WO2018012766A1 - 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018012766A1
WO2018012766A1 PCT/KR2017/006881 KR2017006881W WO2018012766A1 WO 2018012766 A1 WO2018012766 A1 WO 2018012766A1 KR 2017006881 W KR2017006881 W KR 2017006881W WO 2018012766 A1 WO2018012766 A1 WO 2018012766A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information
transmission
uplink data
identifying
Prior art date
Application number
PCT/KR2017/006881
Other languages
English (en)
French (fr)
Inventor
서인권
김기준
김은선
안준기
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/316,609 priority Critical patent/US10772124B2/en
Publication of WO2018012766A1 publication Critical patent/WO2018012766A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/02Hybrid access techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/007Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting or receiving an uplink signal according to a contention-based or non-competition-based transmission scheme.
  • eMBB enhanced mobile broadband
  • RATs radio access technologies
  • massive MTC massive machine type communications, mMTC
  • URLLC Ultra-Reliable and Low Latency Communication
  • New RAT new radio access technology
  • An object of the present invention is to provide a method and apparatus for transmitting or receiving an uplink signal more efficiently and accurately in a wireless communication system supporting both a contention-based and a non-competition-based transmission. .
  • a method for transmitting an uplink signal by a terminal indicates one of a contention-based transmission method and a contention-based transmission method.
  • the terminal further identifies the terminal in addition to the uplink data. While transmitting information, the terminal may prioritize the successful transmission of information for identifying the additionally transmitted terminal rather than the successful transmission of the uplink data.
  • Terminal for transmitting an uplink signal in a wireless communication system according to another aspect of the present invention for achieving the above technical problem, a receiver; transmitter; And receiving information indicating one of a contention-based transmission scheme and a contention-free transmission scheme from the base station by controlling the receiver, and upwardly to a transmission scheme indicated by the received information by controlling the transmitter. And a processor for transmitting link data, wherein if the indicated transmission scheme is a contention-based transmission scheme, the processor transmits information for identifying the terminal in addition to the uplink data, wherein the processor transmits the uplink data. It is possible to prioritize the successful transmission of information for identifying the terminal to be additionally transmitted rather than the successful transmission of.
  • the terminal sets a transmission power of information for identifying the terminal to be larger than a transmission power of the uplink data, or sets a coding rate of information for identifying the terminal to a coding rate of the uplink data.
  • the uplink data may be scrambled with information for identifying the terminal, and the information for identifying the terminal may be scrambled with a cell identifier of the base station.
  • the received information indicates the non-competition based transmission scheme.
  • the received information is represented.
  • the contention-based transmission scheme may be indicated.
  • the terminal determines that both transmission of the uplink data and transmission of information for identifying the terminal are successful when an acknowledgment signal is received, and when a terminal-specific NACK signal is received, If it is determined that the transmission of information for identifying the terminal is successful but the transmission of the uplink data has failed, and the broadcast NACK signal is received without receiving the ACK signal, the transmission of the uplink data and the terminal are identified. It can be determined that the transmission of the information for all failed.
  • the UE-specific NACK signal includes an uplink grant for retransmission of the uplink data, and the UE retransmits the uplink data in a non-competition based transmission scheme based on the uplink grant. Can be.
  • ACK acknowledgment
  • NACK negative ACK
  • the terminal may request the base station to switch to the non-competition based transmission scheme by transmitting a scheduling request signal, but the scheduling request signal may be transmitted in the contention based transmission scheme.
  • the scheduling request signal may include at least one of information for identifying the terminal and a buffer status report.
  • a method for receiving an uplink signal by a base station indicates one of a contention-based transmission method and a contention-free transmission method. Transmitting said information; Detecting uplink data of a terminal according to a transmission scheme indicated by the transmitted information; And transmitting an acknowledgment (ACK) signal or a negative ACK (NACK) signal to the terminal according to whether the uplink data has been successfully detected.
  • the indicated transmission scheme is a contention-based transmission scheme
  • the base station includes: In addition to the uplink data, an attempt to detect information for identifying the terminal can be performed, and the ACK signal can be transmitted when both detection of the uplink data and detection of information for identifying the terminal are successful.
  • the base station If the base station succeeds in detecting the information for identifying the terminal but fails in detecting the uplink data, the base station transmits a terminal-specific NACK (Negative ACK) signal, and if the detection of the information for identifying the terminal fails
  • the broadcast NACK signal may be transmitted.
  • the UE-specific negative acknowledgment (NACK) signal includes an uplink grant for retransmission of the uplink data, and the base station selects the uplink data retransmitted in a non-competition based transmission scheme based on the uplink grant. Can be received.
  • NACK negative acknowledgment
  • the uplink data may be de-scrambled with information for identifying the terminal, and the information for identifying the terminal may be de-scrambled with a cell identifier of the base station.
  • the transmitted information indicates the non-competition based transmission scheme.
  • the transmitted information is represented.
  • the contention-based transmission scheme may be indicated.
  • the uplink signal can be adaptively transmitted to the communication environment by setting / switching the contention-based transmission method or the non-competition-based transmission method, and in particular, the contention-based transmission method is uplinked.
  • the contention-based transmission method is uplinked.
  • FIG. 1 illustrates physical channels used in a 3GPP LTE / LTE-A system and a general signal transmission method using the same.
  • FIG. 2 illustrates a structure of a radio frame of the 3GPP LTE / LTE-A system.
  • FIG 3 illustrates a resource grid of a downlink slot of a 3GPP LTE / LTE-A system.
  • FIG. 4 shows a structure of a downlink subframe of a 3GPP LTE / LTE-A system.
  • FIG. 5 illustrates a structure of an uplink subframe of a 3GPP LTE / LTE-A system.
  • FIG. 6 illustrates the structure of a self-contained subframe in accordance with an embodiment of the present invention.
  • FIG. 7 illustrates a downlink self-containing subframe and an uplink self-containing subframe according to an embodiment of the present invention.
  • FIG. 8 illustrates a method of transmitting and receiving a signal according to an embodiment of the present invention.
  • FIG 9 illustrates a terminal and a base station according to an embodiment of the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • New RAT Before discussing New RAT, let's take a quick look at the 3GPP LTE / LTE-A system.
  • the following description of 3GPP LTE / LTE-A may be referred to to help understand New RAT, and some LTE / LTE-A operations and settings that do not conflict with the design of New RAT may be applied to New RAT.
  • New RAT may be referred to as 5G mobile communication for convenience.
  • FIG. 1 is a diagram for explaining physical channels used in a 3GPP LTE / LTE-A system and a general signal transmission method using the same.
  • the terminal which is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S101.
  • the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and acquires information such as a cell ID. do.
  • the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDSCH) according to the physical downlink control channel (PDCCH) and the physical downlink control channel information in step S102.
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • System information can be obtained.
  • the terminal may perform a random access procedure such as steps S103 to S106 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S104).
  • PRACH physical random access channel
  • S105 additional physical random access channel
  • S106 reception of a physical downlink control channel and a corresponding physical downlink shared channel
  • the UE After performing the above-described procedure, the UE performs a physical downlink control channel / physical downlink shared channel reception (S107) and a physical uplink shared channel (PUSCH) / as a general uplink / downlink signal transmission procedure.
  • the physical uplink control channel (PUCCH) transmission (S108) may be performed.
  • the control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes Hybrid Automatic Repeat ReQuest Acknowledgment / Negative-ACK (HARQ ACK / NACK), Scheduling Request (SR), Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Rank Indication (RI), and the like.
  • HARQ ACK / NACK is simply referred to as HARQ-ACK or ACK / NACK (A / N).
  • HARQ-ACK includes at least one of positive ACK (simply ACK), negative ACK (NACK), DTX, and NACK / DTX.
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • the downlink radio frame consists of 10 subframes, and the subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • an OFDM symbol represents one symbol period.
  • An OFDM symbol may also be referred to as an SC-FDMA symbol or symbol period.
  • the RB may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in the slot may vary according to a cyclic prefix (CP) configuration.
  • CP has an extended CP (normal CP) and a normal CP (normal CP).
  • normal CP when an OFDM symbol is configured by a normal CP, the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by the extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the normal CP.
  • the number of OFDM symbols included in one slot may be six.
  • an extended CP may be used to further reduce intersymbol interference.
  • one subframe includes 14 OFDM symbols.
  • the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2 (b) illustrates the structure of a type 2 radio frame.
  • Type 2 radio frames consist of two half frames, each of which has five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • One subframe consists of two slots.
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot may be variously changed.
  • FIG. 3 illustrates a resource grid of a downlink slot.
  • the downlink slot includes a plurality of OFDM symbols in the time domain.
  • One downlink slot may include 7 (6) OFDM symbols and the resource block may include 12 subcarriers in the frequency domain.
  • Each element on the resource grid is referred to as a resource element (RE).
  • One RB contains 12x7 (6) REs.
  • the number N RBs of the RBs included in the downlink slot depends on the downlink transmission band.
  • the structure of an uplink slot is the same as that of a downlink slot, and an OFDM symbol is replaced with an SC-FDMA symbol.
  • FIG. 4 illustrates a structure of a downlink subframe.
  • up to three (4) OFDM symbols located at the front of the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to data regions to which the Physical Downlink Shared CHannel (PDSCH) is allocated.
  • the PDSCH is used to carry a transport block (TB) or a codeword (CodeWord, CW) corresponding thereto.
  • a transport block refers to a data block transferred from a medium access control (MAC) layer to a physical (PHY) layer through a transport channel.
  • the codeword corresponds to the encoded version of the transport block. Correspondence between the transport block and the codeword may vary according to swapping.
  • a PDSCH, a transport block, and a codeword are mixed with each other.
  • Examples of a downlink control channel used in LTE (-A) include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid ARQ Indicator Channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries a HARQ-ACK (Hybrid Automatic Repeat reQuest Acknowledgment) signal in response to uplink transmission.
  • HARQ-ACK Hybrid Automatic Repeat reQuest Acknowledgment
  • HARQ-ACK response includes a positive ACK (simple, ACK), negative ACK (Negative ACK, NACK), DTX (Discontinuous Transmission) or NACK / DTX.
  • HARQ-ACK is mixed with HARQ ACK / NACK, ACK / NACK.
  • DCI downlink control information
  • Tx uplink transmission
  • 5 illustrates a structure of an uplink subframe.
  • an uplink subframe includes a plurality of slots (eg, two).
  • the slot may include different numbers of SC-FDMA symbols according to a cyclic prefix (CP) length.
  • the uplink subframe is divided into a data region and a control region in the frequency domain.
  • the data area includes a PUSCH and is used to transmit a data signal such as voice.
  • the control region includes a PUCCH and is used to transmit uplink control information (UCI).
  • UCI uplink control information
  • the PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary.
  • the PUCCH may be used to transmit control information of a scheduling request (SR), HARQ-ACK, and / or channel state information (CSI).
  • SR scheduling request
  • HARQ-ACK HARQ-ACK
  • CSI channel state information
  • the 3GPP LTE system is designed with a frame structure with 1ms TTI, and the data request delay time is 10ms for video applications.
  • future 5G technologies will require lower latency data transmissions with the emergence of new applications such as real-time control and tactile internet, and 5G will reduce data by about 10 times compared to the past. It aims to provide delay.
  • FIG. 6 illustrates a self-contained subframe newly proposed for New RAT.
  • resource sections eg, a downlink control channel and an uplink control channel
  • downlink control channel e.g., a downlink control channel and an uplink control channel
  • the hatched area represents the downlink control area, and the black part represents the uplink control area.
  • An area without an indication may be used for downlink data transmission or may be used for uplink data transmission.
  • DL transmission and UL transmission are sequentially performed in one subframe.
  • the base station may transmit DL data in one subframe and may also receive UL ACK / NACK.
  • the UE may transmit UL data in one subframe and may also receive DL ACK / NACK.
  • the meaning of self-contained may cover receiving a response (ACK / NACK) for a DL or UL transmitted in the corresponding subframe in the corresponding subframe.
  • ACK / NACK ACK / NACK
  • the DL control information, the DL / UL data, and the UL control information may all be included in the following. It is defined as a subframe that can be included. That is, the UL control information of the self-contained subframe is not necessarily limited to HARQ-ACK information on the DL data transmitted in the corresponding subframe.
  • a time gap is required for a base station and a UE to switch from a transmission mode to a reception mode or a process of switching from a reception mode to a transmission mode.
  • at least one OFDM symbol corresponding to a time point of switching from DL to UL in a self-contained subframe structure is set to a guard period (GP).
  • subframes are configured in the order of DL control region-data region-UL control region, but the present invention is not limited thereto.
  • subframes may be configured in the order of a DL control region-UL control region-data region.
  • a total of 14 OFDM symbols are included in one subframe and 1 OFDM symbol is allocated to each of the DL control region and the UL control region.
  • one OFDM frame is allocated to the DL control region and the UL control region.
  • the above OFDM symbol may be allocated.
  • the total number of OFDM symbols included in one subframe may also be changed.
  • FIG. 7 illustrates a DL subframe and an UL subframe according to an embodiment of the present invention.
  • the GP is located at a time point of switching from DL to UL. For example, in a DL subframe, the GP is located between the DL data area and the UL control area, and in the UL subframe, the GP is located between the DL control area and the UL data area.
  • the GP may include a Tx / Rx switching time of the eNB / UE and a timing advance (TA) for UL transmission of the UE.
  • TA timing advance
  • the wavelength is shortened, so that a plurality of antenna elements may be installed in the same area.
  • the wavelength is 1 cm, and a total of 100 antenna elements may be arranged two-dimensionally at a 0.5 ⁇ (wavelength) interval in a panel of 5 ⁇ 5 cm. Therefore, according to the mmW scheme, the beamforming gain is improved by increasing the number of antenna elements, and the coverage and / or the throughput improvement are expected.
  • TXRU Transceiver Unit
  • this analog beamforming method has a disadvantage in that the beam is formed in the same direction for the entire band, so that frequency selective beamforming cannot be performed.
  • hybrid beamforming may be considered that maps a total of B (where, B ⁇ Q) TXRUs for a total of Q antenna elements.
  • B TXRUs and Q antenna elements are interconnected, the direction of beams that can be transmitted simultaneously is generally limited to B or less.
  • contention based UL transmission may be considered for purposes of latency reduction, signaling overhead reduction, power saving, and the like.
  • contention-based uplink transmission may mean that the UE performs UL transmission using any resource within a given resource region without precise allocation of UL resources and timing.
  • the contention-based uplink transmission may mean that the UE performs UL transmission without the UL grant (i.e., control signaling for uplink transmission) defined in the LTE system.
  • the contention-based uplink transmission in the present specification may be applied only to some of various UL transmission signals (e.g., SR, BSR, PUSCH, PUCCH, SRS) defined in UL of the existing LTE.
  • contention-based transmission may be applied only to a scheduling request (SR) and a buffer status report (BSR), or contention-based transmission may be applied only to initial transmission of a PUSCH.
  • SR scheduling request
  • BSR buffer status report
  • contention-based transmission may not be applied to transmission of a channel for which contention-based transmission is not defined or retransmission of the PUSCH.
  • contention-based transmission can reduce latency and overhead for transmitting and receiving control signaling, and power saving by reducing blind detection of the UE for control signaling when there is no uplink transmission. Has the effect of.
  • contention-based transmission since there is no dedicated resource allocation for each UE for uplink transmission, the network has a disadvantage in that it is difficult to specify a UE that performs uplink transmission on a specific resource.
  • ACK / NACK transmission based on UE ID may be considered.
  • a UE ID may be inserted in the form of a physical layer message or a higher layer message in a PUSCH transport block (TB). Accordingly, the base station correctly decoding the PUSCH TB can identify the UE transmitting the corresponding PUSCH TB through the UE ID. Conversely, if the base station fails to decode the uplink transmission of the UE, there is a disadvantage in that it cannot specify the transmitting UE.
  • the base station may broadcast a NACK to inform that the decoding failed in the corresponding resource.
  • a method for transmitting a NACK to UE-dedicated signaling by a base station is proposed.
  • the base station In order for the base station to transmit the NACK in a UE-dedicated manner, at least the base station should be able to correctly obtain the UE ID information even if the base station fails to decode the corresponding uplink transmission. Therefore, a high priority may be given to the UE ID in the 'message + UE ID' transmitted in the contention-based transmission. For example, a signal corresponding to the UE ID may be transmitted at a higher power than the message or may be transmitted at a low coding rate.
  • a signal corresponding to a message and a signal corresponding to a UE ID may be transmitted separately from each other.
  • the message and the UE ID may be performed in different resource regions.
  • the UE ID when a signal transmitted in a contention-based UL transmission scheme is an SR, a BSR, and / or a PUSCH, the UE ID may be transmitted in the form of a PUCCH.
  • the PUCCH for transmitting the UE ID may be transmitted together with the SR, BSR and / or PUSCH.
  • the PUCCH for UE ID transmission may be transmitted in a PUCCH region (i.e., control region) or may be transmitted in a PUSCH region (i.e., data region).
  • the region in which the PUCCH is transmitted may be distinguished from the region in which the SR, BSR and / or PUSCH is transmitted even in the PUSCH region.
  • the PUCCH for UE ID transmission may be transmitted in the last symbol (s) of the data region or in the symbol (s) adjacent to the symbol in which the uplink RS is transmitted or in the uplink RS.
  • PUCCH for UE ID transmission may be transmitted in the same frequency domain as the SR, BSR, PUSCH in the frequency domain.
  • the message and the UEID may be transmitted by time division frequency multiplexing (TDM).
  • TDM time division frequency multiplexing
  • HARQ process number, initial / re-transmission status, RV index, and / or resource allocation information for data may be transmitted to the PUCCH (e.g. new UCI defined for UE ID transmission) for transmitting the UE ID.
  • a PUCCH format including a UE ID field may be newly defined for UE ID transmission, or a UE ID may be included in SR / BSR / PUSCH TB and transmitted without defining a PUCCH format.
  • Some predefined regions of OFDM symbols or PUSCH transmission resources may be used for UE ID transmission.
  • the content e.g., HARQ process number, etc.
  • a power / coding rate may be separately provided.
  • the PUCCH and the message for transmitting the UE ID may be transmitted on different resource pools (e.g., different subframes).
  • the PUCCH may include resource allocation information for performing SR / BSR / PUSCH transmission associated with the corresponding PUCCH. That is, a UE that intends to transmit SR / BSR / PUSCH may perform a PUCCH transmission including a UE ID in advance, and the corresponding PUCCH may include resource allocation information for UE ID and SR / BSR / PUSCH transmission.
  • the resource pool for PUCCH transmission may be signaled to the UE separately from the resource pool for PUSCH transmission, and the power and / or coding rate in each resource pool may be set differently.
  • the resource region for PUCCH transmission may be delivered through UE-specific RRC signaling.
  • the network may signal an ACK message to the corresponding UE. If the network succeeds in PUCCH decoding but fails in PUSCH decoding, the network may signal a NACK message to the corresponding UE based on the UE ID obtained from the PUCCH. If the network fails to decode both the PUCCH and the PUSCH, the network cannot specify the transmitting UE, so if it does not perform additional operations or if the network fails to detect the UE ID, it broadcasts a NACK to the unspecified multiple UEs. You can also cast
  • the UE may perform new transmission or retransmission according to the received ACK / NACK message. If the UE does not receive the ACK / NACK message, it may perform PUCCH / PUSCH retransmission, or request the network to switch to the admission-based transmission.
  • the UE performs retransmission, even if retransmission is performed in the same resource pool as the method of lowering the collision probability by increasing the coding rate or performing retransmission in a large resource pool (hereinafter, Type 1).
  • admission-based transmission may be applied for retransmission. That is, contention-based transmission may be defined limited to initial transmission.
  • NACK signaling among ACK / NACK signaling for contention-based transmission may include resource allocation for retransmission, power boosting / de-boosting information, MCS information, and the like.
  • ACK information may be specified or information (e.g., MCS / resource allocation information) for performing initial / retransmission may be included in the corresponding ACK / NACK signaling. For example, if the MCS / resource allocation information included in the ACK / NACK signaling is null or a specific state, the UE may recognize that the uplink transmission previously transmitted is ACK and there is no PUSCH transmission thereafter.
  • the ACK / NACK signaling proposed above may be indicated by using NDI, MCS, etc. of the existing DCI.
  • ACK / NACK signaling for PUCCH / PUSCH transmitted by the UE may be transmitted in the form of UL grant.
  • the ACK / NACK field for ACK / NACK signaling is not separately defined in the UL grant, but different ACK / NACK states may be indicated according to combinations of respective field values in the UL grant.
  • the NDI field of the UL grant is toggled to correspond to the initial transmission indication, but if the MCS (and / or field such as resource allocation, DMRS CS, etc.) field is a null state or is a predefined specific state, It may mean that a past UL transmission associated with a corresponding UL grant is an ACK.
  • NACK signaling instead of defining a separate ACK / NACK field in the UL grant, when the existing field (s) is a specific state or a specific combination, it may be defined as NACK.
  • a mixture of contention-based transmission and contention-free transmission (e.g., admission-based transmission) may be used.
  • the hybrid multiple access scheme may be implemented in conjunction with the resource allocation and ACK / NACK signaling proposed above. For example, if the UE does not receive the ACK for the contention-based uplink transmission for a predetermined time, performs a certain number of retransmissions but does not receive the ACK, and / or receives a certain number of NACKs, the grant-based The network may request to switch to uplink transmission.
  • a UE that meets such a condition may transmit an SR to allow the network to schedule uplink transmission using orthogonal resources or semi-orthogonal resources.
  • each UE may be allocated an SR resource in advance through UE (or UE group) -dedicated signaling.
  • the SR resource may be set periodically and in this case, the UE may operate as follows.
  • the UE which has performed the contention-based uplink transmission at the first time point is the SR resource closest to the first time point (second time point) or the SR resource closest to the SR resource spaced apart from the first time period by SR period (third time point).
  • SR period third time point.
  • the UE may request an uplink grant by transmitting an SR through the corresponding SR resource.
  • contention-based transmission and admission-based transmission may be distinguished according to initial transmission / retransmission. That is, in order to reduce overhead due to initial resource allocation and the like, the initial transmission may transmit and receive a contention-based transmission method, and in the subsequent retransmission, the admission-based transmission may be performed for efficient transmission and reception.
  • contention-based or approval-based transmission may be determined for each uplink channel and / or signal may be determined.
  • SR transmission is performed on a contention basis, and a network that successfully receives the SR may transmit a UL grant to the UE in response to the SR.
  • ACK / NACK for contention based SR may be replaced with a corresponding UL grant.
  • the failure of the UE to receive the UL grant may be regarded as a NACK for the SR, and the methods proposed above may be used to signal ACK / NACK through the UL grant.
  • the UE may determine whether to ACK / NACK through each field value (s) or a combination thereof in the UL grant, or NACK broadcasting or the like may be introduced.
  • contention-based transmission may be inefficient due to an increase in collision probability. Accordingly, when the number of UEs connected to the cell is greater than or equal to a certain number and / or when the decoding success ratio to resources does not reach a certain level, the network may not compete through broadcast signals (eg, MIB / SIB) or higher layer signaling. (contention free) switching to uplink transmission (eg, grant based uplink transmission) may be indicated to UEs in coverage. This switching of the uplink transmission scheme may be indicated to all UEs in the coverage, the UE individually, or the UE group. For example, when a UE that prefers a specific analog beam is above a certain level, the eNB may instruct UEs associated with the analog beam to perform grant-based uplink transmission.
  • broadcast signals eg, MIB / SIB
  • uplink transmission eg, grant based uplink transmission
  • the content transmitted in the uplink includes data, scheduling request (SR), buffer status report (BSR), ACK / NACK for downlink transmission, channel state information (CSI), and sounding reference signal for uplink channel measurement ( SRS) and random access related PRACH.
  • SR scheduling request
  • BSR buffer status report
  • ACK / NACK for downlink transmission
  • CSI channel state information
  • SRS sounding reference signal for uplink channel measurement
  • PRACH random access related PRACH
  • some of the uplink content may be transmitted on a contention basis, and others may be transmitted on an approval basis.
  • channel state information between the eNB and the UE, ACK / NACK signaling, downlink SRS, etc. for downlink transmission may be transmitted on a predetermined resource or transmitted based on a request of the eNB.
  • uplink data, SR, BSR, PRACH, etc. generated by the needs of the UE it is preferable to perform contention-based transmission in order to reduce signaling overhead and reduce delay.
  • uplink data may be determined whether contention-based transmission is performed according to data size (that is, amount of resources required for uplink transmission). For example, data below a certain size may be transmitted on a contention basis, and data larger than a certain size may be predefined or indicated by the network to be sent on a grant basis.
  • data size that is, amount of resources required for uplink transmission
  • a UE-dedicated resource for SR transmission is defined, and when there is data to perform uplink transmission, the UE may request an uplink resource from the network by transmitting an SR to the corresponding resource.
  • SR resources are allocated to all devices capable of performing uplink transmission, resource utilization may be inefficient due to a large amount of resources to be reserved. Therefore, in one embodiment of the present invention, it is proposed to transmit and transmit an SR on a contention basis.
  • the contention-based SR transmission may cause a problem that the network cannot specify the transmitting UE. Therefore, when contention-based SR transmission, the SR preferably includes information for UE identification such as UE ID. In this case, the UE ID may be transmitted together with the SR or independently.
  • SR is defined as 1-bit signaling because it is transmitted in UE dedicated resources and only plays a role of notifying whether uplink scheduling is required.
  • the existing 1-bit SR transmission may be replaced by the UE transmitting only its UE ID (or information corresponding to the UE ID). That is, a UE requiring uplink resources transmits a UE ID on a contention basis in a given resource pool.
  • the network which has successfully decoded the message including the UE ID may allocate uplink resources to the UE.
  • the UL grant for allocating an uplink resource may be interpreted as ACK signaling for the SR.
  • the corresponding SR transmission may further include additional information.
  • the BSR may be included in the SR to specifically indicate a required uplink resource amount. That is, although the SR and the BSR are individually transmitted to the existing LTE system, according to the embodiment of the present invention, the SR and the BSR may be transmitted together on a contention basis.
  • uplink transmission data performed after the SR separately from the BSR included in the SR may include the BSR information, which may be for increasing / decreasing the amount of scheduled uplink resources.
  • the UE may include the BSR in the uplink data at the request of the network or at its own discretion.
  • the UE may independently transmit a UE ID and an SR (and / or BSR).
  • the area in which the UE ID is transmitted includes resource allocation information in which the SR (and / or BSR) is transmitted, or the association between the resource in which the UE ID is transmitted and the resource in which the SR (and / or BSR) is transmitted is preliminary. It may be defined in or signaled by the network.
  • the UE ID may be transmitted independently regardless of a resource for transmitting an SR and a resource for transmitting an SR (and / or BSR). In this case, the network may perform blind detection for both messages.
  • SR transmission may include information on uplink resources required for the UE and information necessary for uplink scheduling (e.g., measurement of serving cell and / or beam), and the like.
  • the complexity of the base station reception operation may increase rapidly.
  • a relatively low resource uplink transmission has a high probability of receiving performance deterioration due to interference from a large resource amount uplink transmission.
  • the resource amount (s) that can be transmitted and received can be predefined in a resource region (e.g., a resource pool for contention-based transmission) in which contention-based transmission is performed.
  • a resource region e.g., a resource pool for contention-based transmission
  • contention-based uplink transmissions having different resource sizes may be performed in different resource pools.
  • uplink transmissions having different resource sizes may be performed on the same resource region according to a predefined or network signaling.
  • information for UE identification may be transmitted together with data or independently.
  • the UE ID may be included in the data and transmitted in the form of an upper layer message.
  • the UE ID is included in the data transmission resource unit, but may be transmitted separately from the actual data in the frequency / time domain and have a self-decodable characteristic.
  • the separate transmission may mean that the coding chains of the data and the UE ID are configured differently.
  • the base station may perform decoding on the UE ID and data, respectively, and an association between the UE ID and each resource on which data is transmitted (eg, time / frequency offset) is included as additional information in the UE ID transmission or is defined in advance. / Can be set
  • the network may broadcast information about the association between each resource within coverage or transmit via UE-specific or UE group-specific signaling.
  • a resource association relationship between a transmission resource of a UE ID and a data transmission may be defined based on a channel bandwidth or a size of a resource pool. Such a definition of resource association may be equally applied to the aforementioned SR related embodiments.
  • scrambling for each may be set as follows.
  • Scrambling based on cell ID and / or beam ID is equally applied to UE ID and data for randomization of inter-cell interference and / or inter-beam interference Can be.
  • collisions may occur between uplink transmissions of different UEs, and scrambling based on UE ID may be applied to UE ID and data to randomize interference due to collision.
  • the base station may predetermine a resource pool that can be used for each UE or for each UE group.
  • the UE may transmit the UE ID and data to which UE ID based scrambling is applied in the allocated resource pool in a contention-based transmission scheme.
  • the decoding complexity of the base station may increase.
  • the UE may perform scrambling based on cell ID and / or beam ID, and perform scrambling on data by performing UE ID based scrambling.
  • ACK / NACK signaling for the contention-based transmission may be replaced with a UL grant for scheduling uplink resources. That is, the UE receiving the UL grant after the contention-based SR transmission may consider that uplink transmission is successful. On the other hand, the UE that has not received the UL grant may perform a subsequent process such as considering the uplink transmission as a NACK and performing retransmission.
  • the network may transmit an ACK message to the corresponding UE through a format such as DCI based on the received UE ID.
  • the network may transmit a NACK message to the corresponding UE through a format such as DCI based on the received UE ID. Receiving this, the UE considers that the UE ID transmission is successful but the data transmission has failed, and may operate as follows.
  • retransmission of data may be transmitted by applying a redundancy version (RV) index different from the previous transmission.
  • RV redundancy version
  • the base station may combine the data in each transmission by applying an incremental redundancy (IR) technique.
  • IR incremental redundancy
  • the base station may combine data of each transmission using a chase combining technique.
  • the UE may retransmit the UE ID and data via contention based transmission.
  • a resource pool for retransmission may be allocated independently of the resource pool for initial transmission.
  • the base station may include resource allocation information, power information for retransmission, and / or MCS information for UE ID and data retransmission in a NACK message for data and transmit the same.
  • the UE may only perform retransmission for the data.
  • the eNB allocates resources for retransmission to the NACK message, or the UE uplinks after a predetermined time (eg, predefined or signaled by the eNB) after receiving a predetermined rule (eg, a NACK message). Resource may be determined based on the retransmission performed on the resource).
  • a predetermined time eg, predefined or signaled by the eNB
  • MCS may be signaled via a NACK message.
  • the base station fails to decode the UE ID, it cannot transmit an ACK / NACK message because it cannot specify the transmitting UE.
  • the UE that has not received the ACK / NACK message may perform contention-based transmission on the UE ID and data (or SR) again.
  • the resource pool for retransmission may be set separately from the resource pool for initial transmission or may be predefined.
  • FIG. 8 illustrates a flow of a method of transmitting and receiving an uplink signal according to an embodiment of the present invention. Descriptions overlapping with the above description may be omitted.
  • the terminal receives information from the base station indicating one of a contention based transmission scheme and a contention free based transmission scheme (805). If the number of terminals accessing the cell of the base station is greater than or equal to the threshold, the received information indicates a non-competition based transmission scheme. If the number of terminals accessing the cell of the base station is less than the threshold, the received information indicates the contention based transmission scheme. can do.
  • the terminal processes and transmits uplink data in a transmission scheme indicated by the received information (810 and 815).
  • the terminal transmits information for identifying the terminal in addition to the uplink data.
  • the information for identifying the terminal may be an identifier (e.g., RNTI, etc.) assigned to the terminal, but the present invention is not limited thereto, and information for directly or indirectly identifying the terminal or the terminal group may be used.
  • RS parameters, resource pool information (eg, time / frequency resources) for performing contention-based transmission, and the like may be defined specifically for the UE or UE group, or may be signaled by the BS. May be identified.
  • the terminal may prioritize the successful transmission of information for identifying the additionally transmitted terminal rather than the successful transmission of the uplink data.
  • the information for identifying the terminal For example, setting the transmission power of the information for the terminal to identify the terminal to be larger than the transmission power of the uplink data, the information for identifying the terminal.
  • Setting a coding rate lower than a coding rate of uplink data, transmitting information for identifying a terminal and uplink data on different resource pools, or blind detection complexity than uplink data May include at least one of scrambled information for identifying the terminal with a low scrambling value.
  • the uplink data may be scrambled with information for identifying the terminal, and the information for identifying the terminal may be scrambled with a cell identifier of the base station.
  • the base station attempts to detect uplink data of the terminal according to the transmission scheme indicated by the base station. If the indicated transmission scheme is a contention based transmission scheme, the base station attempts to detect information for identifying the terminal in addition to the uplink data.
  • the uplink data may be de-scrambled with information for identifying the terminal, and the information for identifying the terminal may be de-scrambled with a cell identifier of the base station.
  • the base station transmits an acknowledgment (ACK) signal or a negative ACK (NACK) signal to the terminal according to whether the uplink data is successfully detected (820).
  • the base station may transmit an ACK signal when both the detection of the uplink data and the detection of the information for identifying the terminal are successful. If the base station and the detection of information for identifying the terminal is successful, but fails to detect the uplink data, the terminal-specific NACK (Negative ACK) signal is transmitted.
  • the UE-specific NACK signal may include an uplink grant for retransmission of uplink data.
  • the base station may receive uplink data retransmitted in a non-competition based transmission scheme based on the uplink grant. If the base station fails to detect information for identifying the terminal, it can transmit a broadcast NACK signal.
  • the terminal When the terminal receives the acknowledgment (ACK) signal, the terminal determines that both transmission of uplink data and transmission of information for identifying the terminal are successful. When the terminal-specific NACK signal is received, the terminal determines that transmission of information for identifying the terminal is successful but transmission of uplink data has failed. When the broadcast NACK signal is received without receiving the ACK signal, the terminal may determine that both transmission of uplink data and transmission of information for identifying the terminal have failed.
  • ACK acknowledgment
  • the UE-specific NACK signal includes an uplink grant for retransmission of uplink data, and the UE may retransmit uplink data in a non-competition based transmission scheme based on the uplink grant.
  • a non-competition-based transmission scheme When the terminal does not receive an acknowledgment (ACK) signal for uplink data transmission according to a contention-based transmission scheme for a predetermined time or receives a NACK (negative ACK) signal more than a predetermined number of times, a non-competition-based transmission scheme You can switch to The terminal may request the base station to switch to the non-competition based transmission scheme by transmitting a scheduling request signal.
  • the scheduling request signal may be transmitted in a contention based transmission scheme.
  • the scheduling request signal may include at least one of information for identifying the terminal and a buffer status report.
  • FIG. 9 is a block diagram showing the configuration of the base station 105 and the terminal 110 in the wireless communication system 100 according to an embodiment of the present invention.
  • the wireless communication system 100 may include one or more base stations and / or one or more terminals. .
  • Base station 105 is a transmit (Tx) data processor 115, symbol modulator 120, transmitter 125, transmit and receive antenna 130, processor 180, memory 185, receiver 190, symbol demodulator ( 195, receive data processor 197.
  • the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
  • the transmit and receive antennas 130 and 135 are shown as one in the base station 105 and the terminal 110, respectively, the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas.
  • the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system.
  • MIMO multiple input multiple output
  • the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
  • the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
  • the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • the transmitter and the receiver in the terminal and the base station may be configured as one radio frequency (RF) unit.
  • RF radio frequency
  • an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
  • Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
  • the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
  • the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
  • the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • the present invention can be applied to various wireless communication systems.

Abstract

본 발명의 일 실시예에 따른 무선 통신 시스템에서 단말이 상향링크 신호를 송신하는 방법은, 경쟁 기반 송신 방식과 비-경쟁 (contention free) 기반 송신 방식 중 어느 하나를 지시하는 정보를 기지국으로부터 수신하는 단계; 및 상기 수신된 정보가 지시하는 송신 방식으로 상향링크 데이터를 송신하는 단계를 포함하되, 상기 지시된 송신 방식이 경쟁 기반 송신 방식인 경우, 상기 단말은 상기 상향링크 데이터에 추가적으로 상기 단말을 식별하기 위한 정보를 송신하되, 상기 단말은 상기 상향링크 데이터의 송신이 성공하는 것 보다는 추가적으로 송신되는 상기 단말을 식별하기 위한 정보의 송신이 성공하는 것을 우선(prioritize)할 수 있다.

Description

무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는 상향링크 신호를 경쟁 기반 송신 방식 또는 비-경쟁 기반 송신 방식에 따라서 송신 또는 수신하기 위한 방법 및 이를 위한 장치에 관한 것이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 최근 논의되는 차세대 통신 시스템에서는 기존의 무선 접속 기술(radio access technology, RAT)에 비해 향상된 모바일 브로드 밴드(Enhanced Mobile Broadband, eMBB) 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 대규모 MTC (massive Machine Type Communications, mMTC) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰성(reliability) 및 지연(latency)에 민감한 서비스/UE를 고려하여 URLLC(Ultra-Reliable and Low Latency Communication)가 차세대 통신 시스템을 위해 논의되고 있다.
이와 같이 eMBB, mMTC 및 URLCC 등을 고려한 새로운 무선 접속 기술(New RAT)이 차세대 무선 통신을 위하여 논의되고 있다.
본 발명이 이루고자 하는 기술적 과제는, 경쟁 기반 송신 방식과 비-경쟁 기반 송신 방식을 모두 지원하는 무선 통신 시스템에서 보다 효율적이고 정확하게 상향링크 신호를 송신 또는 수신하기 위한 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명의 기술적 과제는 상술된 기술적 과제에 제한되지 않으며, 다른 기술적 과제들이 본 발명의 실시예로부터 유추될 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 일 측면에 따른 무선 통신 시스템에서 단말이 상향링크 신호를 송신하는 방법은, 경쟁 기반 송신 방식과 비-경쟁 (contention free) 기반 송신 방식 중 어느 하나를 지시하는 정보를 기지국으로부터 수신하는 단계; 및 상기 수신된 정보가 지시하는 송신 방식으로 상향링크 데이터를 송신하는 단계를 포함하되, 상기 지시된 송신 방식이 경쟁 기반 송신 방식인 경우, 상기 단말은 상기 상향링크 데이터에 추가적으로 상기 단말을 식별하기 위한 정보를 송신하되, 상기 단말은 상기 상향링크 데이터의 송신이 성공하는 것 보다는 추가적으로 송신되는 상기 단말을 식별하기 위한 정보의 송신이 성공하는 것을 우선(prioritize)할 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 다른 일 측면에 따른 무선 통신 시스템에서 상향링크 신호를 송신하는 단말은, 수신기; 송신기; 및 상기 수신기를 제어함으로써 경쟁 기반 송신 방식과 비-경쟁 (contention free) 기반 송신 방식 중 어느 하나를 지시하는 정보를 기지국으로부터 수신하고, 상기 송신기를 제어함으로써 상기 수신된 정보가 지시하는 송신 방식으로 상향링크 데이터를 송신하는 프로세서를 포함하되, 상기 지시된 송신 방식이 경쟁 기반 송신 방식인 경우, 상기 프로세서는 상기 상향링크 데이터에 추가적으로 상기 단말을 식별하기 위한 정보를 송신하되, 상기 프로세서는 상기 상향링크 데이터의 송신이 성공하는 것 보다는 추가적으로 송신되는 상기 단말을 식별하기 위한 정보의 송신이 성공하는 것을 우선(prioritize)할 수 있다.
상기 단말은, 상기 단말을 식별하기 위한 정보의 송신 전력을 상기 상향링크 데이터의 송신 전력 보다 더 크게 설정하거나, 상기 단말을 식별하기 위한 정보의 코딩 레이트(coding rate)를 상기 상향링크 데이터의 코딩 레이트 보다 낮게 설정하거나, 상기 단말을 식별하기 위한 정보와 상기 상향링크 데이터를 상이한 자원풀들 상에서 송신하거나, 또는 상기 상향링크 데이터 보다 블라인드 검출(blind detection) 복잡도가 낮은 스크램블링(scrambling) 값으로 상기 단말을 식별하기 위한 정보를 스크램블할 수 있다.
상기 상향링크 데이터는 상기 단말을 식별하기 위한 정보로 스크램블되고, 상기 단말을 식별하기 위한 정보는 상기 기지국의 셀 식별자로 스크램블될 수 있다.
상기 기지국의 셀에 접속한 단말들의 수가 임계치 이상인 경우에는 상기 수신된 정보가 상기 비-경쟁 기반 송신 방식을 지시하고, 상기 기지국의 셀에 접속한 단말들의 수가 상기 임계치 미만인 경우에는 상기 수신된 정보가 상기 경쟁 기반 송신 방식을 지시할 수 있다.
상기 단말은, ACK(acknowledge) 신호가 수신되면 상기 상향링크 데이터의 송신과 및 상기 단말을 식별하기 위한 정보의 송신이 모두 성공하였다고 판정하고, 단말-특정 NACK(negative ACK) 신호가 수신되면, 상기 단말을 식별하기 위한 정보의 송신은 성공하였으나 상기 상향링크 데이터의 송신은 실패하였다고 판정하고, 상기 ACK 신호의 수신 없이 브로드캐스트 NACK 신호가 수신되면, 상기 상향링크 데이터의 송신과 및 상기 단말을 식별하기 위한 정보의 송신이 모두 실패하였다고 판정할 수 있다.
상기 단말-특정 NACK(negative ACK) 신호는 상기 상향링크 데이터의 재전송을 위한 상향링크 승인을 포함하고, 상기 단말은 상기 상향링크 승인에 기반하여 비-경쟁 기반 송신 방식으로 상기 상향링크 데이터를 재전송할 수 있다.
상기 단말은, 상기 경쟁 기반 송신 방식에 따른 상기 상향링크 데이터의 송신에 대한 ACK(acknowledge) 신호를 일정 시간 동안 수신하지 못하거나 또는 NACK(negative ACK) 신호를 일정 횟수 이상 수신한 경우, 상기 비-경쟁 기반 송신 방식으로 전환할 수 있다.
상기 단말은 스케줄링 요청 신호를 송신함으로써 상기 기지국에 상기 비-경쟁 기반 송신 방식으로의 전환을 요청하되, 상기 스케줄링 요청 신호는 상기 경쟁 기반 송신 방식으로 송신될 수 있다.
상기 스케줄링 요청 신호는 상기 단말을 식별하기 위한 정보 및 버퍼 상태 보고 중 적어도 하나를 포함할 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 다른 일 측면에 따른 무선 통신 시스템에서 기지국이 상향링크 신호를 수신하는 방법은, 경쟁 기반 송신 방식과 비-경쟁 (contention free) 기반 송신 방식 중 어느 하나를 지시하는 정보를 송신하는 단계; 상기 송신된 정보가 지시하는 송신 방식에 따라서 단말의 상향링크 데이터를 검출 시도하는 단계; 및 상기 상향링크 데이터의 검출 성공 여부에 따라서 상기 단말에 ACK(acknowledge)신호 또는 NACK(negative ACK) 신호를 송신하는 단계를 포함하고, 상기 지시된 송신 방식이 경쟁 기반 송신 방식인 경우, 상기 기지국은 상기 상향링크 데이터에 추가적으로 상기 단말을 식별하기 위한 정보의 검출을 시도하고, 상기 상향링크 데이터의 검출과 및 상기 단말을 식별하기 위한 정보의 검출에 모두 성공한 경우에 상기 ACK 신호를 송신할 수 있다.
상기 기지국은, 상기 단말을 식별하기 위한 정보의 검출에 성공하였으나 상기 상향링크 데이터의 검출에 실패한 경우 단말-특정 NACK(negative ACK) 신호를 송신하고, 상기 단말을 식별하기 위한 정보의 검출이 실패하면 브로드캐스트 NACK 신호를 송신할 수 있다.
상기 단말-특정 NACK(negative ACK) 신호는 상기 상향링크 데이터의 재전송을 위한 상향링크 승인을 포함하고, 상기 기지국은 상기 상향링크 승인에 기반하여 비-경쟁 기반 송신 방식으로 재전송되는 상기 상향링크 데이터를 수신할 수 있다.
상기 상향링크 데이터는 상기 단말을 식별하기 위한 정보로 디-스크램블(de-scramble)되고, 상기 단말을 식별하기 위한 정보는 상기 기지국의 셀 식별자로 디-스크램블될 수 있다.
상기 기지국의 셀에 접속한 단말들의 수가 임계치 이상인 경우에는 상기 송신된 정보가 상기 비-경쟁 기반 송신 방식을 지시하고, 상기 기지국의 셀에 접속한 단말들의 수가 상기 임계치 미만인 경우에는 상기 송신된 정보가 상기 경쟁 기반 송신 방식을 지시할 수 있다.
본 발명의 일 실시예에 따르면, 경쟁 기반 송신 방식 또는 비-경쟁 기반 송신 방식이 설정/전환됨으로써 통신 환경에 적응적으로 상향링크 신호가 송신될 수 있을 뿐 아니라, 특히 경쟁 기반 송신 방식의 경우 상향링크 데이터에 추가적으로 송신되는 단말을 식별하기 위한 정보에 높은 우선 순위를 부여함으로써 경쟁 기반 송신의 성공 확률을 향상시키고, 송신 실패 시 재전송을 보다 정확하고 효율적으로 수행할 수 있다.
본 발명의 기술적 효과는 상술된 기술적 효과에 제한되지 않으며, 다른 기술적 효과들이 본 발명의 실시예로부터 유추될 수 있다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 3GPP LTE/LTE-A 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 3GPP LTE/LTE-A 시스템의 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 3GPP LTE/LTE-A 시스템의 하향링크 슬롯의 자원 그리드를 예시한다.
도 4는 3GPP LTE/LTE-A 시스템의 하향링크 서브프레임의 구조를 나타낸다.
도 5는 3GPP LTE/LTE-A 시스템의 상향링크 서브프레임의 구조를 예시한다.
도 6은 본 발명의 일 실시예에 따른 자체-포함(self-contained) 서브프레임의 구조를 예시한다.
도 7은 본 발명의 일 실시예에 따른 하향링크 자체-포함 서브프레임과 상향링크 자체-포함 서브프레임을 예시한다.
도 8은 본 발명의 일 실시예에 따라 신호를 송수신하는 방법을 도시한다.
도 9는 본 발명의 일 실시예에 따른 단말과 기지국을 도시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 기반의 이동 통신 시스템을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. 또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
New RAT을 논의 하기에 앞서, 3GPP LTE/LTE-A 시스템에 대해서 간략히 살펴본다. 후술하는 3GPP LTE/LTE-A에 대한 설명은 New RAT의 이해를 돕기 위해 참조 될 수 있으며, New RAT의 설계와 상충되지 않는 몇몇의 LTE/LTE-A 동작과 설정들은 New RAT에도 적용될 수도 있다. New RAT은 편의상 5G 이동 통신으로 지칭될 수도 있다.
3GPP LTE / LTE -A 시스템
도 1은 3GPP LTE/LTE-A 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널(Primary Synchronization Channel, P-SCH) 및 부동기 채널(Secondary Synchronization Channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID(Identity) 등의 정보를 획득한다. 그 후, 단말은 기지국으로부터 물리방송채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크제어채널(Physical Downlink Control Channel, PDCCH) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속의 경우 추가적인 물리임의접속채널의 전송(S105) 및 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널 수신(S106)과 같은 충돌해결절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널/물리하향링크공유채널 수신(S107) 및 물리상향링크공유채널(Physical Uplink Shared Channel, PUSCH)/물리상향링크제어채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. 본 명세서에서, HARQ ACK/NACK은 간단히 HARQ-ACK 혹은 ACK/NACK(A/N)으로 지칭된다. HARQ-ACK은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 및 NACK/DTX 중 적어도 하나를 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임의 구조를 예시한다. 셀룰라 OFDM 무선 패킷 통신 시스템에서, 상향링크/하향링크 데이터 패킷 전송은 서브프레임(subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 2(a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block, RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. RB는 하나의 슬롯에서 복수의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix) 구성(configuration)에 따라 달라질 수 있다. CP는 확장 CP(extended CP)와 노멀 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 노멀 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 노멀 CP인 경우보다 적다. 확장 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널 상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장 CP가 사용될 수 있다.
노멀 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 2(b)는 타입 2 무선 프레임의 구조를 예시한다. 타입 2 무선 프레임은 2개의 하프 프레임(half frame)으로 구성되며, 각 하프 프레임은 5개의 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호구간(Guard Period, GP), UpPTS(Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 3은 하향링크 슬롯의 자원 그리드를 예시한다.
도 3을 참조하면, 하향링크 슬롯은 시간 도메인에서 복수의 OFDM 심볼을 포함한다. 하나의 하향링크 슬롯은 7(6)개의 OFDM 심볼을 포함하고 자원블록은 주파수 도메인에서 12개의 부반송파를 포함할 수 있다. 자원 그리드 상의 각 요소(element)는 자원 요소(Resource Element, RE)로 지칭된다. 하나의 RB는 12×7(6)개의 RE를 포함한다. 하향링크 슬롯에 포함되는 RB의 개수 NRB는 하향링크 전송 대역에 의존한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일하고, OFDM 심볼이 SC-FDMA 심볼로 대체된다.
도 4는 하향링크 서브프레임의 구조를 예시한다.
도 4를 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(4)개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 대응한다. 남은 OFDM 심볼은 PDSCH(Physical Downlink Shared CHannel)가 할당되는 데이터 영역에 해당한다. PDSCH는 전송블록(Transport Block, TB) 혹은 그에 대응하는 코드워드(CodeWord, CW)를 나르는데 사용된다. 전송블록은 전송 채널을 통해 MAC(Medium Access Control) 계층으로부터 PHY(Physical) 계층으로 전달된 데이터 블록을 의미한다. 코드워드는 전송블록의 부호화된 버전에 해당한다. 전송블록과 코드워드의 대응 관계는 스와핑에 따라 달라질 수 있다. 본 명세서에서 PDSCH, 전송블록, 코드워드는 서로 혼용된다. LTE(-A)에서 사용되는 하향링크 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 응답으로 HARQ-ACK(Hybrid Automatic Repeat reQuest Acknowledgment) 신호를 나른다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(Negative ACK, NACK), DTX(Discontinuous Transmission) 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 HARQ ACK/NACK, ACK/NACK과 혼용된다.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 지칭한다. DCI는 단말 또는 단말 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. 예를 들어, DCI는 상향/하향링크 스케줄링 정보, 상향링크 전송(Tx) 파워 제어 명령 등을 포함한다.
도 5는 상향링크 서브프레임의 구조를 예시한다.
도 5를 참조하면, 상향링크 서브프레임은 복수(예, 2개)의 슬롯을 포함한다. 슬롯은 CP(Cyclic Prefix) 길이에 따라 서로 다른 수의 SC-FDMA 심볼을 포함할 수 있다. 상향링크 서브프레임은 주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터 영역은 PUSCH를 포함하고 음성 등의 데이터 신호를 전송하는데 사용된다. 제어 영역은 PUCCH를 포함하고 상향링크 제어 정보(Uplink Control Information, UCI)를 전송하는데 사용된다. PUCCH는 주파수 축에서 데이터 영역의 양끝 부분에 위치한 RB 쌍(RB pair)을 포함하며 슬롯을 경계로 호핑한다.
PUCCH는 SR(Scheduling Request), HARQ-ACK 및/또는 CSI(Channel State Information)의 제어 정보를 전송하는데 사용될 수 있다.
● New RAT
New RAT 성능 요구 사항 중, 저지연 요구조건을 만족 시키기 위하여 서브프레임이 새롭게 설계될 필요가 있다. 3GPP LTE 시스템은 1ms TTI를 가지는 프레임 구조로 디자인 되었으며, 비디오(video) 어플리케이션을 위해 데이터 요구 지연 시간은 10ms이었다. 그러나, 미래의 5G 기술은 실시간 제어(real-time control) 및 촉감 인터넷(tactile internet)과 같은 새로운 어플리케이션의 등장으로 더욱 낮은 지연의 데이터 전송을 요구하고 있으며, 5G는 종래 대비 약 10배 감소된 데이터 지연 제공을 목표로 하고 있다.
Self-contained Subframe
도 6는 New RAT을 위해서 새롭게 제안되는 Self-contained Subframe 을 예시한다.
TDD 기반의 Self-contained Subframe 구조에 따르면 하나의 서브프레임 내에 하향링크와 상향링크를 위한 자원구간(예를 들어, 하향링크 제어 채널 및 상향링크 제어 채널)이 존재한다.
도 6에서 빗금친 영역은 하향링크 제어 영역을 나타내고, 검정색 부분은 상향링크 제어 영역을 나타낸다. 표시가 없는 영역은 하향링크 데이터 전송을 위해 사용될 수도 있고, 상향링크 데이터 전송을 위해 사용될 수도 있다.
이러한 Self-contained Subframe 구조에 따르면, 한 개의 subframe 내에서 DL 전송과 UL 전송의 순차적으로 진행된다. 예컨대, 기지국은 1 subframe 내에서 DL 데이터를 보내고, UL ACK/NACK도 받을 수 있다. 유사하게, UE는 1 subframe 내에서 UL 데이터를 보내고, DL ACK/NACK도 받을 수 있다. 결과적으로 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄어 들고, 이로 인해 최종 데이터 전달의 지연(latency)이 최소화될 수 있다.
이와 같이, 자체 포함(Self-Contained)의 의미는, 해당 서브프레임 내에서 전송된 DL 또는 UL에 대한 응답(ACK/NACK)을 해당 서브프레임 내에서 수신하는 것을 커버할 수도 있다. 다만, 단말/기지국의 프로세싱 성능에 따라서는 전송과 응답에 1 서브프레임 이상의 시간이 소요되는 경우가 발생할 수도 있으므로, 이하에서 자체 포함을 DL 제어 정보, DL/UL 데이터 및 UL 제어 정보를 모두 자체적으로 포함할 수 있는 서브프레임으로 정의하기로 한다. 즉, Self-contained Subframe 의 UL 제어 정보가 반드시 해당 서브프레임에 전송된 DL 데이터에 대한 HARQ-ACK 정보로 한정되지는 않는다.
이러한 self-contained subframe 구조에서 기지국과 UE가 송신 모드에서 수신모드로 전환 과정 또는 수신모드에서 송신모드로 전환 과정을 위한 시간 갭(time gap)이 필요하다. 이를 위하여 self-contained subframe 구조에서 DL에서 UL로 전환되는 시점에 해당하는 적어도 하나의 OFDM symbol이 GP(guard period)로 설정된다.
도 6에 도시된 self-contained subframe 구조에서는 DL 제어 영역-데이터 영역-UL 제어 영역 순서로 서브프레임이 구성되는 것을 예시하였지만, 본 발명은 이에 한정되지 않는다. 예컨대, 다른 Self-contained Subframe 구조로서, DL 제어 영역-UL 제어 영역-데이터 영역의 순서로 서브프레임이 구성될 수도 있다.
또한, 설명의 편의를 위하여 1 서브프레임에 총 14개 OFDM 심볼들이 포함되고, DL 제어 영역과 UL 제어 영역에 각각 1 OFDM 심볼이 할당된 경우를 예시하였으나, DL 제어 영역과 UL 제어 영역에 1개 이상의 OFDM 심볼이 할당될 수도 있다. 유사하게, 1 서브프레임에 포함된 전체 OFDM 심볼 개수도 변경될 수 있다.
도 7은 본 발명의 일 실시예에 따른 DL subframe과 UL subframe을 도시한다.
도 7을 참조하면, GP는 DL에서 UL로 전환되는 시점에 위치한다. 예컨대, DL 서브프레임에서 GP는 DL 데이터 영역과 UL 제어 영역 사이에 위치하고, UL 서브프레임에서 GP는 DL 제어 영역과 UL 데이터 영역 사이에 위치한다.
GP는 eNB/UE의 Tx/Rx 스위칭 시간과, UE의 UL 전송을 위한 TA (Timing Advance)를 포함할 수 있다.
Analog Beamforming
밀리미터 웨이브(Millimeter Wave, mmW)가 사용되는 경우 파장이 짧아지므로 동일 면적에 다수 개의 안테나 엘리먼트들이 설치될 수 있다. 예컨대, 30 GHz 대역에서 파장은 1 cm로써, 5 X 5 cm의 판넬(panel)에는 0.5 λ(파장) 간격으로 총 100개의 안테나 엘리먼트들이 2-차원으로 배열 될 수 있다. 그러므로 mmW 방식에 따르면, 다수 개의 안테나 엘리먼트들이 사용됨으로써 빔포밍 이득이 향상되고, 커버리지를 증가 및/또는 쓰루풋 향상이 기대된다.
mmW 방식에서 안테나 엘리먼트 별로 TXRU(Transceiver Unit)가 설치되면 안테나 엘리먼트 개별적으로 전송 파워 및 위상 조절이 가능하고, 따라서 주파수 자원 별로 독립적인 빔포밍이 가능하다. 그러나 100여개의 안테나 엘리먼트들 모두에 개별적으로 TXRU를 설치하는 것은 비용 측면에서 실효성이 떨어지는 문제가 있다.
대안적으로, 하나의 TXRU에 다수 개의 안테나 엘리먼트들을 맵핑하고, 아날로그 위상 천이기(analog phase shifter)로 빔 방향을 조절하는 방식이 고려될 수 있다. 그러나, 이러한 아날로그 빔포밍 방식은 전 대역에 대하여 같은 방향으로 빔이 형성되므로, 주파수 선택적 빔포밍이 수행될 수 없다는 단점이 있다.
또 다른 대안으로서, 디지털 빔포밍과 아날로그 빔포밍의 하이브리드 형태로서, 총 Q개의 안테나 엘리먼트들에 대하여 총 B (where, B<Q)개의 TXRUs를 맵핑하는 하이브리드 빔포잉이 고려될 수 있다. B개의 TXRUs와 Q개의 안테나 엘리먼트들을 상호 연결하는 방식에 따라서 달라질 수 있지만, 일반적으로 동시에 전송할 수 있는 빔의 방향은 B개 이하로 제한된다.
Hybrid Multiple Access & ACK / NACK signaling
이하에서는 경쟁 기반 송신을 위한 하이브리드 다중 접속 및 ACK/NACK 시그널링 방법에 관하여 살펴본다.
New RAT (NR)에서는 지연 감소(latency reduction), 시그널링 오버헤드 감소(signaling overhead reduction), 전력 저감(power saving) 등의 목적을 위해 경쟁 기반 상향링크 송신(contention based UL transmission)이 고려될 수 있다. 여기서, 경쟁 기반 상향링크 송신은 UL 자원 및 타이밍에 대한 정확한 할당(allocation)없이 UE가 주어진 자원 영역 내에서 임의의 자원을 이용하여 UL 송신을 수행하는 것을 의미할 수 있다. 경쟁 기반 상향링크 송신은 LTE 시스템에 정의된 UL 승인 (i.e., 상향링크 송신을 위한 제어 시그널링) 없이 UE가 UL 송신을 수행하는 것을 의미할 수도 있다.
본 명세서에서의 경쟁 기반 상향링크 송신은 기존 LTE의 UL에서 정의된 여러 가지 UL 송신 신호들 (e.g., SR, BSR, PUSCH, PUCCH, SRS) 중 일부에만 적용될 수도 있다. 일례로, SR(scheduling request), BSR (buffer status report)에만 경쟁 기반 송신이 적용되거나, PUSCH의 초기 송신에만 경쟁 기반 송신이 적용될 수 있다. 경쟁 기반 송신이 정의되지 않은 채널의 송신이나 PUSCH의 재송신에는 경쟁 기반 송신이 적용되지 않을 수도 있다.
이러한 경쟁 기반 송신은 제어 시그널링을 송수신하기 위한 지연(latency)와 오버헤드를 줄일 수 있고, 상향링크 송신이 없을 경우 제어 시그널링에 대한 UE의 블라인드 검출(blind detection)등을 줄여서 전력 저감(power saving)의 효과가 있다. 반면, 경쟁 기반 송신에서는 상향링크 송신을 위한 UE별 전용 자원 할당(dedicated resource allocation)이 없기 때문에 네트워크는 특정 자원에서 상향링크 송신을 수행한 UE를 특정하기 어렵다는 단점이 있다.
본 명세서에서는 이와 같은 단점을 해결하고, 상향링크 송신에 대한 신뢰성(reliability)을 증가시키기 위한 방법들이 제안된다. 제안되는 방법들은 단독으로 혹은 조합을 통해 구현될 수 있으며, NR 이외의 시스템에서도 경쟁 기반 송신을 도입할 경우 이들 방법이 적용될 수 있다. 또한 설명의 편의를 위하여 시간/주파수 자원 관점에서 발명 내용을 설명했으나, 본 발명은 시간/주파수 도메인에 한정되지 않으며 스크램블링(scrambling), 스프레딩(spreading) 등 코드 도메인(code domain) 자원을 이용한 다중 접속 방식에도 적용 가능하다.
< ACK / NACK 송신및 UEID의 송신>
경쟁 기반 상향링크 송신에 대한 ACK/NACK 시그널링을 수행하는 또 다른 방법으로 UE ID 기반의 ACK/NACK 송신을 고려할 수도 있다.
경쟁 기반 상향링크 송신에서는 PUSCH TB(transport block)내에 물리 계층 메시지 혹은 상위 계층 메시지의 형태로 UE ID가 삽입될 수 있다. 따라서, PUSCH TB를 올바르게 디코딩한 기지국은 UE ID를 통해서 해당 PUSCH TB를 송신한 UE를 식별 할 수 있다. 반대로, 기지국이 UE의 상향링크 송신을 디코딩하지 못할 경우, 송신 UE를 특정할 수 없다는 단점이 있다. 기지국은 해당 자원에서 디코딩을 실패하였음을 알리기 위하여 NACK을 브로드캐스트 할 수도 있다.
NACK의 브로드캐스팅 방법과 달리, 본 발명의 일 실시예에서는 기지국이 NACK을 UE-dedicated 시그널링으로 전달하기 위한 방법이 제안된다. 기지국이 NACK을 UE dedicated 한 방식으로 송신하기 위해서는, 해당 상향링크 송신을 디코딩하는데 전체로서는 실패하더라도 적어도 기지국이 UE ID 정보는 올바르게 획득할 수 있어야 한다. 따라서, 경쟁 기반 송신에서 전송되는 '메시지 + UE ID'에서 UE ID에 높은 우선 순위가 부여될 수 있다. 예컨대, UE ID에 해당하는 신호는 메시지에 비해 높은 전력으로 전송되거나, 낮은 코딩 레이트를 통해 전송될 수 있다. 또한, 경쟁 기반 송신에서 메시지에 해당하는 신호와 UE ID에 해당하는 신호는 상호 구분되어 전송될 수 있다. 일 예로, 경쟁 기반 송신에서 메시지와 UE ID는 각각 서로 다른 자원 영역에서 수행될 수 있다.
일례로 경쟁 기반 UL 송신 방식으로 전송되는 신호가 SR, BSR 및/또는 PUSCH일 경우, UE ID는 PUCCH의 형태로 전송될 수 있다. UE ID를 전송하는 PUCCH는 SR, BSR 및/또는 PUSCH와 함께 전송될 수 있다. UE ID 전송을 위한 PUCCH는 PUCCH 영역 (i.e., 제어 영역)에서 전송되거나, PUSCH 영역 (i.e., 데이터 영역)에서 전송될 수 있다. 만약 UE ID를 나르는 PUCCH가, PUSCH 영역에서 SR, BSR 및/또는 PUSCH 등과 함께 전송될 경우, PUSCH 영역 내에서도 PUCCH가 전송되는 영역은 SR, BSR 및/또는 PUSCH 이 전송되는 영역과 구별될 수 있다. 예를 들어, UE ID 전송을 위한 PUCCH는 시간 도메인 상에서 데이터 영역의 마지막 심볼(들) 또는 상향링크 RS가 전송되는 심볼 또는 상향링크 RS가 송신되는 심볼과 인접한 심볼(들)에서 전송될 수 있다. UE ID 전송을 위한 PUCCH는 주파수 도메인 상에서는 SR, BSR, PUSCH과 동일 주파수 영역에서 전송될 수 있다.
본 발명의 일 실시예에 따르면 메시지와 UEID는 시분할 주파수 다중화(TDM)되어 전송될 수 있다. UE ID를 전송하는 PUCCH(e.g., UE ID 전달을 위해 정의되는 new UCI)에는 추가적으로 HARQ process number, 초기/재-송신 여부, RV 인덱스 및/또는 데이터에 대한 자원 할당 정보 등이 전송될 수도 있다. 한편, UE ID 전송을 위하여 UE ID 필드를 포함하는 PUCCH 포맷이 새롭게 정의되거나 또는 PUCCH 포맷을 정의하지 않고 SR/BSR/PUSCH TB에 UE ID가 포함되어 전달될 수 있다. OFDM 심볼 혹은 PUSCH 전송 자원 중 사전에 정의된 일부 영역이 UE ID 전송을 위해 사용될 수도 있다. 또한 UE ID가 PUSCH 형태로 전송될 경우에도 위에서 제안한 컨텐츠(e.g.,HARQ 프로세스 넘버 등)가 포함될 수 있으며, 전력/코딩 레이트 등이 별도로 부여 될 수도 있다.
또 다른 예로, UE ID 전달을 위한 PUCCH와 메시지는 각기 서로 다른 자원 풀들 (e.g., 서로 다른 subframe)상에서 전송될 수도 있다. 이 때 PUCCH에는 해당 PUCCH와 연계되는 SR/BSR/PUSCH 전송이 수행되는 자원 할당 정보를 포함할 수도 있다. 즉, SR/BSR/PUSCH 등을 전송하고자 하는 UE는 사전에 UE ID를 포함한 PUCCH 송신을 수행할 수 있으며, 해당 PUCCH에는 UE ID 및 SR/BSR/PUSCH 송신에 대한 자원 할당 정보가 포함될 수 있다. 또한 PUCCH 송신을 위한 자원 풀은 PUSCH 송신용 자원 풀과 별도로 UE에 시그널링될 수 있으며, 각 자원 풀에서의 전력 및/또는 코딩 레이트가 서로 다르게 설정될 수도 있다. PUCCH 전송을 위한 자원 영역은 UE-specific RRC 시그널링 등을 통하여 전달될 수도 있다.
위의 방식들을 이용하여 UE가 경쟁 기반 송신 시 UE ID 정보를 함께 전송하였고, 네트워크가 UE의 PUCCH와 PUSCH 전송에 대한 디코딩을 모두 성공한 경우, 네트워크는 ACK 메시지를 해당 UE에게 시그널링할 수 있다. 네트워크가 PUCCH 디코딩을 성공하였으나 PUSCH 디코딩을 실패할 경우, 네트워크는 PUCCH로부터 획득한 UE ID를 기반으로 NACK 메시지를 해당 UE에게 시그널링할 수 있다. 네트워크가 PUCCH와 PUSCH에 대한 디코딩을 모두 실패할 경우, 네트워크는 송신 UE를 특정할 수 없으므로, 추가 동작을 수행하지 않거나 또는, 네트워크가 UE ID 검출에 실패할 경우, 불특정 다수 UE들에 NACK을 브로드캐스팅 할 수도 있다.
UE는 ACK/NACK 메시지를 수신할 경우, 수신된 ACK/NACK 메시지에 따라 새로운 송신을 수행하거나, 재송신을 수행할 수 있다. UE가 ACK/NACK 메시지를 수신하지 못할 경우, PUCCH/PUSCH 재송신을 수행하거나, 또는 승인 기반 송신으로의 전환을 네트워크에 요청할 수 있다. UE가 재전송을 수행하는 경우에는 코딩 레이트를 증가 시키거나 또는 큰 사이즈의 자원 풀에서 재전송을 수행하는 등의 방식으로 충돌 확률을 낮추는 방식 (이하, Type 1)과 동일 자원 풀에서 재전송을 수행하더라도 전력을 부스팅(boosting)하여 전송하는 방식 (이하, Type 2)이 있을 수 있다. 예컨대, UE가 NACK 메시지를 수신할 경우에는 Type 1 재전송을 수행하고, ACK/NACK 메시지를 수신하지 못한 경우 Type 2 재전송을 수행할 수 있다.
추가적으로 경쟁 기반 송신에서 UE-특정 NACK 시그널링이 가능할 경우, 재전송에 대해서는 승인 기반 송신이 적용될 수도 있다. 즉, 경쟁 기반 송신은 초기 송신으로 제한되어 정의될 수도 있다. 일례로, 경쟁 기반 송신에 대한 ACK/NACK 시그널링 중 NACK 시그널링은 재전송에 대한 자원 할당, 전력 boosting/de-boosting 정보, MCS 정보 등을 포함할 수 있다. ACK 시그널링의 경우, ACK 정보가 명시되거나 또는 초기/재 전송을 수행하기 위한 정보(e.g., MCS/자원 할당 정보)가 해당 ACK/NACK 시그널링에 포함될 수 있다. 예컨대, UE는 ACK/NACK 시그널링에 포함된 MCS/자원 할당 정보가 null 혹은 특정 state라면, UE는 이전에 전송한 상향링크 송신은 ACK이고, 이후 PUSCH 전송은 없다고 인식할 수도 있다.
앞서 제안된 ACK/NACK 시그널링은 기존 DCI의 NDI, MCS 등을 이용하여 지시될 수도 있다. 예를 들어, UE가 전송한 PUCCH/PUSCH에 대한 ACK/NACK 시그널링은 UL 승인의 형태로 전송될 수 있다. 이 때, UL 승인에는 ACK/NACK 시그널링을 위한 ACK/NACK 필드가 별도로 정의되는 것이 아니라, UL 승인 내의 각 필드 값들의 조합에 따라 서로 다른 ACK/NACK state가 지시될 수 있다. 일례로, UL 승인의 NDI 필드가 토글(toggle)되어 초기 송신 지시에 해당하나, MCS (및/또는 자원 할당, DMRS CS 등의 필드) 필드가 null state이거나 사전에 정의된 특정 state일 경우, 이는 해당 UL 승인과 연계된 과거의 UL 송신이 ACK임을 의미할 수 있다. NACK 시그널링의 경우에도 별도의 ACK/NACK 필드를 UL 승인에 정의하는 대신에 기존 필드(들)가 특정 state 또는 특정 조합일 경우, NACK인 것으로 정의될 수 있다.
<Hybrid Multiple Access Scheme>
경쟁 기반 상향링크 송신에서 신뢰성을 증가시키는 또 다른 방법으로 경쟁 기반 송신과 비 경쟁(contention free) 송신 (e.g., 승인 기반 송신)의 혼합이 사용될 수도 있다.
하이브리드 다중 접속 방식은 위에서 제안된 자원 할당 및 ACK/NACK 시그널링과 연동하여 구현될 수도 있다. 예를 들어, UE는 경쟁 기반 상향링크 송신에 대한 ACK을 일정 시간 동안 수신하지 못할 경우, 특정 횟수의 재전송을 수행했으나 ACK을 수신하지 못한 경우 및/또는 NACK을 일정 횟수 수신한 경우에 승인-기반 상향링크 송신으로의 전환을 네트워크에 요청할 수 있다.
일례로, 이와 같은 조건을 충족한 UE는 SR을 송신하여 네트워크로 하여금 직교 자원 또는 준(semi)-직교 자원을 이용한 상향링크 송신을 스케줄링 하도록 할 수 있다. 이를 위하여, 각 UE는 UE(또는 UE group)-dedicated 시그널링 등을 통하여 사전에 SR 자원을 할당 받을 수 있다.
한편, SR 자원은 주기적으로 설정될 수도 있으며 이 경우 UE는 다음과 같이 동작할 수도 있다. 제1 시점에 경쟁 기반 상향링크 송신을 수행한 UE는 제1 시점에 가장 가까운 SR 자원(제2 시점) 또는 제1 시점으로부터 SR period 이상 이격된 SR 자원들 중 가장 가까운 SR 자원(제3 시점) 이전까지는 경쟁 기반 방식을 유지하며 재전송을 수행한다. 하지만, UE는 제2 시점 또는 제3 시점에 해당하는 SR 자원까지 ACK 신호를 수신하지 못할 경우 해당 SR 자원을 통해 SR을 전송하여 상향링크 승인을 요청할 수 있다.
상술된 바와 같이 초기 송신/재송신 여부에 따라 경쟁 기반 송신과 승인 기반 송신이 구분될 수도 있다. 즉, 초기 자원 할당 등으로 인한 오버헤드를 줄이기 위해 초기 송신은 경쟁 기반 송신의 방법을 송수신하고, 이후 재전송에서는 효율적인 송수신을 위해 승인 기반 전송을 수행할 수 있다.
또 다른 방법으로 상향링크 채널 및/또는 신호 별로 경쟁 기반/승인 기반 전송 여부가 결정될 수도 있다. 예를 들어, mMTC의 경우, UE의 수가 많아서 UE dedicated SR 자원이 할당되기 어려울 수 있다. 따라서, mMTC의 경우 SR 전송은 경쟁 기반으로 수행하고, 해당 SR을 성공적으로 수신한 네트워크는 SR에 응답하여 UL 승인을 UE에게 전송할 수 있다. 경쟁 기반 SR에 대한 ACK/NACK은 그에 상응하는 UL 승인으로 대체될 수 있다. 예컨대, UE가 UL 승인을 수신하지 못한 것은 SR에 대한 NACK으로 간주될 수 있으며, UL 승인을 통해 ACK/NACK을 시그널링 하기 위하여 앞서 제안한 방법들이 사용될 수 있다. 일례로 UE는 UL 승인 내의 각 필드 값(들) 또는 이들 조합을 통해 ACK/NACK 여부를 판별하거나, 또는 NACK 브로드캐스팅 등이 도입될 수도 있다.
< 경쟁 기반 상향링크 송신의 설정>
커버리지 내에 특정 수 이상의 UE들이 존재할 경우 충돌 확률의 증가로 인해 경쟁 기반 송신이 비효율적일 수 있다. 따라서, 네트워크는 해당 셀에 접속한 UE들이 일정 개수 이상일 경우 및/또는 자원 대비 디코딩 성공 비율이 일정 수준에 미치지 못할 경우, 브로드캐스트 신호 (e.g., MIB/SIB) 또는 상위 계층 시그널링 등을 통하여 비 경쟁(contention free) 상향링크 송신 (e.g., 승인 기반 상향링크 송신)으로의 전환을 커버리지 내 UE들에 지시할 수 있다. 이와 같은 상향링크 송신 방식의 전환은 커버리지 내의 모든 UE들에게 지시되거나, UE 개별적으로 지시되거나 또는 UE 그룹으로 지시될 수도 있다. 일례로 특정 아날로그 빔을 선호하는 UE가 일정 수준 이상일 경우, eNB는 해당 아날로그 빔에 연관된 UE들은 승인-기반 상향링크 송신을 하도록 지시할 수 있다.
<경쟁 기반으로 송신되는 컨텐츠 >
상향링크로 전송되는 컨텐츠는 크게 데이터, 스케줄링 요청 (SR), 버퍼 상태 보고 (BSR), 하향링크 송신에 대한 ACK/NACK, 채널 상태 정보 (CSI), 상향링크 채널 측정을 위한 사운딩 참조 신호 (SRS) 및 랜덤 엑세스 관련 PRACH 등으로 분류될 수 있다.
본 발명의 일 실시예에 따르면 상향링크 컨텐츠 중 일부는 경쟁 기반으로 전송되고, 다른 일부는 승인 기반으로 전송될 수 있다. 일례로 eNB와 UE간 채널 상태 정보 및 하향링크 송신에 대한 ACK/NACK 시그널링, SRS 등은 정해진 자원에서 전송되거나, eNB의 요청에 기반하여 송신되는 것이 바람직하다. 반면, UE의 필요에 의해 발생한 상향링크 데이터, SR, BSR, PRACH 등은 경쟁 기반 전송을 하는 것이 시그널링 오버헤드를 줄이고, 지연을 줄이기 위해 바람직하다. 추가적으로 상향링크 데이터는 데이터 데이터 크기 (즉, 상향링크 전송을 위해 필요한 자원량)에 따라 경쟁 기반 전송 여부가 결정될 수도 있다. 예를 들어, 특정 크기 이하의 데이터는 경쟁 기반으로 전송되고, 특정 크기 보다 큰 데이터는 승인 기반으로 전송되도록 사전에 정의되거나, 네트워크에 의해 지시될 수 있다. 아래에서는 상향링크 컨텐츠 별로 경쟁 기반 송신을 수행하는 방법들이 제안된다.
(1) 스케줄링 요청 (SR)
기존 LTE에서는 SR 전송을 위한 UE-dedicated 자원이 정의되고, UE는 상향링크 송신을 수행할 데이터가 있을 경우 해당 자원에 SR을 전송하여 상향링크 자원을 네트워크에 요청할 수 있다. 그러나 대규모 연결성(massive connectivity)를 지원하는 NR에서는 상향링크 송신을 수행할 수 있는 모든 디바이스들에게 SR 자원을 할당할 경우, reserve해야 하는 자원의 양이 많아서 자원 활용이 비효율적일 수 있다. 따라서 본 발명의 일 실시예에서는 SR을 경쟁 기반으로 전송 송신할 것이 제안된다.
경쟁 기반 SR 전송은 네트워크가 송신 UE를 특정할 수 없는 문제가 발생할 수 있다. 따라서 경쟁 기반 SR 전송시 SR에는 UE ID 등 UE 식별을 위한 정보가 포함되는 것이 바람직하다. 이 때 UE ID는 SR과 함께 전송되거나 독립적으로 전송될 수 있다.
기존 LTE에서 SR은 UE dedicated 자원에서 전송되고 상향링크 스케줄링이 필요한지 여부를 알리는 역할만을 수행하기 때문에 1-bit 시그널링으로 정의되었다. 그러나 본 발명의 실시예에 따라서 SR이 경쟁 기반으로 전송될 경우, UE가 자신의 UE ID(혹은 UE ID에 상응하는 정보)만을 전송하는 것을 통해 기존 1-비트 SR 전송이 대체될 수도 있다. 즉, 상향링크 자원이 필요한 UE는 주어진 자원 풀에서 UE ID를 경쟁 기반으로 전송한다. UE ID를 포함하는 해당 메시지의 디코딩을 성공한 네트워크는 UE에게 상향링크 자원을 할당할 수 있다. 이 때 상향링크 자원을 할당하는 UL 승인은 SR에 대한 ACK 시그널링으로 해석될 수도 있다.
앞서 살펴본 바와 같이 SR에 UE ID 등의 정보가 포함될 경우, 해당 SR 송신은 추가적인 정보를 더 포함할 수도 있다. 예를 들어, SR에 BSR이 포함되어, 구체적으로 필요한 상향링크 자원량을 지시할 수도 있다. 즉, 기존 LTE 시스템에는 SR와 BSR 각각이 개별적으로 송신되었으나, 본 발명의 실시예에 따르면 SR과 BSR을 함께 경쟁 기반으로 송신할 수 있다. 또한, SR에 포함되는 BSR과 별도로 SR 이후 수행되는 상향링크 송신 데이터에도 BSR 정보가 포함될 수 있으며, 이는 스케줄링되는 상향링크 자원의 양을 증가/감소 시키기 위한 목적일 수 있다. UE는 네트워크의 요청에 의해 혹은 스스로의 판단에 의해 상향링크 데이터에 BSR을 포함시킬 수 있다.
SR (및/또는 BSR)을 경쟁 기반으로 전송하는 또 다른 예로, UE는 UE ID와 SR (및/또는 BSR)을 독립적으로 전송할 수 있다. 이 경우, UE ID가 전송되는 영역에는 SR (및/또는 BSR)이 전송되는 자원 할당 정보가 포함되거나, UE ID가 전송되는 자원과 SR (및/또는 BSR)이 전송되는 자원간의 연관 관계가 사전에 정의되거나 네트워크에 의해 시그널링 될 수도 있다. 또는 UE ID이 전송되는 자원과 SR (및/또는 BSR)이 전송되는 자원간에 연관 관계 없이 독립적으로 전송될 수도 있으며, 이 경우 네트워크는 두 가지 메시지에 대해 모두 블라인드 검출을 수행할 수 있다. SR전송에는 해당 UE에게 필요한 상향링크 자원에 대한 정보 및 상향링크 스케줄링을 위해 필요한 정보 (e.g., 서빙 셀 및/또는 빔의 측정) 등이 포함될 수 있다
(2) 데이터 송신
경쟁 기반 상향링크 데이터 송신에서 기지국이 블라인드 검출하여야 할 데이터 크기 또는 데이터 송신에서 사용되는 자원량이 다양한 레벨로 존재할 경우, 기지국 수신 동작의 복잡성이 급격하게 증가할 수 있다. 또한, 서로 간 자원량의 차이가 큰 상향링크 송신들이 동일 자원 영역 상에서 전송될 경우 상대적으로 적은 자원량의 상향링크 송신은 큰 자원량의 상향링크 송신으로부터의 갑섭 등으로 인해 수신 성능이 떨어질 확률이 높다.
위의 문제를 해결하기 위해 본 발명의 일 실시예에서는 경쟁 기반 송신이 수행되는 자원 영역 (e.g., 경쟁 기반 송신을 위한 자원 풀)에서는 송수신할 수 있는 자원량(들)이 사전에 정의될 수 있다. 예컨대, 서로 다른 자원 크기를 갖는 경쟁 기반 상향링크 송신들은 서로 다른 자원 풀들에서 수행될 수도 있다. 또는 사전 정의 혹은 네트워크 시그널링에 따라 서로 다른 자원 크기를 갖는 상향링크 송신들이라도 같은 자원 영역 상에서 수행될 수도 있다.
앞의 SR 송신과 마찬가지로 경쟁 기반 송신의 특성으로 인해 송신 UE를 특정할 수 없는 문제를 해결하기 위해 UE 식별을 위한 정보(e.g., UE ID)가 데이터와 함께 혹은 독립적으로 전송될 수 있다. UE ID와 데이터가 함께 전송될 경우, UE ID는 데이터에 포함되어 상위 계층 메시지의 형태로 송신될 수 있다. 또는 UE ID는 데이터 송신 자원 단위에는 포함되지만 주파수/시간 도메인 등에서 실제적인 데이터와 분리되어 전송되어 self-decodable한 특성을 가질 수 있다. 여기서 분리 전송은 데이터와 UE ID 각각의 coding chain도 다르게 구성됨을 의미할 수도 있다.
기지국은 UE ID와 데이터에 대한 디코딩을 각각 수행할 수 있으며, UE ID와 데이터가 전송되는 각 자원간의 연관 관계 (e.g., time/frequency offset)는 UE ID 전송에 추가적인 정보로 포함되거나, 사전에 정의/설정될 수 있다. 예를 들어 네트워크는 각 자원 간의 연관 관계에 대한 정보를 커버리지 내에 브로드캐스트하거나 UE-특정 또는 UE 그룹-특정 시그널링을 통해 송신할 수 있다. 또 다른 방법으로 채널 대역폭이나 자원 풀의 크기 등에 근거하여 UE ID의 전송 자원과 데이터 전송간의 자원 연관 관계가 정의될 수도 있다. 이와 같은 자원 연관 관계의 정의는 앞의 SR 관련 실시예에도 동일하게 적용될 수 있다.
<경쟁 기반 송신을 위한 스크램블링 >
UE ID와 데이터 (혹은 SR)이 독립적으로 전송될 경우, 각각에 대한 스크램블링은 다음과 같이 설정될 수 있다.
(1) Cell ID (및/또는 beam ID) 기반 스크램블링
셀-간 간섭(Inter-cell interference) 및/또는 빔-간 간섭(inter-beam interference)의 랜덤화(randomization)를 위해 cell ID 및/또는 beam ID에 기반한 스크램블링이 UE ID와 데이터에 동일하게 적용될 수 있다.
(2) UE ID 기반 스크램블링
경쟁 기반 송신 특성 상 서로 다른 UE의 상향링크 송신들 간의 충돌이 발생할 수 있으며, 충돌로 인한 간섭을 랜덤화 하기 위해 UE ID 기반의 스크램블링이 UE ID와 데이터에 적용될 수 있다.
UE ID 기반의 스크램블링이 수행될 경우, 기지국에서 디코딩의 복잡도가 증가할 수 있다. 따라서, 디코딩 복잡도를 줄이기 위해 기지국은 UE 별 또는 UE 그룹 별로 사용할 수 있는 자원 풀을 사전에 지정할 수 있다. UE는 할당된 자원 풀 내에서 UE ID 기반의 스크램블링을 적용한 UE ID 및 데이터를 경쟁 기반 송신 방식으로 전송할 수 있다.
(3) UE ID 및 Cell ID 기반 스크램블링의 조합
UE ID와 데이터를 모두 UE ID 기반으로 스크램블링되는 경우, 기지국의 디코딩 복잡도가 증가할 수 있다.
이를 해결하기 위해 UE는, UE ID는 cell ID 및/또는 빔 ID 기반 스크램블링을 수행하고, 데이터는 UE ID 기반 스크램블링을 수행하여 경쟁 기반 송신을 수행할 수 있다.
< 경쟁 기반 송신을 위한 ACK / NACK 시그널링 >
앞서 제안된 바와 같이 기존 SR 송신을 경쟁 기반 UE ID (+ 추가적인 정보) 송신으로 대체하는 경우, 해당 경쟁 기반 송신에 대한 ACK/NACK 시그널링은 상향링크 자원을 스케줄링하는 UL 승인 유무로 대체될 수 있다. 즉, 경쟁 기반 SR 전송 후 UL 승인을 수신한 UE는 해당 상향링크 송신이 성공했다고 간주할 수 있다. 반면, UL 승인을 수신하지 못한 UE는 해당 상향링크 송신을 NACK으로 간주하고 재전송을 수행하는 등의 후속 과정을 수행할 수 있다.
UE ID와 데이터 (또는 SR)가 독립적으로 전송될 경우, 각각에 대한 디코딩 결과에 따라 다음과 같은 케이스들이 존재할 수 있다.
(1) Case 1: UE ID 디코딩 성공, 데이터 디코딩 성공
네트워크는 수신한 UE ID를 기반으로 ACK 메시지를 DCI등의 포맷을 통해 해당 UE에게 전달할 수 있다.
(2) Case 2: UE ID 디코딩 성공, 데이터 디코딩 실패
네트워크는 수신한 UE ID를 기반으로 NACK 메시지를 DCI등의 포맷을 통해 해당 UE에게 전달할 수 있다. 이를 수신한 UE는 UE ID 송신은 성공했으나 데이터 전송이 실패했다고 간주하고, 다음과 같이 동작할 수 있다.
아래의 경우에서 데이터에 대한 재전송은 이전 송신과 서로 다른 RV(redundancy version) 인덱스를 적용하여 송신할 수도 있다. 이 경우, 기지국은 각 송신에서의 데이터에 대하여 IR(incremental redundancy) 기법을 적용하여 컴바이닝(combining)할 수 있다. 또는 RV 인덱스가 고정될 경우 기지국은 chase combining 기법을 이용하여 각 송신의 데이터를 컴바이닝 할 수 있다.
UE는 UE ID와 데이터를 경쟁 기반 송신을 통해 재전송할 수 있다. 이 때 재전송의 성공 확률을 증가시키기 위해 재전송을 위한 자원 풀이 초기 전송을 위한 자원 풀과는 독립적으로 할당될 수 있다. 또는 기지국은 데이터에 대한 NACK 메시지에 UE ID 및 데이터 재전송을 위하여 자원 할당 정보, 재전송을 위한 전력 정보 및/또는 MCS 정보 등을 포함시켜 전송할 수도 있다.
UE는 데이터에 대한 재전송만을 수행할 수 있다. 이를 위해 eNB는 NACK 메시지에 재전송을 위한 자원을 할당하거나, UE는 사전에 정해진 규칙(예를 들어, NACK 메시지를 수신한 이후 (사전에 정의된 혹은 eNB에 의해 시그널링된) 특정 시간 이후의 상향링크 자원에서 재전송을 수행)에 근거하여 재전송이 수행될 자원을 결정할 수 있다. 추가로 재전송에서의 power, MCS 중 일부 혹은 전부가 NACK 메시지 등을 통해 시그널링될 수도 있다.
(3) Case 3: UE ID 디코딩 실패
기지국이 UE ID에 대한 디코딩을 실패할 경우, 송신 UE를 특정할 수 없기 때문에 ACK/NACK 메시지를 전송할 수 없다. 이 경우, ACK/NACK 메시지를 수신하지 못한 UE는 UE ID 및 데이터 (또는 SR)에 대한 경쟁 기반 송신을 다시 수행할 수 있다. 이 때 재전송을 위한 자원 풀이 초기 전송을 위한 자원 풀과는 별도로 설정되거나 또는 사전 정의될 수 있다.
도 8은 본 발명의 일 실시예에 따라 상향링크 신호를 송수신 방법의 흐름을 도시한다. 앞서 설명된 내용과 중복하는 설명은 생략될 수 있다.
도 8을 참조하면, 단말은 경쟁 기반 송신 방식과 비-경쟁 (contention free) 기반 송신 방식 중 어느 하나를 지시하는 정보를 기지국으로부터 수신한다(805). 기지국의 셀에 접속한 단말들의 수가 임계치 이상인 경우에는 수신된 정보가 비-경쟁 기반 송신 방식을 지시하고, 기지국의 셀에 접속한 단말들의 수가 임계치 미만인 경우에는 수신된 정보가 경쟁 기반 송신 방식을 지시할 수 있다.
단말은 수신된 정보가 지시하는 송신 방식으로 상향링크 데이터를 프로세싱하여 송신한다(810, 815).
지시된 송신 방식이 경쟁 기반 송신 방식인 경우, 단말은 상향링크 데이터에 추가적으로 단말을 식별하기 위한 정보를 송신한다.
단말을 식별하기 위한 정보는 단말에 할당된 식별자(e.g., RNTI 등)일 수도 있으나, 본 발명은 이에 한정되지 않으며 단말 또는 단말 그룹을 직/간접적으로 식별하는 정보가 사용될 수도 있다. 예를 들어, RS 파라미터, 경쟁 기반 송신을 수행하는 자원 풀 정보(e.g., 시간/주파수 자원) 등이 단말 또는 단말 그룹 특정하게 정의되거나 기지국에 의해 시그널링 될 수 있으며, 이와 같은 정보를 통해서 기지국이 단말을 식별할 수도 있다.
이 때, 단말은 상향링크 데이터의 송신이 성공하는 것 보다는 추가적으로 송신되는 단말을 식별하기 위한 정보의 송신이 성공하는 것을 우선(prioritize)할 수 있다. 단말을 식별하기 위한 정보의 송신이 성공하는 것을 우선화하는 것은 예컨대, 단말이 단말을 식별하기 위한 정보의 송신 전력을 상향링크 데이터의 송신 전력 보다 더 크게 설정하는 것, 단말을 식별하기 위한 정보의 코딩 레이트(coding rate)를 상향링크 데이터의 코딩 레이트 보다 낮게 설정하는 것, 단말을 식별하기 위한 정보와 상향링크 데이터를 상이한 자원풀들 상에서 송신하는 것 또는 상향링크 데이터 보다 블라인드 검출(blind detection) 복잡도가 낮은 스크램블링(scrambling) 값으로 단말을 식별하기 위한 정보를 스크램블하는 것 중 적어도 하나를 포함할 수 있다. 상향링크 데이터는 단말을 식별하기 위한 정보로 스크램블되고, 단말을 식별하기 위한 정보는 기지국의 셀 식별자로 스크램블될 수 있다.
기지국은 자신이 지시한 송신 방식에 따라서 단말의 상향링크 데이터를 검출 시도한다. 지시된 송신 방식이 경쟁 기반 송신 방식인 경우, 기지국은 상향링크 데이터에 추가적으로 단말을 식별하기 위한 정보의 검출을 시도한다. 상향링크 데이터는 단말을 식별하기 위한 정보로 디-스크램블(de-scramble)되고, 단말을 식별하기 위한 정보는 기지국의 셀 식별자로 디-스크램블될 수 있다.
기지국은 상향링크 데이터의 검출 성공 여부에 따라서 단말에 ACK(acknowledge)신호 또는 NACK(negative ACK) 신호를 송신한다(820). 기지국이 상향링크 데이터의 검출과 및 단말을 식별하기 위한 정보의 검출에 모두 성공한 경우에 ACK 신호를 송신할 수 있다. 기지국, 단말을 식별하기 위한 정보의 검출에 성공하였으나 상향링크 데이터의 검출에 실패한 경우 단말-특정 NACK(negative ACK) 신호를 송신한다. 단말-특정 NACK(negative ACK) 신호는 상향링크 데이터의 재전송을 위한 상향링크 승인을 포함할 수 있다. 기지국은 상향링크 승인에 기반하여 비-경쟁 기반 송신 방식으로 재전송되는 상향링크 데이터를 수신할 수 있다. 기지국이 단말을 식별하기 위한 정보의 검출이 실패하면 브로드캐스트 NACK 신호를 송신할 수 있다.
단말은, ACK(acknowledge) 신호가 수신되면 상향링크 데이터의 송신과 및 단말을 식별하기 위한 정보의 송신이 모두 성공하였다고 판정한다. 단말은 단말-특정 NACK(negative ACK) 신호가 수신되면, 단말을 식별하기 위한 정보의 송신은 성공하였으나 상향링크 데이터의 송신은 실패하였다고 판정한다. 단말은 ACK 신호의 수신 없이 브로드캐스트 NACK 신호가 수신되면, 상향링크 데이터의 송신과 및 단말을 식별하기 위한 정보의 송신이 모두 실패하였다고 판정할 수 있다.
단말-특정 NACK(negative ACK) 신호는 상향링크 데이터의 재전송을 위한 상향링크 승인을 포함하고, 단말은 상향링크 승인에 기반하여 비-경쟁 기반 송신 방식으로 상향링크 데이터를 재전송할 수 있다.
단말은, 경쟁 기반 송신 방식에 따른 상향링크 데이터의 송신에 대한 ACK(acknowledge) 신호를 일정 시간 동안 수신하지 못하거나 또는 NACK(negative ACK) 신호를 일정 횟수 이상 수신한 경우, 비-경쟁 기반 송신 방식으로 전환할 수 있다. 단말은 스케줄링 요청 신호를 송신함으로써 기지국에 상기 비-경쟁 기반 송신 방식으로의 전환을 요청할 수 있다. 스케줄링 요청 신호는 경쟁 기반 송신 방식으로 송신될 수 있다. 스케줄링 요청 신호는 단말을 식별하기 위한 정보 및 버퍼 상태 보고 중 적어도 하나를 포함할 수 있다.
도 9는 본 발명의 일 실시예에 따른 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.
기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서(150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다. 단말 및 기지국에서의 송신기 및 수신기는 하나의 RF(Radio Frequency) 유닛으로 구성될 수도 있다.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술된 바와 같이 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 단말이 상향링크 신호를 송신하는 방법에 있어서,
    경쟁 기반 송신 방식과 비-경쟁 (contention free) 기반 송신 방식 중 어느 하나를 지시하는 정보를 기지국으로부터 수신하는 단계; 및
    상기 수신된 정보가 지시하는 송신 방식으로 상향링크 데이터를 송신하는 단계를 포함하되,
    상기 지시된 송신 방식이 경쟁 기반 송신 방식인 경우, 상기 단말은 상기 상향링크 데이터에 추가적으로 상기 단말을 식별하기 위한 정보를 송신하되, 상기 단말은 상기 상향링크 데이터의 송신이 성공하는 것 보다는 추가적으로 송신되는 상기 단말을 식별하기 위한 정보의 송신이 성공하는 것을 우선(prioritize)하는, 신호 송신 방법.
  2. 제 1 항에 있어서, 상기 단말은,
    상기 단말을 식별하기 위한 정보의 송신 전력을 상기 상향링크 데이터의 송신 전력 보다 더 크게 설정하거나, 상기 단말을 식별하기 위한 정보의 코딩 레이트(coding rate)를 상기 상향링크 데이터의 코딩 레이트 보다 낮게 설정하거나, 상기 단말을 식별하기 위한 정보와 상기 상향링크 데이터를 상이한 자원풀들 상에서 송신하거나, 또는 상기 상향링크 데이터 보다 블라인드 검출(blind detection) 복잡도가 낮은 스크램블링(scrambling) 값으로 상기 단말을 식별하기 위한 정보를 스크램블하는, 신호 송신 방법.
  3. 제 2 항에 있어서,
    상기 상향링크 데이터는 상기 단말을 식별하기 위한 정보로 스크램블되고, 상기 단말을 식별하기 위한 정보는 상기 기지국의 셀 식별자로 스크램블되는, 신호 송신 방법.
  4. 제 1 항에 있어서,
    상기 기지국의 셀에 접속한 단말들의 수가 임계치 이상인 경우에는 상기 수신된 정보가 상기 비-경쟁 기반 송신 방식을 지시하고,
    상기 기지국의 셀에 접속한 단말들의 수가 상기 임계치 미만인 경우에는 상기 수신된 정보가 상기 경쟁 기반 송신 방식을 지시하는, 신호 송신 방법.
  5. 제 1 항에 있어서, 상기 단말은,
    ACK(acknowledge) 신호가 수신되면 상기 상향링크 데이터의 송신과 및 상기 단말을 식별하기 위한 정보의 송신이 모두 성공하였다고 판정하고,
    단말-특정 NACK(negative ACK) 신호가 수신되면, 상기 단말을 식별하기 위한 정보의 송신은 성공하였으나 상기 상향링크 데이터의 송신은 실패하였다고 판정하고,
    상기 ACK 신호의 수신 없이 브로드캐스트 NACK 신호가 수신되면, 상기 상향링크 데이터의 송신과 및 상기 단말을 식별하기 위한 정보의 송신이 모두 실패하였다고 판정하는, 신호 송신 방법.
  6. 제 5 항에 있어서,
    상기 단말-특정 NACK(negative ACK) 신호는 상기 상향링크 데이터의 재전송을 위한 상향링크 승인을 포함하고,
    상기 단말은 상기 상향링크 승인에 기반하여 비-경쟁 기반 송신 방식으로 상기 상향링크 데이터를 재전송하는, 신호 송신 방법.
  7. 제 1 항에 있어서, 상기 단말은,
    상기 경쟁 기반 송신 방식에 따른 상기 상향링크 데이터의 송신에 대한 ACK(acknowledge) 신호를 일정 시간 동안 수신하지 못하거나 또는 NACK(negative ACK) 신호를 일정 횟수 이상 수신한 경우, 상기 비-경쟁 기반 송신 방식으로 전환하는, 신호 송신 방법.
  8. 제 7 항에 있어서,
    상기 단말은 스케줄링 요청 신호를 송신함으로써 상기 기지국에 상기 비-경쟁 기반 송신 방식으로의 전환을 요청하되,
    상기 스케줄링 요청 신호는 상기 경쟁 기반 송신 방식으로 송신되는, 신호 송신 방법.
  9. 제 8 항에 있어서,
    상기 스케줄링 요청 신호는 상기 단말을 식별하기 위한 정보 및 버퍼 상태 보고 중 적어도 하나를 포함하는, 신호 송신 방법.
  10. 무선 통신 시스템에서 상향링크 신호를 송신하는 단말에 있어서,
    수신기;
    송신기; 및
    상기 수신기를 제어함으로써 경쟁 기반 송신 방식과 비-경쟁 (contention free) 기반 송신 방식 중 어느 하나를 지시하는 정보를 기지국으로부터 수신하고, 상기 송신기를 제어함으로써 상기 수신된 정보가 지시하는 송신 방식으로 상향링크 데이터를 송신하는 프로세서를 포함하되,
    상기 지시된 송신 방식이 경쟁 기반 송신 방식인 경우, 상기 프로세서는 상기 상향링크 데이터에 추가적으로 상기 단말을 식별하기 위한 정보를 송신하되, 상기 프로세서는 상기 상향링크 데이터의 송신이 성공하는 것 보다는 상기 추가적으로 송신되는 상기 단말을 식별하기 위한 정보의 송신이 성공하는 것을 우선(prioritize)하는, 단말.
  11. 무선 통신 시스템에서 기지국이 상향링크 신호를 수신하는 방법에 있어서,
    경쟁 기반 송신 방식과 비-경쟁 (contention free) 기반 송신 방식 중 어느 하나를 지시하는 정보를 송신하는 단계;
    상기 송신된 정보가 지시하는 송신 방식에 따라서 단말의 상향링크 데이터를 검출 시도하는 단계; 및
    상기 상향링크 데이터의 검출 성공 여부에 따라서 상기 단말에 ACK(acknowledge)신호 또는 NACK(negative ACK) 신호를 송신하는 단계를 포함하고,
    상기 지시된 송신 방식이 경쟁 기반 송신 방식인 경우, 상기 기지국은 상기 상향링크 데이터에 추가적으로 상기 단말을 식별하기 위한 정보의 검출을 시도하고, 상기 상향링크 데이터의 검출과 및 상기 단말을 식별하기 위한 정보의 검출에 모두 성공한 경우에 상기 ACK 신호를 송신하는, 신호 수신 방법.
  12. 제 11 항에 있어서, 상기 기지국은,
    상기 단말을 식별하기 위한 정보의 검출에 성공하였으나 상기 상향링크 데이터의 검출에 실패한 경우 단말-특정 NACK(negative ACK) 신호를 송신하고,
    상기 단말을 식별하기 위한 정보의 검출이 실패하면 브로드캐스트 NACK 신호를 송신하는, 신호 수신 방법.
  13. 제 12 항에 있어서,
    상기 단말-특정 NACK(negative ACK) 신호는 상기 상향링크 데이터의 재전송을 위한 상향링크 승인을 포함하고,
    상기 기지국은 상기 상향링크 승인에 기반하여 비-경쟁 기반 송신 방식으로 재전송되는 상기 상향링크 데이터를 수신하는, 신호 수신 방법.
  14. 제 11 항에 있어서,
    상기 상향링크 데이터는 상기 단말을 식별하기 위한 정보로 디-스크램블(de-scramble)되고, 상기 단말을 식별하기 위한 정보는 상기 기지국의 셀 식별자로 디-스크램블되는, 신호 수신 방법.
  15. 제 11 항에 있어서,
    상기 기지국의 셀에 접속한 단말들의 수가 임계치 이상인 경우에는 상기 송신된 정보가 상기 비-경쟁 기반 송신 방식을 지시하고,
    상기 기지국의 셀에 접속한 단말들의 수가 상기 임계치 미만인 경우에는 상기 송신된 정보가 상기 경쟁 기반 송신 방식을 지시하는, 신호 수신 방법.
PCT/KR2017/006881 2016-07-11 2017-06-29 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치 WO2018012766A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/316,609 US10772124B2 (en) 2016-07-11 2017-06-29 Method for transmitting or receiving signal in wireless communication system and apparatus for same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662360962P 2016-07-11 2016-07-11
US62/360,962 2016-07-11
US201662373970P 2016-08-11 2016-08-11
US62/373,970 2016-08-11

Publications (1)

Publication Number Publication Date
WO2018012766A1 true WO2018012766A1 (ko) 2018-01-18

Family

ID=60952564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006881 WO2018012766A1 (ko) 2016-07-11 2017-06-29 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US10772124B2 (ko)
WO (1) WO2018012766A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662295A (zh) * 2018-06-29 2020-01-07 珠海市魅族科技有限公司 上行资源调度方法及装置、网络侧设备和终端设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3399681A4 (en) * 2016-01-19 2018-12-26 Huawei Technologies Co., Ltd. Feedback method and device for uplink channel
CN107734651B (zh) * 2016-08-10 2021-10-26 华为技术有限公司 一种数据传输方法及终端、网络设备
US11212829B2 (en) * 2018-10-05 2021-12-28 Qualcomm Incorporated Uplink processing techniques for reduced uplink timelines in wireless communications
US11877299B2 (en) * 2020-03-05 2024-01-16 Qualcomm Incorporated Control channel resources for group-feedback in multi-cast
CN116671223A (zh) * 2021-01-14 2023-08-29 捷开通讯(深圳)有限公司 一种上行传输方法、通信设备及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130022012A1 (en) * 2010-04-09 2013-01-24 Hyun Woo Lee Method for transceiving contention-based uplink channel signal
US9253692B1 (en) * 2014-04-22 2016-02-02 Sprint Spectrum L.P. Reuse of identifiers for contention-free random access requests to a network
US20160183299A1 (en) * 2013-11-14 2016-06-23 Fujitsu Limited Contention-free Access in Wireless Communication System

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096919A (ja) * 2016-04-07 2019-06-20 シャープ株式会社 送信装置および受信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130022012A1 (en) * 2010-04-09 2013-01-24 Hyun Woo Lee Method for transceiving contention-based uplink channel signal
US20160183299A1 (en) * 2013-11-14 2016-06-23 Fujitsu Limited Contention-free Access in Wireless Communication System
US9253692B1 (en) * 2014-04-22 2016-02-02 Sprint Spectrum L.P. Reuse of identifiers for contention-free random access requests to a network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Uplink Multiple Access Schemes for NR", R1-165174, 3GPP TSG RAN WG1 MEETING #85, 14 May 2016 (2016-05-14), Nanjing, China, XP051096229 *
NOKIA ET AL.: "Uplink Contention-based Access in 5G New Radio", R1-165022, 3GPP TSG-RAN WG1 #85, 13 May 2016 (2016-05-13), Nanjing, P.R. China, XP051096690 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662295A (zh) * 2018-06-29 2020-01-07 珠海市魅族科技有限公司 上行资源调度方法及装置、网络侧设备和终端设备

Also Published As

Publication number Publication date
US10772124B2 (en) 2020-09-08
US20190306879A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
WO2018084673A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 자원 할당 방법 및 이를 위한 장치
WO2018080151A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 harq 수행 방법 및 이를 위한 장치
WO2018128363A1 (ko) 펑처링된 데이터의 재전송 방법 및 이를 위한 장치
WO2017171322A2 (ko) 차세대 무선 통신 시스템에서 랜덤 액세스 절차 수행 방법 및 이를 위한 장치
WO2018012766A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2018169327A1 (ko) 무선 통신 시스템에서 ack/nack 송수신 방법 및 이를 위한 장치
WO2017014555A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 자원 할당 방법 및 이를 위한 장치
WO2017078425A1 (ko) 무선 통신 시스템에서 제어 정보를 송수신하는 방법 및 장치
WO2011074865A2 (ko) 이종(heterogeneous) 셀 간에 간섭을 제거하기 위한 방법 및 장치
WO2017171390A1 (ko) 차세대 무선 통신 시스템에서 사이드링크를 통한 신호 송수신 방법 및 이를 위한 장치
WO2018048273A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 신호 전송 방법 및 이를 위한 장치
WO2016018068A1 (ko) 무선 통신 시스템에서 d2d 통신을 위한 자원 정보 송신 송신 방법 및 이를 위한 장치
WO2018093103A1 (ko) 가용 자원에 대한 정보를 전송하는 방법 및 이를 위한 장치
WO2017213369A1 (ko) 무선 통신 시스템에서 송수신 방법 및 이를 위한 장치
WO2018164450A1 (ko) 무선 통신 시스템에서 ack/nack 자원 할당 방법 및 이를 위한 장치
WO2018012809A1 (ko) 무선 통신 시스템에서 ack/nack 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2017222351A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 신호 전송 방법 및 이를 위한 장치
WO2011043636A2 (ko) 무선 통신 시스템에서 상향링크 백홀 신호를 송신 및 수신을 위한 장치 및 그 방법
WO2016018069A1 (ko) 무선 통신 시스템에서 d2d 통신을 위한 제어 정보 송신 방법 및 이를 위한 장치
WO2018004296A2 (ko) 무선 통신 시스템에서 v2x 통신을 위한 ack/nack 전송 방법 및 이를 위한 장치
WO2013176531A1 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2017171350A1 (ko) 무선 통신 시스템에서 상향링크 신호의 전송 또는 수신 방법 및 이를 위한 장치
WO2016171457A1 (ko) 무선 통신 시스템에서 ack/nack 응답을 다중화하는 방법 및 이를 위한 장치
WO2017191964A2 (ko) 무선 통신 시스템에서 단축 tti 지원를 위한 harq 수행 방법 및 이를 위한 장치
WO2016085310A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827840

Country of ref document: EP

Kind code of ref document: A1