WO2018016324A1 - Keyboard device - Google Patents

Keyboard device Download PDF

Info

Publication number
WO2018016324A1
WO2018016324A1 PCT/JP2017/024721 JP2017024721W WO2018016324A1 WO 2018016324 A1 WO2018016324 A1 WO 2018016324A1 JP 2017024721 W JP2017024721 W JP 2017024721W WO 2018016324 A1 WO2018016324 A1 WO 2018016324A1
Authority
WO
WIPO (PCT)
Prior art keywords
key
radius
keyboard device
curved surface
cylindrical portion
Prior art date
Application number
PCT/JP2017/024721
Other languages
French (fr)
Japanese (ja)
Inventor
賢人 小川
大須賀 一郎
Original Assignee
ヤマハ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ株式会社 filed Critical ヤマハ株式会社
Priority to JP2018528479A priority Critical patent/JP6822476B2/en
Publication of WO2018016324A1 publication Critical patent/WO2018016324A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/32Constructional details
    • G10H1/34Switch arrangements, e.g. keyboards or mechanical switches specially adapted for electrophonic musical instruments
    • G10H1/344Structural association with individual keys
    • G10H1/346Keys with an arrangement for simulating the feeling of a piano key, e.g. using counterweights, springs, cams
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10BORGANS, HARMONIUMS OR SIMILAR WIND MUSICAL INSTRUMENTS WITH ASSOCIATED BLOWING APPARATUS
    • G10B3/00Details or accessories
    • G10B3/12Keys or keyboards; Manuals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/32Constructional details
    • G10H1/34Switch arrangements, e.g. keyboards or mechanical switches specially adapted for electrophonic musical instruments

Definitions

  • the present invention relates to a keyboard device.
  • a predetermined feeling (hereinafter referred to as touch feeling) is given to a player's finger through a key by the action of an action mechanism.
  • touch feeling a predetermined feeling
  • the operation of the escapement mechanism gives the player's finger a feeling of collision according to the key-pressing speed and a subsequent feeling of omission (for example, a click feeling as a whole) as a touch feeling.
  • an action mechanism is required for hammering with a hammer.
  • a key depression is detected by a sensor, so that sound generation is possible without having an action mechanism such as an acoustic piano.
  • One of the objects of the present invention is to provide a degree of design freedom when introducing a mechanism for obtaining a touch feeling while bringing the touch feeling of an electronic keyboard instrument close to an acoustic piano (for example, the size of the sliding surface forming portion). Is to secure as much as possible).
  • a key arranged to be rotatable with respect to a frame, a hammer assembly arranged to be rotatable according to the rotation of the key, a first member, and the key
  • the hammer assembly is rotated in response to the rotation, the hammer assembly is arranged so as to slide on the first member and move on the first member, and a cross section of the first member is a first arc.
  • a second member having a first curved surface, a second curved surface having a second circular arc in cross section on the opposite side to the first member, and the first arc and the second arc having the same center and different radii
  • a third member that is connected to the first member and guides the second member so that the second member is not separated from the first member by a predetermined distance or more.
  • the third member may contact the second curved surface in at least a part of a movement range of the second member.
  • the radius of the first arc may be larger than the radius of the second arc.
  • the radius of the first arc may be smaller than the radius of the second arc.
  • the elastic member may be disposed on at least a part of the surface of the first member.
  • the position of the first curved surface in contact with the first member may change depending on the position of the second member with respect to the first member.
  • the third member may slide with the second member when the hammer assembly rotates in response to rotation of the key.
  • the second member includes: a first partial cylindrical portion having the first curved surface; and a second partial cylindrical portion located on the opposite side of the first partial cylindrical portion and having the second curved surface, The first partial cylindrical portion and the second cylindrical portion may have a common central axis, and the radius of the first partial cylindrical portion may be different from the radius of the second partial cylindrical portion.
  • the hammer assembly includes a weight portion, and the first member allows the second member to slide relative to the first member when the key is pressed. It is good also as giving force to the 2nd member so that may move up. Further, the first member is arranged with respect to the key at a position that moves downward by a key pressing operation on the key, and the second member is connected to the hammer assembly, It is good also as connecting to the opposite side to the weight part with respect to the axis of rotation of the hammer assembly so that the weight part may move upward by being pushed downward from the first member.
  • the third member may be disposed with respect to the key at a position where the second member is sandwiched between the third member and the first member.
  • the keyboard device includes a key arranged to be rotatable with respect to the frame, a hammer assembly arranged to be rotatable according to the rotation of the key, a first member, and the rotation of the key.
  • the first partial cylindrical portion having a first curved surface that slides with the first member when the hammer assembly is rotated in response to the rotation, and a second curved surface that is located on the opposite side of the first member.
  • a second member provided with a partial columnar part; and a third member connected to the first member for guiding the second member so as not to be separated from the first member by a predetermined distance or more.
  • the one-part columnar part and the second part-columnar part have a common central axis, and the radius of the first part-columnar part may be different from the radius of the second part-columnar part.
  • the third member may be in contact with the second curved surface in at least a part of the movement range of the second member.
  • the radius of the first partial columnar portion may be larger than the radius of the second partial columnar portion.
  • the radius of the first partial cylindrical portion may be smaller than the radius of the second partial cylindrical portion.
  • the first partial columnar portion and the second partial columnar portion may be integrally formed of resin.
  • the first member includes a sliding surface that comes into contact with the first curved surface, which is an outer peripheral surface of the first partial cylindrical portion, and the third member is an outer peripheral surface of the second partial cylindrical portion. It is good also as providing the guide surface which can contact a certain said 2nd curved surface.
  • FIG. 1 is a diagram illustrating a configuration of a keyboard device according to the first embodiment.
  • the keyboard device 1 is an electronic keyboard instrument that emits sound in response to a user (player) key depression such as an electronic piano.
  • the keyboard device 1 may be a keyboard-type controller that outputs control data (for example, MIDI) for controlling an external sound source device in response to a key depression.
  • the keyboard device 1 may not include the sound source device.
  • the keyboard device 1 includes a keyboard assembly 10.
  • the keyboard assembly 10 includes a white key 100w and a black key 100b.
  • a plurality of white keys 100w and black keys 100b are arranged side by side.
  • the number of keys 100 is N, which is 88 in this example. This arranged direction is called a scale direction.
  • the white key 100w and the black key 100b can be described without particular distinction, the key 100 may be referred to.
  • w is added to the end of the reference sign, it means that the configuration corresponds to the white key.
  • “b” is added at the end of the code, it means that the configuration corresponds to the black key.
  • a part of the keyboard assembly 10 exists inside the housing 90.
  • a portion of the keyboard assembly 10 covered by the casing 90 is referred to as a non-appearance portion NV, and a portion exposed from the casing 90 and visible to the user is referred to as an appearance portion PV.
  • the appearance part PV is a part of the key 100 and indicates an area where the user can perform a performance operation.
  • a portion of the key 100 that is exposed by the appearance portion PV may be referred to as a key body portion.
  • a sound source device 70 and a speaker 80 are arranged inside the housing 90.
  • the tone generator 70 generates a sound waveform signal when the key 100 is pressed.
  • the speaker 80 outputs the sound waveform signal generated in the sound source device 70 to an external space.
  • the keyboard device 1 may be provided with a slider for controlling the volume, a switch for switching timbres, a display for displaying various information, and the like.
  • directions such as up, down, left, right, front, and back indicate directions when the keyboard device 1 is viewed from the performer when performing. Therefore, for example, the non-appearance part NV can be expressed as being located on the back side with respect to the appearance part PV. Further, the direction may be indicated with the key 100 as a reference, such as the front end side (key front side) and the rear end side (key rear side). In this case, the key front end side indicates the front side as viewed from the performer with respect to the key 100. The rear end side of the key indicates the back side viewed from the performer with respect to the key 100.
  • the black key 100b can be expressed as a portion protruding upward from the white key 100w from the front end to the rear end of the key body of the black key 100b.
  • FIG. 2 is a block diagram illustrating a configuration of the sound source device according to the first embodiment.
  • the sound source device 70 includes a signal conversion unit 710, a sound source unit 730, and an output unit 750.
  • the sensor 300 is provided corresponding to each key 100, detects a key operation, and outputs a signal corresponding to the detected content. In this example, the sensor 300 outputs a signal according to the key depression amount in three stages. The key pressing speed can be detected according to the interval of this signal.
  • the signal conversion unit 710 acquires the output signal of the sensor 300 (sensors 300-1, 300-2,..., 300-88 corresponding to the 88 key 100), and operates according to the operation state of each key 100. Generate and output a signal.
  • the operation signal is a MIDI signal. Therefore, the signal conversion unit 710 outputs note-on according to the key pressing operation. At this time, the key number indicating which of the 88 keys 100 has been operated and the velocity corresponding to the key pressing speed are also output in association with the note-on.
  • the signal conversion unit 710 outputs the key number and note-off in association with each other.
  • a signal corresponding to another operation such as a pedal may be input to the signal conversion unit 710 and reflected in the operation signal.
  • the sound source unit 730 generates a sound waveform signal based on the operation signal output from the signal conversion unit 710.
  • the output unit 750 outputs the sound waveform signal generated by the sound source unit 730. This sound waveform signal is output to, for example, the speaker 80 or the sound waveform signal output terminal.
  • FIG. 3 is an explanatory diagram when the configuration inside the housing in the first embodiment is viewed from the side.
  • the keyboard assembly 10 and the speaker 80 are arranged inside the housing 90. That is, the housing 90 covers at least a part of the keyboard assembly 10 (the connection portion 180 and the frame 500) and the speaker 80.
  • the speaker 80 is disposed on the back side of the keyboard assembly 10.
  • the speaker 80 is arranged so as to output a sound corresponding to the key depression toward the upper side and the lower side of the housing 90. The sound output downward advances from the lower surface side of the housing 90 to the outside.
  • the sound output upward passes through the space inside the keyboard assembly 10 from the inside of the housing 90, and is externally transmitted from the gap between the adjacent keys 100 in the exterior portion PV or the gap between the key 100 and the housing 90.
  • the path of sound from the speaker 80 that reaches the space inside the keyboard assembly 10, that is, the space below the key 100 (key body portion) is exemplified as the path SR.
  • the configuration of the keyboard assembly 10 will be described with reference to FIG.
  • the keyboard assembly 10 includes a connection portion 180, a hammer assembly 200, and a frame 500 in addition to the key 100 described above.
  • the keyboard assembly 10 is a resin-made structure whose most configuration is manufactured by injection molding or the like.
  • the frame 500 is fixed to the housing 90.
  • the connection unit 180 connects the key 100 so as to be rotatable with respect to the frame 500.
  • the connecting portion 180 includes a plate-like flexible member 181, a key-side support portion 183, and a rod-like flexible member 185.
  • the plate-like flexible member 181 extends from the rear end of the key 100.
  • the key side support portion 183 extends from the rear end of the plate-like flexible member 181.
  • a rod-shaped flexible member 185 is supported by the key side support portion 183 and the frame side support portion 585 of the frame 500. That is, a rod-shaped flexible member 185 is disposed between the key 100 and the frame 500. The key 100 can be rotated with respect to the frame 500 by bending the rod-shaped flexible member 185.
  • the rod-shaped flexible member 185 is configured to be attachable to and detachable from the key side support portion 183 and the frame side support portion 585.
  • the rod-like flexible member 185 may be configured so as not to be attached or detached integrally with the key side support portion 183 and the frame side support portion 585, or by bonding or the like.
  • the key 100 includes a front end key guide 151 and a side key guide 153.
  • the front end key guide 151 is slidably in contact with the front end frame guide 511 of the frame 500.
  • the front end key guide 151 is in contact with the front end frame guide 511 on both sides of the upper and lower scale directions.
  • the side key guide 153 is slidably in contact with the side frame guide 513 on both sides in the scale direction.
  • the side key guide 153 is disposed in a region corresponding to the non-appearance portion NV on the side surface of the key 100, and exists on the key front end side with respect to the connection portion 180 (plate-like flexible member 181). You may arrange
  • the key 100 is connected to the key-side load unit 120 below the exterior portion PV.
  • the key-side load portion 120 is connected to the hammer assembly 200 so that the hammer assembly 200 is rotated when the key 100 is rotated.
  • the hammer assembly 200 is disposed in a space below the key 100 and is rotatably attached to the frame 500.
  • the hammer assembly 200 includes a weight part 230 and a hammer body part 250.
  • the hammer main body 250 is provided with a shaft support portion 220 that serves as a bearing for the rotation shaft 520 of the frame 500.
  • the shaft support portion 220 and the rotation shaft 520 of the frame 500 are slidably in contact with each other at at least three points.
  • the hammer side load portion 210 is connected to the front end portion of the hammer main body portion 250.
  • the hammer side load section 210 includes a portion (moving member 211 described later; see FIG. 4) that comes into contact with the inside of the key side load section 120 so as to be slidable in the front-rear direction.
  • a lubricant such as grease may be disposed at the contact portion.
  • the hammer-side load unit 210 and the key-side load unit 120 (in the following description, these may be collectively referred to as “load generation unit”) generate a part of the load when the key is pressed by sliding on each other. To do.
  • the load generating unit is located below the key 100 in the appearance portion PV (frontward from the rear end of the key body). The detailed structure of the load generator will be described later.
  • the weight portion 230 includes a metal weight, and is connected to the rear end portion of the hammer main body portion 250 (the back side from the rotation shaft). In a normal state (when no key is pressed), the weight portion 230 is placed on the lower stopper 410. As a result, the key 100 is stabilized at the rest position. When the key is depressed, the weight portion 230 moves upward and collides with the upper stopper 430. This defines the end position that is the maximum key depression amount of the key 100. The weight 230 also applies a load to the key press.
  • the lower stopper 410 and the upper stopper 430 are formed of a buffer material or the like (nonwoven fabric, elastic body, etc.).
  • the sensor 300 is attached to the frame 500 below the load generating unit. When the sensor 300 is crushed by the key depression on the lower surface side of the hammer side load portion 210, the sensor 300 outputs a detection signal. As described above, the sensor 300 is provided corresponding to each key 100.
  • FIG. 4 is an explanatory diagram of a load generation unit (key side load unit and hammer side load unit) in the first embodiment.
  • the hammer side load part 210 includes a moving member 211 (second member), a rib part 213, and a sensor driving part 215 (plate-like member). Each of these components is also connected to the hammer body 250.
  • the moving member 211 has a columnar shape having a bottom surface obtained by joining two substantially semicircles having different radii and the same center, and the axis extends in the scale direction.
  • the rib part 213 is a rib connected below the moving member 211. In this example, the normal direction of the surface is along the scale direction.
  • the sensor drive unit 215 is a plate-like member that is connected below the rib portion 213 and has a normal surface in a direction perpendicular to the scale direction. That is, the sensor driving unit 215 and the rib portion 213 are in a vertical relationship.
  • the rib part 213 includes in the plane the direction of movement by pressing the key. Therefore, there is an effect of reinforcing the strength of the moving member 211 and the sensor driving unit 215 with respect to the moving direction at the time of key depression.
  • the rib portion 213 and the sensor driving portion 215 function as a reinforcing material.
  • the moving member 211 and the rib portion 213 function as a reinforcing material.
  • the moving member 211 is connected to the front end portion of the hammer main body portion 250 via the rib portion 211. Further, as described above, the weight portion 230 is connected to the rear end portion of the hammer main body portion 250 (the back side from the rotation shaft). That is, the moving member 211 is located on the opposite side (front side) to the side (rear side) where the weight portion 230 is located with respect to the rotation axis of the hammer assembly 200.
  • the key side load part 120 includes a sliding surface forming part 121.
  • the sliding surface forming portion 121 is disposed at the lower end portion of the key-side load portion 120 that extends downward from the key 100. That is, the sliding surface forming portion 121 is disposed with respect to the key 100 at a position that moves downward when the key is pressed.
  • the sliding surface forming part 121 forms a space SP in which the moving member 211 can move.
  • a sliding surface FS is formed above the space SP, and a guide surface GS is formed below the space SP. At least the region where the sliding surface FS is formed is formed of an elastic body such as rubber. That is, this elastic body is exposed.
  • the entire sliding surface forming part 121 is formed of an elastic body.
  • this elastic body has viscoelasticity, that is, a viscoelastic body. Since the sliding surface forming portion 121 is an elastic body, the sliding surface forming portion 121 is surrounded by a material that is more difficult to deform, for example, a rigid body such as a resin having higher rigidity than the elastic body constituting the sliding surface forming portion 121. Thus, the outer surface of the sliding surface forming portion 121 is supported so as to be maintained.
  • This outer surface includes the surface on the opposite side of the sliding surface FS in the sliding surface forming portion 121. In addition, it may change so that rigidity may become high gradually from the sliding surface FS to the rigid body of the outer surface side. In addition, it is desirable not to include a member that is more easily elastically deformed than the sliding surface FS (a member having rigidity lower than that of the sliding surface FS) during this period.
  • FIG. 4 shows the position of the moving member 211 when the key 100 is at the rest position.
  • the moving member 211 moves the space SP in the direction of the arrow D1 (hereinafter sometimes referred to as the traveling direction D1) while being in contact with the sliding surface FS. That is, the moving member 211 slides with the sliding surface FS.
  • the curved surface formed on the semicircular side having a large radius in the moving member 211 and the sliding surface FS come into contact with each other. Since the moving member 211 moves while contacting the sliding surface FS, the sliding surface FS may be referred to as an intermittent sliding side, and the moving member 211 may be referred to as a continuous sliding side.
  • the moving member 211 is also rotated slightly to move the contact surface. Therefore, although it is not strictly continuous sliding, it can be said that it is almost continuous sliding. In any case, in the range in which the sliding surface FS and the moving member 211 slide along with the key depression, the entire range that can be contacted by the moving member 211 in the sliding surface FS is the sliding in the moving member 211. The area is larger than the entire range that can be contacted by the surface FS.
  • a stepped portion 1231 is arranged in the sliding surface FS in a range in which the moving member 211 moves when the key 100 rotates from the rest position to the end position. That is, the stepped portion 1231 is overcome by the moving member 211 (more specifically, the upper half cylinder 2111 described later of the moving member 211) that moves from the initial position (the position of the moving member 211 when the key 100 is at the rest position). It is done.
  • a concave portion 1233 is formed in a portion of the guide surface GS that faces the stepped portion 1231. The presence of the recess 1233 makes it easier for the moving member 211 to move over the stepped portion 1231. Then, the structure of the sliding surface formation part 121 is explained in full detail.
  • FIG. 5 is a diagram illustrating the structure of the sliding surface forming portion in the first embodiment.
  • FIG. 5A is a diagram for explaining the sliding surface forming portion 121 described in FIG. 4 in more detail, and its internal structure is indicated by a broken line.
  • FIG. 5B is a view when the sliding surface forming portion 121 is viewed from the rear (key rear end side).
  • FIG. 5C is a view when the sliding surface forming portion 121 is viewed from the upper surface side.
  • FIG. 5D is a view when the sliding surface forming portion 121 is viewed from the lower surface side.
  • FIG. 5E is a view when the sliding surface forming portion 121 is viewed from the front (key front end side).
  • region where the moving member 211 and the rib part 213 exist is shown with the dashed-two dotted line.
  • the sliding surface forming part 121 includes an upper member 1211 (first member), a lower member 1213 (third member), and a side member 1215.
  • the upper member 1211 and the lower member 1213 are connected via a side member 1215.
  • the space SP described above indicates a space surrounded by the upper member 1211, the lower member 1213, and the side member 1215.
  • the surface on the space SP side of the upper member 1211 is a sliding surface FS.
  • the stepped portion 1231 is disposed on the sliding surface FS.
  • the space SP side surface of the lower member 1213 is a guide surface GS.
  • the recess 1233 is disposed on the guide surface GS.
  • the guide surface GS guides the moving member 211 so that the moving member 211 is not separated from the upper member 1211 (sliding surface FS) by a predetermined distance or more. That is, as shown in FIG. 4, the upper member 1211 is disposed below the key 100, and the lower member 1213 is disposed below the upper member 1211. Further, the lower member 1213 is disposed at a position where the moving member 211 is sandwiched between the lower member 1213 and the upper member 1211.
  • the lower member 1213 is provided with a slit 125.
  • the slit 125 passes the rib portion 213 that moves together with the moving member 211.
  • a sensor driving unit 215 is connected to the rib portion 213 on the side opposite to the moving member 211. Therefore, the lower member 1213 has a positional relationship between the moving member 211 and the sensor driving unit 215.
  • the guide surface GS of the lower member 1213 is inclined so as to approach the sliding surface FS as it approaches the slit 125. That is, the lower member 1213 includes a portion that protrudes linearly along the slit 125 (hereinafter referred to as a protruding portion P). According to such a protrusion P, the area when the moving member 211 contacts the guide surface GS is smaller than the area when the moving member 211 contacts the sliding surface FS. In this example, as shown in FIG. 8, the moving member 211 is separated from the guide surface GS when in contact with the sliding surface FS, and is separated from the sliding surface FS when in contact with the guide surface GS.
  • the sliding surface FS is in contact with a curved surface formed on the semicircular side of the moving member 211 having a large radius.
  • the curved surface formed in the semicircle side with a small radius among the moving members 211 contacts the guide surface GS. That is, when the moving member 211 approaches the guide surface GS, the lower half cylinder 2112 described later contacts the protrusion P.
  • the moving member 211 may be configured to slide in contact with both the sliding surface FS and the guide surface GS in at least a part of the moving range.
  • the protrusion part P was provided in the both sides of the slit 125, you may provide in either one side.
  • the moving member 211 is formed of a member that is less likely to be elastically deformed than the elastic body that forms the sliding surface FS (for example, a resin that has higher rigidity than the elastic body that forms the sliding surface FS). Yes. Therefore, the sliding surface FS is elastically deformed when the moving member 211 is pressed. As a result, the moving member 211 receives various resistances against movement in accordance with the pressing force. This resistance force will be described with reference to FIGS.
  • FIG. 6 is a diagram for explaining the elastic deformation (during hard hitting) of the elastic body in the first embodiment.
  • FIG. 7 is a view for explaining elastic deformation (when weakly hit) of the elastic body in the first embodiment.
  • the force Fr1 becomes a resistance force with respect to the traveling direction D1.
  • the upper member when the key is weak (during weak hitting).
  • the key is strong (during a strong hit)
  • it does not contact the upper member 1211 (FIG. 6).
  • the upper member 1211 is elastically deformed by the moving member 211, and the shape is restored after the moving member 211 passes. At the time of smashing, the moving member 211 moves faster than restoring. Therefore, the area where the moving member 211 and the upper member 1211 do not contact increases on the rear side of the moving member 211. As the viscosity of the upper member 1211 increases, an area where the moving member 211 does not contact increases even if the speed of the moving member 211 is the same.
  • the difference between the weak strike and the strong strike that is, the difference in the key pressing force affects the size of the elastic deformation.
  • the difference between the weak hit and the strong hit is directly related to the moving speed of the moving member 211 in detail. That is, if the key pressing speed is already high even if the key pressing force is weak, the area where the moving member 211 and the upper member 1211 do not come in contact increases.
  • the moving member 211 When contacting the upper member 1211 on the rear side of the moving member 211, the moving member 211 receives a repulsive force Fr2 in addition to the frictional force Ff2.
  • the frictional force Ff2 is a resistance force with respect to the traveling direction D1.
  • the repulsive force Fr2 becomes a driving force with respect to the traveling direction D1.
  • the magnitude of the repulsive force Fr1 is smaller, and the contact area between the moving member 211 and the upper member 1211 is also reduced as a whole, and the frictional force is increased. It also decreases.
  • the resistance force that the moving member 211 receives in the traveling direction D1 can be changed in a complex manner depending on the strength and speed of the key depression.
  • the resistance force received by the moving member 211 is also a resistance force applied to the key depression.
  • the upper member 1211 can be made to have various resistances to the key press by using a material that is elastically affected by acceleration (key press force) and has a viscosity that is greatly affected by speed (key press speed). It can also be designed.
  • the moving member 211 may bounce to the sliding surface FS and collide with the guide surface GS.
  • the protruding portion P of the guide surface GS may be elastically deformed so as to be crushed by the moving member 211. Due to the presence of the protrusion P, the contact area between the moving member 211 and the guide surface GS is smaller than the contact area between the moving member 211 and the sliding surface FS. Since the contact area is small, the guide surface GS is more easily elastically deformed than the sliding surface FS even when the same force is applied, and even if the moving member 211 collides with the guide surface GS, the moving member 211 does not slide. The occurrence of collision sound is suppressed compared to when the FS collides.
  • FIG. 8 is a diagram illustrating the configuration of the moving member in the first embodiment.
  • the moving member 211 includes an upper half cylinder 2111 and a lower half cylinder 2112. Since FIG. 8 shows the case where the moving member 211 is viewed in the scale direction, the bottom surfaces (two semicircles) of the upper half cylinder 2111 and the lower half cylinder 2112 are shown.
  • the radius r1 of the cross section (semicircle) of the upper half cylinder 2111 is larger than the radius r2 of the cross section (semicircle) of the lower half cylinder 2112. Both semicircles have a common center CD.
  • the cross section here refers to a cross section cut along a plane having the normal direction of the scale (the same applies to the following description).
  • the center axis of the upper half cylinder 2111 (the axis extending in the direction parallel to the scale direction and passing through the common center CD) is the same as the center axis of the lower half cylinder 2112.
  • the upper half cylinder 2111 and the lower half cylinder 2112 have a common central axis.
  • the upper half cylinder 2111 and the lower half cylinder 2112 are integrally formed of resin.
  • the upper half cylinder 2111 and the lower half cylinder 2112 are separately formed, and both are integrated with an adhesive or the like. You may make it.
  • the shape of the upper half cylinder 2111 and the lower half cylinder 2112 of the moving member 211 is a half cylinder formed by dividing the cylinder in half and is a part of the cylinder, terms including these are referred to as “partial cylinder shape”. Part ".
  • the upper half cylinder 2111 having a semi-cylindrical shape is an example of the first partial columnar shape portion
  • the lower half cylinder 2112 having a half columnar shape is the second portion. It is an example of a cylindrical shape part.
  • the “columnar shape” of the “partial columnar shape portion” is not limited to a columnar shape, and can be interpreted to include other shapes as long as the shape extends along the central axis. is there. For example, even a shape like a “conical frustum” extending along the central axis can be interpreted as being included in the “columnar shape”.
  • a combination of a cylinder corresponding to the “first partial columnar shape portion” and a truncated cone corresponding to the “second partial columnar shape portion”, a reverse combination thereof, or a “first partial columnar shape” A combination of a truncated cone corresponding to the “part” and a truncated cone corresponding to the “second partial cylindrical portion” having an angle different from that of the truncated cone may be employed.
  • the “cylindrical shape” may include those in which the plane of the base of the truncated cone is not a flat surface but a curved surface such as a sphere.
  • first partial cylindrical shape portion and the “second partial cylindrical shape portion” are respectively converted into the “first partial cone shape portion” and the “second partial cone shape portion”. It is also possible to correspond to “part”.
  • the moving member 211 is provided with the curved surface of the upper semi-cylinder 2111 (the curved surface 21111 (first curved surface) that is a semicircular arc (first arc) having a radius r1 in cross section) on the sliding surface FS side, and the lower side
  • the curved surface of the semi-cylindrical 2112 (a curved surface 21121 (second curved surface) whose cross section is a semicircular arc (second arc) having a radius r2) is provided on the guide surface GS side.
  • the radius of the upper half cylinder 2111 (distance between the curved surface 21111 and the center axis of the upper half cylinder 2111) is r1
  • the radius of the lower half cylinder 2112 (distance between the curved surface 21121 and the center axis) is r2.
  • the sliding surface FS and the guide surface GS are larger than the same size, that is, the moving member 211 is formed in a single column shape. Can be shortened. It is also conceivable that the moving member 211 is simply formed in a cylindrical shape, and the radius of the circle is reduced (the cylinder is thinned). However, in this case, since the amount of elastic deformation with respect to the sliding surface FS also changes, the resistance force against the key pressing also changes. In this example, by combining semi-cylinders having different radii, the distance between the sliding surface FS and the guide surface GS can be reduced while minimizing the parts while minimizing the influence on the resistance force. it can.
  • FIG. 9 is a diagram for explaining the operation of the key assembly when the key (white key) in the first embodiment is pressed.
  • FIG. 9A is a diagram when the key 100 is in the rest position (a state where the key is not pressed).
  • FIG. 9B is a diagram when the key 100 is in the end position (the state where the key is pressed to the end).
  • the rod-like flexible member 185 is bent with the center of rotation.
  • the bar-shaped flexible member 185 is bent and deformed forward (frontward) of the key, but the key 100 does not move forward due to the restriction of movement in the front-rear direction by the side key guide 153. It turns in the pitch direction without.
  • FIGS. 4 and 5 are referred to for each configuration of the sliding surface forming portion 121 in the key side load portion 120.
  • the moving member 211 elastically deforms the upper member 1211 when moving while in contact with the sliding surface FS. You will receive various resistance depending on the method. This resistance force and the weight of the weight portion 230 appear as a load on the key depression. Further, when the moving member 211 gets over the stepped portion 1231, a click feeling is transmitted to the key 100.
  • the weight 230 collides with the upper stopper 430, the rotation of the hammer assembly 200 is stopped and the key 100 reaches the end position.
  • the sensor 300 is crushed by the sensor driving unit 215, the sensor 300 outputs a detection signal at a plurality of stages according to the crushed amount (key pressing amount).
  • FIG. 10 is a diagram illustrating a moving member in the second embodiment.
  • the radius r1 of the cross section (semicircle) of the upper half cylinder 2111A is smaller than the radius r2 of the cross section (semicircle) of the lower half cylinder 2112A. Both semicircles have a common center CD.
  • the curved surface 2111A1 (an example of the first curved surface) that is the outer peripheral surface of the upper half cylinder 2111A slides on the sliding surface FS, and the curved surface 2112A1 (the outer peripheral surface of the lower half cylinder 2112A).
  • An example of the second curved surface is guided by the guide surface GS.
  • the radius r1 is assumed to be the same in the first embodiment and the second embodiment in order to make the resistance force at the time of key depression in the first embodiment and the second embodiment the same. If it does in this way, since the magnitude
  • the radius r1 can be made smaller in the upper half cylinder 2111A of the second embodiment than in the upper half cylinder 2111 of the first embodiment. is there.
  • the moving member 211A is simply formed in a cylindrical shape and the radius of the circle is reduced (thinning the cylinder), in this case, since the moving member 211A becomes thin, the radius r2 is set larger than the radius r1.
  • the strength of the moving member 211A can be improved.
  • the radius r2 of the cross section of the lower half cylinder 2112A may be the same as the radius r1 of the cross section of the upper half cylinder 2111 in the first embodiment.
  • the moving member 211 is formed by combining two semicircles in cross section, but it does not necessarily have to be a semicircle.
  • FIG. 11 is a diagram for explaining a moving member in the third embodiment.
  • a moving member 211B shown in FIG. 11A includes an upper partial cylinder 2111B and a lower partial cylinder 2112B.
  • the curved surface 2111B1 (an example of the first curved surface) that is the outer circumferential surface of the upper half cylinder 2111B slides on the sliding surface FS, and the curved surface 2112B1 (the outer circumferential surface of the lower half cylinder 2112B).
  • An example of the second curved surface is guided by the guide surface GS.
  • the central angle AG of the cross section (sector shape) of the upper partial cylinder 2111B is less than 180 degrees.
  • the central angle of the lower partial cylinder 2112B is an angle obtained by subtracting the central angle AG from 360 degrees as shown in the figure, it is larger than 180 degrees.
  • the curved surface of the upper partial cylinder 2111B and the sliding surface FS are in contact with each other in the range that can contact the sliding surface FS of the moving member 211B (the moving range of the moving member 211B).
  • the center angle AG may be determined. For example, if the central angle AG becomes too small, the curved surface portion of the upper partial cylinder 2111B and the sliding surface FS may not come into contact with each other, and such a range is excluded.
  • the end EGD of the upper partial cylinder 2111B on the traveling direction D1 side is prevented from coming into contact with the sliding surface FS including the stepped portion 1231 even when the sliding surface FS is elastically deformed, that is, on the upper side It is desirable that the curved portion of the partial cylinder 2111B and the sliding surface FS are in contact with each other.
  • the central angle AG of the cross section of the upper partial cylinder 2111C is larger than 180 degrees.
  • the central angle of the lower partial cylinder 2112C is an angle obtained by subtracting the central angle AG from 360 degrees as shown in the drawing, it is larger than 180 degrees.
  • the central angle AG is determined so that both ends of the upper partial cylinder 2111C do not contact the guide surface GS. That is, when the central angle AG is large, the end portion EG of the upper partial cylinder 2111C is more likely to contact the guide surface GS as the size of the radius r2 is smaller than the radius r1.
  • the moving member was formed by the combination of two partial cylinders, structures other than two partial cylinders may be included. That is, the cross section of the moving member may further include other shapes as long as it includes an arc disposed on the sliding surface FS side and an arc disposed on the guide surface GS side.
  • the fourth embodiment three moving members 211D, 211E, and 211F are illustrated.
  • FIG. 12 is a diagram for explaining a moving member in the fourth embodiment.
  • a moving member 211D shown in FIG. 12A includes an upper partial cylinder 2111D and a lower partial cylinder 2112D.
  • the curved surface 2111D1 (an example of the first curved surface) that is the outer circumferential surface of the upper half cylinder 2111D slides on the sliding surface FS, and the curved surface 2112D1 (the outer circumferential surface of the lower half cylinder 2112D).
  • An example of the second curved surface is guided by the guide surface GS.
  • the central angle AG1 of the upper partial cylinder 2111D and the central angle AG2 of the lower partial cylinder 2112D are both less than 180 degrees.
  • the moving member 211D includes side structures that connect the respective side portions of the upper partial cylinder 2111D and the lower partial cylinder 2112D in addition to the upper partial cylinder 2111D and the lower partial cylinder 2112D.
  • the side structure has a convex side surface. This side surface connects the curved surface of the upper partial cylinder 2111D and the curved surface of the lower partial cylinder 2112D.
  • the moving member 211E shown in FIG. 12B is an example in the case where the side structure connecting the side portions of the upper partial cylinder 2111E and the lower partial cylinder 2112E has a concave side surface. Also in this embodiment, the curved surface 2111E1 (an example of the first curved surface) that is the outer peripheral surface of the upper half cylinder 2111E slides on the sliding surface FS, and the curved surface 2112E1 (the outer peripheral surface of the lower half cylinder 2112E). An example of the second curved surface is guided by the guide surface GS.
  • the curved surface of the upper partial cylinder 2111E and the side surface of the side structure are discontinuously connected at both ends of the upper partial cylinder 2111E and the lower partial cylinder 2112E, and the curved surface and the side part of the lower partial cylinder 2112E are connected.
  • the side surface of the structure is connected discontinuously.
  • the shape of the side structure connecting the respective side portions of the upper partial cylinder 2111F and the lower partial cylinder 2112F is different between the traveling direction D1 side and the opposite side. ing.
  • the traveling direction D1 the curved surface of the upper partial cylinder 2111F and the side surface of the side structure are continuously connected.
  • the upper partial cylinder 2111F is arranged at a position rotated to the traveling direction D1 side as compared with the above example. That is, among the angles AG3 and AG4 formed by the side portion of the upper partial cylinder 2111F and the side portion of the lower partial cylinder 2112F, the angle AG3 on the traveling direction D1 side is smaller than the angle AG4.
  • angles AG3 and AG4 may be the same size.
  • the curved surface 2111F1 (an example of the first curved surface) that is the outer circumferential surface of the upper half cylinder 2111F slides on the sliding surface FS, and the curved surface 2112F1 (the outer circumferential surface of the lower half cylinder 2112F).
  • An example of the second curved surface is guided by the guide surface GS.
  • the key 100 and the key-side load unit 120 are indirectly connected.
  • FIG. 13 is a diagram schematically illustrating the connection relationship between the keys of the keyboard assembly and the hammer according to the fifth embodiment.
  • FIG. 13 schematically shows the relationship between the key, the weight, and the load generation unit.
  • FIG. 13A is a diagram when the key 100J is at the rest position (before the key is pressed).
  • FIG. 13B is a diagram when the key 100J is in the end position (after the key is pressed).
  • the key 100J rotates around CF1.
  • CF1 corresponds to, for example, the rod-shaped flexible member 185 according to the above-described embodiment.
  • the key side load unit 120J and the key 100J are connected via a structure 1201J.
  • the structure 1201J rotates around CF3.
  • One end of the structure 1201J is rotatably connected to the key 100J via the link mechanism CK1.
  • the other end of the structure 1201J is connected to the key-side load unit 120J.
  • the hammer main body 250E rotates around the CF2.
  • CF2 corresponds to the pivot shaft 520 according to the above-described embodiment.
  • the weight portion 230J is disposed between the CF2 and the hammer side load portion 210J.
  • the key side load portion 120J moves inside the hammer side load portion 210J, and raises the weight portion 230J until it collides with the upper stopper 430J. That is, the state changes from the state shown in FIG. 13A to the state shown in FIG.
  • the weight portion 230J descends and pushes up the key 100J until it collides with the lower stopper 410J. That is, the state changes from the state shown in FIG. 13B to the state shown in FIG.
  • the load generating portion exists in the force transmission path from the key to the hammer assembly, even if at least one of the key and the hammer assembly is directly connected to the load generating portion, it is indirect. It may be connected to the terminal, and various configurations are possible.
  • the sensor driving unit 215 is connected to the moving member 211 via the rib portion 213, but the rib portion 213 may not be present.
  • the moving member 211 and the sensor driving unit 215 may be connected to the hammer main body 250.
  • the slit 125 may not be formed in the lower member 1213.
  • the entire sliding surface forming part 121 is formed of an elastic body, but this is not a limitation.
  • the elastic body may be disposed in the entire region where the sliding surface FS is formed.
  • only the protrusion part formed in the guide surface GS may be formed with the elastic body.
  • the range of the sliding surface FS that can be contacted by the moving member 211 is formed of at least an elastic body in the entire movable range of the key 100. It is desirable. Note that all of the sliding surface forming portion 121 may be formed of a member other than the elastic body.
  • the key side load portion 120 including the sliding surface FS is connected to the key 100, and the hammer side load portion 210 including the moving member 211 is connected to the hammer assembly 200.
  • the relationship may be reversed. Specifically, when the reverse relationship is established, the sliding surface FS is formed in the hammer side load portion 210, and the moving member 211 is provided in the key side load portion 120. That is, one of the moving member 211 and the sliding surface FS only needs to be connected to the key 100 and the other connected to the hammer assembly 200.
  • the lower member 1213 may not have a partial region. It is desirable to leave the guide surface GS in a region where the moving member 211 easily collides with the guide surface GS. For example, immediately after the key 100 is pressed down to the end position, the hammer assembly 200 continues to rotate with inertial force, and the moving member 211 is easily separated from the sliding surface FS. Further, immediately after the key 100 returns to the rest position, the hammer member 200 may continue to rotate with inertial force, and the moving member 211 may collide with the sliding surface FS and bounce off. In these situations, the moving member 211 easily comes into contact with the guide surface GS. That is, the guide surface GS is desirably disposed at least at both ends of the moving range of the moving member 211.
  • the protruding portion P is arranged on the lower member 1213, but the protruding portion P may not be arranged.
  • the guide surface GS may be a surface parallel to the sliding surface FS.
  • the stepped portion 1231 may not exist on the sliding surface FS. In this case, it is desirable to generate a click feeling using another method. At least in the load generating unit, it is not necessary to generate a click feeling. Even if the click feeling is not generated, it is possible to apply a resistance force against the key depression by using the elastic deformation of the sliding surface FS at the load generating portion.
  • hammer assembly 210, 210J ... hammer side load part, 211, 211A, 211B , 211C, 211D, 211E, 211F ... moving member, 2111, 2111A, 2111B, 2111C, 2111D, 2111E, 2111F ... upper half Pillar, 2112, 2112A, 2112B, 2112C, 2112D, 2112E, 2112F ... lower half cylinder, 213 ... rib part, 215 ... sensor drive part, 220 ... shaft support part, 230, 230J ... weight part, 250, 250J ... hammer Main body part, 300 ... sensor, 410, 410E ... lower stopper, 430,430J ... upper stopper, 500 ... frame, 511 ... front end frame guide, 513 ... side frame guide, 520 ... rotating shaft, 585 ... frame side support part 710 ... Signal conversion unit 730 ... Sound source unit 750 ... Output unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Electrophonic Musical Instruments (AREA)

Abstract

The present invention makes the touch sensation of an electronic keyboard-type musical instrument more similar to that of an acoustic piano, while ensuring the greatest possible amount of design freedom when introducing a mechanism for obtaining the touch sensation. To this end, a keyboard device is characterized by being equipped with: keys arranged so as to be capable of rotating relative to a frame; a hammer assembly positioned so as to be capable of rotating in response to the rotation of the keys; a first member; a second member which slides along the first member when the hammer assembly rotates in response to the rotation of the keys, is positioned so as to move on the first member, is provided with a first curved surface, the cross-section of which forms a first arc on the first member side thereof, is provided with a second curved surface, the cross-section of which forms a second arc on the side thereof opposite the first member, and is configured in a manner such that the centers of the first and second arcs are identical and the radii thereof are different; and a third member which is connected to the first member and guides the second member so as not to separate from the first member by more than a prescribed distance.

Description

鍵盤装置Keyboard device
 本発明は、鍵盤装置に関する。 The present invention relates to a keyboard device.
 アコースティックピアノにおいては、アクション機構の動作により、鍵を通して演奏者の指に所定の感覚(以下、タッチ感という)を与える。特に、エスケープメント機構の動作は、タッチ感として、演奏者の指に押鍵速度に応じた衝突感とその後の抜け感(全体として、例えばクリック感という)を与える。アコースティックピアノにおいては、ハンマでの打弦のためにアクション機構を必要とする。一方、電子鍵盤楽器においては、センサにより押鍵を検出するため、アコースティックピアノのようなアクション機構を有しなくても発音が可能である。アクション機構を用いない電子鍵盤楽器および簡易的なアクション機構を用いた電子鍵盤楽器のタッチ感は、アコースティックピアノのタッチ感に対して大きく変わってしまう。そこで、電子鍵盤楽器において、アコースティックピアノに近いタッチ感を得るために、様々な方法が検討されている(例えば、特許文献1)。 In an acoustic piano, a predetermined feeling (hereinafter referred to as touch feeling) is given to a player's finger through a key by the action of an action mechanism. In particular, the operation of the escapement mechanism gives the player's finger a feeling of collision according to the key-pressing speed and a subsequent feeling of omission (for example, a click feeling as a whole) as a touch feeling. In an acoustic piano, an action mechanism is required for hammering with a hammer. On the other hand, in an electronic keyboard instrument, a key depression is detected by a sensor, so that sound generation is possible without having an action mechanism such as an acoustic piano. The touch feeling of an electronic keyboard instrument that does not use an action mechanism and an electronic keyboard instrument that uses a simple action mechanism are greatly different from the touch feeling of an acoustic piano. Therefore, various methods have been studied for obtaining a touch feeling similar to an acoustic piano in an electronic keyboard instrument (for example, Patent Document 1).
特開2013-167790号公報JP 2013-167790 A
 電子鍵盤楽器において、アコースティックピアノに近いタッチ感を得るためには様々な機構を導入する必要があるが、そのためのスペースが限られていることから設計の自由度が少なくなってきている。 In an electronic keyboard instrument, it is necessary to introduce various mechanisms in order to obtain a touch feeling similar to an acoustic piano, but since the space for this is limited, the degree of freedom in design is decreasing.
 本発明の目的の一つは、電子鍵盤楽器におけるタッチ感をアコースティックピアノに近づけつつ、タッチ感を得るための機構を導入する際の設計の自由度(例えば、摺動面形成部の大きさの自由度)をできるだけ確保することにある。 One of the objects of the present invention is to provide a degree of design freedom when introducing a mechanism for obtaining a touch feeling while bringing the touch feeling of an electronic keyboard instrument close to an acoustic piano (for example, the size of the sliding surface forming portion). Is to secure as much as possible).
 本発明の実施形態によると、フレームに対して回動可能に配置された鍵と、前記鍵の回動に応じて、回動可能に配置されたハンマアセンブリと、第1部材と、前記鍵の回動に応じて前記ハンマアセンブリが回動するときに前記第1部材と摺動して、当該第1部材上を移動するように配置され、前記第1部材側において断面が第1円弧となる第1曲面を備え、前記第1部材と反対側において断面が第2円弧となる第2曲面を備え、前記第1円弧と第2円弧とは同一の中心を有し半径が互いに異なる第2部材と、前記第1部材と接続して前記第2部材が前記第1部材から所定距離以上離れないようにガイドする第3部材と、を備える鍵盤装置が提供される。 According to an embodiment of the present invention, a key arranged to be rotatable with respect to a frame, a hammer assembly arranged to be rotatable according to the rotation of the key, a first member, and the key When the hammer assembly is rotated in response to the rotation, the hammer assembly is arranged so as to slide on the first member and move on the first member, and a cross section of the first member is a first arc. A second member having a first curved surface, a second curved surface having a second circular arc in cross section on the opposite side to the first member, and the first arc and the second arc having the same center and different radii And a third member that is connected to the first member and guides the second member so that the second member is not separated from the first member by a predetermined distance or more.
 前記第3部材は、前記第2部材の移動範囲の少なくとも一部において前記第2曲面と接触してもよい。 The third member may contact the second curved surface in at least a part of a movement range of the second member.
 前記第1円弧の半径が前記第2円弧の半径より大きくてもよい。 The radius of the first arc may be larger than the radius of the second arc.
 前記第1円弧の半径が前記第2円弧の半径より小さくてもよい。 The radius of the first arc may be smaller than the radius of the second arc.
 前記第1部材は、表面の少なくとも一部に弾性体が配置されてもよい。 The elastic member may be disposed on at least a part of the surface of the first member.
 前記第1曲面のうち前記第1部材と接する位置は、前記第1部材に対する前記第2部材の位置によって変化してもよい。 The position of the first curved surface in contact with the first member may change depending on the position of the second member with respect to the first member.
 前記第3部材は、前記鍵の回動に応じて前記ハンマアセンブリが回動するときに前記第2部材と摺動してもよい。
 また、前記第2部材は、前記第1曲面を有する第1部分円柱部と、前記第1部分円柱部と反対側に位置し、前記第2曲面を有する第2部分円柱部と、を備え、前記第1部分円柱部と前記第2円柱部は、共通の中心軸を有し、前記第1部分円柱部の半径は、前記第2部分円柱部の半径とは異なることとしても良い。
The third member may slide with the second member when the hammer assembly rotates in response to rotation of the key.
The second member includes: a first partial cylindrical portion having the first curved surface; and a second partial cylindrical portion located on the opposite side of the first partial cylindrical portion and having the second curved surface, The first partial cylindrical portion and the second cylindrical portion may have a common central axis, and the radius of the first partial cylindrical portion may be different from the radius of the second partial cylindrical portion.
 前記第1部材および前記第2部材はいずれか一方が前記鍵に、他方が前記ハンマアセンブリに接続してもよい。
 前記ハンマアセンブリは、錘部を備えるものであり、前記第1部材は、前記鍵が押鍵操作されたときに、前記第2部材の前記第1部材に対する摺動を許容しつつ、前記錘部が上方に移動するように前記第2部材に力を付与することとしても良い。
 また、前記第1部材は、前記鍵への押鍵操作によって下方に移動する位置で前記鍵に対して配置されるものであり、前記第2部材は前記ハンマアセンブリに接続されるものであり、前記第1部材から下方に押されることにより前記錘部が上方に移動するように、前記ハンマアセンブリの回動軸に対して前記錘部と反対側に接続されることとしても良い。
 さらに、前記第3部材は、前記第1部材との間に前記第2部材を挟む位置で前記鍵に対して配置されることとしても良い。
また、鍵盤装置は、フレームに対して回動可能に配置された鍵と、前記鍵の回動に応じて、回動可能に配置されたハンマアセンブリと、第1部材と、前記鍵の回動に応じて前記ハンマアセンブリが回動するときに前記第1部材と摺動する第1曲面を有する第1部分円柱形状部と、前記第1部材と反対側に位置する第2曲面を有する第2部分円柱形状部と、を備える第2部材と、前記第1部材と接続して前記第2部材が前記第1部材から所定距離以上離れないようにガイドする第3部材と、を備え、前記第1部分円柱形状部と前記第2部分円柱形状部は、共通の中心軸を有し、前記第1部分円柱形状部の半径は、前記第2部分円柱形状部の半径とは異なることとしても良い。
 また、前記第3部材は、前記第2部材の移動範囲の少なくとも一部において前記第2曲面と接触することとしても良い。
 また、前記第1部分円柱形状部の半径は、前記第2部分円柱形状部の半径よりも大きいものとしても良い。
 また、前記第1部分円柱形状部の半径は、前記第2部分円柱形状部の半径よりも小さいものとしても良い。
 また、前記第1部分円柱形状部と前記第2部分円柱形状部は、樹脂によって一体的に形成されても良い。
 さらに、前記第1部材は、前記第1部分円柱形状部の外周面である前記第1曲面と接触する摺動面を備え、前記第3部材は、前記第2部分円柱形状部の外周面である前記第2曲面と接触可能なガイド面を備えることとしても良い。
One of the first member and the second member may be connected to the key, and the other may be connected to the hammer assembly.
The hammer assembly includes a weight portion, and the first member allows the second member to slide relative to the first member when the key is pressed. It is good also as giving force to the 2nd member so that may move up.
Further, the first member is arranged with respect to the key at a position that moves downward by a key pressing operation on the key, and the second member is connected to the hammer assembly, It is good also as connecting to the opposite side to the weight part with respect to the axis of rotation of the hammer assembly so that the weight part may move upward by being pushed downward from the first member.
Furthermore, the third member may be disposed with respect to the key at a position where the second member is sandwiched between the third member and the first member.
Further, the keyboard device includes a key arranged to be rotatable with respect to the frame, a hammer assembly arranged to be rotatable according to the rotation of the key, a first member, and the rotation of the key. The first partial cylindrical portion having a first curved surface that slides with the first member when the hammer assembly is rotated in response to the rotation, and a second curved surface that is located on the opposite side of the first member. A second member provided with a partial columnar part; and a third member connected to the first member for guiding the second member so as not to be separated from the first member by a predetermined distance or more. The one-part columnar part and the second part-columnar part have a common central axis, and the radius of the first part-columnar part may be different from the radius of the second part-columnar part. .
The third member may be in contact with the second curved surface in at least a part of the movement range of the second member.
Further, the radius of the first partial columnar portion may be larger than the radius of the second partial columnar portion.
In addition, the radius of the first partial cylindrical portion may be smaller than the radius of the second partial cylindrical portion.
Further, the first partial columnar portion and the second partial columnar portion may be integrally formed of resin.
Furthermore, the first member includes a sliding surface that comes into contact with the first curved surface, which is an outer peripheral surface of the first partial cylindrical portion, and the third member is an outer peripheral surface of the second partial cylindrical portion. It is good also as providing the guide surface which can contact a certain said 2nd curved surface.
 本発明によれば、電子鍵盤楽器におけるタッチ感をアコースティックピアノに近づけつつ、タッチ感を得るための機構を導入する際の設計の自由度をできるだけ確保することができる。 According to the present invention, it is possible to ensure as much as possible the degree of freedom of design when introducing a mechanism for obtaining a touch feeling while bringing the touch feeling of an electronic keyboard instrument closer to an acoustic piano.
第1実施形態における鍵盤装置の構成を示す図である。It is a figure which shows the structure of the keyboard apparatus in 1st Embodiment. 第1実施形態における音源装置の構成を示すブロック図である。It is a block diagram which shows the structure of the sound source device in 1st Embodiment. 第1実施形態における筐体内部の構成を側面から見た場合の説明図である。It is explanatory drawing at the time of seeing the structure inside the housing | casing in 1st Embodiment from the side surface. 第1実施形態における負荷発生部(鍵側負荷部およびハンマ側負荷部)の説明図である。It is explanatory drawing of the load generation part (key side load part and hammer side load part) in 1st Embodiment. 第1実施形態における摺動面形成部の構造を説明する図である。It is a figure explaining the structure of the sliding face formation part in 1st Embodiment. 第1実施形態における弾性体の弾性変形(強打時)を説明する図である。It is a figure explaining the elastic deformation (at the time of strong hit) of the elastic body in 1st Embodiment. 第1実施形態における弾性体の弾性変形(弱打時)を説明する図である。It is a figure explaining the elastic deformation (at the time of weak strike) of the elastic body in 1st Embodiment. 第1実施形態における移動部材の構成を説明する図である。It is a figure explaining the structure of the moving member in 1st Embodiment. 第1実施形態における鍵(白鍵)を押下したときの鍵アセンブリの動作を説明する図である。It is a figure explaining operation | movement of the key assembly when the key (white key) in 1st Embodiment is pressed down. 第2実施形態における移動部材を説明する図である。It is a figure explaining the moving member in 2nd Embodiment. 第3実施形態における移動部材を説明する図である。It is a figure explaining the moving member in 3rd Embodiment. 第4実施形態における移動部材を説明する図である。It is a figure explaining the moving member in 4th Embodiment. 第5実施形態における鍵盤アセンブリの鍵とハンマとの接続関係を模式的に説明する図である。It is a figure which illustrates typically the connection relation of the key and hammer of a keyboard assembly in a 5th embodiment.
 以下、本発明の一実施形態における鍵盤装置について、図面を参照しながら詳細に説明する。以下に示す実施形態は本発明の実施形態の一例であって、本発明はこれらの実施形態に限定して解釈されるものではない。なお、本実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号(数字の後にA、B等を付しただけの符号)を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率(各構成間の比率、縦横高さ方向の比率等)は説明の都合上実際の比率とは異なったり、構成の一部が図面から省略されたりする場合がある。 Hereinafter, a keyboard device according to an embodiment of the present invention will be described in detail with reference to the drawings. The following embodiments are examples of embodiments of the present invention, and the present invention should not be construed as being limited to these embodiments. Note that in the drawings referred to in the present embodiment, the same portion or a portion having a similar function is denoted by the same reference symbol or a similar reference symbol (a reference symbol simply including A, B, etc. after a number) and repeated. The description of may be omitted. In addition, the dimensional ratios of the drawings (the ratios between the components, the ratios in the vertical and horizontal height directions, etc.) may be different from the actual ratios for convenience of explanation, or some of the configurations may be omitted from the drawings.
<第1実施形態>
[鍵盤装置の構成]
 図1は、第1実施形態における鍵盤装置の構成を示す図である。鍵盤装置1は、この例では、電子ピアノなどユーザ(演奏者)の押鍵に応じて発音する電子鍵盤楽器である。なお、鍵盤装置1は、外部の音源装置を制御するための制御データ(例えば、MIDI)を、押鍵に応じて出力する鍵盤型のコントローラであってもよい。この場合には、鍵盤装置1は、音源装置を備えていなくてもよい。
<First Embodiment>
[Configuration of keyboard device]
FIG. 1 is a diagram illustrating a configuration of a keyboard device according to the first embodiment. In this example, the keyboard device 1 is an electronic keyboard instrument that emits sound in response to a user (player) key depression such as an electronic piano. Note that the keyboard device 1 may be a keyboard-type controller that outputs control data (for example, MIDI) for controlling an external sound source device in response to a key depression. In this case, the keyboard device 1 may not include the sound source device.
 鍵盤装置1は、鍵盤アセンブリ10を備える。鍵盤アセンブリ10は、白鍵100wおよび黒鍵100bを含む。複数の白鍵100wと黒鍵100bとが並んで配列されている。鍵100の数は、N個であり、この例では88個である。この配列された方向をスケール方向という。白鍵100wおよび黒鍵100bを特に区別せずに説明できる場合には、鍵100という場合がある。以下の説明においても、符号の最後に「w」を付した場合には、白鍵に対応する構成であることを意味している。また、符号の最後に「b」を付した場合には、黒鍵に対応する構成であることを意味している。 The keyboard device 1 includes a keyboard assembly 10. The keyboard assembly 10 includes a white key 100w and a black key 100b. A plurality of white keys 100w and black keys 100b are arranged side by side. The number of keys 100 is N, which is 88 in this example. This arranged direction is called a scale direction. When the white key 100w and the black key 100b can be described without particular distinction, the key 100 may be referred to. Also in the following description, when “w” is added to the end of the reference sign, it means that the configuration corresponds to the white key. Further, when “b” is added at the end of the code, it means that the configuration corresponds to the black key.
 鍵盤アセンブリ10の一部は、筐体90の内部に存在している。鍵盤装置1を上方から見た場合において、鍵盤アセンブリ10のうち筐体90に覆われている部分を非外観部NVといい、筐体90から露出してユーザから視認できる部分を外観部PVという。すなわち、外観部PVは、鍵100の一部であって、ユーザによって演奏操作が可能な領域を示す。以下、鍵100のうち外観部PVによって露出されている部分を鍵本体部という場合がある。 A part of the keyboard assembly 10 exists inside the housing 90. When the keyboard device 1 is viewed from above, a portion of the keyboard assembly 10 covered by the casing 90 is referred to as a non-appearance portion NV, and a portion exposed from the casing 90 and visible to the user is referred to as an appearance portion PV. . That is, the appearance part PV is a part of the key 100 and indicates an area where the user can perform a performance operation. Hereinafter, a portion of the key 100 that is exposed by the appearance portion PV may be referred to as a key body portion.
 筐体90内部には、音源装置70およびスピーカ80が配置されている。音源装置70は、鍵100の押下に伴って音波形信号を生成する。スピーカ80は、音源装置70において生成された音波形信号を外部の空間に出力する。なお、鍵盤装置1は、音量をコントロールするためのスライダ、音色を切り替えるためのスイッチ、様々な情報を表示するディスプレイなどが備えられていてもよい。 Inside the housing 90, a sound source device 70 and a speaker 80 are arranged. The tone generator 70 generates a sound waveform signal when the key 100 is pressed. The speaker 80 outputs the sound waveform signal generated in the sound source device 70 to an external space. The keyboard device 1 may be provided with a slider for controlling the volume, a switch for switching timbres, a display for displaying various information, and the like.
 なお、本明細書における説明において、上、下、左、右、手前および奥などの方向は、演奏するときの演奏者から鍵盤装置1を見た場合の方向を示している。そのため、例えば、非外観部NVは、外観部PVよりも奥側に位置している、と表現することができる。また、鍵前端側(鍵前方側)、鍵後端側(鍵後方側)のように、鍵100を基準として方向を示す場合もある。この場合、鍵前端側は鍵100に対して演奏者から見た手前側を示す。鍵後端側は鍵100に対して演奏者から見た奥側を示す。この定義によれば、黒鍵100bのうち、黒鍵100bの鍵本体部の前端から後端までが、白鍵100wよりも上方に突出した部分である、と表現することができる。 In the description of the present specification, directions such as up, down, left, right, front, and back indicate directions when the keyboard device 1 is viewed from the performer when performing. Therefore, for example, the non-appearance part NV can be expressed as being located on the back side with respect to the appearance part PV. Further, the direction may be indicated with the key 100 as a reference, such as the front end side (key front side) and the rear end side (key rear side). In this case, the key front end side indicates the front side as viewed from the performer with respect to the key 100. The rear end side of the key indicates the back side viewed from the performer with respect to the key 100. According to this definition, the black key 100b can be expressed as a portion protruding upward from the white key 100w from the front end to the rear end of the key body of the black key 100b.
 図2は、第1実施形態における音源装置の構成を示すブロック図である。音源装置70は、信号変換部710、音源部730および出力部750を備える。センサ300は、各鍵100に対応して設けられ、鍵の操作を検出し、検出した内容に応じた信号を出力する。この例では、センサ300は、3段階の押鍵量に応じて信号を出力する。この信号の間隔に応じて押鍵速度が検出可能である。 FIG. 2 is a block diagram illustrating a configuration of the sound source device according to the first embodiment. The sound source device 70 includes a signal conversion unit 710, a sound source unit 730, and an output unit 750. The sensor 300 is provided corresponding to each key 100, detects a key operation, and outputs a signal corresponding to the detected content. In this example, the sensor 300 outputs a signal according to the key depression amount in three stages. The key pressing speed can be detected according to the interval of this signal.
 信号変換部710は、センサ300(88の鍵100に対応したセンサ300-1、300-2、・・・、300-88)の出力信号を取得し、各鍵100における操作状態に応じた操作信号を生成して出力する。この例では、操作信号はMIDI形式の信号である。そのため、押鍵操作に応じて、信号変換部710はノートオンを出力する。このとき、88個の鍵100のいずれが操作されたかを示すキーナンバ、および押鍵速度に対応するベロシティについてもノートオンに対応付けて出力される。一方、離鍵操作に応じて、信号変換部710はキーナンバとノートオフとを対応付けて出力する。信号変換部710には、ペダル等の他の操作に応じた信号が入力され、操作信号に反映されてもよい。 The signal conversion unit 710 acquires the output signal of the sensor 300 (sensors 300-1, 300-2,..., 300-88 corresponding to the 88 key 100), and operates according to the operation state of each key 100. Generate and output a signal. In this example, the operation signal is a MIDI signal. Therefore, the signal conversion unit 710 outputs note-on according to the key pressing operation. At this time, the key number indicating which of the 88 keys 100 has been operated and the velocity corresponding to the key pressing speed are also output in association with the note-on. On the other hand, in response to the key release operation, the signal conversion unit 710 outputs the key number and note-off in association with each other. A signal corresponding to another operation such as a pedal may be input to the signal conversion unit 710 and reflected in the operation signal.
 音源部730は、信号変換部710から出力された操作信号に基づいて、音波形信号を生成する。出力部750は、音源部730によって生成された音波形信号を出力する。この音波形信号は、例えば、スピーカ80または音波形信号出力端子などに出力される。 The sound source unit 730 generates a sound waveform signal based on the operation signal output from the signal conversion unit 710. The output unit 750 outputs the sound waveform signal generated by the sound source unit 730. This sound waveform signal is output to, for example, the speaker 80 or the sound waveform signal output terminal.
[鍵盤アセンブリの構成]
 図3は、第1実施形態における筐体内部の構成を側面から見た場合の説明図である。図3に示すように、筐体90の内部において、鍵盤アセンブリ10およびスピーカ80が配置されている。すなわち、筐体90は、少なくとも、鍵盤アセンブリ10の一部(接続部180およびフレーム500)およびスピーカ80を覆っている。スピーカ80は、鍵盤アセンブリ10の奥側に配置されている。このスピーカ80は、押鍵に応じた音を筐体90の上方および下方に向けて出力するように配置されている。下方に出力される音は、筐体90の下面側から外部に進む。一方、上方に出力される音は筐体90の内部から鍵盤アセンブリ10の内部の空間を通過して、外観部PVにおける鍵100の隣接間の隙間または鍵100と筐体90との隙間から外部に進む。なお、鍵盤アセンブリ10の内部の空間、すなわち鍵100(鍵本体部)の下方側の空間に到達する、スピーカ80からの音の経路は、経路SRとして例示されている。
[Configuration of keyboard assembly]
FIG. 3 is an explanatory diagram when the configuration inside the housing in the first embodiment is viewed from the side. As shown in FIG. 3, the keyboard assembly 10 and the speaker 80 are arranged inside the housing 90. That is, the housing 90 covers at least a part of the keyboard assembly 10 (the connection portion 180 and the frame 500) and the speaker 80. The speaker 80 is disposed on the back side of the keyboard assembly 10. The speaker 80 is arranged so as to output a sound corresponding to the key depression toward the upper side and the lower side of the housing 90. The sound output downward advances from the lower surface side of the housing 90 to the outside. On the other hand, the sound output upward passes through the space inside the keyboard assembly 10 from the inside of the housing 90, and is externally transmitted from the gap between the adjacent keys 100 in the exterior portion PV or the gap between the key 100 and the housing 90. Proceed to Note that the path of sound from the speaker 80 that reaches the space inside the keyboard assembly 10, that is, the space below the key 100 (key body portion), is exemplified as the path SR.
 鍵盤アセンブリ10の構成について、図3を用いて説明する。鍵盤アセンブリ10は、上述した鍵100の他にも、接続部180、ハンマアセンブリ200およびフレーム500を含む。鍵盤アセンブリ10は、ほとんどの構成が射出成形などによって製造された樹脂製の構造体である。フレーム500は、筐体90に固定されている。接続部180は、フレーム500に対して回動可能に鍵100を接続する。接続部180は、板状可撓性部材181、鍵側支持部183および棒状可撓性部材185を備える。板状可撓性部材181は、鍵100の後端から延在している。鍵側支持部183は、板状可撓性部材181の後端から延在している。棒状可撓性部材185が、鍵側支持部183およびフレーム500のフレーム側支持部585によって支持されている。すなわち、鍵100とフレーム500との間に、棒状可撓性部材185が配置されている。棒状可撓性部材185が曲がることによって、鍵100がフレーム500に対して回動することができる。棒状可撓性部材185は、鍵側支持部183とフレーム側支持部585とに対して、着脱可能に構成されている。なお、棒状可撓性部材185は、鍵側支持部183とフレーム側支持部585と一体となって、または接着等により、着脱できない構成であってもよい。 The configuration of the keyboard assembly 10 will be described with reference to FIG. The keyboard assembly 10 includes a connection portion 180, a hammer assembly 200, and a frame 500 in addition to the key 100 described above. The keyboard assembly 10 is a resin-made structure whose most configuration is manufactured by injection molding or the like. The frame 500 is fixed to the housing 90. The connection unit 180 connects the key 100 so as to be rotatable with respect to the frame 500. The connecting portion 180 includes a plate-like flexible member 181, a key-side support portion 183, and a rod-like flexible member 185. The plate-like flexible member 181 extends from the rear end of the key 100. The key side support portion 183 extends from the rear end of the plate-like flexible member 181. A rod-shaped flexible member 185 is supported by the key side support portion 183 and the frame side support portion 585 of the frame 500. That is, a rod-shaped flexible member 185 is disposed between the key 100 and the frame 500. The key 100 can be rotated with respect to the frame 500 by bending the rod-shaped flexible member 185. The rod-shaped flexible member 185 is configured to be attachable to and detachable from the key side support portion 183 and the frame side support portion 585. The rod-like flexible member 185 may be configured so as not to be attached or detached integrally with the key side support portion 183 and the frame side support portion 585, or by bonding or the like.
 鍵100は、前端鍵ガイド151および側面鍵ガイド153を備える。前端鍵ガイド151は、フレーム500の前端フレームガイド511を覆った状態で摺動可能に接触している。前端鍵ガイド151は、その上部と下部のスケール方向の両側において、前端フレームガイド511と接触している。側面鍵ガイド153は、スケール方向の両側において側面フレームガイド513と摺動可能に接触している。この例では、側面鍵ガイド153は、鍵100の側面のうち非外観部NVに対応する領域に配置され、接続部180(板状可撓性部材181)よりも鍵前端側に存在するが、外観部PVに対応する領域に配置されてもよい。 The key 100 includes a front end key guide 151 and a side key guide 153. The front end key guide 151 is slidably in contact with the front end frame guide 511 of the frame 500. The front end key guide 151 is in contact with the front end frame guide 511 on both sides of the upper and lower scale directions. The side key guide 153 is slidably in contact with the side frame guide 513 on both sides in the scale direction. In this example, the side key guide 153 is disposed in a region corresponding to the non-appearance portion NV on the side surface of the key 100, and exists on the key front end side with respect to the connection portion 180 (plate-like flexible member 181). You may arrange | position to the area | region corresponding to the external appearance part PV.
 また、鍵100は、外観部PVの下方において鍵側負荷部120が接続されている。鍵側負荷部120は、鍵100が回動するときに、ハンマアセンブリ200を回動させるように、ハンマアセンブリ200に接続される。 Also, the key 100 is connected to the key-side load unit 120 below the exterior portion PV. The key-side load portion 120 is connected to the hammer assembly 200 so that the hammer assembly 200 is rotated when the key 100 is rotated.
 ハンマアセンブリ200は、鍵100の下方側の空間に配置され、フレーム500に対して回動可能に取り付けられている。ハンマアセンブリ200は、錘部230およびハンマ本体部250を備える。ハンマ本体部250には、フレーム500の回動軸520の軸受となる軸支持部220が配置されている。軸支持部220とフレーム500の回動軸520とは少なくとも3点で摺動可能に接触する。 The hammer assembly 200 is disposed in a space below the key 100 and is rotatably attached to the frame 500. The hammer assembly 200 includes a weight part 230 and a hammer body part 250. The hammer main body 250 is provided with a shaft support portion 220 that serves as a bearing for the rotation shaft 520 of the frame 500. The shaft support portion 220 and the rotation shaft 520 of the frame 500 are slidably in contact with each other at at least three points.
 ハンマ側負荷部210は、ハンマ本体部250の前端部に接続されている。ハンマ側負荷部210は、鍵側負荷部120の内部において概ね前後方向に摺動可能に接触する部分(後述する移動部材211;図4参照)を備える。この接触部分にはグリース等の潤滑剤が配置されていてもよい。ハンマ側負荷部210および鍵側負荷部120(以下の説明において、これらをまとめて「負荷発生部」という場合がある)とは、互いに摺動することで押鍵時の負荷の一部を発生する。負荷発生部は、この例では外観部PV(鍵本体部の後端よりも前方)における鍵100の下方に位置する。負荷発生部の詳細の構造については後述する。 The hammer side load portion 210 is connected to the front end portion of the hammer main body portion 250. The hammer side load section 210 includes a portion (moving member 211 described later; see FIG. 4) that comes into contact with the inside of the key side load section 120 so as to be slidable in the front-rear direction. A lubricant such as grease may be disposed at the contact portion. The hammer-side load unit 210 and the key-side load unit 120 (in the following description, these may be collectively referred to as “load generation unit”) generate a part of the load when the key is pressed by sliding on each other. To do. In this example, the load generating unit is located below the key 100 in the appearance portion PV (frontward from the rear end of the key body). The detailed structure of the load generator will be described later.
 錘部230は、金属製の錘を含み、ハンマ本体部250の後端部(回動軸よりも奥側)に接続されている。通常時(押鍵していないとき)には、錘部230が下側ストッパ410に載置された状態になる。これによって、鍵100はレスト位置で安定する。押鍵されると、錘部230が上方に移動し、上側ストッパ430に衝突する。これによって鍵100の最大押鍵量となるエンド位置が規定される。この錘部230によっても、押鍵に対して負荷を与える。下側ストッパ410および上側ストッパ430は、緩衝材等(不織布、弾性体等)で形成されている。 The weight portion 230 includes a metal weight, and is connected to the rear end portion of the hammer main body portion 250 (the back side from the rotation shaft). In a normal state (when no key is pressed), the weight portion 230 is placed on the lower stopper 410. As a result, the key 100 is stabilized at the rest position. When the key is depressed, the weight portion 230 moves upward and collides with the upper stopper 430. This defines the end position that is the maximum key depression amount of the key 100. The weight 230 also applies a load to the key press. The lower stopper 410 and the upper stopper 430 are formed of a buffer material or the like (nonwoven fabric, elastic body, etc.).
 負荷発生部の下方において、フレーム500にセンサ300が取り付けられている。押鍵によりハンマ側負荷部210の下面側でセンサ300が押しつぶされると、センサ300は検出信号を出力する。センサ300は、上述したように、各鍵100に対応して設けられている。 The sensor 300 is attached to the frame 500 below the load generating unit. When the sensor 300 is crushed by the key depression on the lower surface side of the hammer side load portion 210, the sensor 300 outputs a detection signal. As described above, the sensor 300 is provided corresponding to each key 100.
[負荷発生部の概要]
 図4は、第1実施形態における負荷発生部(鍵側負荷部およびハンマ側負荷部)の説明図である。ハンマ側負荷部210は、移動部材211(第2部材)、リブ部213およびセンサ駆動部215(板状部材)を備える。これらの各構成はいずれも、ハンマ本体部250とも接続されている。移動部材211は、この例では、互いに半径が異なり同じ中心を有する2つの略半円を結合した底面を備えた柱形状であり、その軸がスケール方向に延びている。リブ部213は、移動部材211の下方に接続されたリブであって、この例では、その表面の法線方向がスケール方向に沿っている。センサ駆動部215は、リブ部213の下方に接続され、スケール方向に対して垂直な方向の法線の表面を有する板状部材である。すなわち、センサ駆動部215とリブ部213とは垂直の関係にある。ここで、リブ部213は、押鍵によって移動する方向を面内に含む。そのため、押鍵時の移動方向に対して、移動部材211およびセンサ駆動部215の強度を補強する効果を有する。ここでは、移動部材211に対しては、リブ部213およびセンサ駆動部215が補強材として機能する。センサ駆動部215に対しては、移動部材211およびリブ部213が補強材として機能する。これによって、単にリブを設けるよりも、互いに補強し合って全体として強固にすることもできる。なお、図4に示すように、移動部材211は、リブ部211を介して、ハンマ本体部250の前端部に接続されている。また、錘部230は、上述したように、ハンマ本体部250の後端部(回動軸よりも奥側)に接続されている。つまり、移動部材211は、ハンマアセンブリ200の回動軸に対して、錘部230が位置する側(後側)とは反対側(前側)に位置していることとなる。
[Overview of load generation unit]
FIG. 4 is an explanatory diagram of a load generation unit (key side load unit and hammer side load unit) in the first embodiment. The hammer side load part 210 includes a moving member 211 (second member), a rib part 213, and a sensor driving part 215 (plate-like member). Each of these components is also connected to the hammer body 250. In this example, the moving member 211 has a columnar shape having a bottom surface obtained by joining two substantially semicircles having different radii and the same center, and the axis extends in the scale direction. The rib part 213 is a rib connected below the moving member 211. In this example, the normal direction of the surface is along the scale direction. The sensor drive unit 215 is a plate-like member that is connected below the rib portion 213 and has a normal surface in a direction perpendicular to the scale direction. That is, the sensor driving unit 215 and the rib portion 213 are in a vertical relationship. Here, the rib part 213 includes in the plane the direction of movement by pressing the key. Therefore, there is an effect of reinforcing the strength of the moving member 211 and the sensor driving unit 215 with respect to the moving direction at the time of key depression. Here, for the moving member 211, the rib portion 213 and the sensor driving portion 215 function as a reinforcing material. For the sensor driving unit 215, the moving member 211 and the rib portion 213 function as a reinforcing material. This makes it possible to reinforce each other and strengthen them as a whole rather than simply providing ribs. As shown in FIG. 4, the moving member 211 is connected to the front end portion of the hammer main body portion 250 via the rib portion 211. Further, as described above, the weight portion 230 is connected to the rear end portion of the hammer main body portion 250 (the back side from the rotation shaft). That is, the moving member 211 is located on the opposite side (front side) to the side (rear side) where the weight portion 230 is located with respect to the rotation axis of the hammer assembly 200.
 鍵側負荷部120は、摺動面形成部121を含む。摺動面形成部121は、図4に示すように、鍵100から下方に延びる鍵側負荷部120の下端部に配置されている。すなわち、摺動面形成部121は、押鍵時には、下方に移動する位置で鍵100に対して配置されている。また、摺動面形成部121は、内部に移動部材211が移動可能な空間SPを形成する。空間SPの上方において摺動面FSが形成され、空間SPの下方においてガイド面GSが形成される。少なくとも摺動面FSが形成される領域は、ゴム等の弾性体で形成されている。すなわち、この弾性体が露出されている。この例では、摺動面形成部121の全体が弾性体で形成されている。この弾性体は粘弾性を有すること、すなわち粘弾性体であることが望ましい。摺動面形成部121は、弾性体であるため、より変形しにくい材料、例えば、摺動面形成部121を構成する弾性体よりも剛性の高い樹脂などの剛性体に囲まれている。これによって摺動面形成部121の外面の形状が維持されるように支持されている。この外面は、摺動面形成部121における摺動面FSの反対側の面を含む。なお、摺動面FSから外面側の剛性体に至るまでの間は、徐々に剛性が高くなるように変化してもよい。また、この間においては、摺動面FSよりも弾性変形がしやすい部材(摺動面FSよりも剛性の低い部材)が含まれないことが望ましい。 The key side load part 120 includes a sliding surface forming part 121. As shown in FIG. 4, the sliding surface forming portion 121 is disposed at the lower end portion of the key-side load portion 120 that extends downward from the key 100. That is, the sliding surface forming portion 121 is disposed with respect to the key 100 at a position that moves downward when the key is pressed. The sliding surface forming part 121 forms a space SP in which the moving member 211 can move. A sliding surface FS is formed above the space SP, and a guide surface GS is formed below the space SP. At least the region where the sliding surface FS is formed is formed of an elastic body such as rubber. That is, this elastic body is exposed. In this example, the entire sliding surface forming part 121 is formed of an elastic body. It is desirable that this elastic body has viscoelasticity, that is, a viscoelastic body. Since the sliding surface forming portion 121 is an elastic body, the sliding surface forming portion 121 is surrounded by a material that is more difficult to deform, for example, a rigid body such as a resin having higher rigidity than the elastic body constituting the sliding surface forming portion 121. Thus, the outer surface of the sliding surface forming portion 121 is supported so as to be maintained. This outer surface includes the surface on the opposite side of the sliding surface FS in the sliding surface forming portion 121. In addition, it may change so that rigidity may become high gradually from the sliding surface FS to the rigid body of the outer surface side. In addition, it is desirable not to include a member that is more easily elastically deformed than the sliding surface FS (a member having rigidity lower than that of the sliding surface FS) during this period.
 図4においては、鍵100がレスト位置にある場合の移動部材211の位置を示している。押鍵されると、移動部材211は、摺動面FSと接触しつつ、空間SPを矢印D1の方向(以下、進行方向D1という場合がある)に移動する。すなわち、移動部材211は摺動面FSと摺動する。この例では、移動部材211のうち半径の大きい半円側に形成された曲面と摺動面FSとが接触する。移動部材211が摺動面FSに接触しながら移動することから、摺動面FSは間欠摺動側、移動部材211は連続摺動側という場合がある。移動部材211もわずかに回転して接触面が移動することから、厳密には連続摺動ではないが、ほぼ連続摺動であるといえる。いずれにしても、押鍵に伴って摺動面FSと移動部材211とが摺動する範囲において、摺動面FSのうち移動部材211によって接触可能な全範囲は、移動部材211のうち摺動面FSによって接触可能な全範囲よりも大きな面積となる。 FIG. 4 shows the position of the moving member 211 when the key 100 is at the rest position. When the key is depressed, the moving member 211 moves the space SP in the direction of the arrow D1 (hereinafter sometimes referred to as the traveling direction D1) while being in contact with the sliding surface FS. That is, the moving member 211 slides with the sliding surface FS. In this example, the curved surface formed on the semicircular side having a large radius in the moving member 211 and the sliding surface FS come into contact with each other. Since the moving member 211 moves while contacting the sliding surface FS, the sliding surface FS may be referred to as an intermittent sliding side, and the moving member 211 may be referred to as a continuous sliding side. The moving member 211 is also rotated slightly to move the contact surface. Therefore, although it is not strictly continuous sliding, it can be said that it is almost continuous sliding. In any case, in the range in which the sliding surface FS and the moving member 211 slide along with the key depression, the entire range that can be contacted by the moving member 211 in the sliding surface FS is the sliding in the moving member 211. The area is larger than the entire range that can be contacted by the surface FS.
 このとき、負荷発生部全体としては、押鍵に伴い下方に移動し、センサ駆動部215がセンサ300を押しつぶす。この例では、摺動面FSのうち、鍵100がレスト位置からエンド位置に回動することによって移動部材211が移動する範囲に、段差部1231が配置されている。すなわち、段差部1231は、初期位置(鍵100がレスト位置にあるときの移動部材211の位置)から移動する移動部材211(さらに詳しく言えば、移動部材211の後述の上側半円柱2111)によって乗り越えられる。また、ガイド面GSのうち段差部1231に対向する部分には、凹部1233が形成されている。凹部1233の存在により、移動部材211が段差部1231を乗り越えて移動しやすくなる。続いて、摺動面形成部121の構成について詳述する。 At this time, the entire load generating unit moves downward as the key is pressed, and the sensor driving unit 215 crushes the sensor 300. In this example, a stepped portion 1231 is arranged in the sliding surface FS in a range in which the moving member 211 moves when the key 100 rotates from the rest position to the end position. That is, the stepped portion 1231 is overcome by the moving member 211 (more specifically, the upper half cylinder 2111 described later of the moving member 211) that moves from the initial position (the position of the moving member 211 when the key 100 is at the rest position). It is done. A concave portion 1233 is formed in a portion of the guide surface GS that faces the stepped portion 1231. The presence of the recess 1233 makes it easier for the moving member 211 to move over the stepped portion 1231. Then, the structure of the sliding surface formation part 121 is explained in full detail.
[摺動面形成部の構成]
 図5は、第1実施形態における摺動面形成部の構造を説明する図である。図5(A)は、上述した図4において説明した摺動面形成部121をより詳細に説明する図であって、その内部の構造を破線で示している。図5(B)は、摺動面形成部121を後方(鍵後端側)から見た場合の図である。図5(C)は、摺動面形成部121を上面側から見た場合の図である。図5(D)は、摺動面形成部121を下面側からみた見た場合の図である。図5(E)は、摺動面形成部121を前方(鍵前端側)から見た場合の図である。なお、移動部材211およびリブ部213が存在する領域を二点鎖線で示している。
[Configuration of sliding surface forming part]
FIG. 5 is a diagram illustrating the structure of the sliding surface forming portion in the first embodiment. FIG. 5A is a diagram for explaining the sliding surface forming portion 121 described in FIG. 4 in more detail, and its internal structure is indicated by a broken line. FIG. 5B is a view when the sliding surface forming portion 121 is viewed from the rear (key rear end side). FIG. 5C is a view when the sliding surface forming portion 121 is viewed from the upper surface side. FIG. 5D is a view when the sliding surface forming portion 121 is viewed from the lower surface side. FIG. 5E is a view when the sliding surface forming portion 121 is viewed from the front (key front end side). In addition, the area | region where the moving member 211 and the rib part 213 exist is shown with the dashed-two dotted line.
 摺動面形成部121は、上部材1211(第1部材)、下部材1213(第3部材)および側部材1215を備える。上部材1211と下部材1213とは側部材1215を介して接続されている。上述した空間SPは、上部材1211、下部材1213および側部材1215によって囲まれている空間を示している。上部材1211の空間SP側の面は摺動面FSである。摺動面FSには、上述したように段差部1231が配置されている。下部材1213の空間SP側の面はガイド面GSである。ガイド面GSには、上述したように凹部1233が配置されている。ガイド面GSは、移動部材211が上部材1211(摺動面FS)から所定距離以上に離れないように、移動部材211をガイドする。すなわち、図4に示すように、上部材1211は、鍵100に対して下方に配置され、下部材1213は、上部材1211よりも下方に配置されている。また、下部材1213は、上部材1211との間に移動部材211を挟む位置に配置されている。 The sliding surface forming part 121 includes an upper member 1211 (first member), a lower member 1213 (third member), and a side member 1215. The upper member 1211 and the lower member 1213 are connected via a side member 1215. The space SP described above indicates a space surrounded by the upper member 1211, the lower member 1213, and the side member 1215. The surface on the space SP side of the upper member 1211 is a sliding surface FS. As described above, the stepped portion 1231 is disposed on the sliding surface FS. The space SP side surface of the lower member 1213 is a guide surface GS. As described above, the recess 1233 is disposed on the guide surface GS. The guide surface GS guides the moving member 211 so that the moving member 211 is not separated from the upper member 1211 (sliding surface FS) by a predetermined distance or more. That is, as shown in FIG. 4, the upper member 1211 is disposed below the key 100, and the lower member 1213 is disposed below the upper member 1211. Further, the lower member 1213 is disposed at a position where the moving member 211 is sandwiched between the lower member 1213 and the upper member 1211.
 下部材1213には、スリット125が配置されている。スリット125は、移動部材211とともに移動するリブ部213を通過させる。図5においては省略しているが、図4に示したように、リブ部213には、移動部材211とは反対側においてセンサ駆動部215が接続されている。したがって、下部材1213は、移動部材211とセンサ駆動部215との間に挟まれる位置関係となる。 The lower member 1213 is provided with a slit 125. The slit 125 passes the rib portion 213 that moves together with the moving member 211. Although omitted in FIG. 5, as shown in FIG. 4, a sensor driving unit 215 is connected to the rib portion 213 on the side opposite to the moving member 211. Therefore, the lower member 1213 has a positional relationship between the moving member 211 and the sensor driving unit 215.
 下部材1213のガイド面GSは、スリット125に近づくほど、摺動面FSに近づくように傾斜している。すなわち、下部材1213は、スリット125に沿って線状に突出する部分(以下、突出部Pという)を備えている。このような突出部Pによれば、移動部材211が摺動面FSに接触するときの面積より、ガイド面GSに接触するときの面積が小さくなる。この例では、図8に示すように、移動部材211は、摺動面FSに接触しているときにはガイド面GSから離れ、ガイド面GSに接触しているときには摺動面FSから離れている。上述したように、摺動面FSには、移動部材211のうち半径の大きい半円側に形成された曲面が接触する。一方、ガイド面GSには、移動部材211のうち半径の小さい半円側に形成された曲面が接触する。つまり、移動部材211がガイド面GSに近づくときに、後述の下側半円柱2112が突出部Pに接触する。なお、移動部材211は、移動範囲の少なくとも一部において、摺動面FSとガイド面GSとの双方に接触して摺動するようになっていてもよい。また、この例では、スリット125の両側に突出部Pが設けられていたが、いずれか一方側に設けられていてもよい。 The guide surface GS of the lower member 1213 is inclined so as to approach the sliding surface FS as it approaches the slit 125. That is, the lower member 1213 includes a portion that protrudes linearly along the slit 125 (hereinafter referred to as a protruding portion P). According to such a protrusion P, the area when the moving member 211 contacts the guide surface GS is smaller than the area when the moving member 211 contacts the sliding surface FS. In this example, as shown in FIG. 8, the moving member 211 is separated from the guide surface GS when in contact with the sliding surface FS, and is separated from the sliding surface FS when in contact with the guide surface GS. As described above, the sliding surface FS is in contact with a curved surface formed on the semicircular side of the moving member 211 having a large radius. On the other hand, the curved surface formed in the semicircle side with a small radius among the moving members 211 contacts the guide surface GS. That is, when the moving member 211 approaches the guide surface GS, the lower half cylinder 2112 described later contacts the protrusion P. The moving member 211 may be configured to slide in contact with both the sliding surface FS and the guide surface GS in at least a part of the moving range. Moreover, in this example, although the protrusion part P was provided in the both sides of the slit 125, you may provide in either one side.
 押鍵のときには、摺動面FSから移動部材211に対して力が加えられる。移動部材211に伝達された力は、錘部230を上方に移動させるようにハンマアセンブリ200を回動させる。このとき、移動部材211は、摺動面形成部121より下方に押されて摺動面FSに押しつけられつつ、摺動面FSに対して進行方向D1の方向に移動する。一方、離鍵のときには、錘部230が落下することによりハンマアセンブリ200が回動し、その結果、移動部材211から摺動面FSに対して上方に力が加えられる。ここで、移動部材211は、摺動面FSを形成する弾性体と比べて弾性変形しにくい部材(例えば、摺動面FSを構成する弾性体と比べて剛性の高い樹脂等)で形成されている。そのため、摺動面FSは、移動部材211が押しつけられることで弾性変形する。この結果、移動部材211は、押しつけられる力に応じて移動に対する様々な抵抗力を受ける。この抵抗力について、図6および図7を用いて説明する。 When pressing the key, force is applied to the moving member 211 from the sliding surface FS. The force transmitted to the moving member 211 rotates the hammer assembly 200 so as to move the weight portion 230 upward. At this time, the moving member 211 moves in the direction of the traveling direction D1 with respect to the sliding surface FS while being pressed below the sliding surface forming portion 121 and pressed against the sliding surface FS. On the other hand, when the key is released, the hammer assembly 200 is rotated by dropping the weight portion 230, and as a result, a force is applied upward from the moving member 211 to the sliding surface FS. Here, the moving member 211 is formed of a member that is less likely to be elastically deformed than the elastic body that forms the sliding surface FS (for example, a resin that has higher rigidity than the elastic body that forms the sliding surface FS). Yes. Therefore, the sliding surface FS is elastically deformed when the moving member 211 is pressed. As a result, the moving member 211 receives various resistances against movement in accordance with the pressing force. This resistance force will be described with reference to FIGS.
 図6は、第1実施形態における弾性体の弾性変形(強打時)を説明する図である。図7は、第1実施形態における弾性体の弾性変形(弱打時)を説明する図である。押鍵により、移動部材211が進行方向D1に移動する。このとき、移動部材211は、上部材1211の摺動面FSに押しつけられるため、弾性体で形成された上部材1211は、弾性変形によって摺動面FSが凹むように変形する。 FIG. 6 is a diagram for explaining the elastic deformation (during hard hitting) of the elastic body in the first embodiment. FIG. 7 is a view for explaining elastic deformation (when weakly hit) of the elastic body in the first embodiment. By moving the key, the moving member 211 moves in the traveling direction D1. At this time, since the moving member 211 is pressed against the sliding surface FS of the upper member 1211, the upper member 1211 formed of an elastic body is deformed so that the sliding surface FS is recessed by elastic deformation.
 移動部材211の表面のうち進行方向D1側(以下、移動部材211の前方側という場合がある)の点C1においては、上部材1211との摩擦力Ff1のほか、上部材1211から押し返される反発力Fr1が進行方向D1に対する抵抗力となる。また、移動部材211の表面のうち、進行方向D1とは反対側(以下、移動部材211の後方側という場合がある)の点C2においては、押鍵が弱いとき(弱打時)では上部材1211と接触する(図7)一方、押鍵が強いとき(強打時)では上部材1211と接触しない(図6)。 At the point C1 on the surface of the moving member 211 on the traveling direction D1 side (hereinafter sometimes referred to as the front side of the moving member 211), in addition to the frictional force Ff1 with the upper member 1211, the repulsion pushed back from the upper member 1211. The force Fr1 becomes a resistance force with respect to the traveling direction D1. Further, at the point C2 on the surface of the moving member 211 opposite to the traveling direction D1 (hereinafter, sometimes referred to as the rear side of the moving member 211), the upper member when the key is weak (during weak hitting). On the other hand, when the key is strong (during a strong hit), it does not contact the upper member 1211 (FIG. 6).
 上部材1211は、移動部材211によって弾性変形し、移動部材211が通過した後は形状が復元することになる。強打時には、復元するよりも早く移動部材211が移動していく。そのため、移動部材211の後方側において、移動部材211と上部材1211とが接触しない領域が増加する。上部材1211の粘性の大きいほど、移動部材211の速さが同じでも接触しない領域が増加する。 The upper member 1211 is elastically deformed by the moving member 211, and the shape is restored after the moving member 211 passes. At the time of smashing, the moving member 211 moves faster than restoring. Therefore, the area where the moving member 211 and the upper member 1211 do not contact increases on the rear side of the moving member 211. As the viscosity of the upper member 1211 increases, an area where the moving member 211 does not contact increases even if the speed of the moving member 211 is the same.
 なお、弱打時と強打時との違い、すなわち押鍵力の強さの違いは弾性変形の大きさに影響を与える。一方、移動部材211と上部材1211とが接触しない領域の大きさについては弱打時と強打時との違いは、詳細には移動部材211の移動速度が直接的な要因となる。すなわち、押鍵の力が弱くてもすでに押鍵速度が速くなっている状態であれば、移動部材211と上部材1211とが接触しない領域が増加することになる。例えば、手を振り下ろしながら押鍵するときには、押鍵の最初に大きな力が加わるものの、すぐに力が少なくなって弾性変形の量は少なくなり、移動部材211が等速運動に近づく。一方、移動部材211の移動速度は速いままであるため、上部材1211の粘性の影響により移動部材211の後方側からの力を受けにくく、前方側からの反発力Fr1の影響を大きく受けて、押鍵に対する抵抗力が得られる。 It should be noted that the difference between the weak strike and the strong strike, that is, the difference in the key pressing force affects the size of the elastic deformation. On the other hand, regarding the size of the area where the moving member 211 and the upper member 1211 do not contact, the difference between the weak hit and the strong hit is directly related to the moving speed of the moving member 211 in detail. That is, if the key pressing speed is already high even if the key pressing force is weak, the area where the moving member 211 and the upper member 1211 do not come in contact increases. For example, when a key is pressed while swinging down a hand, a large force is applied at the beginning of the key press, but the force is quickly reduced and the amount of elastic deformation is reduced, and the moving member 211 approaches a constant velocity motion. On the other hand, since the moving speed of the moving member 211 remains high, it is difficult to receive a force from the rear side of the moving member 211 due to the influence of the viscosity of the upper member 1211, and is greatly influenced by the repulsive force Fr1 from the front side. Resistance to key pressing can be obtained.
 移動部材211の後方側において上部材1211と接触する場合には、移動部材211は、摩擦力Ff2のほか、反発力Fr2を受ける。摩擦力Ff2については、進行方向D1に対する抵抗力となる。一方、反発力Fr2は、進行方向D1に対しては推進力となる。また、弱打時であるほど、上部材1211の弾性変形の量が少ないため、反発力Fr1の大きさも少なく、全体としては移動部材211と上部材1211との接触面積も少なくなり摩擦力の大きさも低下する。このように、図6の状況と図7の状況とでは、摩擦力の違いだけでなく、反発力による影響も異なる。したがって、これらの構成によれば、押鍵の強さおよび速さによって、移動部材211が進行方向D1に対して受ける抵抗力を複雑に変化させることができる。移動部材211が受けた抵抗力は、押鍵に対して与える抵抗力ともなる。これによって、アコースティックピアノにおける押鍵の強さおよび速さに応じた、押鍵への抵抗力の変化を再現することができる。また、上部材1211において、加速度(押鍵力)の影響を大きく受ける弾性および速度(押鍵速度)の影響を大きく受ける粘性を調整した材質を用いることにより、押鍵への抵抗力を様々に設計することもできる。 When contacting the upper member 1211 on the rear side of the moving member 211, the moving member 211 receives a repulsive force Fr2 in addition to the frictional force Ff2. The frictional force Ff2 is a resistance force with respect to the traveling direction D1. On the other hand, the repulsive force Fr2 becomes a driving force with respect to the traveling direction D1. Further, since the amount of elastic deformation of the upper member 1211 is smaller as the hitting is weaker, the magnitude of the repulsive force Fr1 is smaller, and the contact area between the moving member 211 and the upper member 1211 is also reduced as a whole, and the frictional force is increased. It also decreases. Thus, the situation of FIG. 6 and the situation of FIG. 7 differ not only in the frictional force but also in the influence of the repulsive force. Therefore, according to these configurations, the resistance force that the moving member 211 receives in the traveling direction D1 can be changed in a complex manner depending on the strength and speed of the key depression. The resistance force received by the moving member 211 is also a resistance force applied to the key depression. As a result, it is possible to reproduce a change in the resistance force to the key depression in accordance with the key depression strength and speed in the acoustic piano. In addition, the upper member 1211 can be made to have various resistances to the key press by using a material that is elastically affected by acceleration (key press force) and has a viscosity that is greatly affected by speed (key press speed). It can also be designed.
 なお、押鍵の強さによっては、鍵100がエンド位置に達したときに、移動部材211が摺動面FSにバウンドしてガイド面GSに衝突する場合がある。このとき、ガイド面GSの突出部Pが移動部材211によって押しつぶされるように弾性変形してもよい。突出部Pの存在によって、移動部材211とガイド面GSとの接触面積は、移動部材211と摺動面FSとの接触面積よりも小さい。接触面積が小さいために摺動面FSよりもガイド面GSの方が、同じ力が加わっても弾性変形しやすく、移動部材211がガイド面GSに衝突したとしても、移動部材211が摺動面FSに衝突するときよりは、衝突音の発生が抑えられる。 Note that, depending on the strength of the key depression, when the key 100 reaches the end position, the moving member 211 may bounce to the sliding surface FS and collide with the guide surface GS. At this time, the protruding portion P of the guide surface GS may be elastically deformed so as to be crushed by the moving member 211. Due to the presence of the protrusion P, the contact area between the moving member 211 and the guide surface GS is smaller than the contact area between the moving member 211 and the sliding surface FS. Since the contact area is small, the guide surface GS is more easily elastically deformed than the sliding surface FS even when the same force is applied, and even if the moving member 211 collides with the guide surface GS, the moving member 211 does not slide. The occurrence of collision sound is suppressed compared to when the FS collides.
[移動部材の構成]
 図8は、第1実施形態における移動部材の構成を説明する図である。移動部材211は、上側半円柱2111および下側半円柱2112を備える。図8は、移動部材211をスケール方向に見た場合を示しているため、上側半円柱2111および下側半円柱2112の底面(2つの半円)が示されている。この例では、上側半円柱2111の断面(半円)の半径r1は、下側半円柱2112の断面(半円)の半径r2よりも大きい。双方の半円は、いずれも共通の中心CDを有する。ここでいう断面とは、スケール方向を法線にもつ平面で切った断面をいう(以下の説明でも同じ)。また、別の言い方をすれば、上側半円柱2111の中心軸(スケール方向に平行な方向に延びる軸であり、共通の中心CDを通る軸)は、下側半円柱2112の中心軸と同じものとなり、これにより、上側半円柱2111と下側半円柱2112は、共通の中心軸を有していると言うことができる。なお、上側半円柱2111と下側半円柱2112は、樹脂によって一体的に形成されるものであるが、上側半円柱2111と下側半円柱2112を別々に形成し、両者を接着剤等により一体化させても良い。また、移動部材211の上側半円柱2111及び下側半円柱2112の形状は、円柱を半分に割った半円柱形状であり、円柱形状の一部であるため、これらを含む用語を「部分円柱形状部」とすることができる。なお、このように「部分円柱形状部」を用いる場合、半円柱形状である上側半円柱2111が第1部分円柱形状部の一例であり、半円柱形状である下側半円柱2112が第2部分円柱形状部の一例である。また、「部分円柱形状部」の「円柱形状」は、円柱だけに限られることはなく、中心軸に沿って延在する形状であれば、他の形状を含むように解釈することも可能である。例えば、中心軸に沿って延在する「円錐台」のような形状のものであっても、「円柱形状」に含まれると解釈できるのである。このように考えると、例えば、「第1部分円柱形状部」に相当する円柱と「第2部分円柱形状部」に相当する円錐台の組み合わせや、その逆の組み合わせや、「第1部分円柱形状部」に相当する円錐台と、その円錐台とは角度が異なる「第2部分円柱形状部」に相当する円錐台の組み合わせを採用することもできる。また、「円柱形状」には、円錐台の台の部分の平面がフラットな面ではなく、球のように曲面になっているものも含むこととしても良い。また、このように、「円柱形状」を解釈すると、「第1部分円柱形状部」及び「第2部分円柱形状部」を、それぞれ、「第1部分円錐形状部」及び「第2部分円錐形状部」に対応させることも可能である。
[Configuration of moving member]
FIG. 8 is a diagram illustrating the configuration of the moving member in the first embodiment. The moving member 211 includes an upper half cylinder 2111 and a lower half cylinder 2112. Since FIG. 8 shows the case where the moving member 211 is viewed in the scale direction, the bottom surfaces (two semicircles) of the upper half cylinder 2111 and the lower half cylinder 2112 are shown. In this example, the radius r1 of the cross section (semicircle) of the upper half cylinder 2111 is larger than the radius r2 of the cross section (semicircle) of the lower half cylinder 2112. Both semicircles have a common center CD. The cross section here refers to a cross section cut along a plane having the normal direction of the scale (the same applies to the following description). In other words, the center axis of the upper half cylinder 2111 (the axis extending in the direction parallel to the scale direction and passing through the common center CD) is the same as the center axis of the lower half cylinder 2112. Thus, it can be said that the upper half cylinder 2111 and the lower half cylinder 2112 have a common central axis. The upper half cylinder 2111 and the lower half cylinder 2112 are integrally formed of resin. However, the upper half cylinder 2111 and the lower half cylinder 2112 are separately formed, and both are integrated with an adhesive or the like. You may make it. Moreover, since the shape of the upper half cylinder 2111 and the lower half cylinder 2112 of the moving member 211 is a half cylinder formed by dividing the cylinder in half and is a part of the cylinder, terms including these are referred to as “partial cylinder shape”. Part ". When the “partial columnar portion” is used in this way, the upper half cylinder 2111 having a semi-cylindrical shape is an example of the first partial columnar shape portion, and the lower half cylinder 2112 having a half columnar shape is the second portion. It is an example of a cylindrical shape part. In addition, the “columnar shape” of the “partial columnar shape portion” is not limited to a columnar shape, and can be interpreted to include other shapes as long as the shape extends along the central axis. is there. For example, even a shape like a “conical frustum” extending along the central axis can be interpreted as being included in the “columnar shape”. When considered in this way, for example, a combination of a cylinder corresponding to the “first partial columnar shape portion” and a truncated cone corresponding to the “second partial columnar shape portion”, a reverse combination thereof, or a “first partial columnar shape” A combination of a truncated cone corresponding to the “part” and a truncated cone corresponding to the “second partial cylindrical portion” having an angle different from that of the truncated cone may be employed. Further, the “cylindrical shape” may include those in which the plane of the base of the truncated cone is not a flat surface but a curved surface such as a sphere. Further, when the “columnar shape” is interpreted in this way, the “first partial cylindrical shape portion” and the “second partial cylindrical shape portion” are respectively converted into the “first partial cone shape portion” and the “second partial cone shape portion”. It is also possible to correspond to “part”.
 上記のとおり移動部材211は、上側半円柱2111の曲面(断面が半径r1の半円の円弧(第1円弧)となる曲面21111(第1曲面))を摺動面FS側に備え、下側半円柱2112の曲面(断面が半径r2の半円の円弧(第2円弧)となる曲面21121(第2曲面))をガイド面GS側に備えている。言い換えれば、上側半円柱2111の半径(曲面21111と上側半円柱2111の中心軸との距離)がr1であり、下側半円柱2112の半径(曲面21121と中心軸との距離)がr2である。図8に示すように、鍵100がレスト位置にある場合(移動部材211が初期位置にあるとき)においては、移動部材211は、摺動面FSと上側半円柱2111の位置CP1で接触している。図8に示すように、移動部材211の上側半円柱2111が上部材1211の摺動面FSに接触しているときは、移動部材211の下側半円柱2112は下部材1213のガイド面GSに接触していない。一方、鍵100がエンド位置にある場合には、移動部材211は、破線で示した位置に移動する。このとき、移動部材211は、僅かに回転することによって、摺動面FSと接触する位置が位置CP2に変化する。この場合も同様に、移動部材211の上側半円柱2111が上部材1211の摺動面に接触しているときは、移動部材211の下側半円柱2112は下部材1213のガイド面GSに接触していない。なお、図8においては、移動部材211が静止している状態を締め敷いているため、円弧の一点が摺動面FSと接触しているように記載しているが、図6、図7において説明したとおり押鍵中(移動部材211の移動中)においては摺動面FSを弾性変形させることもある。 As described above, the moving member 211 is provided with the curved surface of the upper semi-cylinder 2111 (the curved surface 21111 (first curved surface) that is a semicircular arc (first arc) having a radius r1 in cross section) on the sliding surface FS side, and the lower side A curved surface of the semi-cylindrical 2112 (a curved surface 21121 (second curved surface) whose cross section is a semicircular arc (second arc) having a radius r2) is provided on the guide surface GS side. In other words, the radius of the upper half cylinder 2111 (distance between the curved surface 21111 and the center axis of the upper half cylinder 2111) is r1, and the radius of the lower half cylinder 2112 (distance between the curved surface 21121 and the center axis) is r2. . As shown in FIG. 8, when the key 100 is in the rest position (when the moving member 211 is in the initial position), the moving member 211 is in contact with the sliding surface FS at the position CP1 of the upper half cylinder 2111. Yes. As shown in FIG. 8, when the upper half cylinder 2111 of the moving member 211 is in contact with the sliding surface FS of the upper member 1211, the lower half cylinder 2112 of the moving member 211 is placed on the guide surface GS of the lower member 1213. There is no contact. On the other hand, when the key 100 is in the end position, the moving member 211 moves to the position indicated by the broken line. At this time, the moving member 211 slightly rotates, so that the position in contact with the sliding surface FS changes to the position CP2. Similarly in this case, when the upper half cylinder 2111 of the moving member 211 is in contact with the sliding surface of the upper member 1211, the lower half cylinder 2112 of the moving member 211 is in contact with the guide surface GS of the lower member 1213. Not. In FIG. 8, since the moving member 211 is in a stationary state, it is described that one point of the arc is in contact with the sliding surface FS, but in FIGS. As described above, the sliding surface FS may be elastically deformed during key pressing (while the moving member 211 is moving).
 移動部材211の下側半円柱2112を上側半円柱2111よりも小さく形成することによって、同じ大きさ、すなわち移動部材211が1つの円柱形状で形成される場合よりも摺動面FSとガイド面GSとの距離を短くすることができる。移動部材211を単純に円柱形状とし、円の半径を小さくする(円柱を細くする)ことも考えられる。しかしながら、この場合には、摺動面FSに対する弾性変形の量も変わってしまうため、押鍵に対する抵抗力も変わってしまう。この例では、半径の異なる半円柱を組合せることにより、抵抗力に影響を最小限にしつつ、摺動面FSとガイド面GSとの距離を短くすることで、部品の小型化を図ることができる。このように、複数の大きさの異なる半径の円弧を含む柱形状を用いることで、設計の自由度をより多く確保することができる。また、それぞれの半円柱の半円の中心を共通化することで、移動部材211が回転したとしても、摺動面FSとガイド面GSとの距離が一定であれば、下側半円柱2112とガイド面GSとの距離を一定とすることができる。 By forming the lower half cylinder 2112 of the moving member 211 smaller than the upper half cylinder 2111, the sliding surface FS and the guide surface GS are larger than the same size, that is, the moving member 211 is formed in a single column shape. Can be shortened. It is also conceivable that the moving member 211 is simply formed in a cylindrical shape, and the radius of the circle is reduced (the cylinder is thinned). However, in this case, since the amount of elastic deformation with respect to the sliding surface FS also changes, the resistance force against the key pressing also changes. In this example, by combining semi-cylinders having different radii, the distance between the sliding surface FS and the guide surface GS can be reduced while minimizing the parts while minimizing the influence on the resistance force. it can. As described above, by using a column shape including a plurality of arcs with different radii, it is possible to secure a greater degree of design freedom. Further, by sharing the center of the semicircle of each semi-cylinder, even if the moving member 211 rotates, if the distance between the sliding surface FS and the guide surface GS is constant, the lower semi-cylinder 2112 and The distance from the guide surface GS can be made constant.
[鍵盤アセンブリの動作]
 図9は、第1実施形態における鍵(白鍵)を押下したときの鍵アセンブリの動作を説明する図である。図9(A)は、鍵100がレスト位置(押鍵していない状態)にある場合の図である。図9(B)は、鍵100がエンド位置(最後まで押鍵した状態)にある場合の図である。鍵100が押下されると、棒状可撓性部材185が回動中心となって曲がる。このとき、棒状可撓性部材185は、鍵の前方(手前方向)への曲げ変形が生じているが、側面鍵ガイド153による前後方向の移動の規制によって、鍵100は前方に移動するのではなくピッチ方向に回動するようになる。そして、鍵側負荷部120がハンマ側負荷部210を押し下げることで、ハンマアセンブリ200が回動軸520を中心に回動する。なお、図9の説明において、鍵側負荷部120における摺動面形成部121の各構成については、図4、5が参照される。
[Keyboard assembly operation]
FIG. 9 is a diagram for explaining the operation of the key assembly when the key (white key) in the first embodiment is pressed. FIG. 9A is a diagram when the key 100 is in the rest position (a state where the key is not pressed). FIG. 9B is a diagram when the key 100 is in the end position (the state where the key is pressed to the end). When the key 100 is pressed, the rod-like flexible member 185 is bent with the center of rotation. At this time, the bar-shaped flexible member 185 is bent and deformed forward (frontward) of the key, but the key 100 does not move forward due to the restriction of movement in the front-rear direction by the side key guide 153. It turns in the pitch direction without. Then, when the key side load portion 120 pushes down the hammer side load portion 210, the hammer assembly 200 rotates around the rotation shaft 520. In the description of FIG. 9, FIGS. 4 and 5 are referred to for each configuration of the sliding surface forming portion 121 in the key side load portion 120.
 このとき、錘部230が上方に移動するため、錘部230の重さが鍵100をレスト位置に戻す方向(上方)に移動させるように力を与える。また、負荷発生部(鍵側負荷部120およびハンマ側負荷部210)において、移動部材211は、摺動面FSと接触しつつ移動するときに上部材1211を弾性変形させることによって、押鍵の方法に応じた様々な抵抗力を受けることになる。この抵抗力と錘部230の重さは、押鍵に対する負荷として現れる。また、移動部材211が段差部1231を乗り越えることで、クリック感が鍵100に伝達される。 At this time, since the weight part 230 moves upward, a force is applied so that the weight part 230 moves the key 100 in the direction (upward) to return the key 100 to the rest position. Further, in the load generation unit (the key side load unit 120 and the hammer side load unit 210), the moving member 211 elastically deforms the upper member 1211 when moving while in contact with the sliding surface FS. You will receive various resistance depending on the method. This resistance force and the weight of the weight portion 230 appear as a load on the key depression. Further, when the moving member 211 gets over the stepped portion 1231, a click feeling is transmitted to the key 100.
 錘部230が上側ストッパ430に衝突することによって、ハンマアセンブリ200の回動が止まり、鍵100がエンド位置に達する。また、センサ300がセンサ駆動部215によって押しつぶされると、センサ300は、押しつぶされた量(押鍵量)に応じた複数の段階で、検出信号を出力する。 When the weight 230 collides with the upper stopper 430, the rotation of the hammer assembly 200 is stopped and the key 100 reaches the end position. When the sensor 300 is crushed by the sensor driving unit 215, the sensor 300 outputs a detection signal at a plurality of stages according to the crushed amount (key pressing amount).
 一方、離鍵すると、錘部230が下方に移動することによって、ハンマアセンブリ200が回動する。ハンマアセンブリ200の回動に伴い、負荷発生部を介して鍵100が上方に回動する。錘部230が下側ストッパ410に接触することで、ハンマアセンブリ200の回動が止まり、鍵100がレスト位置に戻る。このとき、移動部材211は、初期位置に戻る。 On the other hand, when the key is released, the weight assembly 230 moves downward, and the hammer assembly 200 rotates. As the hammer assembly 200 rotates, the key 100 rotates upward via the load generating portion. When the weight 230 comes into contact with the lower stopper 410, the rotation of the hammer assembly 200 is stopped and the key 100 returns to the rest position. At this time, the moving member 211 returns to the initial position.
<第2実施形態>
 第2実施形態においては、上側半円柱が下側半円柱よりも小さい移動部材211Aについて説明する。
Second Embodiment
In the second embodiment, a moving member 211A in which the upper half cylinder is smaller than the lower half cylinder will be described.
 図10は、第2実施形態における移動部材を説明する図である。この例では、上側半円柱2111Aの断面(半円)の半径r1は、下側半円柱2112Aの断面(半円)の半径r2よりも小さい。双方の半円は、いずれも共通の中心CDを有する。なお、本実施形態においても、上側半円柱2111Aの外周面である曲面2111A1(第1曲面の一例)は摺動面FS上を摺動し、下側半円柱2112Aの外周面である曲面2112A1(第2曲面の一例)は、ガイド面GSによってガイドされる。このとき、第1実施形態と第2実施形態での押鍵時の抵抗力を同じにするため、半径r1は第1実施形態と第2実施形態とで同じであるものとする。このようにすると、摺動面形成部の大きさが大きくすることができるため、成型時の金型の精度を高くすることができる。 FIG. 10 is a diagram illustrating a moving member in the second embodiment. In this example, the radius r1 of the cross section (semicircle) of the upper half cylinder 2111A is smaller than the radius r2 of the cross section (semicircle) of the lower half cylinder 2112A. Both semicircles have a common center CD. Also in this embodiment, the curved surface 2111A1 (an example of the first curved surface) that is the outer peripheral surface of the upper half cylinder 2111A slides on the sliding surface FS, and the curved surface 2112A1 (the outer peripheral surface of the lower half cylinder 2112A). An example of the second curved surface is guided by the guide surface GS. At this time, the radius r1 is assumed to be the same in the first embodiment and the second embodiment in order to make the resistance force at the time of key depression in the first embodiment and the second embodiment the same. If it does in this way, since the magnitude | size of a sliding surface formation part can be enlarged, the precision of the metal mold | die at the time of shaping | molding can be made high.
 一方、摺動面FSの弾性変形を大きくする効果を得るために、半径r1が第1実施形態の上側半円柱2111よりも第2実施形態の上側半円柱2111Aの方が小さくすることも可能である。移動部材211Aを単純に円柱形状とし、円の半径を小さくする(円柱を細くする)ことも考えられるが、この場合、移動部材211Aが細くなってしまうため、半径r2を半径r1より大きくすることによって、移動部材211Aの強度を向上することもできる。このように、複数の大きさの異なる半径の円弧を含む柱形状を用いることで、設計の自由度をより多く確保することができる。なお、下側半円柱2112Aの断面の半径r2が第1実施形態における上側半円柱2111の断面の半径r1と同じであってもよい。 On the other hand, in order to obtain the effect of increasing the elastic deformation of the sliding surface FS, the radius r1 can be made smaller in the upper half cylinder 2111A of the second embodiment than in the upper half cylinder 2111 of the first embodiment. is there. Although it is conceivable that the moving member 211A is simply formed in a cylindrical shape and the radius of the circle is reduced (thinning the cylinder), in this case, since the moving member 211A becomes thin, the radius r2 is set larger than the radius r1. Thus, the strength of the moving member 211A can be improved. As described above, by using a column shape including a plurality of arcs with different radii, it is possible to secure a greater degree of design freedom. Note that the radius r2 of the cross section of the lower half cylinder 2112A may be the same as the radius r1 of the cross section of the upper half cylinder 2111 in the first embodiment.
<第3実施形態>
 第1実施形態においては、移動部材211は、断面が2つの半円を組み合わせて形成されていたが、必ずしも半円でなくてもよい。第3実施形態では、2つの半円の組み合わせ以外の断面を有する移動部材211B、211Cについて例示する。
<Third Embodiment>
In the first embodiment, the moving member 211 is formed by combining two semicircles in cross section, but it does not necessarily have to be a semicircle. In 3rd Embodiment, it illustrates about the moving members 211B and 211C which have cross sections other than the combination of two semicircles.
 図11は、第3実施形態における移動部材を説明する図である。図11(A)に示す移動部材211Bは、上側部分円柱2111Bおよび下側部分円柱2112Bを含む。なお、本実施形態においても、上側半円柱2111Bの外周面である曲面2111B1(第1曲面の一例)は摺動面FS上を摺動し、下側半円柱2112Bの外周面である曲面2112B1(第2曲面の一例)は、ガイド面GSによってガイドされる。上側部分円柱2111Bの断面(扇形)の中心角AGは、180度未満になっている。一方、下側部分円柱2112Bの中心角は、図示の通り、360度から中心角AGを引いた角度であるから180度より大きくなっている。このとき、移動部材211Bの摺動面FSと接触可能な範囲(移動部材211Bの移動範囲)において、上側部分円柱2111Bの曲面と摺動面FS(段差部1231を含む)とが接触するように、中心角AGが決められればよい。例えは、中心角AGが小さくなりすぎると、上側部分円柱2111Bの曲面部分と摺動面FSとが接触しない場合があるため、そのような範囲は除外される。また、上側部分円柱2111Bの進行方向D1側の端部EGDが段差部1231を含む摺動面FSに対して、摺動面FSを弾性変形させた場合においても接触しないようにする、すなわち、上側部分円柱2111Bの曲面の部分と摺動面FSとが接触することが望ましい。 FIG. 11 is a diagram for explaining a moving member in the third embodiment. A moving member 211B shown in FIG. 11A includes an upper partial cylinder 2111B and a lower partial cylinder 2112B. Also in this embodiment, the curved surface 2111B1 (an example of the first curved surface) that is the outer circumferential surface of the upper half cylinder 2111B slides on the sliding surface FS, and the curved surface 2112B1 (the outer circumferential surface of the lower half cylinder 2112B). An example of the second curved surface is guided by the guide surface GS. The central angle AG of the cross section (sector shape) of the upper partial cylinder 2111B is less than 180 degrees. On the other hand, since the central angle of the lower partial cylinder 2112B is an angle obtained by subtracting the central angle AG from 360 degrees as shown in the figure, it is larger than 180 degrees. At this time, the curved surface of the upper partial cylinder 2111B and the sliding surface FS (including the stepped portion 1231) are in contact with each other in the range that can contact the sliding surface FS of the moving member 211B (the moving range of the moving member 211B). The center angle AG may be determined. For example, if the central angle AG becomes too small, the curved surface portion of the upper partial cylinder 2111B and the sliding surface FS may not come into contact with each other, and such a range is excluded. Further, the end EGD of the upper partial cylinder 2111B on the traveling direction D1 side is prevented from coming into contact with the sliding surface FS including the stepped portion 1231 even when the sliding surface FS is elastically deformed, that is, on the upper side It is desirable that the curved portion of the partial cylinder 2111B and the sliding surface FS are in contact with each other.
 一方、図11(B)に示す移動部材211Cでは、上側部分円柱2111Cの断面の中心角AGが180度より大きくなっている。一方、下側部分円柱2112Cの中心角は、図示の通り、360度から中心角AGを引いた角度であるから180度より大きくなっている。この場合には、上側部分円柱2111Cの両端がガイド面GSに接触しないように中心角AGが決められる。すなわち、中心角AGが大きい場合、半径r1に対して半径r2の大きさが小さくなるほど、上側部分円柱2111Cの端部EGがガイド面GSに接触しやすくなる。 On the other hand, in the moving member 211C shown in FIG. 11B, the central angle AG of the cross section of the upper partial cylinder 2111C is larger than 180 degrees. On the other hand, since the central angle of the lower partial cylinder 2112C is an angle obtained by subtracting the central angle AG from 360 degrees as shown in the drawing, it is larger than 180 degrees. In this case, the central angle AG is determined so that both ends of the upper partial cylinder 2111C do not contact the guide surface GS. That is, when the central angle AG is large, the end portion EG of the upper partial cylinder 2111C is more likely to contact the guide surface GS as the size of the radius r2 is smaller than the radius r1.
<第4実施形態>
 上記の実施形態では、移動部材が2つの部分円柱の組み合わせによって形成されていたが、2つの部分円柱以外の構造が含まれてもよい。すなわち、移動部材の断面において、摺動面FS側に配置された円弧と、ガイド面GS側に配置された円弧とを含んでいれば、他の形状がさらに含まれていてもよい。第4実施形態においては、移動部材211D、211E、211Fの3つについて例示する。
<Fourth embodiment>
In said embodiment, although the moving member was formed by the combination of two partial cylinders, structures other than two partial cylinders may be included. That is, the cross section of the moving member may further include other shapes as long as it includes an arc disposed on the sliding surface FS side and an arc disposed on the guide surface GS side. In the fourth embodiment, three moving members 211D, 211E, and 211F are illustrated.
 図12は、第4実施形態における移動部材を説明する図である。図12(A)に示す移動部材211Dは、上側部分円柱2111Dおよび下側部分円柱2112Dを含む。なお、本実施形態においても、上側半円柱2111Dの外周面である曲面2111D1(第1曲面の一例)は摺動面FS上を摺動し、下側半円柱2112Dの外周面である曲面2112D1(第2曲面の一例)は、ガイド面GSによってガイドされる。上側部分円柱2111Dの中心角AG1と下側部分円柱2112Dの中心角AG2は、いずれも180度未満である。そのため、移動部材211Dは、上側部分円柱2111Dおよび下側部分円柱2112Dの他にも、上側部分円柱2111Dと下側部分円柱2112Dとのそれぞれの側部を接続する側部構造体を含んでいる。この側部構造体は、凸形状の側面を有する。この側面は、上側部分円柱2111Dの曲面と下側部分円柱2112Dの曲面とを接続する。 FIG. 12 is a diagram for explaining a moving member in the fourth embodiment. A moving member 211D shown in FIG. 12A includes an upper partial cylinder 2111D and a lower partial cylinder 2112D. Also in the present embodiment, the curved surface 2111D1 (an example of the first curved surface) that is the outer circumferential surface of the upper half cylinder 2111D slides on the sliding surface FS, and the curved surface 2112D1 (the outer circumferential surface of the lower half cylinder 2112D). An example of the second curved surface is guided by the guide surface GS. The central angle AG1 of the upper partial cylinder 2111D and the central angle AG2 of the lower partial cylinder 2112D are both less than 180 degrees. Therefore, the moving member 211D includes side structures that connect the respective side portions of the upper partial cylinder 2111D and the lower partial cylinder 2112D in addition to the upper partial cylinder 2111D and the lower partial cylinder 2112D. The side structure has a convex side surface. This side surface connects the curved surface of the upper partial cylinder 2111D and the curved surface of the lower partial cylinder 2112D.
 図12(B)に示す移動部材211Eは、上側部分円柱2111Eと下側部分円柱2112Eとのそれぞれの側部を接続する側部構造体が凹形状の側面を有する場合の例である。なお、本実施形態においても、上側半円柱2111Eの外周面である曲面2111E1(第1曲面の一例)は摺動面FS上を摺動し、下側半円柱2112Eの外周面である曲面2112E1(第2曲面の一例)は、ガイド面GSによってガイドされる。この場合には、上側部分円柱2111Eおよび下側部分円柱2112Eの両端において、上側部分円柱2111Eの曲面と側部構造体の側面とが不連続に接続され、下側部分円柱2112Eの曲面と側部構造体の側面とが不連続に接続されている。 The moving member 211E shown in FIG. 12B is an example in the case where the side structure connecting the side portions of the upper partial cylinder 2111E and the lower partial cylinder 2112E has a concave side surface. Also in this embodiment, the curved surface 2111E1 (an example of the first curved surface) that is the outer peripheral surface of the upper half cylinder 2111E slides on the sliding surface FS, and the curved surface 2112E1 (the outer peripheral surface of the lower half cylinder 2112E). An example of the second curved surface is guided by the guide surface GS. In this case, the curved surface of the upper partial cylinder 2111E and the side surface of the side structure are discontinuously connected at both ends of the upper partial cylinder 2111E and the lower partial cylinder 2112E, and the curved surface and the side part of the lower partial cylinder 2112E are connected. The side surface of the structure is connected discontinuously.
 図12(C)に示す移動部材211Fは、上側部分円柱2111Fと下側部分円柱2112Fとのそれぞれの側部を接続する側部構造体が、進行方向D1側とその反対側とで形状が異なっている。特に、進行方向D1においては、上側部分円柱2111Fの曲面と側部構造体の側面とが連続的に接続されている。また、上側部分円柱2111Fは、上記の例に比べて進行方向D1側に回転した位置に配置されている。すなわち、上側部分円柱2111Fの側部と下側部分円柱2112Fの側部とで形成される角度AG3、AG4のうち、進行方向D1側の角度AG3が角度AG4よりも小さくなっている。なお、上記の例と同様に、角度AG3、AG4が同じ大きさであってもよい。また、本実施形態においても、上側半円柱2111Fの外周面である曲面2111F1(第1曲面の一例)は摺動面FS上を摺動し、下側半円柱2112Fの外周面である曲面2112F1(第2曲面の一例)は、ガイド面GSによってガイドされる。 In the moving member 211F shown in FIG. 12C, the shape of the side structure connecting the respective side portions of the upper partial cylinder 2111F and the lower partial cylinder 2112F is different between the traveling direction D1 side and the opposite side. ing. In particular, in the traveling direction D1, the curved surface of the upper partial cylinder 2111F and the side surface of the side structure are continuously connected. Further, the upper partial cylinder 2111F is arranged at a position rotated to the traveling direction D1 side as compared with the above example. That is, among the angles AG3 and AG4 formed by the side portion of the upper partial cylinder 2111F and the side portion of the lower partial cylinder 2112F, the angle AG3 on the traveling direction D1 side is smaller than the angle AG4. As in the above example, the angles AG3 and AG4 may be the same size. Also in the present embodiment, the curved surface 2111F1 (an example of the first curved surface) that is the outer circumferential surface of the upper half cylinder 2111F slides on the sliding surface FS, and the curved surface 2112F1 (the outer circumferential surface of the lower half cylinder 2112F). An example of the second curved surface is guided by the guide surface GS.
<第5実施形態>
 第5実施形態は、鍵100と鍵側負荷部120とが間接的に接続されている構成である。
<Fifth Embodiment>
In the fifth embodiment, the key 100 and the key-side load unit 120 are indirectly connected.
 図13は、第5実施形態における鍵盤アセンブリの鍵とハンマとの接続関係を模式的に説明する図である。図13においては、鍵、錘および負荷発生部の関係を模式的に表している。図13(A)は鍵100Jがレスト位置(押鍵前)にあるときの図である。図13(B)は、鍵100Jがエンド位置(押鍵後)にあるときの図である。 FIG. 13 is a diagram schematically illustrating the connection relationship between the keys of the keyboard assembly and the hammer according to the fifth embodiment. FIG. 13 schematically shows the relationship between the key, the weight, and the load generation unit. FIG. 13A is a diagram when the key 100J is at the rest position (before the key is pressed). FIG. 13B is a diagram when the key 100J is in the end position (after the key is pressed).
 鍵100Jは、CF1を中心に回動する。CF1は、上述の実施形態によれば、例えば、棒状可撓性部材185に対応する。鍵側負荷部120Jと鍵100Jとは、構造体1201Jを介して接続されている。構造体1201Jは、CF3を中心に回動する。構造体1201Jの一端は、鍵100Jとリンク機構CK1を介して回転可能に接続されている。構造体1201Jの他端は、鍵側負荷部120Jと接続されている。ハンマ本体部250Eは、CF2を中心に回動する。CF2は、上述の実施形態によれば、回動軸520に対応する。錘部230Jは、CF2とハンマ側負荷部210Jとの間に配置されている。 The key 100J rotates around CF1. CF1 corresponds to, for example, the rod-shaped flexible member 185 according to the above-described embodiment. The key side load unit 120J and the key 100J are connected via a structure 1201J. The structure 1201J rotates around CF3. One end of the structure 1201J is rotatably connected to the key 100J via the link mechanism CK1. The other end of the structure 1201J is connected to the key-side load unit 120J. The hammer main body 250E rotates around the CF2. CF2 corresponds to the pivot shaft 520 according to the above-described embodiment. The weight portion 230J is disposed between the CF2 and the hammer side load portion 210J.
 これによって、押鍵すると鍵側負荷部120Jがハンマ側負荷部210Jの内部で移動しながら、錘部230Jを上側ストッパ430Jに衝突するまで上昇させる。すなわち、図13(A)に示す状態から図13(B)に示す状態まで変化する。一方、離鍵すると錘部230Jは下降して下側ストッパ410Jに衝突するまで、鍵100Jを押し上げる。すなわち、図13(B)に示す状態から図13(A)に示す状態まで変化する。このように、鍵からハンマアセンブリまでの力の伝達経路に、負荷発生部が存在する構成であれば、鍵およびハンマアセンブリの少なくとも一方が負荷発生部に直接的に接続されていても、間接的に接続されていてもよく、様々な構成が取り得る。 Thus, when the key is depressed, the key side load portion 120J moves inside the hammer side load portion 210J, and raises the weight portion 230J until it collides with the upper stopper 430J. That is, the state changes from the state shown in FIG. 13A to the state shown in FIG. On the other hand, when the key is released, the weight portion 230J descends and pushes up the key 100J until it collides with the lower stopper 410J. That is, the state changes from the state shown in FIG. 13B to the state shown in FIG. As described above, if the load generating portion exists in the force transmission path from the key to the hammer assembly, even if at least one of the key and the hammer assembly is directly connected to the load generating portion, it is indirect. It may be connected to the terminal, and various configurations are possible.
<変形例>
 以上、本発明の一実施形態について説明したが、本発明は以下のように、様々な態様で実施可能である。
<Modification>
Although one embodiment of the present invention has been described above, the present invention can be implemented in various modes as follows.
(1)上述した実施形態においては、移動部材211にはリブ部213を介してセンサ駆動部215が接続されていたが、リブ部213が存在しなくてもよい。この場合には、移動部材211およびセンサ駆動部215はハンマ本体部250に接続されていればよい。また、この場合には、下部材1213にスリット125が形成されていなくてもよい。 (1) In the above-described embodiment, the sensor driving unit 215 is connected to the moving member 211 via the rib portion 213, but the rib portion 213 may not be present. In this case, the moving member 211 and the sensor driving unit 215 may be connected to the hammer main body 250. In this case, the slit 125 may not be formed in the lower member 1213.
(2)上述した実施形態においては、摺動面形成部121の全体が弾性体で形成されていたが、この場合に限られない。例えば、摺動面FSが形成されている領域全体において弾性体が配置されてもよい。また、ガイド面GSに形成された突出部のみが弾性体で形成されていてもよい。第1実施形態において説明した押鍵に対する抵抗力を得るためには、鍵100の可動範囲内の全てにおいて、移動部材211が接触可能な摺動面FSの範囲が、少なくとも弾性体で形成されていることが望ましい。なお、摺動面形成部121の全てが弾性体以外の部材で構成されていてもよい。 (2) In the embodiment described above, the entire sliding surface forming part 121 is formed of an elastic body, but this is not a limitation. For example, the elastic body may be disposed in the entire region where the sliding surface FS is formed. Moreover, only the protrusion part formed in the guide surface GS may be formed with the elastic body. In order to obtain the resistance against the key depression described in the first embodiment, the range of the sliding surface FS that can be contacted by the moving member 211 is formed of at least an elastic body in the entire movable range of the key 100. It is desirable. Note that all of the sliding surface forming portion 121 may be formed of a member other than the elastic body.
(3)上述した実施形態においては、鍵100に摺動面FSを含む鍵側負荷部120が接続され、ハンマアセンブリ200に移動部材211を含むハンマ側負荷部210が接続されているが、この関係は逆であってもよい。逆の関係にすると具体的には、ハンマ側負荷部210において摺動面FSを形成し、鍵側負荷部120において移動部材211を備えることになる。すなわち、移動部材211および摺動面FSは、いずれか一方が鍵100に接続され、他方がハンマアセンブリ200に接続されていればよい。 (3) In the embodiment described above, the key side load portion 120 including the sliding surface FS is connected to the key 100, and the hammer side load portion 210 including the moving member 211 is connected to the hammer assembly 200. The relationship may be reversed. Specifically, when the reverse relationship is established, the sliding surface FS is formed in the hammer side load portion 210, and the moving member 211 is provided in the key side load portion 120. That is, one of the moving member 211 and the sliding surface FS only needs to be connected to the key 100 and the other connected to the hammer assembly 200.
(4)下部材1213(ガイド面GS)は、一部の領域が存在しなくてもよい。移動部材211がガイド面GSに衝突しやすい領域にガイド面GSを残すようにすることが望ましい。例えば、鍵100をエンド位置まで押下した直後では、ハンマアセンブリ200が慣性力で回転を続け、移動部材211が摺動面FSから離れやすくなる。また、鍵100がレスト位置に戻った直後では、ハンマアセンブリ200が慣性力で回転を続けた結果、移動部材211が摺動面FSに衝突して跳ね返る場合がある。これらの状況において、ガイド面GSに移動部材211が接触しやすくなる。すなわち、ガイド面GSは、少なくとも移動部材211の移動範囲の両端部において配置されていることが望ましい。 (4) The lower member 1213 (guide surface GS) may not have a partial region. It is desirable to leave the guide surface GS in a region where the moving member 211 easily collides with the guide surface GS. For example, immediately after the key 100 is pressed down to the end position, the hammer assembly 200 continues to rotate with inertial force, and the moving member 211 is easily separated from the sliding surface FS. Further, immediately after the key 100 returns to the rest position, the hammer member 200 may continue to rotate with inertial force, and the moving member 211 may collide with the sliding surface FS and bounce off. In these situations, the moving member 211 easily comes into contact with the guide surface GS. That is, the guide surface GS is desirably disposed at least at both ends of the moving range of the moving member 211.
(5)上述した実施形態において、下部材1213には突出部Pが配置されていたが、突出部Pが配置されていなくてもよい。この場合には、ガイド面GSは摺動面FSと平行な面であってもよい。 (5) In the above-described embodiment, the protruding portion P is arranged on the lower member 1213, but the protruding portion P may not be arranged. In this case, the guide surface GS may be a surface parallel to the sliding surface FS.
(6)摺動面FSにおいて、段差部1231が存在しなくてもよい。この場合にはクリック感を別の方法を用いて発生させることが望ましい。少なくとも負荷発生部においては、クリック感を発生させなくてもよい。クリック感を生じさせなくても、負荷発生部において摺動面FSの弾性変形を用いて押鍵に対する抵抗力を与えることは可能である。 (6) The stepped portion 1231 may not exist on the sliding surface FS. In this case, it is desirable to generate a click feeling using another method. At least in the load generating unit, it is not necessary to generate a click feeling. Even if the click feeling is not generated, it is possible to apply a resistance force against the key depression by using the elastic deformation of the sliding surface FS at the load generating portion.
1…鍵盤装置、10…鍵盤アセンブリ、70…音源装置、80…スピーカ、90…筐体、100,100J…鍵、100w…白鍵、100b…黒鍵、120,120J…鍵側負荷部、1201J…構造体、121…摺動面形成部、1211…上部材、1213…下部材、1215…側部材、1231…段差部、1233…凹部、125…スリット、151…前端鍵ガイド、153…側面鍵ガイド、180…接続部、181…板状可撓性部材、183…鍵側支持部、185…棒状可撓性部材、200…ハンマアセンブリ、210,210J…ハンマ側負荷部、211,211A,211B,211C,211D,211E,211F…移動部材、2111,2111A,2111B,2111C,2111D,2111E,2111F…上側半円柱、2112,2112A,2112B,2112C,2112D,2112E,2112F…下側半円柱、213…リブ部、215…センサ駆動部、220…軸支持部、230,230J…錘部、250,250J…ハンマ本体部、300…センサ、410,410E…下側ストッパ、430,430J…上側ストッパ、500…フレーム、511…前端フレームガイド、513…側面フレームガイド、520…回動軸、585…フレーム側支持部、710…信号変換部、730…音源部、750…出力部 DESCRIPTION OF SYMBOLS 1 ... Keyboard device, 10 ... Keyboard assembly, 70 ... Sound source device, 80 ... Speaker, 90 ... Case, 100, 100J ... Key, 100w ... White key, 100b ... Black key, 120, 120J ... Key side load part, 1201J ... Structure, 121 ... Sliding surface forming portion, 1211 ... Upper member, 1213 ... Lower member, 1215 ... Side member, 1231 ... Step portion, 1233 ... Recess, 125 ... Slit, 151 ... Front end key guide, 153 ... Side key Guide, 180 ... connection part, 181 ... plate-like flexible member, 183 ... key-side support part, 185 ... rod-like flexible member, 200 ... hammer assembly, 210, 210J ... hammer side load part, 211, 211A, 211B , 211C, 211D, 211E, 211F ... moving member, 2111, 2111A, 2111B, 2111C, 2111D, 2111E, 2111F ... upper half Pillar, 2112, 2112A, 2112B, 2112C, 2112D, 2112E, 2112F ... lower half cylinder, 213 ... rib part, 215 ... sensor drive part, 220 ... shaft support part, 230, 230J ... weight part, 250, 250J ... hammer Main body part, 300 ... sensor, 410, 410E ... lower stopper, 430,430J ... upper stopper, 500 ... frame, 511 ... front end frame guide, 513 ... side frame guide, 520 ... rotating shaft, 585 ... frame side support part 710 ... Signal conversion unit 730 ... Sound source unit 750 ... Output unit

Claims (18)

  1.  フレームに対して回動可能に配置された鍵と、
     前記鍵の回動に応じて、回動可能に配置されたハンマアセンブリと、
     第1部材と、
     前記鍵の回動に応じて前記ハンマアセンブリが回動するときに前記第1部材と摺動して、当該第1部材上を移動するように配置され、前記第1部材側において断面が第1円弧となる第1曲面を備え、前記第1部材と反対側において断面が第2円弧となる第2曲面を備え、前記第1円弧と前記第2円弧とは同一の中心を有し半径が互いに異なる第2部材と、
     前記第1部材と接続して前記第2部材が前記第1部材から所定距離以上離れないようにガイドする第3部材と、
     を備える鍵盤装置。
    A key arranged to be rotatable relative to the frame;
    A hammer assembly rotatably arranged in accordance with the rotation of the key;
    A first member;
    When the hammer assembly is rotated according to the rotation of the key, the hammer assembly is arranged to slide on the first member and move on the first member. A first curved surface having a circular arc, a second curved surface having a second circular arc in cross section on the opposite side of the first member, the first circular arc and the second circular arc having the same center and having a radius of each other A different second member;
    A third member connected to the first member and guiding the second member so as not to be separated from the first member by a predetermined distance;
    A keyboard device comprising:
  2.  前記第3部材は、前記第2部材の移動範囲の少なくとも一部において前記第2曲面と接触する請求項1に記載の鍵盤装置。 The keyboard device according to claim 1, wherein the third member contacts the second curved surface in at least a part of a movement range of the second member.
  3.  前記第1円弧の半径が前記第2円弧の半径より大きい請求項1または請求項2に記載の鍵盤装置。 3. The keyboard device according to claim 1, wherein a radius of the first arc is larger than a radius of the second arc.
  4.  前記第1円弧の半径が前記第2円弧の半径より小さい請求項1または請求項2に記載の鍵盤装置。 The keyboard device according to claim 1 or 2, wherein a radius of the first arc is smaller than a radius of the second arc.
  5.  前記第1部材は、表面の少なくとも一部に弾性体が配置されている請求項1乃至請求項4のいずれかに記載の鍵盤装置。 5. The keyboard device according to claim 1, wherein an elastic body is disposed on at least a part of a surface of the first member.
  6.  前記第1曲面のうち前記第1部材と接する位置は、前記第1部材に対する前記第2部材の位置によって変化する請求項1乃至請求項5のいずれかに記載の鍵盤装置。 6. The keyboard device according to claim 1, wherein a position of the first curved surface in contact with the first member varies depending on a position of the second member with respect to the first member.
  7.  前記第3部材は、前記鍵の回動に応じて前記ハンマアセンブリが回動するときに前記第2部材と摺動する請求項1乃至請求項6のいずれかに記載の鍵盤装置。 The keyboard device according to any one of claims 1 to 6, wherein the third member slides with the second member when the hammer assembly rotates in accordance with the rotation of the key.
  8.  前記第2部材は、
     前記第1曲面を有する第1部分円柱部と、
     前記第1部分円柱部と反対側に位置し、前記第2曲面を有する第2部分円柱部と、を備え、
     前記第1部分円柱部と前記第2円柱部は、共通の中心軸を有し、
     前記第1部分円柱部の半径は、前記第2部分円柱部の半径とは異なる請求項1乃至請求項7のいずれかに記載の鍵盤装置。
    The second member is
    A first partial cylindrical portion having the first curved surface;
    A second partial columnar part located on the opposite side of the first partial cylindrical part and having the second curved surface;
    The first partial cylindrical portion and the second cylindrical portion have a common central axis,
    The keyboard device according to any one of claims 1 to 7, wherein a radius of the first partial cylindrical portion is different from a radius of the second partial cylindrical portion.
  9.  前記第1部材および前記第2部材はいずれか一方が前記鍵に、他方が前記ハンマアセンブリに接続されている請求項1乃至請求項8のいずれかに記載の鍵盤装置。 9. The keyboard apparatus according to claim 1, wherein one of the first member and the second member is connected to the key, and the other is connected to the hammer assembly.
  10.  前記ハンマアセンブリは、錘部を備えるものであり、
     前記第1部材は、前記鍵が押鍵操作されたときに、前記第2部材の前記第1部材に対する摺動を許容しつつ、前記錘部が上方に移動するように前記第2部材に力を付与する請求項1乃至請求項9のいずれかに記載の鍵盤装置。
    The hammer assembly includes a weight portion,
    The first member is configured to force the second member to move upward while allowing the second member to slide relative to the first member when the key is pressed. The keyboard device according to any one of claims 1 to 9, wherein:
  11.  前記第1部材は、前記鍵への押鍵操作によって下方に移動する位置で前記鍵に対して配置されるものであり、
     前記第2部材は前記ハンマアセンブリに接続されるものであり、前記第1部材から下方に押されることにより前記錘部が上方に移動するように、前記ハンマアセンブリの回動軸に対して前記錘部と反対側に接続される請求項10に記載の鍵盤装置。
    The first member is arranged with respect to the key at a position that moves downward by a key pressing operation on the key,
    The second member is connected to the hammer assembly, and the weight is moved with respect to the rotation axis of the hammer assembly so that the weight is moved upward by being pushed downward from the first member. The keyboard device according to claim 10, wherein the keyboard device is connected to the opposite side of the unit.
  12.  前記第3部材は、前記第1部材との間に前記第2部材を挟む位置で前記鍵に対して配置される請求項11に記載の鍵盤装置。 12. The keyboard apparatus according to claim 11, wherein the third member is disposed with respect to the key at a position where the second member is sandwiched between the third member and the first member.
  13.  フレームに対して回動可能に配置された鍵と、
     前記鍵の回動に応じて、回動可能に配置されたハンマアセンブリと、
     第1部材と、
     前記鍵の回動に応じて前記ハンマアセンブリが回動するときに前記第1部材と摺動する第1曲面を有する第1部分円柱形状部と、前記第1部材と反対側に位置する第2曲面を有する第2部分円柱形状部と、を備える第2部材と、
     前記第1部材と接続して前記第2部材が前記第1部材から所定距離以上離れないようにガイドする第3部材と、を備え、
     前記第1部分円柱形状部と前記第2部分円柱形状部は、共通の中心軸を有し、
     前記第1部分円柱形状部の半径は、前記第2部分円柱形状部の半径とは異なる鍵盤装置。
    A key arranged to be rotatable relative to the frame;
    A hammer assembly rotatably arranged in accordance with the rotation of the key;
    A first member;
    A first partial cylindrical portion having a first curved surface that slides with the first member when the hammer assembly rotates in response to the rotation of the key, and a second located on the opposite side of the first member. A second member comprising a second partial cylindrical portion having a curved surface;
    A third member connected to the first member and guiding the second member so as not to be separated from the first member by a predetermined distance or more,
    The first partial columnar portion and the second partial columnar portion have a common central axis,
    A keyboard device in which a radius of the first partial cylindrical portion is different from a radius of the second partial cylindrical portion.
  14.  前記第3部材は、前記第2部材の移動範囲の少なくとも一部において前記第2曲面と接触する請求項13に記載の鍵盤装置。 14. The keyboard device according to claim 13, wherein the third member contacts the second curved surface in at least a part of a movement range of the second member.
  15.  前記第1部分円柱形状部の半径は、前記第2部分円柱形状部の半径よりも大きい請求項13または14に記載の鍵盤装置。 The keyboard device according to claim 13 or 14, wherein a radius of the first partial cylindrical portion is larger than a radius of the second partial cylindrical portion.
  16.  前記第1部分円柱形状部の半径は、前記第2部分円柱形状部の半径よりも小さい請求項13または14に記載の鍵盤装置。 The keyboard device according to claim 13 or 14, wherein a radius of the first partial cylindrical portion is smaller than a radius of the second partial cylindrical portion.
  17.  前記第1部分円柱形状部と前記第2部分円柱形状部は、樹脂によって一体的に形成される請求項13乃至請求項16のいずれかに記載の鍵盤装置。 The keyboard device according to any one of claims 13 to 16, wherein the first partial columnar portion and the second partial columnar portion are integrally formed of resin.
  18.  前記第1部材は、前記第1部分円柱形状部の外周面である前記第1曲面と接触する摺動面を備え、
     前記第3部材は、前記第2部分円柱形状部の外周面である前記第2曲面と接触可能なガイド面を備える請求項13乃至請求項17のいずれかに記載の鍵盤装置。
    The first member includes a sliding surface that comes into contact with the first curved surface that is an outer peripheral surface of the first partial cylindrical portion,
    The keyboard device according to any one of claims 13 to 17, wherein the third member includes a guide surface that can come into contact with the second curved surface that is an outer peripheral surface of the second partial cylindrical portion.
PCT/JP2017/024721 2016-07-22 2017-07-05 Keyboard device WO2018016324A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018528479A JP6822476B2 (en) 2016-07-22 2017-07-05 Keyboard device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-144381 2016-07-22
JP2016144381 2016-07-22

Publications (1)

Publication Number Publication Date
WO2018016324A1 true WO2018016324A1 (en) 2018-01-25

Family

ID=60992212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024721 WO2018016324A1 (en) 2016-07-22 2017-07-05 Keyboard device

Country Status (2)

Country Link
JP (1) JP6822476B2 (en)
WO (1) WO2018016324A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04226496A (en) * 1990-04-30 1992-08-17 Gold Star Co Ltd Keyboard apparatus for electronic-keyboard musical instrument
JP2006126815A (en) * 2004-09-28 2006-05-18 Yamaha Corp Keyboard apparatus
JP2008158039A (en) * 2006-12-21 2008-07-10 Casio Comput Co Ltd Keyboard device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04226496A (en) * 1990-04-30 1992-08-17 Gold Star Co Ltd Keyboard apparatus for electronic-keyboard musical instrument
JP2006126815A (en) * 2004-09-28 2006-05-18 Yamaha Corp Keyboard apparatus
JP2008158039A (en) * 2006-12-21 2008-07-10 Casio Comput Co Ltd Keyboard device

Also Published As

Publication number Publication date
JP6822476B2 (en) 2021-01-27
JPWO2018016324A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
US10777178B2 (en) Keyboard apparatus
JP6682945B2 (en) Rotating mechanism and keyboard device
US10885884B2 (en) Pivot member and keyboard apparatus
WO2018174001A1 (en) Turning mechanism and keyboard device provided with turning mechanism
WO2018016328A1 (en) Keyboard device
WO2018173924A1 (en) Actuator, pressing device, and keyboard device
JP6747134B2 (en) Keyboard device
JP2024053082A (en) Support structure for keys on keyboard device, keyboard device and electronic musical instrument
JP6705499B2 (en) Keyboard device
WO2018016324A1 (en) Keyboard device
WO2018016325A1 (en) Keyboard device
WO2018174161A1 (en) Hammer assembly, keyboard instrument and hammer
JP3402183B2 (en) Drive unit structure of keyboard device
JP6464867B2 (en) Support assembly and keyboard device
JP6597786B2 (en) Keyboard device
US20160284326A1 (en) Support assembly and keyboard apparatus
JP2013161027A (en) Keyboard device
JP6464868B2 (en) Support assembly and keyboard device
WO2017163707A1 (en) Turning mechanism, manufacturing method for same, and keyboard device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018528479

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830844

Country of ref document: EP

Kind code of ref document: A1