WO2018014595A1 - 显示系统和显示方法 - Google Patents

显示系统和显示方法 Download PDF

Info

Publication number
WO2018014595A1
WO2018014595A1 PCT/CN2017/079692 CN2017079692W WO2018014595A1 WO 2018014595 A1 WO2018014595 A1 WO 2018014595A1 CN 2017079692 W CN2017079692 W CN 2017079692W WO 2018014595 A1 WO2018014595 A1 WO 2018014595A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
lens
eye
display system
lens portion
Prior art date
Application number
PCT/CN2017/079692
Other languages
English (en)
French (fr)
Inventor
石炳川
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/567,416 priority Critical patent/US10503251B2/en
Priority to JP2017554597A priority patent/JP6963506B2/ja
Publication of WO2018014595A1 publication Critical patent/WO2018014595A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/10Processes or apparatus for producing holograms using modulated reference beam
    • G03H1/12Spatial modulation, e.g. ghost imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/0208Individual components other than the hologram
    • G03H2001/0216Optical components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/10Spectral composition
    • G03H2222/13Multi-wavelengths wave with discontinuous wavelength ranges
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/10Spectral composition
    • G03H2222/16Infra Red [IR]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/34Multiple light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/50Geometrical property of the irradiating beam
    • G03H2222/54Convergent beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/17Element having optical power
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2226/00Electro-optic or electronic components relating to digital holography
    • G03H2226/05Means for tracking the observer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30041Eye; Retina; Ophthalmic

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display system and a display method.
  • Holographic display technology can reproduce the amplitude and phase information of the recorded scene, provide images and depth of focus information for the observer's eyes, solve the visual fatigue problem caused by the inconsistent convergence of the convergence in the existing stereoscopic display technology, and provide the most realistic for the observer.
  • Stereoscopic display effect The key to real-time holographic display lies in high-resolution spatial light modulators.
  • Liquid crystal on silicon (LCoS) devices are currently extremely costly and difficult to popularize; existing liquid crystal displays (LCDs) still exist as spatial light modulators. Insufficient resolution. Seereal has proposed window holography for LCDs.
  • window holography technology spatially compresses an existing LCD through an imaging optical system to obtain a high-density image modulation wavefront in a small window to realize holographic display.
  • window holography has a small field of view, and it must be matched with the eye tracking system in the naked eye display to satisfy the viewing when the eye moves.
  • the inventors have found that the existing eye tracking optical system requires an imaging lens to be separately positioned outside the display system to track the position of the eyeball.
  • the tracking imaging lens must be placed offset, which is not conducive to frontal acquisition of the eye image.
  • an embodiment of the invention provides a display system.
  • Place The display system includes a projection unit and an eye tracking unit.
  • the projection unit includes a projection light source, a projection lens, and a spatial light modulator; the projection lens is located between the projection light source and the spatial light modulator; in the optical axis direction of the projection lens, the projection lens A first lens portion that overlaps the spatial light modulator and a second lens portion that does not overlap the spatial light modulator are included.
  • the eye tracking unit includes a camera; an imaging optical path of the camera passes through the second lens portion.
  • the display system provided by the embodiment of the present invention uses an edge portion of the projection lens as an imaging lens for eye tracking.
  • the image space of the projection unit and the object space of the eye tracking unit are coincident, so that the eye can be imaged in the optical axis direction of the projection lens, and the high-pass portion of the projection lens is effectively utilized, thereby realizing an accurate real-time eye. Department tracking.
  • the display system of the embodiments of the present invention can be advantageously used in the field of display including holographic display technology, simplifying optical design, and obtaining a compact and efficient optical system.
  • the display system further includes a beam splitter positioned between the projection lens and the projection source; the beam splitter configured to reflect light from the second lens portion to the camera.
  • the beam splitter not only the conventional projection imaging is realized, but also the target such as the user's eye can be imaged using the second lens portion without changing the projection optical path.
  • the beam splitter is a beam splitter or a beam splitting prism.
  • a beam splitter or a beam splitting prism does not require consideration of the polarization direction of the beam, and the arrangement of the projection unit and the eye tracking unit is relatively simple.
  • the beam splitter is a polarization beam splitting prism.
  • a polarization beam splitting prism is adopted, and the polarization directions of the above two beams are set to be perpendicular to each other, thereby completely separating the light beams of the projection unit and the eye tracking unit, thereby avoiding crosstalk between the projection unit and the eye tracking unit.
  • the eye tracking unit further comprises an illumination source; the illumination source being configured to provide illumination to the viewer's eye via the second lens portion.
  • an active illumination source can be utilized to achieve accurate eye tracking even in a dim environment.
  • the illumination source comprises an infrared source.
  • the light beam emitted by the illumination source is generally used to illuminate the user's eyes, so the use of an infrared light source as an illumination source can reduce irritation or interference to the user's eyes.
  • the projection lens comprises only one lens.
  • the projection lens comprises a plurality of lenses.
  • the projection can be flexibly adjusted to meet a variety of design requirements.
  • the projection lens has a circular shape; the spatial light modulator has a rectangular shape.
  • the first lens portion corresponding to the spatial light modulator has a rectangular shape; meanwhile, the edge portion of the projection lens (ie, the second lens portion) still has an imaging function, thereby realizing the user's eye Imaging of the department.
  • the projection lens and the spatial light modulator may further have other shapes, respectively, as long as the projection lens includes a first overlap with the spatial light modulator in an optical axis direction of the projection lens
  • the lens portion may be a second lens portion that does not overlap the spatial light modulator.
  • the projection light source comprises a laser.
  • the projection unit further includes a beam expander, a microscope objective, a pinhole filter, and a rectangular aperture sequentially disposed between the projection light source and the projection lens.
  • the projection source provides illumination that approximates the point source and does not allow light of other spatial frequencies to pass, eliminating stray light.
  • the holographic display can be achieved by modulation of the laser beam via the spatial light modulator.
  • the second lens portion is located at a periphery of the first lens portion.
  • the use of the second lens portion located at the periphery of the first lens portion effectively utilizes the high-pass portion of the projection lens, thereby achieving accurate real-time eye tracking.
  • an embodiment of the present invention provides a display method.
  • the method includes: projecting with a projection light source, a projection lens, and a spatial light modulator; the projection lens includes a first lens portion overlapping the spatial light modulator and not in an optical axis direction of the projection lens a second lens portion overlapping the spatial light modulator; and eye tracking using a camera, wherein the camera utilizes the second lens portion for imaging.
  • the display method provided by the embodiment of the present invention uses an edge portion of the projection lens in the display system as an imaging lens for eye tracking.
  • the image space of the projection unit and the object space of the eye tracking unit are coincident, so that the eye can be imaged in the optical axis direction of the projection lens, and the high-pass portion of the projection lens is effectively utilized, thereby realizing an accurate real-time eye. Department tracking.
  • the display system of the embodiments of the present invention can be advantageously used in the field of display including holographic display technology, simplifying optical design, and obtaining a compact and efficient optical system.
  • the method further comprises reflecting light from the second lens portion to the camera using a beam splitter positioned between the projection lens and the projection source.
  • the beam splitter not only the conventional projection imaging is realized, but also the target such as the user's eye can be imaged using the second lens portion without changing the projection optical path.
  • the method further comprises providing illumination to the viewer's eye via the second lens portion.
  • an active illumination source can be utilized to achieve accurate eye tracking even in a dim environment.
  • providing illumination to the viewer's eye via the second lens portion includes providing infrared illumination to the viewer's eye via the second lens portion.
  • the light beam emitted by the illumination source is generally used to illuminate the user's eyes, so the use of an infrared light source as an illumination source can reduce irritation or interference to the user's eyes.
  • performing eye tracking with the camera includes determining an azimuth of the eye using a boundary between the iris and the sclera.
  • the azimuth of the eye can be easily determined using the boundary between the iris and the sclera. For example, an eye having a different azimuth can be directly imaged at different positions of the camera after passing through the lens; after the azimuth and the imaging position are calibrated, it is only necessary to determine the coordinate position of the eye in the image received by the camera. Calculate the corresponding azimuth.
  • performing eye tracking with the camera includes determining a distance between the eye and the projection lens using the sharpness of the eye feature.
  • the distance between the eye and the display system is a necessary parameter for hologram calculation.
  • the distance does not change much, only the azimuth can be considered.
  • the distance varies greatly, the change in distance should also be considered.
  • the imaging parameters of the camera such as but not limited to: the focal length of the camera's varifocal lens group
  • the object distance ie, the distance between the eye and the camera
  • the focal length knows the distance of the eye from the camera to calculate the distance between the eye and the projection lens.
  • FIG. 1 is a block diagram showing the structure of a display system according to an embodiment of the present invention
  • FIG. 2 shows a schematic diagram of a projection lens and a spatial light modulator in a display system in accordance with an embodiment of the present invention
  • Figure 3 shows a schematic diagram of the spatial frequency of lens imaging
  • FIG. 4 is a block diagram showing the structure of a display system according to another embodiment of the present invention.
  • FIG. 5 shows a flow chart of a display method in accordance with an embodiment of the present invention.
  • an embodiment of the invention provides a display system.
  • the display system 100 includes a projection unit 101 and an eye tracking unit 102.
  • the projection unit 101 includes a projection light source 10, a projection lens 1011, and a spatial light modulator 1012; the projection lens 1011 is located between the projection light source 101 and the spatial light modulator 1012; as shown in FIG.
  • the projection lens 1011 includes a first lens portion 1013 overlapping the spatial light modulator 1012 and a second lens portion 1014 not overlapping the spatial light modulator 1012;
  • the eye tracking unit 102 includes a camera 1021; an imaging optical path of the camera 1021 passes through the second lens portion 1014.
  • imaging optical path of a camera refers to a propagation path of ambient light for imaging in the camera.
  • camera refers to a device that uses optical principles to image and record images, including but not limited to cameras and video cameras.
  • the display system provided by the embodiment of the present invention uses an edge portion of the projection lens 1011 in the display system as an imaging lens for eye tracking.
  • the image side space of the projection unit 101 and the object side space of the eye tracking unit 102 are coincident, so that the eye portion 103 can be imaged in the optical axis direction of the projection lens 1011, and the high-pass portion of the projection lens 1011 is effectively utilized, thereby Achieve accurate real-time eye tracking.
  • the display system of the embodiments of the present invention can be advantageously used in the field of display including holographic display technology, simplifying optical design, and obtaining a compact and efficient optical system.
  • the increase of the lens aperture helps to improve the imaging luminous flux, thereby enhancing the adaptability of the imaging detection system in the dark environment; at the same time, the lens aperture is one of the determinants of the optical imaging resolution, and the imaging resolution directly affects The accuracy of eye detection. Therefore, an imaging lens having a larger aperture is extremely advantageous for eye tracking.
  • Lens Imaging As shown in FIG. 3, the light beam emitted by the object point 201 is imaged along the optical axis 202 through the lens 203 to the image point 204, and the imaging beam is distributed in a tapered shape along the optical axis.
  • the maximum spatial frequency of the object's light that the optical system can receive determines the maximum imaging resolution of the optical system.
  • the overall light and dark distribution of the image is mainly formed by the low-frequency beam of the paraxial shape, and the detailed texture of the image is mainly formed by the high-frequency beam of the edge.
  • the low-frequency information of the paraxial is occluded and modulated by the airborne optical modulator, so that the second lens portion constitutes a high-pass filtered imaging device, and the image formed mainly contains details of the object, including a sudden change in brightness. , texture, area boundaries, etc. Therefore, as shown in FIG. 1 and FIG. 2, when imaging the eye 103, the high-pass imaging characteristic of the second lens portion 1014 can provide detailed information such as image texture near the eye for image recognition tracking, which is advantageous for recognition. track.
  • the display system 100 may further include a beam splitter 1015 between the projection lens 1011 and the projection light source 10; the beam splitter 1015 is configured to be from the Light from the second lens portion 1014 is reflected to the camera 1021.
  • the beam splitter 1015 not only the conventional projection imaging but also the target such as the user's eye can be imaged using the second lens portion 1014 without changing the projection optical path.
  • the beam splitter 1015 is a beam splitter or a beam splitting prism.
  • a beam splitter or a beam splitting prism does not require consideration of the polarization direction of the beam, and the arrangement of the projection unit and the eye tracking unit is relatively simple.
  • the beam splitter 1015 is a polarization beam splitting prism.
  • a polarization beam splitting prism is adopted, and the polarization directions of the above two beams are set to be perpendicular to each other, thereby completely separating the light beams of the projection unit and the eye tracking unit, thereby avoiding crosstalk between the projection unit and the eye tracking unit.
  • the eye tracking unit 102 further includes an illumination source 1022; the illumination source 1022 is configured to provide illumination to an observer's eye via the second lens portion 1014.
  • an active illumination source can be utilized to achieve accurate eye tracking even in a dim environment.
  • the illumination source 1022 can be disposed, for example, at the location of the camera 1021 to provide active illumination.
  • the illumination source 1022 includes an infrared source.
  • the light beam emitted by the illumination source is generally used to illuminate the user's eyes, so the use of an infrared light source as an illumination source can reduce irritation or interference to the user's eyes.
  • the projection lens 1011 is used for projection; however, those skilled in the art can understand that the projection lens 1011 can also be replaced with a projection lens group (i.e., a plurality of lenses). As shown in Fig. 4, the edge portion of the projection lens group 1011' can be utilized as an imaging lens for eye tracking, thereby achieving accurate real-time eye tracking.
  • the projection lens 1011 includes only one lens.
  • the projection lens 1011' includes a plurality of lenses.
  • the projection can be flexibly adjusted to meet a variety of design requirements.
  • the projection lens 1011 may have a circular shape; the spatial light modulator 1012 may have a rectangular shape.
  • the first lens portion 1013 corresponding to the spatial light modulator has a rectangular shape; meanwhile, the edge portion of the projection lens (i.e., the second lens portion 1014) still has an imaging function, thereby achieving a pair Imaging of the user's eyes.
  • the projection lens and the spatial light modulator may further have other shapes, respectively, as long as the projection lens includes a first overlap with the spatial light modulator in an optical axis direction of the projection lens
  • the lens portion may be a second lens portion that does not overlap the spatial light modulator.
  • the projection light source 10 includes a laser 1017.
  • the projection unit 101 further includes a beam expander 1018, a microscope objective 1019, a pinhole filter 1016, and a rectangular aperture (not arranged) between the projection light source 10 and the projection lens 1011. show).
  • projection source 10 provides illumination that approximates the point source, disallowing the passage of light of other spatial frequencies, eliminating stray light.
  • the holographic display can be achieved by modulation of the laser beam via the spatial light modulator 1012.
  • the second lens portion 1014 is located at the periphery of the first lens portion 1013.
  • the use of the second lens portion located at the periphery of the first lens portion effectively utilizes the high-pass portion of the projection lens, thereby achieving accurate real-time eye tracking.
  • the display system 100 can also include a polarizer 1020 downstream of the spatial light modulator 1012.
  • a polarizer 1020 downstream of the spatial light modulator 1012.
  • a better holographic display effect can be achieved by the synergistic work of the polarizing plate and the spatial light modulator.
  • the polarizing plate can also be formed in the spatial light modulator, and thus is not limited in the present disclosure.
  • an embodiment of the present invention provides a display method. As shown in FIG. 5, the method 500 can include the following steps:
  • S501 performs projection using a projection light source, a projection lens, and a spatial light modulator;
  • the projection lens includes a first lens portion overlapping the spatial light modulator and not the space in an optical axis direction of the projection lens a second lens portion over which the light modulator overlaps;
  • S502 performs eye tracking using a camera, wherein the camera performs imaging using the second lens portion.
  • the display method provided by the embodiment of the present invention uses an edge portion of the projection lens in the display system as an imaging lens for eye tracking.
  • the image space of the projection unit and the object space of the eye tracking unit are coincident, so that the eye can be imaged in the optical axis direction of the projection lens, and the high-pass portion of the projection lens is effectively utilized, thereby realizing an accurate real-time eye. Department tracking.
  • the display method of the embodiment of the present invention can be advantageously used in the field of display including holographic display technology, simplifying optical design, and obtaining a compact and efficient optical system.
  • the method further includes a step S503 of: reflecting light from the second lens portion to the using a beam splitter located between the projection lens and the projection light source camera.
  • the beam splitter not only the conventional projection imaging is realized, but also the target such as the user's eye can be imaged using the second lens portion without changing the projection optical path.
  • the method further includes step S504: providing illumination to an eye of the observer via the second lens portion.
  • an active illumination source can be utilized to achieve accurate eye tracking even in a dim environment.
  • providing illumination to the viewer's eye via the second lens portion includes providing infrared illumination to the viewer's eye via the second lens portion.
  • the light beam emitted by the illumination source is generally used to illuminate the user's eyes, so the use of an infrared light source as an illumination source can reduce irritation or interference to the user's eyes.
  • performing eye tracking with the camera includes determining an azimuth of the eye using a boundary between the iris and the sclera.
  • the azimuth of the eye can be easily determined using the boundary between the iris and the sclera. For example, an eye having a different azimuth can be directly imaged at different positions of the camera after passing through the lens; after the azimuth and the imaging position are calibrated, it is only necessary to determine the coordinate position of the eye in the image received by the camera. Calculate the corresponding azimuth.
  • performing eye tracking with the camera includes determining a distance between the eye and the projection lens using the sharpness of the eye feature.
  • the distance between the eye and the display system is a necessary parameter for hologram calculation.
  • the distance does not change much, only the azimuth can be considered.
  • the distance varies greatly, the change in distance should also be considered.
  • the imaging parameters of the camera such as but not limited to: the focal length of the camera's varifocal lens group
  • the object distance ie, the distance between the eye and the camera
  • the focal length knows the distance of the eye from the camera to calculate the distance between the eye and the projection lens.
  • a display system and a display method provided by an embodiment of the present invention use an edge portion of a projection lens in a display system as an imaging lens for eye tracking.
  • the image space of the projection unit and the object space of the eye tracking unit are coincident, so that the eye can be imaged in the optical axis direction of the projection lens, and the high-pass portion of the projection lens is effectively utilized, thereby realizing an accurate real-time eye. Department tracking.
  • the display system and display method of the embodiments of the present invention can be advantageously used in the field of display including holographic display technology, simplifying optical design, and obtaining a compact and efficient optical system.

Abstract

一种显示系统和显示方法,显示系统(100)包括投影单元(101)和眼部追踪单元(102)。投影单元(101)包括投影光源(10)、投影透镜(1011)和空间光调制器(1012);投影透镜(1011)位于投影光源(10)和空间光调制器(1012)之间;在投影透镜(1011)的光轴方向上,投影透镜(1011)包括与空间光调制器(1012)重叠的第一透镜部分(1013)和不与空间光调制器(1012)重叠的第二透镜部分(1014)。眼部追踪单元(102)包括相机(1021);相机(1021)的成像光路穿过第二透镜部分(1014)。该显示系统(100)和显示方法能够使用在包括全息显示的显示领域中,简化光学设计,获得紧凑和高效的光学系统。

Description

显示系统和显示方法
相关申请
本申请要求保护在2016年7月22日提交的申请号为201610581791.0的中国专利申请的优先权,该申请的全部内容以引用的方式结合到本文中。
技术领域
本发明涉及显示技术领域,尤其涉及一种显示系统和显示方法。
背景技术
全息显示技术可以再现被记录场景的振幅和相位信息,为观察者的眼睛提供图像及聚焦深度信息,解决现有立体显示技术中存在的辐辏聚焦不一致导致的视觉疲劳问题,为观察者提供最逼真的立体显示效果。实现实时全息显示的关键在于高分辨率空间光调制器,硅基液晶(Liquid Crystal on Silicon,LCoS)器件目前成本极高,难以普及;现有的液晶显示器(LCD)作为空间光调制器仍存在分辨率不足。Seereal公司针对LCD提出了视窗全息技术。所述视窗全息技术通过成像光学系统对现有的LCD在空间上进行压缩,从而在一个小的视窗内得到高密度的图像调制波前,实现全息显示。但是,视窗全息存在视场小的局限,在裸眼显示中必须配合眼部追踪系统才能满足在眼部移动时的观看。
发明内容
发明人发现,现有眼部追踪光学系统需要在显示系统之外单独配置成像镜头,对眼球位置进行追踪。一方面,为了不对显示造成遮挡,追踪成像镜头须偏置放置,不利于对眼部图像进行正面采集。另一方面,需要首先在三维方向上精确定位眼部位置才能计算出追踪光路的偏移量,对追踪精度和计算量的要求较为严苛。
因此,有利的是提供一种显示系统和显示方法,简化光学设计,获得紧凑和高效的光学系统。
根据本发明的一个方面,本发明实施例提供了一种显示系统。所 述显示系统包括投影单元和眼部追踪单元。所述投影单元包括投影光源、投影透镜和空间光调制器;所述投影透镜位于所述投影光源和所述空间光调制器之间;在所述投影透镜的光轴方向上,所述投影透镜包括与所述空间光调制器重叠的第一透镜部分和不与所述空间光调制器重叠的第二透镜部分。所述眼部追踪单元包括相机;所述相机的成像光路穿过所述第二透镜部分。
本发明实施例提供的显示系统将投影透镜的边缘部分用作眼部追踪的成像镜头。投影单元的像方空间和眼部追踪单元的物方空间是重合的,因此可以在投影透镜的光轴方向上对眼部成像,而且有效利用了投影透镜的高通部分,从而实现精确的实时眼部追踪。本发明实施例的显示系统能够有利地使用在包括全息显示技术的显示领域中,简化光学设计,获得紧凑和高效的光学系统。
可选地,所述显示系统还包括位于所述投影透镜和所述投影光源之间的分束器;所述分束器配置为将来自所述第二透镜部分的光反射至所述相机。
利用分束器,在不改变投影光路的情况下,不仅实现了常规的投影成像,还能够利用所述第二透镜部分对诸如用户眼部的目标进行成像。
可选地,所述分束器是分光片或分光棱镜。
采用分光片或分光棱镜,不需要考虑光束的偏振方向,投影单元和眼部追踪单元的设置较为简单。
可选地,所述分束器是偏振分光棱镜。
采用偏振分光棱镜,并将以上两个光束的偏振方向设置为相互垂直,从而将投影单元和眼部追踪单元的光束完全分离,避免了投影单元和眼部追踪单元之间的串扰。
可选地,所述眼部追踪单元还包括照明光源;所述照明光源配置为经由所述第二透镜部分向观察者的眼部提供照明。
利用上述配置,即使在昏暗的环境中,也能够利用主动的照明光源来实现精确的眼部追踪。
可选地,所述照明光源包括红外光源。
照明光源发出的光束一般用于照明用户的眼部,因此使用红外光源作为照明光源,能够减少对用户眼部的刺激或干扰。
可选地,所述投影透镜仅包括一个透镜。
为了简化系统结构,可以仅使用一个透镜进行投影。
可选地,所述投影透镜包括多个透镜。
使用投影透镜组(即,多个透镜)进行投影,可以对投影进行灵活的调节,满足多种设计需求。
可选地,所述投影透镜具有圆形的形状;所述空间光调制器具有矩形的形状。
利用上述布置,对应于所述空间光调制器的第一透镜部分具有矩形的形状;同时,所述投影透镜的边缘部分(即所述第二透镜部分)仍然具有成像功能,从而实现对用户眼部的成像。类似地,所述投影透镜和所述空间光调制器还可以分别具有其他的形状,只要在所述投影透镜的光轴方向上,所述投影透镜包括与所述空间光调制器重叠的第一透镜部分和不与所述空间光调制器重叠的第二透镜部分即可。
可选地,所述投影光源包括激光器。并且可选地,所述投影单元还包括依次布置在所述投影光源和所述投影透镜之间的扩束器、显微物镜、针孔滤波器和矩形光阑。
使用针孔滤波器,投影光源提供了近似点光源的照明,不允许其他空间频率的光通过,消除了杂散光。利用激光光源,激光光束经由所述空间光调制器的调制,可以实现全息显示。
可选地,所述第二透镜部分位于所述第一透镜部分的周边。
使用位于所述第一透镜部分的周边的第二透镜部分,有效利用了投影透镜的高通部分,从而实现精确的实时眼部追踪。
根据本发明的另一个方面,本发明实施例提供了一种显示方法。所述方法包括:利用投影光源、投影透镜和空间光调制器进行投影;在所述投影透镜的光轴方向上,所述投影透镜包括与所述空间光调制器重叠的第一透镜部分和不与所述空间光调制器重叠的第二透镜部分;以及利用相机进行眼部追踪,其中所述相机利用所述第二透镜部分进行成像。
本发明实施例提供的显示方法将显示系统中的投影透镜的边缘部分用作眼部追踪的成像镜头。投影单元的像方空间和眼部追踪单元的物方空间是重合的,因此可以在投影透镜的光轴方向上对眼部成像,而且有效利用了投影透镜的高通部分,从而实现精确的实时眼部追踪。 本发明实施例的显示系统能够有利地使用在包括全息显示技术的显示领域中,简化光学设计,获得紧凑和高效的光学系统。
可选地,所述方法还包括利用位于所述投影透镜和所述投影光源之间的分束器,将来自所述第二透镜部分的光反射至所述相机。
利用分束器,在不改变投影光路的情况下,不仅实现了常规的投影成像,还能够利用所述第二透镜部分对诸如用户眼部的目标进行成像。
可选地,所述方法还包括:经由所述第二透镜部分向观察者的眼部提供照明。
利用上述配置,即使在昏暗的环境中,也能够利用主动的照明光源来实现精确的眼部追踪。
可选地,经由所述第二透镜部分向观察者的眼部提供照明包括:经由所述第二透镜部分向观察者的眼部提供红外照明。
照明光源发出的光束一般用于照明用户的眼部,因此使用红外光源作为照明光源,能够减少对用户眼部的刺激或干扰。
可选地,利用相机进行眼部追踪包括:利用虹膜与巩膜之间的边界确定眼部的方位角。
基于图像处理,利用虹膜与巩膜之间的边界可以容易地确定眼部的方位角。例如,可以将具有不同方位角的眼部经过透镜后直接成像在相机的不同位置上;在对方位角与成像位置进行标定后,只需确定相机接收的图像中眼部的坐标位置,即可计算出对应的方位角。
可选地,利用相机进行眼部追踪包括:利用眼部特征的清晰度确定眼部与投影透镜之间的距离。
在全息显示中,眼部与显示系统的距离是全息图计算的必要参数,在所述距离变化不大的时候,只考虑方位角即可。当所述距离变化较大时,还应当考虑距离的改变。对物体清楚成像时,相机的成像参数(例如但不限于:相机的可变焦镜组的焦距)与物距(即,眼部与相机的距离)存在对应关系,通过读取可变焦镜组的焦距可以知道眼部距离相机的距离,从而计算出眼部与投影透镜之间的距离。
附图说明
图1示出了根据本发明实施例的显示系统的结构示意图;
图2示出了根据本发明实施例的显示系统中的投影透镜和空间光调制器的示意图;
图3示出了透镜成像的空间频率的示意图;
图4示出了根据本发明另一实施例的显示系统的结构示意图;以及
图5示出了根据本发明实施例的显示方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明专利保护的范围。
根据本发明的一个方面,本发明实施例提供了一种显示系统。如图1和图2所示,所述显示系统100包括投影单元101和眼部追踪单元102。所述投影单元101包括投影光源10、投影透镜1011和空间光调制器1012;所述投影透镜1011位于所述投影光源101和所述空间光调制器1012之间;如图2所示,在所述投影透镜1011的光轴11方向上,所述投影透镜1011包括与所述空间光调制器1012重叠的第一透镜部分1013和不与所述空间光调制器1012重叠的第二透镜部分1014;所述眼部追踪单元102包括相机1021;所述相机1021的成像光路穿过所述第二透镜部分1014。在本申请的上下文中,“相机的成像光路”指的是用于在所述相机中成像的外界光线的传播路径。并且,术语“相机”指的是利用光学原理成像并记录影像的设备,其包括但不限于照相机和摄像机。
本发明实施例提供的显示系统将显示系统中的投影透镜1011的边缘部分用作眼部追踪的成像镜头。投影单元101的像方空间和眼部追踪单元102的物方空间是重合的,因此可以在投影透镜1011的光轴方向上对眼部103成像,而且有效利用了投影透镜1011的高通部分,从而实现精确的实时眼部追踪。本发明实施例的显示系统能够有利地使用在包括全息显示技术的显示领域中,简化光学设计,获得紧凑和高效的光学系统。
在成像光学系统中,透镜孔径的增加有利于提高成像光通量,从而增强成像检测系统在黑暗环境下的适应能力;同时,透镜孔径是光学成像分辨率的决定因素之一,而成像分辨率直接影响眼部检测的精度。因此,具有较大口径的成像透镜对眼部追踪是极为有利的。透镜成像如图3所示,物点201发出的光束沿光轴202通过透镜203成像到像点204,成像光束沿光轴成锥状分布。在傅立叶光学中,光线的空间频率f定义为光线与光轴夹角α的正弦值与波长的比值,即f=(sinα)/λ。随着夹角α的增大,对应的空间频率也增大。光学系统所能接收到的物体光线的最大空间频率决定了该光学系统的最大成像分辨率。成像过程中,像的整体明暗分布主要由近轴的低频光束形成,像的细节纹理主要由边缘的高频光束形成。在本发明的实施例中,近轴的低频信息被空降光调制器遮挡和调制,因此所述第二透镜部分构成一个高通滤波成像装置,所成的像主要包含物体的细节信息,包括亮度突变、纹理、区域界限等。因此,如图1和图2所示,在对眼部103成像时,所述第二透镜部分1014的高通成像特性恰好可以为图像识别追踪提供眼部附近的图像纹理等细节信息,有利于识别追踪。
可选地,如图1所示,所述显示系统100还可以包括位于所述投影透镜1011和所述投影光源10之间的分束器1015;所述分束器1015配置为将来自所述第二透镜部分1014的光反射至所述相机1021。
利用分束器1015,在不改变投影光路的情况下,不仅实现了常规的投影成像,还能够利用所述第二透镜部分1014对诸如用户眼部的目标进行成像。
可选地,所述分束器1015是分光片或分光棱镜。
采用分光片或分光棱镜,不需要考虑光束的偏振方向,投影单元和眼部追踪单元的设置较为简单。
可选地,所述分束器1015是偏振分光棱镜。
采用偏振分光棱镜,并将以上两个光束的偏振方向设置为相互垂直,从而将投影单元和眼部追踪单元的光束完全分离,避免了投影单元和眼部追踪单元之间的串扰。
可选地,所述眼部追踪单元102还包括照明光源1022;所述照明光源1022配置为经由所述第二透镜部分1014向观察者的眼部提供照明。
利用上述配置,即使在昏暗的环境中,也能够利用主动的照明光源来实现精确的眼部追踪。具体地,由于光路的可逆性,所述照明光源1022可以布置在例如所述相机1021的位置处,从而提供主动的照明。
可选地,所述照明光源1022包括红外光源。
照明光源发出的光束一般用于照明用户的眼部,因此使用红外光源作为照明光源,能够减少对用户眼部的刺激或干扰。
在以上实施例中,使用了投影透镜1011用于投影;然而本领域技术人员能够理解,也可以使用投影透镜组(即,多个透镜)替换所述投影透镜1011。如图4所示,可以利用投影透镜组1011’的边缘部分用作眼部追踪的成像镜头,从而实现精确的实时眼部追踪。
可选地,如图1所示,所述投影透镜1011仅包括一个透镜。
为了简化系统结构,可以仅使用一个透镜进行投影。
可选地,如图4所示,所述投影透镜1011’包括多个透镜。
使用投影透镜组(即,多个透镜)进行投影,可以对投影进行灵活的调节,满足多种设计需求。
可选地,如图2所示,所述投影透镜1011可以具有圆形的形状;所述空间光调制器1012可以具有矩形的形状。
利用上述布置,对应于所述空间光调制器的第一透镜部分1013具有矩形的形状;同时,所述投影透镜的边缘部分(即所述第二透镜部分1014)仍然具有成像功能,从而实现对用户眼部的成像。类似地,所述投影透镜和所述空间光调制器还可以分别具有其他的形状,只要在所述投影透镜的光轴方向上,所述投影透镜包括与所述空间光调制器重叠的第一透镜部分和不与所述空间光调制器重叠的第二透镜部分即可。
可选地,所述投影光源10包括激光器1017。并且可选地,所述投影单元101还包括依次布置在所述投影光源10和所述投影透镜1011之间的扩束器1018、显微物镜1019、针孔滤波器1016和矩形光阑(未示出)。
使用针孔滤波器1016,投影光源10提供了近似点光源的照明,不允许其他空间频率的光通过,消除了杂散光。利用激光器1017,激光光束经由所述空间光调制器1012的调制,可以实现全息显示。
可选地,如图2所示,所述第二透镜部分1014位于所述第一透镜部分1013的周边。
使用位于所述第一透镜部分的周边的第二透镜部分,有效利用了投影透镜的高通部分,从而实现精确的实时眼部追踪。
在一些实施例中,如图1和图4所示,所述显示系统100还可以包括位于所述空间光调制器1012下游的偏振片1020。利用偏振片和空间光调制器的协同工作,可以实现更好的全息显示效果。然而本领域技术人员能够理解,偏振片也可以形成在空间光调制器中,因此在本公开中不做限定。
根据本发明的另一个方面,本发明实施例提供了一种显示方法。如图5所示,所述方法500可以包括以下步骤:
S501利用投影光源、投影透镜和空间光调制器进行投影;在所述投影透镜的光轴方向上,所述投影透镜包括与所述空间光调制器重叠的第一透镜部分和不与所述空间光调制器重叠的第二透镜部分;以及
S502利用相机进行眼部追踪,其中所述相机利用所述第二透镜部分进行成像。
本发明实施例提供的显示方法将显示系统中的投影透镜的边缘部分用作眼部追踪的成像镜头。投影单元的像方空间和眼部追踪单元的物方空间是重合的,因此可以在投影透镜的光轴方向上对眼部成像,而且有效利用了投影透镜的高通部分,从而实现精确的实时眼部追踪。本发明实施例的显示方法能够有利地使用在包括全息显示技术的显示领域中,简化光学设计,获得紧凑和高效的光学系统。
可选地,如图5所示,所述方法还包括步骤S503:利用位于所述投影透镜和所述投影光源之间的分束器,将来自所述第二透镜部分的光反射至所述相机。
利用分束器,在不改变投影光路的情况下,不仅实现了常规的投影成像,还能够利用所述第二透镜部分对诸如用户眼部的目标进行成像。
可选地,如图5所示,所述方法还包括步骤S504:经由所述第二透镜部分向观察者的眼部提供照明。
利用上述配置,即使在昏暗的环境中,也能够利用主动的照明光源来实现精确的眼部追踪。
可选地,经由所述第二透镜部分向观察者的眼部提供照明包括:经由所述第二透镜部分向观察者的眼部提供红外照明。
照明光源发出的光束一般用于照明用户的眼部,因此使用红外光源作为照明光源,能够减少对用户眼部的刺激或干扰。
可选地,利用相机进行眼部追踪包括:利用虹膜与巩膜之间的边界确定眼部的方位角。
基于图像处理,利用虹膜与巩膜之间的边界可以容易地确定眼部的方位角。例如,可以将具有不同方位角的眼部经过透镜后直接成像在相机的不同位置上;在对方位角与成像位置进行标定后,只需确定相机接收的图像中眼部的坐标位置,即可计算出对应的方位角。
可选地,利用相机进行眼部追踪包括:利用眼部特征的清晰度确定眼部与投影透镜之间的距离。
在全息显示中,眼部与显示系统的距离是全息图计算的必要参数,在所述距离变化不大的时候,只考虑方位角即可。当所述距离变化较大时,还应当考虑距离的改变。对物体清楚成像时,相机的成像参数(例如但不限于:相机的可变焦镜组的焦距)与物距(即,眼部与相机的距离)存在对应关系,通过读取可变焦镜组的焦距可以知道眼部距离相机的距离,从而计算出眼部与投影透镜之间的距离。
本发明实施例提供的显示系统和显示方法将显示系统中的投影透镜的边缘部分用作眼部追踪的成像镜头。投影单元的像方空间和眼部追踪单元的物方空间是重合的,因此可以在投影透镜的光轴方向上对眼部成像,而且有效利用了投影透镜的高通部分,从而实现精确的实时眼部追踪。本发明实施例的显示系统和显示方法能够有利地使用在包括全息显示技术的显示领域中,简化光学设计,获得紧凑和高效的光学系统。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型。

Claims (18)

  1. 一种显示系统,包括投影单元和眼部追踪单元;
    所述投影单元包括投影光源、投影透镜和空间光调制器;所述投影透镜位于所述投影光源和所述空间光调制器之间;在所述投影透镜的光轴方向上,所述投影透镜包括与所述空间光调制器重叠的第一透镜部分和不与所述空间光调制器重叠的第二透镜部分;以及
    所述眼部追踪单元包括相机;所述相机的成像光路穿过所述第二透镜部分。
  2. 如权利要求1所述的显示系统,还包括位于所述投影透镜和所述投影光源之间的分束器;所述分束器配置为将来自所述第二透镜部分的光反射至所述相机。
  3. 如权利要求2所述的显示系统,其中所述分束器是分光片或分光棱镜。
  4. 如权利要求2所述的显示系统,其中所述分束器是偏振分光棱镜。
  5. 如权利要求1所述的显示系统,其中所述眼部追踪单元还包括照明光源;所述照明光源配置为经由所述第二透镜部分向观察者的眼部提供照明。
  6. 如权利要求5所述的显示系统,其中所述照明光源包括红外光源。
  7. 如权利要求1所述的显示系统,其中所述投影透镜仅包括一个透镜。
  8. 如权利要求1所述的显示系统,其中所述投影透镜包括多个透镜。
  9. 如权利要求1所述的显示系统,其中所述投影透镜具有圆形的形状;所述空间光调制器具有矩形的形状。
  10. 如权利要求1所述的显示系统,其中所述投影光源包括激光器。
  11. 如权利要求1所述的显示系统,其中所述投影单元还包括依次布置在所述投影光源和所述投影透镜之间的扩束器、显微物镜、针孔滤波器和矩形光阑。
  12. 如权利要求1所述的显示系统,其中所述第二透镜部分位于所 述第一透镜部分的周边。
  13. 一种显示方法,包括:
    利用投影光源、投影透镜和空间光调制器进行投影;在所述投影透镜的光轴方向上,所述投影透镜包括与所述空间光调制器重叠的第一透镜部分和不与所述空间光调制器重叠的第二透镜部分;以及
    利用相机进行眼部追踪,其中所述相机利用所述第二透镜部分进行成像。
  14. 如权利要求13所述的显示方法,还包括:利用位于所述投影透镜和所述投影光源之间的分束器,将来自所述第二透镜部分的光反射至所述相机。
  15. 如权利要求13所述的显示方法,还包括:经由所述第二透镜部分向观察者的眼部提供照明。
  16. 如权利要求15所述的显示方法,其中经由所述第二透镜部分向观察者的眼部提供照明包括:经由所述第二透镜部分向观察者的眼部提供红外照明。
  17. 如权利要求13所述的显示方法,其中利用相机进行眼部追踪包括:利用虹膜与巩膜之间的边界确定眼部的方位角。
  18. 如权利要求13所述的显示方法,其中利用相机进行眼部追踪包括:利用眼部特征的清晰度确定眼部与投影透镜之间的距离。
PCT/CN2017/079692 2016-07-22 2017-04-07 显示系统和显示方法 WO2018014595A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/567,416 US10503251B2 (en) 2016-07-22 2017-04-07 Display system and display method
JP2017554597A JP6963506B2 (ja) 2016-07-22 2017-04-07 表示システムおよび表示方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610581791.0 2016-07-22
CN201610581791.0A CN105954992B (zh) 2016-07-22 2016-07-22 显示系统和显示方法

Publications (1)

Publication Number Publication Date
WO2018014595A1 true WO2018014595A1 (zh) 2018-01-25

Family

ID=56901047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079692 WO2018014595A1 (zh) 2016-07-22 2017-04-07 显示系统和显示方法

Country Status (4)

Country Link
US (1) US10503251B2 (zh)
JP (1) JP6963506B2 (zh)
CN (1) CN105954992B (zh)
WO (1) WO2018014595A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105954992B (zh) * 2016-07-22 2018-10-30 京东方科技集团股份有限公司 显示系统和显示方法
CN106406063A (zh) * 2016-10-28 2017-02-15 京东方科技集团股份有限公司 全息显示系统和全息显示方法
CN106773588B (zh) * 2017-01-03 2019-07-23 京东方科技集团股份有限公司 一种全息显示装置及其控制方法
EP3443883B1 (de) * 2017-08-14 2020-07-29 Carl Zeiss Vision International GmbH Vorrichtungen und verfahren zur durchführung augenbezogener messungen
US20200264560A1 (en) * 2017-12-08 2020-08-20 Duan-Jun Chen Rectilinear-transforming digital holography in compression domain (rtdh-cd) for real-and-virtual orthoscopic three-dimensional display (rv-otdd)
CN108762483B (zh) * 2018-04-16 2021-02-09 广景视睿科技(深圳)有限公司 一种互动投影仪及互动投影方法
US10884240B2 (en) * 2018-07-04 2021-01-05 Samsung Electronics Co., Ltd. Holographic display device having reduced chromatic aberration
CN111123525A (zh) * 2020-01-21 2020-05-08 奥提赞光晶(山东)显示科技有限公司 一种集成瞳孔追踪功能的全息智能显示装置及实现方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008028829A1 (de) * 2006-09-05 2008-03-13 Seereal Technologies S.A. Vorrichtung und verfahren zum nachführen eines betrachterfensters
CN101176043A (zh) * 2005-05-13 2008-05-07 视瑞尔技术公司 用于场景全息再现的投射装置和方法
CN104407440A (zh) * 2014-11-19 2015-03-11 东南大学 具有视线跟踪功能的全息显示装置
CN105652444A (zh) * 2016-01-18 2016-06-08 北京国承万通信息科技有限公司 显示装置
CN105785571A (zh) * 2014-09-30 2016-07-20 全视技术有限公司 利用同轴眼睛成像的近眼显示装置及方法
CN105954992A (zh) * 2016-07-22 2016-09-21 京东方科技集团股份有限公司 显示系统和显示方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE209364T1 (de) * 1996-03-15 2001-12-15 Retinal Display Cayman Ltd Verfahren und vorrichtung zur betrachtung eines bildes
GB9823977D0 (en) * 1998-11-02 1998-12-30 Scient Generics Ltd Eye tracking method and apparatus
US6433760B1 (en) * 1999-01-14 2002-08-13 University Of Central Florida Head mounted display with eyetracking capability
CA2364601A1 (en) * 2001-12-03 2003-06-03 Utar Scientific Inc. Computer-assisted hologram forming method and apparatus
WO2005086766A2 (en) * 2004-03-05 2005-09-22 Actuality Systems, Inc Optical systems for generating three-dimensional images
US7522344B1 (en) * 2005-12-14 2009-04-21 University Of Central Florida Research Foundation, Inc. Projection-based head-mounted display with eye-tracking capabilities
US8520191B2 (en) * 2008-09-05 2013-08-27 3Dewitt, Llc Slit aperture for diffraction range finding system
US8998414B2 (en) * 2011-09-26 2015-04-07 Microsoft Technology Licensing, Llc Integrated eye tracking and display system
US20130089240A1 (en) * 2011-10-07 2013-04-11 Aoptix Technologies, Inc. Handheld iris imager
EP3761072A1 (en) * 2012-01-24 2021-01-06 Augmented Vision Inc. Compact eye-tracked head-mounted display
KR102124632B1 (ko) * 2012-01-26 2020-06-22 시리얼 테크놀로지즈 에스.에이. 관찰자 추적 방식 디스플레이
KR101831247B1 (ko) * 2012-01-31 2018-02-22 한국전자통신연구원 다층 신경망을 이용한 시선 추적 시스템의 초점 측정 장치
JP5943079B2 (ja) * 2012-08-08 2016-06-29 株式会社ニコン 頭部搭載型ディスプレイ用光学系および頭部搭載型ディスプレイ
US9788714B2 (en) * 2014-07-08 2017-10-17 Iarmourholdings, Inc. Systems and methods using virtual reality or augmented reality environments for the measurement and/or improvement of human vestibulo-ocular performance
CN103248905A (zh) * 2013-03-22 2013-08-14 深圳市云立方信息科技有限公司 一种模仿全息3d场景的显示装置和视觉显示方法
US10228561B2 (en) * 2013-06-25 2019-03-12 Microsoft Technology Licensing, Llc Eye-tracking system using a freeform prism and gaze-detection light
US20150185484A1 (en) * 2013-12-30 2015-07-02 Electronics And Telecommunications Research Institute Pupil tracking apparatus and method
KR20150086799A (ko) * 2014-01-20 2015-07-29 한국전자통신연구원 휴대용 디바이스를 위한 광섬유 어레이 백라이트를 이용한 홀로그래픽 디스플레이 장치 및 방법
CN106258010B (zh) * 2014-02-04 2019-11-22 弗劳恩霍夫应用研究促进协会 2d图像分析器
US10203762B2 (en) * 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
EP3206562A1 (en) * 2014-10-17 2017-08-23 Optimedica Corporation Automatic patient positioning within a laser eye surgery system
US10006860B2 (en) * 2015-01-28 2018-06-26 The School Corporation Kansai University Digital holography recording device, digital holography playback device, digital holography recording method, and digital holography playback method
US10082521B2 (en) * 2015-06-30 2018-09-25 Faro Technologies, Inc. System for measuring six degrees of freedom
TWI570638B (zh) * 2015-07-29 2017-02-11 財團法人資訊工業策進會 凝視分析方法與裝置
CN108369653B (zh) * 2015-10-16 2021-12-14 奇跃公司 使用眼睛特征的眼睛姿态识别
DE102015221774B4 (de) * 2015-11-05 2019-10-17 Agrippa Holding & Consulting Gmbh Optisches System und Verfahren zur Erzeugung eines zwei- oder dreidimensionalen Bildes
EP3371973B1 (en) * 2015-11-06 2023-08-09 Facebook Technologies, LLC Eye tracking using a diffraction pattern of coherent light on the surface of the eye
CA2995746C (en) * 2015-11-25 2020-06-30 Google Llc Prism-based eye tracking
US9964925B2 (en) * 2015-12-29 2018-05-08 Oculus Vr, Llc Holographic display architecture
US9964768B2 (en) * 2016-03-04 2018-05-08 Sharp Kabushiki Kaisha Head mounted display using spatial light modulator to generate a holographic image
US20170255012A1 (en) * 2016-03-04 2017-09-07 Sharp Kabushiki Kaisha Head mounted display using spatial light modulator to move the viewing zone
US20180122143A1 (en) * 2016-03-15 2018-05-03 Sutherland Cook Ellwood, JR. Hybrid photonic vr/ar systems
DE112017001326T5 (de) * 2016-03-16 2018-12-27 Seereal Technologies S.A. Anzeige für zweidimensionale und/oder dreidimensionale Bilder
US10310355B2 (en) * 2016-08-01 2019-06-04 Boulder Nonlinear Systems, Inc. Reflective spatial light modulator with high spatial frequency border

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101176043A (zh) * 2005-05-13 2008-05-07 视瑞尔技术公司 用于场景全息再现的投射装置和方法
WO2008028829A1 (de) * 2006-09-05 2008-03-13 Seereal Technologies S.A. Vorrichtung und verfahren zum nachführen eines betrachterfensters
CN105785571A (zh) * 2014-09-30 2016-07-20 全视技术有限公司 利用同轴眼睛成像的近眼显示装置及方法
CN104407440A (zh) * 2014-11-19 2015-03-11 东南大学 具有视线跟踪功能的全息显示装置
CN105652444A (zh) * 2016-01-18 2016-06-08 北京国承万通信息科技有限公司 显示装置
CN105954992A (zh) * 2016-07-22 2016-09-21 京东方科技集团股份有限公司 显示系统和显示方法

Also Published As

Publication number Publication date
JP2019532676A (ja) 2019-11-14
CN105954992B (zh) 2018-10-30
CN105954992A (zh) 2016-09-21
US10503251B2 (en) 2019-12-10
JP6963506B2 (ja) 2021-11-10
US20180292898A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
WO2018014595A1 (zh) 显示系统和显示方法
JP7125423B2 (ja) スキューミラー補助画像化
JP2019532676A5 (zh)
JP3059590B2 (ja) 立体表示方法及び装置
EP0597477A1 (en) Image display apparatus
US11397368B1 (en) Ultra-wide field-of-view scanning devices for depth sensing
CN110376739B (zh) 一种基于光偏振方向大出瞳快速计算的全息平面混合近眼显示系统
TW202016604A (zh) 光傳遞模組以及頭戴式顯示裝置
EP3528058A1 (en) Holographic display apparatus for providing expanded viewing window
US11320785B2 (en) Holographic optical element and manufacturing method thereof, image reconstruction method and augmented reality glasses
JP7347684B2 (ja) ホログラフィックディスプレイの0次光を低減するための光アセンブリ及び方法
EP3531214B1 (en) Holographic display device and control method thereof
US10775607B2 (en) Backlight module, holographic display device and holographic display method thereof
JP3698582B2 (ja) 画像表示装置
JPH05210069A (ja) 光学装置および表示装置
KR20130011421A (ko) 홀로그래픽 3차원 영상 표시장치
CN110389449B (zh) 一种基于光波长范围大出瞳快速计算的全息平面混合近眼显示系统
JP2013104964A (ja) ホログラフィックディスプレイ装置
US20230244185A1 (en) Phase plate and fabrication method for color-separated laser backlight in display systems
TW202338411A (zh) 用於顯示系統中分色雷射背光的相位板和製造方法
KIM et al. Supplementary Material for Foveated AR: Dynamically-Foveated Augmented Reality Display
KR20150078397A (ko) 영상 표시장치
WO2023147162A1 (en) Phase plate and fabrication method for color-separated laser backlight in display systems
CN117930510A (zh) 斜交镜辅助成像
WO2023031933A1 (en) Dynamic parallel monocular projection

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017554597

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15567416

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17830233

Country of ref document: EP

Kind code of ref document: A1