WO2018012898A1 - Appareil pour modifier la longueur d'un chemin optique pour une mesure de surface tridimensionnelle - Google Patents

Appareil pour modifier la longueur d'un chemin optique pour une mesure de surface tridimensionnelle Download PDF

Info

Publication number
WO2018012898A1
WO2018012898A1 PCT/KR2017/007512 KR2017007512W WO2018012898A1 WO 2018012898 A1 WO2018012898 A1 WO 2018012898A1 KR 2017007512 W KR2017007512 W KR 2017007512W WO 2018012898 A1 WO2018012898 A1 WO 2018012898A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
path length
rotating body
distance
reference line
Prior art date
Application number
PCT/KR2017/007512
Other languages
English (en)
Korean (ko)
Inventor
장민호
이수복
정문철
정영석
Original Assignee
주식회사 메디트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 메디트 filed Critical 주식회사 메디트
Publication of WO2018012898A1 publication Critical patent/WO2018012898A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/125Details of the optical system between the polygonal mirror and the image plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/106Beam splitting or combining systems for splitting or combining a plurality of identical beams or images, e.g. image replication
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors

Definitions

  • Figure 5 is a perspective view showing another embodiment of the reflection type in the optical path length change device for measuring three-dimensional surface according to the present invention.
  • the axis of rotation of the reflective rotating body 20 is disposed in parallel with the reference beam reflected through the reflective surface of the path changing reflector 3.
  • the reflecting surface of the rerouting reflector 3 is formed to have a different distance from the light splitter in the circumferential direction.
  • the path changing reflector 3 has a stepped shape having a plurality of layers gradually increasing in a 360 degree radius with respect to the reference line passing through the center of rotation of the reflecting rotating body 20. And the closest distance to the light splitter in the last layer at a 360 degree radius from the baseline.
  • 5 is a view illustrating that the reflecting surface of the path changing reflector 3 is inclined.
  • the path changing reflector 3 is formed of an inclined surface that gradually increases in a 360 degree radius with respect to the reference line passing through the center of rotation of the reflective rotating body 20 to have the longest distance from the light splitter at the reference line. It has the highest height at the part where it meets the reference line at a 360 degree radius from the reference line to have the closest distance to the light splitter.
  • the path length change rotating body includes a refracting rotating body 40 having a refracting part 41 positioned in a path through which light passes and refracting light, and the refracting part 41 has a circumference. It is formed to have a shape having a different thickness in the direction can cause the effect of changing the length of the optical path due to the difference in the transmission speed of the light transmitted to the light-receiving unit 52, an embodiment thereof with reference to Figures 6 and 7 It demonstrates in detail below.
  • the refractive rotating body 40 is rotated by receiving the rotational force of the rotary motor 10, the optical path length change device for measuring a three-dimensional surface according to the present invention is the refractive force of the rotational motor 10 for the refractive It may further include a rotation force transmission unit 11 for transmitting to the rotating body 40.
  • the rotational force transmitting unit 11 is an example of transmitting the rotational force of the rotary motor 10 to the refractive rotating body 40 in a belt structure.
  • the refraction portion 41 is formed in a ring shape on the front surface of the refraction rotating body 40, that is, a surface facing the light source, and is positioned to transmit light emitted from the light source.
  • the refracting portion 41 has a step shape having a plurality of layers gradually increasing in a 360 degree radius with respect to the reference line passing through the center of rotation of the refractive rotor 40, so that the distance transmitted from the first layer at the reference line is the most.
  • the part 51 and the light-receiving part which have a shortest distance between the light-receiving part 51 and the light-receiving part 52 and the longest distance transmitted in the last layer of a 360 degree radius from the reference line are shortest.
  • the distance refracted to have the longest distance between the two 52 is gradually increased in the circumferential direction.
  • the refractive rotating body 40 is rotated about a rotation axis arranged in parallel with the light emitted from the light source, and the height of the light passing through the portion 51 to which the light is irradiated is the highest in the first layer having the lowest height. Refracted and transmitted sequentially up to the last high layer, the transmission distance of each layer is gradually increased from the first layer to the last layer having the highest height so that the distance between the light-receiving portion 52 and the light-receiving portion 52 is gradually increased. do. In addition, the rotation of the refraction rotating body 40 is repeated to be transmitted and refracted sequentially from the first layer having the lowest height to the last layer having the highest height.
  • the refracting portion 41 has a flat refracting surface and is formed in a step shape in which the height is sequentially increased to improve the accuracy of light collected by the flat refracting surface.
  • the refraction portion 41 is formed as an inclined surface whose height gradually increases with a radius of 360 degrees with respect to the reference line passing through the center of rotation of the refraction rotating body 40, thereby gradually increasing the length of light transmission so that the light is reflected from the reference line.
  • the portion 51 and the light-receiving portion 52 and the light-receiving portion 52 to which the light is irradiated to have the highest distance between the irradiated portion 51 and the light-receiving portion 52 closest to each other and meet the baseline at a 360 degree radius from the baseline Make the distance between them the most.
  • the refracting portion 41 is rotated around a side of the axis of rotation that is emitted from the light source, the light has a slope in which the height gradually increases from the reference line of the lowest height by the rotation of the refractive body 40 What is refracted and transmitted through the refraction portion 41 continues to be repeated.
  • the refracting portion 41 is formed with an inclined surface that is sequentially increased in height so as to easily secure data continuously.
  • the present invention changes the path of the light to the rotating body and is formed so that the rotating body has an inclined surface can easily secure continuous data.
  • the present invention changes the path of the light to the rotating body and the planar reflecting surface or refracting surface is formed in a step shape to improve the accuracy of the collected light.
  • the present invention is to adjust the distance of the light or the refractive index of the light reflected only by the rotational movement to constantly change the distance and the refractive index of the light when the rotational movement is a constant speed can accurately adjust the distance or the refractive index of the light.
  • the present invention can be used if only the parallelism between the reference beam (rotational axis) and the rotation axis is matched to improve the convenience when setting the alignment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

La présente invention concerne un appareil pour modifier un trajet optique pour une mesure de surface tridimensionnelle; comprend une partie de réflexion de modification de trajet en forme d'anneau ou une partie de réfraction en forme d'anneau pour modifier un trajet de lumière à l'aide d'un corps rotatif mis en rotation par un moteur; ce qui permet d'obtenir facilement des données consécutives en raison de la rotation du corps rotatif, améliore la précision de la collecte de lumière, et peut ajuster avec précision la distance ou l'indice de réfraction de la lumière réfléchie en réglant la distance ou l'indice de réfraction de la lumière réfléchie en utilisant uniquement un mouvement de rotation de telle sorte que la distance et l'indice de réfraction de la lumière sont constamment modifiés par un mouvement de rotation ayant une vitesse constante, et peut être utilisé tant que le degré de parallélisme entre un faisceau de référence et un axe de rotation est correct, ce qui permet d'améliorer la commodité lors du réglage d'un alignement.
PCT/KR2017/007512 2016-07-13 2017-07-13 Appareil pour modifier la longueur d'un chemin optique pour une mesure de surface tridimensionnelle WO2018012898A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0088697 2016-07-13
KR1020160088697A KR20180007539A (ko) 2016-07-13 2016-07-13 3차원 표면 측정용 광경로 길이 변경장치

Publications (1)

Publication Number Publication Date
WO2018012898A1 true WO2018012898A1 (fr) 2018-01-18

Family

ID=60953241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007512 WO2018012898A1 (fr) 2016-07-13 2017-07-13 Appareil pour modifier la longueur d'un chemin optique pour une mesure de surface tridimensionnelle

Country Status (2)

Country Link
KR (1) KR20180007539A (fr)
WO (1) WO2018012898A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220221672A1 (en) * 2021-01-08 2022-07-14 Ezconn Corporation Optical path length adjusting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078617A2 (fr) * 2007-12-14 2009-06-25 Intekplus Co., Ltd Système de mesure d'une forme superficielle et procédé de mesure d'une forme superficielle utilisant le système
KR20100060058A (ko) * 2008-11-27 2010-06-07 부산대학교 산학협력단 광간섭현상을 이용한 광학측정시스템 및 그를 위한 광지연길이 연장방법
KR20110060041A (ko) * 2009-11-30 2011-06-08 (주)그린광학 3차원 표면 형상 측정 장치 및 방법과 그 시스템
KR20120012555A (ko) * 2010-08-02 2012-02-10 광주과학기술원 점진적으로 굴절률이 변하는 실리콘 다층 무반사막 및 그 제조방법 및 이를 구비하는 태양전지 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078617A2 (fr) * 2007-12-14 2009-06-25 Intekplus Co., Ltd Système de mesure d'une forme superficielle et procédé de mesure d'une forme superficielle utilisant le système
KR20100060058A (ko) * 2008-11-27 2010-06-07 부산대학교 산학협력단 광간섭현상을 이용한 광학측정시스템 및 그를 위한 광지연길이 연장방법
KR20110060041A (ko) * 2009-11-30 2011-06-08 (주)그린광학 3차원 표면 형상 측정 장치 및 방법과 그 시스템
KR20120012555A (ko) * 2010-08-02 2012-02-10 광주과학기술원 점진적으로 굴절률이 변하는 실리콘 다층 무반사막 및 그 제조방법 및 이를 구비하는 태양전지 및 그 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220221672A1 (en) * 2021-01-08 2022-07-14 Ezconn Corporation Optical path length adjusting device

Also Published As

Publication number Publication date
KR20180007539A (ko) 2018-01-23

Similar Documents

Publication Publication Date Title
US6975410B1 (en) Measuring device
WO2016115704A1 (fr) Système de mesure par laser et procédé apte à détecter 21 erreurs géométriques
WO2013036076A2 (fr) Dispositif et procédé permettant de mesurer des formes tridimensionnelles au moyen de l'amplitude d'une grille de projection
WO2018212395A1 (fr) Dispositif lidar et système lidar comprenant ce dernier
WO2013058422A1 (fr) Dispositif de mesure de distance
WO2021033860A1 (fr) Dispositif et procédé de mesure de l'épaisseur d'un film mince multicouche à l'aide d'une réflectométrie spectroscopique à résolution angulaire en une fois
WO2013105830A1 (fr) Interféromètre utilisant la polarisation asymétrique et dispositif optique utilisant l'interféromètre
WO2018012898A1 (fr) Appareil pour modifier la longueur d'un chemin optique pour une mesure de surface tridimensionnelle
EP1795862B1 (fr) Méthode pour mesurer l'épaisseur d'objets transparents
WO2021096095A1 (fr) Système lidar
WO2013094791A1 (fr) Appareil de mesure de distance
WO2015105295A1 (fr) Spectroradiomètre de mesure d'angle à grande vitesse et son procédé de mesure
EP0180633A1 (fr) Dispositif de mesure optique du mouvement.
WO2013094818A1 (fr) Codeur optique
WO2014148781A1 (fr) Dispositif de mesure de forme tridimensionnelle susceptible de mesurer des informations de couleurs
US20210381827A1 (en) Detection device for detecting lens surface in stitching interferometer
TWM623844U (zh) 鏡頭檢測裝置
WO2019078401A1 (fr) Dispositif lidar et système le comprenant
JPS6210379B2 (fr)
WO2024063203A1 (fr) Dispositif de détection de position de structure et boîtier de scanner mems le comprenant
JP2005003667A (ja) 基準軸設定光学系、並びにこれを用いた偏心量測定機及び偏心測定方法
WO2023146085A1 (fr) Appareil d'inspection optique
JPH04268433A (ja) 非球面レンズ偏心測定装置
WO2023204359A1 (fr) Appareil et procédé d'analyse de polarisation par réglage d'angle d'incidence ou d'ouverture numérique à l'aide d'ouvertures
WO2024005607A1 (fr) Système de reconnaissance d'objets dans une zone de détection, au moyen d'un lidar flash

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827968

Country of ref document: EP

Kind code of ref document: A1