WO2018014426A1 - 高阻尼橡胶隔震支座、智能支座以及支座监测系统 - Google Patents
高阻尼橡胶隔震支座、智能支座以及支座监测系统 Download PDFInfo
- Publication number
- WO2018014426A1 WO2018014426A1 PCT/CN2016/097564 CN2016097564W WO2018014426A1 WO 2018014426 A1 WO2018014426 A1 WO 2018014426A1 CN 2016097564 W CN2016097564 W CN 2016097564W WO 2018014426 A1 WO2018014426 A1 WO 2018014426A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rubber
- unit
- damping rubber
- high damping
- bearing
- Prior art date
Links
- 229920001971 elastomer Polymers 0.000 title claims abstract description 126
- 238000013016 damping Methods 0.000 title claims abstract description 47
- 238000002955 isolation Methods 0.000 title claims abstract description 40
- 238000012544 monitoring process Methods 0.000 title claims abstract description 27
- 239000004744 fabric Substances 0.000 claims description 16
- 229910000831 Steel Inorganic materials 0.000 claims description 11
- 239000010959 steel Substances 0.000 claims description 11
- 238000007789 sealing Methods 0.000 claims description 10
- 230000003993 interaction Effects 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 239000002041 carbon nanotube Substances 0.000 claims description 5
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 5
- 238000004073 vulcanization Methods 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 claims description 2
- 230000003862 health status Effects 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 16
- 230000006872 improvement Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000002048 multi walled nanotube Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920002334 Spandex Polymers 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 210000004177 elastic tissue Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000008376 long-term health Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000004759 spandex Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/0009—Force sensors associated with a bearing
- G01L5/0019—Force sensors associated with a bearing by using strain gages, piezoelectric, piezo-resistive or other ohmic-resistance based sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/06—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/18—Layered products comprising a layer of metal comprising iron or steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/04—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/20—Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/02—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
- B32B3/08—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/08—Interconnection of layers by mechanical means
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D19/00—Structural or constructional details of bridges
- E01D19/04—Bearings; Hinges
- E01D19/041—Elastomeric bearings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/06—Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/06—Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
- G01L19/0609—Pressure pulsation damping arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/0028—Force sensors associated with force applying means
- G01L5/0038—Force sensors associated with force applying means applying a pushing force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/44—Number of layers variable across the laminate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
- B32B2260/023—Two or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/048—Natural or synthetic rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0261—Polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/106—Carbon fibres, e.g. graphite fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/51—Elastic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/582—Tearability
- B32B2307/5825—Tear resistant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D2101/00—Material constitution of bridges
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D2101/00—Material constitution of bridges
- E01D2101/30—Metal
Definitions
- the invention relates to the technical field of bearing, in particular to a high damping rubber isolation bearing, an intelligent bearing and a bearing monitoring system.
- the isolation bearing is widely used in the field of bridges, and the high-damping rubber bearing in the isolation bearing has actual bridge engineering in many countries around the world due to its lead-free pollution, significant seismic isolation effect and mature technology.
- the support is the main force transmission member, and its stability and reliability directly affect the safety performance of the entire bridge. The failure of the support will cause the entire bridge to collapse, causing incalculable serious consequences, so the long-term safety of the support is particularly important.
- the vibration isolation bearing with rubber material the rubber material will gradually age with the prolonged use time, and the metal member will also fatigue as time passes.
- the durability of the isolation bearing determines whether the isolation bearing will be invalid due to various factors such as aging of rubber materials and fatigue of metal components, all of which are related to the safety of the overall use of the bridge. . From the perspective of the long-term health of the bridge, the monitoring of the health status of the isolation bearing is particularly important.
- the monitoring of the force of the seismic isolation bearing mainly relies on the pressure sensing unit, and the data information after the pressure measurement of the sensing unit needs to be exported through the lead wire, the micro hole is needed to be used on the support.
- the overall mechanical properties of the bearing are affected.
- the bearing of the bridge needs to bear a huge load, even a small hole will cause a huge safety hazard; in addition, the replacement of the sensing unit is also the current bearing.
- a problem faced by the technical field is that because the sensing unit is usually fixed to the support body or buried inside the support, if the sensing unit is to be replaced, the entire support needs to be replaced, which is costly and complicated to operate.
- the technical problem to be solved by the present invention is to provide a high damping rubber isolation bearing capable of real-time monitoring of the bearing force state, without affecting the mechanical properties of the bearing and facilitating the replacement of the sensing unit.
- the technical problem to be solved by the present invention is also to provide an intelligent support and a support monitoring system capable of monitoring and reflecting the health status of the support in real time.
- the invention provides a high damping rubber isolation bearing, comprising a top support plate, a bottom support plate and a high damping rubber support body fixed between the top support plate and the bottom support plate, A backing plate is disposed on the top support plate or the bottom support plate, and a pressure sensing unit is disposed between the top support plate and the back plate or between the bottom support plate and the back plate.
- the pressure sensing unit is a nano rubber sensor.
- the backing plate and the nano rubber sensor are disposed between the top support plate and the high damping rubber support body, or on the bottom support plate and the high damping rubber support body. between.
- the nano rubber sensor comprises at least two fabric layers, and the nano-conductive rubber is filled between the adjacent fabric layers, and the nano-conductive rubber is a rubber matrix doped with carbon nanotubes.
- a limiting unit is provided on a side of the backing plate that receives the lateral force.
- the limiting unit is a strip steel strip or a limiting block, and is fixedly connected to the top support plate or the bottom support plate by bolts and abuts against the side of the back plate side.
- the high damping rubber support body comprises a plurality of layers of rubber sheets, a steel plate interposed between the rubber sheets, and a sealing plate connected to the rubber sheets on the upper and lower end faces, the rubber sheets and The steel sheets and the rubber sheet and the sealing sheet are bonded together by vulcanization.
- the invention provides an intelligent support comprising a data acquisition unit, a data output unit and a high damping rubber isolation bearing as described above, wherein the data acquisition unit transmits the bearing pressure measured by the pressure sensing unit to Data output unit.
- the invention also provides a support monitoring system comprising a data acquisition unit, a data output unit, a monitoring center and a high damping rubber isolation bearing as described above, the data acquisition unit measuring the pressure sensing unit The holder pressure data is transmitted to the data output unit, and the data output unit transmits pressure data to the monitoring center.
- the monitoring center includes a data receiving unit, a server, a monitoring unit, an analyzing unit, and a human-machine interaction unit, and the data receiving unit transmits the pressure data of the data output unit to the server and the monitoring unit. , analysis unit, and human-computer interaction unit.
- the pressure sensing unit is placed between the top support plate and the back plate, or between the bottom support plate and the back plate, which facilitates the replacement of the pressure sensing unit and enables real-time monitoring of the force state of the support.
- the lead wire of the pressure sensing unit is taken out from between the top support plate and the back plate, or between the bottom support plate and the back plate, and there is no need to make lead micropores to the support to ensure that the mechanical properties of the support are not affected. .
- the support monitoring system of the present invention can instantly transmit the pressure value measured by the pressure sensing unit to the monitoring center, and the monitoring center monitors and analyzes the pressure data to monitor and reflect the health status of the support in real time.
- Figure 1 is a cross-sectional view showing the entire structure of a first embodiment of a high damping rubber isolation bearing of the present invention
- Figure 2 is a cross-sectional view showing the overall structure of a second embodiment of the high damping rubber isolation bearing of the present invention
- FIG. 3 is a schematic view showing the overall structure of a nano rubber sensor of the high damping rubber isolation bearing of the present invention
- FIG. 4 is a schematic view showing the module connection of the support monitoring system of the present invention.
- Fig. 1 shows a specific structure of the first embodiment of the high damping rubber isolation bearing of the present invention.
- the high damping rubber isolation bearing of the present invention comprises a top support plate 11, a bottom support plate 12, a high damping rubber support body 13, a nano rubber sensor 14, a backing plate 15, and a limiting unit 16.
- a top anchor 11a is fixed on the upper surface of the top support plate 11, and a bottom anchor 12a is fixed on the lower surface of the bottom support plate 12a.
- the top anchor 11a and the bottom anchor 12a are fixedly connected to a structure such as a bridge.
- the high damping rubber isolation bearing of the invention uses the nano rubber sensor 14 to detect the force condition of the support in real time and obtain the vertical pressure change value of the support. Since the nano rubber sensor 14 has a thin thickness and a simple structure, it does not affect the support. The mechanical properties of the seat; the rubber has good fatigue resistance and high temperature resistance, so the durability of the nano rubber sensor 14 is high, and the number of alternating stress cycles is more than 50 million times.
- nano-rubber sensor 14 as a pressure measuring unit is a preferred embodiment of the present invention, although other pressure sensors such as, but not limited to, strain gauge pressure sensors, ceramic pressure sensors, diffused silicon pressure sensors, piezoelectric pressure sensors, and the like can be used.
- a nano rubber sensor 14 and a backing plate 15 are disposed between the top support plate 11 and the high damping rubber support body 13 from top to bottom.
- the side of the backing plate 15 is provided with a limiting unit 16 to ensure the pad.
- the backing plate 15 may also be disposed above the top support plate 11, as long as it is laminated with the top support plate 11 and a nano rubber sensor 14 is disposed therebetween.
- the limiting unit 16 is preferably a strip-shaped steel strip or a limiting block, and is fixedly connected to the top support plate 11 by bolts and abuts against the side of the backing plate 15 .
- the fixed position and the fixing manner are not limited to the above embodiment, and only the limit function is required.
- the limiting unit 16 and the top support plate 11 are bolted to facilitate replacement of the nano rubber sensor 14. If the replacement is to be performed, the limiting unit 16 is first removed, and then the top supporting plate 11 is used together with the lifting device. The nano-rubber sensor 14 can be replaced by lifting the structure together.
- the high damping rubber holder body 13 includes a plurality of layers of rubber sheets 13a, a steel sheet 13b interposed between the rubber sheets 13a, and a sealing plate 13c connected to the rubber sheets 13a on the upper and lower end faces, between the rubber sheets 13a and the steel sheets 13b, and a rubber sheet. Both 13a and the sealing plate 13c are bonded together by vulcanization.
- the sealing plate 13c at the top of the rubber sheet 13a is fixedly connected to the backing plate 15 by bolts, and the bottom sealing plate 13c is fixedly connected to the bottom supporting plate 12 by bolts.
- the array of nano rubber sensors 14 is arranged between the top support plate 11 and the backing plate 15 to connect the nano rubber sensor.
- the high-temperature shielded wire of the two electrodes of 14 is led out by the gap between the backing plate 15 and the top support plate 11, and does not need to make any wire lead-out holes for the support itself, thereby effectively ensuring various mechanical properties of the support.
- Fig. 2 shows the specific structure of the second embodiment of the high damping rubber isolation bearing of the present invention.
- the high damping rubber isolation bearing of the present invention comprises a top support plate 21, a bottom support plate 22, a high damping rubber support body 23, a nano rubber sensor 24, a backing plate 25 and a limiting unit 26.
- the nano rubber sensor 24 and the backing plate 25 are placed between the bottom support plate 22 and the high damping rubber support body 23.
- the backing plate 25 can also be disposed under the bottom support plate 22, only need to ensure that it is laminated with the bottom support plate 21 and a nano rubber sensor 24 is disposed between the two. .
- the high damping rubber holder body 23 includes a plurality of rubber sheets 23a, a steel sheet 23b interposed between the rubber sheets 23a, and a sealing plate 23c fixed to the upper and lower end surface rubber sheets 23a, a rubber sheet 23a and a steel sheet 23b, and a rubber sheet 23a.
- the sealing plates 23c are all bonded together by vulcanization, and the backing plate 25 and the sealing plate 23c at the lower end of the rubber sheet 23a are fixedly connected by bolts.
- the limiting unit 26 is fixedly connected to the bottom support plate 22 by bolts, and is disposed on the side of the backing plate 25 that receives the lateral force.
- the top support plate 21, the structure above the top support plate 21, the high damping rubber support body 23, and the backing plate 25 need to be simultaneously jacked up, and then replaced. Just fine.
- Fig. 3 is a schematic view showing the overall structure of a nano rubber sensor 14 of the high damping rubber isolation bearing of the present invention.
- the working principle of the nano rubber sensor the nano rubber sensor deforms under the action of external load, so that the distance between the conductive particles inside the conductive rubber and the conductive network formed by the conductive particles change, showing the change of the resistivity and resistance of the conductive rubber. , causing a change in the measured electrical signal, and according to the piezoresistive characteristics of the conductive rubber, the stress state of the bearing surface can be reversed.
- the nano-rubber sensor 14 is of a multi-layered structure in which the high-strength fabric layer 14a as a skeleton layer is vertically spaced and distributed in a plurality of layers, and is filled with a certain thickness of the nano-conductive rubber 14b between the fabric layers 14a.
- the fabric layer 14a has a dense material structure, a certain thickness, elasticity and strength, and satisfies the requirement of elastic deformation under high pressure without breaking.
- the fabric layer 14a is made of medium or high spandex, high elastic nylon. Elastic fibers are woven.
- the texture formed by the longitudinal and transverse fibers of the fabric layer 14a has a certain gap, which ensures that the nano-conductive rubber solution covered thereon during the preparation process can penetrate into the void and enhance the integrity of the structure.
- the rubber base material of the nano conductive rubber 14a is a silicone rubber (PDMS) composed of a basic component and a curing agent in a mixing ratio of 10:1;
- the conductive filler is a carbon nanotube, preferably a multi-walled carbon nanotube ( MWCNT), the mass percentage of multi-walled carbon nanotubes is between 8% and 9%.
- the nano-rubber sensor 14 adds the high-strength fabric layer 14a as a stiff skeleton, which significantly improves the strength and toughness of the nano-rubber sensor 14 at a high pressure of 0 to 50 MPa, avoids tearing, and ensures the stability of the sensing unit under high pressure. Sex and repeatability.
- the preparation of nano-rubber sensor is mainly carried out by solution blending and compression molding.
- the specific preparation method is as follows:
- S2 Synthesis: preparing a plurality of high-strength fabrics of the same size, laying a fabric layer on the bottom of the mold, uniformly coating the nano-conductive rubber solution prepared in S1 on the fabric to a certain thickness, and then tiling another on the fabric Fabric layer; the process of coating the nano-conductive rubber solution and the layer of the fabric can be repeated as needed according to the thickness of the nano-conductive rubber sensing element.
- the top plate of the mold is placed on the uppermost layer of the uncured nano-rubber sensor, and a certain pressure is applied to the nano-conductive rubber material through the connection of the upper and lower plates of the mold to ensure the uniformity and compactness of the thickness.
- the mold was placed in a container at 60 ° C and the container was evacuated for at least 300 min.
- the cured sheet-type nano-rubber sensor can be cut into the required size and shape according to the sensor design requirements, and the upper electrode and the insulating protective layer are connected to complete the large-scale sheet-type flexible nano-conductive rubber pressure. The manufacture of the sensor.
- FIG. 4 is a block diagram showing the module connection of the stand monitoring system of the present invention.
- the stand monitoring system of the present invention includes an intelligent stand and a monitoring center.
- the smart stand includes a high damping rubber isolation mount as described above, a data acquisition unit, a data output unit, and a UPS power supply.
- the data acquisition unit collects pressure data of each nano rubber sensor in the high damping rubber isolation bearing
- the data output unit is preferably an optical carrier wireless switch, which transmits pressure data to the monitoring center, and the UPS is used for each power in the intelligent support.
- the module provides uninterrupted power.
- the monitoring center includes a data receiving unit, a server, a monitoring unit, an analyzing unit, a human-machine interaction unit, and a UPS power supply.
- the data receiving unit is also preferably an optical-borne wireless switch for receiving pressure data transmitted by the data output unit.
- the data receiving unit transmits the received data to the server, the monitoring unit, the analyzing unit and the human-machine interaction unit, the server manages and controls the data, the monitoring unit monitors the data in real time, and the analyzing unit evaluates and analyzes the data.
- the UPS power supply provides uninterruptible power to each power module in the monitoring center.
- the support monitoring system of the invention collects, transmits, monitors and analyzes the monitoring data of the support, and can instantly understand and judge the health condition of the support, and ensure the safe use of the support.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Bridges Or Land Bridges (AREA)
- Vibration Prevention Devices (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Environmental & Geological Engineering (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
一种高阻尼橡胶隔震支座,包括顶支座板(11)、底支座板(12)、高阻尼橡胶支座本体(13)以及垫板(15),顶支座板(11)和垫板(15)之间或底支座板(12)和垫板(15)之间设有压力传感单元(14)。一种智能支座,包括数据采集单元、数据输出单元以及高阻尼橡胶隔震支座,数据采集单元将压力传感单元(14)测得的支座压力传输至数据输出单元。一种支座监测系统,包括数据采集单元、数据输出单元、监控中心以及高阻尼橡胶隔震支座。高阻尼橡胶隔震支座能够实时对支座的受力状况进行监测,便于压力传感单元(14)的更换且不影响支座整体的力学性能;支座监测系统能够实时监测和反映支座的健康状态。
Description
技术领域
本发明涉及支座技术领域,尤其涉及一种高阻尼橡胶隔震支座、智能支座以及支座监测系统。
背景技术
目前隔震支座在桥梁领域得到广泛应用,而隔震支座中的高阻尼橡胶支座由于其无铅污染、隔震效果显著、技术较为成熟,因此已在全球多个国家的实际桥梁工程中得到了大量的应用。在桥梁结构中,支座作为主要的传力构件,其稳定性、可靠性直接影响整个桥梁的安全性能。支座失效将导致整个桥梁的整体倒塌,造成不可估量的严重后果,因而支座的长期安全性就显得尤为重要。对于采用橡胶材料的隔震支座,橡胶材料随着使用时间的延长将逐渐老化,金属构件也会随着时间的推移出现疲劳现象。对于不同的工作环境下,隔震支座的耐久性如何,隔震支座是否会因为橡胶材料老化、金属构件的疲劳等各种因素的影响而失效,这些情况都关乎桥梁整体使用的安全性。从桥梁长期健康情况来看,对隔震支座健康状况的监测显得尤为重要。
现有技术中,对隔震支座的受力情况的监测主要依靠压力传感单元,而传感单元测得压力后的数据信息需要通过引线导出,就需要在支座上做微孔以用于引出导线,进而导致支座整体的力学性能受到影响,由于桥梁的支座需要承受巨大的载荷,即便是微小的孔隙也会造成巨大的安全隐患;另外,传感单元的更换也是当前支座技术领域面临的一个难题,由于传感单元通常与支座本体固接或埋于支座内部的原因,若要对传感单元进行更换,则需更换整个支座,成本高且操作复杂。
发明内容
本发明所要解决的技术问题,在于提供一种能够实时监测支座受力状况、不影响支座力学性能且便于更换传感单元的高阻尼橡胶隔震支座。
本发明所要解决的技术问题,还在于提供一种能够实时监测、反映支座健康状态的智能支座以及支座监测系统。
本发明解决上述技术问题所采用的技术方案是:
本发明提供了一种高阻尼橡胶隔震支座,包括顶支座板、底支座板以及固设于所述顶支座板和底支座板之间的高阻尼橡胶支座本体,还包括与所述顶支座板或底支座板层叠设置的垫板,所述顶支座板和垫板之间、或所述底支座板和垫板之间设有压力传感单元。
作为上述技术方案的进一步改进,所述压力传感单元为纳米橡胶传感器。
作为上述技术方案的进一步改进,所述垫板和纳米橡胶传感器置于所述顶支座板和高阻尼橡胶支座本体之间、或置于所述底支座板和高阻尼橡胶支座本体之间。
作为上述技术方案的进一步改进,所述纳米橡胶传感器包括至少两层织物层,相邻所述织物层之间填充有纳米导电橡胶,所述纳米导电橡胶为掺入碳纳米管的橡胶基体。
作为上述技术方案的进一步改进,在所述垫板承受横向力的侧边设有限位单元。
作为上述技术方案的进一步改进,所述限位单元为条状钢条或限位块,且通过螺栓与所述顶支座板或底支座板固定连接且抵靠于所述垫板的侧边。
作为上述技术方案的进一步改进,所述高阻尼橡胶支座本体包括若干层橡胶片、置于所述橡胶片之间的钢板以及与上下两端面的橡胶片相连的封板,所述橡胶片与所述钢板之间、所述橡胶片与所述封板之间都通过硫化粘合在一起。
本发明提供了一种智能支座,其包括数据采集单元、数据输出单元以及如上所述的高阻尼橡胶隔震支座,所述数据采集单元将压力传感单元测得的支座压力传输至数据输出单元。
本发明还提供了一种支座监测系统,其包括数据采集单元、数据输出单元、监控中心以及如上所述的高阻尼橡胶隔震支座,所述数据采集单元将压力传感单元测得的支座压力数据传输至所述数据输出单元,所述数据输出单元将压力数据传输至所述监控中心。
作为上述技术方案的进一步改进,所述监控中心包括数据接收单元、服务器、监测单元、分析单元以及人机交互单元,所述数据接收单元将所述数据输出单元的压力数据传输至服务器、监测单元、分析单元、以及人机交互单元。
本发明的有益效果是:
1、压力传感单元置于顶支座板和垫板、或底支座板和垫板之间,便于压力传感单元的更换,且能实现对支座受力状态的实时监测。
2、压力传感单元的引线从顶支座板和垫板之间、或底支座板和垫板之间引出,不需要对支座做引线微孔,保证支座的力学性能不受影响。
3、本发明支座监测系统能够将压力传感单元测得的压力数值即时传输至监控中心,监控中心再对压力数据进行监测和分析,实时监测和反映支座的健康状态。
附图说明
图1是本发明高阻尼橡胶隔震支座实施例一的整体结构剖视图;
图2是本发明高阻尼橡胶隔震支座实施例二的整体结构剖视图;
图3是本发明高阻尼橡胶隔震支座的纳米橡胶传感器的整体结构示意图;
图4是本发明支座监测系统的模块连接示意图。
具体实施方式
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。另外,专利中涉及到的所有联接/连接关系,并非单指构件直接相接,而是指可根据具体实施情况,通过添加或减少联接辅件,来组成更优的联接结构。本发明中的各个技术特征,在不互相矛盾冲突的前提下可以交互组合。
图1示出了本发明高阻尼橡胶隔震支座实施例一的具体结构。如图1所示,本发明高阻尼橡胶隔震支座包括顶支座板11、底支座板12、高阻尼橡胶支座本体13、纳米橡胶传感器14、垫板15以及限位单元16。顶支座板11上表面固设有顶锚栓11a,底支座板12a的下表面固设有底锚栓12a,顶锚栓11a和底锚栓12a用于与桥梁等构筑物固定连接。
本发明高阻尼橡胶隔震支座采用纳米橡胶传感器14实时对支座的受力状况进行检测进而得到支座竖向压力变化数值,由于纳米橡胶传感器14厚度较薄、构造简单,因而不影响支座的各项力学性能;橡胶的耐疲劳性能好、耐高温,因而纳米橡胶传感器14的耐久性高,交变应力循环次数大于5000万次。
采用纳米橡胶传感器14作为压力的测量单元是本发明优选的实施方式,当然也可以采用其他压力传感器,例如但不限于应变片压力传感器、陶瓷压力传感器、扩散硅压力传感器、压电压力传感器等。
顶支座板11和高阻尼橡胶支座本体13之间、从上至下依次设有纳米橡胶传感器14和垫板15,垫板15承受横向力的侧边设有限位单元16,以保证垫板15在横向力作用下的稳固性。在不同的实施例中,垫板15也可设置于顶支座板11的上方,只需保证其与顶支座板11层叠设置并在二者之间设置纳米橡胶传感器14即可。
限位单元16优选为条状钢条或限位块,且通过螺栓与顶支座板11固定连接且抵靠于垫板15的侧边,当然,限位单元16的形状以及限位单元16的固定位置、固定方式都不局限于上述实施例,只需满足限位功能即可。限位单元16与顶支座板11采用螺栓连接便于对纳米橡胶传感器14进行更换,若要进行更换时,先将限位单元16取下,再使用顶升设备将顶支座板11连同上方的构筑物一同顶起,便可对纳米橡胶传感器14进行更换。
高阻尼橡胶支座本体13包括若干层橡胶片13a、置于橡胶片13a之间的钢板13b以及与上下两端面的橡胶片13a相连的封板13c,橡胶片13a与钢板13b之间、橡胶片13a与封板13c之间都通过硫化粘合在一起。橡胶片13a顶部的封板13c通过螺栓与垫板15固定连接,底部的封板13c则通过螺栓与底支撑板12固定连接。
为了准确测量整个支座的受力状态,兼顾偏载情况的受力状态监测有效性,优选地,纳米橡胶传感器14阵列排布于顶支座板11和垫板15之间,连接纳米橡胶传感器14的两电极的耐高温屏蔽导线由垫板15和顶支座板11之间的间隙引出,不需要对支座本身做任何导线引出孔,有效保证支座的各项力学性能。
图2示出了本发明高阻尼橡胶隔震支座实施例二的具体结构。如图2所示,本发明高阻尼橡胶隔震支座包括顶支座板21、底支座板22、高阻尼橡胶支座本体23、纳米橡胶传感器24、垫板25以及限位单元26。该实施例与实施例一的区别就在于纳米橡胶传感器24和垫板25置于底支座板22和高阻尼橡胶支座本体23之间。同样地,在不同的实施例中,垫板25也可设置于底支座板22的下方,只需保证其与底支座板21层叠设置并在二者之间设置纳米橡胶传感器24即可。
高阻尼橡胶支座本体23包括若干层橡胶片23a、置于橡胶片23a之间的钢板23b以及与上下两端面橡胶片23a固连的封板23c,橡胶片23a与钢板23b、橡胶片23a与封板23c都通过硫化粘合在一起,垫板25和橡胶片23a下端的封板23c通过螺栓固定连接。
限位单元26通过螺栓与底支座板22固定连接,并设于垫板25承受横向力的侧边。
该实施例中,纳米橡胶传感器24在更换时,需要同时将顶支座板21、顶支座板21上方的构筑物、高阻尼橡胶支座本体23以及垫板25同时顶起,再进行更换操作即可。
图3示出了本发明高阻尼橡胶隔震支座的纳米橡胶传感器14的整体结构示意图。
纳米橡胶传感器的工作原理:纳米橡胶传感器在外界荷载作用下发生形变,使导电橡胶内部导电粒子之间的距离以及由导电粒子形成的导电网络发生变化,表现出导电橡胶的电阻率及电阻发生变化,引起测量电信号的变化,进而根据导电橡胶的压阻特性可以反推得到承压面的受力状态。
优选地,纳米橡胶传感器14为多层结构,其中作为骨架层的高强度织物层14a上下间隔多层分布,在织物层14a之间用一定厚度的纳米导电橡胶14b填充。织物层14a的材料组织密实,具有一定的厚度、弹性和强度,满足在较高压力作用下发生弹性变形而不破坏的要求,优选地,织物层14a采用中号或高号氨纶、高弹锦纶等弹性纤维织成。同时,织物层14a的纵横纤维形成的纹理有一定的空隙,保证在制备过程中覆盖在其上的纳米导电橡胶溶液能够渗入到空隙,增强结构的整体性。所述的纳米导电橡胶14a的橡胶基体材料为硅橡胶(PDMS),其由基本组分和固化剂按照10:1的配合比组成;导电填料为碳纳米管,优选为多壁碳纳米管(MWCNT),多壁碳纳米管的质量百分比在8%至9%之间。
纳米橡胶传感器14添加高强度织物层14a作为劲性骨架,显著提高了纳米橡胶传感器14在0至50MPa高压下的强度和韧性,避免发生撕裂,保证了这种传感单元在高压下的稳定性和可重复性。
纳米橡胶传感器的制备主要采用溶液共混法和模压成型,具体的制备方法如下:
S1、配料:将硅橡胶(PDMS)的基本组分、固化剂与碳纳米管按照质量配比进行称重,倒入搅拌机中,在室温下,进行机械研磨混合,保证碳纳米管在橡胶基体中均匀分布,以制成纳米导电橡胶溶液。
S2、合成:准备多块大小相同的高强度织物,在模具底板平铺一织物层,将S1中制备的纳米导电橡胶溶液均匀涂覆在织物上至一定厚度,再在其上平铺另一织物层;根据纳米导电橡胶传感元件的厚度需要,可继续重复涂覆纳米导电橡胶溶液和增铺织物层的过程。
S3、固化:将模具顶板放置在未固化的纳米橡胶传感器最上层织物层上,通过模具上下顶底板的连接作用,给纳米导电橡胶材料施加一定的压力,保证其厚度的均匀性和密实性。将模具放置到60℃的容器中,将容器抽成真空,放置至少300min。
在纳米橡胶传感器固化之后,可以按照传感器设计要求,用加工刀具将固化的薄片式纳米橡胶传感器切割成需要的大小和形状,连接上电极和绝缘保护层即完成大量程薄片式柔性纳米导电橡胶压力传感器的制作。
图4示出了本发明支座监测系统的模块连接示意图。本发明支座监测系统包括智能支座和监控中心。
智能支座包括如上所述的高阻尼橡胶隔震支座、数据采集单元、数据输出单元以及UPS电源。数据采集单元采集高阻尼橡胶隔震支座中的各个纳米橡胶传感器的压力数据,数据输出单元优选为光载无线交换机,其将压力数据传输至监控中心,UPS为智能支座内的各用电模块提供不间断电能。
监控中心包括数据接收单元、服务器、监测单元、分析单元、人机交互单元以及UPS电源。数据接收单元亦优选为光载无线交换机,其用于接收数据输出单元传输的压力数据。数据接收单元将所接收的数据传输至服务器、监测单元、分析单元和人机交互单元,服务器对数据进行管理与控制,监测单元对数据进行即时监测,分析单元则对数据进行评估、分析。UPS电源为监控中心内的各用电模块提供不间断电源。
本发明支座监测系统通过对支座的监测数据进行采集、传输、监测及分析,能够即时了解、判断支座的健康状况,保证支座的使用安全。
以上是对本发明的较佳实施例进行了具体说明,但本发明并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。
Claims (10)
- 一种高阻尼橡胶隔震支座,包括顶支座板、底支座板以及固设于所述顶支座板和底支座板之间的高阻尼橡胶支座本体,其特征在于:还包括与所述顶支座板或底支座板层叠设置的垫板,所述顶支座板和垫板之间、或所述底支座板和垫板之间设有压力传感单元。
- 如权利要求1所述的高阻尼橡胶隔震支座,其特征在于:所述压力传感单元为纳米橡胶传感器。
- 如权利要求2所述的高阻尼橡胶隔震支座,其特征在于:所述垫板和纳米橡胶传感器置于所述顶支座板和高阻尼橡胶支座本体之间、或置于所述底支座板和高阻尼橡胶支座本体之间。
- 如权利要求2所述的高阻尼橡胶隔震支座,其特征在于:所述纳米橡胶传感器包括至少两层织物层,相邻所述织物层之间填充有纳米导电橡胶,所述纳米导电橡胶为掺入碳纳米管的橡胶基体。
- 如权利要求1所述的高阻尼橡胶隔震支座,其特征在于:在所述垫板承受横向力的侧边设有限位单元。
- 如权利要求5所述的高阻尼橡胶隔震支座,其特征在于:所述限位单元为条状钢条或限位块,且通过螺栓与所述顶支座板或底支座板固定连接且抵靠于所述垫板的侧边。
- 如权利要求1所述的高阻尼橡胶隔震支座,其特征在于:所述高阻尼橡胶支座本体包括若干层橡胶片、置于所述橡胶片之间的钢板以及与上下两端面的橡胶片相连的封板,所述橡胶片与所述钢板之间、所述橡胶片与所述封板之间都通过硫化粘合在一起。
- 一种智能支座,其特征在于:包括数据采集单元、数据输出单元以及如权利要求1至7任一项所述的高阻尼橡胶隔震支座,所述数据采集单元将压力传感单元测得的支座压力传输至数据输出单元。
- 一种支座监测系统,其特征在于:包括数据采集单元、数据输出单元、监控中心以及如权利要求1至7任一项所述的高阻尼橡胶隔震支座,所述数据采集单元将压力传感单元测得的支座压力数据传输至所述数据输出单元,所述数据输出单元将压力数据传输至所述监控中心。
- 如权利要求9所述的支座监测系统,其特征在于:所述监控中心包括数据接收单元、服务器、监测单元、分析单元以及人机交互单元,所述数据接收单元将所述数据输出单元的压力数据传输至服务器、监测单元、分析单元、以及人机交互单元。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/865,196 US10429257B2 (en) | 2016-07-18 | 2018-01-08 | High-damping rubber isolation bearing, intelligent bearing and bearing monitoring system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610571259.0A CN106192736A (zh) | 2016-07-18 | 2016-07-18 | 高阻尼橡胶隔震支座、智能支座以及支座监测系统 |
CN201610571259.0 | 2016-07-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/865,196 Continuation US10429257B2 (en) | 2016-07-18 | 2018-01-08 | High-damping rubber isolation bearing, intelligent bearing and bearing monitoring system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018014426A1 true WO2018014426A1 (zh) | 2018-01-25 |
Family
ID=57494547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/097564 WO2018014426A1 (zh) | 2016-07-18 | 2016-08-31 | 高阻尼橡胶隔震支座、智能支座以及支座监测系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10429257B2 (zh) |
CN (1) | CN106192736A (zh) |
WO (1) | WO2018014426A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109653234A (zh) * | 2019-01-29 | 2019-04-19 | 中建二局第二建筑工程有限公司 | 一种超韧混凝土桥梁避震系统 |
CN114993536A (zh) * | 2022-07-09 | 2022-09-02 | 西安华盾工程科技有限公司 | 一种测力方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106009677B (zh) * | 2016-07-18 | 2018-06-26 | 深圳市尚智工程技术咨询有限公司 | 一种纳米导电橡胶传感单元及其制备方法 |
CN106592804A (zh) * | 2016-12-23 | 2017-04-26 | 大连理工大学 | 一种高阻尼橡胶体内穿形状记忆合金绞线的阻尼器 |
CN108061614A (zh) * | 2018-01-11 | 2018-05-22 | 湖北震泰建设工程质量检测有限责任公司 | 可进行界面应力监测的橡胶隔震垫及其界面应力监测系统 |
CN108277738B (zh) * | 2018-01-25 | 2023-09-01 | 上海路博减振科技股份有限公司 | 一种智能铅芯橡胶支座 |
CN109517227A (zh) * | 2018-09-24 | 2019-03-26 | 衡水中铁建工程橡胶有限责任公司 | 一种压敏导电橡胶的制备方法及板式桥梁支座 |
CN109235250A (zh) * | 2018-11-22 | 2019-01-18 | 深圳市市政设计研究院有限公司 | 一种桥梁自动调平组合隔震橡胶支座 |
US20220154413A1 (en) * | 2019-02-12 | 2022-05-19 | Gibraltar Industries | Structural bearing configuration and method of making same |
WO2021237102A1 (en) * | 2020-05-21 | 2021-11-25 | Blaine Miller | Bridge support system |
EP3929357B1 (en) * | 2020-06-26 | 2023-09-13 | Fundación Tecnalia Research & Innovation | Method for manufacturing a sensorized elastomeric support and sensorized elastomeric support |
CN113532703A (zh) * | 2021-07-20 | 2021-10-22 | 北京隽德科技有限公司 | 一种桥梁支座实时测力智能装置 |
CN113982302B (zh) * | 2021-10-11 | 2023-04-18 | 河北省建筑科学研究院有限公司 | 一种既有隔震建筑隔震支座无扰动更换施工方法 |
CN115977255A (zh) * | 2022-09-23 | 2023-04-18 | 北京固力同创工程科技有限公司 | 一种可实现六自由度位移监测的橡胶隔震支座 |
CN115307802B (zh) * | 2022-10-11 | 2023-08-25 | 广州大学 | 一种用于橡胶隔振支座的应力检测系统及方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101598529A (zh) * | 2008-05-19 | 2009-12-09 | 香港理工大学 | 制备织物应变传感器的方法 |
KR101105141B1 (ko) * | 2009-06-24 | 2012-01-16 | 건국대학교 산학협력단 | 하중 및 온도계측기능을 구비한 스마트 포트받침 |
CN103015312A (zh) * | 2011-09-20 | 2013-04-03 | 深圳市市政设计研究院有限公司 | 一种多功能隔震装置 |
CN203451989U (zh) * | 2013-08-01 | 2014-02-26 | 深圳市市政设计研究院有限公司 | 具有自检测功能的摩擦摆隔震支座 |
CN104343083A (zh) * | 2013-08-01 | 2015-02-11 | 深圳市市政设计研究院有限公司 | 一种支座及其压力监测结构 |
CN205907594U (zh) * | 2016-07-18 | 2017-01-25 | 深圳市市政设计研究院有限公司 | 一种智能高阻尼橡胶支座、监测支座以及智能支座系统 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE57213T1 (de) * | 1986-04-22 | 1990-10-15 | Schwaebische Huettenwerke Gmbh | Hoehenverstellbares gummitopflager mit einer elastomere-platte. |
US6948284B2 (en) * | 2003-05-05 | 2005-09-27 | Te-Chuan Chiang | All-directional damping and earthquake-resisting unit |
CN201605529U (zh) | 2009-12-11 | 2010-10-13 | 中交第一公路勘察设计研究院有限公司 | 一种高阻尼隔震橡胶支座 |
CN201738236U (zh) * | 2010-08-30 | 2011-02-09 | 衡水中铁建工程橡胶有限责任公司 | 可多次调高盆式橡胶支座 |
CN104343081B (zh) * | 2013-08-01 | 2016-08-31 | 深圳市市政设计研究院有限公司 | 一种盆式橡胶支座 |
CN203654160U (zh) | 2013-11-25 | 2014-06-18 | 柳州东方工程橡胶制品有限公司 | 一种新型智能隔震橡胶支座 |
CN204421957U (zh) | 2015-02-05 | 2015-06-24 | 韩丙虎 | 一种桥梁结构健康状况监测系统 |
CN105625168A (zh) * | 2016-03-15 | 2016-06-01 | 衡水中交信德工程橡塑有限公司 | 一种测力调高盆式橡胶支座 |
CN106049263A (zh) * | 2016-07-18 | 2016-10-26 | 深圳市市政设计研究院有限公司 | 摩擦摆隔震支座、智能支座以及支座监测系统 |
CN106192734A (zh) * | 2016-07-18 | 2016-12-07 | 深圳市市政设计研究院有限公司 | 球形钢支座、智能支座以及支座监测系统 |
CN106223189B (zh) * | 2016-07-18 | 2018-01-23 | 深圳市市政设计研究院有限公司 | 铅芯橡胶隔震支座、智能支座以及支座监测系统 |
CN106192735A (zh) * | 2016-07-18 | 2016-12-07 | 深圳市市政设计研究院有限公司 | 盆式橡胶支座、智能支座以及支座监测系统 |
-
2016
- 2016-07-18 CN CN201610571259.0A patent/CN106192736A/zh active Pending
- 2016-08-31 WO PCT/CN2016/097564 patent/WO2018014426A1/zh active Application Filing
-
2018
- 2018-01-08 US US15/865,196 patent/US10429257B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101598529A (zh) * | 2008-05-19 | 2009-12-09 | 香港理工大学 | 制备织物应变传感器的方法 |
KR101105141B1 (ko) * | 2009-06-24 | 2012-01-16 | 건국대학교 산학협력단 | 하중 및 온도계측기능을 구비한 스마트 포트받침 |
CN103015312A (zh) * | 2011-09-20 | 2013-04-03 | 深圳市市政设计研究院有限公司 | 一种多功能隔震装置 |
CN203451989U (zh) * | 2013-08-01 | 2014-02-26 | 深圳市市政设计研究院有限公司 | 具有自检测功能的摩擦摆隔震支座 |
CN104343083A (zh) * | 2013-08-01 | 2015-02-11 | 深圳市市政设计研究院有限公司 | 一种支座及其压力监测结构 |
CN205907594U (zh) * | 2016-07-18 | 2017-01-25 | 深圳市市政设计研究院有限公司 | 一种智能高阻尼橡胶支座、监测支座以及智能支座系统 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109653234A (zh) * | 2019-01-29 | 2019-04-19 | 中建二局第二建筑工程有限公司 | 一种超韧混凝土桥梁避震系统 |
CN109653234B (zh) * | 2019-01-29 | 2020-07-10 | 中建二局第二建筑工程有限公司 | 一种超韧混凝土桥梁避震系统 |
CN114993536A (zh) * | 2022-07-09 | 2022-09-02 | 西安华盾工程科技有限公司 | 一种测力方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106192736A (zh) | 2016-12-07 |
US20180202878A1 (en) | 2018-07-19 |
US10429257B2 (en) | 2019-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018014426A1 (zh) | 高阻尼橡胶隔震支座、智能支座以及支座监测系统 | |
WO2018014428A1 (zh) | 铅芯橡胶隔震支座、智能支座以及支座监测系统 | |
WO2018014427A1 (zh) | 摩擦摆隔震支座、智能支座以及支座监测系统 | |
WO2018014430A1 (zh) | 球形钢支座、智能支座以及支座监测系统 | |
WO2018014429A1 (zh) | 盆式橡胶支座、智能支座以及支座监测系统 | |
WO2018014425A1 (zh) | 纳米导电橡胶传感单元及其制备方法 | |
WO2011103808A1 (zh) | 柔性压力传感器及柔性压力传感列阵 | |
WO2012037843A1 (zh) | 织物型压力传感器的制造方法及用于制造织物型压力传感器的工具 | |
CN113432772A (zh) | 物体表面冲击波测量高灵敏薄膜传感器及制作方法 | |
CN110906858B (zh) | 一种无纺复合材料、结构应变传感器、分布式监测系统及方法 | |
CN100575862C (zh) | 一种测试燃料电池双极板表面平整度的装置和方法 | |
WO2019045525A1 (ko) | 발열필름의 기계적 열적 성능 테스트 방법 및 장치 | |
WO2023185396A1 (zh) | 一种pvdf基碳纤维复合压电传感器及其制备方法 | |
CN207622684U (zh) | 基于溅射薄膜技术的粘接界面应力和应变监测微型传感器 | |
TWI220931B (en) | Method of testing FPC bonding yield and FPC having testing pads thereon | |
JP2001099726A (ja) | 感圧センサ及びその製造方法 | |
CN110174349B (zh) | 高温下压型钢板-混凝土组合板推出试验装置及方法 | |
Qu et al. | A novel study on the sandwich‐structure strain sensor using ethylene‐vinyl acetate‐based hot‐melt adhesive mesh web: Fabrication, properties, and modeling | |
CN110238279A (zh) | 一种质量智能监测冲压模具 | |
CN104897720A (zh) | 一种便于温控的传热系数评价用温度实时采集系统 | |
CN212336780U (zh) | 利用碳纳米管碳纤维板加固并监测钢构件疲劳性能的装置 | |
CN210664324U (zh) | 一种水凝胶应变传感器的测试装置 | |
CN105091729B (zh) | 一种采用因瓦钢引伸杆的应变式引伸计 | |
CN203399290U (zh) | 一种耳机夹力测试仪 | |
CN106323524A (zh) | 变压器高压套管端部一字型金具静态拉力测量系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16909353 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16909353 Country of ref document: EP Kind code of ref document: A1 |