JP2007090231A - Metal fiber filter with pleat for molten polymer - Google Patents

Metal fiber filter with pleat for molten polymer Download PDF

Info

Publication number
JP2007090231A
JP2007090231A JP2005282705A JP2005282705A JP2007090231A JP 2007090231 A JP2007090231 A JP 2007090231A JP 2005282705 A JP2005282705 A JP 2005282705A JP 2005282705 A JP2005282705 A JP 2005282705A JP 2007090231 A JP2007090231 A JP 2007090231A
Authority
JP
Japan
Prior art keywords
metal fiber
sintered
layer
media
filter medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005282705A
Other languages
Japanese (ja)
Other versions
JP4908812B2 (en
Inventor
Toshiaki Sasaki
俊明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP2005282705A priority Critical patent/JP4908812B2/en
Publication of JP2007090231A publication Critical patent/JP2007090231A/en
Application granted granted Critical
Publication of JP4908812B2 publication Critical patent/JP4908812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal fiber filter with pleats using metal fiber nonwoven fabric suppressing cracks on the filter medium surface due to pleat formation, having superior filtering characteristics. <P>SOLUTION: This metal fiber filter has molded pleats in the metallic porous filter medium, and is formed in a cylindrical body with the pleats axially set. The porous filter medium has at least two or more sintered media sheet-likely formed by molding and sintering a single layer or composite layer of the metal fiber nonwoven fabric in sheet-like state, and laminated structure formed by separably superposing the media with gaps therebetween. The sintered medium is the metal fiber filter with pleats for molten polymer wherein an integrated value A of the fiber diameter d (μm), basis weight w (g/m<SP>2</SP>) of the metal fiber layer composing the media, and an average density τ of the media are adjusted to satisfy the relation of following equation (1): A=Σ(di×wi)×τ=800-2,000 (1)(In equation, i is respective values in an optional metal fiber layer). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、濾過面に形成したヒダにより濾過面積を増大でき、溶融ポリマーの濾過処理に好適に使用されるヒダ付フィルタの改良に関する。   The present invention relates to an improvement of a pleated filter that can increase the filtration area by creases formed on a filtration surface and is suitably used for filtration treatment of molten polymer.

金属繊維フィルタは、高い強度と耐熱性及び耐食性を備え、また圧延加工、溶接加工などの機械加工が可能であり、種々形状、構造の多孔体に製造しうることから流体、粉体用などの濾過用部材として広く使用され、使用する設備、製品に応じて、リーフ形状、円筒形状、あるいはディスク形状などに形成されている。   Metal fiber filters have high strength, heat resistance and corrosion resistance, and can be machined such as rolling and welding, and can be manufactured into porous bodies of various shapes and structures. It is widely used as a member for filtration, and is formed into a leaf shape, a cylindrical shape, a disk shape, or the like according to the equipment and product to be used.

ディスク形状、リーフ形状の金属繊維フィルタは、濾過面が平板状で高圧濾過が可能なことから主としてフィラメントを溶融紡糸する溶融ポリマーの場合に多用され、一方、円筒形状の金属繊維フィルタは構造簡単で比較的安価に実施できることから、例えば低粘性で低圧濾過される樹脂フィルム用の溶融ポリマー、その他水溶液用の被処理流体などを濾過する濾過部材として用いられている。しかし濾過能率の向上のため、その濾過面積の増大を図ることが望まれている。   Disk-shaped and leaf-shaped metal fiber filters are mainly used in the case of molten polymers that melt-spin filaments because the filtration surface is flat and capable of high-pressure filtration, while cylindrical metal fiber filters have a simple structure. Since it can be implemented relatively inexpensively, it is used as a filtration member for filtering, for example, a molten polymer for a resin film that is low-pressure filtered with low viscosity, a fluid to be treated for other aqueous solutions, and the like. However, in order to improve the filtration efficiency, it is desired to increase the filtration area.

ところで前記金属繊維フィルタでは、耐熱性、耐圧強度、耐食性などの要求特性に応じて、例えばステンレス鋼、ニッケル合金などの耐食性金属の金属繊維が選択され、これを所定の空孔特性を持つように繊維の径、目付け量、成形厚さなどの仕様が設定される。特に5mm程度以下の厚さのシート状とした濾材を用いるときには、各金属繊維は被処理流体の流れと直行する向きに配向されるとともに、各繊維同士はその接触部で強固に焼結されるものであることから、例えば被処理流体中で生じる偏析等によるゲル状物を細かく分断できる利点もあり、係る利点を理由の1つとして金属繊維フィルタが採用される。   By the way, in the metal fiber filter, metal fibers of corrosion resistant metal such as stainless steel and nickel alloy are selected according to required characteristics such as heat resistance, pressure strength, corrosion resistance, etc., and have predetermined pore characteristics. Specifications such as fiber diameter, basis weight, and molding thickness are set. In particular, when a sheet-shaped filter medium having a thickness of about 5 mm or less is used, each metal fiber is oriented in a direction perpendicular to the flow of the fluid to be treated, and each fiber is strongly sintered at the contact portion. Therefore, for example, there is an advantage that a gel-like material can be finely divided due to segregation or the like generated in the fluid to be treated. A metal fiber filter is employed as one of the reasons for such an advantage.

金属繊維フィルタでは、濾過精度、効率などの濾過性能と、前記利点とのバランスが必要となり、金属繊維の構成(種類、太さ)、目付け、成形厚さ等の仕様とともに種類の異なる複数の濾材を積層した積層濾材として用いることも検討されている。   Metal fiber filters require a balance between the filtration performance, such as filtration accuracy and efficiency, and the above-mentioned advantages, and a plurality of different types of filter media with specifications such as metal fiber configuration (type, thickness), basis weight, molding thickness, etc. The use of laminated filter media as a laminate is also under consideration.

他方、金属繊維フィルタにおいて、前記のごとく濾過面積を増大することが望まれ、そのためにヒダを設けて濾過面積を増大する場合、該金属フィルタは、前記したように各金属繊維が焼結によって強固に結合され、その結合部のみで形状維持するものであることから、過度の変形を生じさせるときには、例えば図6(A)、(B)に示すように、該金属繊維濾材自体ひび割れ、クラックが生じ、金属繊維フィルタとしては使用しえなくなる。又このようなひび割れは図7において例示するような、胴部aとともに,そのヒダ付金属繊維フィルタの両端を絞る場合には、折曲がり部bを含むコーン状部c、特に先端側の細径部dに生じやすい。   On the other hand, in the metal fiber filter, it is desired to increase the filtration area as described above. For this reason, when providing a crease to increase the filtration area, the metal filter is made strong by sintering each metal fiber as described above. Since the shape is maintained only by the joint portion, when excessive deformation occurs, for example, as shown in FIGS. 6 (A) and (B), the metal fiber filter medium itself is cracked and cracked. As a result, it cannot be used as a metal fiber filter. In addition, when cracking the both ends of the creased metal fiber filter together with the barrel portion a as illustrated in FIG. 7, such a crack is a cone-shaped portion c including a bent portion b, particularly a small diameter on the distal end side. It tends to occur in the part d.

又過度の加工を施したものは、例えば高圧の溶融ポリマーを濾過している使用の間において、時間の経過とともに係るひび割れ、クラックが発生する場合がある。したがって、金属繊維濾材を用いたヒダ付金属繊維フィルタに形成するには、変形に耐え得る加工限界の見極め、あるいは加工に耐え得る構造とすることが肝要となる。   Moreover, the thing which performed the excessive process may generate | occur | produce the crack and crack which concern with progress of time during the use which is filtering the high pressure molten polymer, for example. Therefore, in order to form a pleated metal fiber filter using a metal fiber filter medium, it is important to determine a processing limit that can withstand deformation or to have a structure that can withstand processing.

このため、金属繊維濾材を用いた筒状のヒダ付金属繊維フィルタにおいて、繰り返しの濾過処理、逆洗処理によって発生する濾材外頂部でのひび割れを防止する手段として、ヒダ付された多孔質濾材の外面側には厚さの異なるくさび形スペーサーを、また内面側には同一厚さのシム形スペーサーをそれぞれ各ヒダ間に配置する提案がある(例えば特許文献1)。   For this reason, in a cylindrical pleated metal fiber filter using a metal fiber filter medium, as a means for preventing cracks at the outer top of the filter medium caused by repeated filtration and backwash processes, the pleated porous filter medium There is a proposal that wedge-shaped spacers having different thicknesses are disposed on the outer surface side, and shim-shaped spacers having the same thickness are disposed between the folds on the inner surface side (for example, Patent Document 1).

またジクザグに折り曲げしたプリーツ形成の濾過装置について、該折曲がり頂部を熱処理や樹脂処理などによって補強し強度向上することで、折曲げした時生じる割れや亀裂を防止することの提案もある(例えば特許文献2)。   There is also a proposal to prevent cracks and cracks that occur when bent, by reinforcing the bent top part by heat treatment or resin treatment, etc., for a pleated filter device folded in zigzag (for example, patents) Reference 2).

特公昭63−51049号公報Japanese Patent Publication No. 63-51049 特開昭50−128868号公報JP-A-50-128868

しかしながら、特許文献1のものは各ヒダの間にくさび形とシム形のスペーサーを各々配置すること、すなわち前記各スペーサーによって濾材にかかるダイヤフラム状運動を防ぎ、頂縁でのひび割れを防止するものとしているが、このようなスペーサーの併用は、各ヒダ部での濾過面が前記スペーサーとの面接触によって被処理流体の円滑な流れを阻害して圧力損失の上昇を招くばかりでなく、使用部品点数の増加、フィルタ製品としての重量化、さらに組立て製造工数の増加などの間題がある。   However, in Patent Document 1, the wedge-shaped and shim-shaped spacers are arranged between the folds, that is, the diaphragm-like motion applied to the filter medium is prevented by the spacers, and cracks at the top edge are prevented. However, the combined use of such a spacer not only prevents the flow of the fluid to be treated from blocking the smooth flow of the fluid to be treated by the surface contact with the spacer, but also causes an increase in pressure loss. , Increase in weight as a filter product, and increase in assembly manufacturing man-hours.

また特許文献2による濾過装置についても、濾材の各折曲げ頂部を予め熱処理や樹脂処理あるいは溶剤によって微孔を潰すことで強度向上を図るものとしているが、このような封孔処理は有効濾過面積を減少させる他、例えば熱処理によるものでは濾材の加熱部分だけが組織的に変化し、それに伴って組織変化した部分の耐食性や耐熱牲を低下させることともなる。したがって、この技術も本発明が対象とするような、粘性を有し高温濾過が必要となる溶融ポリマー用としては採用できないものである。   In addition, in the filtering device according to Patent Document 2, the strength is improved by crushing the micropores in advance by heat treatment, resin treatment, or solvent at each bending top of the filter medium. Such sealing treatment is effective filtration area. In addition, for example, in the case of heat treatment, only the heated portion of the filter medium changes systematically, and accordingly, the corrosion resistance and heat resistance of the changed portion of the filter medium are reduced. Therefore, this technique cannot be employed for a molten polymer that is viscous and requires high-temperature filtration as the subject of the present invention.

本発明は、このような従来技術における間題に鑑み、金属繊維不織布を用いるとともに、ヒダ形成による濾材表面のひび割れ、クラックの発生を抑え、かつ濾過特性に優れたヒダ付金属繊維フィルタの提供を目的にする。   In view of the problems in the prior art, the present invention provides a pleated metal fiber filter that uses a metal fiber nonwoven fabric, suppresses cracking and cracking of the filter medium surface due to crease formation, and has excellent filtration characteristics. Make it the purpose.

請求項1に係る発明は、周囲の全面に軸方向にのびる成形ヒダを折曲げにより形成した筒状をなす金属製の多孔質濾材を有するヒダ付金属繊維フィルタであって、
金属繊維不織布からなる金属繊維層の1層又は重ね合わせた複数の前記金属繊維層を焼結し一体化することにより該金属繊維層が焼結された1層、又は複数層の焼結シート層を有する2枚以上の焼結メディアを具え、
かつ前記多孔質濾材はこの焼結メディアを、空間層を介在して重ね合わせた積層構造からなり、
かつ各焼結メディアを構成する各焼結シート層の金属繊維の繊維径d(μm)と、焼結シート層の目付け量w(g/m2 )、及び該焼結メディアの密度比τの次式(1)による計算値(A)が、800〜2000を満足するように調整したことを特徴とする溶融ポリマー用のヒダ付金属繊維フィルタである。
A=Σ(di×wi)×τ …(1)
(iは各焼結シート層を番号付けしたその番号を示す)。
The invention according to claim 1 is a metal fiber filter with a pleat having a metallic porous filter medium having a cylindrical shape formed by bending a molding fold extending in the axial direction on the entire surrounding surface,
One layer of a metal fiber layer made of a metal fiber non-woven fabric or a plurality of stacked metal fiber layers are sintered and integrated to sinter the metal fiber layer, or a sintered sheet layer of a plurality of layers Comprising two or more sintered media having
And the porous filter medium has a laminated structure in which the sintered media are overlapped with a space layer interposed therebetween,
And the fiber diameter d (micrometer) of the metal fiber of each sintering sheet layer which comprises each sintering media, the fabric weight w (g / m < 2 >) of a sintering sheet layer, and density ratio (tau) of this sintering media It is a metal fiber filter with a pleat for molten polymer, wherein the calculated value (A) according to the following formula (1) is adjusted so as to satisfy 800 to 2000.
A = Σ (di × wi) × τ (1)
(I shows the number which numbered each sintered sheet layer).

請求項2に係る発明は、前記焼結シート層の焼結前の金属繊維が、30μm以下の等価直径を有するステンレス鋼であって、かつ焼結シート層の目付け量が100〜1000g/m2 であること、請求項3に係る発明は、前記焼結メディアが、濾過精度を担保する第1の焼結シート層と、該第1の焼結シートと一体をなしかつ粗な空孔の第2の焼結シート層とからなる複層体からなり、かつ前記多孔質濾材は、2枚の前記複層体からなる前記焼結メディアを、第1,又は第2の焼結シート層を互いに向き合わせてかつその間に空間層を介して線対称に重ね合わせることにより形成したこと、請求項4に係る発明は、前記多孔質濾材が、更にその両外面に該多孔性濾材を保護する保護メッシュを有することをそれぞれ特徴としている。 In the invention according to claim 2, the metal fiber before sintering of the sintered sheet layer is stainless steel having an equivalent diameter of 30 μm or less, and the basis weight of the sintered sheet layer is 100 to 1000 g / m 2. The invention according to claim 3 is characterized in that the sintered medium includes a first sintered sheet layer that ensures filtration accuracy, and the first sintered sheet that is integrated with the first sintered sheet and has coarse pores. The porous filter medium is composed of two sintered sheet layers, and the first or second sintered sheet layer is bonded to each other. The invention according to claim 4, wherein the porous filter medium is further formed on the outer surface of the porous filter medium so as to protect the porous filter medium. It is characterized by having each.

本発明は、前記のように、多孔質濾材が、焼結メディアを空間層を介して積層しているため、従来の全厚さに亘って一体な多孔質濾材とは異なり、厚さが小となり、しかも空間層での相対すべりを可能とすることにより、各焼結メディアは、その曲げ中立線から内外面までの距離を減じ、引張り応力、圧縮応力を減じることができる。ヒダ付け加工を行う場合にも、各焼結メディアは各々十分な保形強度を有し、かつ曲げ等の変形に対する自由度を大きく設定できる為、濾材全体を一体に焼結した従来の積層濾材に比して、クラックやひび割れ等の欠陥発生を防止することができる。   As described above, in the present invention, since the porous filter medium is formed by laminating the sintered media through the space layer, the thickness is small unlike the conventional porous filter medium having the entire thickness. In addition, by enabling relative sliding in the space layer, each sintered media can reduce the distance from the bending neutral line to the inner and outer surfaces, and reduce tensile stress and compressive stress. Even in the case of crease processing, each sintered media has sufficient shape-retaining strength and can be set to a large degree of freedom for deformation such as bending, so the conventional laminated filter media in which the entire filter media are sintered together As compared with this, it is possible to prevent the occurrence of defects such as cracks and cracks.

しかも、前記空間層は、流体の濾過処理特に高粘性ポリマー溶液を濾過する場合には、微細な上流側の濾過層で濾過された被処理流体が該空間層で面方向に流動しながら、さらに下流側の濾過層で濾過されることもでき、被処理流体は急、緩、急の流速で処理されることとなり、滞留を減じてゲル状物の発生を抑え、かつゲル状物の裁断に役立ち、濾過効率を高めることができる。
また請求項2〜4の構成による発明により、さらに濾過特性を高めることができる。
In addition, when the fluid layer is filtered, particularly when a high-viscosity polymer solution is filtered, the fluid to be treated filtered by the fine upstream filtration layer flows in the plane direction in the space layer. It can also be filtered through the downstream filtration layer, and the fluid to be treated will be processed at a rapid, slow, and rapid flow rate, reducing the retention and reducing the occurrence of gelled materials, and cutting the gelled materials. Can help to increase filtration efficiency.
In addition, the filtering characteristics can be further improved by the inventions according to the second to fourth aspects.

以下、本発明のヒダ付金属繊維フィルタ1を図面に基づき説明する。図1は、本発明のヒダ付金属繊維フィルタの一形態を例示する正面図、図2はその縦断面図、図3は図1のA−A断面における一部のヒダ部分を拡大して示す断面図である。なお、ヒダ数は全周に亘って形成され、ヒダ付金属繊維フィルタ1の使用目的等に応じて適宜に選定しうる。ヒダ付金属繊維フィルタ1は、本形態では、筒状の多孔質濾材2、該多孔質濾材2を内部で補強する補強筒4、及び一端に固着された流体流通用の口金部材10Aと、他端に設ける封止部材10Bとを含む端金具10を具える。又前記多孔質濾材2は、本形態では、軸線Xの方向と平行であって稜部3Aと谷部3Bからなるヒダ3を、周方向に一定間隔でかつ全周囲に亘って折り曲げることにより形成している。さらに本形態では、多孔質濾材2は胴部2Aの両端部に絞り加工によってヒダ3を押し潰した細径部2Bをコーン部2Cを介して形成している。   Hereinafter, the pleated metal fiber filter 1 of the present invention will be described with reference to the drawings. FIG. 1 is a front view illustrating an embodiment of a metal fiber filter with folds according to the present invention, FIG. 2 is a longitudinal sectional view thereof, and FIG. 3 is an enlarged view showing a part of the folds in the AA section of FIG. It is sectional drawing. The number of folds is formed over the entire circumference, and can be appropriately selected according to the purpose of use of the creased metal fiber filter 1. In this embodiment, the pleated metal fiber filter 1 includes a cylindrical porous filter medium 2, a reinforcing cylinder 4 that reinforces the porous filter medium 2 inside, a cap member 10A for fluid circulation fixed to one end, and the like. An end fitting 10 including a sealing member 10B provided at the end is provided. Further, in this embodiment, the porous filter medium 2 is formed by bending a pleat 3 composed of a ridge 3A and a valley 3B that is parallel to the direction of the axis X and is circumferentially spaced at regular intervals. is doing. Further, in this embodiment, the porous filter medium 2 is formed with narrow portions 2B formed by crushing the folds 3 by drawing at both ends of the body portion 2A via the cone portion 2C.

前記補強筒4は、多孔質濾材2が加圧されたときにも所定の筒形状を維持しうる耐圧性を具え、該多孔質濾材2の内周面に、前記一端では多孔質濾材2の端面から内方に控える控え部4aを、他端では多孔質濾材2の端面からややはみ出る突出部4bを有してほぼ連続して多孔質濾材2に挿入される。又補強筒4は本形態ではパンチングプレートを用いて形成した有孔体からなる。なお有孔体を形成できれば、例えば金網なども用いうる。   The reinforcing cylinder 4 has a pressure resistance capable of maintaining a predetermined cylindrical shape even when the porous filter medium 2 is pressurized, and is formed on the inner peripheral surface of the porous filter medium 2 at the one end of the porous filter medium 2. The holding part 4a that keeps inward from the end face is inserted into the porous filter medium 2 almost continuously with the protruding part 4b protruding slightly from the end face of the porous filter medium 2 at the other end. In this embodiment, the reinforcing cylinder 4 is a perforated body formed by using a punching plate. If a perforated body can be formed, for example, a wire mesh can be used.

又前記口金部材10Aは、本形態では前記控え部4aに嵌合する後端部を有しかつ6角部10Aaと外ネジ部10Abとを一連に形成している。又前記補強筒4の内孔と略同形の貫通孔が形成され、該口金部材10Aは前記多孔質濾材2の一端にシール効果を有して溶着される。又前記封止部材10Bは前記補強筒4に、例えばその突出部4bに内挿される挿入部を有し、かつ多孔質濾材2の他端を封止して溶着される。なお溶着は例えばTIG溶接などを用いて、所定の濾過圧に耐え得る構造としている。   In addition, in this embodiment, the base member 10A has a rear end portion that fits into the holding portion 4a, and forms a hexagonal portion 10Aa and an external screw portion 10Ab in series. Further, a through hole having substantially the same shape as the inner hole of the reinforcing cylinder 4 is formed, and the base member 10A is welded to one end of the porous filter medium 2 with a sealing effect. The sealing member 10B has an insertion portion inserted into the protruding portion 4b, for example, in the reinforcing cylinder 4, and is sealed by sealing the other end of the porous filter medium 2. The welding is structured to withstand a predetermined filtration pressure using, for example, TIG welding.

多孔質濾材2の前記ヒダ3は、多孔質濾材2の使用の目的に合わせた厚さ、空孔精度、形状、寸法などの全体構成を考慮して設定できる。通常、例えばヒダの形成ピッチP(前記隣合う稜部3Aの頂点間の直線距離)を5〜20mm,ヒダの高さH(稜部1Aの頂点と谷部1Bの最底点間の半径方向距離)を3〜30mm程度としている。このようなヒダ3が多孔質濾材2を波状に折り曲げすることにより形成される。なお多孔質濾材2は、内周面、又はヒダ3の先端を継ぐ外周面を横断面円形、乃至角状などの非円形に形成することもできる。   The pleats 3 of the porous filter medium 2 can be set in consideration of the overall configuration such as thickness, pore accuracy, shape, and dimensions according to the purpose of use of the porous filter medium 2. Usually, for example, the crease formation pitch P (linear distance between the apexes of the adjacent ridges 3A) is 5 to 20 mm, and the fold height H (radial direction between the apex of the ridge 1A and the bottom point of the valley 1B). The distance) is about 3 to 30 mm. Such folds 3 are formed by bending the porous filter medium 2 into a wave shape. In addition, the porous filter medium 2 can also form the outer peripheral surface which joins the inner peripheral surface or the front-end | tip of the pleat 3 in non-circle, such as a cross-sectional circle shape or a square shape.

図3は、前記多孔質濾材2の胴部2Aの前記A−A線断面において一部のヒダ3を拡大して示し、被処理流体は、図3に矢印Yで示すように前記多孔質濾材2で濾過処理された後、補強筒4の孔部4Aを通り、前記口金部材10Aの端金具10をへて取り出される。   FIG. 3 is an enlarged view of a part of the fold 3 in the section AA of the trunk portion 2A of the porous filter medium 2, and the fluid to be treated is the porous filter medium as indicated by an arrow Y in FIG. After being filtered at 2, it passes through the hole 4 </ b> A of the reinforcing cylinder 4 and is taken out through the end fitting 10 of the cap member 10 </ b> A.

前記多孔質濾材2は、複数枚、本形態では、2枚の焼結メディア12、12…を用いて形成される。焼結メディア12は、図4(A)に示す場合には、金属繊維15を絡み合わせたウェブ状の金属繊維不織布からなりかつ重ね合わせた2層の金属繊維層17A、17Bを用いる。これを焼結し一体化して縮厚することにより、図4(B)に示すごとく、該金属繊維層17Aが焼結された第1の焼結シート層18Aと、他の金属繊維層17Bが焼結された第2の焼結シート層18Bとを具える一体な複層体である焼結メディア12が形成される。なお第1の焼結シート層18Aは、実質的な濾過精度を担保するように微細な空孔を密に配され、従って、金属繊維層17Aも第1の焼結シート層18Aを形成しうる仕様のウェブが用いられる。又第2の焼結シート層18Bは、該第1の焼結シート層18Aに比しては比較的粗大な空孔を有し、その金属繊維層17Bもその仕様に合わせて形成される。このように、第1の焼結シート層18Aと、第2の焼結シート層18Bとは予め一体に結合焼結されることにより、焼結メディア12は複合シートとして形成される。なお、焼結メディア12は、図4(C),(D)のように、1層の金属繊維層17を用いた焼結シート層18として形成することもできる。そのとき、焼結シート層18は、実質的な濾過精度を担保するように微細な空孔の第1の焼結シート層18Aとしても、第1の焼結シート層18Aに比しては比較的粗大な空孔を有する第2の焼結シート層18Bとしても構成しうる。   The porous filter medium 2 is formed by using a plurality of sintered media 12, 12... In this embodiment. In the case shown in FIG. 4 (A), the sintered media 12 is made of two metal fiber layers 17A and 17B made of a web-like metal fiber nonwoven fabric in which metal fibers 15 are entangled with each other and superimposed. By sintering and integrating and reducing the thickness, as shown in FIG. 4B, the first sintered sheet layer 18A in which the metal fiber layer 17A is sintered and the other metal fiber layer 17B are formed. The sintered media 12 which is an integral multilayer body including the sintered second sintered sheet layer 18B is formed. The first sintered sheet layer 18A is densely provided with fine pores so as to ensure substantial filtration accuracy, and therefore the metal fiber layer 17A can also form the first sintered sheet layer 18A. A web of specifications is used. The second sintered sheet layer 18B has relatively coarse pores as compared to the first sintered sheet layer 18A, and the metal fiber layer 17B is also formed in accordance with the specifications. As described above, the first sintered sheet layer 18A and the second sintered sheet layer 18B are integrally bonded and sintered in advance, whereby the sintered media 12 is formed as a composite sheet. The sintered media 12 can also be formed as a sintered sheet layer 18 using one metal fiber layer 17 as shown in FIGS. At that time, the sintered sheet layer 18 is compared with the first sintered sheet layer 18A as the first sintered sheet layer 18A having fine pores so as to ensure substantial filtration accuracy. It can also be configured as the second sintered sheet layer 18 </ b> B having coarse pores.

又本形態では、図4(E)に示すごとく、前記多孔質濾材2は、本形態では2枚の各複合シートからなる焼結メディア12,12を、前記密な第1の焼結シート層18Aを向き合わせて、即ち粗な第2の焼結シート18Bを外側とし、かつその間に空間層20を介在させて鏡像関係、すなわち表裏対称となるように重ね合わした積層構造体としている。又本形態では多孔質濾材2の内外面には、保護メッシュ22,23を添設している。   In this embodiment, as shown in FIG. 4 (E), the porous filter medium 2 is composed of the sintered media 12 and 12 composed of two composite sheets in the present embodiment, and the dense first sintered sheet layer. A laminated structure in which 18A faces each other, that is, the coarse second sintered sheet 18B is disposed outside, and the space layer 20 is interposed therebetween to be mirror-imaged, that is, symmetrical to each other. In this embodiment, protective meshes 22 and 23 are attached to the inner and outer surfaces of the porous filter medium 2.

なお、前記多孔質濾材2は、各焼結メディア12,12が前記のように、前記空間層20を隔てることにより離間状態、すなわち無結合状態で配置されている。又前記空間層20は、必ずしも一定の均一幅さである必要はなく、0.5mm以下程度で隣合う焼結メディア12で変化することもできる。又一定部分を有することも、変化する部分を有することも、又部分的に重なる焼結メディア12が接することも包含できる。   In addition, the porous filter medium 2 is disposed in a separated state, that is, in a non-bonded state, as the sintered media 12 and 12 separate the space layer 20 as described above. The space layer 20 does not necessarily have a constant uniform width, and can be changed by the adjacent sintered media 12 at about 0.5 mm or less. It can also include having a constant part, having a changing part, and contacting the partially overlapping sintered media 12.

本例のように、複合構造にした焼結メディア12の2枚を用いて、かつ粗な空孔の第2の焼結シート層18Bを各外側に向けることにより、該第2の焼結シート層18Bが被処理流体の流れの向きに拘わらず、第2の焼結シート層18Bが濾過する場合のプレフィルタとして機能し、事前に粗大粒子を捕獲しておくことにより多孔質濾材2としての濾過寿命を延長できる。なお焼結メディア12においてさらに中間の空孔径の層を付加するなど、種々の複合構造を採用できる。   As in this example, the second sintered sheet is formed by using the two sintered media 12 having a composite structure and directing the second sintered sheet layer 18B having coarse pores outward. Regardless of the direction of the flow of the fluid to be treated, the layer 18B functions as a prefilter when the second sintered sheet layer 18B is filtered, and captures coarse particles in advance as the porous filter medium 2. The filter life can be extended. Various composite structures such as adding a layer having an intermediate pore diameter to the sintered media 12 can be adopted.

前記焼結メディア12は、これを構成する焼結シート層18の各金属繊維層17における金属繊維15の繊維径d(μm)と、各焼結シート層18の目付け量(g/m2 )、及び該焼結メディア12における全金属繊維の密度比τとの関係について、次式を満足するものとしている。
A=Σ(di×wi)×τ=800〜2000 …・・(1)
The sintered media 12 includes a fiber diameter d (μm) of the metal fibers 15 in each metal fiber layer 17 of the sintered sheet layer 18 constituting the sintered media 12 and a basis weight (g / m 2 ) of each sintered sheet layer 18. , And the relationship with the density ratio τ of all metal fibers in the sintered media 12, the following equation is satisfied.
A = Σ (di × wi) × τ = 800 to 2000 (1)

ここで、“i”は該焼結メディア12内の焼結シート層18毎の番号を示すものであって、該焼結メディア12が例えば図4(B)のように種類の異なる焼結シート層17からなる積層構造のものの場合の前記A値については、各層毎の金属繊維15の繊維径dとその目付け量Wとを掛けた値の合計値に、更に金属繊維の密度比を掛けることで求められ、本発明ではこの値は無名数として示す。   Here, “i” indicates a number for each of the sintered sheet layers 18 in the sintered media 12, and the sintered media 12 has different types of sintered sheets as shown in FIG. 4B, for example. For the A value in the case of a layered structure composed of layers 17, multiply the total value of the values obtained by multiplying the fiber diameter d of the metal fibers 15 and the basis weight W of each layer by the density ratio of the metal fibers. In the present invention, this value is expressed as an anonymous number.

なお、金属繊維の繊維径dとは、その層を構成する金属繊維の任意横断面での直径(μm)を意味するものであり、その金属繊維の横断面形状が例えば角型や不定形状等の非円形の場合にあっては、各層から各々任意に抽出した例えば20点程度の金属繊維の任意横断面を測定した時の、最長寸法と最短寸法の平均値である等価直径が用いられる。また前記目付け量wについては、前記各金属繊維層17毎の1m2 当たりにおける質量(g)、すなわちg/m2 として示される。なお本発明においては、この焼結前の金属繊維層17の目付け量と、焼結後の焼結シート層の目付量とを同じとして扱う。さらに密度比τについては、JIS Z2500に定義されるように、該焼結メディアが密なものと仮定した場合の所定容積の質量を100として、その容積内に存在している前記金属繊維の全質量との比率で示すものとする。 In addition, the fiber diameter d of a metal fiber means the diameter (micrometer) in the arbitrary cross sections of the metal fiber which comprises the layer, and the cross-sectional shape of the metal fiber is square shape, indefinite shape, etc. In the case of the non-circular shape, an equivalent diameter which is an average value of the longest dimension and the shortest dimension when an arbitrary cross section of, for example, about 20 metal fibers arbitrarily extracted from each layer is measured is used. The basis weight w is indicated as a mass (g) per 1 m 2 for each metal fiber layer 17, that is, g / m 2 . In the present invention, the basis weight of the metal fiber layer 17 before sintering and the basis weight of the sintered sheet layer after sintering are treated as the same. Further, regarding the density ratio τ, as defined in JIS Z2500, assuming that the mass of the predetermined volume when the sintered media is dense is 100, all the metal fibers present in the volume are all present. It shall be shown by the ratio with mass.

また前記金属繊維については、ステンレス鋼、インコネル(登録商標)、ハステロイ(登録商標)の他、ニッケル、チタン、コバルトベースの種々合金が選択される。特に多数本の線材を束としてまとめて線引き細径化したのち、各線を分離して線材を細径化するいわゆる集束繊維製造方法によるものでは、前記等価直径程度の微細繊維が可能で、柔軟性も有することからこれを例えば10〜100mm程度の繊維長さにしたものが用いられる。さらにカード機やエアーレイド方法での開繊を行なってウェブ状とした金属繊維不織布とし、該金属繊維不織布を用いて前記金属繊維層17を形成する。なお前記のように、金属繊維層17は所定空隙率(密度の逆数)になるように焼結することにより焼結シート層18が成形される。   For the metal fibers, various alloys based on nickel, titanium, and cobalt are selected in addition to stainless steel, Inconel (registered trademark), and Hastelloy (registered trademark). In particular, by using a so-called focused fiber manufacturing method in which a large number of wires are bundled into a bundle to reduce the diameter and then each wire is separated to reduce the diameter of the wire, a fine fiber with the equivalent diameter is possible, and flexibility For example, a fiber having a fiber length of about 10 to 100 mm is used. Further, the metal fiber nonwoven fabric is formed into a web shape by opening with a card machine or an air raid method, and the metal fiber layer 17 is formed using the metal fiber nonwoven fabric. As described above, the sintered sheet layer 18 is formed by sintering the metal fiber layer 17 to have a predetermined porosity (reciprocal of density).

また本発明では、前記したように関係式(1)について各メディア12の繊維径dと目付け量w、及び密度との関係を800〜2000にしているが、この値が800未満のものでは、シート状の該メディア自体が膜状に薄いものとなって、いかにその複数枚を積層するとしても全体的に十分な剛性は得られず、この為、例えばヒダ部ではその形状維持が困難になるなど、濾過圧によって形状変化を生じ濾過性能を低下させることとなる。すなわち、所定の濾材形状やヒダ形状を適正に維持させる為には、各メディアには十分に形状保持強度を備えることが必要であるが、前記範囲下限以下の場合にはその達成が望めない。   In the present invention, as described above, the relation between the fiber diameter d of each medium 12 and the basis weight w and the density is set to 800 to 2000 in relational expression (1). The sheet-like media itself is thin like a film, and no matter how many the layers are laminated, sufficient rigidity cannot be obtained as a whole. For this reason, for example, it is difficult to maintain the shape at the folds. For example, a shape change is caused by the filtration pressure, and the filtration performance is lowered. That is, in order to properly maintain a predetermined filter medium shape or pleat shape, each medium needs to have a sufficient shape retention strength. However, if the media is below the lower limit of the range, it cannot be achieved.

一方、この値が2000を超える程大きくしたものでは、その全体厚さが増加して曲率径を小さくすることができず、この為例えば前記ヒダ付け加工を行なう場合は、最も強加工を受ける部分に割れなどの欠陥が生じ、本発明の達成が困難となる。こうしたことから、より好ましくは1000〜1600とする。   On the other hand, when the value is increased to exceed 2000, the total thickness cannot be increased and the curvature diameter cannot be reduced. Defects such as cracks are generated in the film, making it difficult to achieve the present invention. For these reasons, more preferably 1000 to 1600.

なお前記保護メッシュ6は本発明では必ずしも必要とはしないが、該メッシュ6を併設したものでは前記ヒダ形状の保形性を高めるとともに、各ヒダが仮に密着した場合においても被処理流体の流路が確保できる利点があり、例えばステンレス鋼線でなる30〜100#程度に平織りしたメッシュが容易に適用できるが、それに限るものではなく種々構成のメッシュが採用できる。   The protective mesh 6 is not necessarily required in the present invention. However, when the mesh 6 is provided, the shape of the fold shape is improved and the flow path of the fluid to be processed is provided even when the folds are in close contact with each other. For example, a mesh of about 30-100 # made of stainless steel wire can be easily applied. However, the present invention is not limited to this, and various configurations of mesh can be employed.

本発明はこのように、多孔質濾材2を、2以上の焼結メディアをその間に空間層を介在してなる積層構造とすることにより形成し、かつ焼結メディアを特定条件範囲に設定し筒状に成形してなるものであり、ヒダ付金属繊維フィルタにおけるクラック等の発生を防止しうる。なお必要により更に空間層と焼結メディアを配した3層の焼結メディアからなる複合体であってもよい。又図1に示すようにその端部を絞り加工によって押圧した細径部を持たせることもできる。   In this way, the present invention forms the porous filter medium 2 by forming a laminated structure in which two or more sintered media are interposed with a space layer between them, and sets the sintered media in a specific condition range. It can be formed into a shape and can prevent the occurrence of cracks and the like in the pleated metal fiber filter. If necessary, it may be a composite composed of three layers of sintered media in which a space layer and a sintered media are arranged. Further, as shown in FIG. 1, it is also possible to have a narrow-diameter portion whose end is pressed by drawing.

ろ過精度3μmのフィルタ製品を目的として、表1に示す繊維径10μm以下の微細ステンレス鋼からなる金属繊維不織布を用いた金属繊維層により表1に示す、実施例品1及び比較例品1.2の3種類の各焼結メディアを作成した。   For the purpose of a filter product having a filtration accuracy of 3 μm, Example Product 1 and Comparative Product 1.2 shown in Table 1 by a metal fiber layer using a metal fiber nonwoven fabric made of fine stainless steel having a fiber diameter of 10 μm or less shown in Table 1 Each of the three types of sintered media was prepared.

実施例品1は、各焼結メディアは2種類の繊維径のものを用い、各々目付け調整して積層し焼結したものである。その製造は、各メディア毎に積層したステンレス鋼繊維のウエブを0.24mmの厚さ(t)になるように加圧焼結しており、焼結条件は無酸化雰囲気中で1000℃に加熱したものであり、該メディアには、多孔性濾材の状態でその両面に各々ステンレス鋼製の保護メッシュ(線径0.19mm×30#)が配置されるように、前記焼結時にメディアに同時積層されている。   In Example Product 1, each of the sintered media has two types of fiber diameters, and each of the sintered media is laminated and sintered by adjusting the basis weight. In the production, the stainless steel fiber web laminated for each medium is pressure-sintered to a thickness (t) of 0.24 mm, and the sintering condition is heated to 1000 ° C. in a non-oxidizing atmosphere. At the time of the sintering, the medium is simultaneously provided with a stainless steel protective mesh (wire diameter: 0.19 mm × 30 #) disposed on both sides of the medium in the state of a porous filter medium. Are stacked.

比較例品1.2も前記と同様に加圧焼結したものであるが、その構成は3種類の繊維径のステンレス鋼繊維を各々所定目付けに設定し、一体に成形したものであって、単一厚さが0.41mm,0.52mmと実施例品の単一厚さの2倍以上とされている。なお、表中の空隙率εとは、該焼結メディアの全体容積当たりの空孔部分を示す比率であり、この比率が大きい程ポーラスであることを意味しており、本実施例ではいづれも63〜66%の特性となっている。   Comparative example product 1.2 is also pressure-sintered in the same manner as described above, but its configuration is set to have a predetermined basis weight of stainless steel fibers of three different fiber diameters, and is integrally molded, The single thicknesses are 0.41 mm and 0.52 mm, which are more than twice the single thicknesses of the examples. Note that the porosity ε in the table is a ratio indicating the pore portion per total volume of the sintered media, and means that the larger the ratio is, the more porous it is in this example. The characteristic is 63 to 66%.

こうして成形された幅1000mmの各焼結シート(実施例品1については、第1のメディアと第2のメディアを積層したもの)を、歯車状の凹凸を持つ2本のヒダ付けロール間に通して、高さ8mmの連続ヒダ付けを形成した前記3種類の多孔質濾材を得た。そして、各濾材に対し、厚さ2mm,外径50mmのパンチングプレートでなる補強筒の表面上に配置して各フィルタを形成してものであり、ヒダピッチは10mmとしている。なお、表1の各値は、各々2本ずづを成形したものの平均値である。   Each sintered sheet having a width of 1000 mm thus formed (for example product 1, a laminate of the first medium and the second medium) is passed between two crease rolls having gear-like irregularities. Thus, the three types of porous filter media having a continuous pleat height of 8 mm were obtained. Each filter medium is formed on the surface of a reinforcing cylinder made of a punching plate having a thickness of 2 mm and an outer diameter of 50 mm, and each filter is formed, and the fold pitch is set to 10 mm. In addition, each value of Table 1 is an average value of what formed two pieces each.

(試験1:外観)
前記ヒダ付け加工に伴う各濾材の割れ、クラックの発生状況を顕微鏡で確認したものであって、実施例品では各層の前記(1)式での値がいずれも1400〜1600と小さいことから、ヒダ部や絞り加工した薄壁部での前記欠陥発生はなく確認されず、良好なものであった。この状態は図5の断面写真に見ることができ、空間層も厚さ約0.5mm程度を有するものであった。これに対して、比較例品では前記値がいずれも2200以上のものであり、各ヒダ部に図6に見られるような割れが確認された。
(Test 1: Appearance)
Since the cracking state of each filter medium accompanying the pleating process and the occurrence of cracks were confirmed with a microscope, the values in the above formula (1) of each layer in the example products are all as small as 1400 to 1600, The above-mentioned defect generation was not observed in the fold portion or the drawn thin wall portion, and it was satisfactory. This state can be seen in the cross-sectional photograph of FIG. 5, and the space layer has a thickness of about 0.5 mm. On the other hand, in the comparative product, all of the values were 2200 or more, and cracks as seen in FIG.

(試験2:バブルテスト)
得られた各フィルタについて、JIS−B8356濾過粒度試験に基づく初期及び交点のバブルポイント圧を測定した。試験は、該フィルタの内部からエアーを所定条件で流しながら徐々に圧力を加える方法によるものであって、最初に気泡が発生した時の圧力を初期バブルポイント圧(PAS)とし、さらに圧力を加えて試験した時のエアー圧とエアー流量の関係曲線において変化率が徐々に低下していく領域での接線同士が交差する圧力を交点バブルポイント圧(PES)としている。
(Test 2: Bubble test)
About each obtained filter, the bubble point pressure of the initial stage and intersection based on a JIS-B8356 filtration particle size test was measured. The test is based on a method in which pressure is gradually applied while flowing air from the inside of the filter under a predetermined condition. The pressure when bubbles are first generated is set as an initial bubble point pressure (PAS), and further pressure is applied. The pressure at which the tangent lines intersect in the region where the rate of change gradually decreases in the relationship curve between the air pressure and the air flow rate when the test is performed is the intersection bubble point pressure (PES).

すなわち、PASの値が高いもの程、空孔径が小さい精密さを有することを意味し、PES/PASが1に近いほど空孔径が均一であることを意味しており、その結果は表2に示している。   That is, the higher the PAS value, the smaller the pore diameter, and the smaller the PES / PAS, the more uniform the pore diameter. Show.

本発明に係わるヒダ付き金属繊維フィルタの一形態を例示する正面図である。It is a front view which illustrates one form of a creased metal fiber filter concerning the present invention. (A)はその一部を削除した縦断面図である。(A) is the longitudinal cross-sectional view which deleted the part. 横断面の一部を拡大して示す拡大部分横断面図である。It is an expansion partial cross-sectional view which expands and shows a part of cross section. (A)は金属繊維層を重ねた状態を示す断面図、(B)は、(A)の金属繊維層を焼結した焼結メディアを例示する断面図、(C)は1層の金属繊維層を例示する断面図、(D)は(C)の金属繊維層を焼結してなる焼結メディアを例示する断面図、(E)は多孔質濾材を拡大して例示する断面図である。(A) is sectional drawing which shows the state which accumulated the metal fiber layer, (B) is sectional drawing which illustrates the sintering media which sintered the metal fiber layer of (A), (C) is 1 layer of metal fiber 2D is a cross-sectional view illustrating a sintered medium formed by sintering the metal fiber layer of (C), and FIG. 2E is a cross-sectional view illustrating an enlarged porous filter medium. . 実施例品を細径部で示す断面図である。It is sectional drawing which shows an Example goods by a thin diameter part. 図6は従来品のクラック状態を示す図であって,(A)は保護メッシュを付けた状態で例示する正面図、(B)は保護メッシュを取り除いた250倍の拡大正面図である。6A and 6B are diagrams showing a crack state of a conventional product, in which FIG. 6A is a front view illustrated with a protective mesh attached, and FIG. 6B is an enlarged front view of 250 times with the protective mesh removed. 従来のヒダ付金属繊維フィルタを例示する正面図である。It is a front view which illustrates the conventional metal fiber filter with a pleat.

符号の説明Explanation of symbols

2 多孔質濾材
3 ヒダ
12 焼結メディア
17、17A,17B 金属繊維層
18、18A,18B 焼結シート層
2 Porous filter medium 3 Fold 12 Sintered media 17, 17A, 17B Metal fiber layer 18, 18A, 18B Sintered sheet layer

Claims (4)

周囲の全面に軸方向にのびる成形ヒダを折曲げにより形成した筒状をなす金属製の多孔質濾材を有するヒダ付金属繊維フィルタであって、
金属繊維不織布からなる金属繊維層の1層又は重ね合わせた複数の前記金属繊維層を焼結し一体化することにより該金属繊維層が焼結された1層、又は複数層の焼結シート層を有する2枚以上の焼結メディアを具え、
かつ前記多孔質濾材はこの焼結メディアを、空間層を介在して重ね合わせた積層構造からなり、
かつ各焼結メディアを構成する各焼結シート層の金属繊維の繊維径d(μm)と、焼結シート層の目付け量w(g/m2 )、及び該焼結メディアの密度比τの次式(1)による計算値(A)が、800〜2000を満足するように調整したことを特徴とする溶融ポリマー用のヒダ付金属繊維フィルタ。
A=Σ(di×wi)×τ …(1)
(iは各焼結シート層を番号付けしたその番号を示す)。
A pleated metal fiber filter having a metallic porous filter medium in the form of a tube formed by bending a molded fold extending in the axial direction on the entire surrounding surface,
One layer of a metal fiber layer made of a metal fiber non-woven fabric or a plurality of stacked metal fiber layers are sintered and integrated to sinter the metal fiber layer, or a sintered sheet layer of a plurality of layers Comprising two or more sintered media having
And the porous filter medium has a laminated structure in which the sintered media are overlapped with a space layer interposed therebetween,
And the fiber diameter d (micrometer) of the metal fiber of each sintering sheet layer which comprises each sintering media, the fabric weight w (g / m < 2 >) of a sintering sheet layer, and density ratio (tau) of this sintering media A pleated metal fiber filter for a molten polymer, wherein the calculated value (A) according to the following formula (1) is adjusted to satisfy 800 to 2000.
A = Σ (di × wi) × τ (1)
(I shows the number which numbered each sintered sheet layer).
前記焼結シート層の焼結前の金属繊維は、30μm以下の等価直径を有するステンレス鋼であって、かつ焼結シートを構成する各金属繊維層の目付け量が100〜1000g/m2 である請求項1に記載のヒダ付金属繊維フィルタ。 The metal fiber before sintering of the sintered sheet layer is stainless steel having an equivalent diameter of 30 μm or less, and the basis weight of each metal fiber layer constituting the sintered sheet is 100 to 1000 g / m 2 . The pleated metal fiber filter according to claim 1. 前記焼結メディアは、濾過精度を担保する第1の焼結シート層と、該第1の焼結シートと一体をなしかつ粗な空孔の第2の焼結シート層とからなる複層体からなり、かつ前記多孔質濾材は、2枚の前記複層体からなる前記焼結メディアを、第1,又は第2の焼結シート層を互いに向き合わせてかつその間に空間層を介して線対称に重ね合わせることにより形成したことを特徴とする請求項1又は2に記載のヒダ付金属繊維フィルタ。   The sintered medium includes a first sintered sheet layer that ensures filtration accuracy, and a multilayered body that is integrated with the first sintered sheet and includes a second sintered sheet layer having coarse pores. And the porous filter medium is formed by wire-bonding the sintered medium composed of the two multilayers with the first or second sintered sheet layer facing each other and a space layer therebetween. 3. The pleated metal fiber filter according to claim 1, wherein the metal fiber filter is formed by symmetrically superimposing. 前記多孔質濾材は、更にその両外面に該多孔質濾材を保護する保護メッシュを有することを特徴とする請求項1〜3のいずれかに記載のヒダ付金属繊維フィルタ。   The pleated metal fiber filter according to any one of claims 1 to 3, wherein the porous filter medium further has protective meshes for protecting the porous filter medium on both outer surfaces thereof.
JP2005282705A 2005-09-28 2005-09-28 Folded metal fiber filter for molten polymer Active JP4908812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005282705A JP4908812B2 (en) 2005-09-28 2005-09-28 Folded metal fiber filter for molten polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005282705A JP4908812B2 (en) 2005-09-28 2005-09-28 Folded metal fiber filter for molten polymer

Publications (2)

Publication Number Publication Date
JP2007090231A true JP2007090231A (en) 2007-04-12
JP4908812B2 JP4908812B2 (en) 2012-04-04

Family

ID=37976523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005282705A Active JP4908812B2 (en) 2005-09-28 2005-09-28 Folded metal fiber filter for molten polymer

Country Status (1)

Country Link
JP (1) JP4908812B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013193066A (en) * 2012-03-22 2013-09-30 Sumitomo Chemical Co Ltd Washing method of filter
KR101334255B1 (en) 2011-07-18 2013-11-28 동양하이테크산업주식회사 Method of producting matal filter for water treatment having stacking-compression process and carbon coating process
CN104415591A (en) * 2013-09-05 2015-03-18 天津日望环境技术有限公司 Multi-layer metal sintering felt filtering disc
JP2021090955A (en) * 2019-12-09 2021-06-17 ポール・コーポレーションPall Corporation Filter element, filter, filter device and using method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142313A (en) * 1978-04-28 1979-11-06 Asahi Chem Ind Co Ltd Filter medium for spinning artificial fibers
JPH08173728A (en) * 1994-12-22 1996-07-09 Nippon Cloth Atsuen:Kk Grease filter plate and grease filter for kitchen using metal porous body
JPH10323524A (en) * 1997-05-23 1998-12-08 Filtration Kk Laminated filter and its production
JPH1128325A (en) * 1997-07-11 1999-02-02 Toray Ind Inc Plate-like filter medium
JP2003181223A (en) * 2001-12-17 2003-07-02 Koji Katsushima Filter for air conditioning

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142313A (en) * 1978-04-28 1979-11-06 Asahi Chem Ind Co Ltd Filter medium for spinning artificial fibers
JPH08173728A (en) * 1994-12-22 1996-07-09 Nippon Cloth Atsuen:Kk Grease filter plate and grease filter for kitchen using metal porous body
JPH10323524A (en) * 1997-05-23 1998-12-08 Filtration Kk Laminated filter and its production
JPH1128325A (en) * 1997-07-11 1999-02-02 Toray Ind Inc Plate-like filter medium
JP2003181223A (en) * 2001-12-17 2003-07-02 Koji Katsushima Filter for air conditioning

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334255B1 (en) 2011-07-18 2013-11-28 동양하이테크산업주식회사 Method of producting matal filter for water treatment having stacking-compression process and carbon coating process
JP2013193066A (en) * 2012-03-22 2013-09-30 Sumitomo Chemical Co Ltd Washing method of filter
CN104415591A (en) * 2013-09-05 2015-03-18 天津日望环境技术有限公司 Multi-layer metal sintering felt filtering disc
CN104415591B (en) * 2013-09-05 2019-04-05 天津日望环境技术有限公司 Integrated, multi-level metal sintering felt crosses filter dish
JP2021090955A (en) * 2019-12-09 2021-06-17 ポール・コーポレーションPall Corporation Filter element, filter, filter device and using method
JP7259166B2 (en) 2019-12-09 2023-04-18 ポール・コーポレーション Filter element, filter, filter device and method of use

Also Published As

Publication number Publication date
JP4908812B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP5036690B2 (en) Air filter unit, air filter unit panel using the same, and method for manufacturing air filter unit
CN107135648B (en) Filter medium with protrusions, filter pack and filter element
EP3357564B1 (en) Air filter medium, air filter pack, and air filter unit
EP3129119B1 (en) Filter element
EP3520873B1 (en) Air filter medium, air filter pack, and air filter unit
KR101983289B1 (en) Filter Elements
EP3520875B1 (en) Air filter medium, air filter pack, and air filter unit
KR20190056373A (en) Air filter medium, air filter pack and air filter unit
EP3129636B1 (en) Filter media construction
JP4908812B2 (en) Folded metal fiber filter for molten polymer
JP3761172B2 (en) Filter material for air filter, method of using the same, air filter unit and air-permeable support material
US9433882B2 (en) Metal fiber web based filter
JP2005095803A (en) Filter medium for air filter, and air filter unit using it
JP2007111697A (en) Air filter medium
JP2606925Y2 (en) Laminated filter media
CN113272038B (en) Filter pleat pack and air filter unit
JP4224437B2 (en) Air filter medium and air filter unit using the same
WO2000040360A1 (en) Method of producing sintered bodies of metallic fiber, and metallic nonwoven fabric sintered sheet
CN113260443B (en) Filter pleat pack and air filter unit
JP2001314716A (en) Laminated metallic filter and producing method thereof and filter element using the same
KR100638499B1 (en) Filter medium for air filters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4908812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250