CN113584110A - Construction and application of engineering strain for biosynthesizing mogroside V by taking mogrol as substrate - Google Patents
Construction and application of engineering strain for biosynthesizing mogroside V by taking mogrol as substrate Download PDFInfo
- Publication number
- CN113584110A CN113584110A CN202110919424.8A CN202110919424A CN113584110A CN 113584110 A CN113584110 A CN 113584110A CN 202110919424 A CN202110919424 A CN 202110919424A CN 113584110 A CN113584110 A CN 113584110A
- Authority
- CN
- China
- Prior art keywords
- gene
- udp
- mogroside
- glucose pyrophosphorylase
- ugt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- GHBNZZJYBXQAHG-KUVSNLSMSA-N (2r,3r,4s,5s,6r)-2-[[(2r,3s,4s,5r,6r)-6-[[(3s,8s,9r,10r,11r,13r,14s,17r)-17-[(2r,5r)-5-[(2s,3r,4s,5s,6r)-4,5-dihydroxy-3-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H](O)[C@@H]1O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O[C@H](CC[C@@H](C)[C@@H]1[C@]2(C[C@@H](O)[C@@]3(C)[C@H]4C(C([C@@H](O[C@H]5[C@@H]([C@@H](O)[C@H](O)[C@@H](CO[C@H]6[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O6)O)O5)O)CC4)(C)C)=CC[C@H]3[C@]2(C)CC1)C)C(C)(C)O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O GHBNZZJYBXQAHG-KUVSNLSMSA-N 0.000 title claims abstract description 39
- TVJXHJAWHUMLLG-UHFFFAOYSA-N mogroside V Natural products CC(CCC(OC1OC(COC2OC(CO)C(O)C(O)C2OC3OC(CO)C(O)C(O)C3O)C(O)C(O)C1O)C(C)(C)O)C4CCC5(C)C6CC=C7C(CCC(OC8OC(COC9OC(CO)C(O)C(O)C9O)C(O)C(O)C8O)C7(C)C)C6(C)C(O)CC45C TVJXHJAWHUMLLG-UHFFFAOYSA-N 0.000 title claims abstract description 38
- JLYBBRAAICDTIS-AYEHCKLZSA-N mogrol Chemical compound C([C@H]1[C@]2(C)CC[C@@H]([C@]2(C[C@@H](O)[C@]11C)C)[C@@H](CC[C@@H](O)C(C)(C)O)C)C=C2[C@H]1CC[C@H](O)C2(C)C JLYBBRAAICDTIS-AYEHCKLZSA-N 0.000 title claims abstract description 24
- JLYBBRAAICDTIS-UHFFFAOYSA-N mogrol Natural products CC12C(O)CC3(C)C(C(CCC(O)C(C)(C)O)C)CCC3(C)C1CC=C1C2CCC(O)C1(C)C JLYBBRAAICDTIS-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 239000000758 substrate Substances 0.000 title claims abstract description 20
- 230000003570 biosynthesizing effect Effects 0.000 title claims abstract description 8
- 238000010276 construction Methods 0.000 title abstract description 14
- 101710167959 Putative UTP-glucose-1-phosphate uridylyltransferase Proteins 0.000 claims abstract description 28
- 241000894006 Bacteria Species 0.000 claims abstract description 27
- 108700023372 Glycosyltransferases Proteins 0.000 claims abstract description 24
- 108090000790 Enzymes Proteins 0.000 claims abstract description 22
- 102000004190 Enzymes Human genes 0.000 claims abstract description 20
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 17
- 238000010353 genetic engineering Methods 0.000 claims abstract description 7
- 102000048175 UTP-glucose-1-phosphate uridylyltransferases Human genes 0.000 claims abstract description 5
- 239000012634 fragment Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 17
- 230000003321 amplification Effects 0.000 claims description 15
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 15
- 241000588724 Escherichia coli Species 0.000 claims description 13
- 108010008924 uridine diphosphatase Proteins 0.000 claims description 11
- 102100029724 Ectonucleoside triphosphate diphosphohydrolase 4 Human genes 0.000 claims description 10
- 238000012408 PCR amplification Methods 0.000 claims description 10
- HSCJRCZFDFQWRP-JZMIEXBBSA-N UDP-alpha-D-glucose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-JZMIEXBBSA-N 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 6
- 102000004169 proteins and genes Human genes 0.000 claims description 6
- 239000006228 supernatant Substances 0.000 claims description 6
- 230000002194 synthesizing effect Effects 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 239000012880 LB liquid culture medium Substances 0.000 claims description 4
- 238000012258 culturing Methods 0.000 claims description 4
- 230000001939 inductive effect Effects 0.000 claims description 4
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000005119 centrifugation Methods 0.000 claims description 3
- 230000006698 induction Effects 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 230000008014 freezing Effects 0.000 claims description 2
- 238000007710 freezing Methods 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 230000001131 transforming effect Effects 0.000 claims description 2
- 235000011171 Thladiantha grosvenorii Nutrition 0.000 abstract description 19
- 230000015572 biosynthetic process Effects 0.000 abstract description 10
- 230000014509 gene expression Effects 0.000 abstract description 9
- 229930182470 glycoside Natural products 0.000 abstract description 8
- 150000002338 glycosides Chemical class 0.000 abstract description 8
- 238000003786 synthesis reaction Methods 0.000 abstract description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 4
- 238000005215 recombination Methods 0.000 abstract description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 abstract description 2
- 239000008103 glucose Substances 0.000 abstract description 2
- 230000002018 overexpression Effects 0.000 abstract description 2
- 241000894007 species Species 0.000 abstract description 2
- 241001409321 Siraitia grosvenorii Species 0.000 abstract 3
- 244000185386 Thladiantha grosvenorii Species 0.000 description 16
- 239000000243 solution Substances 0.000 description 15
- 239000013612 plasmid Substances 0.000 description 13
- 239000000047 product Substances 0.000 description 8
- 108020004414 DNA Proteins 0.000 description 7
- 102000051366 Glycosyltransferases Human genes 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 235000003599 food sweetener Nutrition 0.000 description 6
- 239000003765 sweetening agent Substances 0.000 description 6
- 229930006000 Sucrose Natural products 0.000 description 5
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 5
- HSCJRCZFDFQWRP-UHFFFAOYSA-N Uridindiphosphoglukose Natural products OC1C(O)C(O)C(CO)OC1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-UHFFFAOYSA-N 0.000 description 5
- 229930182478 glucoside Natural products 0.000 description 5
- 150000008131 glucosides Chemical class 0.000 description 5
- 229930189775 mogroside Natural products 0.000 description 5
- 229960004793 sucrose Drugs 0.000 description 5
- 241000219195 Arabidopsis thaliana Species 0.000 description 4
- 101710204244 Processive diacylglycerol beta-glucosyltransferase Proteins 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000006206 glycosylation reaction Methods 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 241000255601 Drosophila melanogaster Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 3
- NUHSROFQTUXZQQ-UHFFFAOYSA-N isopentenyl diphosphate Chemical compound CC(=C)CCO[P@](O)(=O)OP(O)(O)=O NUHSROFQTUXZQQ-UHFFFAOYSA-N 0.000 description 3
- 150000007523 nucleic acids Chemical group 0.000 description 3
- CBIDRCWHNCKSTO-UHFFFAOYSA-N prenyl diphosphate Chemical compound CC(C)=CCO[P@](O)(=O)OP(O)(O)=O CBIDRCWHNCKSTO-UHFFFAOYSA-N 0.000 description 3
- 235000019605 sweet taste sensations Nutrition 0.000 description 3
- WRPAFPPCKSYACJ-ZBYJYCAASA-N (2r,3r,4s,5s,6r)-2-[[(2r,3s,4s,5r,6r)-6-[[(3s,8r,9r,10s,11r,13r,14s,17r)-17-[(5r)-5-[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-6-hydroxy-6-methylheptan-2-yl]-11-hydrox Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@H](CCC(C)[C@@H]1[C@]2(C[C@@H](O)[C@@]3(C)[C@@H]4C(C([C@@H](O[C@H]5[C@@H]([C@@H](O)[C@H](O)[C@@H](CO[C@H]6[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O6)O)O5)O)CC4)(C)C)=CC[C@@H]3[C@]2(C)CC1)C)C(C)(C)O)[C@H]1O[C@@H](CO)[C@H](O)[C@@H](O)[C@@H]1O WRPAFPPCKSYACJ-ZBYJYCAASA-N 0.000 description 2
- KYVIPFHNYCKOMQ-YMRJDYICSA-N (2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-[[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-[(3r,6r)-2-hydroxy-6-[(3s,8s,9r,10r,11r,13r,14s,17r)-11-hydroxy-4,4,9,13,14-pentamethyl-3-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,3,7,8,10,11,12,15,16,1 Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H](O)[C@@H]1O)O)O[C@H](CC[C@@H](C)[C@@H]1[C@]2(C[C@@H](O)[C@@]3(C)[C@H]4C(C([C@@H](O[C@H]5[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O5)O)CC4)(C)C)=CC[C@H]3[C@]2(C)CC1)C)C(C)(C)O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O KYVIPFHNYCKOMQ-YMRJDYICSA-N 0.000 description 2
- CGGWHBLPUUKEJC-HRTKKJOOSA-N (3S,8R,9R,10R,13R,14S,17R)-17-[(2R,5R)-5-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-3-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-6-hydroxy-6-methylheptan-2-yl]-4,4,9,13,14-pentamethyl-3-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-1,2,3,7,8,10,12,15,16,17-decahydrocyclopenta[a]phenanthren-11-one Chemical compound C[C@H](CC[C@@H](O[C@@H]1O[C@H](CO[C@@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@H]2O)[C@@H](O)[C@H](O)[C@H]1O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O)C(C)(C)O)[C@H]1CC[C@@]2(C)[C@H]3CC=C4[C@@H](CC[C@H](O[C@@H]5O[C@H](CO[C@@H]6O[C@H](CO)[C@@H](O)[C@H](O)[C@H]6O)[C@@H](O)[C@H](O)[C@H]5O)C4(C)C)[C@]3(C)C(=O)C[C@]12C CGGWHBLPUUKEJC-HRTKKJOOSA-N 0.000 description 2
- KJTLQQUUPVSXIM-ZCFIWIBFSA-N (R)-mevalonic acid Chemical compound OCC[C@](O)(C)CC(O)=O KJTLQQUUPVSXIM-ZCFIWIBFSA-N 0.000 description 2
- CGGWHBLPUUKEJC-UHFFFAOYSA-N 11-oxomogroside V Natural products C1CC2(C)C3CC=C(C(C(OC4C(C(O)C(O)C(COC5C(C(O)C(O)C(CO)O5)O)O4)O)CC4)(C)C)C4C3(C)C(=O)CC2(C)C1C(C)CCC(C(C)(C)O)OC(C(C(O)C1O)OC2C(C(O)C(O)C(CO)O2)O)OC1COC1OC(CO)C(O)C(O)C1O CGGWHBLPUUKEJC-UHFFFAOYSA-N 0.000 description 2
- QATISCJMIITVAB-UHFFFAOYSA-N 2-[[17-[5-[4,5-dihydroxy-6-(hydroxymethyl)-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-6-hydroxy-6-methylheptan-2-yl]-11-hydroxy-4,4,9,13,14-pentamethyl-2,3,7,8,10,11,12,15,16,17-decahydro-1h-cyclopenta[a]phenanthren-3-yl]oxy]-6-(hydro Chemical compound C1CC2(C)C3CC=C(C(C(OC4C(C(O)C(O)C(CO)O4)O)CC4)(C)C)C4C3(C)C(O)CC2(C)C1C(C)CCC(C(C)(C)O)OC1OC(CO)C(O)C(O)C1OC1OC(CO)C(O)C(O)C1O QATISCJMIITVAB-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 108700010070 Codon Usage Proteins 0.000 description 2
- 108030005251 Cucurbitadienol synthases Proteins 0.000 description 2
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 2
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 2
- KJTLQQUUPVSXIM-UHFFFAOYSA-N DL-mevalonic acid Natural products OCCC(O)(C)CC(O)=O KJTLQQUUPVSXIM-UHFFFAOYSA-N 0.000 description 2
- 102000005486 Epoxide hydrolase Human genes 0.000 description 2
- 108020002908 Epoxide hydrolase Proteins 0.000 description 2
- 102100035111 Farnesyl pyrophosphate synthase Human genes 0.000 description 2
- 101710125754 Farnesyl pyrophosphate synthase Proteins 0.000 description 2
- 108010022535 Farnesyl-Diphosphate Farnesyltransferase Proteins 0.000 description 2
- 244000299507 Gossypium hirsutum Species 0.000 description 2
- WVXIMWMLKSCVTD-JLRHFDOOSA-N Mogroside II-E Chemical compound O([C@H](CC[C@@H](C)[C@@H]1[C@]2(C[C@@H](O)[C@@]3(C)[C@H]4C(C([C@@H](O[C@H]5[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O5)O)CC4)(C)C)=CC[C@H]3[C@]2(C)CC1)C)C(C)(C)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O WVXIMWMLKSCVTD-JLRHFDOOSA-N 0.000 description 2
- KYVIPFHNYCKOMQ-UHFFFAOYSA-N Mogroside III Natural products C1CC2(C)C3CC=C(C(C(OC4C(C(O)C(O)C(CO)O4)O)CC4)(C)C)C4C3(C)C(O)CC2(C)C1C(C)CCC(C(C)(C)O)OC(C(C(O)C1O)O)OC1COC1OC(CO)C(O)C(O)C1O KYVIPFHNYCKOMQ-UHFFFAOYSA-N 0.000 description 2
- 241000218984 Momordica Species 0.000 description 2
- 235000009815 Momordica Nutrition 0.000 description 2
- 244000088415 Raphanus sativus Species 0.000 description 2
- 102100037997 Squalene synthase Human genes 0.000 description 2
- 125000003275 alpha amino acid group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 235000009508 confectionery Nutrition 0.000 description 2
- -1 cucurbitane triterpene glycoside compound Chemical class 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 239000000348 glycosyl donor Substances 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 238000011031 large-scale manufacturing process Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- WVXIMWMLKSCVTD-UHFFFAOYSA-N mogroside II E Natural products C1CC2(C)C3CC=C(C(C(OC4C(C(O)C(O)C(CO)O4)O)CC4)(C)C)C4C3(C)C(O)CC2(C)C1C(C)CCC(C(C)(C)O)OC1OC(CO)C(O)C(O)C1O WVXIMWMLKSCVTD-UHFFFAOYSA-N 0.000 description 2
- 229930191869 mogroside IV Natural products 0.000 description 2
- OKGRRPCHOJYNKX-UHFFFAOYSA-N mogroside IV A Natural products C1CC2(C)C3CC=C(C(C(OC4C(C(O)C(O)C(COC5C(C(O)C(O)C(CO)O5)O)O4)O)CC4)(C)C)C4C3(C)C(O)CC2(C)C1C(C)CCC(C(C)(C)O)OC(C(C(O)C1O)O)OC1COC1OC(CO)C(O)C(O)C1O OKGRRPCHOJYNKX-UHFFFAOYSA-N 0.000 description 2
- WRPAFPPCKSYACJ-UHFFFAOYSA-N mogroside IV E Natural products C1CC2(C)C3CC=C(C(C(OC4C(C(O)C(O)C(COC5C(C(O)C(O)C(CO)O5)O)O4)O)CC4)(C)C)C4C3(C)C(O)CC2(C)C1C(C)CCC(C(C)(C)O)OC1OC(CO)C(O)C(O)C1OC1OC(CO)C(O)C(O)C1O WRPAFPPCKSYACJ-UHFFFAOYSA-N 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 238000012257 pre-denaturation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 235000021147 sweet food Nutrition 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- XJIPREFALCDWRQ-UYQGGQRHSA-N (2r,3r,4s,5s,6r)-2-[[(2r,3s,4s,5r,6s)-3,4-dihydroxy-6-[(3r,6r)-2-hydroxy-6-[(3s,8s,9r,10r,11r,13r,14s,17r)-11-hydroxy-4,4,9,13,14-pentamethyl-3-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,3,7,8,10,11,12,15,16,17-decahydro-1h-cyclop Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H](O)[C@@H]1O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O[C@H](CC[C@@H](C)[C@@H]1[C@]2(C[C@@H](O)[C@@]3(C)[C@H]4C(C([C@@H](O[C@H]5[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O5)O)CC4)(C)C)=CC[C@H]3[C@]2(C)CC1)C)C(C)(C)O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O XJIPREFALCDWRQ-UYQGGQRHSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 241000219104 Cucurbitaceae Species 0.000 description 1
- 101710095468 Cyclase Proteins 0.000 description 1
- 241000255345 Drosophila simulans Species 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 239000004278 EU approved seasoning Substances 0.000 description 1
- GVVPGTZRZFNKDS-YFHOEESVSA-N Geranyl diphosphate Natural products CC(C)=CCC\C(C)=C/COP(O)(=O)OP(O)(O)=O GVVPGTZRZFNKDS-YFHOEESVSA-N 0.000 description 1
- 208000002705 Glucose Intolerance Diseases 0.000 description 1
- 206010018429 Glucose tolerance impaired Diseases 0.000 description 1
- 235000009432 Gossypium hirsutum Nutrition 0.000 description 1
- 208000031226 Hyperlipidaemia Diseases 0.000 description 1
- 206010062717 Increased upper airway secretion Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 208000001145 Metabolic Syndrome Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 241001674048 Phthiraptera Species 0.000 description 1
- 235000019057 Raphanus caudatus Nutrition 0.000 description 1
- 235000011380 Raphanus sativus Nutrition 0.000 description 1
- 235000006140 Raphanus sativus var sativus Nutrition 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 201000000690 abdominal obesity-metabolic syndrome Diseases 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000009402 cross-breeding Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- GVVPGTZRZFNKDS-JXMROGBWSA-N geranyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O GVVPGTZRZFNKDS-JXMROGBWSA-N 0.000 description 1
- 125000003147 glycosyl group Chemical group 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000021096 natural sweeteners Nutrition 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 208000026435 phlegm Diseases 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- XJIPREFALCDWRQ-UHFFFAOYSA-N siamenoside I Natural products C1CC2(C)C3CC=C(C(C(OC4C(C(O)C(O)C(CO)O4)O)CC4)(C)C)C4C3(C)C(O)CC2(C)C1C(C)CCC(C(C)(C)O)OC(C(C(O)C1O)OC2C(C(O)C(O)C(CO)O2)O)OC1COC1OC(CO)C(O)C(O)C1O XJIPREFALCDWRQ-UHFFFAOYSA-N 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P33/00—Preparation of steroids
- C12P33/20—Preparation of steroids containing heterocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1241—Nucleotidyltransferases (2.7.7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/07—Nucleotidyltransferases (2.7.7)
- C12Y207/07009—UTP-glucose-1-phosphate uridylyltransferase (2.7.7.9), i.e. UDP-glucose-pyrophosphorylase
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
The invention relates to construction and application of an engineering strain for biosynthesizing mogroside V by taking mogrol as a substrate. Converting a substrate mogrol by a recombinant cell containing a glycosyltransferase gene or a recombinant cell containing the glycosyltransferase gene and a UDP-glucose pyrophosphorylase gene to obtain the mogroside V, and expressing the glucose glycosyltransferase gene and the UDP-glucose pyrophosphorylase gene by the recombinant cell to produce UGT enzyme and UDP-glucose pyrophosphorylase. According to the invention, exogenous species UGT enzyme gene and UDP-glucose pyrophosphorylase gene are introduced through a gene recombination technology and are transformed into genetic engineering bacteria for expression, a new biosynthesis path of the momordica grosvenori glycoside V is reconstructed, and the momordica grosvenori glycoside V is biosynthesized by taking momordica grosvenori alcohol as a substrate through overexpression of the UGT enzyme gene and the UDP-glucose pyrophosphorylase gene, so that the synthesis yield is high.
Description
Technical Field
The invention belongs to the technical field of biology, and particularly relates to construction and application of an engineering strain for biosynthesis of momordica grosvenori glucoside V by taking momordica grosvenori alcohol as a substrate.
Background
Sweet foods are a kind of living seasonings, and the unique taste of the sweet foods endows the people with endless fun in life. The sweet taste is mainly derived from traditional sweeteners: sucrose. The cane sugar can provide certain calorie while meeting the requirement of human sweet taste. However, the intake of sucrose is strictly controlled in patients with obesity, hyperlipidemia, hyperglycemia, etc. A reduction in sugar intake means a reduction in sweet enjoyment. How to meet the sweet taste requirement while reducing sugar intake? Synthetic sweeteners offer one possibility, however recent studies have indicated that synthetic sweeteners may affect the normal intestinal flora and even cause metabolic syndrome and glucose intolerance. Natural sugar-free sweeteners that combine the safety of natural sugars with the non-caloric benefits of synthetic sweeteners have moved into the human eye and the subject of developing natural sugar-free sweeteners to meet the "need" of human beings for sweetness has clearly attracted a great deal of interest to food practitioners.
The mogroside is a natural sweetener extracted directly from Momordica grosvenori (Siraitiagrosvenonori) of Cucurbitaceae family without chemical synthesis. It contains almost no energy, but has about 300 times the sweetness of sucrose, and is an ideal sucrose substitute. Meanwhile, the mogroside also has the functions of regulating blood sugar, resisting oxidation, relieving cough and eliminating phlegm, protecting liver, relaxing bowel, resisting bacteria and diminishing inflammation and the like. The Mogroside is a cucurbitane triterpene glycoside compound and comprises a plurality of components such as Mogroside I (Mogroside I), Mogroside II E (Mogroside II E), Mogroside III (Mogroside III), Mogroside III E (Mogroside III E), Mogroside IV (Mogroside IV), Mogroside V (Mogroside V), 11-Oxo-Mogroside V (11-Oxo-Mogroside V), Neomogroside (Neomogroside) and Siamenoside I (Simenoside I), wherein the Mogroside V (M5) is a main sweet component, and has the advantages of high sweetness, low energy, safety, no toxicity and the like, and has a wide application prospect.
However, the content of mogroside V in momordica grosvenori is only 0.8-1.3% (W/W), and the large-scale production of high-yield and high-purity mogroside V is difficult to realize only by extracting from fruits. In addition, the planting environment and requirements of the momordica grosvenori are harsh, and the research progress in the aspect of improving the momordica grosvenori glucoside V yield through crossbreeding improvement is limited in the traditional method. Therefore, the biosynthesis of the mogroside V is a necessary trend for large-scale production, but at present, few reports of biosynthesis of the mogroside V exist, so that a method for producing the mogroside V by using key enzyme recombination construction engineering bacteria required by the synthesis of natural mogroside V is provided.
Disclosure of Invention
In order to solve the technical problems, the invention aims to provide an engineering strain for biosynthesizing mogroside V by taking mogrol as a substrate and application thereof.
A method for synthesizing mogroside V comprises the step of converting a substrate mogrol by a recombinant cell containing a glycosyl transferase (UDP-glucosyltransferase, UGT) gene or a recombinant cell containing the glycosyl transferase (UDP-glucosyltransferase, UGT) gene and a UDP-glucose pyrophosphorylase gene to obtain the mogroside V, wherein the recombinant cell expresses the glycosyl transferase (UDP-glucosyltransferase, UGT) gene and the UDP-glucose pyrophosphorylase gene to produce UGT enzyme and UDP-glucose pyrophosphorylase.
According to the scheme, the glycosyltransferase gene sequence is shown as SEQ ID NO.1, SEQ ID NO.3, SEQ ID NO.5, SEQ ID NO.7 or SEQ ID NO. 9; the sequence of the UDP-glucose pyrophosphorylase gene is shown as SEQ ID NO.11 or SEQ ID NO. 13.
According to the scheme, the method comprises the following specific steps: step (1): obtaining a crude enzyme solution by using a recombinant cell containing a glycosyltransferase (UGT) gene and a UDP-glucose pyrophosphorylase gene; step (2): adding crude enzyme solution into mogrol as a substrate, and converting and synthesizing the mogroside V in the presence of UDP glucose.
According to the scheme, the preparation method of the crude enzyme solution comprises the following steps: inoculating a recombinant cell containing a glycosyltransferase (UGT) gene and a UDP-glucose pyrophosphorylase gene into an LB liquid culture medium to obtain a seed solution, and inoculating the seed solution into the LB liquid culture medium, wherein the culture conditions can be as follows: culturing at 37 deg.C and 200rpm until the OD600 of the thallus is 0.4-1.0, adding IPTG, inducing culture, and inducing expression of target protein; after induction, the cells were collected by centrifugation, resuspended, disrupted by ultrasonic/freezing cycles in liquid nitrogen, and then centrifuged, and the supernatant was collected to obtain a crude enzyme solution.
According to the scheme, the reaction conditions in the step (2) of the step (2) are 25-45 ℃, and the reaction time is 1-48 h.
A recombinant vector comprising a glycosyltransferase (UGT) gene, or comprising a UDP-glycosyltransferase (UGT) gene and a UDP-glucose pyrophosphorylase gene.
A preparation method of a recombinant vector comprises the following steps: (1) carrying out PCR amplification by using a specific primer by using a carrier as a template to obtain a linear carrier reverse amplification fragment; (2) taking a glycosyltransferase gene as a template, carrying out PCR amplification to obtain a UGT positive amplification fragment, recovering the UGT positive amplification fragment, and carrying out reverse amplification connection on the recovered UGT positive amplification fragment and the vector to obtain a first recombinant vector; further, performing PCR amplification by using the first recombinant vector as a template to obtain a linear vector reverse amplification fragment; carrying out PCR amplification by taking UDP-glucose pyrophosphorylase gene as a template to obtain an UDPase amplified fragment, and recycling the UDPase amplified fragment and linking the UDPase amplified fragment with the vector reverse-amplified fragment to obtain a second recombinant vector.
A genetically engineered bacterium for biosynthesizing mogroside V by using mogrol as a substrate expresses a UDP-glucosyltransferase (UGT) gene and a UDP-glucose pyrophosphorylase gene to produce UGT enzyme and UDP-glucose pyrophosphorylase.
The construction method of the genetic engineering bacteria comprises the steps of transforming host cells by the recombinant vector, culturing a transformant, and obtaining the engineering strain for biosynthesizing the grosvenor momordica glycoside V by taking the grosvenor momordica alcohol as a substrate.
According to the scheme, the host cell is escherichia coli.
Provides the application of the recombinant vector or the genetic engineering bacteria in biosynthesis of the momordica grosvenori glucoside V.
Mogroside V is a triterpenoid saponin compound whose precursors for synthesis are Isopentenyl pyrophosphate (IPP) and Dimethylallyl pyrophosphate (DMAPP). IPP and DMAPP are produced from acetyl coa via mevalonate pathway (MVA pathway), then catalyzed by Geranyl Pyrophosphate Synthase (PS), Farnesyl pyrophosphate synthase (FPPS), Squalene synthase (SQS), cyclase and Cucurbitadienol synthase (CDS) to synthesize 24, 25-epoxycucurbitadienol, which is then subjected to Epoxide hydrolase (EPH) and cytochrome P450 enzyme (CYP450) to produce mogrol, and finally gradually glycosylated by glycosyltransferase (UDP-glycosyltransferase, UGT) using mogrol as a substrate to synthesize mogroside V. UGT is a decisive enzyme in the process of converting mogrol into mogroside V, and takes mogrol as a substrate and UDP-glucose as a glycosyl donor to catalyze the glycosylation reaction of C24 and C3 position and C3 and C24 position glucose branched chains of the mogrol, and the mogroside V is synthesized by a tetraosylation intermediate. Meanwhile, UDP-glucose is used as a glycosyl donor, the supply amount of UDP-glucose in the catalytic process also influences the glycosylation efficiency of mogrol, and when the glycosyl supply is insufficient, the mogrol glycosylation reaction is limited, so that the UDP-glucose content is increased or the glycosylation efficiency of mogrol can be obviously promoted.
Therefore, UGT and UDPase enzyme genes are selected, a genetic engineering strain with UGT and UDPase co-expression is created, high expression is carried out in a host strain, and mogrol is added as a substrate for synthesizing the mogroside V. The method has the advantages of simple operation, no environmental pollution, high yield, high purity and low cost, and provides reference for industrial production of mogroside V.
Compared with the prior art, the invention has the following beneficial effects:
according to the invention, exogenous species UGT enzyme gene and UDP-glucose pyrophosphorylase gene are introduced through a gene recombination technology and are transformed into genetic engineering bacteria for expression, a new biosynthesis path of the momordica grosvenori glycoside V is reconstructed, and the momordica grosvenori glycoside V is biosynthesized by taking momordica grosvenori alcohol as a substrate through overexpression of the UGT enzyme gene and the UDP-glucose pyrophosphorylase gene, so that the synthesis yield is high.
The method has the advantages of simple operation, no environmental pollution, high yield, high purity and low cost, and provides a basis for industrial production of mogroside V.
Drawings
FIG. 1 is a schematic diagram of construction of engineering strains expressing UGT and UGT-UDPase.
FIG. 2 shows the yield of mogroside V from the engineered strain.
Detailed Description
Example 1 construction of pET28a-UGT plasmid and recombinant E.coli Strain
The pET28a-UGT plasmid construction method:
(1) PCR amplification was performed using a specific primer using pET28a vector as a template. The pET28a vector is a commercial vector purchased from Novagen; the primer sequences are shown in table 1; recovering the PCR product to obtain a linearized vector pET28 a-reverse amplification, wherein the size of the linearized vector fragment is 5369 bp;
(2) UGT protein sequences of 5 organisms, namely salmon sea lice (Lepeophheirussalmonis), Arabidopsis thaliana (Arabidopsis thaliana), cotton (Gossypiumhirsutum), radish (Raphanussativus) and Drosophila melanogaster (Drosophila simulans) published by NCBI (https:// www.ncbi.nlm.nih.gov /), are shown as SEQ ID NO.2, SEQ ID NO.4, SEQ ID NO.6, SEQ ID NO.8 or SEQ ID NO.10, are codon optimized according to codon preference of Escherichia coli, and nucleic acid sequences are artificially synthesized, and LsUGT, AtUGT, GhUGT, RsUGT and DsUGT gene sequences are shown as SEQ ID NO.1, SEQ ID NO.3, SEQ ID NO.5, SEQ ID NO.7 or SEQ ID NO.9 respectively, and 6 is designed to amplify specific primers. The UGT amino acid sequence and the nucleic acid sequence are shown in SEQ Listing, and the primer sequence is shown in Table 1.
TABLE 1 primer sequences
(3) The PCR amplification procedure was pre-denaturation at 95 ℃ for 5min, denaturation at 94 ℃ for 45s, annealing at 60 ℃ for 45s, extension at 72 ℃ for 1.5min, 35 cycles, and extension at 72 ℃ for 10 min.
(4) And recovering the UGT positive expansion fragment, performing reverse amplification connection with the recovered pET28a respectively to obtain a recombinant plasmid, and naming the recombinant plasmid as pET28a-UGT, and obtaining the successfully constructed pET28a-UGT plasmid through sequencing verification.
The construction method of the escherichia coli recombinant strain comprises the following steps:
the pET28a-UGT plasmid is transformed into an escherichia coli cloning host by a heat shock transformation method to obtain a positive transformant, then the transformant plasmid with correct sequencing is transformed into an escherichia coli expression host bacterium BL21(DE3) and coated on an LB solid culture medium containing 50 mug/mL kanamycin, an LB plate is cultured at 37 ℃ until a transformant grows out, and the positive transformant is picked to obtain the expected engineering bacterium.
TABLE 25 pET28a-UGT engineering bacteria types
EXAMPLE 2 inducible expression of the protein of interest
5 kinds of engineering bacteria were inoculated into 5mL of LB liquid medium and cultured overnight at 37 ℃ and 200 rpm. Then, 0.8mL of the overnight culture was inoculated into 20mL of LB liquid medium and cultured at 37 ℃ and 200rpm until the OD600 of the cells became 0.6. Then IPTG was added to a final concentration of 1mM, and the mixture was cultured at room temperature for 16 hours to induce the expression of the target protein. After completion of induction, the cells were collected by centrifugation at 10,000 Xg for 5min, resuspended in 1.5mL of a mixture (50mM Tris. HCl (pH 7.0), 15% (vol/vol) glycerol, 0.1mM EDTA and 5 mM. beta. -mercaptoethanol), and disrupted by sonication for 3 min. The E.coli cell disruption solution was then centrifuged at 20,000 Xg for 10min, and the supernatant was collected to obtain a crude enzyme solution for enzyme characterization. The crude enzyme solution was stored at-20 ℃ until further analysis.
Example 3 determination of mogroside V content
Mogrol was dissolved to 20mM with 50% DMSO. A reaction system prepared by adding 50mM Tris-HCl (pH 7.0, containing 5 mM. beta. -mercaptoethanol), 25. mu.L of the crude enzyme solution, 8mM UDP-glucose and 2mM mogrol was prepared in a volume of 100. mu.L for the assay of UGT enzyme activity. After incubating the reaction solution at 37 ℃ for 24h, the reaction was stopped by adding 300. mu.L of methanol solution, followed by brief vortexing. Subsequently, the reaction solution was centrifuged at 20,000 × g for 10min, and the supernatant was collected, and the contents of subsequent products were analyzed as follows:
(1) adding 1mL of chromatographic grade methanol solution into 1mL of the reaction solution to obtain a product dissolved substance;
(2) centrifuging the product dissolved substance at 5000rpm for 10min, and collecting supernatant;
(3) filtering the supernatant with a 0.22 μm filter membrane in a brown liquid bottle to obtain a sample to be detected;
(4) the new product was analyzed by liquid mass nuclear magnetic coupling technique IC-MS-NMR: LC-MS analysis used an Agilent260HPLC system and a Bruker-microtof-II electrospray mass spectrometer. A reversed phase C18 column (4.6X 250mm, 5um, Welch, Shanghai) was used in the HPLC, the amount of sample was 10. mu.L, the flow rate was 0.5mL/min, and the UV detection wavelength was 210 nm. Mobile phase a was water (0.1% formic acid) and mobile phase B was acetonitrile (0.1% formic acid), using gradient elution: 0.00-15.00min, 20% -26% B; 15.00-15.01min, 26% -100% B; 15.01-25.00min, 100% B;
(5) finally, the yield of the mogroside V of 5 engineering bacteria is calculated according to the peak area of the standard product of the mogroside V, and the specific yield is shown in table 3. According to calculation, the maximum mogroside V yield of the bacterial strain 1, namely pET28a-LsUGT engineering bacteria can reach 1.175 g/L.
Table 35 engineering bacteria momordica grosvenori glucoside V yield
Example 4 construction of pET28a-UGT-UDPase plasmid and recombinant Strain of E.coli
Based on the LsUGT and AtUGT transformed engineering bacteria with higher momordica grosvenori glucoside V yield, UGT and UDPase are expressed in series.
The pET28a-UGT-UDPGase plasmid construction method:
(1) PCR amplification was performed using a specific primer using pET28a-UGT vector as a template. The pET28a vector is a commercial vector purchased from Novagen; the primer sequences are shown in Table 4; recovering the PCR product to obtain a linear vector pET28a-UGT reverse amplification fragment;
(2) according to the UDPase protein sequences of Arabidopsis thaliana (Arabidopsis thaliana) and Drosophila melanogaster (Drosophila melanogaster) published by NCBI (https:// www.ncbi.nlm.nih.gov /) database, as shown in SEQ ID NO.12, SEQ ID NO.14, codon optimization was performed according to the codon preference of Escherichia coli, nucleic acid sequences as shown in SEQ ID NO.11, SEQ ID NO.13 were artificially synthesized, and 2 pairs of specific primers were designed to amplify them. The primer sequences are shown in Table 4.
TABLE 4 UDPase primer sequences
(3) The PCR amplification procedure was pre-denaturation at 95 ℃ for 5min, denaturation at 94 ℃ for 45s, annealing at 60 ℃ for 45s, extension at 72 ℃ for 1.5min, 35 cycles, and extension at 72 ℃ for 10 min.
(4) Combining and connecting the AtUDPase positive amplified fragment, the DmUDPase positive amplified fragment, the pET28a-LsUGT reverse amplified fragment and the pET28a-RsUGT reverse amplified fragment in pairs to obtain a recombinant plasmid, naming the recombinant plasmid as pET28a-UGT-UDPase, and obtaining 4 successfully constructed pET28a-UGT-UDPase plasmids through sequencing verification.
The construction method of the escherichia coli recombinant strain comprises the following steps:
4pET28a-UGT-UDPase plasmids are transformed into an escherichia coli cloning host by a heat shock transformation method to obtain positive transformants, then transformants with correct sequencing are transformed into an escherichia coli expression host bacterium BL21(DE3) and coated on an LB solid culture medium containing 50 mu g/mL kanamycin, an LB plate is cultured at 37 ℃ to grow out the transformants, and the positive transformants are picked to obtain expected engineering bacteria.
TABLE 5pET28a-UGT-UDPase engineering bacteria types
Example 5 production of mogroside V from pET28 a-UGT-UDPase-engineered bacteria
The induced expression of the target protein of the engineered bacteria and the mogroside V production were determined according to the methods of examples 2-3 above.
According to the peak area of the momordica grosvenori glycoside V standard product, the yield of the momordica grosvenori glycoside V of 4 kinds of pET28a-UGT-UDPase engineering bacteria is finally calculated, and the specific yield is shown in Table 6. Through calculation, the maximum yield of the momordica grosvenori V of the strain 6, namely pET28a-LsUGT-AtUDPase engineering bacteria can reach 1.583 g/L.
Table 62 Momordica grosvenori glycoside V yields of pET28a-UGT-UDPGase engineering bacteria
Nucleotide and amino acid sequence listing of the specification
< 110 > Hebei Weidakang Biotech Ltd
Less than 120 construction and application of engineering strain for synthesizing mogroside V by using mogrol as substrate microorganism
<160> 14
<210> 1
<211>1542bp
<212> DNA
< 213 > is artificially synthesized
<400> 1
atgattctga aagaatttgg cgaatatctg agcagccgcg gccatagcgt gacccagatt 60
cgctttaaag atcgcaaccc gagccagccg ccgcagatta aaaacagcaa cattagcgtg 120
attgatctgc cgattagccg ctttaccgat aacgaatgca ttgattatat taacgatgat 180
ggcgaaattg atattaacat tagcgcgacc aaactgctgt ggaaagatgg cgaaagcgtg 240
tataaagtgc cgagcgatat tttttgcgtg acccgcgcgc attgccatac cctgtttacc 300
gtgcatagcg cgaaaatgaa aaaagtgctg gatagcggca actttgaact ggcgattgtg 360
gatattattg cgaacgaatg cggcctggcg atggcgaaaa gcctgggcat tccggtggtg 420
ggcttttgga tgtttagctt tcagggcggc gaaaccctgc gcagcccggt gtttaacccg 480
ccgagcattg tgccgagctt tctgagcagc ctgccgccga aaaaatggaa ctttctggaa 540
cgcgtgtata actttattgt gcatctgacc catcgcgcgc tgctggcgat tcaggaaagc 600
attgcgaacg attttattaa agaacgctat ccgaacctgc cgccggtgcg cgatctgttt 660
tttgatctgg attttacctt tattcatacc aactttctgg tggatagccc gaaactgatt 720
gcgccgaaca gcaaatatgt gggcggcctg catattcgca gcccgcgcaa actgcgcaaa 780
gaactgaaag aatttgtgga aggcgcgaaa aaaggcgtga ttatttttag cctgggcttt 840
accggctata gcagcgataa cgtgccgctg agctttattc gcgatctgct gcatattatt 900
gaaaaactgg aaggctatcg cctgattatg cgctttgata aagatgtgat tagcagcccg 960
ctgccggaaa acgtgctggt gctgaaatgg ctgccgcagc aggatctgct ggcgcatagc 1020
gcggtgaaac tgtttattaa ccatggcggc atgggcggca ttcaggaaag cgtgtattat 1080
ggcgtgccga tggtgattat tccgattttt ggcgatcaga acgataacgc ggcgcgcatt 1140
cagcattatg aactgggcct gtatgtggtg aaaagccgcc tgaactatga taacctgcgc 1200
tttgcgattc atgaagtgct gtttaacgat aaatatagcg aaaaaagcaa atttcatcag 1260
agcctgtgga aagatgaatt ttgcagcagc caggaagaaa ccgcgtattg gattgaactg 1320
ctgattaaat atggccatct ggatcatctg aaaattaaag gcgtgaacat tagcctgttt 1380
cagtatttta gcctggatgt gattctgttt tttctgagca ttctgtttat tagcaccacc 1440
ctggtgctgg gctttattat ttataacatt tttggcaaat gcttttttgt gcatgatacc 1500
tataacaacg gcaccaaacg caaaattatt aaagtgaact aa 1542
<210> 2
<211> 513
<212> PRT
< 213 > is artificially synthesized
<400> 1
MILKEFGEYL SSRGHSVTQI RFKDRNPSQP PQIKNSNISV IDLPISRFTD NECIDYINDD 60
GEIDINISAT KLLWKDGESV YKVPSDIFCV TRAHCHTLFT VHSAKMKKVL DSGNFELAIV 120
DIIANECGLA MAKSLGIPVV GFWMFSFQGG ETLRSPVFNP PSIVPSFLSS LPPKKWNFLE 180
RVYNFIVHLT HRALLAIQES IANDFIKERY PNLPPVRDLF FDLDFTFIHT NFLVDSPKLI 240
APNSKYVGGL HIRSPRKLRK ELKEFVEGAK KGVIIFSLGF TGYSSDNVPL SFIRDLLHII 300
EKLEGYRLIM RFDKDVISSP LPENVLVLKW LPQQDLLAHS AVKLFINHGG MGGIQESVYY 360
GVPMVIIPIF GDQNDNAARI QHYELGLYVV KSRLNYDNLR FAIHEVLFND KYSEKSKFHQ 420
SLWKDEFCSS QEETAYWIEL LIKYGHLDHL KIKGVNISLF QYFSLDVILF FLSILFISTT 480
LVLGFIIYNI FGKCFFVHDT YNNGTKRKII KVN 513
<210> 3
<211> 1410bp
<212> DNA
< 213 > is artificially synthesized
<400> 1
atggcgccgc cgcattttct gctggtgacc tttccggcgc agggccatgt gaacccgagc 60
ctgcgctttg cgcgccgcct gattaaacgc accggcgcgc gcgtgacctt tgtgacctgc 120
gtgagcgtgt ttcataacag catgattgcg aaccataaca aagtggaaaa cctgagcttt 180
ctgaccttta gcgatggctt tgatgatggc ggcattagca cctatgaaga tcgccagaaa 240
cgcagcgtga acctgaaagt gaacggcgat aaagcgctga gcgattttat tgaagcgacc 300
aaaaacggcg atagcccggt gacctgcctg atttatacca ttctgctgaa ctgggcgccg 360
aaagtggcgc gccgctttca gctgccgagc gcgctgctgt ggattcagcc ggcgctggtg 420
tttaacattt attataccca ttttatgggc aacaaaagcg tgtttgaact gccgaacctg 480
agcagcctgg aaattcgcga tctgccgagc tttctgaccc cgagcaacac caacaaaggc 540
gcgtatgatg cgtttcagga aatgatggaa tttctgatta aagaaaccaa accgaaaatt 600
ctgattaaca cctttgatag cctggaaccg gaagcgctga ccgcgtttcc gaacattgat 660
atggtggcgg tgggcccgct gctgccgacc gaaattttta gcggcagcac caacaaaagc 720
gtgaaagatc agagcagcag ctataccctg tggctggata gcaaaaccga aagcagcgtg 780
atttatgtga gctttggcac catggtggaa ctgagcaaaa aacagattga agaactggcg 840
cgcgcgctga ttgaaggcaa acgcccgttt ctgtgggtga ttaccgataa aagcaaccgc 900
gaaaccaaaa ccgaaggcga agaagaaacc gaaattgaaa aaattgcggg ctttcgccat 960
gaactggaag aagtgggcat gattgtgagc tggtgcagcc agattgaagt gctgagccat 1020
cgcgcggtgg gctgctttgt gacccattgc ggctggagca gcaccctgga aagcctggtg 1080
ctgggcgtgc cggtggtggc gtttccgatg tggagcgatc agccgaccaa cgcgaaactg 1140
ctggaagaaa gctggaaaac cggcgtgcgc gtgcgcgaaa acaaagatgg cctggtggaa 1200
cgcggcgaaa ttcgccgctg cctggaagcg gtgatggaag aaaaaagcgt ggaactgcgc 1260
gaaaacgcga aaaaatggaa acgcctggcg atggaagcgg gccgcgaagg cggcagcagc 1320
gataaaaaca tggaagcgtt tgtggaagat atttgcggcg aaagcctgat tcagaacctg 1380
tgcgaagcgg aagaagtgaa agtgaaataa 1410
<210> 4
<211> 469
<212> PRT
< 213 > is artificially synthesized
<400> 1
MAPPHFLLVT FPAQGHVNPS LRFARRLIKR TGARVTFVTC VSVFHNSMIA NHNKVENLSF 60
LTFSDGFDDG GISTYEDRQK RSVNLKVNGD KALSDFIEAT KNGDSPVTCL IYTILLNWAP 120
KVARRFQLPS ALLWIQPALV FNIYYTHFMG NKSVFELPNL SSLEIRDLPS FLTPSNTNKG 180
AYDAFQEMME FLIKETKPKI LINTFDSLEP EALTAFPNID MVAVGPLLPT EIFSGSTNKS 240
VKDQSSSYTL WLDSKTESSV IYVSFGTMVE LSKKQIEELA RALIEGKRPF LWVITDKSNR 300
ETKTEGEEET EIEKIAGFRH ELEEVGMIVS WCSQIEVLSH RAVGCFVTHC GWSSTLESLV 360
LGVPVVAFPM WSDQPTNAKL LEESWKTGVR VRENKDGLVE RGEIRRCLEA VMEEKSVELR 420
ENAKKWKRLA MEAGREGGSS DKNMEAFVED ICGESLIQNL CEAEEVKVK 469
<210> 5
<211> 1410bp
<212> DNA
< 213 > is artificially synthesized
<400> 1
atgagccagc cgcattttct gctggtgacc tttccggcgc agggccatat taacccgacc 60
ctgcagtttg cgaaacatct gattcgcatt ggcgtgcgcg tgacctttat tacctgcatt 120
agcgcgcgcc gccgcatgac caaagtgccg accgcgcagg gcctgacctt tctgccgttt 180
agcgatggct atgatgatgg ctttcagccg ggcgatgata ttgaacatta tctgagcgaa 240
ctgcgccgcc gcggcaaaga agcgattagc gaatttatta ccagcagcga atatgaaggc 300
aaaccggtga cctgcattgt gtataccctg tttattcatt gggcgagcga agtggcgcgc 360
aaacatcata ttccggcggc gctgctgtgg attcagccgg cgaccgtgtt tgatatttat 420
tatttttatt ttaacggcta tgaaagcacc attaaagtgc cggtggatga aaccaacccg 480
aaacgcagca ttaaactgcc gggcctgccg ctgctggcga cccgcgatct gccgagcttt 540
gtgaccgcga gcaacgtgta tcgctgggcg ctgagcctgt ttcaggaaca gatggatatt 600
ctggcggatg aaagcaaccc gaaaattctg gtgaacacct ttgatgcgct ggaacaggaa 660
gcgctgaacg cgattgaaaa ctttaacatg gtgggcattg gcccgctgat tccgagcagc 720
tttctgaaca gcaacgatag cctggataac agcctgcgca ccgatctgtt tcagagcgat 780
agcaaagatt atattcagtg gctggatagc aaaccgaaaa gcgcggtggt gtatgtgagc 840
tttggcagca ttgcggtgct gaccaaacag caggtggaag aaattgcgcg cgcgctgatt 900
agcagccgcc gcccgtttct gtgggtggtg cgcaactgga aagatggcgt ggaagaagaa 960
aaagaagaag ataaactgac ctggcgcgaa gaactggaac gctttggcat ggtggtgccg 1020
tggtgcagcc aggtggaagt gctgagccat ccgagcctgg gctgctttgt gacccattgc 1080
ggctggaaca gcaccctgga aagcatggtg gcgggcgtgc cggtggtggc gtttccgcag 1140
tggaccgatc agggcaccaa cgcgaaactg attgaagatg tgtggggcaa cggcgtgcgc 1200
gtgagcgcga acgaagaagg catggtggaa cgcgatgaaa ttgtgcgctg cctggatctg 1260
gtgatgggcg atgatgaaaa aggcatggaa gtgaaaaaaa acgtggaaaa atgggaaggc 1320
ctggcgcgcg aagcgagcat ggaaggcggc agcatggata tgaacctgaa agcgtttgtg 1380
gatgatgtgg cgcagggctg ctggaaataa 1410
<210> 6
<211> 469
<212> PRT
< 213 > is artificially synthesized
<400> 1
MSQPHFLLVT FPAQGHINPT LQFAKHLIRI GVRVTFITCI SARRRMTKVP TAQGLTFLPF 60
SDGYDDGFQP GDDIEHYLSE LRRRGKEAIS EFITSSEYEG KPVTCIVYTL FIHWASEVAR 120
KHHIPAALLW IQPATVFDIY YFYFNGYEST IKVPVDETNP KRSIKLPGLP LLATRDLPSF 180
VTASNVYRWA LSLFQEQMDI LADESNPKIL VNTFDALEQE ALNAIENFNM VGIGPLIPSS 240
FLNSNDSLDN SLRTDLFQSD SKDYIQWLDS KPKSAVVYVS FGSIAVLTKQ QVEEIARALI 300
SSRRPFLWVV RNWKDGVEEE KEEDKLTWRE ELERFGMVVP WCSQVEVLSH PSLGCFVTHC 360
GWNSTLESMV AGVPVVAFPQ WTDQGTNAKL IEDVWGNGVR VSANEEGMVE RDEIVRCLDL 420
VMGDDEKGME VKKNVEKWEG LAREASMEGG SMDMNLKAFV DDVAQGCWK 469
<210> 7
<211> 1395bp
<212> DNA
< 213 > is artificially synthesized
<400> 1
atggcgccgc cgccgccgca ttttctgctg gtgacctttc cggcgcaggg ccatgtgaac 60
ccgagcctgc gctttgcgta tcgcctgatt cgcaccaccg gcgcgcgcgt gacctttgtg 120
acctgcgcga gcgtgtttca tcgcagcatg attagcaacc atagcgatct ggataacctg 180
agctttctga cctttagcga tggctttgat cagggcggcc tgaccaccgc ggaagatcat 240
aaaaaacgca gcgcgaacct ggaaattaac ggcgataaag cgctgagcga atttattaaa 300
gcgaacgaaa acggcgatag cccggtgacc tgcctggtgt ataccatttt tctgaactgg 360
gcgccgaaag tggcgagccg ctttcagctg ccgagcgcgc tgctgtggat tcagccggcg 420
ctggtgtttg atatttatta taaccatttt aacggcgata acaacaacag ctatctggaa 480
tttaaaaacc tgccgagcct ggcgattcgc gatctgccga gctttctgac cccgaccaac 540
accaaccagg cggcgtatgc gagctttcag gaactgatgg aactgctgaa aaaagaaacc 600
aacccgaaaa ttctggtgaa cacctttgat agcctggaac aggaagcgct gaaagcgatt 660
ccgagcgtgg gcatggtggc ggtgggcccg ctgctgccga gcgatatgtt taccggcagc 720
gaaccggtga aagatctgag caaagaacag accggcagca gctatagccg ctggctggaa 780
agcaaaaccg aaagcagcgt gatttatgtg agctttggca ccatggtgga actgagcaaa 840
aaacagattg aagaactggc gcgcgcgctg attgaaggca aacgcccgtt tctgtgggtg 900
attaccgata aaagcaaccg cgaagcgaaa accgaaggcg aagatgaaac cgaaattgaa 960
aaaattgcgg gctttcgcca tgaactggaa gaagtgggca tgattgtgag ctggtgcagc 1020
caggtggaag tgctgaaaca tcgcgcggtg ggctgctttg tgacccattg cggctggagc 1080
agcaccctgg aaagcctggt gctgggcgtg ccggtggtgg cgtttccgat gtggagcgat 1140
cagccgacca gcgcgaaact gctggaagaa ctgtggcgca ccggcgtgcg cgtgcgcgaa 1200
aacgaagaag gcctggtgga acgcgaagaa attcgccgct gcctggaagc ggtgatggat 1260
gaacgcctgg tggaactgcg cgaaaacgcg gtgaaatgga aacgcctggc ggtggaagcg 1320
ggccgcgaag gcggcctgag cgataaaaac atggaagcgt ttgtggaaga aatttgcgaa 1380
gatagcgtgc tgtaa 1395
<210> 8
<211> 464
<212> PRT
< 213 > is artificially synthesized
<400> 1
MAPPPPHFLLVTFPAQGHVNPSLRFAYRLIRTTGARVTFVTCASVFHRSMISNHSDLDNL 60
SFLTFSDGFD QGGLTTAEDH KKRSANLEIN GDKALSEFIK ANENGDSPVT CLVYTIFLNW 120
APKVASRFQL PSALLWIQPA LVFDIYYNHF NGDNNNSYLE FKNLPSLAIR DLPSFLTPTN 180
TNQAAYASFQ ELMELLKKET NPKILVNTFD SLEQEALKAI PSVGMVAVGP LLPSDMFTGS 240
EPVKDLSKEQ TGSSYSRWLE SKTESSVIYV SFGTMVELSK KQIEELARAL IEGKRPFLWV 300
ITDKSNREAK TEGEDETEIE KIAGFRHELE EVGMIVSWCS QVEVLKHRAV GCFVTHCGWS 360
STLESLVLGV PVVAFPMWSD QPTSAKLLEE LWRTGVRVRE NEEGLVEREE IRRCLEAVMD 420
ERLVELRENA VKWKRLAVEA GREGGLSDKN MEAFVEEICE DSVL 464
<210> 9
<211> 1647bp
<212> DNA
< 213 > is artificially synthesized
<400> 1
atgcgcagct tttatggcta tcgcggcatt ccgattcgct ttgtgcagct gtggagcgaa 60
ctgcagcatg aacgcaccga aagcgtgaaa atgtgcctgg gctattgctg gctgaccgtg 120
tttctgtgcc tgctgctgca gcaggatctg catcaggatc aggcggaagc ggcgaacatt 180
ctgggcattt ttccgtatcg ccatattagc ccgttttttg tgatgcagcc gctggtgcgc 240
accctggcgg aacgcggcca taacgtgacc ctgattaccc cgagcggcct gccgaacgat 300
attgaaggcg tgcgccatat tcgcgtggcg cagctgaacg aacgcattaa agatcaggtg 360
ctggattttc tgattaacaa atggaccgaa agcgcgctga ccgcgaaagc gctgtataac 420
gcgagcaacg atattctgag cgatccgggc gtgcagcgca tgctgcatga taaaagcgaa 480
cgctttgatc tgattattat ggaaccgagc agcctggatg cgctgtatgg cctggtggaa 540
ttttataacg cgaccctgat tggcctgagc agcattcgca ttaactggca gaccgatgaa 600
ctggcgggca acccggcgcc gagcatttat gaaccgatta gcccggtggg ctttagcctg 660
gaaaccagcc tgtttagccg cgtgtataac tggattcata ttatggaaga aaaactggtg 720
gattatctga ttctgcgccc ggcgcagctg catctgtttc agaaattttt tggctatagc 780
gcgcagaaaa tgaacgaact gcgcaaccgc tttagcctga tgctgattaa cagccattat 840
agcatgggca aagtgcgcgc gaacgcgccg aacattattg aagtgggcgg cctgcatctg 900
agcgaaccgc cggaaccgag cgatgaagaa ctgcagaaat ttctggataa agcgaaccat 960
ggcgtgattt attttagcat gggcaacgat gtgctgatta aatttctgcc ggcgaacatt 1020
caggaactgc tgctgcagac ctttgcgaaa ctgaaagaaa gcattatttg gaaaagcgaa 1080
ctgctgtgca tgccgaacaa aagcgataac gtgtatgtga ttgaacaggc gccgcagcgc 1140
catattctga accatccgaa cgtgcgcctg tttattacca acggcggcct gctgagcgtg 1200
attgaagcgg tggatagcgg cgtgccgatg ctgggcctgc cgatgttttt tgatcagttt 1260
gcgaacatgc gctgggtgca gctgagcggc atggcggaag tgatggatat taacattctg 1320
aacaaagata ccctgaccga aaccattaaa catatgctgg cgagcgatag ctattatctg 1380
aaagcgaaag aaatgagcca gttttttaaa gatcgcccga tgagcccgct ggataccgcg 1440
gtgtggtgga ccgaatatgc gctgcgcaac cgcaacatta cccgcatgcg cctgaacctg 1500
gaagaaattc cgctgattga atattatcgc attgatagca ttctggcgtt tagcctgcgc 1560
tttggcctgg tggcggcgag cctgattttt ctggtgtata ccctgtttct gaaatatcgc 1620
attcgcctgc gccgcctgca tccgtaa 1647
<210> 10
<211> 548
<212> PRT
< 213 > is artificially synthesized
<400> 1
MRSFYGYRGI PIRFVQLWSE LQHERTESVK MCLGYCWLTV FLCLLLQQDL HQDQAEAANI 60
LGIFPYRHIS PFFVMQPLVR TLAERGHNVT LITPSGLPND IEGVRHIRVA QLNERIKDQV 120
LDFLINKWTE SALTAKALYN ASNDILSDPG VQRMLHDKSE RFDLIIMEPS SLDALYGLVE 180
FYNATLIGLS SIRINWQTDE LAGNPAPSIY EPISPVGFSL ETSLFSRVYN WIHIMEEKLV 240
DYLILRPAQL HLFQKFFGYS AQKMNELRNR FSLMLINSHY SMGKVRANAP NIIEVGGLHL 300
SEPPEPSDEE LQKFLDKANH GVIYFSMGND VLIKFLPANI QELLLQTFAK LKESIIWKSE 360
LLCMPNKSDN VYVIEQAPQR HILNHPNVRL FITNGGLLSV IEAVDSGVPM LGLPMFFDQF 420
ANMRWVQLSG MAEVMDINIL NKDTLTETIK HMLASDSYYL KAKEMSQFFK DRPMSPLDTA 480
VWWTEYALRN RNITRMRLNL EEIPLIEYYR IDSILAFSLR FGLVAASLIF LVYTLFLKYR 540
IRLRRLHP 548
<210> 11
<211> 1437bp
<212> DNA
< 213 > is artificially synthesized
<400> 1
atggcggcga ccaccgaaaa cctgccgcag ctgaaaagcg cggtggatgg cctgaccgaa 60
atgagcgaaa gcgaaaaaag cggctttatt agcctggtga gccgctatct gagcggcgaa 120
gcgcagcata ttgaatggag caaaattcag accccgaccg atgaaattgt ggtgccgtat 180
gaaaaaatga ccccggtgag ccaggatgtg gcggaaacca aaaacctgct ggataaactg 240
gtggtgctga aactgaacgg cggcctgggc accaccatgg gctgcaccgg cccgaaaagc 300
gtgattgaag tgcgcgatgg cctgaccttt ctggatctga ttgtgattca gattgaaaac 360
ctgaacaaca aatatggctg caaagtgccg ctggtgctga tgaacagctt taacacccat 420
gatgataccc ataaaattgt ggaaaaatat accaacagca acgtggatat tcataccttt 480
aaccagagca aatatccgcg cgtggtggcg gatgaatttg tgccgtggcc gagcaaaggc 540
aaaaccgata aagaaggctg gtatccgccg ggccatggcg atgtgtttcc ggcgctgatg 600
aacagcggca aactggatac ctttctgagc cagggcaaag aatatgtgtt tgtggcgaac 660
agcgataacc tgggcgcgat tgtggatctg accattctga aacatctgat tcagaacaaa 720
aacgaatatt gcatggaagt gaccccgaaa accctggcgg atgtgaaagg cggcaccctg 780
attagctatg aaggcaaagt gcagctgctg gaaattgcgc aggtgccgga tgaacatgtg 840
aacgaattta aaagcattga aaaatttaaa atttttaaca ccaacaacct gtgggtgaac 900
ctgaaagcga ttaaaaaact ggtggaagcg gatgcgctga aaatggaaat tattccgaac 960
ccgaaagaag tggatggcgt gaaagtgctg cagctggaaa ccgcggcggg cgcggcgatt 1020
cgcttttttg ataacgcgat tggcgtgaac gtgccgcgca gccgctttct gccggtgaaa 1080
gcgagcagcg atctgctgct ggtgcagagc gatctgtata ccctggtgga tggctttgtg 1140
acccgcaaca aagcgcgcac caacccgagc aacccgagca ttgaactggg cccggaattt 1200
aaaaaagtgg cgacctttct gagccgcttt aaaagcattc cgagcattgt ggaactggat 1260
agcctgaaag tgagcggcga tgtgtggttt ggcagcagca ttgtgctgaa aggcaaagtg 1320
accgtggcgg cgaaaagcgg cgtgaaactg gaaattccgg atcgcgcggt ggtggaaaac 1380
aaagcggtga tgattctggt gcaggatttt cagagcaacc atcagaacga aaactaa 1437
<210> 12
<211> 478
<212> PRT
< 213 > is artificially synthesized
<400> 1
MAATTENLPQ LKSAVDGLTE MSESEKSGFI SLVSRYLSGE AQHIEWSKIQ TPTDEIVVPY 60
EKMTPVSQDV AETKNLLDKL VVLKLNGGLG TTMGCTGPKS VIEVRDGLTF LDLIVIQIEN 120
LNNKYGCKVP LVLMNSFNTH DDTHKIVEKY TNSNVDIHTF NQSKYPRVVA DEFVPWPSKG 180
KTDKEGWYPP GHGDVFPALM NSGKLDTFLS QGKEYVFVAN SDNLGAIVDL TILKHLIQNK 240
NEYCMEVTPK TLADVKGGTL ISYEGKVQLL EIAQVPDEHV NEFKSIEKFK IFNTNNLWVN 300
LKAIKKLVEA DALKMEIIPN PKEVDGVKVL QLETAAGAAI RFFDNAIGVN VPRSRFLPVK 360
ASSDLLLVQS DLYTLVDGFV TRNKARTNPS NPSIELGPEF KKVATFLSRF KSIPSIVELD 420
SLKVSGDVWF GSSIVLKGKV TVAAKSGVKL EIPDRAVVEN KAVMILVQDF QSNHQNEN 478
<210> 13
<211>1542bp
<212> DNA
< 213 > is artificially synthesized
<400> 1
atgctggatg tgccgcatga agcgaaagtg cgcggccatc agcgcgcgcc gagcgatagc 60
aaagaatttc atgaagtgac caaacgcgat gcgctgcgcc tgctggaaca tgatgtggat 120
cgcctgctgg aaaccaccga aaaagcgcgc cagccggcgc tgaaagcgga aatgggccgc 180
tttgcggatc tgtttggccg ctttattcag gaagaaggcc cggcgctgga ttggaacaaa 240
attcagaaac tgccggaaaa cgcggtgatg aactatagca acctgaaaag cccgaaaaac 300
gaacagaacg aaattcgcaa catgctggat aaactggtgg tgattaaact gaacggcggc 360
ctgggcacca gcatgggctg ccatggcccg aaaagcgtga ttccggtgcg cagcgatctg 420
acctttctgg atctgaccgt gcagcagatt gaacatctga acaaaaccta tgatgcgaac 480
gtgccgctgg tgctgatgaa cagctttaac accgatgaag ataccgaaaa aattgtgcgc 540
aaatataaag gctttcgcgt gcagattcat acctttaacc agagctgctt tccgcgcatt 600
agccgcgaac attatctgcc ggtggcgaaa gattttgatg tggaaaaaga tatggaagcg 660
tggtatccgc cgggccatgg cgatttttat gatacctttc gcaacagcgg cctgctgaaa 720
aaatttattg aagaaggccg cgaatattgc tttctgagca acattgataa cctgggcgcg 780
accgtggatc tgaacattct gaacaaactg gtgggcgaag aacgcgcgac caccccggtg 840
gaatttgtga tggaagtgac cgataaaacc cgcgcggatg tgaaaggcgg caccctgatt 900
cagatggaaa acaaactgcg cctgctggaa attgcgcagg tgccgccgga acatgtggat 960
gattttaaaa gcgtgaaaac ctttaaattt tttaacacca acaacatttg ggcgaacctg 1020
gcggcgattg atcgcgtgct gcgcgaacgc accctgaaca tggaaattat tgtgaacaac 1080
aaaaccctgg aaaacggcac ccgcgtgatt cagctggaaa ccgcggtggg cgcggcgatg 1140
aaatgctttg atggcgcgat tggcattaac gtgccgcgca gccgctttct gccggtgaaa 1200
aaaagcagcg atctgctgct ggtgatgagc aacctgtata ccctgaaaaa cggcagcctg 1260
gtgatgagcc cgcagcgcat gtttccgacc accccgctgg tgaaactggg cgaaaaccat 1320
tttagcaaag tgaaagaatt tctgggccgc tttgcgaaca ttccggatat tattgaactg 1380
gatcatctga ccgtgagcgg cgatgtgacc tttggccgcg gcgtgagcct gcgcggcacc 1440
gtgattatta ttgcgaacca tggcgatcgc attgatattc cggcgggcgc gattctggaa 1500
aacaaaattg tgagcggcaa catgcgcatt ctggatcatt aa 1542
<210> 14
<211> 513
<212> PRT
< 213 > is artificially synthesized
<400> 1
MLDVPHEAKV RGHQRAPSDS KEFHEVTKRD ALRLLEHDVD RLLETTEKAR QPALKAEMGR 60
FADLFGRFIQ EEGPALDWNK IQKLPENAVM NYSNLKSPKN EQNEIRNMLD KLVVIKLNGG 120
LGTSMGCHGP KSVIPVRSDL TFLDLTVQQI EHLNKTYDAN VPLVLMNSFN TDEDTEKIVR 180
KYKGFRVQIH TFNQSCFPRI SREHYLPVAK DFDVEKDMEA WYPPGHGDFY DTFRNSGLLK 240
KFIEEGREYC FLSNIDNLGA TVDLNILNKL VGEERATTPV EFVMEVTDKT RADVKGGTLI 300
QMENKLRLLE IAQVPPEHVD DFKSVKTFKF FNTNNIWANL AAIDRVLRER TLNMEIIVNN 360
KTLENGTRVI QLETAVGAAM KCFDGAIGIN VPRSRFLPVK KSSDLLLVMS NLYTLKNGSL 420
VMSPQRMFPT TPLVKLGENH FSKVKEFLGR FANIPDIIEL DHLTVSGDVT FGRGVSLRGT 480
VIIIANHGDR IDIPAGAILE NKIVSGNMRI LDH 513
Claims (10)
1. A method for synthesizing mogroside V, which is characterized by comprising the following steps: converting a substrate mogrol by a recombinant cell containing a glycosyltransferase gene or a recombinant cell containing the glycosyltransferase gene and a UDP-glucose pyrophosphorylase gene to obtain the mogroside V, and expressing the glycosyltransferase gene and the UDP-glucose pyrophosphorylase gene by the recombinant cell to produce UGT enzyme and UDP-glucose pyrophosphorylase.
2. The method of claim 1, wherein: the method comprises the following specific steps: step (1): obtaining crude enzyme solution by using recombinant cells containing glycosyltransferase genes and UDP-glucose pyrophosphorylase genes; step (2): adding crude enzyme solution into mogrol as a substrate, and converting and synthesizing the mogroside V in the presence of UDP glucose.
3. The method of claim 1, wherein: the preparation method of the crude enzyme solution comprises the following steps: inoculating a recombinant cell containing a glycosyltransferase gene and a UDP-glucose pyrophosphorylase gene into an LB liquid culture medium to obtain a seed solution, inoculating the seed solution into the LB liquid culture medium, culturing until the OD600 of a thallus is 0.4-1.0, adding IPTG (isopropyl-beta-thiogalactoside) to induce and culture, and inducing a target protein to express; after induction, the cells were collected by centrifugation, resuspended, disrupted by ultrasonic/freezing cycles in liquid nitrogen, and then centrifuged, and the supernatant was collected to obtain a crude enzyme solution.
4. The method of claim 2, wherein: the reaction condition in the step (2) is 25-45 ℃, and the reaction time is 1-48 h.
5. A recombinant vector comprising a glycosyltransferase gene, or comprising a glycosyltransferase gene and a UDP-glucose pyrophosphorylase gene.
6. The method for producing a recombinant vector according to claim 5, wherein: the method comprises the following steps: (1) carrying out PCR amplification by using a specific primer by using a carrier as a template to obtain a linear carrier reverse amplification fragment; (2) taking a glycosyltransferase gene as a template, carrying out PCR amplification to obtain a UGT positive amplification fragment, recovering the UGT positive amplification fragment, and carrying out reverse amplification connection on the recovered UGT positive amplification fragment and the vector to obtain a first recombinant vector containing the glycosyltransferase gene; further, performing PCR amplification by using the first recombinant vector as a template to obtain a linear vector reverse amplification fragment; carrying out PCR amplification by taking UDP-glucose pyrophosphorylase gene as a template to obtain an UDPase amplified fragment, recovering the UDPase amplified fragment, and linking the recovered UDPase amplified fragment with the vector reverse-amplified fragment to obtain a second recombinant vector containing the glycosyltransferase gene and the UDP-glucose pyrophosphorylase gene.
7. A genetic engineering bacterium for biosynthesizing mogroside V by taking mogrol as a substrate is characterized in that: the genetic engineering bacteria express glycosyltransferase gene and UDP-glucose pyrophosphorylase gene to produce UGT enzyme and UDP-glucose pyrophosphorylase.
8. The method of claim 1, 5 or 7, wherein: the glycosyltransferase gene sequence is shown in SEQ ID NO.1, SEQ ID NO.3, SEQ ID NO.5, SEQ ID NO.7 or SEQ ID NO. 9; the sequence of the UDP-glucose pyrophosphorylase gene is shown as SEQ ID NO.11 or SEQ ID NO. 13.
9. The method for constructing a genetically engineered bacterium according to claim 7, wherein: transforming a host cell with the recombinant vector of claim 5, and culturing the transformant to obtain an engineering strain for biosynthesizing mogroside V by using mogrol as a substrate.
10. The method for constructing a genetically engineered bacterium according to claim 9, wherein: the host cell is Escherichia coli.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110919424.8A CN113584110A (en) | 2021-08-11 | 2021-08-11 | Construction and application of engineering strain for biosynthesizing mogroside V by taking mogrol as substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110919424.8A CN113584110A (en) | 2021-08-11 | 2021-08-11 | Construction and application of engineering strain for biosynthesizing mogroside V by taking mogrol as substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113584110A true CN113584110A (en) | 2021-11-02 |
Family
ID=78257235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110919424.8A Pending CN113584110A (en) | 2021-08-11 | 2021-08-11 | Construction and application of engineering strain for biosynthesizing mogroside V by taking mogrol as substrate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113584110A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112063647A (en) * | 2020-09-17 | 2020-12-11 | 云南农业大学 | Construction method of saccharomyces cerevisiae recombinant strain Cuol01, saccharomyces cerevisiae recombinant strain Cuol02 and application |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018016483A1 (en) * | 2016-07-19 | 2018-01-25 | サントリーホールディングス株式会社 | Method for producing mogrol or mogrol glycoside |
CN111108213A (en) * | 2017-05-03 | 2020-05-05 | 弗门尼舍公司 | Process for preparing high intensity sweeteners |
-
2021
- 2021-08-11 CN CN202110919424.8A patent/CN113584110A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018016483A1 (en) * | 2016-07-19 | 2018-01-25 | サントリーホールディングス株式会社 | Method for producing mogrol or mogrol glycoside |
CN111108213A (en) * | 2017-05-03 | 2020-05-05 | 弗门尼舍公司 | Process for preparing high intensity sweeteners |
Non-Patent Citations (3)
Title |
---|
DONG WANGA ET AL.: "Elucidation of the complete biosynthetic pathway of the main triterpene glycosylation products of Panax notoginseng using a synthetic biology platform", METABOLIC ENGINEERING, vol. 61, pages 131 - 140 * |
JIANGSHENG ZHANG ET AL.: "Oxidation of Cucurbitadienol Catalyzed by CYP87D18 in the Biosynthesis of Mogrosides from Siraitia grosvenorii", PLANT AND CELL PHYSIOLOGY, vol. 57, no. 5, pages 1000 - 1007, XP055819421, DOI: 10.1093/pcp/pcw038 * |
LONGHAI DAI ET AL: "Functional Characterization of Cucurbitadienol Synthase and Triterpene Glycosyltransferase Involved in Biosynthesis of Mogrosides from Siraitia grosvenorii", PLANT AND CELL PHYSIOLOGY, vol. 56, no. 6, pages 1172 - 1182 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112063647A (en) * | 2020-09-17 | 2020-12-11 | 云南农业大学 | Construction method of saccharomyces cerevisiae recombinant strain Cuol01, saccharomyces cerevisiae recombinant strain Cuol02 and application |
CN112063647B (en) * | 2020-09-17 | 2023-05-02 | 云南农业大学 | Construction method of saccharomyces cerevisiae recombinant Cuol01, saccharomyces cerevisiae recombinant Cuol02 and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2022203048B2 (en) | Recombinant production of steviol glycosides | |
CN111712570B (en) | Engineering strain for producing psicose and derivatives thereof, construction method and application thereof | |
EP2902410B1 (en) | Method for producing stevioside compounds by microorganism | |
US9127287B2 (en) | Compositions and methods for producing fermentable carbohydrates | |
CN106103729A (en) | Being prepared by recombinant of steviol glycoside | |
CN114164191B (en) | Method for efficiently biosynthesizing rebaudioside D by utilizing glycosyltransferase | |
WO2018229283A1 (en) | Production of mogroside compounds in recombinant hosts | |
CN108138152B (en) | Kaurenoic acid hydroxylase | |
CN112063678A (en) | Biosynthesis method of Siamenoside I | |
CN111088175A (en) | Yarrowia lipolytica for producing bisabolene and construction method and application thereof | |
CN113584110A (en) | Construction and application of engineering strain for biosynthesizing mogroside V by taking mogrol as substrate | |
KR101533352B1 (en) | Recombinant microorganism with kaurene production ability and method for preparing kaurene using the same | |
CN113957027B (en) | Genetically engineered bacterium for improving lactoyl-N-fucose yield and production method thereof | |
CN115418358B (en) | Glycosyltransferase and application thereof | |
CN115449514B (en) | Beta-1, 2-glycosyltransferase and application thereof | |
CN111424065B (en) | Method for glycosylating stevioside compounds by using glycosyltransferase | |
CN116656641A (en) | Caffeic acid O-methyltransferase mutant and application thereof | |
CN114134186A (en) | Method for synthesizing 5-hydroxy beta-indolyl alanine by using glucose as substrate through biological method | |
CN110072995B (en) | Kaurenoic acid hydroxylase | |
CN115478060B (en) | Glycosyltransferase and application thereof | |
CN114350580B (en) | Construction and application of resveratrol glycoside engineering strain biosynthesized by using resveratrol as substrate | |
CN115197887B (en) | Full-biological synthesis method for producing pimelic acid by utilizing Kleisen condensation reaction | |
CN118755690A (en) | Sucrose synthase and application thereof in biosynthesis of stevioside | |
CN118389559A (en) | Engineered cyanobacteria for producing psicose and preparation method thereof | |
CN115975827A (en) | Host cell and method for production of rubusoside |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhao Yunxian Inventor after: Yang Zhibin Inventor after: Hu Jianglin Inventor after: Cui Jinwang Inventor before: Zhao Yunxian Inventor before: Shu Rou Inventor before: Yang Zhibin Inventor before: Hu Jianglin Inventor before: Cui Jinwang Inventor before: Zhao Kai |