WO2018014665A1 - 一种上行参考信号的传输方法和装置 - Google Patents

一种上行参考信号的传输方法和装置 Download PDF

Info

Publication number
WO2018014665A1
WO2018014665A1 PCT/CN2017/087206 CN2017087206W WO2018014665A1 WO 2018014665 A1 WO2018014665 A1 WO 2018014665A1 CN 2017087206 W CN2017087206 W CN 2017087206W WO 2018014665 A1 WO2018014665 A1 WO 2018014665A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
terminal
uplink reference
uplink
time
Prior art date
Application number
PCT/CN2017/087206
Other languages
English (en)
French (fr)
Inventor
曾昆
王光健
黄煌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17830302.0A priority Critical patent/EP3481120B1/en
Publication of WO2018014665A1 publication Critical patent/WO2018014665A1/zh
Priority to US16/252,831 priority patent/US10721042B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to the field of wireless technologies, and in particular, to a method and an apparatus for transmitting an uplink reference signal.
  • High-low frequency base station hybrid networking also known as high-low frequency base station Heterogeneous Network (HetNet) networking
  • HetNet Heterogeneous Network
  • low-frequency base stations cover a large area
  • high-frequency base stations cover hotspots within the coverage of low-frequency base stations to enhance hotspots The capacity of the area. Since the networking mode can reduce the system overhead of the high-frequency directional link transmission control signaling by means of the wide coverage capability of the low-frequency base station, it is a key deployment scenario of the future 5G.
  • the Softcell networking is a typical HetNet networking solution.
  • the softcell networking that is, the micro-pico BS reuses the cell ID of the macro BS, that is, the micro-station is transparent to the terminal.
  • the terminal accesses the network, it only knows the ID of the entire HetNet cell or the macro station ID without knowing which micro station is serving it.
  • the prior art solution is as follows:
  • the terminal completes the downlink synchronization process with the macro station by detecting the Primary/Secondary Synchronization Signal (PSS/SSS) of the cell, and acquires the synchronization clock of the network side.
  • PSS/SSS Primary/Secondary Synchronization Signal
  • the terminal completes the uplink physical random access procedure, and acquires the Timing Advance (TA) of the terminal to the macro station.
  • TA Timing Advance
  • the downlink synchronization and uplink timing advance between the terminal and each micro station directly reuse the result of the terminal and the macro station.
  • the LTE system has a minimum Cyclic Prefix (CP) length of 4.69us; assuming a macro station radius of 500m and a microstation radius of 100m, the delay difference between macro and micro is no more than 1.33us, and different terminals reach micro The delay difference of the station is no more than 0.33us, and the effect of the delay difference can be eliminated by the CP.
  • CP Cyclic Prefix
  • the macro station or the network controller of the HetNet network allocates an uplink measurement reference signal and a transmission resource of the bearer signal to the target terminal.
  • the terminal uses the specified resource to send the specified uplink measurement reference signal.
  • the network side for example, a micro-station adjacent to the terminal in the HetNet, performs measurement based on the uplink measurement reference signal, for example, a reference signal received power (Reference Signal Received Power, RSRP), thereby determining a service micro-station/micro to which the terminal belongs.
  • RSRP Reference Signal Received Power
  • the above scheme is not applicable to the scenario where the microstation is a high frequency base station, because the length of the high frequency symbol is on the order of microseconds, such as 1.25 us, and the length of the CP is generally 1/5 of the symbol length, that is, 0.25 us. According to the estimation of the previous delay difference, this CP length is not enough to eliminate the influence of the macro micro delay difference and the time difference of different terminal TAs.
  • the terminal completes the time synchronization and uplink timing advance process with the low frequency macro station (eNB in FIG. 1), that is, the network side clock in FIG. 1 and the signal sent by the UE to the eNB are aligned in time, but the result is reused to the micro When standing, not
  • the uplink transmission signal of the same terminal (UE1 and UE2 in the figure) arrives at a certain micro station (TP1 in the figure), and there is a random delay difference.
  • the occurrence of the delay difference will destroy the orthogonality of the time domain of the uplink measurement reference signal. It also causes interference to the data portion caused by the reference measurement signal.
  • the synchronization between the terminal and the macro station in the prior art and the TA cannot be reused between the terminal and the high-frequency micro-station.
  • the problem of correctly transmitting the uplink reference signal, how to design an uplink reference signal transmission scheme to ensure the transmission accuracy of the uplink reference signal is an urgent problem to be solved.
  • the embodiment of the invention provides a method and a device for transmitting an uplink reference signal, so as to implement complete transmission of an uplink reference signal and improve data transmission accuracy.
  • the present disclosure provides a method for transmitting an uplink reference signal, including:
  • the terminal After the terminal arrives at the time domain resource sending location, in the first time interval corresponding to the uplink reference signal, the terminal switches the transmitting beam according to the first sequence in different time slots in M time, and transmits the uplink reference signal. Transmitting, in a second time interval corresponding to the uplink reference signal, a transmit beam in a second sequence in the M time slots, and transmitting an uplink reference signal, where the uplink reference signal includes M different time-on-chip transmissions.
  • the uplink reference signal, M is a positive integer greater than 1
  • the second sequence is a cyclic shift of the first sequence.
  • the reference signals formed on the M time slices may be continuously transmitted in time, or may be divided into multiple intervals for distributed transmission.
  • the problem of the missing beam detection is overcome by the cyclic shift of the transmission beam, which not only can realize the complete transmission of the uplink reference signal, but also improve the signal transmission accuracy and reduce the system overhead.
  • the first time interval corresponding to the uplink reference signal is located in an odd-numbered transmission time interval of the uplink measurement where the uplink reference signal is located; the uplink reference signal The corresponding second time interval is located in an even-numbered transmission time interval of the uplink measurement in which the uplink reference signal is located.
  • the guard interval is a duration in which the terminal does not transmit a signal. Since each terminal is asynchronously transmitted, the presence of the guard interval can prevent the uplink reference signal transmitted by the terminal from interfering with the signal transmitted by other terminals.
  • the uplink reference signal includes a synchronization reference signal and/or an uplink measurement reference signal
  • the uplink measurement reference signal includes a sounding reference signal.
  • the synchronization reference signal is used to implement uplink synchronization between the terminal and the high frequency base station; the measurement reference signal is used to measure channel state information between the terminal and the high frequency base station.
  • the length of the guard interval is not less than half of an uplink timing advance of the terminal and any one of the high frequency base stations.
  • the terminal determines the uplink of the terminal on the high frequency link
  • the time domain resource sending location of the reference signal including:
  • the terminal acquires a system clock of the low frequency base station and an uplink timing advance of the terminal on the low frequency link based on the low frequency link, and passes the start point of one time slot of the low frequency link indicated by the system clock through the uplink timing advance amount.
  • the location is determined as a time domain resource transmission location of the uplink reference signal of the terminal on the high frequency link; or
  • the terminal receives indication information of the time domain resource sending location sent by the network side.
  • the terminal transmits the uplink reference signal, including:
  • the radio frame including at least one network-oriented measurement slot interval, the network-oriented measurement slot interval including a guard interval and a symbol for uplink reference signal transmission;
  • the guard interval may be placed at either or both ends of the symbol used for uplink reference signal transmission.
  • the second aspect provides a method for transmitting an uplink reference signal, including:
  • the high frequency base station determines N time slices for receiving an uplink reference signal transmitted by the terminal on a single time slice of the terminal, where N is a positive integer greater than one,
  • the high frequency base station switches the receiving beam in a first time sequence in different time slots in the N time slices in a first time interval corresponding to the uplink reference signal, and the receiving terminal transmits on a single time slice of the terminal.
  • the uplink reference signal in a second time interval corresponding to the uplink reference signal, switching received beams in a second sequence in different time slices in the N time slices, and the receiving terminal transmits on a single time slice of the terminal.
  • the uplink reference signal has a guard interval at least one end of the uplink reference signal.
  • the problem of missing the beam detection is overcome by the cyclic shift of the receiving beam, and the complete transmission of the uplink reference signal can be realized, and the signal transmission accuracy can be improved and the system overhead can be reduced.
  • the first time interval corresponding to the uplink reference signal is located in an odd-numbered transmission time interval of the uplink measurement where the uplink reference signal is located; the uplink reference signal The corresponding second time interval is located in an even-numbered transmission time interval of the uplink measurement in which the uplink reference signal is located.
  • a third aspect provides a transmission apparatus for an uplink reference signal, including:
  • a determining unit configured to determine a time domain resource sending position of the uplink reference signal of the terminal on the high frequency link, where at least one end of the uplink reference signal has a guard interval
  • a sending unit configured to switch the transmitting beam according to the first sequence in different time slots in the M time period after the time domain resource sending location is reached, in the first time interval corresponding to the uplink reference signal, and transmit the uplink reference a signal, in a second time interval corresponding to the uplink reference signal, switching the transmit beam according to the second sequence in different time slots of the M time, and transmitting an uplink reference signal, where the uplink reference signal includes M different times An uplink reference signal transmitted on-chip, M is a positive integer greater than 1, and the second sequence is a cyclic shift of the first sequence.
  • the first time interval corresponding to the uplink reference signal is located in an odd-numbered transmission time interval of the uplink measurement where the uplink reference signal is located; the uplink reference signal The corresponding second time interval is located in an even-numbered transmission time interval of the uplink measurement in which the uplink reference signal is located.
  • the guard interval is a duration in which the terminal does not transmit a signal.
  • the uplink reference signal includes a synchronization reference signal and/or an uplink measurement reference signal
  • the uplink measurement reference signal includes a sounding reference signal
  • the length of the guard interval is not less than half of an uplink timing advance of the terminal and any one of the high frequency base stations.
  • the determining unit is configured to: when determining a time domain resource sending location of the uplink reference signal of the terminal on the high frequency link, specifically:
  • the sending unit when the transmitting unit transmits the uplink reference signal, is specifically configured to:
  • the radio frame including at least one network-oriented measurement slot interval, the network-oriented measurement slot interval including a guard interval and a symbol for uplink reference signal transmission;
  • a fourth aspect provides a transmission apparatus for an uplink reference signal, including:
  • a determining unit configured to determine N time slices for receiving an uplink reference signal transmitted by the terminal on a single time slice of the terminal, where N is a positive integer greater than one
  • a receiving unit configured to switch the receiving beam in a first time sequence in different time slots in the N time slices in a first time interval corresponding to the uplink reference signal, where the receiving terminal transmits on a single time slice of the terminal
  • the uplink reference signal in a second time interval corresponding to the uplink reference signal, switching received beams in a second sequence in different time slices in the N time slices, and the receiving terminal transmits on a single time slice of the terminal
  • the uplink reference signal has a guard interval at least one end of the uplink reference signal.
  • the first time interval corresponding to the uplink reference signal is located in an odd-numbered transmission time interval of the uplink measurement where the uplink reference signal is located; the uplink reference signal The corresponding second time interval is located in an even-numbered transmission time interval of the uplink measurement in which the uplink reference signal is located.
  • a terminal device having a function to implement terminal behavior in any of the above aspects and possible designs.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the terminal device includes a transceiver, a memory, and a processor, wherein the memory is for storing a set of programs, and the processor is configured to invoke the program stored by the memory to perform aspects as described above And the method of any of the designs.
  • a base station having the functionality to implement high frequency base station behavior in any of the above aspects and possible designs.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of a base station includes a transceiver, a memory, and a processor, wherein the memory is for storing a set of programs, the processor is configured to invoke the program stored by the memory to perform various aspects as described above and The method of any of the designs.
  • the transmission scheme of the uplink reference signal overcomes the problem of lack of beam detection in the process of uplink reference signal transmission by using a cyclic shift of the transmit beam of the terminal side or a cyclic shift of the receive beam of the base station side, and implementing an uplink reference signal Complete transmission, improve transmission efficiency and accuracy, and reduce system overhead.
  • Figure 1 is a schematic diagram of the impact caused by the macro-time delay difference in a HetNet scenario
  • FIG. 2 is a schematic diagram of an application scenario of the present invention.
  • FIG. 3 is a flowchart of a method for transmitting an uplink reference signal according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a placement position of a guard interval according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of transmission of an uplink reference signal between a terminal and a high frequency micro station according to an embodiment of the present invention
  • FIG. 6A, FIG. 6B and FIG. 6C are schematic diagrams showing orthogonal processing of an uplink reference signal of a terminal according to an embodiment of the present invention
  • FIG. 7 is a flowchart of a method for transmitting an uplink reference signal according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of transmission of an uplink reference signal between a terminal and a high frequency micro station according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another application scenario of the present invention.
  • FIG. 10 is a schematic structural diagram of a frame in a communication system according to Embodiment 1 of the present invention.
  • 11A is a schematic diagram of placing an uplink reference signal on a time domain resource according to Embodiment 2 of the present invention.
  • FIG. 11B is a schematic structural diagram of a frame in a communication system according to Embodiment 2 of the present invention.
  • FIG. 12 is a schematic flowchart of a method for transmitting an uplink synchronization reference signal according to Embodiment 3 of the present invention.
  • FIG. 13 is a schematic flowchart of a method for transmitting an uplink synchronization reference signal according to Embodiment 4 of the present invention.
  • FIG. 14 is a schematic flowchart of a method for transmitting an uplink measurement reference signal according to Embodiment 5 of the present invention.
  • FIG. 16 is a schematic flowchart of a method for transmitting an uplink synchronization reference signal according to Embodiment 7 of the present invention.
  • FIG. 17 is a schematic flowchart of a method for transmitting an uplink synchronization reference signal according to Embodiment 8 of the present invention.
  • FIG. 19 is a schematic flowchart of a method for transmitting an uplink measurement reference signal according to Embodiment 10 of the present invention.
  • 20 is a structural diagram of an apparatus for transmitting an uplink reference signal according to an embodiment of the present invention.
  • 21 is a structural diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 22 is a structural diagram of an apparatus for transmitting an uplink reference signal according to an embodiment of the present invention.
  • FIG. 23 is a structural diagram of a network side device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an application scenario according to an embodiment of the present invention, which specifically includes: a terminal, a low frequency macro station, and at least one high frequency micro station.
  • a low frequency micro station may also exist.
  • the high frequency micro station relies on the low frequency macro station to realize part of the transmission function;
  • the terminal is equipped with both the low frequency transceiver and the high frequency transceiver, the low frequency transceiver communicates with the low frequency macro station through the low frequency link, and the high frequency transceiver passes the high frequency link. Data communication with high frequency micro stations.
  • the embodiment of the present invention provides a method for transmitting an uplink reference signal.
  • the specific process includes the following steps:
  • Step 31 The terminal determines a time domain resource sending position of the uplink reference signal of the terminal on the high frequency link, and at least one end of the uplink reference signal has a guard interval.
  • the high-frequency link refers to the communication link between the terminal and the high-frequency base station, and the high-frequency link is used for the transmission of the high-frequency frequency band.
  • the frequency band greater than 6 GHz is called the high-frequency frequency band, and of course, the setting of the high-frequency frequency band can also be based on the terminal.
  • Specific The networking environment is specifically configured.
  • the determining manner of the time domain resource sending position of the uplink reference signal of the terminal on the high frequency link may include the following three manners. :
  • the first mode is: the terminal acquires the system clock of the low frequency base station based on the low frequency link, and determines the starting position of one time slot of the low frequency link indicated by the system clock as the uplink reference signal of the terminal on the high frequency link. The location where the domain resource is sent.
  • the second mode is: the terminal acquires a system clock of the low frequency base station and an uplink timing advance of the terminal on the low frequency link based on the low frequency link, and passes the start point of one time slot of the low frequency link indicated by the system clock.
  • the location of the uplink timing advance is determined as the time domain resource transmission location of the uplink reference signal of the terminal on the high frequency link.
  • the third mode is: the terminal receives the indication information of the time domain resource sending location sent by the network side.
  • the uplink reference signal is periodically and concentrated in a network-oriented measurement time slot (NoMP) interval.
  • NoMP network-oriented measurement time slot
  • the NOMP is placed in a radio frame.
  • one radio frame may include one.
  • the NoMP is composed of an uplink reference signal and a guard interval. There are three cases in a specific placement position. As shown in FIG. 4, the guard interval may be placed at either end of the reference signal or placed at both ends of the reference signal, and the terminal No signal is transmitted during the guard interval.
  • the length of the guard interval is determined according to the specific deployment scenario of the macro station and the micro station in the HetNet network, wherein the length of the guard interval is not less than 1/2 of the uplink TA of the terminal and any one of the high frequency micro stations, that is, L. ⁇ max
  • the uplink TA of the terminal and any one of the high frequency micro stations is estimated by using the uplink TA between the terminal and the low frequency macro station, the position information of the high frequency micro station, and the position information of the low frequency macro station; the guard interval and the guard interval.
  • the length may also be unclear.
  • the length of the NOMP interval and the length of the reference signal it is possible to implicitly determine that there is a guard interval at least one end of the reference signal, thereby determining the length of the guard interval.
  • the uplink reference signal includes a synchronization reference signal and/or an uplink measurement reference signal.
  • the synchronization reference signal is used to implement uplink synchronization between the terminal and the high frequency base station; the measurement reference signal is used to measure channel state information between the terminal and the high frequency base station, for example, the signal strength of the receiving end detection signal.
  • the uplink measurement reference signal includes a Sounding Reference Signal (SRS), which is sent by the terminal, and the high-frequency base station can perform an evaluation of the uplink channel by measuring the SRS, and evaluate the uplink resource according to the evaluation.
  • SRS Sounding Reference Signal
  • the SRS is very important for uplink channel estimation to achieve dynamic allocation of uplink resources.
  • the SRS can also be used for uplink timing of the terminal, reciprocity-assisted downlink beamforming, etc., and is also very important for these operations.
  • Step 32 After the terminal reaches the time domain resource sending location, in the first time interval corresponding to the uplink reference signal, the terminal switches the transmitting beam in the first order in different time slots in the M time, and transmits the uplink.
  • a reference signal in a second time interval corresponding to the uplink reference signal, switching the transmit beam in a second sequence in different time slots in the M time, and transmitting an uplink reference signal, where the uplink reference signal includes M different
  • M is a positive integer greater than 1
  • the second sequence is a cyclic shift of the first sequence.
  • the time length corresponding to the transmission uplink reference signal is divided into M time slices, and each time slice has the same length, and may be one symbol or multiple ( ⁇ 2) symbols, wherein the time corresponding to the uplink reference signal
  • the number of slices may be predetermined or may be specifically determined based on the number of transmission beams of the terminal.
  • Figure 5 is a schematic diagram showing the transmission of the uplink reference signal between the terminal and the high frequency micro station.
  • the terminal transmits the uplink reference signal using different transmit beams on each time slice.
  • the time slice B0 transmits the reference signal through the transmit beam #0
  • the time slice B1 transmits the reference signal through the transmit beam #1.
  • the terminal is proceeding When the uplink reference signal is sent, the following two methods can be used:
  • the first mode is a centralized transmission mode.
  • the number M of time slices corresponding to the uplink reference signal of the terminal is not less than the minimum number of transmission beams required for the terminal to transmit the uplink reference signal in a certain directional region. For example, if the terminal needs to cover the 0-60° area and the beam width is 10°, the minimum required number of transmit beams is 6, and the value of M needs to be greater than or equal to 6.
  • the second mode is a distributed transmission mode.
  • the number of time slices corresponding to the uplink reference signal is smaller than the minimum number of transmit beams required for the terminal to transmit the uplink reference signal in a certain directional region, but may be multiplied by multiple reference signals.
  • the terminal needs to carry at least one uplink reference signal of the synchronization signal or the measurement reference signal when selecting the different transmission beams for the uplink reference signal transmission on each time slice.
  • the terminal also needs to carry the identity identifier of the terminal itself.
  • the first time interval corresponding to the uplink reference signal is located in an odd-numbered transmission time interval (TTI) of the uplink measurement in which the uplink reference signal is located; the second time interval corresponding to the uplink reference signal is located An even number of transmission time intervals of the uplink measurement in which the uplink reference signal is located.
  • TTI transmission time interval
  • the first NoMP in FIG. 5 is a first time interval corresponding to the uplink reference signal
  • the second NoMP is a second time interval corresponding to the uplink reference signal
  • the terminal is in the M time slices corresponding to the reference signal of the first NoMP, according to the first time.
  • the transmission beam of the terminal is sequentially switched. As shown in FIG. 5, the terminal sequentially transmits the uplink reference signal according to the logical sequence number #0 to #(Mb-1) of the transmission beam; and the M corresponding to the reference signal of the second NoMP. On the time slice, the transmission beam of the terminal is switched according to the second sequence after the cyclic shift. As shown in FIG.
  • the first K cyclic beams of the reference signal are shifted to #Mb-1 and then switched, that is, each UE is in the second.
  • the logical sequence numbers of the transmit beams in the NoMP are #K, #(K+1), ..., #(Mb-1), #0, ..., #(K-1).
  • the total time slice length occupied by the K beams that are cyclically shifted needs to be greater than the maximum high and low frequency delay.
  • the number of beams K of the cyclic shift may be set by one or more ( ⁇ 2) values by a standard, and the high-frequency base station preferably selects one according to an index such as a coverage range.
  • the terminal sequentially switches the transmit beam to transmit the uplink reference signal in the first order, and the terminal sequentially switches in the second sequence in the time interval corresponding to the reference signal sequence of the second NoMP.
  • the transmit beam transmits an uplink reference signal.
  • the second sequence is a cyclic shift of the first order.
  • the first NoMP and the second NoMP respectively refer to NoMP in a radio frame with an even frame number and NoMP in a radio frame with an odd frame number; or
  • the first NoMP and the second NoMP refer to NoMP in a radio frame having an odd frame number and NoMP in a radio frame having an even frame number, respectively.
  • the first NoMP and the second NoMP are respectively a first NoMP and a second NoMP in one radio frame; or the first NoMP and the second NoMP is the second NoMP and the first NoMP in one radio frame, respectively.
  • the NoMP is cycled from 0 to the NoMP in the cycle, and the first NoMP and the second NoMP are respectively numbered as 0.
  • the even number NoMP and the odd numbered NoMP; or the first NoMP and the second NoMP are the NoMP numbered odd number and the NoMP numbered even number.
  • the NoMP corresponding to the even number of NoMPs is used as a cycle, and the NoMP in the cycle is NoMP numbered from 0 in accordance with the timing relationship, and the first NoMP and the second NoMP are respectively The NoMP numbered as an even number and the NoMP numbered in an odd number; or the first NoMP and the second NoMP described above are NoMPs numbered oddly and NoMPs numbered even numbers.
  • Step 33 The high frequency base station is in the first time interval and the second time interval corresponding to the uplink reference signal, in the N Different time slices within a time slice switch receive beams, and receive uplink reference signals transmitted by the terminal on a single time slice of the terminal, where N is a positive integer greater than one.
  • the high-frequency micro-station divides it into N smaller slides during the single time slice duration of the terminal, on these smaller time slices.
  • the uplink reference signal sent by the terminal is received by using different directional receive beams.
  • the smaller time slice in the above description may be one symbol or a plurality of ( ⁇ 2) symbols.
  • the uplink reference signal sent by the terminal is used in a cyclic manner on the N time slices in a single time slice duration of the terminal. receive.
  • the embodiment of the present invention provides a method for transmitting an uplink reference signal.
  • the specific process includes the following steps:
  • Step 71 is the foregoing step 31 in FIG. 3, and therefore, reference may be made to the related description in the foregoing method embodiments, and details are not described herein again.
  • Step 72 After the terminal arrives at the time domain resource sending location, in the first time interval and the second time interval corresponding to the uplink reference signal, the terminal switches the transmitting beam and transmits in different time slots in M time.
  • An uplink reference signal where the uplink reference signal includes uplink reference signals transmitted on M different time slices, and M is a positive integer greater than one.
  • the first time interval corresponding to the uplink reference signal is located in an odd-numbered transmission time interval (TTI) of the uplink measurement in which the uplink reference signal is located; the second time interval corresponding to the uplink reference signal is located An even number of transmission time intervals of the uplink measurement in which the uplink reference signal is located.
  • TTI transmission time interval
  • Figure 8 is a schematic diagram showing the transmission of the uplink reference signal between the terminal and the high frequency microstation.
  • the terminal transmits the uplink reference signal using different transmit beams on each time slice.
  • the time slice B0 transmits the reference signal through the transmit beam #0
  • the time slice B1 transmits the reference signal through the transmit beam #1.
  • the following two methods may be used:
  • the first mode is a centralized transmission mode.
  • the number M of time slices corresponding to the uplink reference signal of the terminal is not less than the minimum number of transmission beams required for the terminal to transmit the uplink reference signal in a certain directional region. For example, if the terminal needs to cover the 0-60° area and the beam width is 10°, the minimum required number of transmit beams is 6, and the value of M needs to be greater than or equal to 6.
  • the second mode is a distributed transmission mode.
  • the number of time slices corresponding to the uplink reference signal is smaller than the minimum number of transmit beams required for the terminal to transmit the uplink reference signal in a certain directional region, but may be multiplied by multiple reference signals.
  • the terminal needs to carry at least one uplink reference signal of the synchronization signal or the measurement reference signal when selecting the different transmission beams for the uplink reference signal transmission on each time slice.
  • the terminal also needs to carry the identity identifier of the terminal itself.
  • the related descriptions may be referred to in the first time interval and the second time interval corresponding to the uplink reference signal.
  • the first NoMP in FIG. 8 is a first time interval corresponding to the uplink reference signal
  • the second NoMP is a second time interval corresponding to the uplink reference signal
  • the terminal is on the M time slices corresponding to the reference signals of the first NoMP and the second NoMP. , traverse its own transmit beam and transmit the uplink reference signal.
  • Step 73 The high frequency base station switches the receiving beam according to the first sequence in different time slots in the N time slices in the first time interval corresponding to the uplink reference signal, and the receiving terminal transmits on a single time slice of the terminal.
  • An uplink reference signal in a second time interval corresponding to the uplink reference signal, switching received beams in a second sequence in different time slices in the N time slices, and the receiving terminal transmitting on a single time slice of the terminal Uplink reference signal.
  • the high-frequency micro-station divides it into N during the duration of a single time slice of the terminal. Tiny slides, which use different directional receive beams on these smaller time slices to receive the upstream reference signals sent by the terminal.
  • the smaller time slice in the above description may be one symbol or a plurality of ( ⁇ 2) symbols.
  • the high frequency base station switches its own receiving beam in the first order during the single transmission beam duration of the terminal. For example, in FIG. 8, the high frequency base station sequentially follows the logical sequence number of the receiving beam as #0 to #( Nb-1), receiving the uplink reference signal sent by the terminal; in the second NoMP, the high frequency base station changes its own receiving beam switching sequence within the duration of the single transmission beam of the terminal, according to the cyclically shifted receiving beam The logical sequence sequentially switches its own receiving beam. As shown in FIG.
  • the first K cyclic beams of the reference signal are shifted to #(Nb-1) and then switched, that is, the logical sequence number of the receiving beam in the second NoMP of the base station side is #K,#(K+1),...,#(Nb-1),#0,...,#(K-1).
  • each of the high frequency base stations sequentially switches the receive beam reception reference signal in the first order
  • each of the high frequency base stations sequentially switches the receive beam reception reference signal in the first order
  • each of the high frequency base stations The second sequence sequentially switches the receive beam reception reference signals.
  • the second sequence is a cyclic shift of the first order.
  • the total time slice length occupied by the K beams that are cyclically shifted needs to be greater than the maximum high and low frequency delay.
  • the number of beams K of the cyclic shift may be set by one or more ( ⁇ 2) values by a standard, and the high-frequency base station preferably selects one according to an index such as a coverage range.
  • the uplink reference signal in the NoMP interval is divided into a plurality of time slices on the terminal side, each time slice is composed of several symbols, and the reference signals used for synchronization or measurement are resources of the uplink reference signals carried by the different terminals.
  • the distribution method can adopt the following orthogonal design.
  • the code points are orthogonal.
  • the uplink reference signals of different terminals are encoded using different orthogonal sequences with good cross-correlation characteristics to ensure that the receiving end can separate the target reference signals from the time-frequency mixed signals.
  • the frequency division is orthogonal.
  • uplink reference signals of different terminals may be carried on different sub-carriers of the symbol, and interference caused by time-domain misalignment is avoided by frequency domain orthogonality.
  • the wavelength division is orthogonal.
  • the directional beam is used by the HF microstation, different terminals can transmit their respective reference signals using beams directed by different directional beams at the same time. This method is also called spatial multiplexing of beams.
  • Method 4 any two combinations or three combinations of the above three methods.
  • any two or three of the above three methods may be mixed, for example, the terminals are divided into several groups, and one orthogonal multiplexing mode is adopted between the groups, and the terminal in the group adopts another orthogonal complex. Use the method.
  • the foregoing method for transmitting the uplink reference signal shown in FIG. 3 and FIG. 7 is also applicable to the application scenario of the hybrid networking of multiple high-frequency base stations shown in FIG. 9, specifically including: the terminal and multiple highs.
  • the frequency micro station, wherein the high frequency base station in the hybrid networking scenario of the plurality of high frequency base stations may be a high frequency macro station or a high frequency macro station.
  • the first embodiment provides a communication system applied to the hybrid network of the high frequency micro station and the low frequency macro station shown in FIG. 2 or the hybrid network of the plurality of high frequency base stations shown in FIG. Frame structure.
  • the high frequency base station in the hybrid networking scenario of the multiple high frequency base stations may be a high frequency macro station or a high frequency micro station.
  • 10 milliseconds is used as the frame length of a radio frame; the radio frame is composed of 10 wireless subframes with a frame length of 1 millisecond; and one wireless subframe is divided into 8 lengths.
  • Q symbols which may be single carrier symbols or multi-carrier symbols, such as OFDM symbols.
  • a typical Q value can be set to 7n, where n is a positive integer.
  • the NoMP in the present invention is placed in an uplink time slot of a certain subframe, and may be an uplink time slot header or an uplink time slot tail.
  • the NoMP in FIG. 8 is placed at the end of the eighth time slot of the second subframe (the time slot is the uplink time slot).
  • the second embodiment shows another hybrid network of the high frequency micro station and the low frequency macro station shown in FIG. 2 or the plurality of high frequency base stations shown in FIG.
  • the high frequency base station in the hybrid networking scenario of the multiple high frequency base stations may be a high frequency micro station or a high frequency macro station.
  • the NoMP interval for transmitting the uplink reference signal is also distributed, and the NoMP interval is divided into a number of NoMP segments.
  • 10 milliseconds is used as the frame length of a radio frame; the radio frame is composed of 10 subframes with a frame length of 1 millisecond; and one wireless subframe is divided into 8 lengths.
  • Q symbols which may be single carrier symbols or multi-carrier symbols, such as OFDM symbols.
  • a typical Q value can be set to 7n, where n is a positive integer.
  • the NoMP segment in the present invention is placed in an uplink time slot of a certain subframe, and may be an uplink time slot header or an uplink time slot tail.
  • the NoMP segment in FIG. 11B is placed at the end of the eighth time slot of the second subframe (the time slot is the upstream time slot).
  • the third embodiment provides a method for transmitting an uplink synchronization reference signal, where the method is applied to the network deployment scenario shown in FIG. 2, as shown in FIG. include:
  • Step 121 The terminal completes synchronization with the low frequency macro station based on the low frequency link, and acquires the system clock of the network side and the uplink TA of the terminal on the low frequency link.
  • Step 122 The terminal determines the time domain resource sending position of the uplink synchronization reference signal on the high frequency link.
  • the method for determining the location of the time domain resource transmission may use the system clock acquired by the low frequency link and/or the uplink TA value acquired by the terminal on the low frequency link, and the starting point of a time slot of the low frequency link as the uplink reference on the high frequency link.
  • the time domain resource sending position of the signal that is, the starting time domain position of NoMP.
  • Step 123 The terminal according to the frame structure given in the first embodiment or the second embodiment, on the high-frequency link, switches the transmission beam of the terminal according to different time slices, and sends an uplink synchronization reference signal, and at the same time, carries the identity of the terminal.
  • the terminal sequentially switches the transmission beam to send the uplink synchronization reference signal in the first sequence; in the time interval corresponding to the synchronization reference signal of the second NoMP, the terminal is in the second The transmission beam is sequentially switched in sequence to transmit an uplink synchronization reference signal.
  • the second sequence is a cyclic shift of the first order.
  • Step 124 Each high-frequency station on the network side is in the NoMP, and on the high-frequency link, according to different time slices on the high-frequency micro-station side, the receiving beam is switched, and the uplink synchronization reference signal sent by the terminal is received;
  • the length of the time slice on the side of the frequency micro station is smaller than the length of the time slice on the terminal side.
  • Step 125 Each high frequency micro station on the network side completes synchronization with the terminal according to the received uplink synchronization reference signal, and acquires an uplink TA of the terminal to each high frequency micro station.
  • the third embodiment provides a method for transmitting an uplink synchronization reference signal, where the method is applied to the network deployment scenario shown in FIG. 2, as shown in FIG. include:
  • Step 131 The terminal completes synchronization with the low frequency macro station based on the low frequency link, and acquires the system clock and the end of the network side.
  • Step 132 The terminal determines the time domain resource sending position of the uplink synchronization reference signal on the high frequency link.
  • the method for determining the location of the time domain resource transmission may use the system clock acquired by the low frequency link and/or the uplink TA value acquired by the terminal on the low frequency link, and the starting point of a time slot of the low frequency link as the uplink reference on the high frequency link.
  • the time domain resource sending position of the signal that is, the starting time domain position of NoMP.
  • Step 133 The terminal according to the frame structure given in the first embodiment or the second embodiment, on the high-frequency link, switches the transmission beam of the terminal according to different time slices, and sends an uplink synchronization reference signal, and at the same time, carries the identity of the terminal.
  • Step 134 Each high-frequency station on the network side is in the NoMP. On the high-frequency link, the receiving beam is switched according to different time slices on the high-frequency micro-station side, and the uplink synchronization reference signal sent by the terminal is received. The time slice length on the high frequency micro station side is smaller than the time slice length on the terminal side.
  • the high-frequency micro station sequentially switches the reception beam in the first sequence during the single transmission beam duration of the terminal, and receives the uplink synchronization reference signal of the terminal;
  • the high frequency micro station In the time interval corresponding to the synchronization reference signal sequence of the second NoMP, during the duration of the single transmission beam of the terminal, the high frequency micro station sequentially switches the reception beam in the second order to receive the uplink synchronization reference signal of the terminal.
  • the second sequence is a cyclic shift of the first order.
  • Step 135 Each high frequency micro station on the network side completes synchronization with the terminal according to the received uplink synchronization reference signal, and acquires an uplink TA of the terminal to each high frequency micro station.
  • the fifth embodiment provides a method for transmitting an uplink measurement reference signal, where the method is applied to the network deployment scenario shown in FIG. 2, as shown in FIG. include:
  • Step 141 The terminal completes synchronization with the low frequency macro station based on the low frequency link, and acquires the system clock of the network side and the uplink TA of the terminal on the low frequency link.
  • Step 142 The terminal determines a time domain resource sending position of the uplink measurement reference signal on the high frequency link.
  • the method for determining the location of the time domain resource transmission may use the system clock acquired by the low frequency link and/or the uplink TA value acquired by the terminal on the low frequency link, and the starting point of a time slot of the low frequency link as the uplink reference on the high frequency link.
  • the time domain resource sending position of the signal that is, the starting time domain position of NoMP.
  • Step 143 The terminal according to the frame structure of the first embodiment or the second embodiment, on the high-frequency link, switches the transmission beam of the terminal according to different time slices, and sends an uplink measurement reference signal, and at the same time, carries the identity of the terminal.
  • the terminal sequentially switches the transmit beam to transmit the uplink measurement reference signal in the first sequence; and in the time interval corresponding to the measurement reference signal of the second NoMP, the terminal is in the second
  • the transmit beam is sequentially switched in sequence to transmit an uplink measurement reference signal.
  • the second sequence is a cyclic shift of the first order.
  • Step 144 Each high-frequency station on the network side is in the NoMP. On the high-frequency link, according to different time slices on the high-frequency micro-station side, the receiving beam is switched, and the uplink measurement reference signal sent by the terminal is received. The length of the time slice on the side of the frequency micro station is smaller than the length of the time slice on the terminal side.
  • Step 145 Each high frequency micro station on the network side acquires QoS parameters such as link quality of the terminal to each high frequency micro station according to the received uplink measurement reference signal, and determines a service micro station or a service micro station set of the terminal.
  • the main steps of the fifth embodiment are the same as those of the third embodiment.
  • the main difference is that the reference signal carried by the uplink signal of the terminal is replaced by the synchronous reference signal as the measurement reference signal; the two reference signals are not excluded in the final system design. Combine into one, that is, a set of reference signals are used for both synchronization and measurement.
  • the sixth embodiment provides a method for transmitting an uplink measurement reference signal, where the method is applied to the network deployment scenario shown in FIG. 2, as shown in FIG. include:
  • Step 151 The terminal completes synchronization with the low frequency macro station based on the low frequency link, and acquires the system clock of the network side and the uplink TA of the terminal on the low frequency link.
  • Step 152 The terminal determines the time domain resource sending position of the uplink measurement reference signal on the high frequency link.
  • the method for determining the location of the time domain resource transmission may use the system clock acquired by the low frequency link and/or the uplink TA value acquired by the terminal on the low frequency link, and the starting point of a time slot of the low frequency link as the uplink reference on the high frequency link.
  • the time domain resource sending position of the signal that is, the starting time domain position of NoMP.
  • Step 153 The terminal according to the frame structure given in the first embodiment or the second embodiment, on the high-frequency link, switches the transmission beam of the terminal according to different time slices, and sends an uplink measurement reference signal, and at the same time, carries the identity of the terminal.
  • Step 154 Each high-frequency station on the network side is in the NoMP. On the high-frequency link, the receiving beam is switched according to different time slices on the high-frequency micro-station side, and the uplink measurement reference signal sent by the terminal is received. The time slice length on the high frequency micro station side is smaller than the time slice length on the terminal side.
  • the high frequency micro station sequentially switches the reception beam in the first sequence during the single transmission beam duration of the terminal, and receives the uplink measurement reference signal of the terminal;
  • the high frequency micro station In the time interval corresponding to the measurement reference signal sequence of the second NoMP, during the duration of the single transmission beam of the terminal, the high frequency micro station sequentially switches the reception beam in the second order, and receives the uplink measurement reference signal of the terminal.
  • the second sequence is a cyclic shift of the first order.
  • Step 155 Each high frequency micro station on the network side acquires QoS parameters such as link quality of the terminal to each high frequency micro station according to the received uplink measurement reference signal, and determines a service micro station or a service micro station set of the terminal.
  • the main steps of the sixth embodiment are the same as those of the fourth embodiment.
  • the main difference is that the reference signal carried by the uplink signal of the terminal is replaced by the synchronous reference signal as the measurement reference signal; the two reference signals are not excluded in the final system design. Combine into one, that is, a set of reference signals are used for both synchronization and measurement.
  • the embodiment of the present invention provides a method for transmitting an uplink synchronization reference signal.
  • the specific process includes the following steps:
  • Step 161 The terminal acquires a time domain resource sending position of the uplink synchronization reference signal on the high frequency link.
  • the acquiring method of the time domain resource sending position of the uplink synchronization reference signal may be that the neighboring high frequency micro station informs the terminal of the system clock used by the high frequency micro station by using a broadcast form, and the terminal determines, according to the system clock, that it is in the high frequency chain.
  • the time domain resource transmission location of the uplink reference signal on the road that is, the start time domain location of the NoMP.
  • Step 162 According to the frame structure of the first embodiment or the second embodiment, the terminal switches the transmit beam of the terminal according to different time slices on the high frequency link, and sends the uplink synchronization reference signal, and at the same time, carries the identity of the terminal.
  • the terminal sequentially switches the transmission beam to send the uplink synchronization reference signal in the first sequence; in the time interval corresponding to the synchronization reference signal of the second NoMP, the terminal is in the second The transmission beam is sequentially switched in sequence to transmit an uplink synchronization reference signal.
  • the second sequence is a cyclic shift of the first order.
  • Step 163 Each high-frequency station on the network side is in the NoMP. On the high-frequency link, the receiving beam is switched according to different time slices on the high-frequency micro-station side, and the uplink synchronization reference signal sent by the terminal is received.
  • the time slice length on the high frequency micro station side is smaller than the time slice length on the terminal side.
  • Step 164 Each high frequency micro station on the network side completes synchronization with the terminal according to the received uplink synchronization reference signal, and acquires an uplink TA of the terminal to each high frequency micro station.
  • the embodiment of the present invention provides a method for transmitting an uplink measurement reference signal.
  • the specific process includes the following steps:
  • Step 171 The terminal acquires a time domain resource sending position of the uplink measurement reference signal on the high frequency link.
  • the acquiring method of the time domain resource sending position of the uplink measurement reference signal may be that the neighboring high frequency micro station informs the terminal of the system clock used by the high frequency micro station by using a broadcast form, and the terminal determines, according to the system clock, that it is in the high frequency chain.
  • the time domain resource transmission location of the uplink reference signal on the road that is, the start time domain location of the NoMP.
  • Step 172 According to the frame structure of the first embodiment or the second embodiment, the terminal switches the transmit beam of the terminal according to different time slices on the high frequency link, and sends an uplink measurement reference signal, and at the same time, carries the identity of the terminal.
  • the terminal sequentially switches the transmit beam to transmit the uplink measurement reference signal in the first sequence; and in the time interval corresponding to the measurement reference signal of the second NoMP, the terminal is in the second
  • the transmit beam is sequentially switched in sequence to transmit an uplink measurement reference signal.
  • the second sequence is a cyclic shift of the first order.
  • Step 173 Each high-frequency station on the network side is in the NoMP. On the high-frequency link, the receiving beam is switched according to different time slices on the high-frequency micro-station side, and the uplink measurement reference signal sent by the terminal is received.
  • the time slice length on the high frequency micro station side is smaller than the time slice length on the terminal side.
  • Step 174 Each high frequency micro station on the network side acquires QoS parameters such as link quality of the terminal to each high frequency micro station according to the received uplink measurement reference signal, and determines a service micro station or a service micro station set of the terminal.
  • the main steps of the eighth embodiment are the same as those of the seventh embodiment.
  • the main difference is that the reference signal carried by the uplink signal of the terminal is replaced by the synchronous reference signal as the measurement reference signal; the two reference signals are not excluded in the final system design. Combine into one, that is, a set of reference signals are used for both synchronization and measurement.
  • the embodiment of the present invention provides a method for transmitting an uplink synchronization reference signal.
  • the specific process includes the following steps:
  • Step 181 The terminal acquires a time domain resource sending position of the uplink synchronization reference signal on the high frequency link.
  • the acquiring method of the time domain resource sending position of the uplink synchronization reference signal may be that the neighboring high frequency micro station informs the terminal of the system clock used by the high frequency micro station by using a broadcast form, and the terminal determines, according to the system clock, that it is in the high frequency chain.
  • the time domain resource transmission location of the uplink reference signal on the road that is, the start time domain location of the NoMP.
  • Step 182 According to the frame structure of the first embodiment or the second embodiment, the terminal switches the transmit beam of the terminal according to different time slices on the high frequency link, and sends the uplink synchronization reference signal, and at the same time, carries the identity of the terminal.
  • Step 183 Each high-frequency station on the network side is in the NoMP. On the high-frequency link, the receiving beam is switched according to different time slices on the high-frequency micro-station side, and the uplink synchronization reference signal sent by the terminal is received.
  • the high-frequency micro station sequentially switches the reception beam in the first sequence during the single transmission beam duration of the terminal, and receives the uplink synchronization reference signal of the terminal;
  • the high frequency micro station In the time interval corresponding to the synchronization reference signal sequence of the second NoMP, during the duration of the single transmission beam of the terminal, the high frequency micro station sequentially switches the reception beam in the second order to receive the uplink synchronization reference signal of the terminal.
  • the second sequence is a cyclic shift of the first order.
  • the time slice length on the high frequency micro station side is smaller than the time slice length on the terminal side.
  • Step 184 Each high frequency micro station on the network side completes synchronization with the terminal according to the received uplink synchronization reference signal, and acquires an uplink TA of the terminal to each high frequency micro station.
  • the embodiment of the present invention provides a method for transmitting an uplink measurement reference signal.
  • the specific process includes the following steps:
  • Step 191 The terminal acquires a time domain resource sending position of the uplink measurement reference signal on the high frequency link.
  • the acquiring method of the time domain resource sending position of the uplink measurement reference signal may be that the neighboring high frequency micro station informs the terminal of the system clock used by the high frequency micro station by using a broadcast form, and the terminal determines, according to the system clock, that it is in the high frequency chain.
  • the time domain resource transmission location of the uplink reference signal on the road that is, the start time domain location of the NoMP.
  • Step 192 According to the frame structure of the first embodiment or the second embodiment, the terminal switches the transmit beam of the terminal according to different time slices on the high frequency link, and sends an uplink measurement reference signal, and at the same time, carries the identity of the terminal.
  • Step 193 Each high-frequency station on the network side is in the NoMP. On the high-frequency link, the receiving beam is switched according to different time slices on the high-frequency micro-station side, and the uplink measurement reference signal sent by the terminal is received.
  • the time slice length on the high frequency micro station side is smaller than the time slice length on the terminal side.
  • the high frequency micro station sequentially switches the reception beam in the first sequence during the single transmission beam duration of the terminal, and receives the uplink measurement reference signal of the terminal;
  • the high frequency micro station In the time interval corresponding to the measurement reference signal sequence of the second NoMP, during the duration of the single transmission beam of the terminal, the high frequency micro station sequentially switches the reception beam in the second order, and receives the uplink measurement reference signal of the terminal.
  • the second sequence is a cyclic shift of the first order.
  • Step 194 Each high frequency micro station on the network side acquires QoS parameters such as link quality of the terminal to each high frequency micro station according to the received uplink measurement reference signal, and determines a service micro station or a service micro station set of the terminal.
  • the main steps of the tenth embodiment are the same as those in the ninth embodiment.
  • the main difference is that the reference signal carried by the uplink signal of the terminal is replaced by the synchronous reference signal as the measurement reference signal; the two reference signals are not excluded in the final system design. Combine into one, that is, a set of reference signals are used for both synchronization and measurement.
  • FIG. 20 it is a schematic structural diagram of an uplink reference signal transmission apparatus according to an embodiment of the present invention.
  • the device 2000 is applied to a terminal in a scenario where the high-frequency base station is a micro-station, and the low-frequency base station is a terminal in a HetNet scenario of the macro station or a high-frequency base station, and can be used to execute the terminal in the foregoing method embodiment.
  • the apparatus 2000 includes: a determining unit 2001, and a transmitting unit 2002, wherein:
  • a determining unit 2001 configured to determine a time domain resource sending position of the uplink reference signal of the terminal on the high frequency link, where at least one end of the uplink reference signal has a guard interval;
  • the sending unit 2002 is configured to: after the time domain resource sending location is reached, switch the transmitting beam according to the first sequence in different time slots in the M time in the first time interval corresponding to the uplink reference signal, and transmit the uplink.
  • a reference signal in a second time interval corresponding to the uplink reference signal, switching the transmit beam in a second sequence in different time slots in the M time, and transmitting an uplink reference signal, where the uplink reference signal includes M different
  • M is a positive integer greater than 1
  • the second sequence is a cyclic shift of the first sequence.
  • the first time interval corresponding to the uplink reference signal is located in an odd-numbered transmission time interval of the uplink measurement where the uplink reference signal is located; and the second time interval corresponding to the uplink reference signal is located in the uplink reference signal The even-numbered transmission time interval of the upstream measurement.
  • the guard interval is a duration that the terminal does not transmit a signal.
  • the uplink reference signal includes a synchronization reference signal and/or an uplink measurement reference signal.
  • the uplink measurement reference signal includes a sounding reference signal.
  • the length of the guard interval is not less than half of an uplink timing advance of the terminal and any one of the high frequency base stations.
  • the determining unit 2001 determines the time domain of the uplink reference signal of the terminal on the high frequency link.
  • the source sends the location it is specifically used to:
  • the sending unit 2002 is specifically configured to: when transmitting the uplink reference signal:
  • the radio frame including at least one network-oriented measurement slot interval, the network-oriented measurement slot interval including a guard interval and a symbol for uplink reference signal transmission;
  • the device 2000 involved in the foregoing embodiments may be a separate component, or may be integrated into other components.
  • the device 2000 provided by the embodiment of the present invention may be a terminal in an existing communication network, or may be integrated in the terminal. Parts within the terminal.
  • each of the above “units” may be through a specific application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or others that provide the above functions.
  • ASIC application-specific integrated circuit
  • processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or others that provide the above functions.
  • the device is implemented.
  • FIG. 21 it is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device 2100 can be used to perform the execution process of the terminal in the foregoing method embodiment.
  • the terminal device 2100 may be a wireless terminal
  • the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with a wireless connection function, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • a radio access network eg, RAN, Radio Access Network
  • the computers can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • PCS personal communication service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a wireless terminal may also be called a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, an Access Point, and a Remote Terminal.
  • Remote Terminal an access terminal (Access Terminal), a user terminal (User Terminal), a user agent (User Agent), a user device (User Device), or a user equipment (User Equipment); the present invention is not limited thereto.
  • the terminal also includes a terminal with wired access having multiple bearer features.
  • the terminal device 2100 includes a processor 2101, a memory 2102, and a transceiver 2103, where:
  • the processor 2101, the memory 2102, and the transceiver 2103 are connected to each other through a bus 2104.
  • the transceiver 2103 can perform its functions through a receiver and a transmitter, which can be a wired transceiver, a wireless transceiver, or a combination thereof.
  • the wired transceiver can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless transceiver can be, for example, a wireless local area network transceiver, a cellular network transceiver, or a combination thereof.
  • the processor 2101 is configured to invoke a program stored in the memory 2102, and perform: determining a time domain resource sending position of an uplink reference signal of the terminal on the high frequency link, where at least one end of the uplink reference signal has a guard interval; After the time domain resource transmission location is reached, in the first time interval corresponding to the uplink reference signal, the transmission beams are switched in the first order in different time slots in the M time, and the uplink is transmitted through the transceiver 2103.
  • a reference signal in a second time interval corresponding to the uplink reference signal, switching a transmit beam in a second sequence in different time slots in the M times, and transmitting, by using the transceiver 2103, an uplink reference signal, where the uplink
  • the reference signal includes uplink reference signals transmitted on M different time slices, the second sequence being a cyclic shift of the first sequence.
  • the processor 2101 can be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, a transistor logic device, Hardware components or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the disclosure of the present invention.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the memory 2102 can include volatile memory, such as RAM; the memory 2102 can also include non-volatile memory, such as ROM, flash memory, HDD or SSD; the memory 2102 can also include a combination of the types of memory described above.
  • the memory 2102 stores voice indication information corresponding to a network frequency point.
  • the memory 2102 can be used to store messages and data received through the transceiver 2103, as well as store instructions.
  • the processor 2101 invokes the instructions stored in the memory 2102 to perform the method steps of the method embodiment of the present invention to implement the technical solution of the method embodiment of the present invention.
  • the bus 2104 may include any number of interconnected buses and bridges, specifically connected by one or more processors represented by the processor 2101 and various circuits of the memory represented by the memory 2102.
  • the bus 2104 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 21, but it does not mean that there is only one bus or one type of bus.
  • the bus 2104 can also connect various other circuits, such as peripherals, voltage regulators, and power management circuits, as is well known in the art, and therefore, will not be further described herein.
  • the implementation of the terminal device can refer to the implementation of the method, and details are not described herein again.
  • FIG. 22 it is a schematic structural diagram of an apparatus for transmitting an uplink reference signal according to an embodiment of the present invention.
  • the device 2200 is applied to a high-frequency base station in a scenario where the high-frequency base station is a micro-station, and the low-frequency base station is a high-frequency micro-station or a high-frequency base station in a HetNet scenario of the macro station, and can be used to execute the high-performance base station in the foregoing method embodiment.
  • the execution process of the frequency micro station or the high frequency base station, the apparatus 2200 includes: a determining unit 2201 and a receiving unit 2202, wherein:
  • a determining unit 2201 configured to determine N time slices for receiving an uplink reference signal transmitted by the terminal on a single time slice of the terminal, where N is a positive integer greater than one,
  • the receiving unit 2202 is configured to switch, in a first time interval of the N time slices, a receiving beam according to a first sequence in a first time interval corresponding to the uplink reference signal, where the receiving terminal is on a single time slice of the terminal.
  • the transmitted uplink reference signal in a second time interval corresponding to the uplink reference signal, switches the receiving beam in a second sequence in different time slices in the N time slices, and the receiving terminal is on a single time slice of the terminal.
  • the transmitted uplink reference signal has a guard interval at least one end of the uplink reference signal.
  • the first time interval corresponding to the uplink reference signal is located in an odd-numbered transmission time interval of the uplink measurement where the uplink reference signal is located; and the second time interval corresponding to the uplink reference signal is located in the uplink reference signal The even-numbered transmission time interval of the upstream measurement.
  • the device 2200 involved in the above embodiments may be a separate component or integrated into other components.
  • the foregoing apparatus 2200 provided by the embodiment of the present invention may be a base station in an existing communication network, or may be a component integrated in the base station.
  • each of the above “units” may be through a specific application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or others that provide the above functions.
  • ASIC application-specific integrated circuit
  • processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or others that provide the above functions.
  • the device is implemented.
  • FIG. 23 is a schematic structural diagram of a network side device according to an embodiment of the present invention.
  • the device 2300 can be used to perform the execution process of the high frequency micro station or the high frequency base station in the above method embodiment.
  • the device 2300 can include a base station or a radio resource management device for controlling the base station.
  • the device 2300 includes a processor 2301, a memory 2302, and a transceiver 2303, wherein:
  • the processor 2301, the memory 2302, and the transceiver 2303 are connected to each other through a bus 2304.
  • the transceiver 2303 can perform its functions through a receiver and a transmitter, which can be a wired transceiver, a wireless transceiver, or a combination thereof.
  • the wired transceiver can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless transceiver can be, for example, a wireless local area network transceiver, a cellular network transceiver, or a combination thereof.
  • the processor 2301 can be a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof.
  • the memory 2302 can include volatile memory, such as RAM; the memory 2302 can also include non-volatile memory, such as ROM, flash memory, HDD or SSD; the memory 2302 can also include a combination of the types of memory described above.
  • the memory 2302 can be used to store messages received by the transceiver 2303, as well as programs executed by the processor 2301.
  • the processor 2301 is configured to invoke a program stored in the memory 2302, and perform: determining N time slices for receiving an uplink reference signal transmitted by the terminal on a single time slice of the terminal, where N is greater than 1 An integer, in a first time interval corresponding to the uplink reference signal, switching received beams in a first sequence in different time slices in the N time slices, and receiving, by the transceiver 2303, a single terminal of the terminal in the terminal An uplink reference signal transmitted on the time slice, in a second time interval corresponding to the uplink reference signal, switching received beams in a second sequence in different time slices in the N time slices, and receiving the terminal through the transceiver 2303 An uplink reference signal transmitted on a single time slice of the terminal, and at least one end of the uplink reference signal has a guard interval.
  • the bus 2304 may include any number of interconnected buses and bridges, specifically connected by one or more processors represented by the processor 2301 and various circuits of the memory represented by the memory 2302.
  • the bus 2304 can be a PCI bus or an EISA bus or the like.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 23, but it does not mean that there is only one bus or one type of bus.
  • the bus 2304 can also couple various other circuits, such as peripherals, voltage regulators, and power management circuits, as is well known in the art, and therefore, will not be further described herein.
  • the terminal determines that the terminal is on a high-frequency link. a time domain resource transmission location of the uplink reference signal, where at least one end of the uplink reference signal has a guard interval; after reaching the time domain resource transmission location, in the first time interval corresponding to the uplink reference signal, in the M.
  • the different time slices in the time switch the transmit beam in the first order, and transmit the uplink reference signal, and in the second time interval corresponding to the uplink reference signal, the different time slices in the M time are switched and sent in the second order.
  • the beam And transmitting, by the beam, an uplink reference signal, where the uplink reference signal includes uplink reference signals transmitted on M different time slices, and the second sequence is the first sequence
  • the ring shifting enables accurate transmission of the uplink reference signal in the HetNet hybrid networking scenario, and overcomes the problem of missing beam detection caused by the inability to completely receive the uplink reference signal transmitted by a certain transmit beam.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种上行参考信号的传输方法和装置,以解决混合组网场景下,无法正确传输上行参考信号,影响数据传输的问题。该方法为,终端确定上行参考信号的时域资源发送位置,上行参考信号的至少一端存在保护间隔;终端在到达时域资源发送位置后,在上行参考信号对应的第一时间区间内,在M个时间内的不同时间片按照第一顺序切换发送波束,传输上行参考信号,在上行参考信号对应的第二时间区间内,在M个时间内的不同时间片按照第二顺序切换发送波束,传输上行参考信号,所述上行参考信号包括M个不同时间片上传输的上行参考信号,这样能够实现上行参考信号的准确传输。

Description

一种上行参考信号的传输方法和装置
本申请要求在2016年7月22日提交中国专利局、申请号为201610585106.1、发明名称为“一种上行参考信号的传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线技术领域,尤其涉及一种上行参考信号的传输方法和装置。
背景技术
高低频基站混合组网,也称高低频基站异构(Heterogeneous Network,HetNet)组网,低频基站覆盖一个范围较大的区域,高频基站在低频基站的覆盖范围内进行热点覆盖,以提升热点地区的容量。由于这种组网模式可以借助低频基站的广覆盖能力,减少高频定向链路传输控制信令的系统开销,因此是未来5G重点部署场景。
现有的LTE系统中,Softcell组网是一种典型的HetNet组网方案。Softcell组网,即微站(micro/pico BS)重用宏站(macro BS)的小区ID,即微站对终端是透明的。终端在接入网络时,只知道整个HetNet小区的ID或者宏站ID,而无需知道哪个微站在为其服务。在这种组网方案下,为了实现终端与微站之间的同步,现有技术方案如下:
1)终端通过检测小区的主/辅同步信号(Primary/Secondary Synchronization Signal,PSS/SSS),完成与宏站的下行同步过程,获取网络侧的同步时钟。
2)终端完成上行物理随机接入过程,获取终端到宏站的上行定时提前量(Timing Advance,TA)。
3)终端与各微站之间的下行同步和上行定时提前量,直接重用终端与宏站的结果。因为LTE系统中,符号的最小循环前缀(Cyclic Prefix,CP)长度有4.69us;假设宏站半径500m,微站半径100m,宏微之间的时延差最大不超过1.33us,不同终端达到微站的时延差最大不超过0.33us,时延差造成的影响是可以通过CP消除的。
在这种组网方案下,为了实现网络侧对终端服务微站(Transaimission Point,TP)或者微站集的选取,现有技术方案如下:
1)宏站或者HetNet网络的网络控制器向目标终端分配上行测量参考信号以及承载信号的发送资源。
2)终端使用该指定资源发送指定的上行测量参考信号。
3)网络侧,例如HetNet内终端邻近的微站,基于该上行测量参考信号进行测量,例如测量参考信号的接收功率(Reference Signal Received Power,RSRP),从而确定该终端所属的服务微站/微站集;
但是,上述方案不适用于微站为高频基站的场景,因为高频符号的长度在微秒量级,如1.25us,而CP长度一般为符号长度的1/5,即0.25us。根据之前时延差的估计,这个CP长度不足以消除宏微时延差和不同终端TA时间差的影响。
图1描绘了两种时延差将会带来的影响:
Q1:虽然终端与低频宏站(图1中eNB)完成了时间同步和上行定时提前过程,即图1中网络侧时钟和UE发送到eNB的信号在时间上对齐,但是以该结果重用到微站上时,不 同终端(图中UE1和UE2)的上行传输信号到达某一微站(图中TP1)存在随机的时延差,该时延差的出现将会破坏上行测量参考信号时域的正交性,同时还对导致参考测量信号对数据部分造成干扰。
Q2:另一方面,即使对单个终端(图中UE1)而言,与宏站时间对齐的结果,复用到微站(图中TP1)上,也会因为路径传播距离不同,导致低频宏站和高频微站之间出现时延差,这个时延差将会导致波束检测缺失问题,从而无法完整接收某个波束发送的参考信号。
因此,在微站为高频基站,宏站为低频基站的HetNet混合组网场景下,针对现有技术中终端与宏站的同步和TA不能重用到终端与高频微站之间而导致无法正确传输上行参考信号的问题,如何设计一种上行参考信号传输方案,以保证上行参考信号的传输准确率是亟需解决的问题。
发明内容
本发明实施例提供一种上行参考信号的传输方法和装置,以实现上行参考信号的完整传输,提高数据传输准确率。
本发明实施例提供的具体技术方案如下:
第一方面,本提供一种上行参考信号的传输方法,包括:
终端确定所述终端在高频链路上的上行参考信号的时域资源发送位置,所述上行参考信号的至少一端存在保护间隔;
所述终端在到达所述时域资源发送位置后,在所述上行参考信号对应的第一时间区间内,在M个时间内的不同时间片按照第一顺序切换发送波束,传输上行参考信号,在所述上行参考信号对应的第二时间区间内,在所述M个时间内的不同时间片按照第二顺序切换发送波束,传输上行参考信号,所述上行参考信号包括M个不同时间片上传输的上行参考信号,M为大于1的正整数,所述第二顺序为所述第一顺序的循环移位。其中,M个时间片上组成的参考信号可以在时间上连续传输,也可以分成多个区间,进行分布式传输。
这样,在终端侧发送上行参考信号时,通过发送波束的循环移位来克服波束检测缺失问题,不仅能够实现上行参考信号的完整传输,还能提高信号传输准确率,降低系统开销。
结合第一方面,可选的,一种可能的设计中,所述上行参考信号对应的第一时间区间位于所述上行参考信号所处的上行测量的奇数次传输时间间隔;所述上行参考信号对应的第二时间区间位于所述上行参考信号所处的上行测量的偶数次传输时间间隔。
结合第一方面,可选的,一种可能的设计中,所述保护间隔为所述终端不传输信号的时长。由于各终端是异步传输,保护间隔的存在能够防止终端传输的上行参考信号与其他终端传输的信号出现干扰。
结合第一方面,可选的,一种可能的设计中,所述上行参考信号包括同步参考信号和/或上行测量参考信号,所述上行测量参考信号包括探测参考信号。其中,同步参考信号用于实现终端与高频基站之间的上行同步;测量参考信号用于测量终端与高频基站站之间的信道状态信息。
结合第一方面,可选的,一种可能的设计中,所述保护间隔的长度不小于所述终端与任意一个高频基站的上行定时提前量的一半。
结合第一方面,可选的,一种可能的设计中,终端确定所述终端在高频链路上的上行 参考信号的时域资源发送位置,包括:
所述终端基于低频链路获取低频基站的系统时钟,将系统时钟指示的低频链路的一个时隙的起点位置确定为所述终端在高频链路上的上行参考信号的时域资源发送位置;或
所述终端基于低频链路获取低频基站的系统时钟和所述终端在低频链路上的上行定时提前量,将系统时钟指示的低频链路的一个时隙的起点经过所述上行定时提前量的位置确定为所述终端在高频链路上的上行参考信号的时域资源发送位置;或
所述终端接收网络侧发送的所述时域资源发送位置的指示信息。
结合第一方面,可选的,一种可能的设计中,所述终端传输所述上行参考信号,包括:
生成无线帧,所述无线帧包括至少一个面向网络的测量时隙间隔,所述面向网络的测量时隙间隔包括保护间隔和用于上行参考信号传输的符号;
发送所述无线帧传输所述上行参考信号。
这种无线帧结构中,保护间隔可以放置于用于上行参考信号传输的符号的任意一端或者两端。
第二方面,提供一种上行参考信号的传输方法,包括:
高频基站确定用于接收终端在所述终端的单个时间片上传输的上行参考信号的N个时间片,N为大于1的正整数,
所述高频基站在所述上行参考信号对应的第一时间区间内,在所述N个时间片内的不同时间片按照第一顺序切换接收波束,接收终端在所述终端的单个时间片上传输的上行参考信号,在所述上行参考信号对应的第二时间区间内,在所述N个时间片内的不同时间片按照第二顺序切换接收波束,接收终端在所述终端的单个时间片上传输的上行参考信号,所述上行参考信号的至少一端存在保护间隔。
这样,在基站侧接收上行参考信号时,通过接收波束的循环移位来克服波束检测缺失问题,不经能够实现上行参考信号的完整传输,还能提高信号传输准确率,降低系统开销。
结合第二方面,可选的,一种可能的设计中,所述上行参考信号对应的第一时间区间位于所述上行参考信号所处的上行测量的奇数次传输时间间隔;所述上行参考信号对应的第二时间区间位于所述上行参考信号所处的上行测量的偶数次传输时间间隔。
第三方面,提供一种上行参考信号的传输装置,包括:
确定单元,用于确定终端在高频链路上的上行参考信号的时域资源发送位置,所述上行参考信号的至少一端存在保护间隔;
发送单元,用于在到达所述时域资源发送位置后,在所述上行参考信号对应的第一时间区间内,在M个时间内的不同时间片按照第一顺序切换发送波束,传输上行参考信号,在所述上行参考信号对应的第二时间区间内,在所述M个时间内的不同时间片按照第二顺序切换发送波束,传输上行参考信号,所述上行参考信号包括M个不同时间片上传输的上行参考信号,M为大于1的正整数,所述第二顺序为所述第一顺序的循环移位。
结合第三方面,可选的,一种可能的设计中,所述上行参考信号对应的第一时间区间位于所述上行参考信号所处的上行测量的奇数次传输时间间隔;所述上行参考信号对应的第二时间区间位于所述上行参考信号所处的上行测量的偶数次传输时间间隔。
结合第三方面,可选的,一种可能的设计中,所述保护间隔为所述终端不传输信号的时长。
结合第三方面,可选的,一种可能的设计中,所述上行参考信号包括同步参考信号和/或上行测量参考信号,所述上行测量参考信号包括探测参考信号。
结合第三方面,可选的,一种可能的设计中,所述保护间隔的长度不小于所述终端与任意一个高频基站的上行定时提前量的一半。
结合第三方面,可选的,一种可能的设计中,所述确定单元在确定所述终端在高频链路上的上行参考信号的时域资源发送位置时,具体用于:
基于低频链路获取低频基站的系统时钟,将系统时钟指示的低频链路的一个时隙的起点位置确定为所述终端在高频链路上的上行参考信号的时域资源发送位置;或
基于低频链路获取低频基站的系统时钟和所述终端在低频链路上的上行定时提前量,将系统时钟指示的低频链路的一个时隙的起点经过所述上行定时提前量的位置确定为所述终端在高频链路上的上行参考信号的时域资源发送位置;或
接收网络侧发送的所述时域资源发送位置的指示信息。
结合第三方面,可选的,一种可能的设计中,所述发送单元在传输所述上行参考信号时,具体用于:
生成无线帧,所述无线帧包括至少一个面向网络的测量时隙间隔,所述面向网络的测量时隙间隔包括保护间隔和用于上行参考信号传输的符号;
发送所述无线帧传输所述上行参考信号。
第四方面,提供一种上行参考信号的传输装置,包括:
确定单元,用于确定用于接收终端在所述终端的单个时间片上传输的上行参考信号的N个时间片,N为大于1的正整数,
接收单元,用于在所述上行参考信号对应的第一时间区间内,在所述N个时间片内的不同时间片按照第一顺序切换接收波束,接收终端在所述终端的单个时间片上传输的上行参考信号,在所述上行参考信号对应的第二时间区间内,在所述N个时间片内的不同时间片按照第二顺序切换接收波束,接收终端在所述终端的单个时间片上传输的上行参考信号,所述上行参考信号的至少一端存在保护间隔。
结合第四方面,可选的,一种可能的设计中,所述上行参考信号对应的第一时间区间位于所述上行参考信号所处的上行测量的奇数次传输时间间隔;所述上行参考信号对应的第二时间区间位于所述上行参考信号所处的上行测量的偶数次传输时间间隔。
第五方面,提供一种终端设备,该终端设备具有实现上述各方面和可能的设计中的任一种中终端行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,终端设备的结构包括收发器、存储器和处理器,其中,所述存储器用于存储一组程序,所述处理器用于调用所述存储器存储的程序以执行如上述各方面和设计中的任一种所述的方法。
第六方面,提供一种基站,该基站具有实现上述各方面和可能的设计中的任一种中高频基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,基站的结构包括收发器、存储器和处理器,其中,所述存储器用于存储一组程序,所述处理器用于调用所述存储器存储的程序以执行如上述各方面和设计中的任一种所述的方法。
采用本发明提供的上行参考信号的传输方案,通过对终端侧发送波束的循环移位或者基站侧接收波束的循环移位,从而克服上行参考信号传输过程中的波束检测缺失问题,实现上行参考信号的完整传输,提高传输效率和准确率,并降低系统开销。
附图说明
图1为HetNet场景下宏微时延差造成的影响示意图;
图2为本发明的一种应用场景示意图;
图3为本发明实施例中的上行参考信号的传输方法流程图;
图4为本发明实施例中保护间隔放置位置示意图;
图5为本发明实施例中上行参考信号在终端与高频微站之间的传输示意图;
图6A、图6B和图6C为本发明实施例中终端的上行参考信号正交化处理示意图;
图7为本发明实施例中的上行参考信号的传输方法流程图;
图8为本发明实施例中上行参考信号在终端与高频微站之间的传输示意图;
图9为本发明的另一种应用场景示意图;
图10为本发明实施例一中的通信系统中的帧结构示意图;
图11A为本发明实施例二中上行参考信号在时域资源上的放置示意图;
图11B为本发明实施例二中的通信系统中的帧结构示意图;
图12为本发明实施例三中上行同步参考信号的传输方法流程示意图;
图13为本发明实施例四中上行同步参考信号的传输方法流程示意图;
图14为本发明实施例五中上行测量参考信号的传输方法流程示意图;
图15为本发明实施例六中上行测量参考信号的传输方法流程示意图;
图16为本发明实施例七中上行同步参考信号的传输方法流程示意图;
图17为本发明实施例八中上行同步参考信号的传输方法流程示意图;
图18为本发明实施例九中上行测量参考信号的传输方法流程示意图;
图19为本发明实施例十中上行测量参考信号的传输方法流程示意图;
图20为本发明实施例中的上行参考信号的传输装置结构图;
图21为本发明实施例中的终端设备结构图;
图22为本发明实施例中的上行参考信号的传输装置结构图;
图23为本发明实施例中的网络侧设备结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,并不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图2所示,为本发明实施例中的一种应用场景示意图,具体包括:终端、低频宏站和至少一个高频微站,可选的,在此场景下,也可能存在低频微站。其中,高频微站依赖低频宏站实现部分传输功能;终端既配备低频收发机又配备高频收发机,低频收发机通过低频链路与低频宏站进行数据通信,高频收发机通过高频链路与高频微站进行数据通信。
基于图2所示的应用场景示意图,本发明实施例提供一种上行参考信号的传输方法,如图3所示,具体流程包括如下步骤:
步骤31:终端确定所述终端在高频链路上的上行参考信号的时域资源发送位置,所述上行参考信号的至少一端存在保护间隔。
其中,高频链路指的是终端与高频基站的通信链路,高频链路用于高频频段的传输,一般情况下大于6GHz的频段称为高频频段,当然高频频段的设置也可以根据终端的具体 组网环境来具体设置。
具体的,终端确定所述终端在高频链路上的上行参考信号的时域资源发送位置时,所述终端在高频链路上的上行参考信号的时域资源发送位置的确定方式可以包括以下三种方式:
第一种方式为:所述终端基于低频链路获取低频基站的系统时钟,将系统时钟指示的低频链路的一个时隙的起点位置确定为所述终端在高频链路上的上行参考信号的时域资源发送位置。
第二种方式为:所述终端基于低频链路获取低频基站的系统时钟和所述终端在低频链路上的上行定时提前量,将系统时钟指示的低频链路的一个时隙的起点经过所述上行定时提前量的位置确定为所述终端在高频链路上的上行参考信号的时域资源发送位置。
第三种方式为:所述终端接收网络侧发送的所述时域资源发送位置的指示信息。
其中,所述上行参考信号是周期的、集中的在面向网络的测量时隙(NoMP)间隔中传输,可选的,NOMP放置在一个无线帧中,具体的,一个无线帧中可以包括1个或多个NOMP,或者每隔多个无线帧存在一个包括NOMP的无线帧。所述NoMP由上行参考信号和保护间隔组成,具体的放置位置存在三种情况,如图4所示,保护间隔可以放置在参考信号的任意一端,或者放置在参考信号的两端,而且,终端在保护间隔的时间段内不传输任何信号。
需要说明的是,保护间隔的长度根据HetNet网络中宏站和微站的具体部署场景确定,其中,保护间隔的长度不小于终端与任意一个高频微站的上行TA的1/2,即L≥max|TAi/2|,其中L为保护间隔的长度,TAi为终端与任意一个高频微站的上行TA。其中,终端与任意一个高频微站的上行TA,利用终端与低频宏站之间的上行TA、高频微站的位置信息、低频宏站的位置信息进行估计得到的;保护间隔和保护间隔的长度也可以不明确给出,通过NOMP间隔长度和参考信号的长度,能够隐式确定参考信号的至少一端存在保护间隔,从而确定出保护间隔的长度。
所述上行参考信号包括同步参考信号和/或上行测量参考信号。所述同步参考信号用于实现终端与高频基站之间的上行同步;所述测量参考信号用于测量终端与高频基站之间的信道状态信息,例如接收端检测信号强度等。所述上行测量参考信号包括探测参考信号(Sounding Reference Signal,SRS),由终端发送,高频基站通过对该SRS的测量可以实现对上行信道的评估,并据此评估对上行资源进行分配。可见,SRS对于上行信道估计以实现上行资源动态分配来说非常重要。此外,SRS还可以用于终端的上行定时,互易性辅助的下行波束成形等操作,且对这些操作来说也非常重要。
步骤32:所述终端在到达所述时域资源发送位置后,在所述上行参考信号对应的第一时间区间内,在M个时间内的不同时间片按照第一顺序切换发送波束,传输上行参考信号,在所述上行参考信号对应的第二时间区间内,在所述M个时间内的不同时间片按照第二顺序切换发送波束,传输上行参考信号,所述上行参考信号包括M个不同时间片上传输的上行参考信号,M为大于1的正整数,所述第二顺序为所述第一顺序的循环移位。
其中,传输上行参考信号对应的时间长度被分为M个时间片,每个时间片的长度相同,可以为1个符号,也可以为多个(≥2)符号,其中上行参考信号对应的时间片个数可以预先规定,也可以基于终端的发送波束的数量来具体确定。
图5所示为上行参考信号在终端与高频微站之间的传输示意图。在终端侧,终端在各时间片上使用不同的发送波束进行上行参考信号的发送,例如,时间片B0上通过发送波束#0发送参考信号,在时间片B1上通过发送波束#1发送参考信号。具体的,终端在进行 上行参考信号的发送时,可以采用以下两种方式:
第一种方式为集中式发送方式,此时,终端的上行参考信号对应的时间片的数量M不少于终端在某定向区域传输上行参考信号所需的最小发送波束数目。例如终端需覆盖0~60°区域,波束宽度为10°,则最小所需发送波束数目为6,M的值需大于等于6。
第二种方式为分布式发送方式,此时,的上行参考信号对应的时间片的数量M小于终端在某定向区域传输上行参考信号所需的最小发送波束数目,但是可以通过多个参考信号凑足终端在某定向区域传输上行参考信号所需的最小发送波束数目。
此外,终端在每个时间片上选择不同的发送波束进行上行参考信号发送时,需要携带同步信号或者测量参考信号中的至少一种上行参考信号,可选的,还需要携带终端自身的身份标识。
其中,所述上行参考信号对应的第一时间区间位于所述上行参考信号所处的上行测量的奇数次传输时间间隔(Transmission Time Interval,TTI);所述上行参考信号对应的第二时间区间位于所述上行参考信号所处的上行测量的偶数次传输时间间隔。
图5中的第一NoMP是上行参考信号对应的第一时间区间,第二NoMP是上行参考信号对应的第二时间区间,终端在第一NoMP的参考信号对应的M个时间片上,按照第一顺序切换终端的发送波束,如图5所示,终端依次按照发送波束的逻辑序号#0~#(Mb-1),进行上行参考信号的发送;终端在第二NoMP的参考信号对应的M个时间片上,按照循环移位后的第二顺序切换终端的发送波束,如图5所示,参考信号的前K个循环波束,移位到#Mb-1之后进行切换,即各UE在第二NoMP内发送波束的逻辑序号为#K,#(K+1),…,#(Mb-1),#0,…,#(K-1)。
需要说明的是,上述循环移位的K个波束所占的总时间片长度需大于最大高低频时延。具体的,上述循环移位的波束个数K,可以通过标准预先设定1个或者多个(≥2)值,高频基站根据其覆盖范围等指标优选其一。
换言之,在第一NoMP的参考信号对应的时间区间内,终端以第一顺序依次切换发送波束发送上行参考信号,在第二NoMP的参考信号序列对应的时间区间内,终端以第二顺序依次切换发送波束发送上行参考信号。所述第二顺序是第一顺序的循环移位。
具体的,当一个无线帧内有且仅有一个NoMP时,上述第一NoMP和第二NoMP分别指帧号为偶数的无线帧内的NoMP和帧号为奇数的无线帧内的NoMP;或者上述第一NoMP和第二NoMP分别指帧号为奇数的无线帧内的NoMP和帧号为偶数的无线帧内的NoMP。
具体的,当一个无线帧内有且仅有两个NoMP时,上述第一NoMP和第二NoMP分别为一个无线帧内的第一个NoMP和第二个NoMP;或者上述第一NoMP和第二NoMP分别为一个无线帧内的第二个NoMP和第一个NoMP。
具体的,当一个无线帧内有大于两个NoMP时,以偶数个无线帧为周期,对周期内的NoMP按照时序关系从0开始进行NoMP编号,上述第一NoMP和第二NoMP分别为编号为偶数的NoMP和编号为奇数的NoMP;或者上述第一NoMP和第二NoMP分别为编号为奇数的NoMP和编号为偶数的NoMP。
具体的,每隔多个无线帧出现一个NoMP时,以偶数个NoMP对应的无线帧为周期,对周期内的NoMP按照时序关系从0开始进行NoMP编号,上述第一NoMP和第二NoMP分别为编号为偶数的NoMP和编号为奇数的NoMP;或者上述第一NoMP和第二NoMP分别为编号为奇数的NoMP和编号为偶数的NoMP。
步骤33:高频基站在所述上行参考信号对应的第一时间区间和第二时间区间内,在N 个时间片内的不同时间片切换接收波束,接收终端在所述终端的单个时间片上传输的上行参考信号,N为大于1的正整数。
如图5所示,高频微站侧,在终端的单个时间片持续时间内,高频微站又将其分为N个更小的时间片(tiny slides),在这些更小的时间片上使用不同的定向接收波束,对终端发送的上行参考信号进行接收。
上述描述中更小的时间片的长度可以是1个符号,也可以为多个(≥2)符号。
需要注意的是,若高频基站的全部接收波束的数量为N,则在终端的单个时间片持续时间内,在这N个时间片上以循环的方式使用接收波束对终端发送的上行参考信号进行接收。
基于图2所示的应用场景示意图,本发明实施例提供一种上行参考信号的传输方法,如图7所示,具体流程包括如下步骤:
步骤71上述图3中的步骤31,因此可以参考上述方法实施例中的相关说明,在此不再赘述。
步骤72:所述终端在到达所述时域资源发送位置后,在所述上行参考信号对应的第一时间区间和第二时间区间内,在M个时间内的不同时间片切换发送波束,传输上行参考信号,所述上行参考信号包括M个不同时间片上传输的上行参考信号,M为大于1的正整数。
其中,所述上行参考信号对应的第一时间区间位于所述上行参考信号所处的上行测量的奇数次传输时间间隔(Transmission Time Interval,TTI);所述上行参考信号对应的第二时间区间位于所述上行参考信号所处的上行测量的偶数次传输时间间隔。
图8所示为上行参考信号在终端与高频微站之间的传输示意图。在终端侧,终端在各时间片上使用不同的发送波束进行上行参考信号的发送,例如,时间片B0上通过发送波束#0发送参考信号,在时间片B1上通过发送波束#1发送参考信号。具体的,终端在进行上行参考信号的发送时,可以采用以下两种方式:
第一种方式为集中式发送方式,此时,终端的上行参考信号对应的时间片的数量M不少于终端在某定向区域传输上行参考信号所需的最小发送波束数目。例如终端需覆盖0~60°区域,波束宽度为10°,则最小所需发送波束数目为6,M的值需大于等于6。
第二种方式为分布式发送方式,此时,的上行参考信号对应的时间片的数量M小于终端在某定向区域传输上行参考信号所需的最小发送波束数目,但是可以通过多个参考信号凑足终端在某定向区域传输上行参考信号所需的最小发送波束数目。
此外,终端在每个时间片上选择不同的发送波束进行上行参考信号发送时,需要携带同步信号或者测量参考信号中的至少一种上行参考信号,可选的,还需要携带终端自身的身份标识。
在所述上行参考信号对应的第一时间区间和第二时间区间可参阅上述相关描述。
图8中的第一NoMP是上行参考信号对应的第一时间区间,第二NoMP是上行参考信号对应的第二时间区间,终端在第一NoMP和第二NoMP的参考信号对应的M个时间片上,遍历自己的发送波束,进行上行参考信号的发送。
步骤73:高频基站在所述上行参考信号对应的第一时间区间内,在N个时间片内的不同时间片按照第一顺序切换接收波束,接收终端在所述终端的单个时间片上传输的上行参考信号,在所述上行参考信号对应的第二时间区间内,在所述N个时间片内的不同时间片按照第二顺序切换接收波束,接收终端在所述终端的单个时间片上传输的上行参考信号。
如图8所示,高频微站侧,在终端的单个时间片持续时间内,高频微站又将其分为N 个更小的时间片(tiny slides),在这些更小的时间片上使用不同的定向接收波束,对终端发送的上行参考信号进行接收。
上述描述中更小的时间片的长度可以是1个符号,也可以为多个(≥2)符号。
在第一NoMP中,在终端单次发送波束持续时间内,高频基站按照第一顺序切换自己的接收波束,例如图8中,高频基站依次按照接收波束的逻辑序号为#0~#(Nb-1),对终端发送的上行参考信号进行接收;在第二NoMP中,在终端单次发送波束持续时间内,高频基站改变自己的接收波束切换顺序,按照循环移位后的接收波束逻辑顺序切换自己的接收波束,如图8所示,参考信号的前K个循环波束,移位到#(Nb-1)之后进行切换,即基站侧在第二NoMP内接收波束的逻辑序号为#K,#(K+1),…,#(Nb-1),#0,…,#(K-1)。
换言之,在第一NoMP的参考信号对应的时间区间内,各高频基站以第一顺序依次切换接收波束接收参考信号,在第二NoMP的参考信号对应的时间区间内,各高频基站以第二顺序依次切换接收波束接收参考信号。所述第二顺序是第一顺序的循环移位。
需要说明的是,上述循环移位的K个波束所占的总时间片长度需大于最大高低频时延。具体的,上述循环移位的波束个数K,可以通过标准预先设定1个或者多个(≥2)值,高频基站根据其覆盖范围等指标优选其一。
上述NoMP间隔中的上行参考信号在终端侧被分为若干时间片,每个时间片由若干符号构成,用于同步或测量的参考信号就是由这些符号承载的,不同终端的上行参考信的资源分配方法可以采用如下正交设计方式。
方式一,码分正交。如图6A所示,不同终端的上行参考信号使用不同的、具有良好互相关特性的正交序列进行编码,以确保接收端可以从时频混合信号中分离出目标参考信号。
方式二,频分正交。如图6B所示,对于多载波系统,可以让不同终端的上行参考信号承载在符号的不同子载波上,通过频域正交的方式避免时域未对齐造成的干扰。
方式三,波分正交。如图6C所示,由于高频微站采用定向波束,可以让不同终端在同一时刻使用不同定向波束指向的波束发送各自的参考信号,这种方法也称为波束的空间复用。
方式四,上述三种方式的任意两种组合或三种组合。当终端数目较多时,可以将上述三种方式任意两种或三种进行混合,例如将终端分成几组,组间采用一种正交复用方式,组内终端再采取另一种正交复用方式。
需要说明的是,上述图3和图7中所示的上行参考信号的传输方法同样适用于图9所示的多个高频基站混合组网的应用场景中,具体包括:终端和多个高频微站,其中,多个高频基站混合组网场景下的高频基站可以是高频宏站,也可以是高频宏站。
实施例一
如图10所示,实施例一给出了一种应用于图2所示的高频微站与低频宏站混合组网或图9所示的多个高频基站混合组网的通信系统中的帧结构。其中,多个高频基站混合组网场景下的高频基站可以是高频宏站,也可以是高频微站。
图10中,采用10毫秒作为一个无线帧(frame)的帧长;该无线帧由10个帧长为1毫秒的无线子帧(subframe)组成;一个无线子帧又被划分成8个长度为0.125毫秒的时隙(time slot);其中,每个时隙由Q个符号构成,该符号可以是单载波符号,也可以是多载波符号,如OFDM符号。典型的Q值可以设置为7n,其中,n为正整数。这些时隙又被分为上行时隙和下行时隙。
其中,本发明中的NoMP被放置在某个子帧的某个上行时隙中,既可以是上行时隙头部,也可以是上行时隙尾部。例如,图8中NoMP被放置在第2个子帧的第8个时隙(该时隙为上行时隙)的尾部。
实施例二
如图11A和图11B所示,实施例二给出了另一种应用于图2所示的高频微站与低频宏站混合组网或图9所示的多个高频基站混合组网的通信系统中的帧结构。其中,多个高频基站混合组网场景下的高频基站可以是高频微站,也可以是高频宏站。
如图11A所示,与实施例一不同的是,由于上行参考信号在时域资源上不连续,因此传输上行参考信号的NoMP区间也是分布式的,NoMP间隔被分成若干NoMP片段。
图11B中,采用10毫秒作为一个无线帧(frame)的帧长;该无线帧由10个帧长为1毫秒的无线子帧(subframe)组成;一个无线子帧又被划分成8个长度为0.125毫秒的时隙(time slot);其中,每个时隙由Q个符号构成,该符号可以是单载波符号,也可以是多载波符号,如OFDM符号。典型的Q值可以设置为7n,其中,n为正整数。这些时隙又被分为上行时隙和下行时隙。
其中,本发明中的NoMP片段被放置在某个子帧的某个上行时隙中,既可以是上行时隙头部,也可以是上行时隙尾部。例如,图11B中NoMP片段被放置在第2个子帧的第8个时隙(该时隙为上行时隙)的尾部。
实施例三
基于实施例一、实施例二给出的帧结构,实施例三提供一种上行同步参考信号的传输方法,所述方法应用于图2所示的网络部署场景,如图12所示,具体步骤包括:
步骤121:终端基于低频链路,完成与低频宏站的同步,获取网络侧的系统时钟和终端在低频链路上的上行TA。
步骤122:终端确定自身在高频链路上的上行同步参考信号的时域资源发送位置。
其中确定时域资源发送位置的方法可以用低频链路获取的系统时钟和/或终端在低频链路上获取的上行TA值,以低频链路某个时隙的起点作为高频链路上的上行参考信号的时域资源发送位置,即NoMP的起点时域位置。
步骤123:终端按实施例一或实施例二给出的帧结构,在高频链路上,依不同时间片切换终端的发送波束,发送上行同步参考信号,同时可以携带终端的身份标识。
具体的,在第一NoMP的同步参考信号对应的时间区间内,终端依第一顺序依次切换发送波束发送上行同步参考信号;在第二NoMP的同步参考信号对应的时间区间内,终端依第二顺序依次切换发送波束发送上行同步参考信号。所述第二顺序是第一顺序的循环移位。
步骤124:网络侧的各高频微站在NoMP内,在高频链路上,依高频微站侧的不同时间片,切换自身的接收波束,终端发送的上行同步参考信号进行接收;其中,高频微站侧的时间片长度小于终端侧的时间片长度。
步骤125:网络侧的各高频微站根据接收到的上行同步参考信号,完成与终端的同步,获取终端到各高频微站的上行TA。
实施例四
基于实施例一、实施例二给出的帧结构,实施例三提供一种上行同步参考信号的传输方法,所述方法应用于图2所示的网络部署场景,如图13所示,具体步骤包括:
步骤131:终端基于低频链路,完成与低频宏站的同步,获取网络侧的系统时钟和终 端在低频链路上的上行TA。
步骤132:终端确定自身在高频链路上的上行同步参考信号的时域资源发送位置。
其中确定时域资源发送位置的方法可以用低频链路获取的系统时钟和/或终端在低频链路上获取的上行TA值,以低频链路某个时隙的起点作为高频链路上的上行参考信号的时域资源发送位置,即NoMP的起点时域位置。
步骤133:终端按实施例一或实施例二给出的帧结构,在高频链路上,依不同时间片切换终端的发送波束,发送上行同步参考信号,同时可以携带终端的身份标识。
步骤134:网络侧的各高频微站在NoMP内,在高频链路上,依高频微站侧的不同时间片,切换自身的接收波束,对终端发送的上行同步参考信号进行接收。其中,高频微站侧的时间片长度小于终端侧的时间片长度。
具体地,在第一NoMP的同步参考信号对应的时间区间中,在终端单次发送波束持续时间内,高频微站依第一顺序依次切换接收波束,对终端的上行同步参考信号进行接收;在第二NoMP的同步参考信号序列对应的时间区间中,在终端单次发送波束持续时间内,高频微站依第二顺序依次切换接收波束,对终端的上行同步参考信号进行接收。所述第二顺序是第一顺序的循环移位。
步骤135:网络侧的各高频微站根据接收到的上行同步参考信号,完成与终端的同步,获取终端到各高频微站的上行TA。
实施例五
基于实施例一、实施例二给出的帧结构,实施例五提供一种上行测量参考信号的传输方法,所述方法应用于图2所示的网络部署场景,如图14所示,具体步骤包括:
步骤141:终端基于低频链路,完成与低频宏站的同步,获取网络侧的系统时钟和终端在低频链路上的上行TA。
步骤142:终端确定自身在高频链路上的上行测量参考信号的时域资源发送位置。
其中确定时域资源发送位置的方法可以用低频链路获取的系统时钟和/或终端在低频链路上获取的上行TA值,以低频链路某个时隙的起点作为高频链路上的上行参考信号的时域资源发送位置,即NoMP的起点时域位置。
步骤143:终端按实施例一或实施例二给出的帧结构,在高频链路上,依不同时间片切换终端的发送波束,发送上行测量参考信号,同时可以携带终端的身份标识。
具体的,在第一NoMP的测量参考信号对应的时间区间内,终端依第一顺序依次切换发送波束发送上行测量参考信号;在第二NoMP的测量参考信号对应的时间区间内,终端依第二顺序依次切换发送波束发送上行测量参考信号。所述第二顺序是第一顺序的循环移位。
步骤144:网络侧的各高频微站在NoMP内,在高频链路上,依高频微站侧的不同时间片,切换自身的接收波束,终端发送的上行测量参考信号进行接收;其中,高频微站侧的时间片长度小于终端侧的时间片长度。
步骤145:网络侧的各高频微站根据接收到的上行测量参考信号,获取终端到各高频微站的链路质量等QoS参数,确定该终端的服务微站或者服务微站集合。
需要注意的是,该实施例五的主要步骤与实施例三相同,主要差异是终端上行信号携带的参考信号由同步参考信号替换为测量参考信号;不排除在最后系统设计时,两种参考信号合二为一,即一组参考信号既用于同步也可以用于测量。
实施例六
基于实施例一、实施例二给出的帧结构,实施例六提供一种上行测量参考信号的传输方法,所述方法应用于图2所示的网络部署场景,如图15所示,具体步骤包括:
步骤151:终端基于低频链路,完成与低频宏站的同步,获取网络侧的系统时钟和终端在低频链路上的上行TA。
步骤152:终端确定自身在高频链路上的上行测量参考信号的时域资源发送位置。
其中确定时域资源发送位置的方法可以用低频链路获取的系统时钟和/或终端在低频链路上获取的上行TA值,以低频链路某个时隙的起点作为高频链路上的上行参考信号的时域资源发送位置,即NoMP的起点时域位置。
步骤153:终端按实施例一或实施例二给出的帧结构,在高频链路上,依不同时间片切换终端的发送波束,发送上行测量参考信号,同时可以携带终端的身份标识。
步骤154:网络侧的各高频微站在NoMP内,在高频链路上,依高频微站侧的不同时间片,切换自身的接收波束,对终端发送的上行测量参考信号进行接收。其中,高频微站侧的时间片长度小于终端侧的时间片长度。
具体地,在第一NoMP的测量参考信号对应的时间区间中,在终端单次发送波束持续时间内,高频微站依第一顺序依次切换接收波束,对终端的上行测量参考信号进行接收;在第二NoMP的测量参考信号序列对应的时间区间中,在终端单次发送波束持续时间内,高频微站依第二顺序依次切换接收波束,对终端的上行测量参考信号进行接收。所述第二顺序是第一顺序的循环移位。
步骤155:网络侧的各高频微站根据接收到的上行测量参考信号,获取终端到各高频微站的链路质量等QoS参数,确定该终端的服务微站或者服务微站集合。
需要注意的是,该实施例六的主要步骤与实施例四相同,主要差异是终端上行信号携带的参考信号由同步参考信号替换为测量参考信号;不排除在最后系统设计时,两种参考信号合二为一,即一组参考信号既用于同步也可以用于测量。
实施例七
基于图9所示的应用场景示意图,本发明实施例提供一种上行同步参考信号的传输方法,如图16所示,具体流程包括如下步骤:
步骤161:终端获取自身在高频链路上的上行同步参考信号的时域资源发送位置。其中,具体的,上行同步参考信号的时域资源发送位置的获取方法可以是相邻高频微站通过广播形式告知终端高频微站采用的系统时钟,终端基于该系统时钟计算确定自身在高频链路上的上行参考信号的时域资源发送位置,即NoMP的起点时域位置。
步骤162:按实施例一或实施例二给出的帧结构,终端在高频链路上,依不同时间片切换终端的发送波束,发送上行同步参考信号,同时可以携带终端的身份标识。
具体的,在第一NoMP的同步参考信号对应的时间区间内,终端依第一顺序依次切换发送波束发送上行同步参考信号;在第二NoMP的同步参考信号对应的时间区间内,终端依第二顺序依次切换发送波束发送上行同步参考信号。所述第二顺序是第一顺序的循环移位。
步骤163:网络侧的各高频微站在NoMP内,在高频链路上,依高频微站侧的不同时间片,切换自身的接收波束,对终端发送的上行同步参考信号进行接收。
其中,高频微站侧的时间片长度小于终端侧的时间片长度。
步骤164:网络侧的各高频微站根据接收到的上行同步参考信号,完成与终端的同步,获取终端到各高频微站的上行TA。
实施例八
基于图9所示的应用场景示意图,本发明实施例提供一种上行测量参考信号的传输方法,如图17所示,具体流程包括如下步骤:
步骤171:终端获取自身在高频链路上的上行测量参考信号的时域资源发送位置。其中,具体的,上行测量参考信号的时域资源发送位置的获取方法可以是相邻高频微站通过广播形式告知终端高频微站采用的系统时钟,终端基于该系统时钟计算确定自身在高频链路上的上行参考信号的时域资源发送位置,即NoMP的起点时域位置。
步骤172:按实施例一或实施例二给出的帧结构,终端在高频链路上,依不同时间片切换终端的发送波束,发送上行测量参考信号,同时可以携带终端的身份标识。
具体的,在第一NoMP的测量参考信号对应的时间区间内,终端依第一顺序依次切换发送波束发送上行测量参考信号;在第二NoMP的测量参考信号对应的时间区间内,终端依第二顺序依次切换发送波束发送上行测量参考信号。所述第二顺序是第一顺序的循环移位。
步骤173:网络侧的各高频微站在NoMP内,在高频链路上,依高频微站侧的不同时间片,切换自身的接收波束,对终端发送的上行测量参考信号进行接收。
其中,高频微站侧的时间片长度小于终端侧的时间片长度。
步骤174:网络侧的各高频微站根据接收到的上行测量参考信号,获取终端到各高频微站的链路质量等QoS参数,确定该终端的服务微站或者服务微站集合。
需要注意的是,该实施例八的主要步骤与实施例七相同,主要差异是终端上行信号携带的参考信号由同步参考信号替换为测量参考信号;不排除在最后系统设计时,两种参考信号合二为一,即一组参考信号既用于同步也可以用于测量。
实施例九
基于图9所示的应用场景示意图,本发明实施例提供一种上行同步参考信号的传输方法,如图18所示,具体流程包括如下步骤:
步骤181:终端获取自身在高频链路上的上行同步参考信号的时域资源发送位置。其中,具体的,上行同步参考信号的时域资源发送位置的获取方法可以是相邻高频微站通过广播形式告知终端高频微站采用的系统时钟,终端基于该系统时钟计算确定自身在高频链路上的上行参考信号的时域资源发送位置,即NoMP的起点时域位置。
步骤182:按实施例一或实施例二给出的帧结构,终端在高频链路上,依不同时间片切换终端的发送波束,发送上行同步参考信号,同时可以携带终端的身份标识。
步骤183:网络侧的各高频微站在NoMP内,在高频链路上,依高频微站侧的不同时间片,切换自身的接收波束,对终端发送的上行同步参考信号进行接收。
具体地,在第一NoMP的同步参考信号对应的时间区间中,在终端单次发送波束持续时间内,高频微站依第一顺序依次切换接收波束,对终端的上行同步参考信号进行接收;在第二NoMP的同步参考信号序列对应的时间区间中,在终端单次发送波束持续时间内,高频微站依第二顺序依次切换接收波束,对终端的上行同步参考信号进行接收。所述第二顺序是第一顺序的循环移位。
其中,高频微站侧的时间片长度小于终端侧的时间片长度。
步骤184:网络侧的各高频微站根据接收到的上行同步参考信号,完成与终端的同步,获取终端到各高频微站的上行TA。
实施例十
基于图9所示的应用场景示意图,本发明实施例提供一种上行测量参考信号的传输方法,如图19所示,具体流程包括如下步骤:
步骤191:终端获取自身在高频链路上的上行测量参考信号的时域资源发送位置。其中,具体的,上行测量参考信号的时域资源发送位置的获取方法可以是相邻高频微站通过广播形式告知终端高频微站采用的系统时钟,终端基于该系统时钟计算确定自身在高频链路上的上行参考信号的时域资源发送位置,即NoMP的起点时域位置。
步骤192:按实施例一或实施例二给出的帧结构,终端在高频链路上,依不同时间片切换终端的发送波束,发送上行测量参考信号,同时可以携带终端的身份标识。
步骤193:网络侧的各高频微站在NoMP内,在高频链路上,依高频微站侧的不同时间片,切换自身的接收波束,对终端发送的上行测量参考信号进行接收。
其中,高频微站侧的时间片长度小于终端侧的时间片长度。
具体地,在第一NoMP的测量参考信号对应的时间区间中,在终端单次发送波束持续时间内,高频微站依第一顺序依次切换接收波束,对终端的上行测量参考信号进行接收;在第二NoMP的测量参考信号序列对应的时间区间中,在终端单次发送波束持续时间内,高频微站依第二顺序依次切换接收波束,对终端的上行测量参考信号进行接收。所述第二顺序是第一顺序的循环移位。
步骤194:网络侧的各高频微站根据接收到的上行测量参考信号,获取终端到各高频微站的链路质量等QoS参数,确定该终端的服务微站或者服务微站集合。
需要注意的是,该实施例十的主要步骤与实施例九相同,主要差异是终端上行信号携带的参考信号由同步参考信号替换为测量参考信号;不排除在最后系统设计时,两种参考信号合二为一,即一组参考信号既用于同步也可以用于测量。
基于上述实施例,如图20所示,为本发明实施例提供的上行参考信号的传输装置结构示意图。该装置2000应用于高频基站为微站,低频基站为宏站的HetNet场景下的终端或高频基站独立组网的场景下的终端,可以用于执行上述方法实施例中终端的执行过程,该装置2000包括:确定单元2001、和发送单元2002,其中:
确定单元2001,用于确定终端在高频链路上的上行参考信号的时域资源发送位置,所述上行参考信号的至少一端存在保护间隔;
发送单元2002,用于在到达所述时域资源发送位置后,在所述上行参考信号对应的第一时间区间内,在M个时间内的不同时间片按照第一顺序切换发送波束,传输上行参考信号,在所述上行参考信号对应的第二时间区间内,在所述M个时间内的不同时间片按照第二顺序切换发送波束,传输上行参考信号,所述上行参考信号包括M个不同时间片上传输的上行参考信号,M为大于1的正整数,所述第二顺序为所述第一顺序的循环移位。
可选的,所述上行参考信号对应的第一时间区间位于所述上行参考信号所处的上行测量的奇数次传输时间间隔;所述上行参考信号对应的第二时间区间位于所述上行参考信号所处的上行测量的偶数次传输时间间隔。
可选的,所述保护间隔为所述终端不传输信号的时长。
可选的,所述上行参考信号包括同步参考信号和/或上行测量参考信号。
可选的,所述上行测量参考信号包括探测参考信号。
可选的,所述保护间隔的长度不小于所述终端与任意一个高频基站的上行定时提前量的一半。
可选的,所述确定单元2001在确定所述终端在高频链路上的上行参考信号的时域资 源发送位置时,具体用于:
基于低频链路获取低频基站的系统时钟,将系统时钟指示的低频链路的一个时隙的起点位置确定为所述终端在高频链路上的上行参考信号的时域资源发送位置;或
基于低频链路获取低频基站的系统时钟和所述终端在低频链路上的上行定时提前量,将系统时钟指示的低频链路的一个时隙的起点经过所述上行定时提前量的位置确定为所述终端在高频链路上的上行参考信号的时域资源发送位置;或
接收网络侧发送的所述时域资源发送位置的指示信息。
可选的,所述发送单元2002在传输所述上行参考信号时,具体用于:
生成无线帧,所述无线帧包括至少一个面向网络的测量时隙间隔,所述面向网络的测量时隙间隔包括保护间隔和用于上行参考信号传输的符号;
发送所述无线帧传输所述上行参考信号。
本发明实施例上述涉及的装置2000,可以是独立的部件,也可以是集成于其他部件中,例如本发明实施例提供的上述装置2000可以是现有通信网络中的终端,也可以是集成于终端内的部件。
需要说明的是,本发明实施例中的装置2000的各个单元的功能实现以及交互方式可以进一步参照相关方法实施例的描述,在此不再赘述。
另外,以上各“单元”可以通过特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件来实现。
基于相同的构思,如图21所示,为本发明实施例提供的一种终端设备结构示意图。该终端设备2100可以用于执行上述方法实施例中终端的执行过程。其中:该终端设备2100可以是无线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(PCS,Personal Communication Service)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(PDA,Personal Digital Assistant)等设备。无线终端也可以称为订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户设备(User Equipment);本发明对此并不限定,例如终端还包括具有多承载特征的有线接入的终端。
参见图21,该终端设备2100包括:处理器2101、存储器2102和收发器2103,其中:
所述处理器2101、存储器2102、收发器2103通过总线2104相互连接。
收发器2103可以通过接收机和发射机来实现其功能,收发器2103可以是有线收发器,无线收发器或其组合。有线收发器例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线收发器例如可以为无线局域网收发器,蜂窝网络收发器或其组合。
所述处理器2101,用于调用所述存储器2102中存储的程序,执行:确定终端在高频链路上的上行参考信号的时域资源发送位置,所述上行参考信号的至少一端存在保护间隔; 在到达所述时域资源发送位置后,在所述上行参考信号对应的第一时间区间内,在M个时间内的不同时间片按照第一顺序切换发送波束,通过所述收发器2103传输上行参考信号,在所述上行参考信号对应的第二时间区间内,在所述M个时间内的不同时间片按照第二顺序切换发送波束,通过所述收发器2103传输上行参考信号,所述上行参考信号包括M个不同时间片上传输的上行参考信号,所述第二顺序为所述第一顺序的循环移位。
处理器2101可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明中终端的公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
存储器2102可以包括易失性存储器,例如RAM;存储器2102也可以包括非易失性存储器,例如ROM,快闪存储器,HDD或SSD;存储器2102还可以包括上述种类的存储器的组合。可选的,所述存储器2102中存储有网络频点对应的语音指示信息。
存储器2102可以用于存储通过所述收发器2103接收到的消息和数据,以及存储指令。
处理器2101调用存储在存储器2102中的指令执行本发明方法实施例的方法步骤,实现本发明方法实施例的技术方案。
其中,在图21中,总线2104可以包括任意数量的互联的总线和桥,具体由处理器2101代表的一个或多个处理器和存储器2102代表的存储器的各种电路连接在一起。所述总线2104可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图21中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。总线2104还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。
由于该终端设备解决问题的实施方式以及有益效果可以参见本发明方法实施例的实施方式以及有益效果,因此该终端设备的实施可以参见方法的实施,重复之处不再赘述。
基于上述实施例,如图22所示,为本发明实施例提供的上行参考信号的传输装置结构示意图。该装置2200应用于高频基站为微站,低频基站为宏站的HetNet场景下的高频微站或高频基站独立组网的场景下的高频基站,可以用于执行上述方法实施例中高频微站或高频基站的执行过程,该装置2200包括:确定单元2201和接收单元2202,其中:
确定单元2201,用于确定用于接收终端在所述终端的单个时间片上传输的上行参考信号的N个时间片,N为大于1的正整数,
接收单元2202,用于在所述上行参考信号对应的第一时间区间内,在所述N个时间片内的不同时间片按照第一顺序切换接收波束,接收终端在所述终端的单个时间片上传输的上行参考信号,在所述上行参考信号对应的第二时间区间内,在所述N个时间片内的不同时间片按照第二顺序切换接收波束,接收终端在所述终端的单个时间片上传输的上行参考信号,所述上行参考信号的至少一端存在保护间隔。
可选的,所述上行参考信号对应的第一时间区间位于所述上行参考信号所处的上行测量的奇数次传输时间间隔;所述上行参考信号对应的第二时间区间位于所述上行参考信号所处的上行测量的偶数次传输时间间隔。
本发明实施例上述涉及的装置2200,可以是独立的部件,也可以是集成于其他部件中, 例如本发明实施例提供的上述装置2200可以是现有通信网络中的基站,也可以是集成于基站内的部件。
需要说明的是,本发明实施例中的装置2200的各个单元的功能实现以及交互方式可以进一步参照相关方法实施例的描述,在此不再赘述。
另外,以上各“单元”可以通过特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件来实现。
如图23所示,本发明实施例提供的一种网络侧设备结构示意图。该设备2300可以用于执行上述方法实施例中高频微站或高频基站的执行过程。该设备2300可包括基站,或用于控制基站的无线资源管理设备。
参见图23,该设备2300包括:处理器2301、存储器2302和收发器2303,其中:
所述处理器2301、存储器2302、收发器2303通过总线2304相互连接。
收发器2303可以通过接收机和发射机来实现其功能,收发器2303可以是有线收发器,无线收发器或其组合。有线收发器例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线收发器例如可以为无线局域网收发器,蜂窝网络收发器或其组合。
处理器2301可以是CPU,通用处理器、DSP、ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。存储器2302可以包括易失性存储器,例如RAM;存储器2302也可以包括非易失性存储器,例如ROM,快闪存储器,HDD或SSD;存储器2302还可以包括上述种类的存储器的组合。
存储器2302可以用于存储所述收发器2303接收到的消息,以及处理器2301执行的程序。
所述处理器2301,用于调用所述存储器2302中存储的程序,执行:确定用于接收终端在所述终端的单个时间片上传输的上行参考信号的N个时间片,N为大于1的正整数,在所述上行参考信号对应的第一时间区间内,在所述N个时间片内的不同时间片按照第一顺序切换接收波束,通过所述收发器2303接收终端在所述终端的单个时间片上传输的上行参考信号,在所述上行参考信号对应的第二时间区间内,在所述N个时间片内的不同时间片按照第二顺序切换接收波束,通过所述收发器2303接收终端在所述终端的单个时间片上传输的上行参考信号,所述上行参考信号的至少一端存在保护间隔。
其中,在图23中,总线2304可以包括任意数量的互联的总线和桥,具体由处理器2301代表的一个或多个处理器和存储器2302代表的存储器的各种电路连接在一起。所述总线2304可以是PCI总线或EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图23中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。总线2304还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。
综上所述,本发明实施例中,在高频基站为微站,低频基站为宏站的HetNet场景下或在高频基站独立组网的场景下,终端确定所述终端在高频链路上的上行参考信号的时域资源发送位置,所述上行参考信号的至少一端存在保护间隔;在到达所述时域资源发送位置后,在所述上行参考信号对应的第一时间区间内,在M个时间内的不同时间片按照第一顺序切换发送波束,传输上行参考信号,在所述上行参考信号对应的第二时间区间内,在所述M个时间内的不同时间片按照第二顺序切换发送波束,传输上行参考信号,所述上行参考信号包括M个不同时间片上传输的上行参考信号,所述第二顺序为所述第一顺序的循 环移位,这样能够实现HetNet混合组网场景下的上行参考信号的准确传输,克服无法完整接收某个发送波束发送的上行参考信号导致的波束检测缺失问题。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (20)

  1. 一种上行参考信号的传输方法,其特征在于,包括:
    终端确定所述终端在高频链路上的上行参考信号的时域资源发送位置,所述上行参考信号的至少一端存在保护间隔;
    所述终端在到达所述时域资源发送位置后,在所述上行参考信号对应的第一时间区间内,在M个时间内的不同时间片按照第一顺序切换发送波束,传输上行参考信号,在所述上行参考信号对应的第二时间区间内,在所述M个时间内的不同时间片按照第二顺序切换发送波束,传输上行参考信号,所述上行参考信号包括M个不同时间片上传输的上行参考信号,M为大于1的正整数,所述第二顺序为所述第一顺序的循环移位。
  2. 如权利要求1所述的方法,其特征在于,所述上行参考信号对应的第一时间区间位于所述上行参考信号所处的上行测量的奇数次传输时间间隔;所述上行参考信号对应的第二时间区间位于所述上行参考信号所处的上行测量的偶数次传输时间间隔。
  3. 如权利要求1所述的方法,其特征在于,所述保护间隔为所述终端不传输信号的时长。
  4. 如权利要求1所述的方法,其特征在于,所述上行参考信号包括同步参考信号和/或上行测量参考信号。
  5. 如权利要求4所述的方法,其特征在于,所述上行测量参考信号包括探测参考信号。
  6. 如权利要求1所述的方法,其特征在于,所述保护间隔的长度不小于所述终端与任意一个高频基站的上行定时提前量的一半。
  7. 如权利要求1所述的方法,其特征在于,终端确定所述终端在高频链路上的上行参考信号的时域资源发送位置,包括:
    所述终端基于低频链路获取低频基站的系统时钟,将系统时钟指示的低频链路的一个时隙的起点位置确定为所述终端在高频链路上的上行参考信号的时域资源发送位置;或
    所述终端基于低频链路获取低频基站的系统时钟和所述终端在低频链路上的上行定时提前量,将系统时钟指示的低频链路的一个时隙的起点经过所述上行定时提前量的位置确定为所述终端在高频链路上的上行参考信号的时域资源发送位置;或
    所述终端接收网络侧发送的所述时域资源发送位置的指示信息。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述终端传输所述上行参考信号,包括:
    生成无线帧,所述无线帧包括至少一个面向网络的测量时隙间隔,所述面向网络的测量时隙间隔包括保护间隔和用于上行参考信号传输的符号;
    发送所述无线帧传输所述上行参考信号。
  9. 一种上行参考信号的传输方法,其特征在于,包括:
    高频基站确定用于接收终端在所述终端的单个时间片上传输的上行参考信号的N个时间片,N为大于1的正整数,
    所述高频基站在所述上行参考信号对应的第一时间区间内,在所述N个时间片内的不同时间片按照第一顺序切换接收波束,接收终端在所述终端的单个时间片上传输的上行参考信号,在所述上行参考信号对应的第二时间区间内,在所述N个时间片内的不同时间片 按照第二顺序切换接收波束,接收终端在所述终端的单个时间片上传输的上行参考信号,所述上行参考信号的至少一端存在保护间隔。
  10. 如权利要求9所述的方法,其特征在于,所述上行参考信号对应的第一时间区间位于所述上行参考信号所处的上行测量的奇数次传输时间间隔;所述上行参考信号对应的第二时间区间位于所述上行参考信号所处的上行测量的偶数次传输时间间隔。
  11. 一种上行参考信号的传输装置,其特征在于,包括:
    确定单元,用于确定终端在高频链路上的上行参考信号的时域资源发送位置,所述上行参考信号的至少一端存在保护间隔;
    发送单元,用于在到达所述时域资源发送位置后,在所述上行参考信号对应的第一时间区间内,在M个时间内的不同时间片按照第一顺序切换发送波束,传输上行参考信号,在所述上行参考信号对应的第二时间区间内,在所述M个时间内的不同时间片按照第二顺序切换发送波束,传输上行参考信号,所述上行参考信号包括M个不同时间片上传输的上行参考信号,M为大于1的正整数,所述第二顺序为所述第一顺序的循环移位。
  12. 如权利要求11所述的装置,其特征在于,所述上行参考信号对应的第一时间区间位于所述上行参考信号所处的上行测量的奇数次传输时间间隔;所述上行参考信号对应的第二时间区间位于所述上行参考信号所处的上行测量的偶数次传输时间间隔。
  13. 如权利要求11所述的装置,其特征在于,所述保护间隔为所述终端不传输信号的时长。
  14. 如权利要求11所述的装置,其特征在于,所述上行参考信号包括同步参考信号和/或上行测量参考信号,所述上行测量参考信号包括探测参考信号。
  15. 如权利要求14所述的装置,其特征在于,所述上行测量参考信号包括探测参考信号。
  16. 如权利要求11所述的装置,其特征在于,所述保护间隔的长度不小于所述终端与任意一个高频基站的上行定时提前量的一半。
  17. 如权利要求11所述的装置,其特征在于,所述确定单元在确定所述终端在高频链路上的上行参考信号的时域资源发送位置时,具体用于:
    基于低频链路获取低频基站的系统时钟,将系统时钟指示的低频链路的一个时隙的起点位置确定为所述终端在高频链路上的上行参考信号的时域资源发送位置;或
    基于低频链路获取低频基站的系统时钟和所述终端在低频链路上的上行定时提前量,将系统时钟指示的低频链路的一个时隙的起点经过所述上行定时提前量的位置确定为所述终端在高频链路上的上行参考信号的时域资源发送位置;或
    接收网络侧发送的所述时域资源发送位置的指示信息。
  18. 如权利要求11-17任一项所述的装置,其特征在于,所述发送单元在传输所述上行参考信号时,具体用于:
    生成无线帧,所述无线帧包括至少一个面向网络的测量时隙间隔,所述面向网络的测量时隙间隔包括保护间隔和用于上行参考信号传输的符号;
    发送所述无线帧传输所述上行参考信号。
  19. 一种上行参考信号的传输装置,其特征在于,包括:
    确定单元,用于确定用于接收终端在所述终端的单个时间片上传输的上行参考信号的N个时间片,N为大于1的正整数,
    接收单元,用于在所述上行参考信号对应的第一时间区间内,在所述N个时间片内的 不同时间片按照第一顺序切换接收波束,接收终端在所述终端的单个时间片上传输的上行参考信号,在所述上行参考信号对应的第二时间区间内,在所述N个时间片内的不同时间片按照第二顺序切换接收波束,接收终端在所述终端的单个时间片上传输的上行参考信号,所述上行参考信号的至少一端存在保护间隔。
  20. 如权利要求19所述的装置,其特征在于,所述上行参考信号对应的第一时间区间位于所述上行参考信号所处的上行测量的奇数次传输时间间隔;所述上行参考信号对应的第二时间区间位于所述上行参考信号所处的上行测量的偶数次传输时间间隔。
PCT/CN2017/087206 2016-07-22 2017-06-05 一种上行参考信号的传输方法和装置 WO2018014665A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17830302.0A EP3481120B1 (en) 2016-07-22 2017-06-05 Method and device for transmitting uplink reference signal
US16/252,831 US10721042B2 (en) 2016-07-22 2019-01-21 Uplink reference signal transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610585106.1A CN107645352B (zh) 2016-07-22 2016-07-22 一种上行参考信号的传输方法和装置
CN201610585106.1 2016-07-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/252,831 Continuation US10721042B2 (en) 2016-07-22 2019-01-21 Uplink reference signal transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2018014665A1 true WO2018014665A1 (zh) 2018-01-25

Family

ID=60991894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087206 WO2018014665A1 (zh) 2016-07-22 2017-06-05 一种上行参考信号的传输方法和装置

Country Status (4)

Country Link
US (1) US10721042B2 (zh)
EP (1) EP3481120B1 (zh)
CN (1) CN107645352B (zh)
WO (1) WO2018014665A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109964435B (zh) 2016-11-18 2021-05-25 Oppo广东移动通信有限公司 传输参考信号的方法和通信设备
CN111263444B (zh) * 2018-11-30 2022-07-22 华为技术有限公司 资源分配方法及装置
CN115189823B (zh) * 2021-04-01 2024-06-11 维沃移动通信有限公司 重复传输的处理方法、装置、终端及网络侧设备
CN115695116B (zh) * 2022-11-07 2023-08-01 四川工商学院 一种基于时间同步的跟踪发信控制方法与装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2536087A1 (en) * 2010-02-12 2012-12-19 Huawei Technologies Co., Ltd. Method for generating reference signal, base station and terminal
CN104955066A (zh) * 2014-03-28 2015-09-30 诺基亚公司 在灵活时分双工系统中支持基站间测量的方法和装置
CN105794162A (zh) * 2013-10-04 2016-07-20 三星电子株式会社 用于在无线通信系统中估计信道的方法和设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8406157B2 (en) * 2008-04-14 2013-03-26 Lg Electronics Inc. Communication method for radio communication system
US9014169B2 (en) * 2011-03-10 2015-04-21 Telefonaktiebolaget L M Ericsson (Publ) Cell search procedure for heterogeneous networks
CN102857957B (zh) * 2011-06-29 2017-10-03 中兴通讯股份有限公司 具有互易性的移动通信系统的信号处理方法及其装置
US9491755B2 (en) 2012-03-09 2016-11-08 Samsung Electronics Co., Ltd. Methods and apparatus to transmit and receive synchronization signals in a mobile communication system
US10219232B2 (en) * 2014-04-17 2019-02-26 Samsung Electronics Co., Ltd. Apparatus and method searching neighboring cells in wireless communication system
CN107645783B (zh) 2016-07-22 2020-02-21 华为技术有限公司 一种上行参考信号的传输方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2536087A1 (en) * 2010-02-12 2012-12-19 Huawei Technologies Co., Ltd. Method for generating reference signal, base station and terminal
CN105794162A (zh) * 2013-10-04 2016-07-20 三星电子株式会社 用于在无线通信系统中估计信道的方法和设备
CN104955066A (zh) * 2014-03-28 2015-09-30 诺基亚公司 在灵活时分双工系统中支持基站间测量的方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Discussion on Multi-Antenna Transmission of Synchronization and Reference Signals", 3GPPTSG RAN WG1 MEETING #85, RL-165180, 23 May 2016 (2016-05-23), XP051089823 *
SAMSUNG: "Framework for beamformed access", 3GPP TSG RAN WG1 #85, RI-164013, 23 May 2016 (2016-05-23), XP051090295 *
See also references of EP3481120A4

Also Published As

Publication number Publication date
US20190158246A1 (en) 2019-05-23
EP3481120A1 (en) 2019-05-08
EP3481120B1 (en) 2021-08-11
EP3481120A4 (en) 2019-07-17
CN107645352A (zh) 2018-01-30
US10721042B2 (en) 2020-07-21
CN107645352B (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
JP6357724B2 (ja) 装置、コンピュータプログラム、およびコンピュータ可読記憶媒体
RU2663220C1 (ru) Беспроводное устройство, первый сетевой узел и способы в них
WO2018228270A1 (zh) 测量方法、测量配置方法和相关设备
EP3143807B1 (en) Determination of ue band and synchronization capability in dual connectivity
US20170019924A1 (en) Method and equipment for channel sensing and signal transmission
WO2016154835A1 (zh) 一种无线接入方法、装置、通信系统和终端
US10721042B2 (en) Uplink reference signal transmission method and apparatus
JP2018528645A (ja) データ送信方法、無線ネットワーク装置、及び通信システム
WO2018060927A1 (en) Adapting between synchronous and asynchronous operations based on numerology
JP6107934B2 (ja) 基地局、端末、及び通信システム
US20140348146A1 (en) Transition period for dual connectivity
US20190158245A1 (en) Uplink reference signal transmission method and apparatus
CN108476491B (zh) 一种无线通信方法、设备及系统
JP2019533371A (ja) ダウンリンク制御信号を伝送する方法及び装置
KR102151021B1 (ko) 장치 대 장치 통신 지원 사용자 장치 간 프레임번호 동기화 방법 및 장치
CN113348721B (zh) 针对随机接入信道(rach)的前导码序列配置
CN110557836B (zh) 一种配置传输带宽的方法、装置及设备
JP2017519396A (ja) ユーザ装置、アクセスノード装置、中央ネットワークコントローラ、および対応する方法
WO2019000364A1 (zh) 一种通信方法及装置
WO2017156711A1 (zh) 信号发送的方法和基站
JP2023513296A (ja) アップリンク伝送方法及び装置
JP2024500487A (ja) 通信方法及び装置
CN108633056B (zh) 一种随机接入配置方法及装置
CN108024234B (zh) 用于mtc设备的相邻小区测量的方法和设备
WO2019029464A1 (zh) 用于灵活双工系统的数据传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017830302

Country of ref document: EP

Effective date: 20190130