酸ナトリウムバッファー(pH7.0)50μL、20mM pNP-β-Glc水溶液 50μL、水を加えてトータル200μLとし、37℃で反応させた。なお、BGL11-1粗酵素液は活性が高かったため、粗酵素液を0.1% CHAPSを含む50mM リン酸ナトリウムバッファー(pH7.0)バッファーで100倍に希釈したものを用いた。pNP-β-Glc が加水分解して遊離したp-ニトロフェノール(pNP)に基づく1分間あたりの405nmの吸光度変化(Δ405)は、AOBGL11-Y粗酵素液で0.068、C-Y粗酵素液で0.000であった。
Measurement of pNP-β-Glc activity The degradation activity of pNP-β-Glc was examined. 10 μL of the crude enzyme solution, 50 μL of 0.2 M sodium phosphate buffer (pH 7.0), 50 μL of 20 mM pNP-β-Glc aqueous solution and water were added to make a total of 200 μL, followed by reaction at 37 ° C. Since the BGL11-1 crude enzyme solution had high activity, the crude enzyme solution diluted 100-fold with 50 mM sodium phosphate buffer (pH 7.0) containing 0.1% CHAPS was used. The absorbance change at 405 nm per minute (Δ405) based on p-nitrophenol (pNP) released by hydrolysis of pNP-β-Glc was 0.068 in the AOBGL11-Y crude enzyme solution, and CY crude enzyme. The liquid was 0.000.
[実施例6]
麹菌で生産したAOBGL11pのモグロール配糖体加水分解活性
 基質としてはモグロシドVを用いた。モグロシドVを50μg/mL、50mMリン酸ナトリウムバッファー(pH7.0)、上記BGL11-1粗酵素液またはその希釈液20μLで、全量100μLとし、37℃で、1時間反応させた。コントロールとして、上記C-1粗酵素液も同様に反応させた。反応液を、メタノールで洗浄し水で平衡化したSepPakC18 500mg(Waters)に供した。40%メタノールで洗浄後、80%メタノールで溶出し、スピードバックで乾固した。100μLの水に溶解し、HPLCに供した。
[Example 6]
Mogrol glycoside hydrolysis activity of AOBGL11p produced by Aspergillus mogroside V was used as a substrate. Mogroside V was 50 μg / mL, 50 mM sodium phosphate buffer (pH 7.0), the above BGL11-1 crude enzyme solution or its diluted solution (20 μL) to a total volume of 100 μL, and reacted at 37 ° C. for 1 hour. As a control, the above C-1 crude enzyme solution was reacted in the same manner. The reaction solution was subjected to SepPakC18 500 mg (Waters) washed with methanol and equilibrated with water. After washing with 40% methanol, elution was performed with 80% methanol, followed by drying at a speed bag. Dissolved in 100 μL of water and subjected to HPLC.
HPLCの分析条件は以下の通りである。
カラム:コスモシール5C18-AR-II 4.6mmI.D.x250mm(ナカライテスク)
移動相:A;アセトニトリル、B;水
B conc.90%→30% 60分 linear gradient
流速:1ml/分
温度:40℃
検出:UV 203nm
The analysis conditions of HPLC are as follows.
Column: Cosmo Seal 5C 18 -AR-II 4.6 mmI. D. x250mm (Nacalai Tesque)
Mobile phase: A; acetonitrile, B; water B conc. 90% → 30% 60 minutes linear gradient
Flow rate: 1 ml / min Temperature: 40 ° C
Detection: UV 203nm
 結果を図4に示す。 The results are shown in FIG.
 100倍希釈したBGL11-1粗酵素液と反応させた場合、基質のモグロシドVの一部が加水分解され、4糖のモグロール配糖体が生成している。この4糖のモグロール配糖体は、保持時間からモグロシドVのモグロール3位に付加されたゲンチオビオースのβ-1,6結合が加水分解されたシアメノシドIであると考えられた。
 10倍希釈した酵素液と反応させた場合は、さらに加水分解が進み、4糖、3糖(保持時間よりモグロシドIIIE)、2糖のモグロール配糖体が生成した。
 さらに、酵素液を希釈せずに反応させた場合には、基質として添加したモグロシドVをはじめ配糖体は検出されず、アグリコンであるモグロールが検出された。
 すなわち、BGL11-1粗酵素液によるモグロシドVの加水分解反応は、グルコースが1つずつ順番に切断され、最終的にアグリコンであるモグロールにまで加水分解する様式で進行することが明らかになった。また、酵素液の濃度を調整することにより、モグロール配糖体の加水分解の進行を制御することが可能であることが示される。また、C-1粗酵素液とモグロシドVとの反応の結果は図5に示され、この結果により、C-1粗酵素液はモグロシドVの加水分解を進行させないことが示される。
[実施例7]
When reacted with a 100-fold diluted BGL11-1 crude enzyme solution, a portion of the substrate mogroside V is hydrolyzed to produce a tetrasaccharide mogrol glycoside. From the retention time, this tetrasaccharide mogrol glycoside was considered to be siamenoside I in which the β-1,6 bond of gentiobiose added to the 3-position of mogrol V was hydrolyzed.
In the case of reacting with an enzyme solution diluted 10 times, hydrolysis further progressed, and tetrasaccharide, trisaccharide (mogroside IIIE from the retention time) and disaccharide mogrol glycoside were produced.
Further, when the enzyme solution was reacted without diluting, no glycoside including mogroside V added as a substrate was detected, and mogrol which was an aglycon was detected.
That is, it has been clarified that the hydrolysis reaction of mogroside V by the BGL11-1 crude enzyme solution proceeds in such a manner that glucose is cleaved one by one and finally hydrolyzed to aglycone, mogrol. Moreover, it is shown that the progress of hydrolysis of the mogrol glycoside can be controlled by adjusting the concentration of the enzyme solution. Further, the result of the reaction between the C-1 crude enzyme solution and mogroside V is shown in FIG. 5, and this result shows that the C-1 crude enzyme solution does not advance hydrolysis of mogroside V.
[Example 7]
酵母で生産したAOBGL11pによるモグロール配糖体の加水分解活性
 C-Y株とAOBGL11-Y株の菌体破砕液が有するモグロール配糖体の加水分解活性を試験した。
 基質 50μg/ml、酵素液 20μl、 50mMリン酸ナトリウムバッファー(pH6.0)を混合して、全量を100μlとし、37℃で1時間反応させた。反応液を精製した後、HPLC分析に供した。なお、反応液の精製方法、HPLCの条件は上述のとおりである。
Hydrolysis activity of mogrol glycosides by AOBGL11p produced in yeast The hydrolysis activity of mogrol glycosides in the cell disruption liquids of CY and AOBGL11-Y strains was tested.
Substrate 50 μg / ml, enzyme solution 20 μl, 50 mM sodium phosphate buffer (pH 6.0) were mixed to make a total volume of 100 μl, and reacted at 37 ° C. for 1 hour. The reaction solution was purified and subjected to HPLC analysis. The purification method of the reaction solution and the HPLC conditions are as described above.
 C-Y株由来の菌体破砕液で反応した場合、いずれのモグロール配糖体でも生成物を検出することはできなかった。一方、AOBGL11-Y株由来の菌体破砕液に基質としてモグロシドVを用いた場合、生成物として、シアメノシドI、モグロシドIIIE、モグロール二糖配糖体、モグロールが生成する。このように、AOBGL11は酵母で発現させた場合にも麹菌で発現させた場合と同等の活性を示すことがわかった。 When the reaction was carried out with a cell disruption solution derived from the CY strain, the product could not be detected with any of the mogrol glycosides. On the other hand, when mogroside V is used as a substrate in the cell disruption solution derived from the AOBGL11-Y strain, siamenoside I, mogroside IIIE, mogrol disaccharide glycoside, and mogrol are produced as products. Thus, it was found that AOBGL11 shows the same activity when expressed in yeast as in the case of expressing it in Aspergillus.
 本願発明は、麹菌由来のグルコシドヒドラーゼであるAOBGL11pを用いて、モグロシドVを加水分解し、モグロールおよび/またはモグロール配糖体を生産する方法を提供する。 The present invention provides a method for producing mogrol and / or mogrol glycoside by hydrolyzing mogroside V using AOBGL11p which is a glucoside hydrolase derived from Aspergillus.

Claims (15)

  1.  以下の(a)~(c)からなる群から選択されるタンパク質と、モグロール配糖体を反応させて、モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する工程を含む、モグロールおよび/またはモグロール配糖体の製造方法。
    (a)配列番号2のアミノ酸配列からなるタンパク質;
    (b)配列番号2のアミノ酸配列において、1~83個のアミノ酸が欠失、置換、挿入、および/または付加されたアミノ酸配列からなり、かつモグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質;
    (c)配列番号2のアミノ酸配列に対して、90%以上の配列同一性を有するアミノ酸配列を有し、かつ前記モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質
    A step of reacting a protein selected from the group consisting of the following (a) to (c) with a mogrol glycoside to hydrolyze at least one glucoside bond of the mogrol glycoside, and / or A method for producing mogrol glycoside.
    (A) a protein comprising the amino acid sequence of SEQ ID NO: 2;
    (B) The amino acid sequence of SEQ ID NO: 2 consists of an amino acid sequence in which 1 to 83 amino acids are deleted, substituted, inserted and / or added, and hydrolyzes at least one glucoside bond of the mogrol glycoside. A protein having the activity of:
    (C) a protein having an amino acid sequence having 90% or more sequence identity with respect to the amino acid sequence of SEQ ID NO: 2 and having an activity of hydrolyzing at least one glucoside bond of the mogrol glycoside
  2.  請求項1の製造方法において、タンパク質と反応させるモグロール配糖体が、モグロシドV、モグロシドIV、シアメノシドI、11-オキソモグロシド、モグロシドには、モグロシドI、モグロシドIVA、モグロシドIII、モグロシドIIIA、モグロシドIIIA、モグロシドIIIE、モグロシドIIA、モグロシドIIA、モグロシドIIA、モグロシドIIB、モグロシドIIE、モグロシドIA、モグロシドIEからなる群より選択される少なくとも1つである、請求項1に記載の方法。 The production method according to claim 1, wherein the mogrol glycoside to be reacted with protein is mogroside V, mogroside IV, siamenoside I, 11-oxomogroside, mogroside includes mogroside I, mogroside IVA, mogroside III, mogroside IIIA 1 , mogroside IIIA 2. The method according to claim 1, which is at least one selected from the group consisting of Mogroside IIIE, Mogroside IIA, Mogroside IIA 1 , Mogroside IIA 2 , Mogroside IIB, Mogroside IIE, Mogroside IA 1 , Mogroside IE 1 .
  3.  前記モグロール配糖体が、モグロシドV、モグロシドIIIE、シアメノシドIからなる群より選択される少なくとも1つである、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the mogrol glycoside is at least one selected from the group consisting of mogroside V, mogroside IIIE, and siamenoside I.
  4.  前記モグロール配糖体がモグロシドVである、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the mogrol glycoside is mogroside V.
  5.  前記少なくとも1つのグルコシド結合が、モグロール3位に付加されたゲンチオビオースのβ-1,6-グルコシド結合、モグロール3位に付加されたグルコースとアグリコンであるモグロールとの間のグルコシド結合、モグロール24位に付加された分岐三糖のβ1,6-グルコシド結合、モグロール24位に付加されたゲンチオビオースのβ-1,6‐グルコシド結合、モグロール24位に付加されたソホロースのβ-1,2-グルコシド結合、および/またはモグロール24位に付加されたグルコースとアグリコンであるモグロールとの間のグルコシド結合のいずれかである、請求項1~4のいずれか一項に記載の方法。 The at least one glucoside bond is a β-1,6-glucoside bond of gentiobiose added at the 3-position of mogrol, a glucoside bond between glucose added at the 3-position of mogrol and mogrol which is an aglycone, and at the 24-position of mogrol. Β1,6-glucoside bond of added branched trisaccharide, β-1,6-glucoside bond of gentiobiose added to position 24 of mogrol, β-1,2-glucoside bond of sophorose added to position 24 of mogrol, The method according to any one of claims 1 to 4, which is any one of glucoside bonds between glucose added to position 24 of mogrol and mogrol which is an aglycone.
  6.  宿主細胞に、以下の(a)~(e)からなる群から選択されるポリヌクレオチドが導入された非ヒト形質転換細胞に由来する酵素剤を、前記モグロール配糖体と接触させて、前記モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する工程を含む、モグロールおよび/またはモグロール配糖体の製造方法。
    (a)配列番号1の塩基配列からなるポリヌクレオチド;
    (b)配列番号2のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
    (c)配列番号2のアミノ酸配列において、1~83個のアミノ酸が欠失、置換、挿入、および/または付加されたアミノ酸配列からなり、かつ前記モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質をコードするポリヌクレオチド;
    (d)配列番号2のアミノ酸配列に対して、90%以上の配列同一性を有するアミノ酸配列を有し、かつ前記モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質をコードするポリヌクレオチド;
    (e)配列番号1の塩基配列からなるポリヌクレオチドと相補的な塩基配列からなるポリヌクレオチドと高ストリンジェントな条件下でハイブリダイズするポリヌクレオチドであって、かつ前記モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質をコードするポリヌクレオチド
    An enzyme agent derived from a non-human transformed cell into which a polynucleotide selected from the group consisting of the following (a) to (e) is introduced into a host cell is contacted with the mogrol glycoside, and the mogrol A method for producing mogrol and / or mogrol glycoside, comprising hydrolyzing at least one glucoside bond of the glycoside.
    (A) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1;
    (B) a polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2;
    (C) The amino acid sequence of SEQ ID NO: 2 consists of an amino acid sequence in which 1 to 83 amino acids are deleted, substituted, inserted, and / or added, and at least one glucoside bond of the mogrol glycoside is hydrolyzed. A polynucleotide encoding a protein having an activity of degrading;
    (D) encoding a protein having an amino acid sequence having a sequence identity of 90% or more with respect to the amino acid sequence of SEQ ID NO: 2 and having an activity of hydrolyzing at least one glucoside bond of the mogrol glycoside. A polynucleotide to:
    (E) a polynucleotide that hybridizes under high stringency conditions with a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, and at least one of the mogrol glycosides Polynucleotide encoding protein having activity of hydrolyzing glucoside bond
  7.  前記ポリヌクレオチドが、発現ベクターに挿入されたものである、請求項6に記載の方法。 The method according to claim 6, wherein the polynucleotide is inserted into an expression vector.
  8.  前記形質転換細胞が、形質転換麹菌、形質転換酵母、形質転換細菌または形質転換植物である、請求項6または7に記載の方法。 The method according to claim 6 or 7, wherein the transformed cell is a transformed gonococcus, a transformed yeast, a transformed bacterium, or a transformed plant.
  9.  前記酵素剤と接触させるモグロール配糖体が、モグロシドV、モグロシドIV、シアメノシドI、11-オキソモグロシド、モグロシドには、モグロシドI、モグロシドIVA、モグロシドIII、モグロシドIIIA、モグロシドIIIA、モグロシドIIIE、モグロシドIIA、モグロシドIIA、モグロシドIIA、モグロシドIIB、モグロシドIIE、モグロシドIA、モグロシドIEからなる群より選択される少なくとも1つである、請求項6~8のいずれか一項に記載の方法。 Moguroru glycoside contacting said enzyme agent, mogroside V, mogroside IV, siamenoside I, 11- Okisomoguroshido, the mogroside, mogroside I, mogroside IVA, mogroside III, mogroside IIIA 1, mogroside IIIA 2, mogroside IIIE, mogroside The method according to any one of claims 6 to 8, which is at least one selected from the group consisting of IIA, mogroside IIA 1 , mogroside IIA 2 , mogroside IIB, mogroside IIE, mogroside IA 1 , mogroside IE 1 .
  10.  前記モグロール配糖体が、モグロシドV、モグロシドIIIE、シアメノシドIからなる群より選択される少なくとも1つである、請求項6~9のいずれか一項に記載の方法。 The method according to any one of claims 6 to 9, wherein the mogrol glycoside is at least one selected from the group consisting of mogroside V, mogroside IIIE, and siamenoside I.
  11.  前記少なくとも1つのグルコシド結合が、モグロール3位に付加されたゲンチオビオースのβ-1,6-グルコシド結合、モグロール3位に付加されたグルコースとアグリコンであるモグロールとの間のグルコシド結合、モグロール24位に付加された分岐三糖のβ1,6-グルコシド結合、モグロール24位に付加されたゲンチオビオースのβ-1,6-グルコシド結合、モグロール24位に付加されたソホロースのβ-1,2-グルコシド結合、および/またはモグロール24位に付加されたグルコースとアグリコンであるモグロールとの間のグルコシド結合のいずれかである、請求項6~10のいずれか一項に記載の方法。 The at least one glucoside bond is a β-1,6-glucoside bond of gentiobiose added at the 3-position of mogrol, a glucoside bond between glucose added at the 3-position of mogrol and mogrol which is an aglycone, and at the 24-position of mogrol. Β1,6-glucoside bond of added branched trisaccharide, β-1,6-glucoside bond of gentiobiose added to position 24 of mogrol, β-1,2-glucoside bond of sophorose added to position 24 of mogrol, The method according to any one of claims 6 to 10, which is any one of glucoside bonds between glucose added at position 24 and / or mogrol which is an aglycone.
  12.  以下の(a)~(e)からなる群から選択されるポリヌクレオチドが導入された非ヒト形質転換体を培養することを含む、モグロールおよび/またはモグロール配糖体の生産方法。
    (a)配列番号1の塩基配列からなるポリヌクレオチド;
    (b)配列番号2のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
    (c)配列番号2のアミノ酸配列において、1~83個のアミノ酸が欠失、置換、挿入、および/または付加されたアミノ酸配列からなり、かつ前記モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質をコードするポリヌクレオチド;
    (d)配列番号2のアミノ酸配列に対して、90%以上の配列同一性を有するアミノ酸配列を有し、かつ前記モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質をコードするポリヌクレオチド;
    (e)配列番号1の塩基配列からなるポリヌクレオチドと相補的な塩基配列からなるポリヌクレオチドと高ストリンジェントな条件下でハイブリダイズするポリヌクレオチドであって、かつ前記モグロール配糖体の少なくとも1つのグルコシド結合を加水分解する活性を有するタンパク質をコードするポリヌクレオチド
    A method for producing mogrol and / or mogrol glycoside, comprising culturing a non-human transformant into which a polynucleotide selected from the group consisting of the following (a) to (e) is introduced.
    (A) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1;
    (B) a polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2;
    (C) The amino acid sequence of SEQ ID NO: 2 consists of an amino acid sequence in which 1 to 83 amino acids are deleted, substituted, inserted, and / or added, and at least one glucoside bond of the mogrol glycoside is hydrolyzed. A polynucleotide encoding a protein having an activity of degrading;
    (D) encoding a protein having an amino acid sequence having a sequence identity of 90% or more with respect to the amino acid sequence of SEQ ID NO: 2 and having an activity of hydrolyzing at least one glucoside bond of the mogrol glycoside. A polynucleotide to:
    (E) a polynucleotide that hybridizes under high stringency conditions with a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, and at least one of the mogrol glycosides Polynucleotide encoding protein having activity of hydrolyzing glucoside bond
  13.  前記ポリヌクレオチドが、発現ベクターに挿入されたものである、請求項10に記載の方法。 The method according to claim 10, wherein the polynucleotide is inserted into an expression vector.
  14.  前記形質転換体が、形質転換麹菌、形質転換酵母、形質転換細菌または形質転換植物である、請求項12または13に記載の方法。 The method according to claim 12 or 13, wherein the transformant is a transformed gonococcus, a transformed yeast, a transformed bacterium, or a transformed plant.
  15.  前記少なくとも1つのグルコシド結合が、モグロール3位に付加されたゲンチオビオースのβ‐1,6‐グルコシド結合、モグロール3位に付加されたグルコースとアグリコンであるモグロールとの間のグルコシド結合、モグロール24位に付加された分岐三糖のβ-1,6-グルコシド結合、モグロール24位に付加されたゲンチオビオースのβ-1,6-グルコシド結合、モグロール24位に付加されたソホロースのβ-1,2-グルコシド結合、および/またはモグロール24位に付加されたグルコースとアグリコンであるモグロールとの間のグルコシド結合のいずれかである、請求項12~14のいずれか一項に記載の方法。
     
    The at least one glucoside bond is a β-1,6-glucoside bond of gentiobiose added at the 3-position of mogrol, a glucoside bond between glucose added at the 3-position of mogrol and mogrol which is an aglycone, at the 24-position of mogrol Β-1,6-glucoside bond of added branched trisaccharide, β-1,6-glucoside bond of gentiobiose added at position 24 of mogrol, β-1,2-glucoside of sophorose added at position 24 of mogrol The method according to any one of claims 12 to 14, which is either a bond and / or a glucoside bond between glucose added to position 24 of mogrol and mogrol which is an aglycon.
PCT/JP2017/025963 2016-07-19 2017-07-18 Method for producing mogrol or mogrol glycoside WO2018016483A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018528551A JP6845244B2 (en) 2016-07-19 2017-07-18 Production method of mogrol or mogrol glycoside
US16/318,268 US11008600B2 (en) 2016-07-19 2017-07-18 Method for producing mogrol or mogrol glycoside
ES17830999T ES2844427T3 (en) 2016-07-19 2017-07-18 Method for producing mogrol or mogrol glycoside
CN201780044407.6A CN109477126B (en) 2016-07-19 2017-07-18 Production method of mogrol or mogrol glycoside
EP17830999.3A EP3502265B1 (en) 2016-07-19 2017-07-18 Method for producing mogrol or mogrol glycoside

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-141685 2016-07-19
JP2016141685 2016-07-19

Publications (1)

Publication Number Publication Date
WO2018016483A1 true WO2018016483A1 (en) 2018-01-25

Family

ID=60992562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025963 WO2018016483A1 (en) 2016-07-19 2017-07-18 Method for producing mogrol or mogrol glycoside

Country Status (6)

Country Link
US (1) US11008600B2 (en)
EP (1) EP3502265B1 (en)
JP (1) JP6845244B2 (en)
CN (1) CN109477126B (en)
ES (1) ES2844427T3 (en)
WO (1) WO2018016483A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112334012A (en) * 2018-04-23 2021-02-05 可口可乐公司 Novel mogroside, method for obtaining novel mogroside and application
US11060124B2 (en) 2017-05-03 2021-07-13 Firmenich Incorporated Methods for making high intensity sweeteners
CN113584110A (en) * 2021-08-11 2021-11-02 河北维达康生物科技有限公司 Construction and application of engineering strain for biosynthesizing mogroside V by taking mogrol as substrate
US11357246B2 (en) 2015-10-29 2022-06-14 Firmenich Incorporated High intensity sweeteners
CN114854722A (en) * 2022-05-11 2022-08-05 成都普睿法药物研发有限公司 Candida guilliermondii exo beta-1, 3-glucanase, mutant and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110669094B (en) * 2019-10-14 2021-12-21 上海交通大学 New mogroside and its prepn

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046768A2 (en) * 2009-10-12 2011-04-21 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Masking bitter flavors
WO2014150127A1 (en) * 2013-03-15 2014-09-25 Tate & Lyle Ingredients Americas, LLC Redistribution of mogrol glycoside content
JP2014533518A (en) * 2011-11-23 2014-12-15 エヴォルヴァ エスアー.Evolva Sa. Methods and materials for enzymatic synthesis of mogroside compounds
WO2016117549A1 (en) * 2015-01-20 2016-07-28 サントリーホールディングス株式会社 Method for preparing mogroside

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2528248C2 (en) * 2010-02-01 2014-09-10 Сантори Холдингз Лимитед Polynucleotide, coding acyl-coa-synthetase homologue and its application
CN102477455B (en) * 2010-11-26 2014-03-26 成都普瑞法科技开发有限公司 Method for preparing mogroside IV
WO2014081884A1 (en) * 2012-11-20 2014-05-30 Pronutria, Inc. Engineered secreted proteins and methods
US10676708B2 (en) 2014-09-30 2020-06-09 Rna Inc. Method for preparing microbial preparation and microbial preparation produced by the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046768A2 (en) * 2009-10-12 2011-04-21 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Masking bitter flavors
JP2014533518A (en) * 2011-11-23 2014-12-15 エヴォルヴァ エスアー.Evolva Sa. Methods and materials for enzymatic synthesis of mogroside compounds
WO2014150127A1 (en) * 2013-03-15 2014-09-25 Tate & Lyle Ingredients Americas, LLC Redistribution of mogrol glycoside content
WO2016117549A1 (en) * 2015-01-20 2016-07-28 サントリーホールディングス株式会社 Method for preparing mogroside

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE UniProtKB 6 July 2016 (2016-07-06), XP055561843, Database accession no. Q2U8Y5 *
KAYA, M. ET AL.: "Isoflavone aglycones production from isoflavone glycosides by display of beta-glucosidase from Aspergillus oryzae on yeast cell surface", APPL. MICROBIOL. BIOTECHNOL., vol. 79, 2008, pages 51 - 60, XP055561845 *
See also references of EP3502265A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11357246B2 (en) 2015-10-29 2022-06-14 Firmenich Incorporated High intensity sweeteners
US11758933B2 (en) 2015-10-29 2023-09-19 Firmenich Incorporated High intensity sweeteners
US11060124B2 (en) 2017-05-03 2021-07-13 Firmenich Incorporated Methods for making high intensity sweeteners
CN112334012A (en) * 2018-04-23 2021-02-05 可口可乐公司 Novel mogroside, method for obtaining novel mogroside and application
CN113584110A (en) * 2021-08-11 2021-11-02 河北维达康生物科技有限公司 Construction and application of engineering strain for biosynthesizing mogroside V by taking mogrol as substrate
CN114854722A (en) * 2022-05-11 2022-08-05 成都普睿法药物研发有限公司 Candida guilliermondii exo beta-1, 3-glucanase, mutant and application thereof
CN114854722B (en) * 2022-05-11 2024-01-09 成都普睿法药物研发有限公司 Off-cut beta-1, 3-glucanase of candida mongolica and mutant and application thereof

Also Published As

Publication number Publication date
US20190284598A1 (en) 2019-09-19
JP6845244B2 (en) 2021-03-17
CN109477126A (en) 2019-03-15
CN109477126B (en) 2023-06-20
EP3502265B1 (en) 2020-12-02
ES2844427T3 (en) 2021-07-22
EP3502265A4 (en) 2020-03-25
JPWO2018016483A1 (en) 2019-06-20
EP3502265A1 (en) 2019-06-26
US11008600B2 (en) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2018016483A1 (en) Method for producing mogrol or mogrol glycoside
CN102066567A (en) Compositions and methods for producing fermentable carbohydrates in plants
US10988790B2 (en) Method for producing steviol and steviol glycoside by using AOBGL11 homolog
US10626430B2 (en) Method for preparing mogroside having no β-1,6-glucoside bond
US11268118B2 (en) Method for producing steviol and steviol glycoside using AOBGL1 homolog
CN108350470B (en) Steviol glycoside Using AOBGL3 homolog and method for producing steviol
TWI795369B (en) Production method for sesaminol or sesaminol glycoside
KR20090111119A (en) Composition for producing ginsenoside compound K and preparation method of ginsenoside compound K using thermostable beta-galactosidase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830999

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018528551

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017830999

Country of ref document: EP

Effective date: 20190219