WO2018014465A1 - Filtration media and coalescing filter to remove water from liquid hydrocarbons - Google Patents

Filtration media and coalescing filter to remove water from liquid hydrocarbons Download PDF

Info

Publication number
WO2018014465A1
WO2018014465A1 PCT/CN2016/104918 CN2016104918W WO2018014465A1 WO 2018014465 A1 WO2018014465 A1 WO 2018014465A1 CN 2016104918 W CN2016104918 W CN 2016104918W WO 2018014465 A1 WO2018014465 A1 WO 2018014465A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration media
coalescing filter
stainless steel
steel fibers
austenitic stainless
Prior art date
Application number
PCT/CN2016/104918
Other languages
French (fr)
Inventor
Zhong Wang
Xiangdong YAO
Hongbin LV
Aurelie GOUX
Jeremie De Baerdemaeker
Original Assignee
Nv Bekaert Sa
Bekaert New Materials (Suzhou) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nv Bekaert Sa, Bekaert New Materials (Suzhou) Co., Ltd. filed Critical Nv Bekaert Sa
Publication of WO2018014465A1 publication Critical patent/WO2018014465A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/045Breaking emulsions with coalescers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/08Thickening liquid suspensions by filtration
    • B01D17/10Thickening liquid suspensions by filtration with stationary filtering elements

Definitions

  • the invention relates to the technical field of filtration media and to the field of coalescing filters that are used for the removal of water from liquid hydrocarbons.
  • US 6395184B1 discloses a method and apparatus for water removal from oil, oil products, gas condensate, and liquid hydrocarbons.
  • the water removal is implemented via the selective filtration of hydrocarbons through a filtering element consisting of three tilted beds.
  • the first and the third beds are made of a porous-cellular metal or alloy with hydrophobic surface, while the intermediate bed is made of hydrophilic materials such as porous-cellular metal or alloy with modified surface, celluloid foam or the cartridges filled with glass balls or glass fiber.
  • the objective of the invention is to provide an improved filter media for the removal of water from liquid hydrocarbons.
  • the first aspect of the invention is a filtration media comprising-and preferably consisting out of-a nonwoven web of austenitic stainless steel fibers.
  • the austenitic steel fibers have an equivalent diameter of less than 25 ⁇ m; preferably of less than 20 ⁇ m, more preferably less than 10 ⁇ m; even more preferably less than 5 ⁇ m; even more preferably less than 4 ⁇ m.
  • the austenitic stainless steel fibers of the nonwoven web are metallurgically bonded to each other at contacting points between stainless steel fibers. With metallurgically bonded nonwoven web of austenitic stainless steel fibers is meant that metallurgical bonds are formed between austenitic stainless steel fibers contacting each other in the nonwoven web.
  • the metallurgical bonds can be sinter bonds or welded bonds, e.g. welded bonds established by means of Capacity Discharge Welding (CDW) .
  • CDW Capacity Discharge Welding
  • the surface of the austenitic stainless steel fibers comprises Fe 2 O 3 in a hematite crystallographic structure.
  • the filtration media provides excellent results over a long lifetime, even in discontinuous operation, in coalescing applications for the removal of water from liquid hydrocarbons.
  • discontinuous operation is meant that the filtration media is not used during a certain time frame, after which its use is resumed.
  • the specific surface of the austenitic stainless steel fibers is such that for coalescing of water from liquid hydrocarbons, an improved balance of affinity of the surface for water and for liquid hydrocarbons is obtained.
  • equivalent diameter of a fiber is meant the diameter of the circle having the same surface area as the area of the cross section of the fiber; cross section which is not necessarily circular.
  • a surface of the austenitic stainless steel fibers comprising Fe 2 O 3 in a hematite crystallographic structure can be obtained by a thermal treatment of the nonwoven web in air atmosphere at a temperature between 200°C and 400°C (more preferably between 200°C and 350°C) , preferably after metallurgically bonding the stainless steel fibers to each other.
  • the hematite structure has an alpha-hematite structure.
  • the thickness of the oxide layer of the stainless steel fibers is less than 15 nm, preferably less than 12 nm, more preferably less than 10 nm.
  • the thickness of the oxide layer is determined as the depth from the surface at which the amount of metallic iron is equal to the amount of iron in iron oxides as can be determined via XPS (X-ray photoelectron spectroscopy) measurement.
  • the contact angle of water on the filtration media is less than 50°.
  • more than 40 atomic percent-and preferably more than 45 atomic percent; even more preferably more than 50 atomic percent-of the Fe in the oxide layer is present as Fe3 + .
  • the surface of the austenitic stainless steel fibers does not comprise a polymeric coating. It also means that the surface of the austenitic stainless steel fibers does not comprise a fluorocarbon coating.
  • the austenitic stainless steel fibers are preferably made via bundled drawing. Bundled drawing is described e.g. in US-A-2050298, US-A-3277564 and in US-A-3394213. Austenitic stainless steel fibers produced via bundled drawing have a typical polygonal cross section allowing identification that the fibers have been produced by bundled drawing.
  • a preferred austenitic stainless steel alloy for use in the invention is alloy 316 according to ASTM A240 (and more specifically according to ASTM A240 /A240M-15a, Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications, ASTM International, West Conshohocken, PA, 2015) .
  • the porosity of the nonwoven web of austenitic stainless steel fibers is preferably more the 80%; and preferably less than 90%. Such embodiments provide best results in coalescing applications.
  • a second aspect of the invention is a coalescing filter for the separation of water out of liquid hydrocarbons.
  • the coalescing filter comprises at least one filtration media as in any embodiment of the first aspect of the invention.
  • the coalescing filter comprises a plurality of filtration media as in any embodiment of the first aspect of the invention. More preferably, the coalescing filter comprises at least two filtration media as in any embodiment of the first aspect of the invention.
  • the two filtration media are spaced in the coalescing filter by a drainage layer.
  • the drainage layer is provided out of another material than austenitic stainless steel.
  • the drainage layer can be provided out of organic fibers.
  • the drainage layer can comprise or consist out of a polyester fiber nonwoven fabric.
  • a preferred coalescing filter comprises a first filtration media as in the first aspect of the invention and a second filtration media as in the first aspect of the invention.
  • the first filtration media comprises-and preferably consists out of-austenitic stainless steel fibers having an equivalent diameter less than 3 ⁇ m.
  • the second filtration media comprises-and preferably consists out of-austenitic stainless steel fibers having an equivalent diameter less than 6 ⁇ m and wherein the equivalent diameter differs from the equivalent diameter of the austenitic stainless steel fibers of the first filtration media.
  • Such coalescing filters provide improved efficiency of coalescence, especially in discontinuous operation of the coalescing filter.
  • a preferred coalescing filter comprises a filtration layer of organic fibers-preferably a nonwoven web of organic fibers, e.g. polyester fibers-in fluid flow direction downstream from a filtration media according to the first aspect of the invention.
  • the filtration layer of organic fibers is in contact with the filtration media according to the first aspect of the invention.
  • the filtration media out of austenitic stainless steel fibers is provided for coalescing water drops out of the liquid hydrocarbon, thereby increasing the size of the water drops.
  • the filtration layer of organic fibers is provided to drain the water drops out of the coalescing filter.
  • a preferred coalescing filter comprises a succession of pairs of layers.
  • Each pair of layers comprises a filtration media as in the first aspect of the invention; and a filtration layer of organic fibers-preferably a nonwoven web of organic fibers, e.g. polyester fibers-in fluid flow direction downstream from the filtration media; and preferably in contact with the filtration media.
  • the filtration media out of austenitic stainless steel fibers are provided for coalescing water drops out of the liquid hydrocarbon, thereby increasing the size of the water drops.
  • the filtration layers of organic fibers are provided to drain the water drops out of the coalescing filter.
  • the filtration media of a first pair of layers comprises austenitic stainless steel fibers of lower equivalent diameter than the filtration media of a pair of layers in fluid flow direction downstream from the first pair of layers. Such arrangement has shown to provide improved efficiency of the coalescing filter.
  • a preferred coalescing filter comprises a metal mesh, e.g. a woven wire mesh.
  • the metal mesh can e.g. be provided at the fluid flow exit of the coalescing filter; or as layer inside the coalescing filter.
  • the coalescing filter is a pleated filter.
  • the coalescing filter is a pleated candle.
  • the coalescing filter is provided for fluid flow from the inside to the outside of the pleated candle.
  • a third aspect of the invention is a method for removing water from liquid hydrocarbons.
  • the method uses a coalescing filter as in any embodiment of the second aspect of the invention. Liquid hydrocarbon comprising water is flown through the coalescing filter, in order to coalesce and remove water.
  • a first filtration media that has been made is a sintered nonwoven web consisting out of 2 ⁇ m equivalent diameter bundled drawn austenitic stainless steel fibers out of alloy 316.
  • the first filtration media has a specific mass of 750 g/m 2 and 88%porosity.
  • the sintered nonwoven web has been treated at 300°C.
  • the surface morphology of the austenitic stainless steel fibers is not modified by the thermal treatment compared to the morphology after sintering the nonwoven web.
  • the surface of the austenitic stainless steel fibers comprises Fe 2 O 3 in a hematite crystallographic structure.
  • the thickness of the oxide layer was 10 nm. The thickness of the oxide layer is determined as the depth from the surface at which the amount of metallic iron is equal to the amount of iron in iron oxides, as determined via XPS measurement.
  • the contact angle to diiodomethane on the first filtration media has been measured; the result was a contact angle of about 45°. If the thermal treatment at 300°C was maintained longer, e.g. 10 minutes after gradual heating up to 300°C, the contact angle was about 37°. The contact angle to diiodomethane has also been measured on the sintered nonwoven web before performing the thermal treatment at 300°C, the contact angle is such condition was about 50°.
  • a second filtration media that has been made is a sintered nonwoven web consisting out of 4 ⁇ m equivalent diameter bundled drawn austenitic stainless steel fibers out of alloy 316.
  • the first filtration media has a specific mass of 750 g/m 2 and 88%porosity.
  • the sintered nonwoven web has been treated at 300°C.
  • the surface morphology of the austenitic stainless steel fibers is not modified by the thermal treatment compared to the morphology after sintering the nonwoven web.
  • the surface of the austenitic stainless steel fibers comprises Fe 2 O 3 in a hematite crystallographic structure.
  • a layer of the first filtration media (750 g/m 2 ) . This layer functions to increase the water drops of the water comprising liquid hydrocarbon from which the water needs to be eliminated through coalescing filtration;
  • filtration layer of 40 g/m 2 of a polyester fiber nonwoven.
  • the polyester fibers are 4 denier fibers having a trilobal cross section. This filtration layer acts as drainage layer in the coalescing filter;
  • This layer functions to increase the water drops of the water comprising liquid hydrocarbon from which the water needs to be eliminated through coalescing filtration;
  • filtration layer of 40 g/m 2 of a polyester fiber nonwoven.
  • the polyester fibers are 4 denier fibers having a trilobal cross section. This filtration layer acts as drainage layer in the coalescing filter;
  • pleated coalescing filter candles have been made with a pleat height 22 mm and with 15 pleats around the circumference of the pleated candle.
  • the candles have been tested and have shown excellent performance and long performing lifetime for the removal of water from kerosene.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)

Abstract

A filtration media comprises a nonwoven web of austenitic stainless steel fibers. The austenitic steel fibers have an equivalent diameter less than 25μm. The austenitic stainless steel fibers of the nonwoven web are metallurgically bonded to each other at contacting points between stainless steel fibers. The surface of the austenitic stainless steel fibers comprises Fe2O3 in a hematite crystallographic structure.

Description

FILTRATION MEDIA AND COALESCING FILTER TO REMOVE WATER FROM LIQUID HYDROCARBONS Description Technical Field
The invention relates to the technical field of filtration media and to the field of coalescing filters that are used for the removal of water from liquid hydrocarbons.
Background Art
US 6395184B1 discloses a method and apparatus for water removal from oil, oil products, gas condensate, and liquid hydrocarbons. The water removal is implemented via the selective filtration of hydrocarbons through a filtering element consisting of three tilted beds. The first and the third beds are made of a porous-cellular metal or alloy with hydrophobic surface, while the intermediate bed is made of hydrophilic materials such as porous-cellular metal or alloy with modified surface, celluloid foam or the cartridges filled with glass balls or glass fiber.
Disclosure of Invention
The objective of the invention is to provide an improved filter media for the removal of water from liquid hydrocarbons.
The first aspect of the invention is a filtration media comprising-and preferably consisting out of-a nonwoven web of austenitic stainless steel fibers. The austenitic steel fibers have an equivalent diameter of less than 25 μm; preferably of less than 20 μm, more preferably less than 10 μm; even more preferably less than 5 μm; even more preferably less than 4 μm. The austenitic stainless steel fibers of the nonwoven web are metallurgically bonded to each other at contacting points between stainless steel fibers. With metallurgically bonded nonwoven web of austenitic stainless steel fibers is meant that metallurgical bonds are formed between austenitic stainless steel fibers contacting each other in the nonwoven web. The metallurgical bonds can be sinter bonds or welded bonds, e.g. welded bonds established by means of Capacity Discharge Welding (CDW) . The surface of the austenitic stainless steel fibers comprises Fe2O3 in a hematite crystallographic structure.
The filtration media provides excellent results over a long lifetime, even in discontinuous operation, in coalescing applications for the removal of water from liquid hydrocarbons. With discontinuous operation is meant that the filtration media is not used during a certain time frame, after which its use is resumed. Although the functioning is not well understood, it is believed that the specific surface of the austenitic stainless steel fibers is such that for coalescing of water from liquid hydrocarbons, an improved balance of affinity of the surface for water and for liquid hydrocarbons is obtained.
With equivalent diameter of a fiber is meant the diameter of the circle having the same surface area as the area of the cross section of the fiber; cross section which is not necessarily circular.
A surface of the austenitic stainless steel fibers comprising Fe2O3 in a hematite crystallographic structure can be obtained by a thermal treatment of the nonwoven web in air atmosphere at a temperature between 200℃ and 400℃ (more preferably between 200℃ and 350℃) , preferably after metallurgically bonding the stainless steel fibers to each other.
Using high resolution XPS (X-ray photoelectron spectroscopy) the different types of oxides of iron in the oxide layer of austenitic stainless steel can be quantitatively analysed over the thickness of the oxide layer; because the peak positions of iron depend on the ionic states of iron. To this end, appropriate curve fitting techniques are used; using specific curve fitting software as provided by suppliers of high resolution XPS equipment. In such analysis, care should be taken: as there could always be some surface contamination; the first measurement point should be disregarded.
In preferred embodiments, the hematite structure has an alpha-hematite structure.
In a preferred embodiment, the thickness of the oxide layer of the stainless steel fibers is less than 15 nm, preferably less than 12 nm, more preferably less than 10 nm. The thickness of the oxide layer is determined as the depth from the surface at which the amount of metallic iron is equal to the amount of iron in iron oxides as can be determined via XPS (X-ray photoelectron spectroscopy) measurement.
In preferred embodiments of the invention, the contact angle of water on the filtration media is less than 50°.
In a preferred filtration media, more than 40 atomic percent-and preferably more than 45 atomic percent; even more preferably more than 50 atomic percent-of the Fe in the oxide layer is present as Fe3+.
In preferred embodiments of the invention, the surface of the austenitic stainless steel fibers does not comprise a polymeric coating. It also means that the surface of the austenitic stainless steel fibers does not comprise a fluorocarbon coating.
In embodiments of the invention, the austenitic stainless steel fibers are preferably made via bundled drawing. Bundled drawing is described e.g. in US-A-2050298, US-A-3277564 and in US-A-3394213. Austenitic stainless steel fibers produced via bundled drawing have a typical polygonal cross section allowing identification that the fibers have been produced by bundled drawing.
A preferred austenitic stainless steel alloy for use in the invention is alloy 316 according to ASTM A240 (and more specifically according to ASTM A240 /A240M-15a, Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications, ASTM International, West Conshohocken, PA, 2015) .
For embodiments of invention, the porosity of the nonwoven web of austenitic stainless steel fibers is preferably more the 80%; and preferably less than 90%. Such embodiments provide best results in coalescing applications.
A second aspect of the invention is a coalescing filter for the separation of water out of liquid hydrocarbons. The coalescing filter comprises at least one filtration media as in any embodiment of the first aspect of the invention.
Preferably, the coalescing filter comprises a plurality of filtration media as in any embodiment of the first aspect of the invention. More preferably, the coalescing filter comprises at least two filtration media as in any embodiment of the first aspect of the invention. The two filtration media are spaced in the coalescing filter by a drainage layer. The drainage layer is provided out of another material than austenitic stainless steel. As an example, the drainage layer can be provided out of organic fibers. As an example, the drainage layer can comprise or consist out of a polyester fiber nonwoven fabric.
A preferred coalescing filter comprises a first filtration media as in the first aspect of the invention and a second filtration media as in the first aspect of the invention. The first filtration media comprises-and preferably consists out of-austenitic stainless steel fibers having an equivalent diameter less than 3 μm. The second filtration media comprises-and preferably consists out of-austenitic stainless steel fibers having an equivalent diameter less than 6 μm and wherein the equivalent diameter differs from the equivalent diameter of the austenitic stainless steel fibers of the first filtration media. Such coalescing filters provide improved efficiency of coalescence, especially in discontinuous operation of the coalescing filter.
A preferred coalescing filter comprises a filtration layer of organic fibers-preferably a nonwoven web of organic fibers, e.g. polyester fibers-in fluid flow direction downstream from a filtration media according to the first aspect of the invention. Preferably, the filtration layer of organic fibers is in contact with the filtration media according to the first aspect of the invention. The filtration media out of austenitic stainless steel fibers is provided for coalescing water drops out of the liquid hydrocarbon, thereby increasing the size of the water drops. The filtration layer of organic fibers is provided to drain the water drops out of the coalescing filter.
A preferred coalescing filter comprises a succession of pairs of layers. Each pair of layers comprises a filtration media as in the first aspect of the invention; and a filtration layer of organic fibers-preferably a nonwoven web of organic fibers, e.g. polyester fibers-in fluid flow direction downstream from the filtration media; and preferably in contact with the filtration media. The filtration media out of austenitic stainless steel fibers are provided for coalescing water drops out of the liquid hydrocarbon, thereby increasing the size of the water drops. The filtration layers of organic fibers are provided to drain the water drops out of the coalescing filter. More preferably, the filtration media of a first pair of layers comprises austenitic stainless steel fibers of lower equivalent diameter than the filtration media of a pair of layers in fluid flow direction downstream from the first pair of layers. Such arrangement has shown to provide improved efficiency of the coalescing filter.
A preferred coalescing filter comprises a metal mesh, e.g. a woven wire mesh. The metal mesh can e.g. be provided at the fluid flow exit of the coalescing filter; or as layer inside the coalescing filter.
In a preferred embodiment, the coalescing filter is a pleated filter.
In a preferred embodiment, the coalescing filter is a pleated candle. Preferably, the coalescing filter is provided for fluid flow from the inside to the outside of the pleated candle.
A third aspect of the invention is a method for removing water from liquid hydrocarbons. The method uses a coalescing filter as in any embodiment of the second aspect of the invention. Liquid hydrocarbon comprising water is flown through the coalescing filter, in order to coalesce and remove water.
Mode (s) for Carrying Out the Invention
A first filtration media that has been made is a sintered nonwoven web consisting out of 2 μm equivalent diameter bundled drawn austenitic stainless steel fibers out of alloy 316. The first filtration media has a specific mass of 750 g/m2 and 88%porosity. The sintered nonwoven web has been treated at 300℃. The surface morphology of the austenitic stainless steel fibers is not modified by the thermal treatment compared to the morphology after sintering the nonwoven web. The surface of the austenitic stainless steel fibers comprises Fe2O3 in a hematite crystallographic structure. The thickness of the oxide layer was 10 nm. The thickness of the oxide layer is determined as the depth from the surface at which the amount of metallic iron is equal to the amount of iron in iron oxides, as determined via XPS measurement.
Contact angle measurements have been performed using a dynamic contact angle goniometer and tensiometer DCAT 11/21. The contact angle to water on the first filtration media has been measured; the result was a contact angle below 40°. If the thermal treatment at 300℃ was maintained longer, e.g. 10 minutes after gradual heating up to 300℃, the contact angle was 0°. The contact angle to water has also been measured for the sintered nonwoven web before performing the thermal treatment at 300℃, the contact angle in such condition was more than 90°.
The contact angle to diiodomethane on the first filtration media has been measured; the result was a contact angle of about 45°. If the thermal treatment at 300℃ was maintained longer, e.g. 10 minutes after gradual heating up to 300℃, the contact angle was about 37°. The contact angle to diiodomethane has also been measured on the sintered nonwoven web before performing the thermal treatment at 300℃, the contact angle is such condition was about 50°.
A second filtration media that has been made is a sintered nonwoven web consisting out of 4 μm equivalent diameter bundled drawn austenitic stainless steel fibers out of alloy 316. The first filtration media has a specific mass of 750 g/m2 and 88%porosity. The sintered nonwoven web has been treated at 300℃. The surface morphology of the austenitic stainless steel fibers is not modified by the thermal treatment compared to the  morphology after sintering the nonwoven web. The surface of the austenitic stainless steel fibers comprises Fe2O3 in a hematite crystallographic structure.
Without further treatment of the surface of neither the first filtration media nor the second filtration media; a coalescing filter has been made with the first filtration media and the second filtration media. The built up of the coalescing filter in the order as listed is: 
- at the inflow side of the coalescing filter, a layer of the first filtration media (750 g/m2) . This layer functions to increase the water drops of the water comprising liquid hydrocarbon from which the water needs to be eliminated through coalescing filtration;
- a filtration layer of 40 g/m2 of a polyester fiber nonwoven. The polyester fibers are 4 denier fibers having a trilobal cross section. This filtration layer acts as drainage layer in the coalescing filter;
- a layer of the second filtration media (750 g/m2) . This layer functions to increase the water drops of the water comprising liquid hydrocarbon from which the water needs to be eliminated through coalescing filtration;
- a filtration layer of 40 g/m2 of a polyester fiber nonwoven. The polyester fibers are 4 denier fibers having a trilobal cross section. This filtration layer acts as drainage layer in the coalescing filter; and
- a metal wire mesh.
Using this layer construction pleated coalescing filter candles have been made with a pleat height 22 mm and with 15 pleats around the circumference of the pleated candle.
The candles have been tested and have shown excellent performance and long performing lifetime for the removal of water from kerosene.

Claims (14)

  1. Filtration media comprising a nonwoven web of austenitic stainless steel fibers;
    wherein the austenitic steel fibers have an equivalent diameter less than 25 μm;
    wherein the austenitic stainless steel fibers of the nonwoven web are metallurgically bonded to each other at contacting points between stainless steel fibers;
    and wherein the surface of the austenitic stainless steel fibers comprises Fe2O3 in a hematite crystallographic structure.
  2. Filtration media as in claim 1, wherein the thickness of the oxide layer of the stainless steel fibers is less than 15 nm;
    wherein the thickness of the oxide layer is determined as the depth from the surface at which the amount of metallic iron is equal to the amount of iron in iron oxides as can be determined via XPS measurement.
  3. Filtration media as in claim 1, wherein the contact angle of water on the filtration media is less than 50°.
  4. Filtration media as in claim 2, wherein the contact angle of water on the filtration media is less than 50°.
  5. Filtration media as in claim 1, wherein more than 40 atomic percent of the Fe in the oxide layer is present as Fe3+.
  6. Coalescing filter for the separation of water out of liquid hydrocarbons; com prising at least one filtration media as in claim 1.
  7. Coalescing filter as in claim 6; comprising
    -a first filtration media as in claim 1, wherein the austenitic stainless steel fibers have an equivalent diameter less than 3 μm;
    -a second filtration media as in claim 1; wherein the austenitic stainless steel fibers have an equivalent diameter less than 6 μm; and wherein the equivalent diameter differs from the equivalent diameter of the austenitic stainless steel fibers of the first filtration media.
  8. Coalescing filter as in claim 6, wherein the coalescing filter comprises a filtration layer of organic fibers in fluid flow direction downstream from a filtration media as in claim 1.
  9. Coalescing filter as in claim 6, wherein the coalescing filter comprises a succession of pairs of layers, wherein each pair of layers comprises
    -a filtration media as in claim 1;
    -a filtration layer of organic fibers in fluid flow direction downstream from the filtration media.
  10. Coalescing filter as in claim 9, wherein the filtration media of a first pair of layers comprises austenitic stainless steel fibers of lower equivalent diameter than the filtration media of a pair of layers in fluid flow direction downstream from the first pair of layers.
  11. Coalescing filter as in claim 6; wherein the coalescing filter comprises a metal mesh.
  12. Coalescing filter as in claim 6, wherein the coalescing filter is a pleated filter.
  13. Coalescing filter as in claim 6, wherein the coalescing filter is a pleated candle.
  14. Method for removing water from liquid hydrocarbons,
    wherein liquid hydrocarbon comprising water is flown through a coalescing filter as in any of the claims 6-13 in order to coalesce and remove water.
PCT/CN2016/104918 2016-07-22 2016-11-07 Filtration media and coalescing filter to remove water from liquid hydrocarbons WO2018014465A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610587210 2016-07-22
CN201610587210.4 2016-07-22

Publications (1)

Publication Number Publication Date
WO2018014465A1 true WO2018014465A1 (en) 2018-01-25

Family

ID=60991708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104918 WO2018014465A1 (en) 2016-07-22 2016-11-07 Filtration media and coalescing filter to remove water from liquid hydrocarbons

Country Status (1)

Country Link
WO (1) WO2018014465A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101495206A (en) * 2006-07-25 2009-07-29 生物辐射实验室股份有限公司 Graded external prefilter element for continuous-flow systems
CN202569656U (en) * 2012-01-11 2012-12-05 宁波中一石化科技有限公司 Device for separating mixture of two insoluble liquids
CN103977600A (en) * 2014-05-08 2014-08-13 苏州二元世纪纳米技术有限公司 Chemically stable low-oil-adhesiveness oil-water separating member, and making method and use thereof
US20150321925A1 (en) * 2012-12-28 2015-11-12 Eni S.P.A. Process for removing hydrocarbons from a body of water by means of selective permeation, and relative apparatus
CN105327526A (en) * 2015-11-30 2016-02-17 东南大学 Metal fiber felt used for separating emulsifying oil and modification method and application thereof
CN105709459A (en) * 2016-03-23 2016-06-29 重庆理工大学 Cobblestone-shaped gamma-AlOOH coated oil-water separation mesh membrane material and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101495206A (en) * 2006-07-25 2009-07-29 生物辐射实验室股份有限公司 Graded external prefilter element for continuous-flow systems
CN202569656U (en) * 2012-01-11 2012-12-05 宁波中一石化科技有限公司 Device for separating mixture of two insoluble liquids
US20150321925A1 (en) * 2012-12-28 2015-11-12 Eni S.P.A. Process for removing hydrocarbons from a body of water by means of selective permeation, and relative apparatus
CN103977600A (en) * 2014-05-08 2014-08-13 苏州二元世纪纳米技术有限公司 Chemically stable low-oil-adhesiveness oil-water separating member, and making method and use thereof
CN105327526A (en) * 2015-11-30 2016-02-17 东南大学 Metal fiber felt used for separating emulsifying oil and modification method and application thereof
CN105709459A (en) * 2016-03-23 2016-06-29 重庆理工大学 Cobblestone-shaped gamma-AlOOH coated oil-water separation mesh membrane material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN110430932B (en) Filter media including a waveform filter layer with gradients
US20200391148A1 (en) Filter media including a waved filtration layer
US10449474B2 (en) Filter media including a waved filtration layer
RU2016125328A (en) HIGH VOLUME COALESCING FILTER ENVIRONMENT AND ITS APPLICATION
US2423547A (en) Calendered filter material and method of forming same
Patel et al. Gravity orientation and woven drainage structures in coalescing filters
RU2012104687A (en) FILTERING ELEMENT, AND ALSO WAY OF ITS MANUFACTURE AND USE
JP2008531279A (en) Composite filter media
JP2022060251A (en) Filter bag containing porous film
CN106457071A (en) Mesh comprising a surface of hydrated aluminum oxides and their use for oil-water separation
Cirqueira et al. Experimental investigation of particle deposition in filter media during filtration cycles with regeneration by pulse jet cleaning
JP2018531791A (en) Self-cleaning filter
JP6083602B2 (en) Method for producing precision metal filter for molten polymer
WO2018014465A1 (en) Filtration media and coalescing filter to remove water from liquid hydrocarbons
JP2010137121A (en) Filter having high differential pressure-proof performance and gel foreign matter elimination performance
JP2002346319A (en) Suction filter medium for turbine
JP3070602B2 (en) Reinforcement sheet for filter medium, filter medium for air filter and air filter device
JP2007090231A (en) Metal fiber filter with pleat for molten polymer
JP7021412B2 (en) Cartridge filter
JP7059464B2 (en) Air filter and usage
Li Dependence of filtration properties on stainless steel medium structure
DE202005012047U1 (en) Composite filtering medium for removing particles, has diaphragm filtration layer, which exhibits porous polymer membrane, and depth filtration medium layer exhibiting fibers and arranged on upstream side of diaphragm layer
JP4092017B2 (en) Hollow metal porous body
JP2000140588A (en) Filter for dust collector
Jaroszczyk et al. Cartridge Filtration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909392

Country of ref document: EP

Kind code of ref document: A1