WO2018012564A1 - Honeycomb structure and production method for said honeycomb structure - Google Patents

Honeycomb structure and production method for said honeycomb structure Download PDF

Info

Publication number
WO2018012564A1
WO2018012564A1 PCT/JP2017/025477 JP2017025477W WO2018012564A1 WO 2018012564 A1 WO2018012564 A1 WO 2018012564A1 JP 2017025477 W JP2017025477 W JP 2017025477W WO 2018012564 A1 WO2018012564 A1 WO 2018012564A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
particles
honeycomb
fired body
thermal expansion
Prior art date
Application number
PCT/JP2017/025477
Other languages
French (fr)
Japanese (ja)
Inventor
真之助 後藤
健太 野村
巧 東條
吉田 健
鈴木 宏昌
Original Assignee
イビデン株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社, トヨタ自動車株式会社 filed Critical イビデン株式会社
Priority to JP2018527648A priority Critical patent/JP6949019B2/en
Publication of WO2018012564A1 publication Critical patent/WO2018012564A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances

Definitions

  • the present invention relates to a honeycomb structure and a method for manufacturing the honeycomb structure.
  • Exhaust gas discharged from internal combustion engines such as automobiles contains harmful gases such as carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC).
  • An exhaust gas purification catalyst that decomposes such harmful gases is also called a three-way catalyst, and a catalyst layer is provided by washing a slurry containing noble metal particles having catalytic activity on a honeycomb monolith substrate made of cordierite or the like. Things are common.
  • Patent Document 1 discloses an exhaust gas purification catalyst in which a monolith base material includes ceria-zirconia composite oxide particles and ⁇ -phase alumina particles, and the monolith base material carries noble metal particles.
  • the warm-up performance of the catalyst can be improved because the temperature is likely to rise.
  • the warm-up performance of the catalyst means the length of time until the exhaust gas purification performance sufficient as a catalyst can be exhibited after the engine is started. This means that the exhaust gas purification performance can be sufficiently exhibited in a short time after starting.
  • the volume of the exhaust gas purification catalyst is large because both the ceria-zirconia composite oxide particles constituting the monolith substrate and the ⁇ phase alumina particles have large thermal expansion coefficients.
  • the monolith substrate may be damaged depending on use conditions such as.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a honeycomb structure having high thermal shock resistance and a method for manufacturing the honeycomb structure.
  • a honeycomb structure of the present invention is a honeycomb structure including a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween. It is characterized by comprising an extrusion-molded body containing ceria-zirconia composite oxide particles and alumina particles, and further comprising low thermal expansion coefficient particles made of cordierite, aluminum titanate or lithium aluminosilicate material.
  • the honeycomb fired body constituting the honeycomb structure of the present invention further includes low thermal expansion coefficient particles made of cordierite, aluminum titanate or lithium aluminosilicate material in addition to ceria-zirconia composite oxide particles and alumina particles.
  • the ceria-zirconia composite oxide particles and the alumina particles are particles having a large thermal expansion coefficient.
  • the honeycomb fired body further includes low thermal expansion coefficient particles, the thermal expansion coefficient of the entire honeycomb fired body can be reduced. By reducing the thermal expansion coefficient of the entire honeycomb fired body, a honeycomb structure having high thermal shock resistance can be obtained.
  • Lithium aluminosilicate is ⁇ -spodumene or ⁇ -eucryptite.
  • the low thermal expansion coefficient particles are preferably aluminum titanate.
  • the aspect ratio of the aluminum titanate particles is preferably 3 or more. When aluminum titanate particles having a large aspect ratio are used, they can be oriented along the longitudinal direction during extrusion molding, and thermal expansion in the longitudinal direction can be particularly suppressed.
  • the average particle diameters of the ceria-zirconia composite oxide particles, the alumina particles, and the low thermal expansion coefficient particles are each preferably 1 to 5 ⁇ m.
  • the average particle diameter of each particle is within the above range, the ceria-zirconia composite oxide particles, alumina particles, and low thermal expansion coefficient particles are present in the partition walls of the honeycomb structure without unevenness, and therefore, a portion having a large thermal expansion is partially present. It is difficult to do so, and damage due to thermal expansion can be particularly prevented.
  • the alumina particles are preferably ⁇ -phase alumina particles.
  • the ⁇ -phase alumina particles as the partition material for the ceria-zirconia composite oxide, the size of the pores in the partition walls can be increased, so that the gas easily diffuses into the partition walls.
  • the alumina particles into the ⁇ phase the phase change of alumina in the exhaust gas can be suppressed, so that the heat resistance can be increased.
  • the ratio of the length to the diameter of the honeycomb structure is preferably 0.5 to 0.9.
  • the honeycomb structure preferably has a diameter of 130 mm or less.
  • the diameter of the honeycomb structure By setting the diameter of the honeycomb structure to 130 mm or less, the temperature distribution in the honeycomb structure can be reduced, so that the thermal shock resistance of the honeycomb structure can be further improved.
  • a noble metal is supported on the honeycomb fired body. Since the honeycomb fired body made of an extrusion-molded body containing ceria-zirconia composite oxide particles and alumina particles itself has a catalyst carrier function and a promoter function, a noble metal can be directly supported on the honeycomb fired body. Furthermore, since the temperature of the honeycomb structure easily rises by directly supporting the noble metal on the honeycomb fired body, it is possible to improve the exhaust gas purification performance from the beginning.
  • the method for manufacturing a honeycomb structure of the present invention is a method for manufacturing a honeycomb structure including a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls therebetween, and the ceria-zirconia composite oxide particles And a plurality of through-holes arranged in parallel in the longitudinal direction with a partition wall formed by molding a raw material paste comprising alumina particles and low thermal expansion coefficient particles made of cordierite, aluminum titanate or lithium aluminosilicate material And a firing step for producing a honeycomb fired body by firing the honeycomb formed body.
  • a raw material paste containing low thermal expansion coefficient particles is formed and fired to produce a honeycomb fired body.
  • the obtained honeycomb fired body becomes a fired body having a lower thermal expansion coefficient than that of the fired body not including the low thermal expansion coefficient particles.
  • a honeycomb structure with high thermal shock resistance can be manufactured.
  • the thermal expansion coefficient can be lowered to an appropriate range without increasing the heat capacity too much.
  • the honeycomb structure can be used as a honeycomb catalyst for exhaust gas purification.
  • FIG. 1 is a perspective view schematically showing an example of the honeycomb structure of the present invention.
  • the honeycomb structure of the present invention includes a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls therebetween.
  • the honeycomb fired body is formed of an extrusion-molded body including ceria-zirconia composite oxide particles (hereinafter also referred to as CZ particles), alumina particles, and low thermal expansion coefficient particles.
  • CZ particles ceria-zirconia composite oxide particles
  • the honeycomb fired body is manufactured by extruding and firing a raw material paste containing CZ particles, alumina particles, and low thermal expansion coefficient particles. It can be confirmed by X-ray diffraction (XRD) that the honeycomb structure of the present invention has the components described above.
  • XRD X-ray diffraction
  • the honeycomb structure of the present invention may include a single honeycomb fired body, or may include a plurality of honeycomb fired bodies, and the plurality of honeycomb fired bodies are bonded by an adhesive layer. Also good.
  • an outer peripheral coat layer may be formed on the outer peripheral surface of the honeycomb fired body.
  • FIG. 1 is a perspective view schematically showing an example of the honeycomb structure of the present invention.
  • a honeycomb structure 10 shown in FIG. 1 includes a single honeycomb fired body 11 in which a plurality of through holes 11a are arranged in parallel in the longitudinal direction with a partition wall 11b interposed therebetween.
  • the honeycomb fired body 11 includes CZ particles, alumina particles, and low thermal expansion coefficient particles, and has a shape of an extrusion-molded body.
  • Low thermal expansion coefficient particles are particles made of cordierite, aluminum titanate or lithium aluminosilicate material.
  • the lithium aluminosilicate-based material is ⁇ -spodumene or ⁇ -eucryptite.
  • the ceria-zirconia composite oxide particles and the alumina particles are particles having a large thermal expansion coefficient.
  • the honeycomb fired body further includes low thermal expansion coefficient particles, the thermal expansion coefficient of the entire honeycomb fired body can be reduced. By reducing the thermal expansion coefficient of the entire honeycomb fired body, a honeycomb structure having high thermal shock resistance can be obtained.
  • the low thermal expansion coefficient particles aluminum titanate is preferable, and the aspect ratio of the aluminum titanate particles is more preferably 3 or more.
  • aluminum titanate particles having a large aspect ratio are used, they can be oriented along the longitudinal direction during extrusion molding, and thermal expansion in the longitudinal direction can be particularly suppressed.
  • the average particle diameter of CZ particles constituting the honeycomb fired body is not particularly limited, but is preferably 1 to 10 ⁇ m from the viewpoint of improving gas purification performance and warm-up performance.
  • the average particle size of the CZ particles is more preferably 1 to 5 ⁇ m.
  • the average particle diameter of the alumina particles constituting the honeycomb fired body is not particularly limited, but is preferably 1 to 10 ⁇ m from the viewpoint of improving gas purification performance and warm-up performance. Is more desirable.
  • the average particle diameter of the low thermal expansion coefficient particles constituting the honeycomb fired body is not particularly limited, but is preferably 1 to 10 ⁇ m from the viewpoint of improving thermal shock resistance, and is 1 to 5 ⁇ m. More desirable.
  • the average particle size of CZ particles, alumina particles, and low thermal expansion coefficient particles constituting the honeycomb fired body is obtained by taking an SEM photograph of the honeycomb fired body using a scanning electron microscope (SEM, Hitachi High-Tech S-4800). Can be obtained.
  • the average particle diameter of the low thermal expansion coefficient particles is the average of the lengths of the long diameters determined from SEM photographs.
  • the content ratio of CZ particles is preferably 30 to 65% by weight.
  • the content of alumina particles is preferably 10 to 30% by weight.
  • the content ratio of the low thermal expansion coefficient particles is preferably 10 to 35% by weight.
  • the ceria-zirconia composite oxide constituting the CZ particles is a material used as a promoter (oxygen storage material) of the exhaust gas purification catalyst.
  • ceria and zirconia preferably form a solid solution.
  • the ceria-zirconia composite oxide is obtained by, for example, adding ammonia water to an aqueous solution in which a cerium salt (cerium nitrate, etc.) and a zirconium salt (zirconium oxynitrate, etc.) are dissolved to produce a coprecipitate.
  • the ceria-zirconia composite oxide may further contain a rare earth element other than cerium.
  • rare earth elements scandium (Sc), yttrium (Y), lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), gadolinium (Gd), terbium (Tb), dysprosium (Dy), Examples thereof include ytterbium (Yb) and lutetium (Lu).
  • the ceria-zirconia composite oxide preferably contains 30% by weight or more, more preferably 40% by weight or more, and on the other hand, it preferably contains 90% by weight or less of ceria. More preferably, it is contained in an amount of 80% by weight or less. Further, the ceria-zirconia composite oxide preferably contains 60% by weight or less, more preferably 50% by weight or less of zirconia. Since such a ceria-zirconia composite oxide has a small heat capacity, the temperature of the honeycomb structure easily rises, and the warm-up performance can be improved.
  • the kind of the alumina particles is not particularly limited, but is desirably ⁇ -phase alumina particles (hereinafter also referred to as ⁇ -alumina particles).
  • ⁇ -alumina particles As the partition material for the ceria-zirconia composite oxide, the size of the pores in the partition walls can be increased, so that the gas easily diffuses into the partition walls.
  • the alumina particles into the ⁇ phase the phase change of alumina in the exhaust gas can be suppressed, so that the heat resistance can be increased.
  • the honeycomb fired body preferably includes inorganic particles used as an inorganic binder during production, and more preferably includes ⁇ -alumina particles derived from boehmite.
  • the honeycomb fired body preferably includes inorganic fibers, and more preferably includes ⁇ -alumina fibers.
  • the honeycomb fired body contains inorganic fibers such as ⁇ -alumina fibers, the mechanical properties of the honeycomb structure can be improved.
  • the ratio of the length to the diameter of the honeycomb structure is preferably 0.5 to 0.9, and preferably 0.6 to 0.8. More desirable.
  • the honeycomb structure preferably has a diameter of 130 mm or less, and more preferably 125 mm or less.
  • the honeycomb structure preferably has a diameter of 85 mm or more.
  • the length of the honeycomb structure is preferably 65 to 120 mm, and more preferably 70 to 115 mm.
  • the shape of the honeycomb structure of the present invention is not limited to a cylindrical shape, and examples thereof include a prismatic shape, an elliptical cylindrical shape, a long cylindrical shape, and a rounded chamfered prismatic shape (for example, a rounded chamfered triangular prism shape). .
  • the thickness of the partition walls of the honeycomb fired body is desirably uniform. Specifically, the thickness of the partition walls of the honeycomb fired body is desirably 0.05 to 0.50 mm, and more desirably 0.10 to 0.30 mm.
  • the shape of the through hole of the honeycomb fired body is not limited to a quadrangular prism shape, and examples thereof include a triangular prism shape and a hexagonal prism shape.
  • the density of the through holes in the cross section perpendicular to the longitudinal direction of the honeycomb fired body is preferably 31 to 155 holes / cm 2 .
  • the porosity of the honeycomb fired body is preferably 40 to 70%.
  • the porosity of the honeycomb fired body can be measured by a mercury intrusion method under the conditions of a contact angle of 130 ° and a surface tension of 485 mN / m.
  • the thickness of the outer peripheral coat layer is preferably 0.1 to 2.0 mm.
  • a noble metal is supported on the honeycomb fired body.
  • the noble metal include platinum group metals such as platinum, palladium, and rhodium.
  • the loading amount of the noble metal is desirably 0.1 to 15 g / L, and more desirably 0.5 to 10 g / L.
  • the loading amount of the noble metal refers to the weight of the noble metal per apparent volume of the honeycomb structure.
  • the apparent volume of the honeycomb structure is a volume including the void volume, and includes the volume of the outer peripheral coat layer and / or the adhesive layer.
  • the method for manufacturing a honeycomb structure of the present invention is a method for manufacturing a honeycomb structure including a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls therebetween, and the ceria-zirconia composite oxide particles And a plurality of through-holes arranged in parallel in the longitudinal direction with a partition wall formed by molding a raw material paste comprising alumina particles and low thermal expansion coefficient particles made of cordierite, aluminum titanate or lithium aluminosilicate material A forming step for manufacturing the honeycomb formed body, and a firing step for manufacturing the honeycomb fired body by firing the honeycomb formed body.
  • a raw material paste containing CZ particles, alumina particles, and low thermal expansion coefficient particles is prepared.
  • Examples of other raw materials used when preparing the raw material paste include inorganic fibers, inorganic binders, organic binders, pore formers, molding aids, and dispersion media.
  • alumina a silica, silicon carbide, a silica alumina, glass, potassium titanate, an aluminum borate etc.
  • alumina fibers are desirable, and ⁇ -alumina fibers are particularly desirable.
  • Solid content contained in alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, boehmite, etc. is mentioned. Two or more of these inorganic binders may be used in combination.
  • Boehmite is an alumina monohydrate represented by the composition of AlOOH and is well dispersed in a medium such as water. Therefore, it is desirable to use boehmite as an inorganic binder.
  • Methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, polyethyleneglycol, a phenol resin, an epoxy resin etc. are mentioned, You may use 2 or more types together.
  • a pore making agent for example, an acrylic resin, coke, starch, etc. are mentioned. In the present invention, it is desirable to use two or more of acrylic resin, coke and starch.
  • the pore-forming agent refers to a material used for introducing pores into the fired body when the fired body is produced.
  • Alcohol such as water
  • organic solvents such as benzene, methanol, etc.
  • the blending ratio thereof is CZ particles: 40 to 60 with respect to the total solid content remaining after the firing step in the raw material. Desirable are: wt%, alumina particles: 15 to 35 wt%, low thermal expansion coefficient particles: 10 to 35 wt%, ⁇ -alumina fiber: 0 to 15 wt%, boehmite: 5 to 20 wt%.
  • the raw material paste When preparing the raw material paste, it is desirable to mix and knead, and it may be mixed using a mixer, an attritor or the like, or may be kneaded using a kneader or the like.
  • the raw material paste is formed to produce a honeycomb formed body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls.
  • a honeycomb formed body is manufactured by extrusion molding using the raw material paste. That is, by passing the paste through a mold having a predetermined shape, a continuous body of the honeycomb molded body having through holes having a predetermined shape is formed, and the honeycomb molded body is obtained by cutting to a predetermined length. It is done.
  • the honeycomb formed body can be dried to produce a honeycomb dried body. desirable.
  • a dryer such as a microwave dryer, hot air dryer, dielectric dryer, vacuum dryer, vacuum dryer, freeze dryer, etc.
  • honeycomb formed body and the honeycomb dried body before the firing step are collectively referred to as a honeycomb formed body.
  • the honeycomb fired body is fired to produce a honeycomb fired body.
  • this process performs degreasing and firing of the honeycomb formed body, it can also be referred to as a “degreasing / firing process”, but it is referred to as “a firing process” for convenience.
  • the temperature of the firing step is desirably 800 to 1300 ° C., and more desirably 900 to 1200 ° C.
  • the firing process time is preferably 1 to 24 hours, and more preferably 3 to 18 hours.
  • the atmosphere of the firing step is not particularly limited, but it is desirable that the oxygen concentration is 1 to 20% by volume.
  • a honeycomb structure can be manufactured by the above process.
  • the method for manufacturing a honeycomb structure of the present invention preferably further includes a supporting step of supporting a noble metal on the honeycomb fired body.
  • the method of supporting the noble metal on the honeycomb fired body include a method in which the honeycomb fired body or the honeycomb structure is immersed in a solution containing noble metal particles and / or a complex and then heated up.
  • the honeycomb structure includes an outer peripheral coat layer
  • a precious metal may be supported on the honeycomb fired body before forming the outer peripheral coat layer, or a precious metal may be supported on the honeycomb fired body or the honeycomb structure after the outer peripheral coat layer is formed. You may carry.
  • the honeycomb structure includes an adhesive layer
  • the noble metal may be supported on the honeycomb fired body before the adhesive layer is formed, or the noble metal may be supported on the honeycomb fired body or the honeycomb structure after the adhesive layer is formed. May be.
  • the amount of the noble metal supported in the supporting step is preferably 0.1 to 15 g / L, and more preferably 0.5 to 10 g / L.
  • the outer peripheral coat layer is coated with the outer peripheral coat layer paste on the outer peripheral surface excluding both end faces. Thereafter, it can be formed by drying and solidifying.
  • the outer coat layer paste include the same composition as the raw material paste.
  • the honeycomb structured body in which a plurality of honeycomb fired bodies are bonded via an adhesive layer has an adhesive layer paste on the outer peripheral surface excluding both end faces of the plurality of honeycomb fired bodies. After applying and adhering, it can be produced by drying and solidifying.
  • the adhesive layer paste include those having the same composition as the raw material paste.
  • Example 1 CZ particles (average particle size: 2 ⁇ m) 23.8% by weight, ⁇ -alumina particles (average particle size: 2 ⁇ m) 10.6% by weight, ⁇ -alumina fibers (average fiber size: 3 ⁇ m, average fiber length: 60 ⁇ m) ) 2.7% by weight, boehmite 7.5% by weight as an inorganic binder, aluminum titanate particles (average particle size: 3 ⁇ m, aspect ratio 3) 11.8% by weight, and organic cellulose 5.3% by weight %, 2.1% by weight of acrylic resin as a pore-forming agent, 2.6% by weight of coke as a pore-forming agent, 4.2% by weight of polyoxyethylene oleyl ether which is a surfactant as a molding aid, and The raw material paste was prepared by mixing and kneading 29.6% by weight of ion exchange water.
  • honeycomb fired body The raw material paste was extruded using an extruder to produce a honeycomb formed body.
  • the honeycomb molded body was dried at an output of 1.74 kW and a reduced pressure of 6.7 kPa for 12 minutes using a vacuum microwave dryer, and then degreased and fired at 1100 ° C. for 10 hours to obtain a honeycomb fired body (honeycomb structure).
  • the honeycomb fired body had a cylindrical shape with a diameter of 103 mm and a length of 80 mm, a density of through holes of 77.5 holes / cm 2 (500 cpsi), and a partition wall thickness of 0.127 mm (5 mil).
  • Example 1 A honeycomb fired body (honeycomb structure) was manufactured in the same manner as in Example 1 except that aluminum titanate particles were not used and a raw material paste having the following composition was prepared.
  • CZ particles average particle size: 2 ⁇ m) 26.4% by weight
  • ⁇ -alumina particles average particle size: 2 ⁇ m) 13.2% by weight
  • ⁇ -alumina fibers average fiber size: 3 ⁇ m, average fiber length: 60 ⁇ m)
  • boehmite is 11.3% by weight as an inorganic binder
  • methyl cellulose is 5.3% by weight as an organic binder
  • acrylic resin is 2.1% by weight as a pore former
  • coke is also used as a pore former.
  • a raw material paste was prepared by mixing and kneading 2.6% by weight, 4.2% by weight of polyoxyethylene oleyl ether which is a surfactant as a molding aid, and 29.6% by weight of ion-exchanged water.
  • Thermal shock resistance test The honeycomb fired bodies of Example 1 and Comparative Example 1 manufactured by the above process were sealed in a metal case through an alumina mat, and air heated by a gas burner and air at room temperature were alternately aerated. .
  • a heat cycle test was performed in which cooling and heating were repeated 100 cycles so that the temperature at the center of the honeycomb fired body was alternately 200 ° C. and 950 ° C. As a result, cracks did not occur in the honeycomb fired body of Example 1 after the heat cycle test, but cracks occurred in the honeycomb fired body of Comparative Example 1 after the heat cycle test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

The present invention pertains to a honeycomb structure comprising a sintered honeycomb body having a plurality of through-holes arranged in parallel in the longitudinal direction, having partition walls interposed therebetween. The honeycomb structure is characterized by the sintered honeycomb body comprising an extrusion-molded body that includes ceria-zirconia composite oxide particles and alumina particles and also includes low thermal expansion coefficient particles comprising cordierite, aluminum titanate, or a lithium aluminosilicate-based material.

Description

ハニカム構造体及び該ハニカム構造体の製造方法Honeycomb structure and method for manufacturing the honeycomb structure
本発明は、ハニカム構造体及び該ハニカム構造体の製造方法に関する。 The present invention relates to a honeycomb structure and a method for manufacturing the honeycomb structure.
自動車等の内燃機関から排出される排ガスには、一酸化炭素(CO)、窒素酸化物(NOx)、炭化水素(HC)等の有害ガスが含まれている。そのような有害ガスを分解する排ガス浄化触媒は三元触媒とも称され、コージェライト等からなるハニカム状のモノリス基材に触媒活性を有する貴金属粒子を含むスラリーをウォッシュコートして触媒層を設けたものが一般的である。 Exhaust gas discharged from internal combustion engines such as automobiles contains harmful gases such as carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC). An exhaust gas purification catalyst that decomposes such harmful gases is also called a three-way catalyst, and a catalyst layer is provided by washing a slurry containing noble metal particles having catalytic activity on a honeycomb monolith substrate made of cordierite or the like. Things are common.
一方、特許文献1には、モノリス基材がセリア-ジルコニア複合酸化物粒子とθ相のアルミナ粒子とを含み、上記モノリス基材に貴金属粒子が担持された排ガス浄化触媒が開示されている。 On the other hand, Patent Document 1 discloses an exhaust gas purification catalyst in which a monolith base material includes ceria-zirconia composite oxide particles and θ-phase alumina particles, and the monolith base material carries noble metal particles.
特開2015-85241号公報Japanese Patent Laying-Open No. 2015-85241
特許文献1に記載の排ガス浄化触媒では、モノリス基材の材料としてコージェライトを用いず、自らが触媒担体機能及び助触媒機能を有する材料を用いることによって、嵩密度が小さくなり、モノリス基材の温度が上がりやすくなるため、触媒の暖機性能を向上させることができるとされている。
本明細書において、触媒の暖機性能とは、エンジンの始動後、触媒として充分な排ガス浄化性能を発揮できるようになるまでの時間の長短をいい、暖機性能に優れているとは、エンジンの始動後、短時間で排ガス浄化性能を充分に発揮できることをいう。
In the exhaust gas purifying catalyst described in Patent Literature 1, cordierite is not used as the material of the monolith base material, but the material itself has a catalyst carrier function and a cocatalyst function, thereby reducing the bulk density. It is said that the warm-up performance of the catalyst can be improved because the temperature is likely to rise.
In this specification, the warm-up performance of the catalyst means the length of time until the exhaust gas purification performance sufficient as a catalyst can be exhibited after the engine is started. This means that the exhaust gas purification performance can be sufficiently exhibited in a short time after starting.
ここで、特許文献1に記載の排ガス浄化触媒では、モノリス基材を構成するセリア-ジルコニア複合酸化物粒子及びθ相のアルミナ粒子の熱膨張係数がどちらも大きいため、排ガス浄化触媒の容積が大きくなる等の使用条件によってはモノリス基材が破損するおそれがあった。 Here, in the exhaust gas purification catalyst described in Patent Document 1, the volume of the exhaust gas purification catalyst is large because both the ceria-zirconia composite oxide particles constituting the monolith substrate and the θ phase alumina particles have large thermal expansion coefficients. The monolith substrate may be damaged depending on use conditions such as.
本発明は、上記の問題を解決するためになされたものであり、耐熱衝撃性が高いハニカム構造体及び該ハニカム構造体の製造方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a honeycomb structure having high thermal shock resistance and a method for manufacturing the honeycomb structure.
上記目的を達成するための本発明のハニカム構造体は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体であって、上記ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含み、さらにコージェライト、チタン酸アルミニウム又はリチウムアルミノケイ酸塩系材料からなる低熱膨張係数粒子を含む押出成形体からなることを特徴とする。 In order to achieve the above object, a honeycomb structure of the present invention is a honeycomb structure including a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween. It is characterized by comprising an extrusion-molded body containing ceria-zirconia composite oxide particles and alumina particles, and further comprising low thermal expansion coefficient particles made of cordierite, aluminum titanate or lithium aluminosilicate material.
本発明のハニカム構造体を構成するハニカム焼成体は、セリア-ジルコニア複合酸化物粒子、アルミナ粒子に加えてコージェライト、チタン酸アルミニウム又はリチウムアルミノケイ酸塩系材料からなる低熱膨張係数粒子をさらに含んでいる。
セリア-ジルコニア複合酸化物粒子とアルミナ粒子は熱膨張係数の大きな粒子であるが、ハニカム焼成体がさらに低熱膨張係数粒子を含むことによって、ハニカム焼成体全体の熱膨張係数を低下させることができる。
ハニカム焼成体全体の熱膨張係数を低下させることによって、耐熱衝撃性の高いハニカム構造体とすることができる。
リチウムアルミノケイ酸塩とは、βスポジュメン又はβユークリプタイトである。
The honeycomb fired body constituting the honeycomb structure of the present invention further includes low thermal expansion coefficient particles made of cordierite, aluminum titanate or lithium aluminosilicate material in addition to ceria-zirconia composite oxide particles and alumina particles. Yes.
The ceria-zirconia composite oxide particles and the alumina particles are particles having a large thermal expansion coefficient. However, when the honeycomb fired body further includes low thermal expansion coefficient particles, the thermal expansion coefficient of the entire honeycomb fired body can be reduced.
By reducing the thermal expansion coefficient of the entire honeycomb fired body, a honeycomb structure having high thermal shock resistance can be obtained.
Lithium aluminosilicate is β-spodumene or β-eucryptite.
本発明のハニカム構造体では、低熱膨張係数粒子がチタン酸アルミニウムであることが好ましい。また、上記チタン酸アルミニウム粒子のアスペクト比が3以上であることが好ましい。
アスペクト比の大きいチタン酸アルミニウム粒子を用いると、押出成形時に長手方向に沿って配向して、長手方向における熱膨張を特に抑制することができる。
In the honeycomb structure of the present invention, the low thermal expansion coefficient particles are preferably aluminum titanate. The aspect ratio of the aluminum titanate particles is preferably 3 or more.
When aluminum titanate particles having a large aspect ratio are used, they can be oriented along the longitudinal direction during extrusion molding, and thermal expansion in the longitudinal direction can be particularly suppressed.
本発明のハニカム構造体では、上記セリア-ジルコニア複合酸化物粒子、上記アルミナ粒子及び上記低熱膨張係数粒子の平均粒子径がそれぞれ1~5μmであることが好ましい。
各粒子の平均粒子径が上記範囲であると、セリア-ジルコニア複合酸化物粒子とアルミナ粒子及び低熱膨張係数粒子が偏りなくハニカム構造体の隔壁に存在するため、部分的に熱膨張の大きな部分ができにくく、熱膨張による破損を特に防ぐことができる。
In the honeycomb structure of the present invention, the average particle diameters of the ceria-zirconia composite oxide particles, the alumina particles, and the low thermal expansion coefficient particles are each preferably 1 to 5 μm.
When the average particle diameter of each particle is within the above range, the ceria-zirconia composite oxide particles, alumina particles, and low thermal expansion coefficient particles are present in the partition walls of the honeycomb structure without unevenness, and therefore, a portion having a large thermal expansion is partially present. It is difficult to do so, and damage due to thermal expansion can be particularly prevented.
本発明のハニカム構造体では、上記アルミナ粒子は、θ相のアルミナ粒子であることが好ましい。
θ相のアルミナ粒子をセリア-ジルコニア複合酸化物の仕切り材として用いることにより、隔壁中の細孔のサイズを大きくすることができるため、ガスが隔壁の内部まで拡散しやすくなる。さらに、アルミナ粒子をθ相とすることにより、排ガス中でのアルミナの相変化を抑制することができるため、耐熱性を高くすることができる。
In the honeycomb structure of the present invention, the alumina particles are preferably θ-phase alumina particles.
By using the θ-phase alumina particles as the partition material for the ceria-zirconia composite oxide, the size of the pores in the partition walls can be increased, so that the gas easily diffuses into the partition walls. Furthermore, by making the alumina particles into the θ phase, the phase change of alumina in the exhaust gas can be suppressed, so that the heat resistance can be increased.
本発明のハニカム構造体では、上記ハニカム構造体の直径に対する長さの比(長さ/直径)は、0.5~0.9であることが好ましい。
ハニカム構造体の長さ/直径の比を1以下にすることにより、ハニカム構造体内の温度分布を小さくすることができるため、ハニカム構造体の耐熱衝撃性をさらに向上させることができる。
In the honeycomb structure of the present invention, the ratio of the length to the diameter of the honeycomb structure (length / diameter) is preferably 0.5 to 0.9.
By setting the length / diameter ratio of the honeycomb structure to 1 or less, the temperature distribution in the honeycomb structure can be reduced, so that the thermal shock resistance of the honeycomb structure can be further improved.
本発明のハニカム構造体では、上記ハニカム構造体の直径は、130mm以下であることが好ましい。
ハニカム構造体の直径を130mm以下にすることにより、ハニカム構造体内の温度分布を小さくすることができるため、ハニカム構造体の耐熱衝撃性をさらに向上させることができる。
In the honeycomb structure of the present invention, the honeycomb structure preferably has a diameter of 130 mm or less.
By setting the diameter of the honeycomb structure to 130 mm or less, the temperature distribution in the honeycomb structure can be reduced, so that the thermal shock resistance of the honeycomb structure can be further improved.
本発明のハニカム構造体では、上記ハニカム焼成体に貴金属が担持されていることが好ましい。
セリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含む押出成形体からなるハニカム焼成体は、それ自体が触媒担体機能及び助触媒機能を有するため、貴金属をハニカム焼成体に直接担持させることができる。さらに、貴金属をハニカム焼成体に直接担持させることにより、ハニカム構造体の温度が上昇しやすくなるため、初期からの排ガス浄化性能を高めることができる。
In the honeycomb structure of the present invention, it is preferable that a noble metal is supported on the honeycomb fired body.
Since the honeycomb fired body made of an extrusion-molded body containing ceria-zirconia composite oxide particles and alumina particles itself has a catalyst carrier function and a promoter function, a noble metal can be directly supported on the honeycomb fired body. Furthermore, since the temperature of the honeycomb structure easily rises by directly supporting the noble metal on the honeycomb fired body, it is possible to improve the exhaust gas purification performance from the beginning.
本発明のハニカム構造体の製造方法は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体の製造方法であって、セリア-ジルコニア複合酸化物粒子と、アルミナ粒子と、コージェライト、チタン酸アルミニウム又はリチウムアルミノケイ酸塩系材料からなる低熱膨張係数粒子とを含む原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、上記ハニカム成形体を焼成することにより、ハニカム焼成体を作製する焼成工程と、を含むことを特徴とする。 The method for manufacturing a honeycomb structure of the present invention is a method for manufacturing a honeycomb structure including a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls therebetween, and the ceria-zirconia composite oxide particles And a plurality of through-holes arranged in parallel in the longitudinal direction with a partition wall formed by molding a raw material paste comprising alumina particles and low thermal expansion coefficient particles made of cordierite, aluminum titanate or lithium aluminosilicate material And a firing step for producing a honeycomb fired body by firing the honeycomb formed body.
上記ハニカム構造体の製造方法では、低熱膨張係数粒子を含む原料ペーストを成形、焼成してハニカム焼成体を作製する。得られたハニカム焼成体は低熱膨張係数粒子を含まない焼成体に比べて熱膨張係数が低い焼成体となる。その結果、耐熱衝撃性の高いハニカム構造体を製造することができる。 In the above honeycomb structure manufacturing method, a raw material paste containing low thermal expansion coefficient particles is formed and fired to produce a honeycomb fired body. The obtained honeycomb fired body becomes a fired body having a lower thermal expansion coefficient than that of the fired body not including the low thermal expansion coefficient particles. As a result, a honeycomb structure with high thermal shock resistance can be manufactured.
本発明のハニカム構造体の製造方法では、上記セリア-ジルコニア複合酸化物粒子と上記低熱膨張係数粒子の配合比が重量比でセリア-ジルコニア複合酸化物粒子:低熱膨張係数粒子=1:1~3:1であることが好ましい。
各粒子の配合比が上記範囲であると、熱容量を大きくしすぎることなく、熱膨張係数を適切な範囲まで低下させることができる。
In the method for manufacturing a honeycomb structure of the present invention, the mixing ratio of the ceria-zirconia composite oxide particles and the low thermal expansion coefficient particles is ceria-zirconia composite oxide particles: low thermal expansion coefficient particles = 1: 1 to 3 in a weight ratio. : 1 is preferred.
When the mixing ratio of each particle is in the above range, the thermal expansion coefficient can be lowered to an appropriate range without increasing the heat capacity too much.
本発明のハニカム構造体の製造方法において、上記ハニカム焼成体に貴金属を担持させる担持工程をさらに含むことが望ましい。
ハニカム焼成体に貴金属を担持させることにより、ハニカム構造体を排ガス浄化用のハニカム触媒として使用することが可能となる。
In the method for manufacturing a honeycomb structured body of the present invention, it is desirable to further include a supporting step for supporting a noble metal on the honeycomb fired body.
By supporting the noble metal on the honeycomb fired body, the honeycomb structure can be used as a honeycomb catalyst for exhaust gas purification.
図1は、本発明のハニカム構造体の一例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of the honeycomb structure of the present invention.
(発明の詳細な説明)
[ハニカム構造体]
まず、本発明のハニカム構造体について説明する。
(Detailed description of the invention)
[Honeycomb structure]
First, the honeycomb structure of the present invention will be described.
本発明のハニカム構造体は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えている。 The honeycomb structure of the present invention includes a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls therebetween.
本発明のハニカム構造体において、ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子(以下、CZ粒子ともいう)とアルミナ粒子と低熱膨張係数粒子を含む押出成形体からなる。後述するように、ハニカム焼成体は、CZ粒子とアルミナ粒子と低熱膨張係数粒子とを含む原料ペーストを押出成形した後、焼成することにより作製されている。
本発明のハニカム構造体が上記した成分を有していることは、X線回折(XRD)にて確認することができる。
In the honeycomb structure of the present invention, the honeycomb fired body is formed of an extrusion-molded body including ceria-zirconia composite oxide particles (hereinafter also referred to as CZ particles), alumina particles, and low thermal expansion coefficient particles. As will be described later, the honeycomb fired body is manufactured by extruding and firing a raw material paste containing CZ particles, alumina particles, and low thermal expansion coefficient particles.
It can be confirmed by X-ray diffraction (XRD) that the honeycomb structure of the present invention has the components described above.
本発明のハニカム構造体は、単一のハニカム焼成体を備えていてもよいし、複数個のハニカム焼成体を備えていてもよく、複数個のハニカム焼成体が接着剤層により結合されていてもよい。 The honeycomb structure of the present invention may include a single honeycomb fired body, or may include a plurality of honeycomb fired bodies, and the plurality of honeycomb fired bodies are bonded by an adhesive layer. Also good.
本発明のハニカム構造体において、ハニカム焼成体の外周面には、外周コート層が形成されていてもよい。 In the honeycomb structure of the present invention, an outer peripheral coat layer may be formed on the outer peripheral surface of the honeycomb fired body.
図1は、本発明のハニカム構造体の一例を模式的に示す斜視図である。
図1に示すハニカム構造体10は、複数の貫通孔11aが隔壁11bを隔てて長手方向に並設された単一のハニカム焼成体11を備えている。ハニカム焼成体11は、CZ粒子とアルミナ粒子と低熱膨張係数粒子を含み、押出成形体の形状を有している。
FIG. 1 is a perspective view schematically showing an example of the honeycomb structure of the present invention.
A honeycomb structure 10 shown in FIG. 1 includes a single honeycomb fired body 11 in which a plurality of through holes 11a are arranged in parallel in the longitudinal direction with a partition wall 11b interposed therebetween. The honeycomb fired body 11 includes CZ particles, alumina particles, and low thermal expansion coefficient particles, and has a shape of an extrusion-molded body.
低熱膨張係数粒子とは、コージェライト、チタン酸アルミニウム又はリチウムアルミノケイ酸塩系材料からなる粒子である。
リチウムアルミノケイ酸塩系材料とは、βスポジュメン又はβユークリプタイトである。
セリア-ジルコニア複合酸化物粒子とアルミナ粒子は熱膨張係数の大きな粒子であるが、ハニカム焼成体がさらに低熱膨張係数粒子を含むことによって、ハニカム焼成体全体の熱膨張係数を低下させることができる。
ハニカム焼成体全体の熱膨張係数を低下させることによって、耐熱衝撃性の高いハニカム構造体とすることができる。
Low thermal expansion coefficient particles are particles made of cordierite, aluminum titanate or lithium aluminosilicate material.
The lithium aluminosilicate-based material is β-spodumene or β-eucryptite.
The ceria-zirconia composite oxide particles and the alumina particles are particles having a large thermal expansion coefficient. However, when the honeycomb fired body further includes low thermal expansion coefficient particles, the thermal expansion coefficient of the entire honeycomb fired body can be reduced.
By reducing the thermal expansion coefficient of the entire honeycomb fired body, a honeycomb structure having high thermal shock resistance can be obtained.
低熱膨張係数粒子としては、チタン酸アルミニウムが好ましく、チタン酸アルミニウム粒子のアスペクト比が3以上であることがより好ましい。
アスペクト比の大きいチタン酸アルミニウム粒子を用いると、押出成形時に長手方向に沿って配向して、長手方向における熱膨張を特に抑制することができる。
As the low thermal expansion coefficient particles, aluminum titanate is preferable, and the aspect ratio of the aluminum titanate particles is more preferably 3 or more.
When aluminum titanate particles having a large aspect ratio are used, they can be oriented along the longitudinal direction during extrusion molding, and thermal expansion in the longitudinal direction can be particularly suppressed.
本発明のハニカム構造体において、ハニカム焼成体を構成するCZ粒子の平均粒子径は特に限定されないが、ガス浄化性能及び暖機性能を向上させる観点から、1~10μmであることが好ましい。また、CZ粒子の平均粒子径は1~5μmであることがより好ましい。 In the honeycomb structure of the present invention, the average particle diameter of CZ particles constituting the honeycomb fired body is not particularly limited, but is preferably 1 to 10 μm from the viewpoint of improving gas purification performance and warm-up performance. The average particle size of the CZ particles is more preferably 1 to 5 μm.
本発明のハニカム構造体において、ハニカム焼成体を構成するアルミナ粒子の平均粒子径は特に限定されないがガス浄化性能及び暖機性能を向上させる観点から、1~10μmであることが望ましく、1~5μmであることがより望ましい。 In the honeycomb structure of the present invention, the average particle diameter of the alumina particles constituting the honeycomb fired body is not particularly limited, but is preferably 1 to 10 μm from the viewpoint of improving gas purification performance and warm-up performance. Is more desirable.
本発明のハニカム構造体において、ハニカム焼成体を構成する低熱膨張係数粒子の平均粒子径は特に限定されないが、耐熱衝撃性を向上させる観点から、1~10μmであることが望ましく、1~5μmであることがより望ましい。 In the honeycomb structure of the present invention, the average particle diameter of the low thermal expansion coefficient particles constituting the honeycomb fired body is not particularly limited, but is preferably 1 to 10 μm from the viewpoint of improving thermal shock resistance, and is 1 to 5 μm. More desirable.
ハニカム焼成体を構成するCZ粒子、アルミナ粒子及び低熱膨張係数粒子の平均粒子径は、走査型電子顕微鏡(SEM、日立ハイテク社製 S-4800)を用いて、ハニカム焼成体のSEM写真を撮影することにより求めることができる。低熱膨張係数粒子の平均粒子径は、SEM写真から求められる長径の長さの平均のことである。 The average particle size of CZ particles, alumina particles, and low thermal expansion coefficient particles constituting the honeycomb fired body is obtained by taking an SEM photograph of the honeycomb fired body using a scanning electron microscope (SEM, Hitachi High-Tech S-4800). Can be obtained. The average particle diameter of the low thermal expansion coefficient particles is the average of the lengths of the long diameters determined from SEM photographs.
本発明のハニカム構造体において、CZ粒子の含有割合は、30~65重量%であることが望ましい。 In the honeycomb structure of the present invention, the content ratio of CZ particles is preferably 30 to 65% by weight.
本発明のハニカム構造体において、アルミナ粒子の含有割合は、10~30重量%であることが望ましい。 In the honeycomb structure of the present invention, the content of alumina particles is preferably 10 to 30% by weight.
本発明のハニカム構造体において、低熱膨張係数粒子の含有割合は、10~35重量%であることが望ましい。 In the honeycomb structure of the present invention, the content ratio of the low thermal expansion coefficient particles is preferably 10 to 35% by weight.
本発明のハニカム構造体において、CZ粒子を構成するセリア-ジルコニア複合酸化物は、排ガス浄化触媒の助触媒(酸素貯蔵材)として用いられている材料である。セリア-ジルコニア複合酸化物は、好ましくはセリアとジルコニアが固溶体を形成している。セリア-ジルコニア複合酸化物は、例えば、セリウム塩(硝酸セリウム等)とジルコニウム塩(オキシ硝酸ジルコニウム等)とを溶解させた水溶液に、アンモニア水を加えて共沈殿を生成させ、得られた沈殿物を乾燥させた後に400~500℃で5時間程度焼成することにより調製することができる。 In the honeycomb structure of the present invention, the ceria-zirconia composite oxide constituting the CZ particles is a material used as a promoter (oxygen storage material) of the exhaust gas purification catalyst. In the ceria-zirconia composite oxide, ceria and zirconia preferably form a solid solution. The ceria-zirconia composite oxide is obtained by, for example, adding ammonia water to an aqueous solution in which a cerium salt (cerium nitrate, etc.) and a zirconium salt (zirconium oxynitrate, etc.) are dissolved to produce a coprecipitate. Can be prepared by baking at 400 to 500 ° C. for about 5 hours.
本発明のハニカム構造体において、セリア-ジルコニア複合酸化物は、セリウム以外の希土類元素をさらに含んでいてもよい。希土類元素としては、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、イッテルビウム(Yb)、ルテチウム(Lu)等が挙げられる。 In the honeycomb structure of the present invention, the ceria-zirconia composite oxide may further contain a rare earth element other than cerium. As rare earth elements, scandium (Sc), yttrium (Y), lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), gadolinium (Gd), terbium (Tb), dysprosium (Dy), Examples thereof include ytterbium (Yb) and lutetium (Lu).
本発明のハニカム構造体において、セリア-ジルコニア複合酸化物は、セリアを30重量%以上含むことが好ましく、40重量%以上含むことがより好ましく、一方、セリアを90重量%以下含むことが好ましく、80重量%以下含むことがより好ましい。また、セリア-ジルコニア複合酸化物は、ジルコニアを60重量%以下含むことが好ましく、50重量%以下含むことがより好ましい。このようなセリア-ジルコニア複合酸化物は熱容量が小さいため、ハニカム構造体の温度が上昇しやすくなり、暖機性能を高めることができる。 In the honeycomb structure of the present invention, the ceria-zirconia composite oxide preferably contains 30% by weight or more, more preferably 40% by weight or more, and on the other hand, it preferably contains 90% by weight or less of ceria. More preferably, it is contained in an amount of 80% by weight or less. Further, the ceria-zirconia composite oxide preferably contains 60% by weight or less, more preferably 50% by weight or less of zirconia. Since such a ceria-zirconia composite oxide has a small heat capacity, the temperature of the honeycomb structure easily rises, and the warm-up performance can be improved.
本発明のハニカム構造体において、上記アルミナ粒子の種類は特に限定されないが、θ相のアルミナ粒子(以下、θ-アルミナ粒子ともいう)であることが望ましい。
θ相のアルミナ粒子をセリア-ジルコニア複合酸化物の仕切り材として用いることにより、隔壁中の細孔のサイズを大きくすることができるため、ガスが隔壁の内部まで拡散しやすくなる。さらに、アルミナ粒子をθ相とすることにより、排ガス中でのアルミナの相変化を抑制することができるため、耐熱性を高くすることができる。
In the honeycomb structure of the present invention, the kind of the alumina particles is not particularly limited, but is desirably θ-phase alumina particles (hereinafter also referred to as θ-alumina particles).
By using the θ-phase alumina particles as the partition material for the ceria-zirconia composite oxide, the size of the pores in the partition walls can be increased, so that the gas easily diffuses into the partition walls. Furthermore, by making the alumina particles into the θ phase, the phase change of alumina in the exhaust gas can be suppressed, so that the heat resistance can be increased.
本発明のハニカム構造体において、ハニカム焼成体は、製造時に無機バインダとして用いられた無機粒子を含むことが望ましく、ベーマイトに由来するγ-アルミナ粒子を含むことがより望ましい。 In the honeycomb structured body of the present invention, the honeycomb fired body preferably includes inorganic particles used as an inorganic binder during production, and more preferably includes γ-alumina particles derived from boehmite.
本発明のハニカム構造体において、ハニカム焼成体は、無機繊維を含むことが望ましく、α-アルミナ繊維を含むことがより望ましい。
ハニカム焼成体がα-アルミナ繊維等の無機繊維を含んでいると、ハニカム構造体の機械的特性を改善することができる。
In the honeycomb structure of the present invention, the honeycomb fired body preferably includes inorganic fibers, and more preferably includes α-alumina fibers.
When the honeycomb fired body contains inorganic fibers such as α-alumina fibers, the mechanical properties of the honeycomb structure can be improved.
本発明のハニカム構造体において、ハニカム構造体の直径に対する長さの比(長さ/直径)は、0.5~0.9であることが望ましく、0.6~0.8であることがより望ましい。 In the honeycomb structure of the present invention, the ratio of the length to the diameter of the honeycomb structure (length / diameter) is preferably 0.5 to 0.9, and preferably 0.6 to 0.8. More desirable.
本発明のハニカム構造体において、ハニカム構造体の直径は、130mm以下であることが望ましく、125mm以下であることがより望ましい。また、ハニカム構造体の直径は、85mm以上であることが望ましい。 In the honeycomb structure of the present invention, the honeycomb structure preferably has a diameter of 130 mm or less, and more preferably 125 mm or less. The honeycomb structure preferably has a diameter of 85 mm or more.
本発明のハニカム構造体において、ハニカム構造体の長さは、65~120mmであることが望ましく、70~115mmであることがより望ましい。 In the honeycomb structure of the present invention, the length of the honeycomb structure is preferably 65 to 120 mm, and more preferably 70 to 115 mm.
本発明のハニカム構造体の形状としては、円柱状に限定されず、角柱状、楕円柱状、長円柱状、丸面取りされている角柱状(例えば、丸面取りされている三角柱状)等が挙げられる。 The shape of the honeycomb structure of the present invention is not limited to a cylindrical shape, and examples thereof include a prismatic shape, an elliptical cylindrical shape, a long cylindrical shape, and a rounded chamfered prismatic shape (for example, a rounded chamfered triangular prism shape). .
本発明のハニカム構造体において、ハニカム焼成体の隔壁の厚さは、均一であることが望ましい。具体的には、ハニカム焼成体の隔壁の厚さは、0.05~0.50mmであることが望ましく、0.10~0.30mmであることがより望ましい。 In the honeycomb structure of the present invention, the thickness of the partition walls of the honeycomb fired body is desirably uniform. Specifically, the thickness of the partition walls of the honeycomb fired body is desirably 0.05 to 0.50 mm, and more desirably 0.10 to 0.30 mm.
本発明のハニカム構造体において、ハニカム焼成体の貫通孔の形状としては、四角柱状に限定されず、三角柱状、六角柱状等が挙げられる。 In the honeycomb structure of the present invention, the shape of the through hole of the honeycomb fired body is not limited to a quadrangular prism shape, and examples thereof include a triangular prism shape and a hexagonal prism shape.
本発明のハニカム構造体において、ハニカム焼成体の長手方向に垂直な断面の貫通孔の密度は、31~155個/cmであることが望ましい。 In the honeycomb structure of the present invention, the density of the through holes in the cross section perpendicular to the longitudinal direction of the honeycomb fired body is preferably 31 to 155 holes / cm 2 .
本発明のハニカム構造体において、ハニカム焼成体の気孔率は、40~70%であることが望ましい。ハニカム焼成体の気孔率を上記範囲とすることにより、ハニカム構造体の強度を維持しつつ、高い排ガス浄化性能を発揮することができる。 In the honeycomb structure of the present invention, the porosity of the honeycomb fired body is preferably 40 to 70%. By setting the porosity of the honeycomb fired body in the above range, high exhaust gas purification performance can be exhibited while maintaining the strength of the honeycomb structure.
ハニカム焼成体の気孔率は、水銀圧入法にて接触角を130°、表面張力を485mN/mとした条件で測定することができる。 The porosity of the honeycomb fired body can be measured by a mercury intrusion method under the conditions of a contact angle of 130 ° and a surface tension of 485 mN / m.
本発明のハニカム構造体において、ハニカム焼成体の外周面に外周コート層が形成されている場合、外周コート層の厚さは、0.1~2.0mmであることが望ましい。 In the honeycomb structure of the present invention, when the outer peripheral coat layer is formed on the outer peripheral surface of the honeycomb fired body, the thickness of the outer peripheral coat layer is preferably 0.1 to 2.0 mm.
本発明のハニカム構造体においては、ハニカム焼成体に貴金属が担持されていることが望ましい。
貴金属としては、例えば、白金、パラジウム、ロジウム等の白金族金属が挙げられる。
In the honeycomb structure of the present invention, it is desirable that a noble metal is supported on the honeycomb fired body.
Examples of the noble metal include platinum group metals such as platinum, palladium, and rhodium.
本発明のハニカム構造体において、貴金属の担持量は、0.1~15g/Lであることが望ましく、0.5~10g/Lであることがより望ましい。
本明細書において、貴金属の担持量とは、ハニカム構造体の見掛けの体積当たりの貴金属の重量をいう。なお、ハニカム構造体の見掛けの体積は、空隙の体積を含む体積であり、外周コート層及び/又は接着層の体積を含むこととする。
In the honeycomb structure of the present invention, the loading amount of the noble metal is desirably 0.1 to 15 g / L, and more desirably 0.5 to 10 g / L.
In this specification, the loading amount of the noble metal refers to the weight of the noble metal per apparent volume of the honeycomb structure. The apparent volume of the honeycomb structure is a volume including the void volume, and includes the volume of the outer peripheral coat layer and / or the adhesive layer.
[ハニカム構造体の製造方法]
次に、本発明のハニカム構造体の製造方法について説明する。
本発明のハニカム構造体の製造方法は、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体の製造方法であって、セリア-ジルコニア複合酸化物粒子と、アルミナ粒子と、コージェライト、チタン酸アルミニウム又はリチウムアルミノケイ酸塩系材料からなる低熱膨張係数粒子とを含む原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、上記ハニカム成形体を焼成することにより、ハニカム焼成体を作製する焼成工程と、を含む。
[Manufacturing method of honeycomb structure]
Next, the manufacturing method of the honeycomb structure of the present invention will be described.
The method for manufacturing a honeycomb structure of the present invention is a method for manufacturing a honeycomb structure including a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls therebetween, and the ceria-zirconia composite oxide particles And a plurality of through-holes arranged in parallel in the longitudinal direction with a partition wall formed by molding a raw material paste comprising alumina particles and low thermal expansion coefficient particles made of cordierite, aluminum titanate or lithium aluminosilicate material A forming step for manufacturing the honeycomb formed body, and a firing step for manufacturing the honeycomb fired body by firing the honeycomb formed body.
(成形工程)
成形工程では、まずCZ粒子とアルミナ粒子と低熱膨張係数粒子とを含む原料ペーストを調製する。
(Molding process)
In the forming step, first, a raw material paste containing CZ particles, alumina particles, and low thermal expansion coefficient particles is prepared.
CZ粒子、アルミナ粒子及び低熱膨張係数粒子の種類、平均粒子径等については、[ハニカム構造体]で説明したため、詳細な説明は省略する。 Since the types of CZ particles, alumina particles, low thermal expansion coefficient particles, average particle diameter, and the like have been described in [Honeycomb structure], detailed description thereof will be omitted.
原料ペーストを調製する際に用いる他の原料としては、無機繊維、無機バインダ、有機バインダ、造孔剤、成形助剤、分散媒等が挙げられる。 Examples of other raw materials used when preparing the raw material paste include inorganic fibers, inorganic binders, organic binders, pore formers, molding aids, and dispersion media.
無機繊維を構成する材料としては、特に限定されないが、例えば、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム、ホウ酸アルミニウム等が挙げられ、二種以上併用してもよい。これらの中では、アルミナ繊維が望ましく、特にα-アルミナ繊維が望ましい。 Although it does not specifically limit as a material which comprises inorganic fiber, For example, an alumina, a silica, silicon carbide, a silica alumina, glass, potassium titanate, an aluminum borate etc. are mentioned, You may use 2 or more types together. Of these, alumina fibers are desirable, and α-alumina fibers are particularly desirable.
無機バインダとしては、特に限定されないが、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト、ベーマイト等に含まれる固形分が挙げられる。これらの無機バインダは、二種以上併用してもよい。 Although it does not specifically limit as an inorganic binder, Solid content contained in alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, boehmite, etc. is mentioned. Two or more of these inorganic binders may be used in combination.
無機バインダの中では、ベーマイトが望ましい。ベーマイトは、AlOOHの組成で示されるアルミナ1水和物であり、水等の媒体に良好に分散するので、ベーマイトを無機バインダとして用いることが望ましい。 Of the inorganic binders, boehmite is desirable. Boehmite is an alumina monohydrate represented by the composition of AlOOH and is well dispersed in a medium such as water. Therefore, it is desirable to use boehmite as an inorganic binder.
有機バインダとしては、特に限定されないが、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂、エポキシ樹脂等が挙げられ、二種以上併用してもよい。 Although it does not specifically limit as an organic binder, Methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, polyethyleneglycol, a phenol resin, an epoxy resin etc. are mentioned, You may use 2 or more types together.
造孔剤としては、特に限定されないが、例えば、アクリル樹脂、コークス、デンプン等が挙げられる。本発明では、アクリル樹脂、コークス及びデンプンのうち2種類以上を用いることが望ましい。
造孔剤とは、焼成体を製造する際、焼成体の内部に気孔を導入するために用いられるものをいう。
Although it does not specifically limit as a pore making agent, For example, an acrylic resin, coke, starch, etc. are mentioned. In the present invention, it is desirable to use two or more of acrylic resin, coke and starch.
The pore-forming agent refers to a material used for introducing pores into the fired body when the fired body is produced.
成形助剤としては、特に限定されないが、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられ、二種以上併用してもよい。 Although it does not specifically limit as a shaping | molding adjuvant, Ethylene glycol, dextrin, a fatty acid, fatty acid soap, a polyalcohol etc. are mentioned, You may use together 2 or more types.
分散媒としては、特に限定されないが、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられ、二種以上併用してもよい。 Although it does not specifically limit as a dispersion medium, Alcohol, such as water, organic solvents, such as benzene, methanol, etc. are mentioned, You may use 2 or more types together.
上記した原料に含まれるCZ粒子と低熱膨張係数粒子の配合比は、重量比でCZ粒子:低熱膨張係数粒子=1:1~3:1であることが好ましい。
また、CZ粒子、アルミナ粒子、低熱膨張係数粒子、α-アルミナ繊維及びベーマイトを使用した際、これらの配合割合は、原料中の焼成工程後に残存する全固形分に対し、CZ粒子:40~60重量%、アルミナ粒子:15~35重量%、低熱膨張係数粒子:10~35重量%、α-アルミナ繊維:0~15重量%、ベーマイト:5~20重量%が望ましい。
The blending ratio of the CZ particles and the low thermal expansion coefficient particles contained in the raw material is preferably CZ particles: low thermal expansion coefficient particles = 1: 1 to 3: 1 by weight.
In addition, when CZ particles, alumina particles, low thermal expansion coefficient particles, α-alumina fibers and boehmite are used, the blending ratio thereof is CZ particles: 40 to 60 with respect to the total solid content remaining after the firing step in the raw material. Desirable are: wt%, alumina particles: 15 to 35 wt%, low thermal expansion coefficient particles: 10 to 35 wt%, α-alumina fiber: 0 to 15 wt%, boehmite: 5 to 20 wt%.
原料ペーストを調製する際には、混合混練することが望ましく、ミキサー、アトライタ等を用いて混合してもよく、ニーダー等を用いて混練してもよい。 When preparing the raw material paste, it is desirable to mix and knead, and it may be mixed using a mixer, an attritor or the like, or may be kneaded using a kneader or the like.
上記方法により原料ペーストを調製した後、原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する。
具体的には、上記原料ペーストを用いて押出成形することにより、ハニカム成形体を作製する。つまり、所定の形状の金型に上記ペーストを通過させることにより、所定の形状の貫通孔を有するハニカム成形体の連続体を形成し、所定の長さにカットすることにより、ハニカム成形体が得られる。
After the raw material paste is prepared by the above method, the raw material paste is formed to produce a honeycomb formed body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls.
Specifically, a honeycomb formed body is manufactured by extrusion molding using the raw material paste. That is, by passing the paste through a mold having a predetermined shape, a continuous body of the honeycomb molded body having through holes having a predetermined shape is formed, and the honeycomb molded body is obtained by cutting to a predetermined length. It is done.
次に、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用いて、ハニカム成形体を乾燥してハニカム乾燥体を作製することが望ましい。 Next, using a dryer such as a microwave dryer, hot air dryer, dielectric dryer, vacuum dryer, vacuum dryer, freeze dryer, etc., the honeycomb formed body can be dried to produce a honeycomb dried body. desirable.
本明細書においては、焼成工程を行う前のハニカム成形体及びハニカム乾燥体をまとめてハニカム成形体とも呼ぶ。 In the present specification, the honeycomb formed body and the honeycomb dried body before the firing step are collectively referred to as a honeycomb formed body.
(焼成工程)
本発明のハニカム構造体の製造方法において、焼成工程では、ハニカム成形体を焼成することにより、ハニカム焼成体を作製する。なお、この工程は、ハニカム成形体の脱脂及び焼成が行われるため、「脱脂・焼成工程」ということもできるが、便宜上「焼成工程」という。
(Baking process)
In the method for manufacturing a honeycomb structure of the present invention, in the firing step, the honeycomb fired body is fired to produce a honeycomb fired body. In addition, since this process performs degreasing and firing of the honeycomb formed body, it can also be referred to as a “degreasing / firing process”, but it is referred to as “a firing process” for convenience.
焼成工程の温度は、800~1300℃であることが望ましく、900~1200℃であることがより望ましい。また、焼成工程の時間は、1~24時間であることが望ましく、3~18時間であることがより望ましい。焼成工程の雰囲気は特に限定されないが、酸素濃度が1~20体積%であることが望ましい。 The temperature of the firing step is desirably 800 to 1300 ° C., and more desirably 900 to 1200 ° C. The firing process time is preferably 1 to 24 hours, and more preferably 3 to 18 hours. The atmosphere of the firing step is not particularly limited, but it is desirable that the oxygen concentration is 1 to 20% by volume.
以上の工程により、ハニカム構造体を製造することができる。 A honeycomb structure can be manufactured by the above process.
(担持工程)
本発明のハニカム構造体の製造方法は、上記ハニカム焼成体に貴金属を担持させる担持工程をさらに含むことが望ましい。
ハニカム焼成体に貴金属を担持する方法としては、例えば、貴金属粒子及び/又は錯体を含む溶液にハニカム焼成体又はハニカム構造体を浸漬した後、引き上げて加熱する方法等が挙げられる。
ハニカム構造体が外周コート層を備える場合、外周コート層を形成する前のハニカム焼成体に貴金属を担持してもよいし、外周コート層を形成した後のハニカム焼成体又はハニカム構造体に貴金属を担持してもよい。また、ハニカム構造体が接着層を備える場合、接着層を形成する前のハニカム焼成体に貴金属を担持してもよいし、接着層を形成した後のハニカム焼成体又はハニカム構造体に貴金属を担持してもよい。
(Supporting process)
The method for manufacturing a honeycomb structure of the present invention preferably further includes a supporting step of supporting a noble metal on the honeycomb fired body.
Examples of the method of supporting the noble metal on the honeycomb fired body include a method in which the honeycomb fired body or the honeycomb structure is immersed in a solution containing noble metal particles and / or a complex and then heated up.
When the honeycomb structure includes an outer peripheral coat layer, a precious metal may be supported on the honeycomb fired body before forming the outer peripheral coat layer, or a precious metal may be supported on the honeycomb fired body or the honeycomb structure after the outer peripheral coat layer is formed. You may carry. Further, when the honeycomb structure includes an adhesive layer, the noble metal may be supported on the honeycomb fired body before the adhesive layer is formed, or the noble metal may be supported on the honeycomb fired body or the honeycomb structure after the adhesive layer is formed. May be.
本発明のハニカム構造体の製造方法において、担持工程で担持される貴金属の担持量は、0.1~15g/Lであることが望ましく、0.5~10g/Lであることがより望ましい。 In the method for manufacturing a honeycomb structure of the present invention, the amount of the noble metal supported in the supporting step is preferably 0.1 to 15 g / L, and more preferably 0.5 to 10 g / L.
(その他の工程)
本発明のハニカム構造体の製造方法において、ハニカム焼成体の外周面に外周コート層を形成する場合、外周コート層は、ハニカム焼成体の両端面を除く外周面に外周コート層用ペーストを塗布した後、乾燥固化することにより形成することができる。外周コート層用ペーストとしては、原料ペーストと同じ組成のものが挙げられる。
(Other processes)
In the method for manufacturing a honeycomb structured body of the present invention, when the outer peripheral coat layer is formed on the outer peripheral surface of the honeycomb fired body, the outer peripheral coat layer is coated with the outer peripheral coat layer paste on the outer peripheral surface excluding both end faces. Thereafter, it can be formed by drying and solidifying. Examples of the outer coat layer paste include the same composition as the raw material paste.
本発明のハニカム構造体の製造方法において、複数個のハニカム焼成体が接着層を介して接着されてなるハニカム構造体は、複数個のハニカム焼成体の両端面を除く外周面に接着層用ペーストを塗布して、接着させた後、乾燥固化することにより作製することができる。接着層用ペーストとしては、原料ペーストと同じ組成のものが挙げられる。 In the method for manufacturing a honeycomb structured body according to the present invention, the honeycomb structured body in which a plurality of honeycomb fired bodies are bonded via an adhesive layer has an adhesive layer paste on the outer peripheral surface excluding both end faces of the plurality of honeycomb fired bodies. After applying and adhering, it can be produced by drying and solidifying. Examples of the adhesive layer paste include those having the same composition as the raw material paste.
(実施例)
以下、本発明をより具体的に開示した実施例を示す。なお、本発明は、以下の実施例のみに限定されるものではない。
(Example)
Examples in which the present invention is disclosed more specifically are shown below. In addition, this invention is not limited only to a following example.
[ハニカム焼成体の作製]
(実施例1)
CZ粒子(平均粒子径:2μm)を23.8重量%、θ-アルミナ粒子(平均粒子径:2μm)を10.6重量%、α-アルミナ繊維(平均繊維径:3μm、平均繊維長:60μm)を2.7重量%、無機バインダとしてベーマイトを7.5重量%、チタン酸アルミニウム粒子(平均粒子径:3μm、アスペクト比3)を11.8重量%、有機バインダとしてメチルセルロースを5.3重量%、造孔剤としてアクリル樹脂を2.1重量%、同じく造孔剤としてコークスを2.6重量%、成形助剤として界面活性剤であるポリオキシエチレンオレイルエーテルを4.2重量%、及び、イオン交換水を29.6重量%混合混練して、原料ペーストを調製した。
[Preparation of honeycomb fired body]
Example 1
CZ particles (average particle size: 2 μm) 23.8% by weight, θ-alumina particles (average particle size: 2 μm) 10.6% by weight, α-alumina fibers (average fiber size: 3 μm, average fiber length: 60 μm) ) 2.7% by weight, boehmite 7.5% by weight as an inorganic binder, aluminum titanate particles (average particle size: 3 μm, aspect ratio 3) 11.8% by weight, and organic cellulose 5.3% by weight %, 2.1% by weight of acrylic resin as a pore-forming agent, 2.6% by weight of coke as a pore-forming agent, 4.2% by weight of polyoxyethylene oleyl ether which is a surfactant as a molding aid, and The raw material paste was prepared by mixing and kneading 29.6% by weight of ion exchange water.
押出成形機を用いて、原料ペーストを押出成形して、ハニカム成形体を作製した。そして、減圧マイクロ波乾燥機を用いて、ハニカム成形体を出力1.74kW、減圧6.7kPaで12分間乾燥させた後、1100℃で10時間脱脂・焼成することにより、ハニカム焼成体(ハニカム構造体)を作製した。ハニカム焼成体は、直径が103mm、長さが80mmの円柱状であり、貫通孔の密度が77.5個/cm(500cpsi)、隔壁の厚さが0.127mm(5mil)であった。 The raw material paste was extruded using an extruder to produce a honeycomb formed body. The honeycomb molded body was dried at an output of 1.74 kW and a reduced pressure of 6.7 kPa for 12 minutes using a vacuum microwave dryer, and then degreased and fired at 1100 ° C. for 10 hours to obtain a honeycomb fired body (honeycomb structure). Body). The honeycomb fired body had a cylindrical shape with a diameter of 103 mm and a length of 80 mm, a density of through holes of 77.5 holes / cm 2 (500 cpsi), and a partition wall thickness of 0.127 mm (5 mil).
(比較例1)
チタン酸アルミニウム粒子を使用せず、以下の組成の原料ペーストを調製した他は実施例1と同様にしてハニカム焼成体(ハニカム構造体)を作製した。
CZ粒子(平均粒子径:2μm)を26.4重量%、θ-アルミナ粒子(平均粒子径:2μm)を13.2重量%、α-アルミナ繊維(平均繊維径:3μm、平均繊維長:60μm)を5.3重量%、無機バインダとしてベーマイトを11.3重量%、有機バインダとしてメチルセルロースを5.3重量%、造孔剤としてアクリル樹脂を2.1重量%、同じく造孔剤としてコークスを2.6重量%、成形助剤として界面活性剤であるポリオキシエチレンオレイルエーテルを4.2重量%、及び、イオン交換水を29.6重量%混合混練して、原料ペーストを調製した。
(Comparative Example 1)
A honeycomb fired body (honeycomb structure) was manufactured in the same manner as in Example 1 except that aluminum titanate particles were not used and a raw material paste having the following composition was prepared.
CZ particles (average particle size: 2 μm) 26.4% by weight, θ-alumina particles (average particle size: 2 μm) 13.2% by weight, α-alumina fibers (average fiber size: 3 μm, average fiber length: 60 μm) ) Is 5.3% by weight, boehmite is 11.3% by weight as an inorganic binder, methyl cellulose is 5.3% by weight as an organic binder, acrylic resin is 2.1% by weight as a pore former, and coke is also used as a pore former. A raw material paste was prepared by mixing and kneading 2.6% by weight, 4.2% by weight of polyoxyethylene oleyl ether which is a surfactant as a molding aid, and 29.6% by weight of ion-exchanged water.
(耐熱衝撃性試験)
上記工程により製造された実施例1及び比較例1のハニカム焼成体を、アルミナ製マットを介して金属ケース内に封入し、ガスバーナーで熱せられた空気と室温の空気とを交互に通気させた。ハニカム焼成体の中心の温度が200℃及び950℃に交互になるように冷却と加熱を100サイクル繰り返すヒートサイクル試験を行った。
その結果、実施例1のハニカム焼成体にはヒートサイクル試験後にクラックが発生していなかったが、比較例1のハニカム焼成体にはヒートサイクル試験後にクラックが発生していた。
(Thermal shock resistance test)
The honeycomb fired bodies of Example 1 and Comparative Example 1 manufactured by the above process were sealed in a metal case through an alumina mat, and air heated by a gas burner and air at room temperature were alternately aerated. . A heat cycle test was performed in which cooling and heating were repeated 100 cycles so that the temperature at the center of the honeycomb fired body was alternately 200 ° C. and 950 ° C.
As a result, cracks did not occur in the honeycomb fired body of Example 1 after the heat cycle test, but cracks occurred in the honeycomb fired body of Comparative Example 1 after the heat cycle test.
 10 ハニカム構造体
 11 ハニカム焼成体
 11a 貫通孔
 11b 隔壁
DESCRIPTION OF SYMBOLS 10 Honeycomb structure 11 Honeycomb fired body 11a Through-hole 11b Partition

Claims (11)

  1. 複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体であって、
    前記ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とを含み、さらにコージェライト、チタン酸アルミニウム又はリチウムアルミノケイ酸塩系材料からなる低熱膨張係数粒子を含む押出成形体からなることを特徴とするハニカム構造体。
    A honeycomb structure including a honeycomb fired body in which a plurality of through holes are arranged in parallel in a longitudinal direction with a partition wall therebetween,
    The honeycomb fired body includes an extrusion-molded body that includes ceria-zirconia composite oxide particles and alumina particles, and further includes low thermal expansion coefficient particles made of cordierite, aluminum titanate, or lithium aluminosilicate material. A honeycomb structure.
  2. 前記低熱膨張係数粒子がチタン酸アルミニウムである請求項1に記載のハニカム構造体。 The honeycomb structure according to claim 1, wherein the low thermal expansion coefficient particles are aluminum titanate.
  3. 前記チタン酸アルミニウム粒子のアスペクト比が3以上である請求項2に記載のハニカム構造体。 The honeycomb structure according to claim 2, wherein the aluminum titanate particles have an aspect ratio of 3 or more.
  4. 前記セリア-ジルコニア複合酸化物粒子、前記アルミナ粒子及び前記低熱膨張係数粒子の平均粒子径がそれぞれ1~5μmである請求項1~3のいずれか1項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 3, wherein the ceria-zirconia composite oxide particles, the alumina particles, and the low thermal expansion coefficient particles each have an average particle diameter of 1 to 5 µm.
  5. 前記アルミナ粒子は、θ相のアルミナ粒子である請求項1~4のいずれか1項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 4, wherein the alumina particles are θ-phase alumina particles.
  6. 前記ハニカム構造体の直径に対する長さの比(長さ/直径)は、0.5~0.9である請求項1~5のいずれか1項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 5, wherein a ratio of a length to a diameter of the honeycomb structure (length / diameter) is 0.5 to 0.9.
  7. 前記ハニカム構造体の直径は、130mm以下である請求項1~6のいずれか1項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 6, wherein the honeycomb structure has a diameter of 130 mm or less.
  8. 前記ハニカム焼成体に貴金属が担持されている請求項1~7のいずれか1項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 7, wherein a noble metal is supported on the honeycomb fired body.
  9. 複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム焼成体を備えたハニカム構造体の製造方法であって、
    セリア-ジルコニア複合酸化物粒子と、アルミナ粒子と、コージェライト、チタン酸アルミニウム又はリチウムアルミノケイ酸塩系材料からなる低熱膨張係数粒子とを含む原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、
    前記ハニカム成形体を焼成することにより、ハニカム焼成体を作製する焼成工程と、を含むことを特徴とするハニカム構造体の製造方法。
    A method for manufacturing a honeycomb structure including a honeycomb fired body in which a plurality of through holes are arranged in parallel in a longitudinal direction with a partition wall therebetween,
    By forming a raw material paste containing ceria-zirconia composite oxide particles, alumina particles, and low thermal expansion coefficient particles made of cordierite, aluminum titanate or lithium aluminosilicate material, a plurality of through holes have partition walls. A forming step for producing honeycomb formed bodies arranged in parallel in the longitudinal direction with a space therebetween;
    And a firing step of producing a honeycomb fired body by firing the honeycomb formed body.
  10. 前記セリア-ジルコニア複合酸化物粒子と前記低熱膨張係数粒子の配合比が重量比でセリア-ジルコニア複合酸化物粒子:低熱膨張係数粒子=1:1~3:1である請求項9に記載のハニカム構造体の製造方法。 10. The honeycomb according to claim 9, wherein a mixing ratio of the ceria-zirconia composite oxide particles and the low thermal expansion coefficient particles is ceria-zirconia composite oxide particles: low thermal expansion coefficient particles = 1: 1 to 3: 1. Manufacturing method of structure.
  11. 前記ハニカム焼成体に貴金属を担持させる担持工程をさらに含む請求項9又は10に記載のハニカム構造体の製造方法。 The method for manufacturing a honeycomb structure according to claim 9 or 10, further comprising a supporting step of supporting a noble metal on the honeycomb fired body.
PCT/JP2017/025477 2016-07-14 2017-07-13 Honeycomb structure and production method for said honeycomb structure WO2018012564A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018527648A JP6949019B2 (en) 2016-07-14 2017-07-13 Honeycomb structure and method for manufacturing the honeycomb structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016139684 2016-07-14
JP2016-139684 2016-07-14

Publications (1)

Publication Number Publication Date
WO2018012564A1 true WO2018012564A1 (en) 2018-01-18

Family

ID=60953094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025477 WO2018012564A1 (en) 2016-07-14 2017-07-13 Honeycomb structure and production method for said honeycomb structure

Country Status (2)

Country Link
JP (1) JP6949019B2 (en)
WO (1) WO2018012564A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019147111A (en) * 2018-02-27 2019-09-05 イビデン株式会社 Exhaust gas-purifying system
JP2020114786A (en) * 2019-01-17 2020-07-30 イビデン株式会社 Honeycomb structure
US20220064075A1 (en) * 2020-09-03 2022-03-03 Ngk Insulators, Ltd. Porous ceramic structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122535A1 (en) * 2008-03-31 2009-10-08 イビデン株式会社 Process for producing honeycomb structure
JP2012024698A (en) * 2010-07-23 2012-02-09 Sumitomo Chemical Co Ltd Honeycomb filter
JP2012081415A (en) * 2010-10-12 2012-04-26 Sumitomo Chemical Co Ltd Aluminum titanate-based honeycomb structure
JP2012102003A (en) * 2010-10-12 2012-05-31 Sumitomo Chemical Co Ltd Aluminum titanate honeycomb structure
JP2013505197A (en) * 2009-09-22 2013-02-14 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Alumina titanate porous structure
WO2015081062A1 (en) * 2013-11-27 2015-06-04 Corning Incorporated Aluminum titanate compositions, ceramic articles comprising same, and methods of manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122535A1 (en) * 2008-03-31 2009-10-08 イビデン株式会社 Process for producing honeycomb structure
JP2013505197A (en) * 2009-09-22 2013-02-14 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Alumina titanate porous structure
JP2012024698A (en) * 2010-07-23 2012-02-09 Sumitomo Chemical Co Ltd Honeycomb filter
JP2012081415A (en) * 2010-10-12 2012-04-26 Sumitomo Chemical Co Ltd Aluminum titanate-based honeycomb structure
JP2012102003A (en) * 2010-10-12 2012-05-31 Sumitomo Chemical Co Ltd Aluminum titanate honeycomb structure
WO2015081062A1 (en) * 2013-11-27 2015-06-04 Corning Incorporated Aluminum titanate compositions, ceramic articles comprising same, and methods of manufacturing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019147111A (en) * 2018-02-27 2019-09-05 イビデン株式会社 Exhaust gas-purifying system
JP7011951B2 (en) 2018-02-27 2022-01-27 イビデン株式会社 Exhaust gas purification system
JP2020114786A (en) * 2019-01-17 2020-07-30 イビデン株式会社 Honeycomb structure
CN111495353A (en) * 2019-01-17 2020-08-07 揖斐电株式会社 Honeycomb structure
US10989092B2 (en) 2019-01-17 2021-04-27 Ibiden Co., Ltd. Honeycomb structured body
US20220064075A1 (en) * 2020-09-03 2022-03-03 Ngk Insulators, Ltd. Porous ceramic structure
JP2022042673A (en) * 2020-09-03 2022-03-15 日本碍子株式会社 Porous ceramic structure
US11731912B2 (en) * 2020-09-03 2023-08-22 Ngk Insulators, Ltd. Porous ceramic structure
JP7443200B2 (en) 2020-09-03 2024-03-05 日本碍子株式会社 porous ceramic structure

Also Published As

Publication number Publication date
JP6949019B2 (en) 2021-10-13
JPWO2018012564A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
WO2018012562A1 (en) Honeycomb structure and production method for said honeycomb structure
JP6998871B2 (en) Honeycomb structure and method for manufacturing the honeycomb structure
WO2018012565A1 (en) Honeycomb structure and production method for said honeycomb structure
US11298687B2 (en) Honeycomb catalytic converter
CN111107932B (en) Honeycomb catalyst
US11298686B2 (en) Honeycomb catalytic converter
US20200222890A1 (en) Honeycomb catalytic converter
JP6949019B2 (en) Honeycomb structure and method for manufacturing the honeycomb structure
WO2019065806A1 (en) Honeycomb catalyst
JP6965289B2 (en) Honeycomb structure and manufacturing method of honeycomb structure
JP7186031B2 (en) honeycomb structure
WO2018012561A1 (en) Honeycomb structure
CN111450816A (en) Honeycomb structure
JP2019063683A (en) Manufacturing method of honeycomb catalyst
JP6944834B2 (en) Honeycomb catalyst
JP7011951B2 (en) Exhaust gas purification system
JP6985854B2 (en) Honeycomb structure manufacturing method
WO2019026645A1 (en) Method for producing honeycomb structure, and honeycomb structure
JP2019026547A (en) Method for manufacturing honeycomb structure
JP2019151508A (en) Method for producing honeycomb structure
JP7112212B2 (en) Manufacturing method of honeycomb structure
JP6944833B2 (en) Manufacturing method of honeycomb structure
JP6985842B2 (en) Honeycomb catalyst

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527648

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827687

Country of ref document: EP

Kind code of ref document: A1