JP2010137121A - Filter having high differential pressure-proof performance and gel foreign matter elimination performance - Google Patents

Filter having high differential pressure-proof performance and gel foreign matter elimination performance Download PDF

Info

Publication number
JP2010137121A
JP2010137121A JP2008313049A JP2008313049A JP2010137121A JP 2010137121 A JP2010137121 A JP 2010137121A JP 2008313049 A JP2008313049 A JP 2008313049A JP 2008313049 A JP2008313049 A JP 2008313049A JP 2010137121 A JP2010137121 A JP 2010137121A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
filter
filtration nonwoven
main filtration
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008313049A
Other languages
Japanese (ja)
Inventor
Toshitaka Nagame
仁隆 永目
Akira Hasegawa
亮 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roki Techno Co Ltd
Original Assignee
Roki Techno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roki Techno Co Ltd filed Critical Roki Techno Co Ltd
Priority to JP2008313049A priority Critical patent/JP2010137121A/en
Publication of JP2010137121A publication Critical patent/JP2010137121A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filter canceling problems of variation in filtering accuracy due to differential pressure and shortening of a service life of the filter, and collecting soft gel solid matter even when pulse pressure and high differential pressure occur, in the filtration of a viscous fluid causing pulse pressure and high differential pressure. <P>SOLUTION: The filter is formed by laminating a first main filtering non-woven fabric formed of extremely thin fibers subjected to thermocompression bonding and having a porosity of 50-80% and a second main filtering non-woven fabric not subjected to thermocompression bonding and having the porosity of 80% or more. The filter is held between auxiliary filtering non-woven fabric sheets having a larger average flow rate hole diameter than the main filtering non-woven fabric. The second main filtering non-woven fabric is formed to have a porosity of 1.2 times or more of that of the first main filtering non-woven fabric, to provide the high differential pressure-proof performance and gel foreign matter elimination performance. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、脈圧、高差圧下でも安定した濾過精度が得られる高耐差圧性能を有し、ゲル状異物の除去に適したフィルターに関する。   The present invention relates to a filter having a high differential pressure resistance capable of obtaining stable filtration accuracy even under pulse pressure and high differential pressure, and suitable for removing gelled foreign substances.

微細なゲル状の固形物の濾過には、その主濾過不織布に、極細繊維が使用されている。この主濾過不織布としては、一般的には、熱溶融紡糸法等にて製造された10μm以下の繊維で構成された不織布を主濾過不織布とすることが多い。   For filtration of fine gel-like solids, ultrafine fibers are used for the main filtration nonwoven fabric. As this main filtration nonwoven fabric, generally, a nonwoven fabric composed of fibers of 10 μm or less produced by a hot melt spinning method or the like is often used as the main filtration nonwoven fabric.

しかしながら、熱溶融紡糸法等によって製造された不織布は、繊維強度が弱く、繊維同士も強固に熱溶着されていないため、脈圧や高差圧が生じるような濾過では、濾過不織布の目開きや圧密化現象が生じる。そのため、高差圧が生じるような粘性流体の濾過では、濾過不織布の目開きや圧密化の現象が起こり、結果として濾過精度が差圧により変化したり、フィルター寿命が短くなる問題を引き起こす。   However, the nonwoven fabric produced by the hot melt spinning method has low fiber strength and the fibers are not strongly heat welded to each other. A consolidation phenomenon occurs. For this reason, in the filtration of viscous fluid in which a high differential pressure is generated, a phenomenon of opening and consolidation of the filtration nonwoven fabric occurs, resulting in a problem that the filtration accuracy changes due to the differential pressure and the filter life is shortened.

また、柔らかいゲル状固形物は、濾過の際に生じる脈圧や高差圧により、その形状が変化するため、濾過不織布をすり抜けるという現象が生じ易い。従って、濾過不織布の目開きとゲル状固形物の形状変化により、特にゲル状の固形物は、フィルターで捕捉し難い問題があった。   Moreover, since the shape of a soft gel-like solid changes due to a pulse pressure or a high differential pressure generated during filtration, a phenomenon of slipping through the filtration nonwoven fabric easily occurs. Therefore, due to the opening of the filtration nonwoven fabric and the change in shape of the gel-like solid matter, there is a problem that the gel-like solid matter is difficult to be captured by the filter.

この発明は、このような点に着目してなされたものであり、脈圧や高差圧が生じるような粘性液体の濾過において、濾過精度が差圧により変化したり、フィルター寿命が短くなる問題を解消したフィルターを提供することを目的とする。   The present invention has been made paying attention to such points, and in the filtration of viscous liquids in which pulse pressure and high differential pressure occur, the filtration accuracy changes due to the differential pressure, and the filter life is shortened. The object is to provide a filter that eliminates this problem.

またこの発明は、脈圧や高差圧が生じても、柔らかいゲル状固形物を支障なく捕捉し得るフィルターを提供することを目的とする。   Another object of the present invention is to provide a filter capable of capturing a soft gel-like solid without any trouble even when a pulse pressure or a high differential pressure occurs.

上記目的に沿う本発明のフィルターは、圧着処理して空隙率50〜80%とした極細繊維からなる第一の主濾過不織布と、圧着処理していない空隙率80%以上の第二の主濾過不織布とを積層したフィルターを、前記主濾過不織布よりも平均孔径の大きい補助濾過不織布シートで挟持してなり、前記第二の主濾過不織布は、空隙率が前記第一の主濾過不織布の1.2倍以上であることを特徴とする。
前記第二の主濾過不織布が、単一若しくは2種類以上の異なる繊維径の不織布を積層してなるようにするのが良く、特に2種類以上の異なる繊維径の不織布を積層してなるのが、高耐差圧性とゲル状異物の除去に極めて効果的である(請求項2)。
The filter of the present invention that meets the above-mentioned object is a first main filtration nonwoven fabric made of ultrafine fibers that has been subjected to pressure-bonding treatment to a porosity of 50 to 80%, and a second main filtration that has a porosity of 80% or more that has not been pressure-bonded. A filter laminated with a nonwoven fabric is sandwiched between auxiliary filtration nonwoven fabric sheets having an average pore diameter larger than that of the main filtration nonwoven fabric, and the second main filtration nonwoven fabric has a porosity of 1. It is characterized by being twice or more.
The second main filtration nonwoven fabric is preferably formed by laminating single or two or more types of non-woven fabrics having different fiber diameters, particularly by laminating two or more types of non-woven fabrics having different fiber diameters. It is extremely effective in high differential pressure resistance and removal of gel-like foreign matters (Claim 2).

前記第一の主濾過不織布の目付量が、前記第一の主濾過不織布と前記第二の主濾過不織布の合計の10〜40%であるのが、ゲル状固形物を濾過するフィルターとして好適である(請求項3)。   The basis weight of the first main filtration nonwoven fabric is 10 to 40% of the total of the first main filtration nonwoven fabric and the second main filtration nonwoven fabric, which is suitable as a filter for filtering gel solids. (Claim 3).

前記第一の主濾過不織布の目付量が、前記第一の主濾過不織布と前記第二の主濾過不織布の合計の30〜60%であるのが高耐差圧性能を有するフィルターとして好適である(請求項4)。
前記主濾過不織布の繊維径は、20μm〜0.1μmであり、前記第二の主濾過不織布の繊維径は、前記第一の主濾過不織布の繊維径の4倍〜0.5倍とするのがゲル状固形物を濾過するフィルターとして好適である(請求項5)。
The basis weight of the first main filtration nonwoven fabric is preferably 30 to 60% of the total of the first main filtration nonwoven fabric and the second main filtration nonwoven fabric as a filter having high differential pressure resistance. (Claim 4).
The fiber diameter of the main filtration nonwoven fabric is 20 μm to 0.1 μm, and the fiber diameter of the second main filtration nonwoven fabric is 4 to 0.5 times the fiber diameter of the first main filtration nonwoven fabric. Is suitable as a filter for filtering a gel-like solid (claim 5).

前記主濾過不織布の目付量が、400〜1000g/mであるのがゲル状固形物を濾過するフィルターとして好適である(請求項6)。 A basis weight of the main filtration nonwoven fabric of 400 to 1000 g / m 2 is suitable as a filter for filtering gel-like solids (Claim 6).

本発明によれば、圧力変動によっても良好な濾過精度を維持すると共に、フィルターとゲル状異物の変形により従来のフィルターでは捕捉し得なかったゲル状異物を効果的に捕捉できるという、この種従来のフィルターには、全く見られない絶大な効果を奏する。   According to the present invention, while maintaining good filtration accuracy even by pressure fluctuations, this type of conventional technology can effectively capture gel-like foreign matter that could not be caught by conventional filters due to deformation of the filter and gel-like foreign matter. This filter has a tremendous effect that cannot be seen at all.

次に本発明の実施の形態を、説明する。   Next, an embodiment of the present invention will be described.

本発明に使用する不織布の材質は、特に限定されない。ポリプロピレン、ナイロン、ポリエステル等の合成繊維から熱溶融紡糸法にて製造された、好ましくは20μm〜0.1μmの繊維径の極細繊維が好適に使用される。   The material of the nonwoven fabric used for this invention is not specifically limited. An ultrafine fiber having a fiber diameter of preferably 20 μm to 0.1 μm, which is produced from a synthetic fiber such as polypropylene, nylon or polyester by a hot melt spinning method, is preferably used.

本発明に使用する第一の主濾過不織布は、極細繊維をカレンダー加工等により熱圧着処理して空隙率50〜80%としたものである。空隙率がこれより小さいと、濾過寿命が悪くなるし、これより大きいと、耐差圧性能及びゲル状異物捕捉性能が劣るようになる。空隙率を85%とすると、他の条件を満たしていても、ゲル状異物は完全に捕捉し得ないことは、実験により確認されている。   The 1st main filtration nonwoven fabric used for this invention makes the porosity 50-80% by carrying out the thermocompression-bonding process of the ultrafine fiber by the calendar process etc. FIG. When the porosity is smaller than this, the filtration life is deteriorated, and when it is larger than this, the differential pressure resistance performance and the gel foreign matter capturing performance are degraded. When the porosity is 85%, it has been confirmed by experiments that gel foreign substances cannot be completely captured even if other conditions are satisfied.

本発明に使用する第二の主濾過不織布は、圧着処理していない空隙率80%以上の不織布である。空隙率がこれより小さいと、目詰まりし易くなる。第二の主濾過不織布の空隙率の上限は、特に限定されないが、最高97〜98%の市販品が支障なく使用できる。
本発明の第二の主濾過不織布は、空隙率が第一の主濾過不織布の1.2倍以上である。これより差が小さいと、耐差圧性能が悪化する。上限は特に限定されないが、第二の主濾過不織布の空隙率の上限が現在では最高97〜98%であるので、2倍未満である。
第二の主濾過不織布は、単一若しくは2種類以上の異なる繊維径の不織布を多層に積層してなるものであり、特に2種類以上の異なる繊維径の不織布を多層に積層してなるものを使用するのが、良好な耐差圧性能及びゲル状異物捕捉性能が得られることから好ましい。
上記主濾過不織布を挟持する補助濾過不織布シートとしては、前記主濾過不織布よりも平均孔径の大きい網状のこの種目的に使用される公知の不織布を使用すればよい。
The 2nd main filtration nonwoven fabric used for this invention is a nonwoven fabric with the porosity of 80% or more which has not been crimped | bonded. When the porosity is smaller than this, clogging easily occurs. The upper limit of the porosity of the second main filtration nonwoven fabric is not particularly limited, but a maximum of 97 to 98% of commercially available products can be used without any problem.
The porosity of the second main filtration nonwoven fabric of the present invention is 1.2 times or more that of the first main filtration nonwoven fabric. If the difference is smaller than this, the differential pressure resistance performance deteriorates. Although an upper limit is not specifically limited, Since the upper limit of the porosity of a 2nd main filtration nonwoven fabric is 97-98% at the maximum now, it is less than 2 times.
The second main filtration nonwoven fabric is formed by laminating single or two or more types of non-woven fabrics having different fiber diameters, and particularly by laminating two or more types of non-woven fabrics having different fiber diameters in multiple layers. It is preferable to use it because good differential pressure resistance and gel-like foreign matter capturing performance can be obtained.
As the auxiliary filtration nonwoven fabric sheet for sandwiching the main filtration nonwoven fabric, a known nonwoven fabric used for this kind of net having a larger average pore diameter than the main filtration nonwoven fabric may be used.

ゲル状固形物を濾過するフィルターとしては、前記第一の主濾過不織布の目付量が、前記第一の主濾過不織布と前記第二の主濾過不織布の合計の10〜40%とするのが良い。この範囲より小さいと、ゲル状異物の捕捉能が低下し、大きいとフィルターの濾過寿命が低下する。0.5μmのゲル状固形物の除去には、32%、0.8μmのゲル状固形物の除去には、12%で、それぞれ優れたゲル状異物除去効果が実験により確認されている。   As a filter for filtering gel-like solids, the basis weight of the first main filtration nonwoven fabric should be 10 to 40% of the total of the first main filtration nonwoven fabric and the second main filtration nonwoven fabric. . If it is smaller than this range, the trapping ability of the gel-like foreign matter is lowered, and if it is larger, the filtration life of the filter is lowered. The removal of 0.5 μm gel-like solids is 32%, and the removal of 0.8 μm gel-like solids is 12%.

耐差圧性能を有するフィルターとしては、前記第一の主濾過不織布の目付け量が、前記第一の主濾過不織布と前記第二の主濾過不織布の合計の30〜60%とするのが、良好な濾過精度が得られることから好ましい。これより小さいと耐差圧性能が劣るようになり、これより大きいと目詰まりし易くなる。
前記主濾過不織布の繊維径は、20μm〜0.1μmであり、前記第二の主濾過不織布の繊維径は、前記第一の主濾過不織布の繊維径の4倍〜0.5倍とするのがゲル状固形物を濾過するフィルターとして好適である。6倍以上とすると、他の条件を満たしていても、ゲル状固形物の捕捉能が低下することが実験により確認されている。
As a filter having differential pressure resistance, the basis weight of the first main filtration nonwoven fabric is preferably 30 to 60% of the total of the first main filtration nonwoven fabric and the second main filtration nonwoven fabric. It is preferable because accurate filtration accuracy can be obtained. If it is smaller than this, the differential pressure resistance performance will be inferior, and if it is larger than this, it will be easily clogged.
The fiber diameter of the main filtration nonwoven fabric is 20 μm to 0.1 μm, and the fiber diameter of the second main filtration nonwoven fabric is 4 to 0.5 times the fiber diameter of the first main filtration nonwoven fabric. Is suitable as a filter for filtering gel-like solids. Experiments have confirmed that when it is 6 times or more, the trapping ability of the gel-like solid is lowered even if other conditions are satisfied.

前記主濾過不織布の目付量が、400〜1000g/mであるのがゲル状固形物を濾過するフィルターとして好適である。これより小さいと、ゲル状固形物が漏れ易くなり、これ以上だとフィルターのプリーッ形状が形成できない。0.8μmのゲル状固形物の除去には、444g/mで、0.5μmのゲル状固形物の除去には、417g/mで、それぞれ優れたゲル状異物除去効果が実験により確認されている。また、0.5μmのゲル状固形物の除去に、260g/mでゲル状固形物の流出が実験により確認されている。 A basis weight of the main filtration nonwoven fabric of 400 to 1000 g / m 2 is suitable as a filter for filtering gel-like solids. If it is smaller than this, the gel-like solids are likely to leak, and if it is more than this, the filter pleated shape cannot be formed. The removal of 0.8 μm gel-like solids is 444 g / m 2 , and the removal of 0.5 μm gel-like solids is 417 g / m 2. Has been. In addition, it was confirmed by experiments that the gelled solid was discharged at 260 g / m 2 in removing the 0.5 μm gelled solid.

本発明のフィルターは、プリーッフィルター、デプスフィルター等のカートリッジフィルターとして好適に使用される。   The filter of the present invention is suitably used as a cartridge filter such as a pree filter or a depth filter.

ポリプロピレン極細繊維を使用して、次表1に記載のように、0.5μmと0.8μmのゲル状固形物除去用フィルターを製造した。表1の上下方向が、通液方向である。   As shown in Table 1 below, 0.5 μm and 0.8 μm gel-like solid removal filters were manufactured using polypropylene ultrafine fibers. The vertical direction in Table 1 is the liquid passing direction.

Figure 2010137121
第一の主濾過不織布と第二の主濾過不織布の合計の目付量は、0.5μmフィルターの場合は、417g/mであり、0.8μmフィルターの場合は、444g/mである。
Figure 2010137121
Basis weight of the sum of the first main filtration nonwoven fabric and the second main filtration nonwoven For 0.5μm filter, a 417 g / m 2, in the case of 0.8μm filter, a 444 g / m 2.

次表2に記載の従来のデプスプリーッフィルターと本発明の高耐差圧フィルターについて、差圧毎の濾過精度と除去効率を測定した。結果を図1及び図2に示す。   With respect to the conventional depth spray filter shown in the following Table 2 and the high differential pressure resistant filter of the present invention, filtration accuracy and removal efficiency for each differential pressure were measured. The results are shown in FIGS.

Figure 2010137121
従来の20μmカット径フィルターは、第一の主濾過不織布の目付量が全体の目付量に占める割合は、25%であるが、上記高耐差圧フィルターは、50%である。
Figure 2010137121
In the conventional 20 μm cut diameter filter, the ratio of the basis weight of the first main filtration nonwoven fabric to the total basis weight is 25%, but the high differential pressure filter is 50%.

従来の20μmカット径フィルターは、第一と第二の主濾過不織布の繊維径の割合が、1.1〜3.6倍であるが、上記高耐差圧フィルターは、0.92倍である。   In the conventional 20 μm cut diameter filter, the ratio of the fiber diameters of the first and second main filtration nonwoven fabrics is 1.1 to 3.6 times, but the high differential pressure resistance filter is 0.92 times. .

図1の結果から、明らかなように、従来のデプスプリーッフィルターは、差圧毎の濾過精度のバラツキが大きいが、本発明の高耐圧フィルターは、差圧毎の濾過精度のバラツキが小さい。   As is apparent from the results of FIG. 1, the conventional depth spread filter has a large variation in filtration accuracy for each differential pressure, but the high pressure filter of the present invention has a small variation in the filtration accuracy for each differential pressure.

また、図2の結果から、明らかなように、従来のデプスプリーッフィルターは、圧力上限値(A)と圧力下限値(B)の線で示しように、圧力が上昇すると、濾過効率上限値(C)と濾過効率下限値(D)の線で示すように、プリーッフィルターの除去効率が低下するが、本発明の高耐圧フィルターは、圧力上限値(A)と圧力下限値(B)の線で示しように圧力が上昇しても、濾過効率上限値(C)と濾過効率下限値(D)の線で示すように、プリーッフィルターの除去効率は低下せず、逆に上昇する。   Further, as is apparent from the results of FIG. 2, the conventional depth spread filter has a filtration efficiency upper limit value as the pressure rises as shown by the line of the pressure upper limit value (A) and the pressure lower limit value (B). As shown by the line between (C) and the lower limit of filtration efficiency (D), the removal efficiency of the pleated filter decreases, but the high pressure filter of the present invention has an upper pressure limit (A) and a lower pressure limit (B). Even if the pressure rises as shown by the line of, as shown by the line of the filtration efficiency upper limit value (C) and the filtration efficiency lower limit value (D), the removal efficiency of the pre-filter does not decrease but rises conversely. .

塗工液の塗工工程における濾過にプリーッフィルターを使用し、塗工すると、塗工後にゲル状異物の流出が起因と推測される点欠陥の基板不良が発生する。   If a pleated filter is used for filtration in the coating process of the coating liquid and coating is performed, a substrate defect of a point defect that is presumed to be caused by the outflow of gel-like foreign matters after coating occurs.

脈動の加わる間欠運転においても、ゲル除去性能を維持できるフィルターが強く求められている。そこで、次表3に記載の0.5μmカット径フィルターと本発明の0.5μmカット径ゲル状異物除去フィルターについて、ろ過性精度の経時変化とゲル状異物の除去率の変化を、図3に示す間欠運転での試験方法で測定した。   There is a strong demand for a filter that can maintain gel removal performance even in intermittent operation with pulsation. Therefore, with respect to the 0.5 μm cut diameter filter described in the following Table 3 and the 0.5 μm cut diameter gel-like foreign substance removal filter of the present invention, the change in filterability accuracy with time and the change of the gel-like foreign substance removal rate are shown in FIG. It measured by the test method in the intermittent operation shown.

試験条件は、図3に示すように、濾過方式:間欠濾過、1サイクル:通液15秒、停止5秒、流量:0.5リットル/分、サンプルサイズ:小型カプセルフィルターで、ポンプのON/OFFにより間欠運転での濾過試験を実施した。   As shown in FIG. 3, the test conditions are as follows: filtration method: intermittent filtration, 1 cycle: liquid passage 15 seconds, stop 5 seconds, flow rate: 0.5 liter / minute, sample size: small capsule filter, pump ON / OFF A filtration test in intermittent operation was performed by turning OFF.

水溶性ポリマーにて合成したゲル状粒子のみを純水(RO水)に分散させた溶液中の試験用ゲル状粒子の粒度分布を求めた。結果は、図4に示す通りであった。   The particle size distribution of test gel particles in a solution in which only gel particles synthesized with a water-soluble polymer were dispersed in pure water (RO water) was determined. The result was as shown in FIG.

Figure 2010137121

従来の0.5μmカット径フィルターは、第一の主濾過不織布の目付量が全体の目付量に占める割合は、27%であるが、上記0.5μmカット径ゲル状異物除去フィルターフィルターは、32%である。
Figure 2010137121

In the conventional 0.5 μm cut diameter filter, the ratio of the basis weight of the first main filtration nonwoven fabric to the total basis weight is 27%. However, the 0.5 μm cut diameter gel-like foreign substance removal filter is 32%. %.

従来の0.5μmカット径フィルターは、第一と第二の主濾過不織布の繊維径の割合が、7〜13倍であるが、上記0.5μmカット径ゲル状異物除去フィルターは、2〜3倍である。   In the conventional 0.5 μm cut diameter filter, the ratio of the fiber diameters of the first and second main filtration nonwoven fabrics is 7 to 13 times. Is double.

図4に示す試験用ゲル状粒子を使用し、表3に記載のフィルターを使用して、図3に示す条件で間欠運転での濾過試験を実施した。結果を図5及び図6に示す。   Using the test gel particles shown in FIG. 4 and using the filters shown in Table 3, a filtration test in intermittent operation was performed under the conditions shown in FIG. The results are shown in FIGS.

図5の結果から明らかなように、従来のフィルターは、処理量と共にゲル状異物の除去率は低下するが、 図6の結果から明らかなように、本発明のゲル状異物除去フィルターは、処理量に対するゲル状異物の除去率は安定している。   As is clear from the results of FIG. 5, the conventional filter reduces the removal rate of the gel-like foreign matter with the amount of treatment, but as is clear from the results of FIG. 6, the gel-like foreign matter removal filter of the present invention is treated. The removal rate of the gel-like foreign material with respect to the amount is stable.

また、図7(A)の結果から、明らかなように、本発明のフィルターは、目詰まりを起こしてもゲル状異物は全く流出しないが、従来のフィルターは、目詰まりに対してゲル状異物の除去率が悪化する。また、図7(B)の結果から、明らかなように、従来のデプスプリーッフィルターは、圧力が上昇するとフィルターの除去効率が低下するが、本発明の高耐圧フィルターは、圧力が上昇してもフィルターの除去効率は低下しない。   Further, as apparent from the result of FIG. 7 (A), the filter of the present invention does not cause any gel-like foreign matter to flow out even if clogging occurs, but the conventional filter has a gel-like foreign matter against clogging. The removal rate becomes worse. As is clear from the results of FIG. 7B, the conventional depth spray filter has a reduced filter removal efficiency when the pressure is increased, but the high pressure filter of the present invention has an increased pressure. However, the filter removal efficiency does not decrease.

従来のデプスプリーッフィルターと本発明の高耐圧フィルターについて、差圧毎の濾過精度を測定したグラフである。It is the graph which measured the filtration precision for every differential pressure about the conventional depth filter and the high pressure | voltage resistant filter of this invention. 従来のデプスプリーッフィルターと本発明の高耐圧フィルターについて、経過時間に伴って圧力上昇と濾過精度との関係を示すグラフである。It is a graph which shows the relationship between a pressure rise and filtration accuracy with elapsed time about the conventional depth spray filter and the high pressure | voltage resistant filter of this invention. 間欠運転での試験方法を示す図である。It is a figure which shows the test method in intermittent operation. 本発明の試験に使用したゲル状粒子の粒度分布を示す図である。It is a figure which shows the particle size distribution of the gel-like particle | grains used for the test of this invention. 従来のデプスプリーッフィルターについての間欠運転での濾過精度の経時変化を示す図である。It is a figure which shows the time-dependent change of the filtration precision in the intermittent operation about the conventional depth spray filter. 本発明の高耐圧フィルターについての間欠運転での濾過精度の経時変化を示す図である。It is a figure which shows the time-dependent change of the filtration precision in intermittent operation about the high pressure | voltage resistant filter of this invention. 従来のデプスプリーッフィルターと本発明の高耐圧フィルターについて、(A)処理量と粒子除去率の変化を示すグラフ、(B)差圧と粒子除去率の変化を示すグラフである。(A) It is a graph which shows the change of a processing amount and a particle removal rate, and (B) is a graph which shows the change of a differential pressure | voltage and a particle removal rate about the conventional depth spray filter and the high pressure | voltage resistant filter of this invention.

Claims (6)

圧着処理して空隙率50〜80%とした極細繊維からなら第一の主濾過不織布と、圧着処理していない空隙率80%以上の第二の主濾過不織布とを積層したフィルターを、前記主濾過不織布よりも平均孔径の大きい補助濾過不織布シートで挟持してなり、前記第二の主濾過不織布は、空隙率が前記第一の主濾過不織布の1.2倍以上であることを特徴とする前記第二の主濾過不織布から前記第一の主濾過不織布の方向に通液する高耐差圧性能とゲル状異物除去性能を有するフィルター。 A filter obtained by laminating a first main filtration nonwoven fabric having a porosity of 50 to 80% by pressure-bonding treatment and a second main filtration nonwoven fabric having a porosity of 80% or more that has not been pressure-treated, It is sandwiched between auxiliary filtration nonwoven fabric sheets having an average pore diameter larger than that of the filtration nonwoven fabric, and the second main filtration nonwoven fabric has a porosity of 1.2 times or more that of the first main filtration nonwoven fabric. A filter having a high differential pressure resistance performance and a gel-like foreign matter removal performance for passing liquid in the direction from the second main filtration nonwoven fabric to the first main filtration nonwoven fabric. 前記第二の主濾過不織布は、単一若しくは2種類以上の異なる繊維径の不織布を積層してなる請求項1に記載のフィルター。 The filter according to claim 1, wherein the second main filtration nonwoven fabric is formed by laminating single or two or more types of nonwoven fabrics having different fiber diameters. 前記第一の主濾過不織布の目付量が、前記第一の主濾過不織布と前記第二の主濾過不織布の合計の10〜40%である請求項1又は2記載のゲル状異物除去性能を有するフィルター。 3. The gel-like foreign matter removing performance according to claim 1, wherein a basis weight of the first main filtration nonwoven fabric is 10 to 40% of a total of the first main filtration nonwoven fabric and the second main filtration nonwoven fabric. filter. 前記第一の主濾過不織布の目付量が、前記第一の主濾過不織布と前記第二の主濾過不織布の合計の30〜60%である請求項1又は2記載の高耐差圧性能を有するフィルター。 3. The high differential pressure resistance performance according to claim 1, wherein a basis weight of the first main filtration nonwoven fabric is 30 to 60% of a total of the first main filtration nonwoven fabric and the second main filtration nonwoven fabric. filter. 前記主濾過不織布の繊維径は、20μm〜0.1μmであり、前記第二の主濾過不織布の繊維径は、前記第一の主濾過不織布の繊維径の4倍〜0.5倍である請求項1〜3のいずれかに記載のゲル状異物除去性能を有するフィルター。 The fiber diameter of the main filtration nonwoven fabric is 20 μm to 0.1 μm, and the fiber diameter of the second main filtration nonwoven fabric is 4 to 0.5 times the fiber diameter of the first main filtration nonwoven fabric. The filter which has the gel-like foreign material removal performance in any one of claim | item 1-3. 前記主濾過不織布の目付量が、400〜1000g/mである請求項1〜3及び5のいずれかに記載のゲル状異物除去性能を有するフィルター。













Basis weight of the primary filtration nonwoven filter having a gel-like foreign substance removal performance according to any one of claims 1 to 3 and 5 is 400~1000g / m 2.













JP2008313049A 2008-12-09 2008-12-09 Filter having high differential pressure-proof performance and gel foreign matter elimination performance Pending JP2010137121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008313049A JP2010137121A (en) 2008-12-09 2008-12-09 Filter having high differential pressure-proof performance and gel foreign matter elimination performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313049A JP2010137121A (en) 2008-12-09 2008-12-09 Filter having high differential pressure-proof performance and gel foreign matter elimination performance

Publications (1)

Publication Number Publication Date
JP2010137121A true JP2010137121A (en) 2010-06-24

Family

ID=42347726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313049A Pending JP2010137121A (en) 2008-12-09 2008-12-09 Filter having high differential pressure-proof performance and gel foreign matter elimination performance

Country Status (1)

Country Link
JP (1) JP2010137121A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928026A (en) * 2012-10-22 2013-02-13 哈尔滨工程大学 Method of obtaining integrated transient void fraction by utilizing local transient void fraction
JP2015097979A (en) * 2013-11-18 2015-05-28 Jnc株式会社 Filter
KR20180008468A (en) 2015-05-15 2018-01-24 제이엔씨 주식회사 filter
WO2020066767A1 (en) 2018-09-26 2020-04-02 Jnc株式会社 Depth filter
WO2020196515A1 (en) 2019-03-28 2020-10-01 Jnc株式会社 Depth filter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295645A (en) * 1992-04-17 1993-11-09 Toyobo Co Ltd Nonwoven fabric and its production
WO1998013123A1 (en) * 1996-09-25 1998-04-02 Chisso Corporation High-precision filter
JPH1112183A (en) * 1997-06-26 1999-01-19 Asahi Medical Co Ltd Filter medium for removing leukocyte and removal of leukocyte
JP2000218113A (en) * 1999-01-29 2000-08-08 Toyobo Co Ltd Laminated nonwoven fabric for filter and filtration method using the same
JP2001300223A (en) * 2000-02-14 2001-10-30 Japan Vilene Co Ltd Cylindrical filter
JP2002102070A (en) * 2000-09-27 2002-04-09 Daiki Shoji Kk Coffee filter for dripping

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295645A (en) * 1992-04-17 1993-11-09 Toyobo Co Ltd Nonwoven fabric and its production
WO1998013123A1 (en) * 1996-09-25 1998-04-02 Chisso Corporation High-precision filter
JPH1112183A (en) * 1997-06-26 1999-01-19 Asahi Medical Co Ltd Filter medium for removing leukocyte and removal of leukocyte
JP2000218113A (en) * 1999-01-29 2000-08-08 Toyobo Co Ltd Laminated nonwoven fabric for filter and filtration method using the same
JP2001300223A (en) * 2000-02-14 2001-10-30 Japan Vilene Co Ltd Cylindrical filter
JP2002102070A (en) * 2000-09-27 2002-04-09 Daiki Shoji Kk Coffee filter for dripping

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928026A (en) * 2012-10-22 2013-02-13 哈尔滨工程大学 Method of obtaining integrated transient void fraction by utilizing local transient void fraction
JP2015097979A (en) * 2013-11-18 2015-05-28 Jnc株式会社 Filter
KR20180008468A (en) 2015-05-15 2018-01-24 제이엔씨 주식회사 filter
US10765978B2 (en) 2015-05-15 2020-09-08 Jnc Corporation Filter
WO2020066767A1 (en) 2018-09-26 2020-04-02 Jnc株式会社 Depth filter
KR20210055776A (en) 2018-09-26 2021-05-17 제이엔씨 주식회사 Depth filter
WO2020196515A1 (en) 2019-03-28 2020-10-01 Jnc株式会社 Depth filter

Similar Documents

Publication Publication Date Title
EP3233240B1 (en) Filter media comprising a pre-filter layer
JP2010137121A (en) Filter having high differential pressure-proof performance and gel foreign matter elimination performance
JP5252924B2 (en) Filtration media for filtering particulate matter from gas streams
US20160256805A1 (en) Filter Medium, Method for Producing a Filter Medium and a Filter Element Having a Filter Medium
JP5784458B2 (en) Air filter media
JPWO2018216247A1 (en) Operating method of filtration device
US20050045566A1 (en) Filtration media created by sonic welding
US8257591B2 (en) Methodology for filtering a fluid using a plurality of surface filtration mediums
JP3134943U (en) The present invention relates to a fuel filter used as a filter medium in the course of supplying fuel from a fuel tank provided in an internal combustion engine or the like to a nano fuel injection device.
WO2007024445A1 (en) Hvac meltblown nanoweb filter media
JP2012511428A5 (en)
JP6083602B2 (en) Method for producing precision metal filter for molten polymer
JP2009112887A (en) Filter medium, its manufacturing method, and cartridge filter
US20180361287A1 (en) Filter media including a multi-phase pre-filter
JP2009066534A (en) Pleat type filter cartridge for liquid
JP2005246162A (en) Filter medium and filtering method
JP6253602B2 (en) Filter for filtration
JP3994225B2 (en) Filter material and filtration method
JP2015513453A (en) Filter based on metal fiber web
JP5734038B2 (en) Membrane filtration system and filtration membrane damage detection method
JP2014159033A (en) Liquid filter with high separability
JP2020157297A (en) Cartridge filter
JP3644812B2 (en) Cylindrical filter
TW201420171A (en) Filter for a water purifier, and a water purifier including the same
KR20160083562A (en) Filter assembly having excellent filtration efficiency depending on the particle size and filter unit comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A131 Notification of reasons for refusal

Effective date: 20120427

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120627

Free format text: JAPANESE INTERMEDIATE CODE: A523

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121026

A02 Decision of refusal

Effective date: 20130128

Free format text: JAPANESE INTERMEDIATE CODE: A02