WO2018012936A1 - 나노천공자를 포함하는 바이러스 감염증 예방 또는 치료용 약학 조성물 - Google Patents

나노천공자를 포함하는 바이러스 감염증 예방 또는 치료용 약학 조성물 Download PDF

Info

Publication number
WO2018012936A1
WO2018012936A1 PCT/KR2017/007602 KR2017007602W WO2018012936A1 WO 2018012936 A1 WO2018012936 A1 WO 2018012936A1 KR 2017007602 W KR2017007602 W KR 2017007602W WO 2018012936 A1 WO2018012936 A1 WO 2018012936A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
nanoperforator
nanopores
membrane
nanopore
Prior art date
Application number
PCT/KR2017/007602
Other languages
English (en)
French (fr)
Inventor
권대혁
공병재
정우재
성백린
이석찬
Original Assignee
성균관대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교 산학협력단 filed Critical 성균관대학교 산학협력단
Priority to US16/317,817 priority Critical patent/US11541100B2/en
Priority claimed from KR1020170089655A external-priority patent/KR102181991B1/ko
Publication of WO2018012936A1 publication Critical patent/WO2018012936A1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses

Definitions

  • composition for preventing or treating viral infections including nanopores
  • the present invention relates to a nano-perforator comprising a lipid bilayer nanodisk and a membrane-structured protein, and a composition for preventing or treating a viral infection including the nano-perforator, and more specifically, the present invention relates to a membrane-structured protein comprising Pharmaceutical composition for the prevention or treatment of viral infections comprising nanopores of the form surrounded by membrane scaf fold proteins, Method for preventing or treating viral infections comprising administering the pharmaceutical composition and the surface of the virus using the nanopores A method for screening receptors for antigens.
  • Influenza virus (Inf luenza vi rus) is an RNA virus belonging to the family of the family Oramimyxovir idae, and serotypes are divided into three types, type A, type B and type C. Infection has been confirmed only in humans, and type A has been identified in humans, horses, pigs, other mammals, and various types of poultry and wild birds.
  • the serotypes of influenza A viruses are classified according to the two types of proteins on the surface of the virus: hemagglutinin (HA) and neuraminidase (NA). And 9 NA proteins) are known.
  • HA acts as a virus to attach to somatic cells, and NA allows the virus to penetrate into cells.
  • Recent influenza A have been jipjeung interest virus "swine flu” or “also known as swine flu virus 1 ', which is a new type of virus in the genetic material of human, pig and bird influenza virus is heunhap now M2 ion channel inhibitor (M2 ion channel inhi bi tor) of amantadine or rimantadine
  • M2 ion channel inhibitor M2 ion channel inhi bi tor
  • oseltamivir tradename Tamiflu
  • zanamivir zanamivir (zanamivir (trade name Renrenza) family of neuraminidase inhibitors
  • these therapeutic agents have a problem that their effectiveness is limited.
  • amantadine or rimantadine-based derivative compounds rapidly generate resistant strain virus, and H5N1 type influenza virus detected in some regions is resistant to amantadine or rimantadine-based compounds, and influenza B virus is amantadine It is known to be insensitive to derivatives.
  • oseltamivir or zanamivir-based derivative compounds are also known to increase the resistance virus, and such resistance virus is known to occur frequently in children.
  • Korean Patent No. 1334143 discloses Polygala karensium extract and isolated therefrom.
  • a composition for the prevention or treatment of colds, avian influenza, swine influenza or swine flu, which contain a concentrated xanthone compound, is disclosed.
  • these agents have low anti-viral activity and thus do not show an effective prophylactic or therapeutic effect against swine flu.
  • One object of the present invention is to provide a nano-perforator comprising a lipid bilayer nanodisk and a membrane structured protein.
  • Still another object of the present invention is to provide a method for preventing or treating a viral infection comprising administering the pharmaceutical composition. It is another object of the present invention to provide a method for screening receptors for viral surface antigens using the nanopores.
  • a new method for preventing or treating influenza virus infection by prefecting the infection of the influenza virus or inhibiting the proliferation of an infected influenza virus when using a lipid bilayer nanoperforator in the form of a membrane-structured protein surrounded by a lipid bilayer, a new method for preventing or treating influenza virus infection by prefecting the infection of the influenza virus or inhibiting the proliferation of an infected influenza virus.
  • the effect can be further enhanced by inserting a receptor capable of binding the surface antigen of the virus into the lipid bilayer.
  • the present inventors confirmed that the nano-perforator may exhibit anti-viral activity by impairing the structural stability of the virus having the envelope of the lipid bilayer.
  • the virus generally contains a membrane-binding protein that is used as a surface antigen in the outer layer of the lipid bilayer, and is known to infect host cells through the membrane protein. If the receptor for the membrane protein of the virus uses a nanopore inserted into the lipid bilayer, it may be able to disturb the path of infection of the virus.
  • influenza virus is used as an example of a virus having a lipid bilayer envelope, and it can bind to hemagglutinin (HA), which is known as a major surface antigen of influenza virus, as a receptor for the membrane protein of the virus.
  • HA hemagglutinin
  • the nanoperforator By using a nanoperforator with or without gangliosides containing sialic acid of the membrane receptor of the respiratory system (lungs, bronchial) epithelial cells, the nanoperforator is involved in the influenza virus infection process. The effect was analyzed. As a result, it was confirmed that the nanopores not containing the gangliosides exhibited anti-viral activity against influenza virus, and the nanopores containing the gangliosides showed more improved anti-viral activity.
  • the lipid bilayer nanopores provided by the present invention may exhibit anti-viral activity against viruses having a lipid bilayer envelope, It can have the effect of preventing or treating infectious diseases of viruses having a lipid bilayer envelope, and the anti-viral activity of such nanopores, for example viral envelope perforation activity, is not known at all.
  • the present invention provides a nano-perforator comprising a lipid bilayer nanodisk (nanodi sc) and a membrane structured protein surrounding the outer circumferential surface of the lipid bilayer. .
  • the nanopores may have a diameter of 1 to 50 nm, more preferably 10 to 20 nm, but are not limited thereto as long as they can function as nanopores.
  • Nanopore according to the present invention binds to the viral envelope and inhibits virus incorporation into the cell to form endosomes (primary inhibition), and even if the intracellular virus is infiltrated, the 'perforation punctures the virus's incorporation. Acting as a perforator 1 (secondary inhibition), RNA in the virus is released into the endosomes from the pores and inactivated by the pH inside the endosomes to inhibit the proliferation of the virus. It can have an inhibitory effect.
  • Nanoperforator of the present invention can inhibit virus propagation independently of virus mutations, in particular, there is an advantage in that it can ensure safety because it does not contain a substance that causes a specific reaction in vivo.
  • nano-perforator of the present invention includes a lipid bilayer nanodisk (nanodi sc) and a membrane structured protein surrounding the outer circumferential surface of the lipid bilayer, and can perform a function of perforating a viral envelope.
  • the nanoperforator comprises a single layer (uni lame l iar) lipid bilayer, ie, a lipid bilayer nanodisk, in the form of a disc, wherein the outer circumference surface of the lipid bilayer comprises one or more membrane structured proteins, eg For example, it may be a complex in a form surrounded by two membrane structured proteins.
  • nanodi sc means a disc-like material of a uni lamel lar including a lipid bilayer, and both sides of the lipid worm are external to each other.
  • the nanodisc according to the present invention is internal to the lipid bilayer.
  • the phosphatidylserine is DOPS (1 , 2-D io 1 eoy 1 -sn-g 1 ycero-3-phosphoser ine, DLPS (1,2 one di lauroyl one sn ⁇ glycero ⁇ 3— phosphoserine) ,
  • DSPS 1-Di stearoyl-sn-glycero-3-phosphoser ine
  • POPS 2-Di stearoyl-sn-glycero-3-phosphoser ine
  • Lipids constituting the lipid bilayer nanodisk in addition to the phospholipid, triglycerides, for example triglycerides, cholesterol or derivatives thereof, and glycolipids (saccharoHpid), for example in the group consisting of gangliosides It may include one or more selected.
  • the lipid bilayer nanodisk has a disc shape having both sides of the lipid bilayer having an open system exposed to the outside, and includes a hydrophilic core therein and only one of both sides of the lipid bilayer is exposed to the outside. It is distinguished from the 1 liposome in the form of a sphere with a closed system.
  • the liposomes may form a closed space having an inner core as a lipid bilayer.
  • membrane scaf fold proteins of the present invention is an amphipathic c hel i cal protein, which surrounds the outer circumferential surface of a lipid bilayer and comprises a lipid bilayer provided by the present invention. It means a protein that can form the form of the perforator.
  • the membrane structured protein surrounding the outer circumferential surface of the lipid double layer may be characterized as being amphiphilic including a hydrophobic region and a hydrophilic region.
  • the hydrophobic region (eg hydrophobic amino acid) of the membrane structured protein binds to the hydrophobic region (eg lipid) of the lipid bilayer nanodisk and the hydrophilic region (eg hydrophilic amino acid) of the membrane structured protein Nanopores can be formed in the form of being exposed.
  • the membrane structured protein may be an amphipathic protein having a helix structure.
  • membrane-structured proteins examples include apolipoproteins (Yelena V. Gr inkova, et al., Protein Engineering, Design & Select ion, 23 (11): 843-848, 2010), apolipoprotein Al proteins or the Variant proteins derived from the amino acid sequence of the apolipoprotein A1 protein.
  • the membrane structured protein is not particularly limited as long as it can constitute a nano-porer of the present invention, as an example, may be an apolipoprotein or a variant thereof, and the apolipoprotein (Apol ipoprotein) , Apo) is in the group consisting of apo lipoprotein Al (ApoA-I), apo lipoprotein A2 (ApoA-2), apo lipoprotein B (ApoB) apo lipoprotein C (ApoC) and apolipoprotein E (ApoE) It may be one or more selected.
  • ApoA-1 may include the amino acid sequence of SEQ ID NO: 1
  • ApoA-2 may include the amino acid sequence of SEQ ID NO: 2
  • ApoB may include the amino acid sequence of SEQ ID NO.
  • the ApoC may be one or more selected from the group consisting of ApoCl and ApoC3, for example, the ApoCl may be an amino acid sequence of SEQ ID NO: 4, the ApoC3 may include an amino acid sequence of SEQ ID NO: 5.
  • MSP1 SEQ ID NO: 6
  • MSP1D1 SEQ ID NO: 7
  • MSP1D2 SEQ ID NO: 8
  • MSP1E1 SEQ ID NO: 9
  • a variant of the apolipoprotein A1 protein MSP1E2 (SEQ ID NO: 10), MSP1E3 (SEQ ID NO: 11), MSP1E3D1 (SEQ ID NO: 12), MSP2 (SEQ ID NO: 13), MSP2N1 (SEQ ID NO: 14) , MSP2N2 (SEQ ID NO: 15), MSP2N3 SEQ ID NO: 16), and the like.
  • the Apo-Al consists of a single polypeptide consisting of 243 amino acids having a molecular weight of 28 kDa, and the 11 amino acid black has 8 repeating unit domains consisting of 22 amino acids, and has a secondary structure of alpha-helix forming HDL. It means a protein in the ratio of 60 to 75%.
  • the ApoA-I is known to be used as a component of high density lipoproteins (HDLs), which play a direct role in removing cholesterol from surrounding tissues and transporting it to the liver or other lipoproteins.
  • HDLs high density lipoproteins
  • ApoE is a protein consisting of a single polypeptide consisting of 299 amino acids of 33 kDa and, like ApoAl, is involved in the transport of cholesterol.
  • virus having the envelope (or membrane) of the lipid bilayer refers to a virus having the envelope of a lipid bilayer among viruses, wherein the lipid bilayer is membrane-bound to an antigenic protein involved in infection and proliferation of the virus. Included in protein form.
  • the virus having the envelope of the lipid bilayer is not particularly limited as long as the nano-perforator provided in the present invention exhibits anti-viral activity.
  • Bunyavir idae Coronavir idae, Fi loviridae Flaviviridae, Hepadnavir idae Herpesviridae, Osthomyxoviridae Foxvi ridae, Rabdoviride Rhabdovi ridae can be a virus belonging to the family such as Retroviridae, Togavi ridae, or Herpesviridae, and as another example, Bunyaviride idae) Sin Nombre Hantavirus belonging to the family; Coronavirus and the like, which are involved in various acute respiratory syndromes belonging to the family Coronavir idae; Ebola virus, Marburg virus, etc., belonging to the family Filoviridae; West Nile virus, Yel low Fever virus, Dengue Fever virus, Hepatitis C virus, etc.
  • the virus may be Pseudorabies virus belonging to the Herpesvir iae family, HHV virus, and the like, and as another example, influenza virus belonging to the orsomixoviride family.
  • the virus may be a virus characterized by having an affinity for a
  • influenza virus is an RNA virus belonging to the Orsomyxoviride family, and serotypes are classified into three types: A type, B type and C type.
  • the serotypes of influenza A viruses are classified according to the two types of proteins on the surface of the virus: hemagglutinin (HA) and neuraminidase (NA). And 9 NA proteins) are known.
  • Nanopore according to the present invention may further comprise a receptor for the surface antigen of the virus having the envelope of the lipid bilayer in addition to the nanodisk.
  • the nanopores of the present invention may comprise one or two or more receptors.
  • surf ace antigen of the present invention, also referred to as cell membrane antigen, means a membrane-binding protein exhibiting antigenicity present in the cell membrane of the cell.
  • the surface antigen may be interpreted to mean a membrane-bound protein bound to the lipid bilayer of a virus having an envelope of the lipid bilayer, but the surface antigen is not particularly limited thereto.
  • influenza Hemagglutinin (HA), a neuraminidase (NA), and the like which are surface antigens of viruses.
  • hemagglutinin (HA) of the present invention is a transmembrane protein which is a kind of surface antigen of influenza virus, and is composed of HA1 subunit and HA2 subunit which can be cleaved by trypsin.
  • the HA1 subunit binds to sialic acid, and the HA2 subunit is known to induce cell membrane fusion at low pH conditions.
  • receptor for surface antigen is a receptor capable of binding to the surface antigen, which may be an antibody to the surface antigen, or another cell membrane binding protein to which the surface antigen may bind. have.
  • the receptor for the surface antigen is present on the surface of the host cell that can infect the virus having the envelope of the lipid bilayer, and can be interpreted to mean a receptor capable of binding to the surface antigen of the virus. have.
  • the receptor and the surface antigen of the virus can be bound by various interactions such as hydrogen bonds and ionic bonds.
  • the receptor binding site of the most complex surface of the HA1 subunit of the hemagglutinin virus ) And sialic acid may bind.
  • the receptor of the present invention may be a receptor that enables specific or friendly binding to a virus of interest, for example, a virus comprising hemagglutinin and / or neuraminidase.
  • the type of receptor for the surface antigen is not particularly limited, and may include a functional group (eg, sialic acid mime peptide) having sialic acid and / or sialic acid-like function.
  • the receptor sialyl oligosaccharides sialylol igosacchar ide
  • * for example, gangliosides (gangl ioside), glycoprotein (glycoprotein), and the policy alsan (polysi al ic acid) can be one kinds or more selected from the group consisting of, but The receptor containing sialic acid is not limited thereto.
  • the functional group may be incorporated into or bound to the lipid bilayer by the receptor itself or through a linker (l inker).
  • the receptor is a receptor or a linker to which the receptor is bound to a variety of lipids, such as hydrogen bonds, ionic bonds, covalent bonds, disulfide bonds with lipids in the nanodisk lipid bilayer It may be combined by interaction.
  • sialic acid present in the cell membrane of respiratory cells capable of binding to hemagglutinin, which is a surface antigen of influenza virus may include, for example, gangliosides containing the sialic acid and bound to the cell membrane. Can be.
  • ganglioside means that one or more sialic acids are bound to a sugar chain of glycosphingolipid ( ⁇ -2,3 bond or ⁇ -2,6 bond). It means a compound of the form connected through, it may include both the form containing ⁇ -2,3 bonded sialic acid and the form containing ⁇ -2,6 bonded sialic acid.
  • the gangliosides of the present invention are GM1, GM2 and / or GM3 comprising one N-Acetylneuraminic acid or sialic acid, GDla, GDlb comprising two N-acetylneuraminic acids , GD2 and / or GD3, GTlb with three N-acetylneuraminic acids and / or GT3, GQ1 with four N-acetylneuraminic acids.
  • the receptor for example, ganglioside
  • the receptor may be inserted into the lipid bilayer nanodisk region of the lipid bilayer nanoperforator, and may bind to the HA of the virus having the envelope of the lipid bilayer.
  • the mole ratio of the membrane structure protein and at least one selected from the group consisting of lipids and surface antigen receptors constituting the lipid bilayer contained in the nano-perforator is 10: 1 to 800: 1, preferably 50: 1 to 500: 1, more preferably 50: 1 to 150: 1, for example, 65: 1 or 125: 1.
  • the molar ratio may be a molar ratio of lipids and membrane structural proteins of the nanodisk or a sum of molar ratios of lipid and surface antigen receptor molar ratios of the nanodisks and a membrane structural protein.
  • the surface antigen receptor, for example, ganglioside, included in the nanopore of the present invention is 0.01 to 99 mol% based on 100% of the total moles of the nanodisks (eg, the sum of moles of lipids and moles of receptors). It is preferably 1 to 90 mol%, more preferably 15 mol% or more or may be included in 10 to 50 mol%.
  • the morphology of the nanopores in which gangliosides are inserted as receptors in the lipid bilayer according to the present invention is illustrated in FIG. 1.
  • the mechanism of action showing the effect of preventing or treating the infection of the virus having the outer layer of the lipid bilayer enveloped by the ganglioside in detail with reference to Figure 3 as follows:
  • the HA1 subunit constituting the HA of the virus binds to sialic acid of the host cell membrane and invades into the host cell through an intracellular incorporation process.
  • the nano-perforator of the present invention for example, a nano-perforator containing a ganglioside as a receptor to a cell infected with a virus, HA of the virus is applied not only to the cell membrane of the host but also to the lipid bilayer nanodisk and / or receptor of the nanoperforator.
  • the nanopores may be entry inhibitors that inhibit intracellular invasion of the virus by using it as a 'decoy' that simulates a host cell receptor (primary inhibition).
  • the nanoperforator of the present invention for example, a nanoperforator containing ganglioside as a surface antigen receptor, can be used to disrupt the intracellular infection pathway of a virus infected with a host cell, eg, an influenza virus, to inhibit the growth of the virus. have.
  • a host cell eg, an influenza virus
  • the virus bound to the nanopores of the present invention does not exhibit membrane fusion between the envelope of the virus and the cell membrane of the host cell, the envelope of the virus And between the lipid bilayers of nanopores.
  • This membrane membrane fusion is manifested.
  • membrane fusion between the virus envelope and the host cell's cell membrane occurs rather than the membrane's outer membrane and nanopores.
  • Membrane fusion may occur between the lipid bilayers.
  • the nanoporer of the present invention may be a perforator that perforates the viral envelope in the membrane fusion step of the viral endosomal step (secondary inhibition).
  • the nanoperforator binds to the viral envelope and inhibits the virus from entering the cell to form endosomes (primary inhibition), and even if the intracellular virus is infiltrated, the 'perforator' punctures the envelope of the embedded virus. It acts as a 'perforator' (secondary inhibition), and can have an effect of secondaryly inhibiting viral infection.
  • nanopores containing surface antigen receptors for example, gangliosides
  • the path of infection of the virus is disturbed, thereby inhibiting the infection of the virus.
  • Inhibits the growth of the virus thereby exhibiting the effect of treating a disease caused by the infection of the virus.
  • the nanopores provided by the present invention inhibit the infection of a virus having a lipid bilayer enveloped host cells or proliferate after infection, thereby preventing diseases caused by virus infection. It can have a prophylactic or therapeutic effect. Accordingly, the lipid bilayer nanoperforator comprising the ganglioside provided by the present invention may exhibit the same effect regardless of whether the virus is capable of binding to the host cell through the sialic acid of the host cell. It can be seen that the initial infection can be suppressed, and even after the virus is infected by the host, the virus can be fundamentally inhibited from proliferating the virus. Therefore, the nanoperforator of the present invention may be characterized in that it is independent of the virus mutation. In particular, the nanoperforator does not include a substance that causes specific reaction in vivo, and thus has an advantage in that safety can be ensured. have.
  • nanoporezas each containing or not including gangliosides in the lipid bilayer were prepared, and the anti-viral activity of the nanopore was analyzed.
  • all nanopores with or without gangliosides in the lipid bilayer fused to the influenza virus envelope,
  • the RNA of the influenza virus was released to the outside (FIG. 9A), and all nanopores with or without gangliosides in the lipid bilayer exhibited anti-viral activity against the influenza virus, indicating the level of plaques formed by the influenza virus. It was confirmed that this decreases (Figs. 5a, 5b and 5c, 5d).
  • the nanopores provided by the present invention exhibit anti-viral activity, and the anti-viral activity is further improved when the lipid bilayer contains a receptor for a surface antigen of a virus such as ganglioside.
  • the present invention can be used in combination with one or more labels selected from the group consisting of histidine (Hi s), gold (Au), fluorescent lipids, and biotin / avidin.
  • a viral activity inhibitor or a virus replication inhibitor comprising a lipid bilayer nanodisc and a membrane structured protein surrounding the outer circumferential surface of the nanodisc.
  • the pharmaceutical for the treatment, prevention, amelioration or delay of onset of one or more symptoms related to or resulting from viral infection may apply to the use of the composition or the treatment, prevention, amelioration or delay of onset of one or more symptoms associated with or resulting from a viral infection.
  • the nanoperforator provided in the present invention may disturb the path of infection of the virus having the envelope of the lipid bilayer or inhibit the proliferation of the infected virus, the nanoperforator may prevent the growth of the virus having the envelope of the lipid bilayer. It can be used to prevent or treat various infectious diseases caused by infection.
  • the composition for preventing or treating a viral infection according to the present invention can be applied independently to the virus mutation, and the nanopores also have advantages in that they can secure safety because they do not contain a substance that causes specific reaction in vivo. There is this.
  • viral infection refers to a disease caused by the infection of the virus having the envelope of the lipid bilayer, for example, 'nephrotic muscle disease caused by the infection of the virus of Bernia viridae family Hemorrhagic fever (pandemic hemorrhagic fever); Respiratory diseases such as nasal congestion caused by infection with the virus of the coronaviride family; Hepatitis C caused by an infection of the virus of the Flaviviridae family; hepatitis B caused by an infection of the virus of the family Hepadnaviride; Shingles caused by infection with the herpesviride family of viruses; flu or influenza virus infection caused by the infection with the virus of the Ossomyxoviride family; smallpox caused by infection with the virus of the Foxviride family; Rabies or bullous stomatitis caused by infection with the virus of the Rhabdoviride family; It may be an acquired immunodeficiency disease caused by an infection of the retroviride family virus
  • Nanopores included in the composition of the present invention may comprise one or two or more surface antigen receptors.
  • two or more receptors may be included in one nanoporer.
  • the composition may also comprise two or more nanopores comprising one or more different receptors.
  • the term “treat” means an activity that ameliorates or favorably changes the symptoms of an infection caused by a viral infection.
  • prevent ion means the prevention of the onset, recurrence or transmission of a disease or disorder, or one or more symptoms caused by a disease / disorder, and prophyl acts on potential candidates. ic treatment).
  • composition of the present invention may be prepared in the form of a pharmaceutical composition for the prevention or treatment of inflammatory diseases, further comprising a suitable carrier, excipient or diluent commonly used in the manufacture of a pharmaceutical composition, the carrier is non- It can be a natural carrier.
  • the pharmaceutical compositions are formulated in the form of powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols and the like, oral preparations, suppositories, and sterile injectable solutions, respectively, according to conventional methods. Can be used. In the present invention, it may include one or more from the group consisting of various carriers, excipients and diluents that may be included in the pharmaceutical composition.
  • the pharmaceutical composition of the present invention may be administered in a pharmaceutically effective amount, the term "pharmaceutically effective amount" of the present invention is used to treat or prevent a disease at a reasonable benefit / risk ratio applicable to medical treatment or prevention
  • the amount of the effective dose means the severity of the disease, the activity of the drug, the age, weight, health, sex, sensitivity of the patient to the drug, the time of administration of the composition of the invention used, the route of administration and the rate of excretion.
  • the duration of treatment, factors including drugs used in combination or coincidental with the composition of the invention used, and other factors well known in the medical art may be determined.
  • the pharmaceutical composition of the present invention may be administered alone or in combination with known agents for treating viral infections. In consideration of all the above factors, it is important to administer an amount that can obtain the maximum effect in a minimum amount without side effects.
  • the dosage of the pharmaceutical composition of the present invention can be determined by those skilled in the art in consideration of the purpose of use, the degree of addiction of the disease, the age, weight, sex, history, or type of substance used as an active ingredient.
  • the pharmaceutical composition of the present invention may contain about O. per adult. ng to about lOO mg / kg, preferably 1 ng to about 10 mg / kg,
  • the frequency of administration of the composition of the present invention is not particularly limited, but may be administered once a day or several times in divided doses. The dosage does not limit the scope of the invention in any aspect.
  • the route of administration of the pharmaceutical composition for treating viral infections of the present invention may be administered via any general route as long as it can reach the target tissue.
  • the pharmaceutical composition of the present invention is not particularly limited, but as desired, through intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, intranasal administration, pulmonary administration, rectal administration, etc. May be administered.
  • oral administration may denature or destroy the nanopores by gastric acid
  • oral compositions should be formulated to coat the active agent or protect it from degradation in the stomach.
  • the composition may be administered by any device and device in which the active agent may migrate to the target cell.
  • composition for inhibiting virus growth comprising a lipid bilayer nanodisk (nanodi sc) and a nano-perforator comprising a membrane structured protein surrounding the outer circumferential surface of the lipid bilayer. do.
  • Matters relating to the nanopores may be equally applied to the composition for inhibiting virus growth.
  • the virus proliferation inhibition may be to perforate the viral envelope in combination with the nanopores of the viral envelope.
  • the present invention provides a pharmaceutical composition comprising a pharmaceutically effective amount of a viral infection comprising administering to a subject having or likely to develop a viral infection caused by infection with a virus having a lipid bilayer envelope.
  • a pharmaceutical composition comprising a pharmaceutically effective amount of a viral infection comprising administering to a subject having or likely to develop a viral infection caused by infection with a virus having a lipid bilayer envelope.
  • the viral infection is as described above.
  • the term "individual" of the present invention includes without limitation a mammal, aquaculture fish, etc., including a person, a rat, a livestock, or the like, which may or may not develop a viral infection due to an infection of a virus having a lipid bilayer envelope. Can be.
  • the present invention using the nano-perforator to the desired Methods of screening receptors for surface antigens of viruses are provided.
  • the nanopores provided by the present invention exhibit anti-viral activity against viruses having a lipid bilayer envelope by themselves, but the receptors for the surface antigens of the virus in the lipid bilayer of the nanopores. If included, more effective anti-viral activity is shown through the reaction of the receptor with the surface antigen. Therefore, after reacting the nano-perforator containing the receptor candidate for the surface antigen of the virus of interest with the virus of interest, by confirming whether or not it exhibits anti-viral activity against the virus, It can be determined whether it can be used as a receptor for a surface antigen of a virus.
  • the method for screening the receptor for the surface antigen of the virus of interest provided by the present invention (a) the nanopore and the target virus in which the receptor candidate for the surface antigen of the virus of interest is inserted into the lipid bilayer Reaction step; And (b) confirming whether the nanopores exhibit anti-viral activity against the desired virus.
  • the method of confirming whether or not the nano-perforator exhibits anti-viral activity against the virus in step (b) is not particularly limited thereto, and known methods such as hemocytosis inhibition assay, RNA release assay, and plaque reduction assay It may be a method of using the methods alone or in combination.
  • the disease caused by the infection of the virus having the outer layer of lipid double layer can be safely prevented or charged, it can be widely used for the treatment of safe and effective viral infection.
  • Figure 1 is a schematic diagram showing the shape and structure of the lipid bilayer nanopore comprising a ganglioside provided by the present invention.
  • Figure 2a and 2b is the size and structure of the lipid bilayer nanopore comprising the ganglioside provided in the present invention (si ze exclusion chromatography), immunoblotting (immunblotting), dynamic light scattering (dynami cl ight Figures and photographs show the results of analysis through scattering and electron microscopy.
  • Figure 3 is a schematic diagram showing the mechanism of the effect of inhibiting the proliferation of influenza virus nanopore containing ganglioside provided by the present invention.
  • Figure 4 is a neutral red dye uptake inhibit analysis (Neutral red uptake inhibit effect of the effect of inhibiting the proliferation of influenza virus by disturbing the infection path of influenza virus infected to the host cell using a nano-perforator containing a ganglioside provided by the present invention
  • the photo shows the result of t ion assay.
  • FIG. 5A is a photograph and a graph showing the results of analysis of the effect of the nanopore containing gangliosides on plaque formation of influenza virus compared to liposomes.
  • Figure 5b is a photograph and graph showing the results of the analysis of the effect of nanopore containing gangliosides on plaque formation of influenza virus at various concentrations.
  • Figure 5c is a photograph and graph showing the results of analyzing the effect of various concentrations of gangliosides in the nanopore on the plaque formation of influenza virus.
  • Figure 5d is a graph showing the results of analyzing the effect of lipid composition in the nanopore on the plaque formation of influenza virus.
  • Figure 6 is a photograph showing the effect of the nano-perforator containing a ganglioside provided by the present invention on the effect of influenza virus on the reduction of cytopathic effect.
  • Figure 7 is a schematic diagram and photographs confirmed by immunoblotting whether the nanopore provided in the present invention binds to the ganglioside receptor dependent on the influenza virus.
  • FIG. 8 is a nanoperforator provided in the present invention to influenza virus Electron micrographs confirm binding to ganglioside receptors.
  • Figure 9a is an electrophoresis picture and graph showing the results of RNA release analysis obtained by reacting the influenza virus solution and nanopore (NP or NPTG) solution of various concentrations.
  • Figure 9b is an electrophoresis picture showing the results of RNA release analysis obtained by reacting influenza virus solution and liposome (LP or LPTG) solution of various concentrations.
  • Figure 9c is an electrophoresis picture and graph showing the results of RNA emission analysis obtained by reacting the solution of influenza virus and nanopore (NP or NPTG) solution consisting of apolipoprotein of various concentrations.
  • immunoelectron micrograph nano perforated self-containing gangliosides provided by the invention confirmed that it fused to an influenza viral envelope protein is an internal viral RNA- nucleoside conjugate to exit.
  • Figure 11 is a graph showing the effect of the nano-perforator containing a ganglioside provided by the present invention to fuse the influenza virus envelope to inhibit the hemolysis of erythrocytes.
  • FIG. 12 is a micrograph showing that nanopores containing gangliosides provided by the present invention can bind receptor-dependently upon invasion of influenza virus and enter together into a cell to function within the cell.
  • Figure 13 is a photograph showing the effect of the nano-perforator provided in the present invention on the effect of reducing the cytopathic effect on the pseudo rabies virus.
  • lipid As lipid, l-palmi toy l-2-o leoyl-sn-glycero-3-phosphochol ine Dissolved in chloroform to prepare a lipid solution of 25 mg / ml concentration. Then, when dissolved in PBS with 0.5 ml of sodium cholate, 152.02 ⁇ of a 25 mg / ml P0PC solution was transferred to a glass leucine so that the concentration of lipid was 10 mM. Thereafter, nitrogen gas was added, and the solvent was removed by standing in a vacuum state for 4 hours to obtain a lipid film (l ipid fi lm). 0.5 ml of PBS to which sodium cholate was added to the obtained lipid film was used to hydrate the lipid film, and the ultrasonic wave was subjected to 55 0 C.
  • lipid film-containing suspension in which the lipid film was ground.
  • MSP1E3D1 SEQ ID NO: 12, molecular weight 32.6 kDa
  • NP nano-drilling party
  • Lipid double layer having various lipid compositions by performing the same method as the preparation method of Example 1-1, except for using a lipid solution containing P0PC, D0PS and cholesterol in a molar ratio of 55:15:30 as lipids. Nanopore was prepared.
  • Example 2 Preparation of ApoA-1 Protein-Containing Nanopores (NP)
  • a lipid solution having a concentration of 25 mg / ml was prepared by dissolving in P0PC (l-palmi toyl-2-oleoyl-sn-glycero-3-phosphochol ine)-!-Chloroform. Then, when dissolved in PBS with 0.5 ml of sodium cholate, 152.02 ⁇ of 25 mg / ml POPC solution was transferred to a glass tube so that the concentration of lipid was 10 mM. Thereafter, nitrogen gas was added thereto, and the solvent was removed by standing in a vacuum state for 4 hours to obtain a lipid film (l ipid fi lm). 0.5 ml of PBS to which sodium cholate was added to the obtained lipid film was used to hydrate the lipid film, and the ultrasonic wave was subjected to 55 0 C.
  • P0PC l-palmi toyl-2-oleoyl-sn-glycero-3-phosphochol ine
  • the ApoA-l protein of SEQ ID NO: 17 used as the membrane structure protein was engineered the ApoA-1 protein of SEQ ID NO: 1, and the amino acid sequence of the second to seventh amino acids in the amino acid sequence of SEQ ID NO: 17 His-tag, The 9th to 14th amino acids are the thrombin cleavage site, and the 16th to 19th amino acids are ASP—PRO acid labile bonds.
  • Example 3-1 Nano-Perforator Manufacturing Including Gangliosides
  • Example 1- except dissolving P0PC and gangliosides (Total ganglioside, Avanti polar lipids, Inc.) comprising GM3, GM2, GM1, GDla, GDlb and GTlb in chloroform to a molar ratio of 85:15.
  • gangliosides Total ganglioside, Avanti polar lipids, Inc.
  • NPTG lipid bilayer nanoporator
  • Ganglioside was prepared in the same manner as in Example 1-1, except that GDla gangl ioside (Enzo Life Sciences, Inc.) containing only P0PC and GDla was dissolved in chloroform to have a molar ratio of 85:15.
  • a lipid bilayer nanopore (NPGDla) was prepared.
  • Example 3-5 Dissolve P0PC ⁇ D0PS, Cholesterol, and gangliosides (Total ganglioside, Avant i polar lipids, Inc.), including GM3, GM2, GM1, GDla, GDlb, and GTlb, in chloroform with a molar ratio of 40: 15: 30: 15 Except for, the same procedure as in Example 1-1 was carried out to prepare a lipid bilayer nanoporator (NPTG) including various lipid compositions and gangliosides.
  • NPTG lipid bilayer nanoporator
  • a nanoporous preparation containing ApoA-1 protein and gangliosides contains a molar ratio of P0PC in chloroform and gangliosides (Total ganglioside, Avant i polar lipids, Inc.) containing GM3, GM2, GM1, GDla, GDlb and GTlb. Except for dissolving to have the same procedure as in Example 1-1, a lipid bilayer nanopore (NPTG) containing a ganglioside was prepared.
  • Example 4 Confirmation of nanopore structure
  • the size and shape of the nanopores prepared in Examples 1-1, 2, 3-1 and 3-5 were determined by size exclusion chromatography, immunoblotting (i ⁇ unoblo . Tting), and dynamic light scattering ( dynamic light scattering) and electron microscope, and the results are shown in FIGS. 2A and 2B.
  • the nano-perforator has a diameter of about 10 nm, the inside of the lipid bilayer, the lipid bilayer has the shape of a disc (disk) and the circumference of the disc MSP1E3D1 Protein (FIG. 2A, Nanopore NP of Example 1-1 and Nanopore NPTG of Example 3-1) or ApoA-I (FIG. 2B, Nanopore NP of Example 2 and Example 3-5) It was confirmed that the nanoperforator NPTG) had a collapsed structure.
  • Example 5 Inhibition of Virus Proliferation by Nanopores Example 5-1. Neutral red uptake inhibit ion assay
  • Half of the MDCK cel l of the full T-75 flask was prepared by dispensing 200 ⁇ into each well of a 96-well plate the day before the experiment.
  • the neutral red dissteine solution (50% ethanol, 49% distilled water, 1% acetic acid) was then treated with 200 ⁇ / well and absorbance was measured at 540 nm (FIG. 4).
  • the virus-free condition cel l only
  • the virus-only condition and the Tamiflu-free condition ((-) control)
  • the virus and the Tamiflu (conditional treatment) together ((+) control ) Is set.
  • Figure 4 is a nano-porer comprising a ganglioside provided by the present invention.
  • This photo shows the effect on the survival rate of cells by influenza virus.
  • nanopore (NPTG) with gangliosides nanopore (NP) without gangliosides has similar cell survival effects as Tamiflu, a positive control. It confirmed that it was shown.
  • NP and NPTG was very excellent in inhibiting the virus even at low concentrations, especially in the case of NPTG it was confirmed that the antiviral effect is significantly superior to NP.
  • the nanoperforator is an excellent antiviral agent.
  • Example 5-2 Plaque reduction assay
  • Plaque refers to an empty space formed by infecting a host cell with a virus and covering the culture plate with an agarose-medium smear, whereby the resulting viruses do not spread and infect only the surrounding cells and kill them.
  • NP or NPTG prepared in Examples 1 and 3, liposomes (LP) and as a control It was confirmed whether or not liposomes (LPTG) containing ganglioside in an amount of 15% exhibited anti-viral activity by fusion to the envelope of influenza virus.
  • the preparation method of liposomes including liposomes and / or gangliosides used as the control is as follows.
  • PC Phosphatidylcholine
  • LP liposome
  • gangliosides 85: 15 mole ratio
  • a lipid film l ipid fi lm
  • concentration of lipid was 10 mM and placed in vacuum for 12-16 hours to remove the remaining organic solvent.
  • Example 1-1, Example 1-2, Example 3-1, Example 3-2, and Example 3-4, and as a control group were added to the cells.
  • Agarose solution HPES 25 mM, sodium bicarbonate 22 mM, containing liposome LP and ganglioside containing liposome LPTG at various concentrations (4, 20, 100 or 500 ⁇ ), respectively
  • Figure 5a is a photograph and graph showing the results of the analysis of the comparison with the liposomes of the effect of nanopores on plaque formation of influenza virus.
  • the plaque formed by the influenza virus as a whole, as well as the nano-porer of Example 3-1 with the receptor as well as the nano-porer of Example 1-1 containing no receptor When treated, it was confirmed that the number and size of plaques were reduced.
  • NPTG Compared to LPTG, which had some effect on plaque size suppression, NPTG not only suppressed plaque size by 80% but also suppressed plaque size by 203 ⁇ 4>. This confirms that the structure of the nanoperforator is a very important factor that exhibits antiviral efficacy.
  • Nanopores of Example 3-1 comprising gangliosides for nanopores of 1-1 (NP). Although the effect is weaker than that of NPTG, the number and size of plaques are reduced when treated at high concentrations.
  • Figure 5b is a photograph and graph showing the results of analyzing the effect of nanopore containing gangliosides on plaque formation of influenza virus.
  • the nanopore (NPTG) of Example 3-1 containing a ganglioside was found to reduce the number and size of the plaque in a concentration-dependent, unlike the overall plaque formation in the control group (No NP) It was.
  • the NPTG concentration of Example 3-1 was 40 nM, the plaque size was suppressed by 70% and the number by 20%.
  • the plaque size was reduced by about 90% and the number was reduced by 50% or more. It was confirmed that also has a significant inhibitory effect on virus activity.
  • FIG. 5C is a photograph and a graph showing the results of analyzing the effect of receptor concentration in the nanopores of Example 3-2 on plaque formation of influenza virus.
  • FIG. 5c it was confirmed that the higher the content of the gangliosides in the nanopore at the same nanopore concentration, the size and number of plaques were significantly reduced. In particular, it was confirmed that even when the molar ratio of ganglioside was only 5% compared to the control group, the size of the plaque was suppressed by 50% and the number by 30%. This effect was found to be dependent on the concentration of gangliosides contained. The molar ratio of 50% is the most effective, and the maximum effect is 90% or more and 80% of the number is suppressed. It was confirmed that it should contain at least 15% gangliosides.
  • Figure 5d is a graph showing the results of analyzing the effects of the virus-treated control group and nanopores of Examples 3-1 and 3-4 to examine the effect on the plaque formation of influenza virus.
  • the same concentration of nano-perforator is processed in the lipid composition excluding the receptor is composed of only P0PC only Example 3-1 compared to the nano-perforator POPC, D0PS and / or chol ester
  • the nanopores of Example 3-4 showed better antiviral effects.
  • this effect can significantly reduce the number of plaques, as opposed to suppressing only plaque size, as in the other experimental results described above. Confirmed.
  • This effect is thought to be due to the effects of D0PS and cholester, lipids that are known to be helpful for membrane fusion because nanopores are the main mechanism of membrane fusion.
  • Example 6 Cytopathic effect reduct ion assay Cytopathi c ef fect is a host cell that adheres to a host cell growing on a plate and is fully attached when the virus is replicated. The cell morphology changes and finally floats. When the virus activity is inhibited, the effect of cell lesions will be reduced, so that the NPTG prepared in Example 3 is fused to the influenza virus envelope to prevent it. -It was confirmed whether it showed viral activity.
  • MDCK cells into each well of a 12 well plate. 1.5xl0 was inoculated by 5 incubation, and after 24 hours, cells which had been incubated were washed twice with PBS. Prepare 6xl0 5 PFU / ml of A / Puerto Ri co / 8/1934 H1N1 virus (NIBSC purchased) inoculation with incomplete MEM medium without FBS, add 0.25 ml of virus solution to the washed MDCK cells and continuously shake The reaction was allowed to react at room temperature for 1 hour.
  • Figure 6 analyzes the effect of the nanopore (NPTG) of Example 3-1 containing gangliosides on the cytopathic effect by influenza virus It is a photograph showing the result.
  • the control control
  • the cytopathic effect cytopathi c ef fect
  • H1N1 virus infected condition
  • the hi s-tag bound to the N-terminus of the nanoperforator protein was used to determine the infiltration inhibitor function of the nanoperforator.
  • Treatment of agarose beads in which nickel ions are bound to NP or NPTG enables strong bonding due to the affinity between divalent cyanide and histidine.
  • influenza virus After treatment with influenza virus, the virus can be bound only to NPTG solution through hemagglutinin, and finally elute obtained by treating elut ion solution containing high concentration of imidazole. There is a virus that can be confirmed by immunoblotting.
  • nanopore may be ganglioside-dependently coupled to influenza virus using NP or NPTG prepared in Examples 1-1 and 3-1, and act as an inhibition inhibitor as a primary inhibitory function. It was confirmed whether it can.
  • Example 1-1 50 ⁇ l of nickel agarose beads were washed three times with a washing solution (PBS containing 5 mM imidazole, pH 7.4), and the nanoparticles of Example 1-1 at 50 ⁇ concentration prepared in advance therein.
  • Perforator ( ⁇ ) or nanopore nanoparticles (NPTG) of Example 3-1 was treated by 200 ⁇ l and reacted at a temperature of 4 ° C. for 2 hours.
  • Figure 7 is a schematic diagram and photograph showing the results of the analysis to confirm that the nano-perforator to the influenza virus hemagglutinin-dependently bind to the receptor ganglioside can function as an invasion inhibitor.
  • H1N1 virus was used together as a positive control of immunoblotting.
  • NPs nanoperforators
  • NPTG nanopores
  • Electron microscopy was performed as another method to determine if nanopores are dependent on gangliosides in influenza viruses.
  • An electron microscope is a device that uses electrons instead of light to create an enlarged image of an object, allowing you to see small objects that are invisible to an optical microscope, such as viruses and nanopores.
  • NP exists separately from the virus because there is no receptor, while NPTG has the receptor ganglioside, so it can bind to hemagglutinin.
  • an analysis was conducted to confirm that each nanoporer (NP or NPTG) of Example 1-1 and Example 3-1 can bind to the influenza virus envelope.
  • a / Puerto Ri co / 8 having a concentration of 16.6 ⁇ of the nanopores ( ⁇ ) of Example 1-1 or 40 ⁇ M of nanopores (NPTG) of Example 3-1 is lxlO 8 PFU / ml. / 1934 H1N1 Influenza Virus (purchased NIBSC) mix 100 ⁇ and at room temperature for their binding Reaction for 1 hour. Then, the above mixture was added to the grid (gr id) used for electron microscopy by 20 ⁇ and placed for 1 minute to allow the samples to bind to the grid. 3M paper was used to remove the unbound sample, and then the grid was washed twice with water and treated with 2% uranyl acetate for 1 minute for dyeing. The electron microscope Libra 120 was then used for microscopic analysis. The results are shown in FIG.
  • Figure 8 is a photograph showing the results of the analysis to determine whether the nano-perforator to the influenza virus hemagglutinin can bind to the ganglioside of the receptor to function as an invasion inhibitor.
  • H1N1 virus-treated control group
  • the diameter of the virus was about 100-200 nm as known, and nanopores and virus were separated from each other under H1N1 + NP (Example 1-1).
  • different H1N1 + NPTG (example 3-1) in the condition was confirmed that wraps around the virus around the nano self-drilling and ice.
  • Example 7-1 because the ganglioside, which is a receptor, binds to the hemagglutinin of the outer part of the virus.
  • Example 7-1 it was confirmed that it could function as an intrusion suppressor.
  • Example 8 RNA Release Assay
  • the nanopore of the present invention When the nanopore of the present invention is treated with an influenza virus, and the nanopore is fused to the influenza virus envelope, the structure of the virus envelope becomes unstable by the fusion, and the RNA of the virus is transferred to the outside of the virus due to the unstable envelope. Is released.
  • a virus is applied to centricon, RNA smaller in size than the pore of the centricon is filtered through the centricon, but virus particles larger in size than the pore are not filtered through the centricon. It was confirmed whether each nanoporer (NP or NPTG) prepared in 1-1, Example 2, Example 3-1, and Example 3-5 was fused to the envelope of the influenza virus.
  • reverse transcription PCR (5 ⁇ template, 1 ⁇ sense primer (M gene), 7.4 ⁇ , water mixture was performed at 70 ° C. for 10 minutes, followed by 4 ⁇ 5x Reverse transcription buffer. , was put in a dNTP, RTase of 1 ⁇ of 1.6 ⁇ 1 hour at 42 ° C, 70 o C 10 bun banung) was performed to obtain a cDNA sangung the RNA contained in each sample, respectively.
  • a PCR (5 ⁇ template, 10 ⁇ water, 0.5 ⁇ sense / anti sense primer (M gene), 4 ⁇ 5xrTaqDNA polymerase mixture was prepared using the resulting cDNA template at 95 ° C.
  • Figure 9a is an electrophoresis picture showing the results of RNA emission analysis obtained by influenza virus solution and nanopore (NP) of Example 1-1 and nanopore (NPTG) solution of Example 3-1 in various concentrations; 9B is an electrophoresis image showing the results of RNA release analysis obtained by reacting influenza virus solution and liposome (LP or LPTG) solution of various concentrations.
  • Figure 9c is an electrophoresis picture showing the results of RNA release analysis obtained by reacting the influenza virus solution and nanopore (NP) of Example 2 and the nanopore (NPTG) solution of Example 3 ⁇ 5 of various concentrations
  • NP nanopore
  • NPTG nanopore
  • Figure 9a in the control group (V) did not process the nano-puncture, RNA was not detected in the sample (F) filtered through the centricon, the sample filtered through the centricon in the experimental group treated with the nano-puncture (F) RNA was detected in).
  • RNA was detected in the sample (F) filtered through the centricon, but the nanopore containing ganglioside RNA was detected in sample (F) filtered through centricon even when (NPTG) was added at a concentration of 1.3 ⁇ .
  • Figure 9b when influenza virus solution and various concentrations of liposome (LP or LPTG) solution was confirmed that no RNA was detected in the sample (F) filtered through the centricon in any case.
  • Immunoelectron microscopy is a method of detecting antigen distribution by using immunoreaction through antibodies.
  • metals with high electron density such as gold (Au) particles and ferritin or enzymes such as peroxidase are used.
  • Au gold
  • ferritin ferritin
  • enzymes such as peroxidase
  • NPTG prepared in Example 3-1 fused to the influenza virus envelope to exhibit anti-viral activity Specifically, para-film (paraf i lm) is placed on the floor and A / Puerto Rico / 8/1934 H1N1 virus (purchased NIBSC) + NPTG Example 3-1) 0.1 ml of the mixture is loaded on top of this The microscope grid (gr id) was raised and placed at room temperature for 20 minutes, the pH was dropped to 5.0 and then left for 10 minutes. Thereafter, washing was performed once using PBS for 2 minutes, and a PBS solution containing 1% BSA was treated for 30 minutes at room temperature on a grid for blocking.
  • a primary antibody capable of binding to the viral nucleoprotein was prepared at a concentration of 50 g / ml using PBS containing 1% BSA, treated on a grid, and reacted at room temperature for 1 hour. Subsequently, the wash was treated twice with PBS, also containing 1% BSA, for 3 minutes in total and diluted 1:50 with a go Id-labeled secondary antibody capable of recognizing and binding the primary antibody. After treatment to the grid and left for 45 minutes at room temperature.
  • FIG. 10 is a photograph of an immunoelectron micrograph showing that the nanopores of Example 3-1 comprising gangliosides fused to the influenza virus envelope under low pH and as a result confirmed that the RNA of the virus could actually be released out.
  • the nanopores were treated with the virus and the pH was lowered, the outer skin was damaged, and it was confirmed that the virus RNA-nucleoprotein complex inside could be detected as a black spot by an antibody capable of coming out and binding thereto.
  • the nanoperforator was found to be able to inhibit the viral infection progress by causing the internal NA to escape through physical damage to the viral envelope under the low pH of the intracellular lysosome during viral infection.
  • Example 10 Hemolysis Inhibition Assay
  • Nanoperforator suppresses hemolysis, it means that it will compete with the membrane fusion between virus and erythrocytes, and it can be thought that it actually competes with membrane fusion between viral and endosome membranes in cells.
  • Nanopore of Example 3-3 made using nanopore of Example 1-KNP) and Example 3-KNPTG), and additionally GDla ganglioside known to bind more strongly to the virus used ) was confirmed to suppress the hemolysis by fusion to the influenza virus envelope.
  • Example 1-1 (NP)
  • 3-KNPTG 3-KNPTG
  • NPGDla nanopores of Example 3-3
  • a / Puerto Rico / 8 / 1934 H1N1 virus NIBSC purchase
  • 2% chicken red blood cells (chicken red blood cel l) prepared by diluting with PBS was added additionally and the reaction was repeated for 10 minutes at the same temperature.
  • the pH was then lowered to 5.0 using three N acetic acid and centrifuged (400 ⁇ g; 8 min; 4 0 C) to remove chicken erythrocytes. 300 ⁇ l of the supernatant was taken and transferred to a new 96-well plate, followed by absorbance analysis using a wavelength of 540 nm. The results are shown in FIG.
  • FIG. 11 shows the results of analysis of the degree of inhibition of hemolysis of erythrocytes caused by influenza virus at various concentrations.
  • the nanoperforator (NP) of Example 1-1 which does not include gangliosides, is erythrocytes within the tested concentrations. It was confirmed that nanopores containing gangliosides (NPTG of Example 3-1 or NPGDla of Example 3-3) containing gangliosides suppress red blood cell hemolysis in a concentration-dependent manner. In particular, the degree of inhibitory effect was confirmed that the NPGDla of Example 3-3 is superior to the NPTG of Example 3-1, because the GDla gangliosides have a stronger binding to the virus.
  • Nanopore of Example 3-3 made using nanopore of Example ll (NP) or Example 3-KNPTG, and additionally GDla ganglioside known to bind more strongly to the virus used ) was confirmed to bind to the envelope of invading influenza virus and enter together inside the cell.
  • the SP-DiOC18 was mixed with the virus and reacted for at least 12 hours at room temperature. I was. Then, PD-10 desalting column was used to remove dyes that were not inserted into the viral membrane. Finally, fluorescently labeled virus was obtained and stored in the refrigerator until use.
  • nanopores were prepared by adding 1% of a fluorescent lipid Li ss-Rhod phosphat idylethanolamine in the process of making a lipid film in Examples 1-1, 3-1, and 3-3. It was. The prepared virus and each prepared nanopores were premixed and refluxed for 2 hours in refrigeration, and the mixed solution was treated with A549 cells prepared in a 100 mm cell culture dish the day before and infected for 2 hours at a temperature of 37 0 C. Cells were then fixed for 15 minutes using 4% formaldehyde (formaldehyde). After washing with PBS, it was mounted with a gold ant i fade mountant and images were obtained and analyzed using a Car Zei ss LSM confocal microscope. The results are shown in FIG.
  • FIG. 12 is a micrograph confirming that if the influenza virus enters a cell, the nanopores can actually enter together into the cell if processed together.
  • the virus A / PR / 8/34 which was used in the experiment, penetrated into the cell by the intracellular incorporation process and was detected as a dot by the labeled fluorescence.
  • NP of Example 1-1, NPTG of Example 3-1, or NPGDla of Example 3-3) were also found to appear inside the cells as dots.
  • the fluorescence point by NP of Example 1-1 did not overlap with the fluorescence point of virus at all, it was confirmed that there exist overlapping points between PTG of Example 3-1 and NPGDla of Example 3-3.
  • a cytopathic effect reduction assay was carried out in the same manner as in Example 6 except for infecting HeLa cells with pseudorabies virus instead of infecting MDCK cells with influenza virus, and the results are shown in FIG. 13.
  • Figure 13 is a photograph showing the results of analyzing the effect of the nano-perforator (NP) of Example 1-1 on the cytopathic effect by pseudo rabies virus.
  • the control Mosi t ive
  • the cytopathic effect cytopathi c ef fect
  • the shape of is changed, forming multinucleated bodies (mul ti -nuclear cel l, gi ant cel l) (white arrow), and eventually the cells die.
  • Example 1-1 when the NP of Example 1-1 was treated with 8 ⁇ , it was observed that polynuclear body formation by pseudo rabies virus was significantly inhibited. Thus, the nanoperforator of the present invention showed excellent anti- It was confirmed that there is a viral effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Mycology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Dispersion Chemistry (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 지질이중층 나노디스크와 상기 나노디스크를 둘러싼 막구조화 단백질을 포함하는 나노천공자 및 상기 나노천공자를 유효성분으로 포함하는 바이러스 감염증 예방 또는 치료용 약학조성물에 관한 것이다. 본 발명에서 제공하는 지질이중층 나노천공자를 사용하면, 바이러스의 변종여부에 상관없이 바이러스의 감염에 의하여 유발된 질환을 안전하게 예방 또는 치료할 수 있으므로, 안전하면서도 효과적인 바이러스 감염증의 치료에 널리 활용될 수 있을 것이다.

Description

【명세서】
【발명의 명칭】
나노천공자를 포함하는 바이러스 감염증 예방 또는 치료용 약학 조성물 【기술분야】
본 발명은 지질이중층 나노디스크 및 막구조화 단백질을 포함하는 나노천공자, 및 상기 나노천공자를 포함하는 바이러스 감염증 예방 또는 치료용 조성물에 관한 것으로, 보다 구체적으로 본 발명은 지질이중충을 막구조화 단백질 (membrane scaf fold proteins)이 둘러싼 형태의 나노천공자를 포함하는 바이러스 감염증 예방 또는 치료용 약학조성물, 상기 약학조성물을 투여하는 단계를 포함하는 바이러스 감염증을 예방 또는 치료하는 방법 및 상기 나노천공자를 사용하여 바이러스 표면항원에 대한 수용체를 스크리닝하는 방법에 관한 것이다. 【배경기술】
인플루엔자 바이러스 ( Inf luenza vi rus )는 오르소믹소 계통 (Fami ly Orthomyxovir idae)에 속하는 RNA바이러스로서 혈청형은 A형, B형, C형 등 3가지로 구분된다.그 중 B형과 C형은 사람에서만 감염이 확인되고 있으며, A형은 사람,말, 돼지, 기타 포유류 그리고 다양한 종류의 가금과 야생조류에서 감염이 확인되고 있다. A형 인플루엔자 바이러스의 혈청형은 바이러스 표면의 두 가지 단백질인 헤마글루티닌 (Hemagglut inin; HA)과 뉴라미니다제 (Neuraminidase ;NA)의 종류에 따라 구분되는데 지금까지 144종류 (HA 단백질 16종과 NA 단백질 9종)가 알려져 있다. HA는 바이러스가 체세포에 부착하는 역할을 하며, NA는 바이러스가 세포 내로 침투할 수 있도록 한다.
최근 관심이 집증되고 있는 신종 인플루엔자 A(H1N1) 바이러스는 "신종 플루 " 또는 "신종 플루 바이러스1'라고도 하는데, 이는 사람, 돼지 및 조류 인플루엔자 바이러스의 유전물질이 흔합되어 있는 새로운 형태의 바이러스이다. 지금까지 개발된 바이러스 감염증 치료제로는 아만타딘 (amantadine) 또는 리만타딘 (r imantadine)계열의 M2 이온 채널 억제제 (M2 ion channel inhi bi tor )와 오셀타미비르 (oseltamivir , 상품명 타미플루) 또는 자나미비르 (zanamivir , 상품명 리렌자) 계열의 뉴라미니데이즈 (neuraminidase) 억제제가 알려져 있으나, 이들 치료제는 그의 효과가 제한된다는 문제점이 있었다. 즉, 아만타딘 또는 리만타딘 계열의 유도체 화합물은 이에 대한 저항성 변종바이러스가 빠르게 생성되고, 일부 지역에서 검출된 H5N1 타입의 인플루엔자 바이러스는 아만타딘 또는 리만타딘 계열의 화합물에 대하여 내성을 나타내며, 인플루엔자 B 바이러스는 아만타딘 유도체에 민감하지 않다고 알려져 있다. 또한, 오셀타미비르 또는 자나미비르 계열의 유도체 화합물 역시 이에 대한 저항성 바이러스가 증가하고, 이러한 저항성 바이러스는 어린이에게서 빈번히 발생하고 있다고 알려져 있다.
상기와 같은 기존 바이러스 감염증 치료의 문제점이 없는 새로운 치료제를 개발하기 위한 연구가 활발히 진행되고 있는데, 예를 들어, 한국등록특허 게 1334143호에는 폴리갈라 카렌시움 (Polygal a karensium) 추출물 및 이로부터 분리된 잔톤계 화합물을 함유하는 감기, 조류 인플루엔자, 돼지 인플루엔자 또는 신종플루의 예방 또는 치료용 조성물이 개시되어 있다. 그러나, 이들 제제는 항-바이러스 활성이 낮아서, 신종플루에 대한 효과적인 예방 또는 치료효과를 나타내지는 못하고 있다.
따라서, 모든 변종 바이러스에 공통적으로 적용 가능하면서 기존의 바이러스 억제제들을 대체할 수 있는 새로운 항 인플루엔자제의 개발이 시급한 실정이다.
【발명의 상세한 설명】
【기술적 과제】
본 발명의 하나의 목적은 지질이중층 나노디스크 및 막구조화 단백질을 포함하는 나노천공자 (nano— perforator )를 제공하는 것이다.
본 발명의 다른 목적은 상기 나노천공자를 포함하는 바이러스 감염증 예방 또는 치료용 약학 조성물 또는 상기 나노천공자의 항―바이러스 용도를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 약학 조성물을 투여하는 단계를 포함하는 바이러스 감염증을 예방 또는 치료하는 방법을 제공하는 것이다. 본 발명의 또 다른 목적은 상기 나노천공자를 사용하여 바이러스 표면항원에 대한수용체를 스크리닝하는 방법을 제공하는 것이다.
【기술적 해결방법】
본 발명에 따라, 지질이중층을 막구조화 단백질이 둘러싼 형태의 지질이중층 나노천공자를 사용할 경우, 상기 인플루엔자 바이러스의 감염을 예밥하거나 또는 감염된 인플루엔자 바이러스의 증식을 억제하여, 인플루엔자 바이러스 감염증을 예방 또는 치료하는 새로운 효과를 나타내고, 이러한 효과는 상기 지질이중층에 바이러스의 표면항원에 결합할 수 있는 수용체를 삽입할 경우, 더욱 향상됨을 확인할 수 있다. 또한, 본 발명자들은 상기 나노천공자가 지질이중층의 외피 (envelope)을 가지는 바이러스의 구조적 안정성을 손상시켜서 항一바이러스 활성을 나타낼 수 있음을 확인하였다.
또한, 본 발명자들은 지질이중층의 외피를 가지는 바이러스의 감염기작에 주목하였다. 상기 바이러스는 대체로 지질이중층의 외피에 표면 항원으로 사용되는 막 결합 단백질을 포함하고 있으며, 상기 막단백질을 통해 숙주세포에 감염되는 것으로 알려져 있다. 만일, 상기 바이러스의 막단백질에 대한 수용체가 지질이중층 부위에 삽입된 나노천공자를 사용한다면, 이러한 바이러스의 감염경로를 교란시킬 수 있을 것이다. 이를 확인하기 위하여, 지질이중층의 외피를 가지는 바이러스의 일 예로서 인플루엔자 바이러스를 사용하고, 바이러스의 막단백질에 대한 수용체로서 인플루엔자 바이러스의 주요 표면항원으로 알려진 헤마글루티닌 (HA)에 결합할 수 있는 호흡계 (폐, 기관지) 상피세포의 막 수용체 (receptor)의 시알산 (si al ic acid)을 포함하는 강글리오사이드를 포함하거나 또는 포함하지 않는 나노천공자를 사용하여, 상기 나노천공자가 인플루엔자 바이러스의 감염과정에 미치는 효과를 분석하였다. 그 결과,상기 강글리오사이드를 포함하지 않는 나노천공자가 인플루엔자 바이러스에 대하여 항-바이러스 활성을 나타내었고, 상기 강글리오사이드를 포함하는 나노천공자는 더욱 향상된 항-바이러스 활성을 나타냄을 확인하였다.
본 발명에서 제공하는 지질이중층 나노천공자는 지질이중층의 외피를 가지는 바이러스에 대하여 항-바이러스 활성을 나타낼 수 있으므로, 상기 지질이중층의 외피를 가지는 바이러스의 감염증을 예방 또는 치료하는 효과를 나타낼 수 있고, 이러한 나노천공자의 항-바이러스 활성 예를 들어 바이러스 외피 천공 활성은 지금까지 전혀 알려지지 않다.
상술한 목적을 달성하기 위하여, 본 발명은 하나의 양태로서 지질이중층 나노디스크 (nanodi sc)와, 상기 지질이중층의 외주면을 들러싼 막구조화 단백질을 포함하는 나노천공자 (nano-perforator )를 제공한다.
본 발명의 일 예에서 상기 나노천공자는 1 내지 50 nm, 더욱 바람직하게는 10 내지 20 nm의 직경을 가질 수 있으나 나노천공자로서의 기능을 할 수 있는 크기라면 이에 한정되지 않는다.
본 발명에 따른 나노천공자는 바이러스 외피에 결합하여 바이러스가 세포 내 함입되어 엔도좀을 형성하는 것을 저해하고 ( 1차 억제), 세포 내 바이러스가 함입되더라도, 함입된 바이러스의 의피에 구멍을 뚫는 '천공자 (perforator) 1로서 작용하여 (2차 억제), 구멍에서 바이러스 내 RNA가 엔도좀으로 방출되어 엔도좀 내부의 pH에 의해 불활성화 되어 바이러스의 증식을 억제할 수 있어, 바이러스 감염을 2차적으로 억제하는 효과를 나타낼 수 있다.
본 발명의 나노천공자는 바이러스 변이에 독립적으로 바이러스 증식을 억제할 수 있으며, 특히, 생체 내에서 특이적인 반웅을 유발하는 물질을 포함하지 않기 때문에 안전성을 확보할 수 있다는 점에서도 장점이 있다.
본 발명의 용어 "나노천공자 (nano-perforator ) "란, 지질이중층 나노디스크 (nanodi sc)와, 상기 지질이중층의 외주면을 둘러싼 막구조화 단백질을 포함하며, 바이러스 외피를 천공하는 기능을 수행할 수 있는 나노 스케일의 물질을 의미한다. 상기 나노천공자는 원반 (di sc) 형태를 갖는 단층 (uni lame l iar )의 지질이중층, 즉 지질이중층 나노디스크를 포함하고, 상기 지질이중층의 외주면 (outer circumference surface)을 하나 이상의 막구조화 단백질, 예를 들어 2개의 막구조화 단백질로 둘러싼 형태의 복합체일 수 있다. 본 발명의 용어 "지질이중층 나노디스크 (nanodi sc)' '란. 지질이중층을 포함하는 단층 (uni lamel lar )의 원반 (di sc) 형태 물질을 의미하며, 상기 지질이중충의 양 면이 모두 외부에 노출된 열린 계 (open system)를 갖는 것을 특징으로 한다. 즉, 본 발명에 따른 나노디스크 자체는 상기 지질이중층으로 내부 t
CJ1 n
Figure imgf000007_0001
l P0PG(l-Palmitoyl-2-oleoyl-sn-glycero-3[Phospho-rac-(l-glycerol )] ) ,
DEPG(l,2-Dierucoyl-sn-glycero-3[Phospho-rac-(l-glycerol )] ) ,
DLPG(1,2-Di lauroyl-sn-glycero-3[Phospho-rac-(l-glycerol )] ) ,
D0PG( 1 , 2-Dio 1 eoy 1—sn_glycero一 3 [Phospho_r ac—( l—glycero 1 )] ) 또는 DSPG(l,2-Distearoyl-sn-glycero-3[Phospho-rac_(l-glycerol)])일 수 있고, 상기 포스파티딜에탄올아민은,
DMPE ( 1 , 2-D i myr i s t oy 1 -sn-g 1 ycer o_3_pho s hoet hano 1 amine) ,
DPPE (1,2-Dipalmitoyl-sn-glycer ο-3-phospho e t hano 1 amine) ,
DSPE( 1 , 2-Di st ear oyl-sn-glycero-3-phosphoethanol amine) , D0PE( 1, 2-Di ol eoy 1-sn-gl ycer ο-3-phosphoet hano 1 amine) ,
DEPE(1, 2-Di erucoyl-sn-glycero-3-phosphoethanol amine) ,
DLPE ( 1 , 2-D i 1 aur oy 1 -sn-g 1 ycer ο-3-phosphoet hano 1 am i ne ) 또는 P0PE(
1-Pa 1 m i t oy 1 -2-01 eoy 1 -sn-g 1 y cer ο-3-pho sphoe t hano 1 am i ne ) , 상기 포스파티딜세린은, DOPS ( 1, 2-D i o 1 eoy 1-sn-g 1 ycero-3-phosphoser ine), DLPS(1,2一 Di lauroyl一 sn一 glyceroᅳ 3— phosphoserine),
DMPS (1,2-Di myr istoy 1-sn-g 1 ycero-3-phosphoser ine) ,
DPPS ( 1 , 2-D ipalmitoyl -sn-g 1 ycero-3-phosphoser ine) ,
DSPS( 1 , 2-Di stearoyl-sn-glycero-3-phosphoser ine) 또는 POPS 일 수 있다.
상기 지질이중층 나노디스크를 구성하는 지질은, 상기 인지질에 추가하여, 중성지방, 예를 들면 트리글리세라이드, 콜레스테를 (cholesterol) 또는 이의 유도체, 및 당지질 (saccharoHpid), 예를 들어 강글리오사이드로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
상기 지질이중층 나노디스크는 지질이중층의 양 면이 모두 외부에 노출된 열린 계를 갖는 원반 형태라는 점에서, 내부에 친수성 코어 (core)를 포함하고 지질이중층의 양면 중 한 면만 외부에 노출된 닫힌 계 (closed system)를 갖는 구 (sphere) 형태의 리포좀 ( 1 iposome)과 구별된다. 상기 리포좀은 지질이중층으로 내부 코어를 갖는 닫힌 공간을 형성할 수 있다. 발명에 따른 나노천공자는 상기 나노디스크의 외주면을 둘러싼 막구조화 단백질을 포함한다. 본 발명의 용어 "막구조화 단백질 (membrane scaf fold proteins) " 이란, 양친매성 나선형 단백질 (amphipathi c hel i cal protein)로서, 지질이중층의 외주면을 둘러싸서, 본 발명에서 제공하는 지질이중층을 포함하는 나노천공자의 형태를 구성할 수 있는 단백질을 의미한다. 본 발명에서,지질이중층의 외주면을 둘러싸는 막구조화 단백질은 소수성 영역 및 친수성 영역을 포함하는 양친매성인 것을 특징으로 할 수 있다. 상기 막구조화 단백질의 소수성 영역 (예를 들어, 소수성 아미노산)이 지질이중층 나노디스크의 소수성 영역 (예를 들어, 지질)과 결합하고 막구조화 단백질의 친수성 영역 (예를 들어,친수성 아미노산)이 외부로 노출되는 형태로 나노천공자를 형성할 수 있다. 예를 들어, 상기 막구조화 단백질은 헬릭스 (hel ix) 구조를 갖는 양친매성 단백질일 수 있다.
상기 막구조화 단백질의 예는 아포리포단백질로서 (Yelena V.Gr inkova, et al . , Protein Engineer ing, Design & Select ion, 23( 11): 843-848 , 2010), 아포리포단백질 Al 단백질 또는 상기 아포리포단백질 A1 단백질의 아미노산 서열로부터 유래된 변이체 단백질을 포함할 수 있다.
본 발명에 있어서,상기 막구조화 단백질은 본 발명의 나노천공자를 구성할 수 있는 한, 특별히 이에 제한되지 않으나, 일 예로서, 아포리포단백질 또는 이의 변이체가 될 수 있고, 상기 아포리포단백질 (Apol ipoprotein , Apo)은 아포리포단백질 Al(ApoA-I ) , 아포리포단백질 A2(ApoA-2) , 아포리포단백질 B(ApoB) 아포리포단백질 C(ApoC) 및 아포리포단백질 E(ApoE)으로 이루어진 군에서 선택된 1 이상일 수 있다. 예를 들어 상기 ApoA-1은 서열번호 1의 아미노산 서열, 상기 ApoA-2는 서열번호 2의 아미노산 서열, 상기 ApoB는 서열번호 3의 아미노산 서열을 포함할 수 있다. 상기 ApoC는 ApoCl및 ApoC3로 이루어진 군에서 선택된 1 이상일 수 있으며, 예를 들어 상기 ApoCl은 서열번호 4의 아미노산 서열, 상기 ApoC3은 서열번호 5의 아미노산 서열을 포함할 수 있다.
상기 막구조화 단백질의 구체예로서, 아포리포단백질 A1단백질의 변이체인 MSP1 (Membrane scaf fold protein 1) (서열번호 6), MSP1D1 (서열번호 7) , MSP1D2 서열번호 8), MSP1E1 (서열번호 9), MSP1E2(서열번호 10) , MSP1E3(서열번호 11) , MSP1E3D1 (서열번호 12), MSP2(서열번호 13), MSP2N1 (서열번호 14), MSP2N2(서열번호 15), MSP2N3 서열번호 16), 등이 될 수 있다.
상기 Apo-Al은 분자량 28 kDa의 243개의 아미노산으로 이루어진 단일 폴리펩타이드로 구성되고, 11개의 아미노산 흑은 22개의 아미노산으로 이루어진 8개의 반복단위 도메인을 가지며, HDL을 이루는 2차구조의 알파-헬릭스의 비율이 60 내지 75%인 단백질을 의미한다. 상기 ApoA-I은 주로 주변조직으로부터 콜레스테를을 제거하여 간 또는 다른 리포단백질로 운반하는 직접적인 역할을 수행하는 고밀도 리포단백질 (HDL)의 구성요소로서 사용된다고 알려져 있다.
ApoE는 33 kDa의 299개의 아미노산으로 이루어진 단일 폴리펩타이드로 구성된 단백질이며 ApoAl과 마찬가지로 콜레스테롤의 운반에 관여한다.
본 발명의 용어 "지질이중층의 외피 (또는 막)를 가지는 바이러스" 란, 바이러스 중에서 지질이중층의 외피를 갖는 바이러스를 의미하는데, 상기 지질이중층에는 상기 바이러스의 감염 및 증식에 관여하는 항원 단백질이 막결합 단백질 형태로 포함되어 있다. 상기 지질이중층의 외피를 가지는 바이러스는 본 발명에서 제공하는 나노천공자가 항-바이러스 활성을 나타내는 한 특별히 이에 제한되지 않으나, 일 예로서, 버니아비리데 (Bunyavir idae) 코로나비리데 (Coronavir idae), 필로비리데 (Fi loviridae) 플라비비리데 (Flaviviridae), 헤파드나비리데 (Hepadnavir idae) 헤르페스비리데 (Herpesviridae), 오스소믹소비리데 (Orthomyxoviridae) 폭스비리데 (Poxvi ridae), 랍도비리데 (Rhabdovi ridae) 레트로비리데 (Retroviridae), 토가비리데 (Togavi ridae) , 또는 헤르페스비리데 (Herpesviridae)등의 과 (family)에 속하는 바이러스가 될 수 있고, 다른 예로서, 버니아비리데 (Bunyavir idae) 과에 속하는 시놈브레한타바이러스 (Sin Nombre Hantavirus) 등; 코로나비리데 (Coronavir idae) 과에 속하는 다양한 급성 호흡기 증후군에 관여하는 코로나바이러스 (Coronavirus) 등; 필로비리데 (Filoviridae) 과에 속하는 에볼라 바이러스 (Ebola virus), 마르버그 바이러스 (Marburg virus) 등; 플라비비리데 (Flaviviridae) 과에 속하는 웨스트 닐 바이러스 (West Nile virus), 엘로우 피버 바이러스 (Yel low Fever virus), 뎅기 피버 바이러스 (Dengue Fever virus), C형 간염 바이러스 (Hepatitis C virus) 등; 헤파드나비리데 (Hepadnavir idae)과에 속하는 B형 간염 바이러스 (Hepatitis B)등; 헤르페스비리데 (Herpesviridae) 과에 속하는 헤르페스 심플렉스 1 바이러스 (Herpes Simplex 1 virus), 헤르페스 심플렉스 2바이러스 (Herpes Simplex 2 virus) 등; 오르소믹소비리데 (Orthomyxoviridae) 과에 속하는 인플루엔자 바이러스 (Influenza virus) 등; 폭스비리데 (Poxvir idae) 과에 속하는 스몰폭스 바이러스 (Smallpox virus), 백시니아 바이러스 (Vaccinia virus), 몰루스컴 콘타지오섬 바이러스 (Molluscumcontagiosumvirus),멍키폭스 바이러스 (Monkeypox virus) 등; 랍도비리데 (Rhabdoviridae) 과에 속하는 라비스 바이러스 (Rabies virus) 등; 레트로비리데 (Retrovir idae) 과에 속하는 HIV(Human Immunodeficiency virus) 등; 토가비리데 (Togaviridae) 과에 속하는 치컹구니아 바이러스 (Chikungunya virus) 등; 헤르페스비리데 (Herpesvir iae) 과에 속하는 수도라비에스 바이러스 (Pseudorabies virus), HHV바이러스 등이 될 수 있으며,또 다른 예로서, 오르소믹소비리데 과에 속하는 인플루엔자 바이러스가 될 수 있다. 예를 들면 상기 바이러스는 나노천공자에 포함되는 수용체 (예를 들어, 강글리오사이드)에 친화력을 갖는 것을 특징으로 하는 바이러스일 수 있다.
본 발명꾀 용어 "인플루엔자 바이러스 (Influenza virus)"란, 오르소믹소비리데 과에 속하는 RNA 바이러스로서 혈청형은 A형, B형, C형 등 3가지로 구분된다. A형 인플루엔자 바이러스의 혈청형은 바이러스 표면의 두 가지 단백질인 헤마글루티닌 (Hemagglutinin; HA)과 뉴라미니다제 (Neuraminidase; NA)의 종류에 따라 구분되는데, 지금까지 144종류 (HA 단백질 16종과 NA 단백질 9종)가 알려져 있다. 본 발명에 따른 나노천공자는 나노디스크에 더하여, 상기 지질이중층의 외피를 가지는 바이러스의 표면 항원에 대한 수용체를 추가로 포함할 수도 있다. 본 발명의 나노천공자는 1종 또는 2종 이상의 수용체를 포함할수 있다.
본 발명의 용어 "표면항원 (surf ace antigen)"이란, 세포막항원이라고도 하며, 세포의 세포막에 존재하는 항원성을 나타내는 막결합 단백질을 의미한다. 본 발명에 있어서, 상기 표면항원은 지질이중층의 외피를 가지는 바이러스의 지질이중층에 결합된 막결합 단백질을 의미하는 것으로 해석될 수 있는데, 상기 표면항원은 특별히 이에 제한되지 않으나, 일 예로서, 인플루엔자 바이러스의 표면항원인 헤마글루티닌 (Hemagglut inin; HA) , 뉴라미니다제 (Neuraminidase ;NA) 등이 될 수 있다. 본 발명의 용어 "헤마글루티닌 (hemagglut inin;HA) "이란, 인플루엔자 바이러스의 표면항원의 일종인 막투과 단백질로서, 트립신에 의해 절단될 수 있는 HA1 서브유닛과 HA2 서브유닛으로 구성된다. 상기 HA1 서브유닛은 시알산과 결합하고, 상기 HA2 서브유닛은 낮은 pH조건에서 세포막융합을 유발시킨다고 알려져 있다.
본 발명의 용어 "표면항원에 대한 수용체 "란, 상기 표면항원과 결합할 수 있는 수용체로서, 상기 표면항원에 대한 항체가 될 수도 있고, 상기 표면항원이 결합할 수 있는 다른 세포막 결합 단백질이 될 수도 있다.
본 발명에 있어서, 상기 표면항원에 대한 수용체는 지질이중층의 외피를 가지는 바이러스가 감염될 수 있는 숙주세포의 표면에 존재하고,상기 바이러스의 표면항원과 결합할 수 있는 수용체를 의미하는 것으로 해석될 수 있다. 상기 수용체와 바이러스의 표면항원은 수소결합, 이온결합 등 다양한 상호작용에 의해 결합될 수 있으며, 예를 들어 바이러스의 헤마글루티닌의 HA1 서브유닛의 가장 바깔 면의 수용체결합부위 (receptor binding s i te)와 시알산이 결합할 수 있다. 따라서 본 발명의 수용체는 대상 바이러스, 예를 들어 헤마글루티닌 및 /또는 뉴라미니다제를 포함하는 바이러스에 특이적 또는 친화적으로 결합할 수 있도록 하는 수용체일 수 있다.
상기 표면항원에 대한수용체 종류는 특별히 이에 제한되지 않으나,시알산 및 /또는 시알산 유사 기능을 갖는 작용기 (예를 들어, 시알산 모사 펩타이드)를 포함하는 것일 수 있다. 상기 수용체는 시알릴올리고사카라이드 (sialylol igosacchar ide) , * 예를 들어, 강글리오사이드 (gangl ioside) , 글리코프로테인 (glycoprotein), 및 폴리시알산 (polysi al ic acid)으로 이루어진 군에서 선택된 1종 이상일 수 있으나 시알산을 포함하는 수용체라면 이에 한정되지 않는다.
상기 작용기는 수용체 자체가 지질이중층에 함입 또는 결합되거나 링커 ( l inker )를 통하여 지질이중층에 함입 또는 결합될 수 있다.
상기 수용체는 수용체 자체 또는 수용체가 결합된 링커가 나노디스크 지질이중층의 지질과 수소결합, 이온결합, 공유결합, 이황화결합 등 다양한 상호작용에 의해 결합된 것일 수 있다.
상기 수용체의 일 예로서, 인플루엔자 바이러스의 표면항원인 헤마글루티닌과 결합할 수 있는 호흡기 세포의 세포막에 존재하는 시알산으로서, 예를 들어 상기 시알산을 포함하고 세포막에 결합된 강글리오사이드를 포함할 수 있다.
본 발명의 용어 "강글리오사이드 (ganglioside)"란, 글리코스핑고리피드 (glycosphingolipid)의 당 사슬 (sugar chain)에 한 개 이상의 시알산이 특정 결합 (α-2,3결합 또는 α-2,6결합)을 통해 연결된 형태의 화합물을 의미하며, α-2,3 결합된 시알산을 포함하는 형태와 α-2,6 결합된 시알산을 포함하는 형태를 모두 포함할 수 있다. 예를 들어 본 발명의 강글리오사이드는 하나의 Ν-아세틸뉴라민산 (N-Acetylneuraminic acid)또는 시알산을 포함하는 GM1, GM2 및 /또는 GM3, 두 개의 N-아세틸뉴라민산을 포함하는 GDla, GDlb, GD2 및 /또는 GD3, 세 개의 N-아세틸뉴라민산을 갖는 GTlb 및 /또는 GT3, 네 개의 N-아세틸뉴라민산을 갖는 GQ1일 수 있다.
본 발명에 있어서, 상기 수용체, 예를 들어 강글리오사이드는 지질이중층 나노천공자의 지질이중층 나노디스크 부위에 삽입되어,지질이중층의 외피를 갖는 바이러스의 HA와 결합하는 역할을 수행할 수 있다.
본 발명의 일 예에서, 상기 나노천공자에 포함된 지질 이중층을 구성하는 지질 및 표면항원 수용체로 이루어진 군에서 선택된 1 이상과 상기 막구조단백질의 몰비 (molar ratio)([ (지질이중층 나노디스크 지질의 몰 수) + (표면항원에 대한수용체의 몰 수)] : 막구조단백질의 몰 수)가 10:1내지 800:1, 바람직하게는 50:1 내지 500:1, 더욱 바람직하게는 50:1 내지 150:1, 예를 들어 65:1또는 125:1가 되도록 포함될 수 있다. 예를 들어, 상기 몰비는 나노디스크의 지질과 막구조단백질의 몰비 또는 나노디스크의 지질 및 표면항원 수용체 몰비의 합과 막구조단백질의 몰비일 수 있다.
본 발명의 나노천공자에 포함되는 표면항원 수용체, 예를 들면 강글리오사이드는, 나노 디스크의 합계 몰수 (예를 들어, 지질의 몰수 및 수용체 몰 수의 합) 100%를 기준으로, 0.01내지 99몰%, 바람직하게는 1내지 90몰%, 더욱 바람직하게는 15몰% 이상 또는 10 내지 50몰%로 포함될 수 있다. 본 발명에 따른 지질이중층에 수용체로서 강글리오사이드가 삽입된 나노천공자의 형태를 도 1에 예시적으로 도시하였다. 또한, 상기 강글리오사이드를 포함하는 나노천공자가 지질이중층의 외피를 갖는 바이러스의 감염증을 예방 또는 치료하는 효과를 나타내는 작용 기작을 도 3을 참조하여 구체적으로 설명하면 다음과 같다:
상술한 바와 같이, 일반적으로 바이러스의 HA를 구성하는 HA1 서브유닛은 숙주 세포막의 시알산과 결합하여 세포 내 함입 과정을 통해 숙주 세포 내로 침입한다. 한편 , 본원발명의 나노천공자, 예를 들어 수용체로서 강글리오사이드를 포함하는 나노천공자를 바이러스가 감염된 세포에 처리하면 상기 바이러스의 HA가 숙주의 세포막뿐 아니라 나노천공자의 지질이중층 나노디스크 및 /또는 수용체에 결합할 수 있으며, 상기 나노천공자의 처리 양을 증가시키면, 상기 나노천공자에 결합되는 바이러스의 비율이 증가되어,상기 바이러스가숙주세포에 감염되는 것을 방지할 수 있다. 따라서, 상기 나노천공자는 숙주세포의 수용체를 모사한 '미끼 (decoy) '로서 사용하여 바이러스의 세포 내 함입을 억제하는 침입 억제자 (entry inhibitor)일 수 있다 (1차 억제) .
본원발명의 나노천공자, 예를 들어 표면항원 수용체로서 강글리오사이드를 포함하는 나노천공자를 사용하여 숙주세포에 감염된 바이러스, 예를 들어 인플루엔자 바이러스의 세포 내 감염경로를 교란시켜서, 바이러스의 증식을 억제할 수 있다.
상기 바이러스의 세포 내 함입과정 중 후기 엔도좀 단계에서 유발되는 막 융합단계에서, 본 발명의 나노천공자와 결합된 바이러스는 바이러스의 외피와 숙주세포의 세포막 사이에서 막 융합이 나타나지 않고, 바이러스의 외피와 나노천공자의 지질이중층 사이에서 나타날 수 있다. 이러한 세포막 융합은 확를적으로 나타나게 되는데, 하나의 바이러스에 하나의 숙주세포막과 다수의 나노천공자가 결합된 경우, 바이러스의 외피와 숙주세포의 세포막 사이에서 막융합이 일어나기 보다는 바이러스의 외피와 나노천공자의 지질이중층 사이에서 막융합이 일어날 수 있다. 이처럼 엔도좀 내에서 바이러스의 외피와 나노천공자의 지질이중층 사이에서 막융합이 유발되면, 상기 막융합 부위를 통하여 바이러스의 내부에 존재하는 RNA가 엔도좀 내부로 방출되고, 엔도좀 내부의 낮은 pH로 인하여 방출된 RNA가 불활성화되어 최종적으로는 분해되는 결과를 초래한다. 따라서, 본 발명의 나노천공자는 바이러스 엔도좀 단계의 막 융합 단계에서 바이러스 외피를 천공하는 천공자 (perforator )일 수 있다 (2차 억제) .
즉, 상기 나노천공자는 바이러스 외피에 결합하여 바이러스가 세포 내 함입되어 엔도좀을 형성하는 것을 저해하고 ( 1차 억제), 세포 내 바이러스가 함입되더라도, 함입된 바이러스의 외피에 구멍을 뚫는 '천공자 (perforator ) '로서 작용하여 (2차 억제), 바이러스 감염을 2차적으로 억제하는 효과를 나타낼 수 있다.
따라서, 표면항원 수용체, 예를 들면 강글리오사이드를 포함하는 나노천공자를 상기 지질이중층의 외피를 갖는 바이러스가 감염된 세포에 처리하면, 상기 바이러스의 감염경로를 교란시켜서, 바이러스의 감염을 억제하게 되므로, 결과적으로는 바이러스의 증식을 억제하게 되고, 이로 인하여 바이러스의 감염에 의해 유발된 질환이 치료되는 효과를 나타내게 된다.
상기 설명한 바를 요약하면, 본 발명에서 제공하는 나노천공자는 지질이중층의 외피를 갖는 바이러스가 숙주세포에 감염되는 것을 억제하거나, 감염된 후에 증식되는 것을 원천적으로 억제하여, 바이러스의 감염에 의해 유발되는 질환을 예방 또는 치료하는 효과를 나타낼 수 있다. 이에 따라, 본 발명에서 제공하는 강글리오사이드를 포함하는 지질이중층 나노천공자는 숙주세포의 시알산을 매개로 숙주세포에 결합할 수 있는 바이러스라면, 변이여부에 상관없이 동일한 효과를 나타낼 수 있고, 상기 바이러스의 초기 감염을 억제할 수 있으며, 숙주에 바이러스가 감염된 후에도, 상기 바이러스의 증식을 원천적으로 억제할 수 있다는 장점을 나타냄을 알 수 있었다. 따라서 본 발명의 나노천공자는 바이러스 변이에 독립적인 것을 특징으로 할 수 있다.특히, 상기 나노천공자는 생체 내에서 특이적인 반웅을 유발하는 물질을 포함하지 않기 때문에 안전성을 확보할 수 있다는 점에서도 장점이 있다.
본 발명의 일 실시예에 의하면,강글리오사이드를 지질이중층에 포함하거나 또는 포함하지 않는 나노천공자를 각각 제작하고,상기 나노천공자의 항-바이러스 활성을 분석하였다. 그 결과, 강글리오사이드를 지질이중층에 포함하거나 또는 포함하지 않는 나노천공자 모두 인플루엔자 바이러스의 외피에 융합하여, 인플루엔자 바이러스의 RNA를 외부로 방출시켰으며 (도 9a), 강글리오사이드를 지질이중층에 포함하거나 또는 포함하지 않는 나노천공자 모두 인플루엔자 바이러스에 대한 항-바이러스 활성을 나타내어, 인플루엔자 바이러스에 의하여 형성되는 플라크의 수준을 감소시킴을 확인하였다 (도 5a , 5b및 5c , 5d) . 특히, 도 4 , 도 5a에서 보듯이, 강글리오사이드를 지질이중층에 포함하거나 또는 포함하지 않는 나노천공자 모두 인플루엔자 바이러스에 대한 항-바이러스 활성을 나타내었으나, 강글리오사이드를 지질이중층에 포함하지 않는 나노천공자.보다는 강글리오사이드를 지질이중층에 포함하는 나노천공자가 더욱 향상된 항-바이러스 활성을 나타냄을 확인하였다.
따라서,본 발명에서 제공하는 나노천공자는 항-바이러스 활성을 나타내고, 지질이중층에 강글리오사이드와 같은 바이러스의 표면 항원에 대한 수용체를 포함하는 경우에는 항-바이러스 활성이 더욱 향상됨을 알 수 있었다.
본 발명은 사용 양태에 따라 히스티딘 (Hi s) , 금 (Au) , 형광 리피드, 및 바이오틴 /아비딘 (biot in/avidin)으로 이루어진 군에서 선택된 1종 이상의 표지를 결합하여 사용할 수 있다. 본 발명의 또 다른 양태로서, 지질이중층 나노디스크 ( l ipid bi layer nanodi sc)와, 상기 나노디스크의 외주면을 둘러싼 막구조화 단백질을 포함하는 바이러스 활성 저해제 또는 바이러스 복제 저해제를 제공한다.
상기 나노천공자에 관한사항은',상기 바이러스 활성 저해제 또는 바이러스 복제 저해제에 동일하게 적용될 수 있다. 본 발명의 또 다른 양태로서 지질이중층 나노디스크와, 상기 지질이중층의 외주면을 둘러싼 막구조화 단백질을 포함하는 나노천공자를 포함하는, 지질이중층의 외피를 가지는 바이러스의 감염에 의한 바이러스 감염증 예방 또는 치료용 약학조성물 또는 상기 나노천공자의 바이러스 감염증 예방 또는 치료용도를 제공한다.
상기 나노천공자에 관한 사항은, 바이러스 감염과 관련되거나 바이라스 감염으로부터 기인한 1 이상의 증상의 치료, 예방, 개선 또는 발병의 지연용 약학 조성물 또는 바이러스 감염과 관련되거나 바이러스 감염으로부터 기인한 1이상의 증상의 치료, 예방, 개선 또는 발병의 지연 용도에 동일하게 적용될 수 있다. 상술한 바와 같이, 본 발명에서 제공하는 나노천공자는 지질이중층의 외피를 가지는 바이러스의 감염경로를 교란시키거나 또는 감염된 바이러스의 증식을 억제할 수 있으므로, 상기 나노천공자는 지질이중층의 외피를 가지는 바이러스의 감염에 의하여 유발되는 다양한 감염증을 예방 또는 치료하는데 사용될 수 있다. 본 발명에 따른 바이러스 감염증 예방 또는 치료용 조성물은, 바이러스 변이에 독립적으로 적용될 수 있으며, 상기 나노천공자는 생체 내에서 특이적인 반웅을 유발하는 물질을 포함하지 않기 때문에 안전성을 확보할 수 있다는 점에서도 장점이 있다.
본 발명의 용어 "바이러스 감염증"이란, 상기 지질이중층의 외피를 가지는 바이러스의 감염에 의하여 발병되는 질환을 의미하는데, 일 예로서,'버니아비리데 과의 바이러스의 감염에 의하여 발병되는 신증후근성출혈열 (유행성출혈열) ; 코로나비리데 과의 바이러스의 감염에 의하여 발병되는 코감기 등 호흡기 질환; 플라비비리데 과의 바이러스의 감염에 의하여 발병되는 C형 간염;헤파드나비리데 과의 바이러스의 감염에 의하여 발병되는 B형 간염; 헤르페스비리데 과의 바이러스의 감염에 의하여 발병되는 대상포진;오스소믹소비리데 과의 바이러스의 감염에 의하여 발병되는 독감 또는 인플루엔자 바이러스 감염증;폭스비리데 과의 바이러스의 감염에 의하여 발병되는 천연두; 랍도비리데 과의 바이러스의 감염에 의하여 발병되는 광견병 또는 수포성 구내염; 레트로비리데 과의 바이러스의 감염에 의하여 발병되는 후천성 면역결핍증 등이 될 수 있고, 다른 예로서, 오스소믹소비리데 과에 속하는 인플루엔자 바이러스의 감염에 의하여 발병되는 독감또는 인플루엔자 바이러스 감염증이 될 수 있다.
본 발명의 조성물에 포함되는 나노천공자는 1종 또는 2종 이상의 표면항원 수용체를 포함할 수 있다. 예를 들어, 2종 이상의 수용체가 하나의 나노천공자에 포함될 수 있다. 또한 상기 조성물은 1종 이상의 상이한 수용체를 포함하는 2종 이상의 나노천공자를 포함할 수 있다.
본 발명의 용어 "치료 (treat )' '란 바이러스 감염에 의한 감염증의 증상을 개선시키거나호의적으로 변화시키는 활성을 의미한다. 본 발명의 용어 "예방 (prevent ion)' '이란 질환 또는 장애, 또는 질환 /장애에 의해 발생하는 1 이상의 증상의 발병, 재발 또는 전염의 예방을 의미하며 , 잠재적 후보자에 대한 예방적 치료 (prophyl act i c treatment )를 포함할 수 있다.
상기 본 발명의 조성물은, 약학적 조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제 또는 희석제를 추가로 포함하는 염증성 질환의 예방 또는 치료용 약학적 조성물의 형태로 제조될 수 있고, 상기 담체는 비자연적인 담체가 될 수 있다. 구체적으로, 상기 약학 조성물은, 각각 통상의 방법에 따라 산제, 과립게, 정제, 캡슬제, 현탁액, 에멀견, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다. 본 발명에서, 약학적 조성물에 포함될 수 있는 다양한 담체, 부형제 및 희석제로 이루어지는 군에서 1종 이상을 포함할 수 있다.
본 발명의 약학 조성물에 포함된 상기 나노천공자의 함량은 특별히 이에 제한되지 않으나, 일 례로서 최종 조성물 총 중량을 기준으로 0.0001 내지 10 중량0 /0, 다른 예로서 0.01 내지 3 중량 %의 함량으로 포함될 수 있다.
상기 본 발명의 약학 조성물은 약제학적으로 유효한 양으로 투여될 수 있는데, 본 발명의 용어 "약제학적으로 유효한 양"이란 의학적 치료 또는 예방에 적용 가능한 합리적인 수혜 /위험 비율로 질환을 치료 또는 예방하기에 층분한 양을 의미하며, 유효 용량 수준은 질환의 중증도, 약물의 활성, 환자의 연령, 체중, 건강, 성별, 환자의 약물에 대한 민감도, 사용된 본 발명 조성물의 투여 시간, 투여 경로 및 배출 비율 치료기간, 사용된 본 발명의 조성물과 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 _수 있다. 본 발명의 약학 조성물은 단독으로 투여하거나 공지된 바이러스 감염증 치료용 쩨제와 병용하여 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하다.
본 발명의 약학 조성물의 투여량은 사용목적, 질환의 중독도, 환자의 연령, 체중, 성별, 기왕력, 또는 유효성분으로서 사용되는 물질의 종류 등을 고려하여 당업자가 결정할 수 있다. 예를 들어, 본 발명의 약학 조성물은 성인 1인당 약 O . l ng내지 약 lOO mg/kg , 바람직하게는 1 ng내지 약 10 mg/kg로 투여할 수 있고, 본 발명의 조성물의 투여빈도는 특별히 이에 제한되지 않으나, 1일 1회 투여하거나 또는 용량을 분할하여 수회 투여할 수 있다. 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.
본 발명의 바이러스 감염증 치료용 약학 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여도 투여될 수 있다. 본 발명의 약학 조성물은 특별히 이에 제한되지 않으나, 목적하는 바에 따라 복강내 투여 정맥내 투여, 근육내 투여, 피하 투여, 피내 투여, 경구 투여, 비내 투여, 폐내 투여, 직장내 투여 등의 경로를 통해 투여 될 수 있다. 다만, 경구 투여 시에는 위산에 의하여 상기 나노천공자가 변성 또는 파괴될 수 있기 때문에 경구용 조성물은 활성 약제를 코팅하거나 위에서의 분해로부터 보호되도록 제형화 되어야 한다. 또한, 상기 조성물은 활성 물질이 표적 세포로 이동할 수 있는 임의와 장치에 의해 투여될 수 있다.
본 발명의 또 다른 양태로서, 지질이중층 나노디스크 (nanodi sc)와, 상기 지질이중층의 외주면을 둘러싼 막구조화 단백질을 포함하는 나노천공자 (nano— perforator)를 포함하는, 바이러스 증식 억제용 조성물을 제공한다.
상기 나노천공자에 관한 사항은, 바이러스 증식 억제용 조성물에 동일하게 적용될 수 있다.
상기 바이러스 증식 억제는 나노천공자가 바이러스 외피와 결합하여 바이러스 외피를 천공하는 것일 수 있다.
다른 양태로서, 본 발명은 상기 약학조성물을 약제학적으로 유효한 양으로 지질이중층의 외피를 가지는 바이러스의 감염에 의한 바이러스 감염증이 발병될 가능성이 있거나 또는 발병된 개체에 투여하는 단계를 포함하는 바이러스 감염증의 치료방법을 제공한다.
상기 바이러스 감염증은 상술한 바와 동일하다.
본 발명의 용어 "개체 "란 지질이중층의 외피를 가지는 바이러스의 감염에 의하여 바이러스 감염증이 발병될 가능성이 있거나 또는 발병된 사람, 쥐, 가축 등을 포함하는 포유동물, 양식어류 등을 제한 없이 포함할 수 있다.
또 다른 양태로서, 본 발명은 상기 나노천공자를 이용하여 목적하는 바이러스의 표면 항원에 대한수용체를 스크리닝하는 방법을 제공한다 .
상술한 바와 같이, 본 발명에서 제공하는 나노천공자는 그 자체로도 지질이중층의 외피를 가지는 바이러스에 대한 항-바이러스 활성을 나타내지만, 상기 나노천공자의 지질이중층에 상기 바이러스의 표면 항원에 대한 수용체를 포함할 경우,상기 수용체와 표면 항원의 반응을 통해 더욱 효과적인 항-바이러스 활성을 나타낸다. 따라서, 목적하는 바이러스의 표면 항원에 대한 수용체 후보물질이 포함된 나노천공자를 상기 목적하는 바이러스와 반웅시킨 후, 상기 바이러스에 대하여 항-바이러스 활성을 나타내는지의 여부를 확인함으로써, 상기 후보물질이 목적하는 바이러스의 표면 항원에 대한 수용체로서 사용할 수 있는지의 여부를 결정할 수 있다.
구체적으로, 본 발명에서 제공하는 목적하는 바이러스의 표면 항원에 대한 수용체를 스크리닝하는 방법은 (a)목적하는 바이러스의 표면 항원에 대한수용체 후보물질이 지질이중층에 삽입된 나노천공자와 목적하는 바이러스를 반웅시키는 단계 ; 및 (b) 상기 나노천공자가 목적하는 바이러스에 대한 항-바이러스 활성을 나타내는지의 여부를 확인하는 단계를 포함한다.
이때, 상기 (b) 단계에서 상기 나노천공자가 바이러스에 대한 항―바이러스 활성을 나타내는지의 여부를 확인하는 방법은 특별히 이에 제한되지 않으나, 혈구웅집반웅 억제분석, RNA 방출분석, 플라크 감소분석 등의 공지된 방법을 단독으로 또는 조합하여 사용하는 방법이 될 수 있다.
【발명의 효과】
본 발명에서 제공하는 나노천공자를 사용하면,지질이중층의 외피를 가지는 바이러스의 감염에 의하여 유발된 질환을 안전하게 예방 또는 차료할 수 있으므로, 안전하면서도 효과적인 바이러스 감염증의 치료에 널리 활용될 수 있을 것이다.
【도면의 간단한 설명】
도 1은 본 발명에서 제공하는 강글리오사이드를 포함하는 지질이중층 나노천공자의 형태 및 구조를 나타내는 개략도이다. 도 2a 및 도 2b는 본 발명에서 제공하는 강글리오사이드를 포함하는 지질이중층 나노천공자의 형태 및 구조를 크기배제 크로마토그래피 (s i ze exclusion chromatography) , 면역블러팅법 ( immunoblott ing) , 동적빛산란 (dynami c l ight scatter ing) 및 전자현미경을 통해 분석한 결과를 나타내는 그림 및 사진이다.
도 3은 본 발명에서 제공하는 강글리오사이드를 포함하는 나노천공자가 인플루엔자 바이러스의 증식을 억제하는 효과의 기작을 나타낸 개략도이다.
도 4는 본 발명에서 제공하는 강글리오사이드를 포함하는 나노천공자를 사용하여 숙주세포에 감염된 인플루엔자 바이러스의 감염경로를 교란시켜서, 인플루엔자 바이러스의 증식을 억제하는 효과를 뉴트럴레드 염색약 흡수 억제 분석 (Neutral red uptake inhibi t ion assay)결과로 나타내는사진이다.
도 5a는 인플루엔자 바이러스의 플라크 형성에 미치는 강글리오사이드를 포함하는 나노천공자의 효과를 리포좀과 비교하여 분석한 결과를 나타내는 사진 및 그래프이다.
도 5b는 인플루엔자 바이러스의 플라크 형성에 미치는 강글리오사이드를 포함하는 나노천공자의 효과를 다양한 농도에서 분석한 결과를 나타내는 사진 및 그래프이다.
도 5c는 인플루엔자 바이러스의 플라크 형성에 나노천공자 내 강글리오사이드의 다양한 농도에 의한 효과를 분석한 결과를 나타내는 사진 및 그래프이다.
도 5d는 인플루엔자 바이러스의 플라크 형성에 미치는 나노천공자 내 지질 조성의 효과를 분석한 결과를 나타내는 그래프이다.
도 6은 본 발명에서 제공하는 강글리오사이드를 포함하는 나노천공자가 인플루엔자 바이러스에 작용해 세포병변효과의 감소에 미치는 효과를 나타내는 사진이다.
도 7은 본 발명에서 제공하는 나노천공자가 인플루엔자 바이러스에 강글리오사이드 수용체에 의존적으로 결합하는지를 면역블러팅법으로 확인한 모식도 및 사진이다.
도 8은 본 발명에서 제공하는 나노천공자가 인플루엔자 바이러스에 강글리오사이드 수용체에 의존적으로 결합하는지를 확인한 전자현미경 사진이다. 도 9a는 인플루엔자 바이러스 용액과 다양한 농도의 나노천공자 (NP 또는 NPTG) 용액을 반웅시켜서 얻어진 RNA 방출분석 결과를 나타내는 전기영동사진 및 그래프이다.
도 9b는 인플루엔자 바이러스 용액과 다양한 농도의 리포좀 (LP 또는 LPTG) 용액을 반웅시켜서 얻어진 RNA방출분석 결과를 나타내는 전기영동사진이다. 도 9c는 인플루엔자 바이러스 용액과 다양한 농도의 아포리포단백질로 이뤄진 나노천공자 (NP또는 NPTG) 용액을 반웅시켜서 얻어진 RNA방출분석 결과를 나타내는 전기영동사진 및 그래프이다.
도 10은 본 ,발명에서 제공하는 강글리오사이드를 포함하는 나노천공자가 인플루엔자 바이러스 외피에 융합해 내부 바이러스 RNA-뉴클레오단백질 복합체가 빠져나올 수 있음을 확인한 면역전자현미경 사진이다.
도 11은 본 발명에서 제공하는 강글리오사이드를 포함하는 나노천공자가 인플루엔자 바이러스 외피에 융합해 적혈구의 용혈 현상을 억제하는 효과를 나타내는 그래프이다.
도 12는 본 발명에서 제공하는 강글리오사이드를 포함하는 나노천공자가 인플루엔자 바이러스의 세포 침입 시 수용체 의존적으로 결합해 세포 내로 함께 들어가 세포 내에서 기능할 수 있음을 나타내는 현미경 사진이다.
도 13은 본 발명에서 제공하는 나노천공자가 가성광견병 바이러스에 작용해 세포병변효과의 감소에 미치는 효과를 나타내는 사진이다.
【발명의 실시를 위한 형태】
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. 실시예 1: MSP1E3D1 단백질 함유 나노천공자 (NP) 제조
실시예 1-1. 나노천공자 제조
지질로서, POPC(l-palmi toy l-2-o leoyl-sn-glycero-3-phosphochol ine)를 클로로포름에 용해시켜 25 mg/ml 농도의 지질 용액을 준비하였다. 이후 0.5 ml의 소듐 콜레이트가 첨가된 PBS로 녹였을 때 지질의 농도가 10 mM이 되도록 25 mg/ml P0PC 용액의 152.02 μΐ를 유리 류브에 옮겼다. 이후 질소가스를 가하고, 진공 상태에서 4시간동안 방치하여 용매를 제거하여, 리피드 필름 ( l ipid f i lm)을 수득하였다. 상기 수득한 리피드 필름에 소듐 콜레이트 (sodium cholate)가 첨가된 PBS의 0.5 ml을 이용하여, 상기 리피드 필름을 수화시키고, 초음파를 550C에서
15분간 처리하여, 리피드 필름이 분쇄된 리피드 필름 함유 현탁액을 수득하였다. 상기 수득한 현탁액에 막구조화 단백질로서 N말단에 hi s-tag가 부착된 MSP1E3D1 (서열번호 12, 분자량 32.6 kDa)을 250 μΜ농도로 160 μΐ를 가하고, 전체 흔합액과 동일한 양 (660 μΐ )의 바이오비드 (bio-beads)를 처리 (4°C , 12시간)함으로써, 자가조립과정을 통해 MSP1E3D1 단백질을 '포함하는 나노천공자 (NP)를 제조하였다. 실시예 1-2. 다양한지질 조성을갖는나노천공자제조
지질로서, P0PC, D0PS 및 콜레스테롤이 55 : 15 : 30의 몰비로 포함된 지질용액을 사용하는 것을 제외하고는, 실시예 1-1의 제조방법과 동일한 방법을 수행하여, 다양한 지질 조성을 갖는 지질이중층 나노천공자를 제조하였다. 실시예 2: ApoA-1단백질 함유나노천공자 (NP) 제조
지질로서, P0PC( l-palmi toyl-2-oleoyl-sn-glycero-3-phosphochol ine)-!- 클로로포름에 용해시켜 25 mg/ml 농도의 지질 용액을 준비하였다. 이후 0.5 ml의 소듐 콜레이트가 첨가된 PBS로 녹였을 때 지질의 농도가 10 mM이 되도록 25 mg/ml P0PC 용액의 152.02 μΐ를 유리 튜브에 옮겼다. 이후 질소가스를 가하고, 진공 상태에서 4시간동안 방치하여 용매를 제거하여, 리피드 필름 ( l ipid f i lm)을 수득하였다. 상기 수득한 리피드 필름에 소듐 콜레이트 (sodium cholate)가 첨가된 PBS의 0.5 ml을 이용하여, 상기 리피드 필름을 수화시키고, 초음파를 550C에서
15분간 처리하여, 리피드 필름이 분쇄된 리피드 필름 함유 현탁액을 수득하였다. 상기 수득한 현탁액에 막구조화 단백질로서 N말단에 hi s-tag가 부착된 ApoA— 1(서열번호 17) (ApoA-l단백질 분자량 29.8 kDa) 250 μΜ 농도로 307.6 μ ΐ를 가하고, 전체 흔합액과 동일한 양 (807.6 μΐ)의 바이오비드 (bio-beads)를 처리 (40C 12시간)함으로써, 자가조립과정을 통해 ApoA-1 단백질을 포함하는 나노천공자를 제조하였다.
상기 막구조단백질로 사용된 서열번호 17의 ApoA-l 단백질은 서열번호 1의 ApoA-1 단백질을 엔지니어링한 것으로서, 서열번호 17의 아미노산 서열에서 N말단으로부터 2 내지 7번째의 아미노산은 His-tag, 9 내지 14번째 아미노산은 Thrombin cleavage site, 16내지 19번째 아미노산은 ASP—PRO acid lab i le bond이다. 실시예 3. 강글리오사이드를포함하는나노천공자 (NPTG) 제조
실시예 3-1. 강글리오사이드를포함하는나노천공자제조
클로로포름에 P0PC와, GM3, GM2, GM1, GDla, GDlb 및 GTlb를 포함하는 강글리오사이드 (Total ganglioside, Avanti polar lipids, Inc.)를 85:15의 몰비를 갖도록 용해시키는 것을 제외하고는, 실시예 1-1와 동일한 방법을 수행하여, 강글리오사이드를 포함하는 지질이중층 나노천공자 (NPTG)를 제조하였다. 실시예 3-2. 다양한범위의 강글리오사이드를포함하는나노천공자제조 클로로포름에 P0PC와 GM3, GM2, GM1, GDla, GDlb 및 GTlb를 포함하는 강글리오사이드 (Total ganglioside, Avanti polar lipids, Inc.)를 100:0, 95:5, 85:15, 80:20, 70:30, 60: 40 및 50:50의 몰비를 갖도록 각각 용해시키는 것을 제외하고는, 실시예 1-1와 동일한 방법을 수행하여, 강글리오사이드를 포함하는 지질이중층 나노천공자 (NPTG)를 제조하였다. 실시예 3-3. GDla강글리오사이드를포함하는나노천공자제조
클로로포름에 P0PC와 GDla만을 포함하는 강글리오사이드 (GDla gangl ioside, Enzo Life Sciences, Inc.)를 85:15의 몰비를 갖도록 용해시키는 것을 제외하고는, 실시예 1-1와 동일한 방법을 수행하여, 강글리오사이드를 포함하는 지질이중층 나노천공자 (NPGDla)를 제조하였다. 실시예 3-4. 다양한 지질 조성 및 강글리오사이드를 포함하는 나노천공자 제조
클로로포름에 P0PCᅳ D0PS, 콜레스테를와, GM3, GM2, GM1, GDla, GDlb 및 GTlb를 포함하는 강글리오사이드 (Total ganglioside, Avant i polar lipids, Inc.)를 40:15:30:15의 몰비를 갖도록 용해시키는 것을 제외하고는, 실시예 1-1과 동일한 방법을 수행하여, 다양한 지질 조성 및 강글리오사이드를 포함하는 지질이중층 나노천공자 (NPTG)를 제조하였다. 실시예 3-5. ApoA-1 단백질 및 강글리오사이드 포함하는 나노천공자 제조 클로로포름에 P0PC와, GM3, GM2, GM1, GDla, GDlb 및 GTlb를 포함하는 강글리오사이드 (Total ganglioside, Avant i polar lipids, Inc.)를 85:15의 몰비를 갖도록 용해시키는 것을 제외하고는, 실시예 1-1와 동일한 방법을 수행하여, 강글리오사이드를 포함하는 지질이중층 나노천공자 (NPTG)를 제조하였다. 실시예 4. 나노천공자구조 확인
실시예 1-1, 2, 3-1 및 3-5에서 제조된 나노천공자의 크기와 형태를 크기배제 크로마토그래피 (size exclusion chromatography) , 면역블러팅법 (i醒 unoblo.tting), 동적빛산란 (dynamic light scattering) 및 전자현미경을 통해 확인하였으며, 그 결과를 도 2a및 도 2b에 나타냈다.
상기 제조된 나노천공자의 크기와 형태를 확인한 결과, 상기 나노천공자는 약 10 nm의 직경을 갖고, 내부에는 지질이중층이 포함되며, 상기 지질이중층이 원반 (디스크)의 형태를 갖고 원반의 원주를 MSP1E3D1단백질 (도 2a, 실시예 1-1의 나노천공자 NP및 실시예 3-1의 나노천공자 NPTG)또는 ApoA-I(도 2b, 실시예 2의 나노천공자 NP 및 실시예 3ᅳ 5의 나노천공자 NPTG)가 와해 둘러싼 형태를 갖는 구조물임을 확인하였다.
또한, 강글리오사이드가 삽입된 실시예 3-1 및 실시예 3-5의 나노천공자 (NPTG)는 상기 지질이중층 원반 면에 강글리오사이드가 삽입된 형태임을 확인하였다. 실시예 5: 나노천공자의 바이러스 증식 억제 활성 실시예 5-1. 뉴트럴레드 염색약 흡수 억제 분석 (Neutral red uptake inhibi t ion assay)
일반적으로, 세포에 뉴트럴레드 염색약을 처리하면 이 염색약이 비이온성 수동 확산에 의해 세포막을 투과하여 라이소좀 ( lysosome)에서 모이는데, 뉴트럴레드의 흡수는 세포가 ATP생산을 통해 pH기울기를 유지할 수 있는 능력에 의존한다. 세포가 뉴트럴레드를 흡수할 수 없을 정도의 바이러스를 처리한 조건에서 상기 NPTG를 가하여 반웅시킬 경우, 나노천공자가 인플루엔자 바이러스의 외피에 융합, 바이러스 외피의 구조가 불안정하게 되고, 불안정한 외피로 인하여 바이러스의 RNA가 외피 외부로 방출된다. 세포가 뉴트럴레드 염색약을 흡수하였다면 이는 NPTG의 효과에 의해 세포의 생존율이 높아진 것이라고 분석할 수 있다.
이에, 실시예 1-1 및 실시예 3-1의 나노천공자가 인플루엔자 바이러스에 작용해 세포의 생존율을 높이는지 확인하기 위하여,뉴트럴레드 염색약 흡수 억제 분석 (neutral red uptake inhibi t ion assay)을 수행하였다.
실험 전날 꽉 찬 T-75플라스크의 MDCK cel l 중 절반을 96웰 플레이트의 각 웰에 200 μΐ씩 분주하여 준비하고, 실험 당일, 세포의 배지를 제거한 후 PBS로
2회 워싱하였다. 이후 각 웰에 50개의 Η3Ν2 Sydney바이러스 (NIBSC구매 ) 50 PFU를 45분간 처리해 세포를 감염시키고 붙지 않은 바이러스를 제거한 뒤 트립신과 실시예 1-1및 실시예 3-1의 나노천공자가농도별 ( 1000 nM, 500 nM, 250 nM, 125 nM , 62.5 nM, 31.25 nM 및 15.625 nM) 로 희석된 배지를 웰 당 200 μΐ씩 분주하였다. 37°C의 온도에서 48시간 동안 배양한 후, 배지를 제거하고 40 g/ml의 뉴트럴레드 염색약을 웰 당 100 μΐ씩 처리하고 2시간 동안 반웅시켰다. 반웅이 종료된 후, 염색약을 제거하고, 200 μΐ의 PBS로 1회 세척하였다. 그런 다음, 뉴트럴레드 디스테인 솔루션 (50%에탄올, 49%증류수, 1%아세틱산)을 웰 당 200 μΐ씩 처리한 후 540 nm에서 흡광도를 측정하였다 (도 4) . 대조군으로는 바이러스를 처리하지 않은 조건 (cel l only)과 바이러스만 처리하고 타미플루를 처리하지 않은 조건 ( (- ) control ) , 바이러스와 타미플루 (Tami f lu)를 함께 처리한 조건 ( (+) control )을 설정하였다.
도 4는 본 발명에서 제공하는 강글리오사이드를 포함하는 나노천공자가 인플루엔자 바이러스에 작용해 세포의 생존율에 미치는 효과를 나타내는 사진으로서, 강글리오사이드를 포함하는 나노천공자 (NPTG)뿐만 아니라 포함하지 않는 나노천공자 (NP) 역시 양성대조군인 타미플루와 유사한 수준의 세포 생존 효과를 나타냄을 확인하였다. 즉, NP 및 NPTG는 낮은 농도에서도 바이러스 억제 효과가 매우 우수하며, 특히 NPTG의 경우 NP 대비 항바이러스 효과가 현저히 우수한 것을 확인할 수 있었다. 또한, 대조군으로 처리된 타미플루와 비교해도 차이가 없을 정도임을 감안할 때 나노천공자는 항바이러스제로서 우수한 제제임을 확인할 수 있다. 실시예 5-2. 플라크 감소 분석 (Plaque reduction assay)
플라크 (plaque)는 숙주 세포에 바이러스를 감염시키고 배양 플레이트 (plate)에 아가로즈 -배지 흔.합액을 덮어, 생성된 바이러스들이 널리 퍼지지 못하고 인접한 주변 세포들만을 감염시켜 죽임으로써 형성되는 빈 공간을 의미하는데, 상기 바이러스의 활성이 억제되면, 플라크의 형성이 억제되므로, 플라크의 수준이 감소되는지의 여부를 확인하여, 실시예 1 및 실시예 3에서 제조된 NP 또는 NPTG, 대조군으로서 리포좀 (LP) 및 강글리오사이드를 15%의 함량으로 포함하는 리포좀 (LPTG) 가 인플루엔자 바이러스의 외피에 융합하여 항-바이러스 활성을 나타내는지의 여부를 확인하였다.
상기 대조군으로 사용된 리포좀 및 /또는 강글리오사이드를 포함하는 리포좀의 제조방법은 아래와 같다.
포스파티딜콜린 (PC) 단독 (리포좀, LP) 또는 포스파티딜콜린 및 강글리오사이드를 85 : 15의 몰비로 포함 (강글리오사이드 함유 리포좀, LPTG)하도록 클로로포름 (chloroform)에 녹여 지질 용매를 유리 튜브에 덜고 질소 가스를 쏘여주어 200 μΐ의 PBS로 녹였을 때 리피드의 농도가 10 mM이 되도록 하는 리피드 필름 ( l ipid f i lm)을 준비하였고 잔존하는 유기용매를 제거하기 위해 진공상태에 12-16시간 가량 둔다. 이후 0.2 ml의 PBS를 처리하고 볼텍싱 (vortexing)으로 리피드 필름을 녹여내면 다양한 크기를 가지는 여러 겹 (mult i-lame lar)의 리포좀이 만들어지는데, 이 용액을 얼리고 녹이는 과정 (Freezing and thawing)을 액체질소와 42도씨 water bath에서 최소 5반복 실시하면 다양한 크기의 단일 겹 (uni-l amel lar )의 리포좀이 만들어진다. 이후 크기를 일정하게 만들기 위해 익스트루견 (extrusion)을 실시한다. 익스트루견은 2개의 유리 주사기 (0.25 ml용 syr inge) 사이쎄 100 나노미터의 크기를 가지는 막을 투고 주사기를 이용해 이 막을 최소 왕복 10회 통과시켜 직경이 약 100-120 nm 인 구 형태로서 단일막을 가지는 리포좀을 제조하고 40C의 온도에서 보관하였다.
플라크 감소 분석을 위하여, 6웰 플레이트의 각 웰에 MDCK 세포를 1X 106개씩 접종하여 배양하고, 24시간 뒤 배양이 종료된 세포를 PBS로 2회 세척하였다.세척된 세포에 A/Puerto Ri co/8/1934 H1N1인플루엔자 바이러스 (NIBSC 구매) 100 PFU의 용액 0.5 ml를 가하고, 지속적으로 진탕하면서 실온에서 1시간. 동안 반웅시켰다. 이어, 각 웰에서 배양액을 제거하고, 세포에 상기 실시예 1-1, 실시예 1-2,실시예 3-1,실시예 3-2및 실시예 3-4의 나노천공자와, 대조군으로서 리포좀 LP 및 강글리오사이드 함유 리포좀 LPTG를 각각 다양한 농도 (4, 20, 100 또는 500 μΜ)로 포함하는 아가로즈 용액 (HEPES 25 mM, sodium bicarbonate 22 mM,
DMEM, 1% 아가로스, pH 7.4) 3 ml을 가한 다음, 이를 상온에서 1시간 동안 고형화시켰으며, 37°C의 이산화탄소 인큐베이터에서 3일 동안 배양하고, 형성된 플라크의 수준을 비교하였다. 이때, 대조군으로는 나노천공자 또는 리포좀을 포함하지 않는 아가로스 용액을 사용한 실험군을 사용하였다. 그 결과를 도 5a 내지 도 5b , 도 5c , 도 5d에 나타내었다.
도 5a는 인플루엔자 바이러스의 플라크 형성에 미치는 나노천공자의 효과를 리포좀과 비교하여 분석한 결과를 나타내는 사진 및 그래프이다. 도 5a에서 보듯이, 대조군 (Ctr l )에서는 전체적으로 인플루엔자 바이러스에 의한 플라크가 형성된 반면, 수용체가 있는 실시예 3-1의 나노천공자 뿐 아니라 수용체를 포함하지 않는 실시예 1-1의 나노천공자를 처리한 경우 플라크의 수와 크기가 감소됨을 확인하였다. 이러한 효'과는 같은 농도로 처리된 리포좀 (LP) 및 수용체가 있는 리포좀 (LPTG)의 효과와 비교해 더욱 월등함을 알 수 있었다. 플라크의 크기 억제 면에서 일부 효과를 보이는 LPTG와 비교해 NPTG는 플라크 크기를 80% 가량 억제시킬 뿐만 아니라 플라크의 수도 20¾> 가량 억제시키는 것을 확인하였다. 이로써 나노천공자라는 구조가 항바이러스 효능을 나타내는 매우 중요한 인자임을 확인하였다.추가적으로 강글리오사이드를 포함하지 않는 실시예 1-1의 나노천공자 (NP)의 경우 강글리오사이드를 포함하는 실시예 3-1의 나노천공자. (NPTG)보다 그 효과는 약하지만 고농도로 처리됐을 시 플라크의 수와 크기가 감소됨을 확인하였다.
도 5b는 인플루엔자 바이러스의 플라크 형성에 미치는 강글리오사이드를 포함하는 나노천공자의 효과를 분석한 결과를 나타내는 사진 및 그래프이다. 도 5b에서 보듯이, 강글리오사이드를 포함하는 실시예 3-1의 나노천공자 (NPTG)는 대조군 (No NP)에서 플라크 형성이 전반적으로 이뤄진 것과 달리 농도 의존적으로 플라크의 수와 크기를 감소시킴을 확인하였다. 특히 실시예 3-1의 NPTG의 농도가 40 nM 수준에서도 플라크의 크기는 70% , 수는 20% 가량 억제를 시켰고 200 nM 수준에서는 플라크의 크기를 약 90%, 수를 50% 이상 감소시켜 저농도에서도 상당한 바이러스 활성 억제 효과를 가짐을 확인하였다.
도 5c는 인플루엔자 바이러스의 플라크 형성에 미치는 실시예 3-2의 나노천공자 내 수용체 농도의 효과를 분석한 결과를 나타내는 사진 및 그래프이다. 도 5c에서 보듯이, 같은 나노천공자 농도에서 나노천공자 내 강글리오사이드의 함유량이 높으면 높을수록 플라크의 크기와 수가 상당히 감소함을 확인하였다. 특히 대조군에 비해 강글리오사이드의 함유 몰비율이 5%만 되어도 플라크의 크기를 50%, 수를 30% 가량 억제시킴을 확인하였다. 이러한 효과는 함유된 강글리오사이드의 농도에 의존적임을 알 수 있었고 함유 몰비율이 50%인 경우에는 가장 효과가 뛰어나 크기를 90% 이상, 수를 80%가량 억제시켜, 최종적으로 항바이러스 효과를 높이기 위해서는 최소 15% 이상의 강글리오사이드를 함유해야 함을 확인하였다.
도 5d는 인플루엔자 바이러스의 플라크 형성에 미치는 영향을 검토하기 위하여 바이러스만 처리한 대조군 및 실시예 3—1 및 3-4의 나노천공자의 효과를 분석한 결과를 나타내는 그래프이다. 도 5d에서 보듯이, 같은 농도의 나노천공자가 처리된 상황에서 수용체를 제외한 지질 조성이 단순히 P0PC만으로 이루어진 실시예 3-1의 나노천공자 대비 POPC , D0PS및 /또는 chol ester 이 추가로 포함된 실시예 3ᅳ 4의 나노천공자가 더 뛰어난 항바이러스 효과를 보임을 확인하였다. 게다가 이러한 효과는 상기한 다른 실험 결과에서와 같이 플라크의 크기만을 주로 억제시킨 것과 달리 플라크의 수 역시 상당히 감소시킬 수 있음을 확인하였다. 이러한 효과는 나노천공자가 막 융합을 주 기전으로 하기 때문에 막 융합에 도움이 된다고 알려진 지질인 D0PS와 cholester 의 효과에서 기인한 것으로 생각된다.
상기 실시예 5-1 내지 5-2의 결과를 종합하면, 본 발명에서 제공하는 나노천공자는 강글리오사이드를 포함하지 않더라도 고농도 하에서 인플루엔자 바이러스에 대한 항-바이러스 활성을 나타내고, 강글리오사이드를 포함하는 나노천공자는 현저하게 우수한 수준으로 항-바이러스 활성을 나타냄을 알 수 있었다. 실시예 6: 세포병변효과 감소분석 (Cytopathic effect reduct ion assay) 세포병변효과 (Cytopathi c ef fect )는 플레이트에 자라고 있는 숙주세포에 바이러스를 감염시키고 바이러스의 복제가 충분히 이뤄졌을 때 부착되어 있던 숙주세포가 죽어서 세포 형태가 달라지고 최종적으로 부유하게 되는 현상을 말한다.상기 바이러스의 활성이 억제되면,세포병변효과가 감소할 것이므로, 이를 통해 실시예 3에서 제조된 NPTG가 인플루엔자 바이러스의 외피에 융합하여 항-바이러스 활성을 나타내는지의 여부를 확인하였다.
구체적으로, 12웰 플레이트의 각 웰에 MDCK 세포를 . 1.5xl05개씩 접종하여 배양하고, 24시간 뒤 배양이 종료된 세포를 PBS로 2회 세척하였다. FBS가 없는 incomplete MEM 배지를 이용해 6xl05 PFU/ml의 A/Puerto Ri co/8/1934 H1N1바이러스 (NIBSC 구매) 접종액을 준비하고 세척된 MDCK 세포에 바이러스 용액 0.25 ml을 가하고,지속적으로 진탕하면서 실온에서 1시간 동안 반웅시켰다. 이어, 각 웰에서 배양액을 제거하고 세포에 500 nM 농도의 실시예 3-1의 나노천공자 (NPTG)를 포함하는 용액 ( lx ant ibiot ics를 포함하는 MEM배지, pH 7.4) 1 ml을 가한 다음, 37°C의 온도에서 1일 동안 배양하고, 세포병변효과의 억제 수준을 비교하였다. 이때, 대조군으로는 나노천공자를 포함하지 않는 바이러스만 처리된 조건 및 바이러스도 처리되지 않은 세포만 있는 조건을 함께 사용하였다. 그 결과를 도 6에 나타내었다.
도 6은 인플루엔자 바이러스에 의한 세포병변효과에 대해 강글리오사이드를 포함하는 실시예 3-1의 나노천공자 (NPTG)의 효과를 분석한 결과를 나타내는 사진이다. 도 6에서 보듯이, 대조군 (control )에서는 바이러스에 감염되지 않은 건강한 MDCK 세포의 모습을 볼 수 있는 반면 여기에 바이러스가 감염된 조건 (H1N1)에서는 세포병변효과 (cytopathi c ef fect )가 나타나 세포의 모양이 변성되고 세포가 죽어 떨어지는 현상을 확인하였다. 이러한 같은 조건 하에서 NPTG가 1 μΜ 처리됐을 때 바이러스에 의한 세포병변효과는 나타나지 않고 건강한 MDCK cel l의 상태가 잘유지됨을 관찰하였고 이로써 NPTG에 의한 바이러스 감염 억제 효과가 매우 우수한 것을 확인하였다. 실시예 7: 나노천공자결합성 시험
실시예 7-1: 비드 결합분석 (Bead binding assay)
나노천공자 단백질의 N-말단에 결합된 hi s-tag 를 이용해 나노천공자의 침입억제자 기능을 확인하고자 했다. NP 또는 NPTG에 니켈 이온이 결합된 아가로즈 비드를 처리하면 2가 양이은과 히스티딘 사이의 친화력에 의해 강한 결합이 가능하다. 이후 여기에 인플루엔자 바이러스를 처리해 층분히 반웅시키면 NPTG 용액에만 바이러스가 헤마글루티닌을 통해 결합할 수 있을 것이고 최종적으로 고농도의 이미다졸을 함유한 용리 (elut ion) 용액을 처리하여 얻은 용리액 (elute)에는 바이러스가 존재해 이를 면역블러팅법을 이용해 확인할 수 있다.
상기 원리를 이용하여, 실시예 1-1 및 실시예 3-1에서 제조된 NP 또는 NPTG를 이용해 인플루엔자 바이러스에 강글리오사이드 의존적으로 나노천공자가 결합할 수 있는지 여부와, 1차 억제 기능인 침입 억제자로 역할 할 수 있는지의 여부를 확인하였다.
구체적으로, 50 μΐ의 니켈 아가로즈 비드를 워싱 용액 (5 mM의 이미다졸을 함유한 PBS, pH 7.4)으로 3회 세척해준 뒤, 여기에 미리 준비해둔 50 μΜ 농도의 실시예 1-1의 나노천공자 (ΝΡ) 또는 실시예 3-1의 나노천공자 (NPTG)를 200 μ ΐ씩 처리하여 4°C의 온도에서 2시간 동안 반웅시켜주었다. 반응이 끝난 후 결합하지 않은 나노천공자를 제거하기 위해 같은 워싱 용액으로 1회 세척을 실시하였고 여기에 준비한 1 X 108 PFU/ml의 A/Puerto Rico/8/1934 H1N1인플루엔자 바이러스 (NIBSC 구매) 0.8 ml을 처리하여 역시 40C의 온도에서 2시간 동안 반웅시켜주었다. 이후, 결합하지 않은 바이러스를 제거하기 위해 같은 워싱 용액으로 총 3회 세척을 진행하였으며 고농도의 이미다졸을 함유한 용리 용액 (500 mM이미다졸을 함유한 PBS , 7.4)을 0. 1 ml 처리하여 용리액을 얻었다. 이 용리액에 바이러스가 존재하는지 확인하기 위해 바이러스 헤마글루티닌에 대한 마우스 1차 항체와 이에 결합할 수 있는 토끼 2차 항체를 이용해 면역블러팅법을 수행하였다. 그 결과를 도 7에 나타내었다.
도 7은 인플루엔자 바이러스 헤마글루티닌에 나노천공자가 수용체인 강글리오사이드에 의존적으로 결합하여 침입억제자로 기능을 할 수 있는지를 확인하기 위해 분석한 결과를 나타내는 모식도와 사진이다. 면역블러팅의 양성대조군으로서 H1N1 바이러스를 함께 사용하였다. 강글리오사이드를 포함하지 않는 나노천공자 (NP)와 달리 이를 포함하는 나노천공자 (NPTG) 조건에서만 면역블러팅이 확인되었다. 이는 바이러스가 헤마글루티닌을 통해 강글리오사이드의 수용체에 결합할 수 있고, 결국 NPTG는 1차 억제 기능인 침입억제자로 역할 할 수 있음을 시사한다. 실시예 7-2: 전자현미경 분석 (Transmission electron microscopy)
인플루엔자 바이러스에 나노천공자가 강글리오사이드에 의존적으로 결합하는지 확인하기 위한 또 다른 방법으로 전자현미경 분석을 실시하였다. 전자현미경은 빛 대신 전자를 사용해 물체의 확대상을 만드는 장치로 광학현미경으로는 보이지 않는,즉 바이러스와 나노천공자와 같은 작은 물체를 볼 수 있도록 해준다. 바이러스와 NP 또는 NPTG가 흔합되어 있는 상태에서 전자현미경 분석을 수행하면 NP는 수용체가 없으므로 바이러스와 별개로 따로 존재하는 반면, NPTG는 수용체인 강글리오사이드가 존재하므로 헤마글루티닌과 결합할 수 있어 바이러스 둘레에 붙어 존재할 것이라고 예상하였다. 따라서, 실시예 1-1 및 실시예 3-1의 각 나노천공자 (NP 또는 NPTG)가 인플루엔자 바이러스의 외피에 결합할 수 있는지 확인하기 위해 분석을 실시하였다.
구체적으로, 40 μΜ의 실시예 1-1의 나노천공자 (ΝΡ) 또는 실시예 3—1의 나노천공자 (NPTG)의 16.6 μΐ 와농도가 lxlO8 PFU/ml인 A/Puerto Ri co/8/1934 H1N1 인플루엔자 바이러스 (NIBSC 구매) 100 μΐ를 섞고 이들의 결합을 위해 상온에서 1시간 동안 반웅시켰다. 이후 전자현미경에 사용되는 그리드 (gr i d)에 위 흔합액을 20 μ ΐ씩 올리고 1분간 두어 그리드에 샘플들이 결합할 수 있도록 하였다. 결합하지 않은 샘플을 제거하기 위해 3Μ종이를 이용해 흡수시켰고 이어 그리드를 물로 2회 세척한 뒤 염색을 위해 2% uranyl acetate를 1분간 처리하여 남은 염색액을 3M 종이에 흡수시켜 제거하였다. 이후 현미경 분석을 위해 전자현미경 Libra 120이 사용되었다. 그 결과를 도 8에 나타내었다.
도 8은 인플루엔자 바이러스 헤마글루티닌에 나노천공자가 수용체인 강글리오사이드에 의존적으로 결합하여 침입억제자로 기능을 할 수 있는지를 확인하기 위해 분석한 결과를 나타내는 사진이다. 바이러스만 처리한 대조군 (H1N1)에서는 알려진 바와 같이 바이러스의 직경이 100—200 nm 정도 되는 것을 확인할 수 있었고, H1N1+NP (실시예 1-1) 조건에서 나노천공자와 바이러스가 따로 떨어져 존재하는 것과 달리 H1N1+NPTG (실시예 3—1) 조건에서는 바이러스 주변을 나노천공자가 빙 둘러 감싸고 있는 것을 확인하'였다. 이는 실시예 7-1에서와 유사하게, 바이러스 바깥 부분의 헤마글루티닌에 수용체인 강글리오사이드가 결합하였기 때문에 바이러스 주변에 나노천공자가 결합하여 존재하는 것임을 알 수 있고 이를 통해 강글리오사이드를 포함하는 나노천공자는 실시예 7-1에서와 마찬가지로 층분히 침입억제자로 기능할 수 있음을 확인하였다. 실시예 8: RNA방출분석
인플루엔자 바이러스에 본 발명의 나노천공자를 처리하여, 상기 나노천공자가 인플루엔자 바이러스의 외피에 융합되면, 상기 융합에 의하여 바이러스 외피의 구조가 불안정하게 되고, 불안정한.외피로 인하여 바이러스의 RNA가 바이러스의 외부로 방출된다. 이러한 바이러스를 센트리콘 (centr i con)에 적용하면, 센트리콘의 구멍보다 작은 크기의 RNA는 센트리콘을 통해 여과되지만, 상기 구멍보다 큰 크기의 바이러스 입자는 센트리콘을 통해 여과되지 않으므로, 실시예 1-1 , 실시예 2 , 실시예 3-1 및 실시예 3-5에서 제조된 각 나노천공자 (NP 또는 NPTG)가 인플루엔자 바이러스의 외피에 융합되었는지의 여부를 확인하였다. 구체적으로, 5xl07 PFU/ml의 A/Puerto Ri co/8/1934 H1N1인플루엔자 바이러스 (NIBSC 구매)용액과 다양한 농도 (1.3, 13, 130 또는 1300 μΜ)로 실시예 1-1,실시예 2,실시예 3-1및 실시예 3-5의 나노천공자를 흔합하여 전체 200 μΐ의 볼륨이 되도록 한 후 370C의 온도에서 0.5시간 동안 반웅시키고, 0.1 M의 시트릭산 8.66 μΐ를 이용해 ρΗ 5.0을 유지시킨 다음 다시 15분 동안 반웅시켰다. 반웅이 종료된 시료를 센트리콘 (centricon)에 가하여 원심분리 (13,000 rpm, 5 min, 4°C)하여, 여과되지 않은 시료 (R, retentate)와 여과된 시료 (F, filtrate)를 각각 수득하였다. 이때, 대조군으로는 인플루엔자 바이러스 용액만을 사용한 것 (V)을 사용하였다.
상기 수득한 각 시료를 대상으로 역전사 PCR(5 μΐ의 template, 1 μΐ의 sense primer(M gene), 7.4 μΐ의 water 흔합액을 70oC에서 10분, 이후 여기에 4 μΐ의 5x Reverse transcription buffer, 1.6 μΐ의 dNTP, 1 μΐ의 RTase를 넣고 42°C에서 1시간, 70oC에서 10분 반웅시켰다)을 수행하여, 각 시료에 포함된 RNA에 상웅하는 cDNA를 각각 수득하였다. 이어, 상기 수득한 cDNA를 주형으로 한 PCR(5 μΐ의 template, 10 μΐ의 water, 각각 0.5 μΐ의 sense/anti sense primer (M gene), 4 μΐ의 5xrTaqDNA polymerase의 흔합액을 만들고 95°C에서 3분을 먼저 반웅시키고, 이후 95°C, 10초 /560C, 10초 /720C, 10초의 3연속 반웅을 총 30 사이클 진행한 뒤 마지막 72°C에서 5분간 반웅시켰다)을 수행하고, 상기 PCR을 통해 얻어진 산물을 전기영동하여 확인하였다 (도 9a). 한편, 비교군으로는 나노천공자 대신에 상기 실시예 5-2에서 제조된 리포좀 (LP) 또는 강글리오사이드를 포함하는 리포좀 (LPTG)를 사용하여 동일한 실험을 수행한 후 그 결과를 확인하였다 (도 9b).
도 9a는 인플루엔자 바이러스 용액과 다양한 농도의 실시예 1-1의 나노천공자 (NP) 및 실시예 3-1의 나노천공자 (NPTG)용액을 반웅시켜서 얻어진 RNA 방출분석 결과를 나타내는 전기영동사진이고, 도 9b는 인플루엔자 바이러스 용액과 다양한 농도의 리포좀 (LP 또는 LPTG) 용액을 반웅시켜서 얻어진 RNA 방출분석 결과를 나타내는 전기영동사진이다. 도 9c는 인플루엔자 바이러스 용액과 다양한 농도의 실시예 2의 나노천공자 (NP) 및 실시예 3ᅳ 5의 나노천공자 (NPTG) 용액을 반응시켜서 얻어진 RNA 방출분석 결과를 나타내는 전기영동사진 도 9a에서 보듯이, 나노천공자를 처리하지 않은 대조군 (V)에서는 센트리콘을 통해 여과된 시료 (F)에서 RNA가 검출되지 않았으나, 나노천공자를 처리한 실험군에서는 센트리콘을 통해 여과된 시료 (F)에서 RNA가 검출되었다. 특히, 강글리오사이드를 포함하지 않는 나노천공자 (NP)는 130 μΜ 이상의 농도로 인플루엔자 바이러스 용액에 가하였을 때, 센트리콘을 통해 여과된 시료 (F)에서 RNA가 검출되었으나, 강글리오사이드를 포함하는 나노천공자 (NPTG)는 1.3 μΜ의 농도로 가한 경우에도 센트리콘을 통해 여과된 시료 (F)에서 RNA가 검출되었다. 그러나, 도 9b에서 보듯이, 인플루엔자 바이러스 용액과 다양한 농도의 리포좀 (LP 또는 LPTG) 용액을 반웅시킨 경우에는 어떠한 경우에도 센트리콘을 통해 여과된 시료 (F)에서 RNA가 검출되지 않음을 확인하였다.
또한, 도 9c에서 보듯이, 실시예 2 및 3-5로부터의 ApoA-1으로 제조한 나노천공자의 경우 인플루엔자 바이러스 용액과 다양한 농도로 반웅되었을 때 1 μΜ 이상의 농도에서 바이러스 외피와의 막융합을 통해 내부 바이러스 RNA의 방출을 유도, 검출 가능함을 확인하였다. ApoA-1 기반 나노천공자의 경우 약 10 nm의 작은 직경을 가지는 나노천공자임에도 수용체 없이도 층분히 바이러스의 외피에 손상을 가해 효과를 보임을 확인하였다. 실시예 9 : RNA-뉴클레오단백질 복합체 방출 분석
면역전자현머경법은 항체를 통한 면역반웅을 이용하여 항원 분포를 검출하는 방법으로 사용되는 2차 항체로는 금 (Au)입자나 페리틴 등의 전자밀도가 큰 금속이나 과산화효소 등의 효소가 많이 쓰인다. 나노천공자가 바이러스의 외피에 융합하여 항-바이러스 활성을 나타내는 조건하 (pH 5.0)에서 바이러스의 RNA-뉴클레오단백질 복합체가 바이러스의 밖으로 빠져 나오는데 이때 뉴클레오단백질을 검출하기 위해 이를 항원으로 인식하는 항체를 이용해 면역전자현미경법을 통해 분석하면 실제로 RNA가 밖으로 빠져 나왔는지 시각적으로 직접 확인할 수 있다.
상기 원리를 이용하여, 실시예 3-1에서 제조된 NPTG가 인플루엔자 바이러스의 외피에 융합하여 항-바이러스 활성을 나타내는지의 여부를 확인하였다. 구체적으로, 파라필름 (paraf i lm)을 바닥에 깔고 그 위에 A/Puerto Rico/8/1934 H1N1바이러스 (NIBSC구입) +NPTG실시예 3-1)흔합액을 0. 1 ml올린 뒤 이 위에 전자현미경용 그리드 (gr id)를 올리고 상온에서 20분간 두고 pH를 5.0으로 떨어뜨린 뒤 10분간 더 두었다. 이후 PBS를 이용해 2분간 1회 세척을 진행하였고 블로킹 (blocking)을 위해 1% BSA를 함유한 PBS 용액을 그리드에 상온에서 30분간 처리하였다. 이어 바이러스 뉴클레오단백질에 결합할 수 있는 1차 항체를 1% BSA를 함유한 PBS를 이용해 50 g/ml의 농도로 준비해 그리드에 처리한 뒤 상온에서 1시간 반웅시켰다. 이후 세척을 위해 역시 1% BSA를 함유한 PBS로 3분씩 총 2회 처리하였고 1차 항체를 인식 및 결합할 수 있는 금으로 표지된 (go Id— labeled) 2차 항체를 1 : 50으로 희석하여 그리드에 처리한 뒤 상온에서 45분간 두었다. 이어 PBS로 총 3회 세척을 진행하고 고정 ( f ixat ion)을 위해 PBS를 이용해 만든 4% 포름알데하이드 ( formaldehyde)를 상온에서 10분간 처리한 후 연속해서 증류수로 2회 세척한 뒤 2% uranyl acetate를 이용해 전자현미경법에서 상기한 것과 같은 방법으로 염색 및 전자현미경 조작 및 분석을 진행하였다. 그 결과를 도 10에 나타내었다.
도 10은 강글리오사이드를 포함하는 실시예 3-1의 나노천공자가 낮은 pH 하에서 인플루엔자 바이러스 외피에 융합하여 그 결과로서 바이러스의 RNA가 실제로 밖으로 방출될 수 있는지의 여부를 확인한 면역전자현미경 결과의 사진이다. 상기 나노천공자가 바이러스에 처리되고 pH가 떨어지면 외피에 손상이 가해져 내부의 바이러스 RNA-뉴클레오단백질 복합체가 밖으로 빠져 나와 이에 결합할 수 있는 항체에 의해 검은색 점으로 검출될 수 있음을 확인하였다. 이로써 나노천공자는 바이러스 감염 과정에서 세포 내 리소좀의 낮은 pH하에서 바이러스 외피에 물리적 손상을 주어 내부 NA가 밖으로 빠져 나오게 하여 바이러스 감염 진행을 억제시킬 수 있음을 확인하였다. 실시예 10: 용혈 억제 분석 (hemolysis inhibition assay)
나노천공자가 용혈현상을 억제한다면 바이러스와 적혈구 사이의 막융합과 경쟁해 이기는 것을 의미하고 이는 실제로 세포 내에서 바이러스막과 엔도좀막 사이의 막융합과 경쟁해 이긴다고 생각할 수 있다. 상기 원리를 이용하여 실시예 1-KNP) 및 실시예 3-KNPTG)의 나노천공자, 그리고 추가적으로, 이용한 바이러스에 더 강하게 결합한다고 알려진 GDla 강글리오사이드를 이용해 만든 실시예 3-3의 나노천공자 (NPGDla)가 인플루엔자 바이러스의 외피에 융합하여 용혈현상을 억제하는지 여부를 확인하였다.
구체적으로, 96웰 플레이트에 PBS를 이용하여 실시예 l-l(NP) , 실시예
3-KNPTG) , 또는 실시예 3-3(NPGDla)의 나노천공자를 1/2씩 연속희석 (serial di lut ion)을 진행하여 100 μΐ씩 준비하였고 여기에 같은 양의 A/Puerto Rico/8/1934 H1N1바이러스를 (NIBSC구매)각 웰에 처리하여 370C의 온도에서 1시간 동안 반웅시켰다. 이후 같은 양의, PBS로 희석하여 준비한 2%의 닭 적혈구 (chicken red blood cel l )를 추가로 더해준 뒤 같은 온도에서 10분간 더 반웅시켰다. 이어세 N아세트산을 이용해 pH를 5.0으로 낮추고 원심분리 (400 x g; 8분; 40C)를 통해 닭 적혈구를 제거하였다. 상기 상층액 300 μΐ를 취해 새 96웰 플레이트에 옮긴 뒤 540 nm의 파장을 이용해 흡광도 분석을 진행하였다. 그 결과를 도 11에 나타내었다.
도 11은 인플루엔자 바이러스에 의한 적혈구의 용혈현상 억제 정도를 다양한 농도로 처리하여 분석한 결과로 나타낸 것으로서, 강글리오사이드를 포함하지 않는 실시예 1-1의 나노천공자 (NP)는 테스트한 농도 내에서는 적혈구 용혈현상을 전혀 억제하지 못한데 비해 강글리오사이드를 포함하는 나노천공자 (실시예 3-1의 NPTG 또는 실시예 3-3의 NPGDla)는 농도 의존적으로 적혈구 용혈현상을 억제함을 확인하였다. 특히 억제 효과의 정도는 실시예 3-3의 NPGDla가 실시예 3-1의 NPTG보다 더욱 월등함을 확인하였는데 이는 GDla 강글리오사이드가 바이러스에 더 강한 결합을 갖기 때문이라고 생각된다. 이로써 나노천공자는 바이러스 감염 과정에서 세포 내 리소좀의 낮은 pH 하에서 엔도좀 막과 경쟁적 우위를 점하면서 바이러스 외피에 물리적 손상을 주어 이후 감염 과정을 억제시킬 수 있음을 확인하였다. 실시예 11: 나노천공자의 세포 내 침투 시험
공초점 현미경 분석을 이용해 강글리오사이드를 포함하는 나노천공자 (NPTG 또는 NPGDla)가 바이러스와 함께 실제로 세포 내부로 들어가 감염과정을 억제하는지의 여부를 확인할 수 있다.
상기 원리를 이용하여 실시예 l-l(NP)또는 실시예 3-KNPTG)의 나노천공자, 그리고 추가적으로, 이용한 바이러스에 더 강하게 결합한다고 알려진 GDla 강글리오사이드를 이용해 만든 실시예 3-3의 나노천공자 (NPGDla)가 침입하는 인플루엔자 바이러스의 외피에 결합하여 세포 내부로 함께 들어가는지 여부를 확인하였다.
구체적으로, 실험에 사용된 A/PR/8/34인플루엔자 바이러스 (NIBSC 구입) 의 막을 리피드 친화적 특징을 가지는 형광 염색약인 SP-DiOC18로 표지하기 위해 바이러스에 SP-DiOC18을 섞고 상온에서 최소 12시간 반웅시켰다. 이후 바이러스 막에 삽입되지 않은 염색약을 제거하기 위해 PD— 10 desal t ing column을 이용하였고 최종적으로 형광 표지된 바이러스를 얻어 사용까지 냉장에 보관하였다. 동시에, 나노천공자도 형광 검출하기 위해 상기 실시예 1-1, 3-1 및 3-3에서 리피드 필름을 만드는 과정에 형광 리피드인 Li ss-Rhod phosphat idylethanolamine을 1% 넣어 같은 방법으로 나노천공자를 준비하였다. 준비된 바이러스와 각각 준비된 나노천공자를 냉장에서 2시간 동안 미리 섞어 반웅시키고 이 흔합액을 전날 100 mm 세포배양 접시에 준비해둔 A549 세포에 처리하여 370C의 온도에서 2시간 동안 감염시켜주었다. 이후 세포를 4%의 포름알데하이드 ( formaldehyde)를 이용해 15분간 처리하여 고정시켰다. PBS로 세척을 진행한 뒤, Gold ant i fade mountant로 마운팅하였고 Car l Zei ss LSM공초점 현미경을 이용해 이미지를 얻고 분석하였다. 그 결과를 도 12에 나타내었다.
도 12는 인플루엔자 바이러스가 세포를 침입할 때 나노천공자가 함께 처리되면 실제로 세포 내로 함께 들어갈 수 있는지를 확인한 현미경 사진이다. 실험에 사용한 바이러스인 A/PR/8/34는 세포 내부에 세포 내 함입과정에 의해 침투해 들어가 표지한 형광에 의해 점으로 검출되는 것을 확인하였으며, 역시 형광 리피드로 표지된 나노천공자들 (실시예 1-1의 NP , 실시예 3-1의 NPTG 또는 실시예 3-3의 NPGDla) 역시 세포 내부로 들어가 점으로 나타나는 것을 확인하였다. 특히, 실시예 1-1의 NP에 의한 형광 점은 바이러스의 형광 점과 전혀 겹치지 않았지만 실시예 3—1의 PTG와 실시예 3-3의 NPGDla는 겹치는 점이 존재함을 확인하였고 이는 수용체 의존적으로 나노천공자가 바이러스와 결합해 실제로 세포 내부로 잘 들어감을 확인한 것이다. 이러한 정도는 실시예 3-1의 NPTG보다 실시예 3-3의 NPGDla에서 더욱 컸으며 실시예 3-3의 NPGDla의 경우 거의 모든 바이러스의 형광점과 겹치는 것으로 보아 GDla 강글리오사이드가 바이러스 헤마글루티닌에 더욱 강하게 결합하였기 때문임을 다시 한번 확인하였다. 실시예 12: 세포병변효과 감소 분석 (Cytopathic effect reduction assay) 실시예 1-1의 나노천공자가 가성광견병 바이러스 (Pseudorabies vi rus ;PRV) 감염에도 외피에 융합하여 항-바이러스 활성을 내는지 확인하기 위하여 세포병변효과 감소 효과를 살펴보았다.
인플루엔자 바이러스로 MDCK 세포를 감염시키는 것 대신 가성광견병 바이러스로 HeLa 세포를 감염시킨 것 이외에는 실시예 6과 동일한 방법으로 세포병변효과 감소 분석을 실시하고 그 결과를 도 13에 나타내었다.
도 13은 가성광견병 바이러스에 의한 세포병변효과에 대해 실시예 1-1의 나노천공자 (NP)의 효과를 분석한 결과를 나타내는 사진이다. 도 13에서 보듯이, 대조군 (Mock)에서는 바이러스에 감염되지 않은 건강한 HeLa 세포의 모습을 볼 수 있는 반면 여기에 바이러스가 감염된 조건 (Posi t ive)에서는 세포병변효과 (cytopathi c ef fect )가 나타나 세포의 모양이 변하며 다핵체 (mul t i -nuclear cel l , gi ant cel l )를 형성 (흰색 화살표)하고 결국 세포가 죽어가는 것을 볼 수 있다. 이러한 같은 조건하에서 실시예 1-1의 NP가 8 μΜ 처리됐을 때 가성광견병 바이러스에 의한 다핵체 형성이 상당히 억제됨을 관찰하였고, 이로써 본 발명의 나노천공자는 수용체 없이도 외피를 가지는 바이러스에 대한우수한 항-바이러스 효과가 있음을 확인하였다.

Claims

【청구의 범위】
【청구항 1】
지질이중층 나노디스크 ( l ipid bi l ayer nanodi sc)와, 상기 나노디스크의 외주면을 둘러싼 막구조화 단백질을 포함하는 나노천공자 (nano-perforator ) .
【청구항 2】
제 1항에 있어서, 상기 나노천공자는 바이러스의 지질이중층 외피를 천공하는 것인, 나노천공자.
【청구항 3】
거 U항에 있어서, 상기 지질은 인지질을 포함하는 것인, 나노천공자.
【청구항 4】
제 1항에 있어서, 상기 막구조화 단백질은 헬릭스 (hel ix) 구조를 갖는 양친매성 단백질인, 나노천공자.
【청구항 5】
제 1항에 있어서, 바이러스의 표면 항원에 대한 수용체를 추가로 포함하는 것인, 나노천공자.
【청구항 6】
게 5항에 있어서, 상기 표면 항원은 헤마글루티닌 (Hemagglut inin;HA) 및 뉴라미니다제 (Neuraminidase ;NA)로 이루어진 군에서 선택된 1종 이상인, 나노천공자:
【청구항 7】
제 5항에 있어서, 상기 수용체는 시알산을 포함하는 당지질 및 시알산을 포함하는 당단백질로 이루어진 군에서 선택된 1종 이상인, 나노천공자.
【청구항 8】
거 17항에 있어서, 상기 시알산을 포함하는 당지질은 강글리오사이드 (gangl ioside) 및 폴리시알산 (polysial i c acid)으로 이루어진 군에서 선택된 1종 이상인, 나노천공자.
【청구항 9】
제 1항에 있어서,상기 지질이중출 나노디스크에 포함된 지질 및 표면항원에 대한 수용체로 이루어진 군에서 선택된 1종 이상과 상기 막구조단백질의 몰비 (molar ratio)가 10:1 내지 800:1인, 나노천공자.
【청구항 10】
거 12항에 있어서, 상기 바이러스는 버니아비리데 (Bunyaviridae) 과 코로나비리데 (Coronaviridae) 과, 필로비리데 (Fi lovir idae) 과 플라비비리데 (Flaviviridae) 과, 헤파드나비리데 (Hepadnavir idae) 과 헤르페스비리데 (Herpesviridae) 과, 오스소믹소비리데 (Orthomyxovir idae) 과 폭스비리데 (Poxviridae) 과, 랍도비리데 (Rhabdovir idae) 과 레트로비리데 (Retrovir idae) 과, 토가비리데 (Togaviridae) 과 및 헤르페스비리데 (Herpesviridae) 과로 구성된 군으로부터 선택된 1종 이상인 바이러스인 것인, 나노천공자.
【청구항 11】
제 1항 내지 제 10항 중 어느 한 항의 나노천공자를 포함하는, 바이러스 감염증 예방 또는 치료용 약학 조성물.
【청구항 12]
제 1항 내지 제 10항 중 어느 한 항의 나노천공자를 약제학적으로 유효한 양으로,바이러스 감염증이 발병될 가능성이 있거나 또는 발병된 개체에 투여하는 단계를 포함하는, 바이러스 감염증의 치료방법 .
【청구항 13】
거 U항 내지 제 10항 중 어느 한 항의 나노천공자의 바이러스 감염증 예방 또는 치료 용도.
【청구항 14】
(a)목적하는 바이러스에 제 1항 내지 제 11항 중 어느 한 항의 나노천공자를 반웅시키는 단계 ; 및
(b) 상기 나노천공자가 목적하는 바이러스에 대한 항-바이러스 활성을 나타내는지의 여부를 확인하는 단계를 포함하는, 목적하는 바이러스의 표면 항원에 대한 수용체를 스크리닝하는 방법.
PCT/KR2017/007602 2016-07-15 2017-07-14 나노천공자를 포함하는 바이러스 감염증 예방 또는 치료용 약학 조성물 WO2018012936A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/317,817 US11541100B2 (en) 2016-07-15 2017-07-14 Pharmaceutical composition comprising nanoperforator for preventing or treating viral infectious diseases

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0090012 2016-07-15
KR20160090012 2016-07-15
KR1020170089655A KR102181991B1 (ko) 2016-07-15 2017-07-14 나노천공자를 포함하는 바이러스 감염증 예방 또는 치료용 약학 조성물
KR10-2017-0089655 2017-07-14

Publications (1)

Publication Number Publication Date
WO2018012936A1 true WO2018012936A1 (ko) 2018-01-18

Family

ID=60952136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007602 WO2018012936A1 (ko) 2016-07-15 2017-07-14 나노천공자를 포함하는 바이러스 감염증 예방 또는 치료용 약학 조성물

Country Status (1)

Country Link
WO (1) WO2018012936A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3876909A4 (en) * 2018-11-08 2022-09-28 Nasr, Mahmoud NANODISCS FOR THE PREVENTION AND TREATMENT OF PATHOGENIC INFECTIONS AND METHODS OF USE THEREOF

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2058002A1 (en) * 2007-10-31 2009-05-13 Bestewil Holding B.V. Reconstituted respiratory syncytial virus membranes and use as respiratory syncytial virus vaccine
US20160089431A1 (en) * 2014-09-26 2016-03-31 Shiva Science & Technology Group LLC Nanodisk-associated immunogen super polyvalent vaccines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2058002A1 (en) * 2007-10-31 2009-05-13 Bestewil Holding B.V. Reconstituted respiratory syncytial virus membranes and use as respiratory syncytial virus vaccine
US20160089431A1 (en) * 2014-09-26 2016-03-31 Shiva Science & Technology Group LLC Nanodisk-associated immunogen super polyvalent vaccines

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BHATTACHARYA, P. ET AL.: "Nanodisc-incorporated Hemagglutinin Provides Protective Immunity against Influenza Virus Infection", JOURNAL OF VIROLOGY, vol. 84, no. 1, 2010, pages 361 - 371, XP055289313 *
GALILI, U. ET AL.: "Inhalation of a-gal/sialic Acid Liposomes: a Novel Approach for Inhibition of Influenza Virus Infection?", FUTURE VIROLOGY, vol. 11, no. 2, 3 February 2016 (2016-02-03), pages 95 - 99 *
SAEUI, C. T. ET AL.: "Ceil Surface and Membrane Engineering: Emerging Technologies and Applications", JOURNAL OF FUNCTIONAL BIOMATERIALS, vol. 6, 2015, pages 454 - 485, XP055459584 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3876909A4 (en) * 2018-11-08 2022-09-28 Nasr, Mahmoud NANODISCS FOR THE PREVENTION AND TREATMENT OF PATHOGENIC INFECTIONS AND METHODS OF USE THEREOF

Similar Documents

Publication Publication Date Title
KR102181991B1 (ko) 나노천공자를 포함하는 바이러스 감염증 예방 또는 치료용 약학 조성물
EP0298280B1 (en) Animal derived cell with antigenic protein introduced therein
JP2024026214A (ja) 酸性スフィンゴミエリナーゼ欠乏症に対する用量漸増酵素補充療法
Urbán et al. A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro
Bakrania et al. Nanomedicine in hepatocellular carcinoma: A new frontier in targeted cancer treatment
Santiwarangkool et al. PEGylation of the GALA peptide enhances the lung-targeting activity of nanocarriers that contain encapsulated siRNA
Li et al. Recent advancements in liposome-targeting strategies for the treatment of gliomas: a systematic review
Huang et al. Multiscale NIR-II imaging-guided brain-targeted drug delivery using Engineered Cell membrane Nanoformulation for Alzheimer’s Disease Therapy
CN102427804A (zh) 降低胆固醇水平的脂质体
Borgheti-Cardoso et al. Extracellular vesicles derived from Plasmodium-infected and non-infected red blood cells as targeted drug delivery vehicles
CN104244965A (zh) 治疗癌症和其它病症的纳米结构
KR20100127842A (ko) 소포체 표적화 리포좀
Matsuo et al. Engineered hepatitis B virus surface antigen L protein particles for in vivo active targeting of splenic dendritic cells
KR101290475B1 (ko) 인플루엔자 바이러스 및 비형 간염 바이러스로부터의항원을 포함하는 비로좀 입자
JP5259578B2 (ja) エンベロープウイルスを不活化させるための組成物
CA2191750C (en) Virosome-mediated intracellular delivery of therapeutic agents
WO2018012936A1 (ko) 나노천공자를 포함하는 바이러스 감염증 예방 또는 치료용 약학 조성물
US20090175930A1 (en) Composition Suppressing The Expression of Target Gene in Eyeball and Medicament For Treating of Disease in Eyeball
US10258683B2 (en) Engineered vesicles comprising antigenic peptides and the uses thereof as modulators of immune responses
Chatterjee et al. siRNA-based novel therapeutic strategies to improve effectiveness of antivirals: an insight
Jafari et al. Immunomodulatory activities and biomedical applications of melittin and its recent advances
Peeters et al. Immunospecific targeting of immunoliposomes, F (ab′) 2 and IgG to red blood cells in vivo
Holovati et al. Investigating interactions of trehalose-containing liposomes with human red blood cells
EP4108251A1 (en) Griffithsin for use in a method of preventing or treating infections with respiratory viruses
US11911481B2 (en) Compositions and methods for treating RSV-infections

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17828006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17828006

Country of ref document: EP

Kind code of ref document: A1