CN112063678A - Biosynthesis method of Siamenoside I - Google Patents

Biosynthesis method of Siamenoside I Download PDF

Info

Publication number
CN112063678A
CN112063678A CN202010993528.9A CN202010993528A CN112063678A CN 112063678 A CN112063678 A CN 112063678A CN 202010993528 A CN202010993528 A CN 202010993528A CN 112063678 A CN112063678 A CN 112063678A
Authority
CN
China
Prior art keywords
udp
glucose
leu
gly
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010993528.9A
Other languages
Chinese (zh)
Inventor
吴旭日
刘世强
徐允聪
赵玲
陈依军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Pharmaceutical University
Original Assignee
China Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Pharmaceutical University filed Critical China Pharmaceutical University
Priority to CN202010993528.9A priority Critical patent/CN112063678A/en
Publication of CN112063678A publication Critical patent/CN112063678A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • C12P33/20Preparation of steroids containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)

Abstract

The invention relates to the technical field of natural product biosynthesis and food chemical industry, in particular to a biosynthesis method of Siamenoside I; the invention relates to a preparation method of Siamenoside I, which comprises the steps of selectively hydrolyzing mogroside V by using glycoside hydrolase to prepare mogroside IIIE, modifying the mogroside IIIE by using UDP-glucose dependent glycosyltransferase and mutants thereof through site-directed glycosylation, and synthesizing the Siamenoside I. The invention realizes green biosynthesis of the Siamenoside I and lays a material foundation for the development of the Siamenoside I as a sweetening agent or a flavoring agent.

Description

Biosynthesis method of Siamenoside I
Technical Field
The invention belongs to the technical field of natural product biosynthesis and food chemical industry, and particularly relates to a method for preparing mogroside IIIE by using glycoside hydrolase mogroside V, modifying the mogroside IIIE by UDP-glucose dependent glycosyltransferase fixed-point glucosylation, and biosynthesizing a natural non-nutritional sweet compound Siamenoside I.
Background
Sweeteners are important materials indispensable in food and beverage products. In recent years, the consumption of human beings has exponentially increased with the improvement of living standard of human beings. Sweeteners are classified by their source and can be classified into synthetic sweeteners and natural sweeteners. The natural sweetener is sweet component extracted from natural product, and mainly comprises glucose, fructose, sucrose, stevioside, rubusoside, mogroside, glycyrrhizin, etc. The artificial non-nutritive sweetener is one kind of artificial or semi-synthetic cane sugar substitute, and includes mainly aspartame, acesulfame potassium, sodium cyclamate, saccharin sodium, sucralose and other matters (Mooradian AD et al. clinical Nutrition ESPEN,2017,18: 1-8). The artificial synthetic sweetener has low cost, low calorie, and little metabolism, and can be widely used in food, beverage, and medicine. However, the safety of synthetic sweeteners has been a significant contributor to their market acceptance. Therefore, the development of natural sweeteners harmless to human health is sought after in the market.
Momordica grosvenori (Siraitia grosvenorii) is a cucurbitaceae plant which is specific in China, mainly grows in tropical and subtropical areas such as Guangxi, Hunan, Guangdong, Guizhou and the like, is sweet and cool, and has the effects of moistening lung and promoting fluid production (Liu C et al. The analysis of the components of the momordica grosvenori shows that the momordica grosvenori contains various vitamins, essential amino acids, flavones and a plurality of triterpene glycoside compounds, wherein the cucurbitane tetracyclic triterpene saponin (collectively called momordica grosvenori glycoside) is a main sweet source of the momordica grosvenori, the sweetness is extremely high, the sweetness of the mixed glycoside is about 250-fold and 300-fold of that of sucrose, and the heat quantity is basically zero. Mogrosides (mixtures) have been used globally as sweeteners and odorants by virtue of their safety, high sweetness and low calorie properties. China has approved mogroside as a food additive in 1996. In addition, modern pharmacological experiments prove that the mogroside has various biological activities (Qi XY et al Nutr. Res.,2008,28: 278-.
More than 30 compounds of the same type have been isolated and identified since the isolation of sweet compounds from Lo Han Guo by Takemoto et al in 1983 (Takemoto T et al Yakugaku Zasshi,1983,103: 1167-. The number of the 3, 11 and 24 bits of the mogrol mother nucleus connected with glucose is a main factor for determining the sweetness and the mouthfeel of the mogroside. Currently, the Siamenoside I with 3 glucosyl groups connected to the 24-position and 1 glucosyl group connected to the 3-position has the highest sweetness (563 times of the sweetness of 5% sucrose) and the mouthfeel is closest to that of sucrose in the discovered mogrosides. However, Siamenoside I is very low in Siamenoside I, the yield of extraction and purification is less than 0.045% (Matsumoto K et al. chem. pharm. Bull.,1990,38: 2030. 2032), the growth period of Siamenoside I is long, and the plantable range is small, so that Siamenoside I cannot be developed into a non-nutritive sweetener until now.
Figure BDA0002691742140000021
In addition, the existing chemical method is difficult to synthesize the Siamenoside I regioselectively and stereoselectively due to the existence of a plurality of glucose groups in the structure, and the biological catalysis technology taking enzyme as a catalyst presents the advantage which is difficult to match in the aspect of selective synthesis.
Disclosure of Invention
The invention discloses a brand new preparation method of Siamenoside I, which is characterized in that glycoside hydrolase is adopted to selectively hydrolyze mogroside V to prepare mogroside IIIE, UDP-glucose dependent glycosyltransferase and a brand new mutant thereof are used to modify the mogroside IIIE in a site-specific glycosylation manner, and Siamenoside I is biosynthesized.
In order to achieve the purpose, the technical scheme adopted by the invention is as follows:
1) the glycoside hydrolase is EXG1 (amino acid sequence is shown as SEQ ID NO:1) from Saccharomyces cerevisiae and Asn (amino acid sequence is shown as SEQ ID NO: 2) from Aspergillus niger.
2) The UDP-glucose-dependent glycosyltransferase is derived from glycosyltransferase UGT94-289-2 of Siraitia grosvenorii and mutants thereof, and the amino acid sequence is shown as SEQ ID NO. 3.
3) The UGT94-289-2 mutant is a single-point or multi-point mutant of W16, K53, L93, M94, L97, I124, L125, T146, M150, T154, T181, T182, I194, E195, E275 and S308 in the amino acid sequence, and the mutation result is shown in the examples in detail.
4) The glycoside hydrolase and UDP-glucose dependent glycosyltransferase were used to construct plasmids separately.
5) The glycoside hydrolase and the UDP-glucose-dependent glycosyltransferase can be independently or co-expressed in Escherichia coli or Escherichia coli modified by UDP-glucose metabolic pathway to prepare the biocatalyst for biosynthesis of Siamenoside I, the heterologous expression host is only an example and is not limited to the scope of the invention, and the glycoside hydrolase and the UDP-glucose-dependent glycosyltransferase can also be expressed in lactobacillus, streptomyces, saccharomycetes, Bacillus subtilis and the like.
5) The Escherichia coli modified by the UDP-glucose metabolic pathway is a strain for constructing a sucrose synthase-UDP-glucose circulating system or a UDP-glucose metabolic pathway reconstructed strain (CN110699373A) constructed by the inventor in the early stage.
6.1) cell extract reaction system: breaking escherichia coli independently expressing or co-expressing glycoside hydrolase and UDP-glucose dependent glycosyltransferase, centrifuging to obtain a bacterial liquid, sequentially adding mogroside V and UDP-glucose to construct a biosynthesis system, and directionally synthesizing the Simenoside I.
6.2) resting cell reaction system: after the escherichia coli buffer solution for independently expressing or co-expressing the glycoside hydrolase and UDP-glucose dependent glycosyltransferase is resuspended, UDP-glucose is added or not added, a biosynthesis system is constructed, and the Siamenoside I is directionally synthesized.
6.3) in-situ reaction system: after the induction of escherichia coli co-expressing glycoside hydrolase and UDP-glucose dependent glycosyltransferase is finished, mogroside V is directly added into fermentation liquor to construct a biosynthesis system, and Siamenoside I is directionally synthesized.
Figure BDA0002691742140000031
Through reaction condition optimization, the biosynthesis process of the Siamenoside I disclosed by the invention shows a series of advantages: i) the concentration of the substrate is high and can reach 15 g/L; 2) the reaction efficiency is high, and the conversion rate can reach more than 95%; 3) the product is single and easy to purify; 4) the use of exogenous UDP-glucose is avoided, and the cost is greatly reduced. Compared with the reported process, the green synthesis process disclosed by the invention lays a foundation for the commercial development of Siamenoside I, and expands the imagination space for developing the single-component momordica glycoside sweetener.
The invention has the following advantages:
the UGT94-289-2 mutant disclosed by the invention is UDP-glucose dependent glycosyltransferase reported for the first time. At present, only the mogroside V (containing 5 glucose groups) with high natural content can be industrially prepared from reported mogrosides. By combining the factors, the invention adopts glycoside hydrolase to selectively hydrolyze the mogroside V and directionally synthesize the mogroside IIIE (containing 3 glucose groups); the single product Siamenoside I is synthesized in a green way by modifying the mogroside IIIE by utilizing a UDP-glucose dependent glycosyltransferase region and stereoselective glucosylation. Compared with the reported method for preparing the Siamenoside I by carrying out enzymolysis on the mogroside V (Wang R et al. food chem.,2019,276:43-49), the double-enzyme coupling synthesis process established by the invention has the advantages of high substrate concentration, single product, high conversion rate, easy purification of the product and the like, and lays a material foundation for the industrial development of the Siamenoside I sweetener.
In conclusion, the biosynthesis method of the Siamenoside I disclosed by the invention is green and environment-friendly, and is not reported in documents. Compared with the process for preparing the Siamenoside I by enzymolysis of the mogroside V, the method has the remarkable advantages of high efficiency and single product, and is expected to be used for large-scale production of the Siamenoside I. Therefore, the novel preparation process of the Siamenoside I disclosed by the invention has great potential application value.
Drawings
FIG. 1 is an SDS-PAGE analysis of Exg1 and Asn, where A is Exg1 and B is Asn.
FIG. 2 is an SDS-PAGE analysis of UGT94-289-2 and mutants thereof, wherein A-D is UGT94-289-2 and mutants thereof.
FIG. 3 is an HPLC analysis of mogroside V, IIIE and Siamenoside I.
FIG. 4 is a schematic diagram of a co-expression plasmid, wherein A is pETDute-L97W1-AtSUS1, and B is pETDute-AtSUS1-L97W 1.
Detailed Description
The following examples illustrate specific steps of the present invention, but the scope of the present invention is not limited by these examples.
Example 1 construction of glycoside hydrolase-expressing Strain
Exg 1A glycosyl transferase (amino acid sequence is shown in SEQ ID NO:1 and nucleotide sequence is shown in SEQ ID NO: 4) from Saccharomyces cerevisiae, its coding gene is entrusted to CRO company for synthesis, and pET28a (+) is used to construct expression plasmid pET28a-exg1, which is transformed to E.coli BL21 to obtain engineering strain E.coli-pExg.
Asn is a glycosyltransferase (amino acid sequence is shown as SEQ ID NO:2, nucleotide sequence is shown as SEQ ID NO: 5) from Aspergillus niger, the coding gene of Asn is consigned to CRO company for synthesis, and pET28a (+) is used for constructing expression plasmid pET28a-Asn, and the expression plasmid is transformed into E.coli BL21 to obtain the engineering strain E.coli-pAsn.
Example 2 construction of glycosyltransferase and mutants thereof
TABLE 1 mutant amino acids and mutant List
Figure BDA0002691742140000041
Figure BDA0002691742140000051
Figure BDA0002691742140000061
Note: the mutant nucleotide sequences of double-point mutation and three-point mutation are shown in SEQ ID NO. 7-24.
UGT94-289-2 is UDP-glucose dependent glycosyltransferase (amino acid sequence is shown as SEQ ID NO:3, nucleotide sequence is shown as SEQ ID NO: 6) from Siraitia grosvenorii, coding genes of the UDP-glucose dependent glycosyltransferase are entrusted to CRO company for synthesis, pET22b (+) is utilized to construct expression plasmid pET22b-UGT-1, and the expression plasmid is transformed to E.coli BL21 to obtain the engineering strain E.coli-pUgt-1.
Results of molecular docking showed that W16, K53, L93, M94, L97, I124, L125, T146, M150, T154, T181, T182, I194, E195, E275, S308 are key amino acid residues for interaction with the sugar donor UDP-glucose and the substrate mogroside IIIE. The invention constructs a series of mutants aiming at the amino acid residues, and the specific amino acid residue mutation conditions are shown in the table (note: the mutation of the nucleotide sequence follows the codon preference of escherichia coli and the enzyme cutting site avoidance principle). The mutants are all used for constructing expression vectors by using pET22b (+), and are transformed into E.coli BL21 to obtain a plurality of engineering strains.
Example 3 Induction of expression of glycoside hydrolases
The E.coli engineering bacteria containing the glycoside hydrolase gene are respectively inoculated into an LB culture medium (containing 50 mu g/mL kanamycin), and are cultured overnight at 37 ℃ and 220rpm to obtain corresponding seed liquid. The seed solution was transferred to a new LB medium (containing 50. mu.g/mL kanamycin) at an inoculum size of 1%, and cultured at 37 ℃ to OD600When the concentration was 0.8. + -. 0.1, IPTG was added as an inducer to give a final concentration of 0.5mM, and induction culture was carried out at 15 ℃ for 12 hours. SDS-PAGE analysis showed that both glycoside hydrolase Exg1 and Asn were soluble and contained 12.8% and 14% of soluble protein (FIG. 1).
Example 4 inducible expression of glycosyltransferases and mutants thereof
The E.coli engineering bacteria containing the glycosyltransferase UGT94-289-2 and the mutant genes thereof are respectively inoculated into an LB culture medium (containing 100 mu g/mL ampicillin) and cultured overnight at 37 ℃ and 220rpm to obtain corresponding seed liquid. The seed solution was inoculated at 1% inoculum size to a new LB medium (containing 100. mu.g/mL ampicillin), and cultured at 37 ℃ to OD600When the concentration is 0.8 + -0.1, IPTG as an inducer is added to give a final concentration of 0.6mM, induction culture at 20 ℃ for 16 hours. SDS-PAGE analysis results show that although the glycosyltransferase UGT94-289-2 and the mutant thereof can be expressed in a soluble manner, the content of the glycosyltransferase UGT94-289-2 and the mutant thereof is low, and the expression level of all the mutants only accounts for about 3-5% of the soluble protein (figure 2).
Example 5 HPLC analytical method
A chromatographic column: YMC-Pack ODS-A (150 mm. times.4.6 mm, 5 μm); mobile phase A: ultrapure water (containing 0.1% formic acid); mobile phase B: acetonitrile (0.1% formic acid); sample introduction amount: 5 mu L of the solution; column temperature: 30 ℃; detection wavelength: 205 nm; flow rate: 1.0 mL/min; gradient elution: 10% B-90% B, 25 min. Under the above HPLC analysis conditions, the retention times of mogroside V, IIIE and Siamenoside I were 9.1min, 10.2min and 9.3min, as shown in FIG. 3.
Example 6 enzymatic Synthesis of mogroside IIIE
A50 mL reaction system comprises a substrate mogroside V (1-15 g/L), 25mL of crude enzyme solution of glycoside hydrolase Exg1 (protein concentration is 6mg/mL), and 0.05M NaAC-HAC buffer solution (pH is 6.0). After the reaction is carried out for 5-24 hours at 40 ℃, the reaction solution is boiled for 5min, diluted to 1mg/mL, centrifuged, filtered and analyzed by HPLC. The results show that mogroside V can be completely converted to the single product mogroside IIIE by 20 hours of reaction when the substrate concentration is less than or equal to 5 g/L.
A50 mL reaction system comprises a substrate mogroside V (1-15 g/L), 25mL of crude enzyme solution of glycoside hydrolase Asn (protein concentration is 6.5mg/mL), and 0.05M NaAC-HAC buffer solution (pH is 4.5). After the reaction is carried out for 5-24 hours at 37 ℃, the reaction solution is boiled for 5min, diluted to 1mg/mL, centrifuged, filtered and analyzed by HPLC. The results show that under all conditions of substrate concentration and reaction time, mogroside V can be completely converted into a single product mogroside IIIE.
Example 7 Whole cell biosynthesis of mogroside IIIE
After the induction expression is finished, collecting E.coli-pExg thalli, diluting and resuspending by adopting 0.05M NaAC-HAC buffer solution (pH 6.0), and adding mogroside V (1-5 g/L) to construct a whole-cell biosynthesis system. After 20 hours at 40 ℃ HPLC analysis was performed. The results show that mogroside V can be completely converted to the single product mogroside IIIE when the substrate concentration is less than or equal to 2 g/L.
After the induction expression is finished, E.coli-pAsn thalli are collected, diluted and resuspended by adopting 0.05M NaAC-HAC buffer solution (pH 6.0), and mogroside V (1-15 g/L) is added to construct a whole-cell biosynthesis system. After 12 hours at 37 ℃ HPLC analysis was performed. The results show that mogroside V can be completely converted to the single product mogroside IIIE when the substrate concentration is less than or equal to 5 g/L.
Example 8 Synthesis of Siamenoside I from UGT94-289-2 and mutants thereof
The 5mL reaction system comprises a substrate of mogroside IIIE (10mg/mL), UDP-glucose (29.4mg/mL), glycosyltransferase UGT94-289-2 or a crude mutant enzyme solution 4mL (protein concentration is 6.5mg/mL), and 0.05M Tris-HCl buffer solution (pH 9.0). After 24 hours of reaction at 25 ℃ with shaking, the reaction solution was boiled for 5min and diluted to 1mg/mL, centrifuged, filtered and analyzed by HPLC. The results are shown in the table below, and both mutants I194G and L97W/T181D/I194G were able to completely convert mogroside IIIE to the single product Siamenoside I.
TABLE 2 UGT94-289-2 mutant catalytic Activity
Figure BDA0002691742140000071
Figure BDA0002691742140000081
Figure BDA0002691742140000091
Figure BDA0002691742140000101
Example 9 comparison of catalytic efficiency of mutants I194G and L97W/T181D/I194G
The 5mL reaction system comprises substrates of mogroside IIIE (12.5 mg/mL-20 mg/mL), UDP-glucose (29.4mg/mL), UGT94-289-2 mutant I194G, L97W/T181D/I194G crude enzyme solution 4mL (protein concentration is 6.5mg/mL), 0.05M Tris-HCl buffer solution (pH 9.0) and the like. After 24 hours of reaction at 25 ℃ with shaking, the reaction solution was boiled for 5min and diluted to 1mg/mL, centrifuged, filtered and analyzed by HPLC. The results are shown in the table below, and the mutant L97W/T181D/I194G is obviously superior to the mutant I194G in catalytic activity and can catalyze the substantial and complete conversion of 15mg/mL mogroside IIIE into Siamenoside I.
TABLE 3 catalytic efficiency of mutants I194G and L97W/T181D/I194G
Figure BDA0002691742140000102
Example 10 resting cell response of engineered Strain expressing mutant L97W/T181D/I194G
After the induction culture is completed, the thalli are collected by centrifugation and diluted and resuspended by using 0.05M Tris-HCl buffer solution (pH 9.0), and then mogroside IIIE (15mg/mL) and UDP-glucose (0 or 29.4mg/mL) are added to construct a whole-cell catalytic system. After 24 hours of shaking reaction at 25 ℃, the reaction solution was boiled for 5min, centrifuged to remove the bacterial cells, diluted to a substrate concentration of 1mg/mL, filtered and analyzed by HPLC. The results show that the yields of Siamenoside I are 47.5% and 82.8% respectively when the UDP-glucose concentration is 0 and 29.4 mg/mL.
Example 11 in situ catalysis of the engineered Strain expressing mutant L97W/T181D/I194G
After the induction culture is completed, glucose is added to the fermentation broth to 5mg/mL, and the pH value of the fermentation broth is adjusted to 9.0. Adding mogroside IIIE (15mg/mL) and UDP-glucose (0 or 29.4mg/mL) into the fermentation liquor to construct an in-situ catalytic system. After 24 hours of shaking reaction at 25 ℃, the reaction solution was boiled for 5min, centrifuged to remove the bacterial cells, diluted to a substrate concentration of 1mg/mL, filtered and analyzed by HPLC. The results show that the yields of Siamenoside I are 34.8% and 69.5% when the UDP-glucose concentration is 0 and 29.4mg/mL, respectively.
Example 12 sucrose synthase-UDP-glucose cycling System and biosynthesis of Siamenoside I
Figure BDA0002691742140000111
A co-expression plasmid (FIG. 4) of sucrose synthase (Arabidopsis thaliana sucrose synthase abbreviated as AtSUS1 and Vigna radiata sucrose synthase abbreviated as VrSUS1) and mutant L97W/T181D/I194G (abbreviated as L97W1) was constructed by using a co-expression vector pETDuet-1 and using restriction sites such as Nco I/Hind III and Nde I/Xho I, and E.coli BL21 was introduced to obtain co-expression strains E.coli-W01, E.coli-W02, E.coli-W03 and E.coli-W04. The induced expression condition of the engineering strain IPTG is 0.5mM IPTG, 15 ℃ and 16 hours. After induction expression is finished, collecting thalli, diluting and resuspending in 0.05M Tris-HCl buffer solution (pH 9.0), and constructing a whole-cell biocatalysis system: the substrate, mogroside IIIE, is 5mg/mL, sucrose is 500mg/mL, and the reaction is carried out for 12 hours at 25 ℃ with shaking. After the reaction is finished, the HPLC analysis result is shown in the following table, and the synthesis efficiency of Siamenoside I catalyzed by E.coli-W01 is the highest, which shows that: 1) the plasmid pETDuet-AtSUS1-L97W1 obtained by inserting the Arabidopsis thaliana sucrose synthase gene into the multiple cloning site 1 and inserting the mutant L97W/T181D/I194G gene into the multiple cloning site 2 is beneficial to synthesis of Simenoside I; 2) the activity matching degree of the Arabidopsis thaliana sucrose synthase and the mutant is higher, and the synthesis of the Simenoside I is facilitated.
TABLE 4 Synthesis efficiency of Siamenoside I
Figure BDA0002691742140000112
Figure BDA0002691742140000121
Example 13 modification of the UDP-glucose biosynthetic pathway and biosynthesis of Siamenoside I
The co-expression plasmid pETDuet-AtSUS1-L97W1 was introduced into the engineering strain E.coli CPM. DELTA.U &2(CN110699373A) which was a precursor strain for engineering UDP-glucose biosynthesis pathway and used in the construction of the engineering strain E.coli-W05. The induction expression conditions were the same as in example 12, and after the expression, the cells were collected, diluted and resuspended in 0.05M Tris-HCl buffer (pH 9.0), and a whole-cell biocatalysis system was constructed: the substrate, mogroside IIIE, is 5mg/mL, sucrose is 500mg/mL, and the reaction is carried out for 12 hours at 25 ℃ with shaking. After the reaction is finished, HPLC analysis and detection results show that the mogroside IIIE is completely converted into Siamenoside I.
Example 14 biosynthesis of substrate concentration with Simenoside I
Collecting E.coli-W05 thallus after induction expression, diluting and resuspending in 0.05M Tris-HCl buffer solution (pH 9.0), and constructing a whole-cell biocatalysis system: 5-15 mg/mL of mogroside IIIE serving as a substrate, 500mg/mL of cane sugar and shaking reaction at 25 ℃ for 12 hours. After the reaction is finished, HPLC analysis and detection results show that the yield of Siamenoside I is more than 97% when the concentration of the mogroside IIIE is less than or equal to 7.5 mg/mL; siamenoside I yields were 92.5%, 88.1%, and 82% at 10mg/mL, 12.5mg/mL, and 15mg/mL mogroside IIIE, respectively.
Example 15 biosynthesis of Simenoside I by glycoside hydrolase tandem E.coli-W05
A hydrolysis system (50mL) with Asn catalyzing 10mg/mL mogroside V was constructed as in example 6, after the reaction was completed, Asn was boiled and inactivated to obtain a reaction solution containing mogroside IIIE at about 5mg/mL, and pH was adjusted to 9.0 with NaAC to obtain suspension I. Dilute and resuspend e.coli-W05 with suspension I (induction completed) and add sucrose to 500mg/mL to construct a whole cell catalytic system. After 12 hours of reaction at 25 ℃ with shaking, HPLC analysis showed: asn catalyzes the mogroside IIIE prepared by hydrolyzing the mogroside V to be completely converted into Siamenoside I, and no mogroside V and IIIE residue exists.
Example 15 Synthesis of Simenoside I by Dual-bacterial catalysis of E.coli-pAsn and E.coli-W05
A whole-cell reaction system (50mL) was constructed according to example 7, e.coli-pAsn (induction completed) catalyzes hydrolysis of 5mg/mL mogroside V, and after the reaction was completed, Asn was boiled to inactivate to obtain a reaction solution containing about 2.5mg/mL mogroside IIIE, and pH was adjusted to 9.0 with NaAC to obtain suspension II. Dilute suspension II and resuspend e.coli-W05 (complete induction), add sucrose to 500mg/mL, construct whole cell catalytic system. After 12 hours of reaction at 25 ℃ with shaking, HPLC analysis showed: siamenoside I is a single product, and has no mogroside V and IIIE residues.
Example 16 E. construction of coli-W06 and Synthesis of Siamenoside I
pET28a-asn was introduced into E.coli-W05 to obtain an engineered strain E.coli-W06 co-expressing glycoside hydrolase and glycosyltransferase. After induction expression (0.5mM IPTG, 15 ℃, 16 hours), collecting thalli, and adopting buffer solutions with different pH values (pH4.5-9.0) to respectively construct a whole-cell biocatalysis system. In each reaction system, the mogroside V is 5mg/mL, the sucrose is 500mg/mL, and the reaction is carried out for 12 hours at 25 ℃ with shaking. After the reaction is finished, the HPLC result is shown in the following table, E.coli-W06 can catalyze the hydrolysis of mogroside V into IIIE, and the site-directed glycosylation generates Siamenoside I, but the efficiency needs to be further improved.
TABLE 5 E. coli-W06 catalytic Synthesis of Siamenoside I
Reaction system Mogroside V Mogroside III Siamenoside I
pH 4.5 0 92.5% 7.5%
pH 5.0 1.1% 90.0% 8.9%
pH 5.5 7.4% 85.7% 6.9%
pH 6.0 23.7% 62.6% 13.7%
pH 6.5 38.9% 42.6% 18.5%
pH 7.0 42.1% 10.3% 47.6%
pH 7.5 51.5% 9.4% 39.1%
pH 8.0 88.4% 1.5% 10.1%
pH 8.5 95.8% 0 4.2%
pH 9.0 98.6% 0 1.4%
Sequence listing
<110> university of Chinese pharmacy
<120> biosynthesis method of Siamenoside I
<160> 24
<170> SIPOSequenceListing 1.0
<210> 1
<211> 448
<212> PRT
<213> Exg1 amino acid sequence (2 Ambystoma laterale x Ambystoma jeffersonoanum)
<400> 1
Met Leu Ser Leu Lys Thr Leu Leu Cys Thr Leu Leu Thr Val Ser Ser
1 5 10 15
Val Leu Ala Thr Pro Val Pro Ala Arg Asp Pro Ser Ser Ile Gln Phe
20 25 30
Val His Glu Glu Asn Lys Lys Arg Tyr Tyr Asp Tyr Asp His Gly Ser
35 40 45
Leu Gly Glu Pro Ile Arg Gly Val Asn Ile Gly Gly Trp Leu Leu Leu
50 55 60
Glu Pro Tyr Ile Thr Pro Ser Leu Phe Glu Ala Phe Arg Thr Asn Asp
65 70 75 80
Asp Asn Asp Glu Gly Ile Pro Val Asp Glu Tyr His Phe Cys Gln Tyr
85 90 95
Leu Gly Lys Asp Leu Ala Lys Ser Arg Leu Gln Ser His Trp Ser Thr
100 105 110
Phe Tyr Gln Glu Gln Asp Phe Ala Asn Ile Ala Ser Gln Gly Phe Asn
115 120 125
Leu Val Arg Ile Pro Ile Gly Tyr Trp Ala Phe Gln Thr Leu Asp Asp
130 135 140
Asp Pro Tyr Val Ser Gly Leu Gln Glu Ser Tyr Leu Asp Gln Ala Ile
145 150 155 160
Gly Trp Ala Arg Asn Asn Ser Leu Lys Val Trp Val Asp Leu His Gly
165 170 175
Ala Ala Gly Ser Gln Asn Gly Phe Asp Asn Ser Gly Leu Arg Asp Ser
180 185 190
Tyr Lys Phe Leu Glu Asp Ser Asn Leu Ala Val Thr Thr Asn Val Leu
195 200 205
Asn Tyr Ile Leu Lys Lys Tyr Ser Ala Glu Glu Tyr Leu Asp Thr Val
210 215 220
Ile Gly Ile Glu Leu Ile Asn Glu Pro Leu Gly Pro Val Leu Asp Met
225 230 235 240
Asp Lys Met Lys Asn Asp Tyr Leu Ala Pro Ala Tyr Glu Tyr Leu Arg
245 250 255
Asn Asn Ile Lys Ser Asp Gln Val Ile Ile Ile His Asp Ala Phe Gln
260 265 270
Pro Tyr Asn Tyr Trp Asp Asp Phe Met Thr Glu Asn Asp Gly Tyr Trp
275 280 285
Gly Val Thr Ile Asp His His His Tyr Gln Val Phe Ala Ser Asp Gln
290 295 300
Leu Glu Arg Ser Ile Asp Glu His Ile Lys Val Ala Cys Glu Trp Gly
305 310 315 320
Thr Gly Val Leu Asn Glu Ser His Trp Thr Val Cys Gly Glu Phe Ala
325 330 335
Ala Ala Leu Thr Asp Cys Thr Lys Trp Leu Asn Ser Val Gly Phe Gly
340 345 350
Ala Arg Tyr Asp Gly Ser Trp Val Asn Gly Asp Gln Thr Ser Ser Tyr
355 360 365
Ile Gly Ser Cys Ala Asn Asn Asp Asp Ile Ala Tyr Trp Ser Asp Glu
370 375 380
Arg Lys Glu Asn Thr Arg Arg Tyr Val Glu Ala Gln Leu Asp Ala Phe
385 390 395 400
Glu Met Arg Gly Gly Trp Ile Ile Trp Cys Tyr Lys Thr Glu Ser Ser
405 410 415
Leu Glu Trp Asp Ala Gln Arg Leu Met Phe Asn Gly Leu Phe Pro Gln
420 425 430
Pro Leu Thr Asp Arg Lys Tyr Pro Asn Gln Cys Gly Thr Ile Ser Asn
435 440 445
<210> 2
<211> 860
<212> PRT
<213> Asn amino acid sequence (2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 2
Met Arg Phe Thr Leu Ile Glu Ala Val Ala Leu Thr Ala Val Ser Leu
1 5 10 15
Ala Ser Ala Asp Glu Leu Ala Tyr Ser Pro Pro Tyr Tyr Pro Ser Pro
20 25 30
Trp Ala Asn Gly Gln Gly Asp Trp Ala Glu Ala Tyr Gln Arg Ala Val
35 40 45
Asp Ile Val Ser Gln Met Thr Leu Ala Glu Lys Val Asn Leu Thr Thr
50 55 60
Gly Thr Gly Trp Glu Leu Glu Leu Cys Val Gly Gln Thr Gly Gly Val
65 70 75 80
Pro Arg Leu Gly Ile Pro Gly Met Cys Ala Gln Asp Ser Pro Leu Gly
85 90 95
Val Arg Asp Ser Asp Tyr Asn Ser Ala Phe Pro Ala Gly Val Asn Val
100 105 110
Ala Ala Thr Trp Asp Lys Asn Leu Ala Tyr Leu Arg Gly Gln Ala Met
115 120 125
Gly Gln Glu Phe Ser Asp Lys Gly Ala Asp Ile Gln Leu Gly Pro Ala
130 135 140
Ala Gly Pro Leu Gly Arg Ser Pro Asp Gly Gly Arg Asn Trp Glu Gly
145 150 155 160
Phe Ser Pro Asp Pro Ala Leu Ser Gly Val Leu Phe Ala Glu Thr Ile
165 170 175
Lys Gly Ile Gln Asp Ala Gly Val Val Ala Thr Ala Lys His Tyr Ile
180 185 190
Ala Tyr Glu Gln Glu His Phe Arg Gln Ala Pro Glu Ala Gln Gly Tyr
195 200 205
Gly Phe Asn Ile Thr Glu Ser Arg Ser Ala Asn Leu Asp Asp Lys Thr
210 215 220
Met His Glu Leu Tyr Leu Trp Pro Phe Ala Asp Ala Ile Arg Ala Gly
225 230 235 240
Ala Gly Ala Val Met Cys Ser Tyr Asn Gln Ile Asn Asn Ser Tyr Gly
245 250 255
Cys Gln Asn Ser Tyr Thr Leu Asn Lys Leu Leu Lys Ala Glu Leu Gly
260 265 270
Phe Gln Gly Phe Val Met Ser Asp Trp Ala Ala His His Ala Gly Val
275 280 285
Ser Gly Ala Leu Ala Gly Leu Asp Met Ser Met Pro Gly Asp Val Asp
290 295 300
Tyr Asp Ser Gly Thr Ser Tyr Trp Gly Thr Asn Leu Thr Ile Ser Val
305 310 315 320
Leu Asn Gly Thr Ala Pro Gln Trp Arg Val Asp Asp Met Ala Val Arg
325 330 335
Ile Met Ala Ala Tyr Tyr Lys Val Gly Arg Asp Arg Leu Trp Thr Pro
340 345 350
Pro Asn Phe Ser Ser Trp Thr Arg Asp Glu Tyr Gly Phe Lys Tyr Tyr
355 360 365
Tyr Val Ser Glu Gly Pro Tyr Glu Lys Val Asn Gln Phe Val Asn Val
370 375 380
Gln Arg Asn His Ser Glu Leu Ile Arg Arg Ile Gly Ala Asp Ser Thr
385 390 395 400
Val Leu Leu Lys Asn Asp Gly Ala Leu Pro Leu Thr Gly Lys Glu Arg
405 410 415
Leu Val Ala Leu Ile Gly Glu Asp Ala Gly Ser Asn Pro Tyr Gly Ala
420 425 430
Asn Gly Cys Ser Asp Arg Gly Cys Asp Asn Gly Thr Leu Ala Met Gly
435 440 445
Trp Gly Ser Gly Thr Ala Asn Phe Pro Tyr Leu Val Thr Pro Glu Gln
450 455 460
Ala Ile Ser Asn Glu Val Leu Lys Asn Lys Asn Gly Val Phe Thr Ala
465 470 475 480
Thr Asp Asn Trp Ala Ile Asp Gln Ile Glu Ala Leu Ala Lys Thr Ala
485 490 495
Ser Val Ser Leu Val Phe Val Asn Ala Asp Ser Gly Glu Gly Tyr Ile
500 505 510
Asn Val Asp Gly Asn Leu Gly Asp Arg Arg Asn Leu Thr Leu Trp Arg
515 520 525
Asn Gly Asp Asn Val Ile Lys Ala Ala Ala Ser Asn Cys Asn Asn Thr
530 535 540
Ile Val Ile Ile His Ser Val Gly Pro Val Leu Val Asn Glu Trp Tyr
545 550 555 560
Asp Asn Pro Asn Val Thr Ala Ile Leu Trp Gly Gly Leu Pro Gly Gln
565 570 575
Glu Ser Gly Asn Ser Leu Ala Asp Val Leu Tyr Gly Arg Val Asn Pro
580 585 590
Gly Ala Lys Ser Pro Phe Thr Trp Gly Lys Thr Arg Glu Ala Tyr Gln
595 600 605
Asp Tyr Leu Tyr Thr Glu Pro Asn Asn Gly Asn Gly Ala Pro Gln Glu
610 615 620
Asp Phe Val Glu Gly Val Phe Ile Asp Tyr Arg Gly Phe Asp Lys Arg
625 630 635 640
Asn Glu Thr Pro Ile Tyr Glu Phe Gly Tyr Gly Leu Ser Tyr Thr Thr
645 650 655
Phe Asn Tyr Ser Asn Leu Gln Val Glu Val Leu Ser Ala Pro Ala Tyr
660 665 670
Glu Pro Ala Ser Gly Glu Thr Glu Ala Ala Pro Thr Phe Gly Glu Val
675 680 685
Gly Asn Ala Ser Asp Tyr Leu Tyr Pro Asp Gly Leu Gln Arg Ile Thr
690 695 700
Lys Phe Ile Tyr Pro Trp Leu Asn Ser Thr Asp Leu Glu Ala Ser Ser
705 710 715 720
Gly Asp Ala Ser Tyr Gly Gln Asp Ala Ser Asp Tyr Leu Pro Glu Gly
725 730 735
Ala Thr Asp Gly Ser Ala Gln Pro Ile Leu Pro Ala Gly Gly Gly Ala
740 745 750
Gly Gly Asn Pro Arg Leu Tyr Asp Glu Leu Ile Arg Val Ser Val Thr
755 760 765
Ile Lys Asn Thr Gly Lys Val Ala Gly Asp Glu Val Pro Gln Leu Tyr
770 775 780
Val Ser Leu Gly Gly Pro Asn Glu Pro Lys Ile Val Leu Arg Gln Phe
785 790 795 800
Glu Arg Ile Thr Leu Gln Pro Ser Lys Glu Thr Gln Trp Ser Thr Thr
805 810 815
Leu Thr Arg Arg Asp Leu Ala Asn Trp Asn Val Glu Thr Gln Asp Trp
820 825 830
Glu Ile Thr Ser Tyr Pro Lys Met Val Phe Ala Gly Ser Ser Ser Arg
835 840 845
Lys Leu Pro Leu Arg Ala Ser Leu Pro Thr Val His
850 855 860
<210> 3
<211> 459
<212> PRT
<213> UGT94-289-2 amino acid sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 3
Met Asp Ala Gln Gln Gly His Thr Thr Thr Ile Leu Met Leu Pro Trp
1 5 10 15
Val Gly Tyr Gly His Leu Leu Pro Phe Leu Glu Leu Ala Lys Ser Leu
20 25 30
Ser Arg Arg Lys Leu Phe His Ile Tyr Phe Cys Ser Thr Ser Val Ser
35 40 45
Leu Asp Ala Ile Lys Pro Lys Leu Pro Pro Ser Ile Ser Ser Asp Asp
50 55 60
Ser Ile Gln Leu Val Glu Leu Arg Leu Pro Ser Ser Pro Glu Leu Pro
65 70 75 80
Pro His Leu His Thr Thr Asn Gly Leu Pro Ser His Leu Met Pro Ala
85 90 95
Leu His Gln Ala Phe Val Met Ala Ala Gln His Phe Gln Val Ile Leu
100 105 110
Gln Thr Leu Ala Pro His Leu Leu Ile Tyr Asp Ile Leu Gln Pro Trp
115 120 125
Ala Pro Gln Val Ala Ser Ser Leu Asn Ile Pro Ala Ile Asn Phe Ser
130 135 140
Thr Thr Gly Ala Ser Met Leu Ser Arg Thr Leu His Pro Thr His Tyr
145 150 155 160
Pro Ser Ser Lys Phe Pro Ile Ser Glu Phe Val Leu His Asn His Trp
165 170 175
Arg Ala Met Tyr Thr Thr Ala Asp Gly Ala Leu Thr Glu Glu Gly His
180 185 190
Lys Ile Glu Glu Thr Leu Ala Asn Cys Leu His Thr Ser Cys Gly Val
195 200 205
Val Leu Val Asn Ser Phe Arg Glu Leu Glu Thr Lys Tyr Ile Asp Tyr
210 215 220
Leu Ser Val Leu Leu Asn Lys Lys Val Val Pro Val Gly Pro Leu Val
225 230 235 240
Tyr Glu Pro Asn Gln Glu Gly Glu Asp Glu Gly Tyr Ser Ser Ile Lys
245 250 255
Asn Trp Leu Asp Lys Lys Glu Pro Ser Ser Thr Val Phe Val Ser Phe
260 265 270
Gly Thr Glu Tyr Phe Pro Ser Lys Glu Glu Met Glu Glu Ile Ala Tyr
275 280 285
Gly Leu Glu Leu Ser Glu Val Asn Phe Ile Trp Val Leu Arg Phe Pro
290 295 300
Gln Gly Asp Ser Thr Ser Thr Ile Glu Asp Ala Leu Pro Lys Gly Phe
305 310 315 320
Leu Glu Arg Ala Gly Glu Arg Ala Met Val Val Lys Gly Trp Ala Pro
325 330 335
Gln Ala Lys Ile Leu Lys His Trp Ser Thr Gly Gly Leu Val Ser His
340 345 350
Cys Gly Trp Asn Ser Met Met Glu Gly Met Met Phe Gly Val Pro Ile
355 360 365
Ile Ala Val Pro Met His Leu Asp Gln Pro Phe Asn Ala Gly Leu Val
370 375 380
Glu Glu Ala Gly Val Gly Val Glu Ala Lys Arg Asp Ser Asp Gly Lys
385 390 395 400
Ile Gln Arg Glu Glu Val Ala Lys Ser Ile Lys Glu Val Val Ile Glu
405 410 415
Lys Thr Arg Glu Asp Val Arg Lys Lys Ala Arg Glu Met Gly Glu Ile
420 425 430
Leu Arg Ser Lys Gly Asp Glu Lys Ile Asp Glu Leu Val Ala Glu Ile
435 440 445
Ser Leu Leu Arg Lys Lys Ala Pro Cys Ser Ile
450 455
<210> 4
<211> 1347
<212> DNA
<213> Exg1 nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 4
atgctttcgc ttaaaacgtt actgtgtacg ttgttgactg tgtcatcagt actcgctacc 60
ccagtccctg caagagaccc ttcttccatt caatttgttc atgaggagaa caagaaaaga 120
tactacgatt atgaccacgg ttccctcgga gaaccaatcc gtggtgtcaa cattggtggt 180
tggttacttc ttgaaccata cattactcca tctttgttcg aggctttccg tacaaatgat 240
gacaacgacg aaggaattcc tgtcgacgaa tatcacttct gtcaatattt aggtaaggat 300
ttggctaaaa gccgtttaca gagccattgg tctactttct accaagaaca agatttcgct 360
aatattgctt cccaaggttt caaccttgtc agaattccta tcggttactg ggctttccaa 420
actttggacg atgatcctta tgttagcggc ctacaggaat cttacctaga ccaagccatc 480
ggttgggcta gaaacaacag cttgaaagtt tgggttgatt tgcatggtgc cgctggttcg 540
cagaacgggt ttgataactc tggtttgaga gattcataca agtttttgga agacagcaat 600
ttggccgtta ctacaaatgt cttgaactac atattgaaaa aatactctgc ggaggaatac 660
ttggacactg ttattggtat cgaattgatt aatgagccat tgggtcctgt tctagacatg 720
gataaaatga agaatgacta cttggcacct gcttacgaat acttgagaaa caacatcaag 780
agtgaccaag ttatcatcat ccatgacgct ttccaaccat acaattattg ggatgacttc 840
atgactgaaa acgatggcta ctggggtgtc actatcgacc atcatcacta ccaagtcttt 900
gcttctgatc aattggaaag atccattgat gaacatatta aagtagcttg tgaatggggt 960
accggagttt tgaatgaatc ccactggact gtttgtggtg agtttgctgc cgctttgact 1020
gattgtacaa aatggttgaa tagtgttggc ttcggcgcta gatacgacgg ttcttgggtc 1080
aatggtgacc aaacatcttc ttacattggc tcttgtgcta acaacgatga tatagcttac 1140
tggtctgacg aaagaaagga aaacacaaga cgttatgtgg aggcacaact agatgccttt 1200
gaaatgagag ggggttggat tatctggtgt tacaagacag aatctagttt ggaatgggat 1260
gctcaaagat tgatgttcaa tggtttattc cctcaaccat tgactgacag aaagtatcca 1320
aaccaatgtg gcacaatttc taactaa 1347
<210> 5
<211> 2583
<212> DNA
<213> Asn nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 5
atgaggttca ctttgatcga ggcggtggct ctgactgccg tctcgctggc cagcgctgat 60
gaattggcct actccccgcc gtattacccc tccccttggg ccaatggcca gggtgactgg 120
gcggaagcat accagcgcgc tgttgatatc gtctcgcaga tgacattggc tgagaaggtc 180
aatttgacta cgggaactgg atgggaattg gaattatgtg ttggtcagac tggaggtgtt 240
ccccgattgg gaattccggg aatgtgtgca caggatagcc ctctgggtgt tcgtgactcc 300
gactacaact ctgcgttccc tgccggtgtc aacgtggccg caacctggga caagaatctg 360
gcttaccttc gtggccaggc tatgggtcag gagtttagtg acaagggtgc tgatatccaa 420
ttgggtccag ctgccggccc tctcggtaga agtcccgacg gcggtcgtaa ctgggagggc 480
ttctcccccg acccggccct cagtggtgtg ctctttgcag agacaatcaa gggtattcag 540
gatgctggtg tggttgcaac ggctaagcac tacatcgcct acgagcagga gcatttccgt 600
caggcgcctg aagctcaagg ctacggattc aatattaccg agagtagaag cgcgaacctc 660
gacgataaga ctatgcatga gctgtacctc tggcccttcg cggatgccat ccgtgcaggt 720
gccggtgctg tgatgtgctc gtacaaccag atcaacaaca gctatggctg ccaaaacagc 780
tacactctga acaagctgct caaggctgag ctgggtttcc agggctttgt catgagtgat 840
tgggcggctc accatgccgg tgtgagtggt gctttggcgg gattggacat gtctatgccg 900
ggagacgtcg attacgacag tggcacgtct tactggggta ccaacttgac catcagtgtg 960
ctcaacggga cggcgcccca atggcgtgtt gatgacatgg ctgtccgcat catggccgcc 1020
tactacaagg tcggccgtga ccgtctgtgg actcctccca acttcagctc atggaccaga 1080
gatgaatacg gcttcaagta ctactatgtc tcggagggac cgtatgagaa ggtcaaccag 1140
ttcgtgaacg tgcaacgcaa ccatagcgag ttgatccgcc gtattggagc agacagcacg 1200
gtgctcctca agaacgatgg cgctcttccc ttgactggaa aggagcgctt ggtcgccctt 1260
atcggagaag atgcgggttc caatccttat ggtgccaacg gctgcagtga ccgtgggtgc 1320
gacaatggaa cattggcgat gggctgggga agtggcactg ccaactttcc ctacttggtg 1380
acccccgagc aggccatctc gaacgaggtg ctcaagaaca agaatggcgt attcactgcg 1440
accgataact gggctattga tcagattgag gcgcttgcta agaccgccag tgtctctctt 1500
gtctttgtca acgccgactc tggtgagggt tatatcaatg tcgacggaaa cctgggtgac 1560
cgcaggaacc tgaccctgtg gaggaacggc gacaatgtga tcaaggctgc tgctagcaac 1620
tgcaacaaca cgatcgttat tattcactct gtcggcccag tcttggttaa cgagtggtac 1680
gacaacccca atgttaccgc tattctctgg ggtggtcttc ccggtcagga gtctggcaac 1740
tccctcgccg acgtgctcta cggccgtgtc aaccccggtg ccaagtcgcc cttcacctgg 1800
ggcaagactc gtgaggccta ccaagattac ttgtacaccg agcccaacaa cggcaacgga 1860
gcgccccagg aagacttcgt cgagggcgtc ttcattgact accgcggatt tgacaagcgc 1920
aacgagactc ctatctatga gttcggctat ggtctgagct acaccacctt caactactcg 1980
aaccttcagg tggaggttct gagcgcccct gcgtacgagc ctgcttcggg cgagactgag 2040
gcagcgccga ctttcggaga ggtcggaaat gcgtcggatt acctctaccc cgatggactg 2100
cagagaatca ccaagttcat ctacccctgg ctcaacagta ccgatcttga ggcgtcttct 2160
ggggatgcta gctatgggca ggatgcctca gactatcttc ccgagggagc caccgatggc 2220
tctgcgcaac cgatcctgcc tgccggtggt ggtgctggcg gcaaccctcg cctgtacgac 2280
gagctcatcc gcgtgtcggt gactatcaag aacaccggca aggttgcggg tgatgaagtt 2340
cctcaactgt atgtttctct tggcggccct aacgaaccca agatcgtgct gcgtcaattc 2400
gagcgtatca cgctgcagcc gtcgaaagag acgcagtgga gcacaactct gacgcgccgt 2460
gaccttgcga actggaatgt tgagacgcag gactgggaga ttacgtcgta tcccaagatg 2520
gtgtttgccg gaagctcctc gcggaagctg ccgctccggg cgtctctgcc tactgttcac 2580
taa 2583
<210> 6
<211> 1380
<212> DNA
<213> UGT94-289-2 nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 6
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcaaac ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggcttt acaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttttacaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacaaccgg tgccagcatg ctgagccgta ctttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
accaccgccg acggcgcact gaccgaagaa ggtcacaaga tcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380
<210> 7
<211> 1380
<212> DNA
<213> M150T/I194G nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 7
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcaaac ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggcttt acaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttttacaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacaaccgg tgccagcacc ctgagccgta ctttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
accaccgccg acggcgcact gaccgaagaa ggtcacaagg gcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380
<210> 8
<211> 1380
<212> DNA
<213> T154F/I194G nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 8
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcaaac ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggcttt acaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttttacaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacaaccgg tgccagcatg ctgagccgtt tcttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
accaccgccg acggcgcact gaccgaagaa ggtcacaagg gcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380
<210> 9
<211> 1380
<212> DNA/RNA
<213> L97W/I194G nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 9
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcaaac ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggctug gcaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttttacaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacaaccgg tgccagcatg ctgagccgta ctttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
accaccgccg acggcgcact gaccgaagaa ggtcacaagg gcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380
<210> 10
<211> 1380
<212> DNA/RNA
<213> T154F/T182P nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 10
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcaaac ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggcttt acaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttttacaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacaaccgg tgccagcatg ctgagccgtt tcttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
accccggccg acggcgcact gaccgaagaa ggtcacaaga tcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380
<210> 11
<211> 1380
<212> DNA/RNA
<213> T154F/T181D nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 11
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcaaac ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggcttt acaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttttacaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacaaccgg tgccagcatg ctgagccgtt tcttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
gacaccgccg acggcgcact gaccgaagaa ggtcacaaga tcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380
<210> 12
<211> 1380
<212> DNA/RNA
<213> M150T/T181D nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 12
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcaaac ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggcttt acaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttttacaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacaaccgg tgccagcacc ctgagccgta ctttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
gacaccgccg acggcgcact gaccgaagaa ggtcacaaga tcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380
<210> 13
<211> 1380
<212> DNA/RNA
<213> T181D/I194G nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 13
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcaaac ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggcttt acaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttttacaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacaaccgg tgccagcatg ctgagccgta ctttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
gacaccgccg acggcgcact gaccgaagaa ggtcacaagg gcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380
<210> 14
<211> 1380
<212> DNA/RNA
<213> T181D/T182P nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 14
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcaaac ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggcttt acaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttttacaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacaaccgg tgccagcatg ctgagccgta ctttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
gacccggccg acggcgcact gaccgaagaa ggtcacaaga tcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380
<210> 15
<211> 1380
<212> DNA/RNA
<213> T182P/I194G nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 15
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcaaac ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggcttt acaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttttacaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacaaccgg tgccagcatg ctgagccgta ctttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
accccggccg acggcgcact gaccgaagaa ggtcacaagg gcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380
<210> 16
<211> 1380
<212> DNA/RNA
<213> T181D/T182P/I194G nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 16
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcaaac ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggcttt acaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttttacaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacaaccgg tgccagcatg ctgagccgta ctttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
gacccggccg acggcgcact gaccgaagaa ggtcacaagg gcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380
<210> 17
<211> 1380
<212> DNA/RNA
<213> L97W/T181D/T182P nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 17
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcaaac ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggctug gcaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttttacaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacaaccgg tgccagcatg ctgagccgta ctttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
gacccggccg acggcgcact gaccgaagaa ggtcacaaga tcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380
<210> 18
<211> 1380
<212> DNA/RNA
<213> L97W/T181D/I194G nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 18
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcaaac ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggctug gcaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttttacaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacaaccgg tgccagcatg ctgagccgta ctttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
gacaccgccg acggcgcact gaccgaagaa ggtcacaagg gcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380
<210> 19
<211> 1380
<212> DNA/RNA
<213> T146A/T181D/I194G nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 19
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcaaac ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggcttt acaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttttacaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacagccgg tgccagcatg ctgagccgta ctttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
gacaccgccg acggcgcact gaccgaagaa ggtcacaagg gcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380
<210> 20
<211> 1380
<212> DNA/RNA
<213> T146A/T181D nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 20
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcaaac ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggcttt acaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttttacaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacagccgg tgccagcatg ctgagccgta ctttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
gacaccgccg acggcgcact gaccgaagaa ggtcacaaga tcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380
<210> 21
<211> 1380
<212> DNA/RNA
<213> L125A/T181D/I194G nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 21
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcaaac ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggcttt acaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttgcccaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacaaccgg tgccagcatg ctgagccgta ctttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
gacaccgccg acggcgcact gaccgaagaa ggtcacaagg gcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380
<210> 22
<211> 1380
<212> DNA/RNA
<213> L125A/T181D nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 22
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcaaac ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggcttt acaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttgcccaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacaaccgg tgccagcatg ctgagccgta ctttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
gacaccgccg acggcgcact gaccgaagaa ggtcacaaga tcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380
<210> 23
<211> 1380
<212> DNA/RNA
<213> K53A/T181D/I194G nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 23
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcgccc ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggcttt acaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttgcccaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacaaccgg tgccagcatg ctgagccgta ctttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
gacaccgccg acggcgcact gaccgaagaa ggtcacaagg gcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380
<210> 24
<211> 1380
<212> DNA/RNA
<213> K53A/T181D nucleotide sequence (2 Ambystoma laterale x Ambystoma jeffersonanum)
<400> 24
atggatgccc aacaaggtca taccaccacc attttaatgc tgccgtgggt tggctatggc 60
catttactgc cgtttctgga actggccaaa tctttaagtc gccgtaaact gttccacatc 120
tatttctgca gcaccagcgt ttctttagac gccatcgccc ctaaactgcc gccgagtatc 180
agtagtgacg acagtatcca gctggttgag ctgcgtctgc ctagtagtcc ggaactgccg 240
ccgcatctgc acaccaccaa tggtctgcct agccatctga tgccggcttt acaccaagct 300
tttgtgatgg ccgcacagca ctttcaagtt attctgcaga ctttagcccc gcatttactg 360
atttacgaca ttgcccaacc gtgggccccg caagttgcaa gctctttaaa cattccggcc 420
atcaacttta gcacaaccgg tgccagcatg ctgagccgta ctttacatcc gacacattac 480
ccgagcagca aattccctat cagcgaattc gtgctgcaca atcactggcg cgcaatgtat 540
gacaccgccg acggcgcact gaccgaagaa ggtcacaaga tcgaggagac tttagccaat 600
tgtctgcaca ccagttgcgg cgtggttctg gtgaacagtt ttcgcgaact ggagaccaag 660
tatattgatt atctgagcgt tctgctgaat aagaaagtgg tgccggtggg tccgctggtg 720
tatgaaccga atcaagaagg cgaagacgaa ggctatagca gcattaaaaa ttggctggat 780
aagaaagagc cgagcagcac cgttttcgtg agcttcggca ccgagtactt tccgagtaaa 840
gaagaaatgg aggagattgc ctacggtctg gaactgagcg aggtgaactt tatctgggtt 900
ctgcgctttc cgcaaggtga cagtaccagc accatcgagg acgcactgcc taaaggcttt 960
ctggagcgtg ctggtgaacg tgccatggtg gtgaaaggct gggcaccgca agctaaaatt 1020
ttaaaacact ggagtaccgg cggtttagtt agccactgcg gttggaacag catgatggag 1080
ggcatgatgt ttggcgtgcc gatcatcgcc gttccgatgc atttagatca gccgtttaac 1140
gccggcttag tggaagaagc cggcgtgggt gttgaggcaa agcgtgacag cgatggcaaa 1200
attcagcgcg aagaggtggc caagagtatc aaagaagttg ttatcgagaa aacccgtgaa 1260
gacgtgcgta aaaaagcccg cgagatgggc gaaattttac gcagcaaagg tgatgagaaa 1320
atcgacgagt tagtggccga gatcagtctg ctgcgcaaaa aggccccgtg cagcatttaa 1380

Claims (8)

1. A method for preparing Siamenoside I is characterized in that glycoside hydrolase is used for selectively hydrolyzing mogroside V to prepare mogroside IIIE, UDP-glucose dependent glycosyltransferase and mutant thereof are used for modifying the mogroside IIIE in a site-directed glycosylation manner to synthesize the Siamenoside I.
2. The method according to claim 1, wherein the glycoside hydrolase is Exg1 derived from Saccharomyces cerevisiae having an amino acid sequence shown in SEQ ID NO 1; or the glycoside hydrolase is Asn from Aspergillus niger, and the amino acid sequence is shown in SEQ ID NO. 2.
3. The method according to claim 1, wherein the UDP-glucose dependent glycosyltransferase is derived from the glycosyltransferase UGT94-289-2 of Siraitia grosvenorii, the amino acid sequence of which is set forth in SEQ ID No. 3;
or the UDP-glucose-dependent glycosyltransferase is a UDP-glucose-dependent glycosyltransferase mutant: single-point or multi-point mutants of W16, K53, L93, M94, L97, I124, L125, T146, M150, T154, T181, T182, I194, E195, E275 and S308 in UGT94-289-2 amino acid sequence.
4. The method according to claim 3, wherein the UDP-glucose dependent glycosyltransferase mutant:
Figure FDA0002691742130000011
Figure FDA0002691742130000021
5. the method according to any one of claims 1 to 4, wherein the Siamenoside I is prepared by constructing engineering bacteria to express the glycoside hydrolase, the UDP-glucose-dependent glycosyltransferase and mutants thereof by recombination, wherein the strain is lactic acid bacteria, streptomyces, yeast or Bacillus subtilis.
6. The method according to claim 5, wherein the glycoside hydrolase and the UDP-glucose-dependent glycosyltransferase are co-expressed in the same strain or are independently expressed in different strains.
7. The method according to any one of claims 1 to 6, wherein an exogenous active sugar donor UDP-glucose is added to the reaction system; or the sucrose-sucrose synthase-UDP-glucose regeneration circulation system generates UDP-glucose; or UDP-glucose is produced by a bacterial endogenous UDP-glucose synthesis pathway; or designing a modified UDP-glucose synthetic pathway to generate UDP-glucose.
8. The method according to claim 5 or 6, wherein the reaction system is constructed with a cell extract containing a glycoside hydrolase and a UDP-glucose-dependent glycosyltransferase; or in-situ or resting cell reaction system is constructed by using thallus containing glucoside hydrolase and UDP-glucose dependent glycosyltransferase.
CN202010993528.9A 2020-09-21 2020-09-21 Biosynthesis method of Siamenoside I Pending CN112063678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010993528.9A CN112063678A (en) 2020-09-21 2020-09-21 Biosynthesis method of Siamenoside I

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010993528.9A CN112063678A (en) 2020-09-21 2020-09-21 Biosynthesis method of Siamenoside I

Publications (1)

Publication Number Publication Date
CN112063678A true CN112063678A (en) 2020-12-11

Family

ID=73681443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010993528.9A Pending CN112063678A (en) 2020-09-21 2020-09-21 Biosynthesis method of Siamenoside I

Country Status (1)

Country Link
CN (1) CN112063678A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481275A (en) * 2021-07-23 2021-10-08 湖南华诚生物资源股份有限公司 Method for preparing mogroside through enzyme catalysis semisynthesis
CN114854722A (en) * 2022-05-11 2022-08-05 成都普睿法药物研发有限公司 Candida guilliermondii exo beta-1, 3-glucanase, mutant and application thereof
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107109377A (en) * 2014-09-11 2017-08-29 以色列国家农业和农村发展农业研究组织沃尔坎尼中心 Produce the method for Momordia grosvenori aglycone and the composition comprising it and application thereof
CN109517864A (en) * 2018-12-03 2019-03-26 中国药科大学 A kind of preparation method of Momordia grosvenori aglycone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107109377A (en) * 2014-09-11 2017-08-29 以色列国家农业和农村发展农业研究组织沃尔坎尼中心 Produce the method for Momordia grosvenori aglycone and the composition comprising it and application thereof
US20170283844A1 (en) * 2014-09-11 2017-10-05 The State of Israel, Ministry of Agriculture & Rural Development, Argricultural Research Organiza Methods of producing mogrosides and compositions comprising same and uses thereof
CN109517864A (en) * 2018-12-03 2019-03-26 中国药科大学 A kind of preparation method of Momordia grosvenori aglycone

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REUBEN WANG ET AL: "Dekkera bruxellensis, a beer yeast that specifically bioconverts mogroside", 《FOOD CHEMISTRY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481275A (en) * 2021-07-23 2021-10-08 湖南华诚生物资源股份有限公司 Method for preparing mogroside through enzyme catalysis semisynthesis
CN114854722A (en) * 2022-05-11 2022-08-05 成都普睿法药物研发有限公司 Candida guilliermondii exo beta-1, 3-glucanase, mutant and application thereof
CN114854722B (en) * 2022-05-11 2024-01-09 成都普睿法药物研发有限公司 Off-cut beta-1, 3-glucanase of candida mongolica and mutant and application thereof
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Similar Documents

Publication Publication Date Title
CN111712570B (en) Engineering strain for producing psicose and derivatives thereof, construction method and application thereof
CN109750072B (en) Method for preparing rebaudioside E by enzyme method
CN111518782B (en) Glycosyltransferase UGTZJ1 mutant and application thereof
CN112063678A (en) Biosynthesis method of Siamenoside I
CN104726523B (en) A kind of method that enzyme process prepares Rebaudiodside A M
CN112080480B (en) Glycosyltransferase mutants and uses thereof
CN110699373B (en) Uridine diphosphate glucose high-yield strain and application thereof
CN109796516B (en) A method for synthesizing natural and unnatural protopanaxatriol type ginsenoside
CN110982865A (en) Application of alkaline cyclodextrin glucosyltransferase in production of α -glucosyl hesperidin
CN112592880A (en) Pseudouridine-producing engineering bacterium and application thereof
CN108138152A (en) Kaurenic acid hydroxylase
KR100395445B1 (en) Recombinant thermostable enzyme which forms non-reducing saccharide from reducing amylaceous saccharide
KR100427529B1 (en) Recombinant thermostable enzyme converts maltose to trehalose
CN113215121B (en) Method for efficiently and heterogeneously synthesizing mogroside V precursor
CN114480465A (en) Bacillus subtilis for producing 2&#39; -fucosyllactose and application thereof
CN111411066B (en) Double-way composite neuraminic acid-producing bacillus subtilis and construction method thereof
Duan et al. Efficient 2-O-α-D-glucopyranosyl-sn-glycerol production by single whole-cell biotransformation through combined engineering and expression regulation with novel sucrose phosphorylase from Leuconostoc mesenteroides ATCC 8293
CN111455003A (en) Method for preparing D-psicose from microalgae
CN115418358B (en) Glycosyltransferase and application thereof
CN115449514B (en) Beta-1, 2-glycosyltransferase and application thereof
CN113584110A (en) Construction and application of engineering strain for biosynthesizing mogroside V by taking mogrol as substrate
CN115478060B (en) Glycosyltransferase and application thereof
CN115725528B (en) Glycosyltransferase and application thereof
JP2020500520A (en) Kaurenate hydroxylase
CN114395542B (en) Sucrose phosphorylase and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination