JP2013505197A - Alumina titanate porous structure - Google Patents

Alumina titanate porous structure Download PDF

Info

Publication number
JP2013505197A
JP2013505197A JP2012530316A JP2012530316A JP2013505197A JP 2013505197 A JP2013505197 A JP 2013505197A JP 2012530316 A JP2012530316 A JP 2012530316A JP 2012530316 A JP2012530316 A JP 2012530316A JP 2013505197 A JP2013505197 A JP 2013505197A
Authority
JP
Japan
Prior art keywords
less
oxide
porous structure
zro
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012530316A
Other languages
Japanese (ja)
Other versions
JP5543604B2 (en
Inventor
ラフィー ステファーヌ
ナハ ナビル
Original Assignee
サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0956502A external-priority patent/FR2950341B1/en
Application filed by サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン filed Critical サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン
Publication of JP2013505197A publication Critical patent/JP2013505197A/en
Application granted granted Critical
Publication of JP5543604B2 publication Critical patent/JP5543604B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Abstract

本発明は、対応する単純な酸化物に基づいて、Al23と、TiO2と、Fe23、Cr23、MnO2、La23、Y23、Ga23を含む群から選ばれる元素M2の少なくとも1種の酸化物と、ZrO2、Ce23、HfO2を含む群から選ばれる元素M3の少なくとも1種の酸化物と、そして所望によりMgO、CoOのうちから選ばれる元素M1の少なくとも1種の酸化物と、所望によりSiO2と、を含む酸化物セラミック材料を含む多孔質構造体に関するものであり、当該材料は対応する単純な酸化物又はその前駆物質の1つの反応焼結により、又は当該組成を有する焼結した粒子の熱処理により得られる。The present invention is based on the corresponding simple oxides, Al 2 O 3 , TiO 2 , Fe 2 O 3 , Cr 2 O 3 , MnO 2 , La 2 O 3 , Y 2 O 3 , Ga 2 O. At least one oxide of element M 2 selected from the group comprising 3 and at least one oxide of element M 3 selected from the group comprising ZrO 2 , Ce 2 O 3 , HfO 2 , and optionally The present invention relates to a porous structure including an oxide ceramic material including at least one oxide of element M 1 selected from MgO and CoO, and optionally SiO 2 , and the material corresponds to a corresponding simple structure. It can be obtained by reactive sintering of an oxide or one of its precursors or by heat treatment of sintered particles having the composition.

Description

本発明は、触媒担体や粒状媒体フィルタなどの多孔質構造体に関し、そのフィルタ作用のある部分及び/又は活性部分を構成する材料がチタン酸アルミニウムを基礎材料としている多孔質構造体に関する。本発明によるセラミックフィルタ又は担体の基礎材料を構成しているセラミック材料は、主に、元素Al、Tiの酸化物から構成される。多孔質構造体は通常、ハニカム構造を有し、特にディーゼルタイプの内燃機関の排気管路で用いられる。   The present invention relates to a porous structure such as a catalyst carrier or a granular medium filter, and relates to a porous structure in which the material constituting the part having the filter action and / or the active part is based on aluminum titanate. The ceramic material constituting the basic material of the ceramic filter or carrier according to the present invention is mainly composed of oxides of the elements Al and Ti. The porous structure usually has a honeycomb structure, and is used particularly in an exhaust pipe of a diesel type internal combustion engine.

以下においては、便宜上及びセラミック分野の慣行に従い、前記元素を含む酸化物を、対応する簡単な酸化物、例えばAl23又はTiO2、を参照して説明することにする。とりわけ、以下の説明においては、特に断らない限り、本発明による酸化物を構成する種々の元素の比率は、対応する簡単な酸化物の重量を参照することにより、説明する化学組成中に存在している酸化物の合計に対する重量百分率として示される。 In the following, the oxides containing said elements will be described with reference to the corresponding simple oxides, for example Al 2 O 3 or TiO 2 , for convenience and according to the practice in the ceramic field. In particular, in the following description, unless stated otherwise, the proportions of the various elements constituting the oxides according to the invention are present in the chemical composition described by reference to the corresponding simple oxide weights. As a percentage by weight of the total oxides present.

以下においては、本発明が関連する分野である、ガソリン又はディーゼル内燃機関に由来する排ガス中に含まれる汚染物質を除去するためのフィルタ又は触媒担体という特定の分野における用途と利点を説明する。現在のところ、排ガスを浄化するため構造体は全て、一般にハニカム構造を有する。   In the following, the application and advantages in a particular field of filter or catalyst carrier for removing pollutants contained in exhaust gas originating from gasoline or diesel internal combustion engines, to which the present invention relates, will be described. At present, all structures for purifying exhaust gases generally have a honeycomb structure.

知られているように、粒状媒体フィルタは、使用中にフィルタ機能を発揮する(煤が蓄積する)のと再生する(煤を除去する)のとの一連の段階にさらされる。フィルタ機能を発揮する段階の間は、エンジンにより放出された煤粒子はフィルタ内部に保持され堆積する。再生段階の間は、煤粒子は、そのフィルタ特性を回復するようにフィルタ内部で焼き尽くされる。従って、フィルタを構成する材料の低温と高温の両方における機械的強度特性がそのような用途にとって最も重要なものであることが理解される。同様に、材料は、ことに一部の再生段階が十分に制御されない場合は1000℃を軽く超えて局所的に上昇しかねない温度に、それを取り付けた車両の全寿命にわたって耐えるのに十分安定である構造を持たなくてはならない。   As is known, granular media filters are subjected to a series of stages during use, to perform the filter function (accumulating soot) and regenerating (removing soot). During the stage of performing the filter function, soot particles emitted by the engine are retained and deposited inside the filter. During the regeneration phase, soot particles are burned out inside the filter to restore its filter characteristics. Accordingly, it is understood that the mechanical strength properties of the material comprising the filter, both at low and high temperatures, are the most important for such applications. Similarly, the material is sufficiently stable to withstand the entire life of the vehicle to which it is attached, especially at temperatures that can rise slightly above 1000 ° C, if some regeneration steps are not well controlled. It must have a structure that is

現在のところ、フィルタは主として、多孔質セラミック材料、特に炭化ケイ素又はコージェライトで製作されている。このタイプの炭化ケイ素触媒フィルタは、例えば、ヨーロッパ特許出願公開第816065号明細書、同第1142619号明細書、同第1455923号明細書、あるいは国際公開第2004/090294号パンフレット、同第2004/065088号パンフレットに記載されている。このようなフィルタは、熱機関により発生する煤をフィルタ除去する用途にとって理想的である、熱伝導率に優れ、且つ多孔質の特性、特に平均細孔サイズと細孔サイズ分布、を有する化学的に不活性なフィルタ構造体を得るのを可能にする。   At present, filters are mainly made of porous ceramic materials, in particular silicon carbide or cordierite. This type of silicon carbide catalyst filter is, for example, European Patent Application Nos. 816065, 1142619, 1455923, or WO 2004/090294, 2004/065088. It is described in the issue pamphlet. Such filters are ideal for applications that filter out soot generated by heat engines, have excellent thermal conductivity, and have a porous character, especially average pore size and pore size distribution. It is possible to obtain an inert filter structure.

ところが、この材料に特有の欠点がなおもいくらか残っており、すなわち第一の欠点は、3×10-6-1より大きな、SiCの幾分大きい熱膨張率に起因するものであり、これは大きな一体式のフィルタを製造するのを可能にせず、また、フィルタを分割して、例えばヨーロッパ特許出願公開第1455923号明細書に記載されているような、セメントを使って一緒に結合されるいくつかのハニカムエレメントにすることを必要とする場合が非常に多い。経済的な本質のものである第二の欠点は、特にフィルタの再生段階を次々と行う際の、ハニカム構造体の十分な熱機械的強度を確保する、焼結のための一般に2100℃を超える極めて高い焼成温度によるものである。このような温度は、特別な設備の設置を必要とし、最終的に得られるフィルタの経費をかなり増加させる。 However, some of the disadvantages inherent to this material still remain, i.e., the first is due to the somewhat higher coefficient of thermal expansion of SiC, which is greater than 3 x 10-6 K- 1. Does not make it possible to produce large monolithic filters, and the filters are divided and bonded together using cement, for example as described in EP 1455923 Very often it is necessary to make several honeycomb elements. The second drawback, which is of economic nature, is generally above 2100 ° C. for sintering, ensuring sufficient thermomechanical strength of the honeycomb structure, especially during successive filter regeneration stages. This is due to the extremely high firing temperature. Such a temperature requires the installation of special equipment and considerably increases the cost of the final filter.

観点を変えれば、コージェライトフィルタが知られており、価格が安いため長い間使用されてはいるが、現時点では、そのような構造体では特に、フィルタがコージェライトの融点より高い温度に局所的にさらされかねない制御が不十分な再生サイクルの間に、問題が生じかねないことが知られている。これらのホットスポットの影響は、フィルタの効率が部分的に失われることから最も深刻な場合の完全な破壊に至るまでの範囲に及ことがある。更に、コージェライトの化学的不活性は、一連の再生中に到達する温度において不十分であり、その結果それはフィルタ機能を発揮する段階中に構造体に蓄積した潤滑剤、燃料、油その他の残留物に由来する物質と反応するとともにそれらによって腐食されやすく、この現象も構造体の特性が急速に劣化する原因になりかねない。   From a different point of view, cordierite filters are known and have been used for a long time due to their low price, but at present, in such structures, the filter is locally above the melting point of cordierite. It is known that problems can occur during regeneration cycles with poor control that can be exposed to. The effects of these hot spots can range from partial loss of filter efficiency to complete destruction in the most severe cases. In addition, the cordierite chemical inertness is inadequate at the temperatures reached during the series of regenerations, so that it remains in the lubricant, fuel, oil and other residues that have accumulated in the structure during the stage of performing the filter function. It reacts with substances derived from things and is easily corroded by them, and this phenomenon can also cause the characteristics of the structure to deteriorate rapidly.

上記のような欠点は、例えば、国際公開第2004/011124号パンフレットに記載されており、この文献はそれらを改善するために、ムライト(10〜40wt%)で補強されたチタン酸アルミニウム(60〜90wt%)を基礎材料とする、耐久性の向上したフィルタを提案している。   The drawbacks as described above are described in, for example, WO 2004/011124 pamphlet, and in order to improve them, this literature describes aluminum titanate (60 to 60 wt.%) Reinforced with mullite (10 to 40 wt%). 90% by weight) is proposed as a filter with improved durability.

別の態様によれば、ヨーロッパ特許出願公開第1559696号明細書により、1000℃と1700℃の間で酸化アルミニウム、酸化チタン及び酸化マグネシウムを反応焼結させることにより得られるハニカムフィルタを製造するのに粉末を用いることが提案されている。焼結後に得られる材料は、2相、すなわちチタン、アルミニウム及びマグネシウムを含有している擬板チタン石構造のAl2TiO5タイプの主相と、Nay1-yAlSi38タイプの二次的な長石相、の混合物の形をとる。 According to another aspect, according to EP 1 596 696, a honeycomb filter is obtained which is obtained by reactive sintering of aluminum oxide, titanium oxide and magnesium oxide between 1000 ° C. and 1700 ° C. It has been proposed to use a powder. The material obtained after sintering has two phases, namely, a main phase of Al 2 TiO 5 type of pseudo-plate titanite structure containing titanium, aluminum and magnesium, and Na y K 1-y AlSi 3 O 8 type. It takes the form of a mixture of secondary feldspar phases.

しかし、本出願人が行った実験からは、チタン酸アルミニウムタイプの多孔質材料を基礎材料とするそのような構造体の性能を、特に例えばそれらを粒状媒体フィルタタイプの高温用途で直接使用することができるようにするのに適した熱的安定性、熱膨張率を獲得するように、保証することは現時点では困難であることが示された。   However, experiments conducted by the present applicant have shown that the performance of such structures based on porous materials of the aluminum titanate type, in particular for their direct use in high temperature applications, for example of granular media filters. It has been shown that it is difficult at present to guarantee the thermal stability and the coefficient of thermal expansion suitable for making it possible.

ヨーロッパ特許出願公開第816065号明細書European Patent Application No. 816065 ヨーロッパ特許出願公開第1142619号明細書European Patent Application No. 1142619 ヨーロッパ特許出願公開第1455923号明細書European Patent Application No. 1455923 国際公開第2004/090294号パンフレットInternational Publication No. 2004/090294 Pamphlet 国際公開第2004/065088号パンフレットInternational Publication No. 2004/065088 Pamphlet ヨーロッパ特許出願公開第1455923号明細書European Patent Application No. 1455923 国際公開第2004/011124号パンフレットInternational Publication No. 2004/011124 Pamphlet ヨーロッパ特許出願公開第1559696号明細書European Patent Application No. 1559696

よって、本発明の目的は、特にフィルタ及び/又は触媒の多孔質構造体、一般的にはハニカム構造体、を製造するのに使用するのをより有利にするように、実質的に改善された上記のとおりの特性を有する、酸化物材料を含む多孔質構造体を提供することである。   Thus, the object of the present invention has been substantially improved to make it more advantageous to use, in particular, the production of porous structures of filters and / or catalysts, generally honeycomb structures. It is to provide a porous structure containing an oxide material having the characteristics as described above.

より正確に言うと、本発明は、セラミック材料を含む多孔質構造体であって、当該セラミック材料の化学組成が、酸化物に基づくwt%で表して、
・25%より多く52%未満のAl23
・26%より多く55%未満のTiO2
・合計で20%未満の、MgO及びCoOから選ばれる元素M1の少なくとも1種の酸化物、
・合計で1%より多く20%未満の、Fe23、Cr23、MnO2、La23、Y23及びGa23により形成される群から選ばれる元素M2の少なくとも1種の酸化物、
・合計で1%より多く25%未満の、ZrO2、Ce23及びHfO2により形成される群から選ばれる元素M3の少なくとも1種の酸化物、
・20%未満のSiO2
を含み、当該組成は、
・10%未満のMgO、
・1%より多く20%未満のFe23
・1%より多く10%未満のZrO2
を有し、そして当該材料は、対応する単純な酸化物の反応焼結又はそれらの前駆物質の1つの反応焼結によって得られ、あるいは上記組成を満足する焼結した粒子の熱処理により得られる、セラミック材料を含む多孔質構造体に関する。
More precisely, the present invention is a porous structure comprising a ceramic material, wherein the chemical composition of the ceramic material is expressed in wt% based on oxide,
More than 25% and less than 52% Al 2 O 3 ,
More than 26% and less than 55% TiO 2 ,
At least one oxide of element M 1 selected from MgO and CoO, less than 20% in total,
An element M 2 selected from the group formed by Fe 2 O 3 , Cr 2 O 3 , MnO 2 , La 2 O 3 , Y 2 O 3 and Ga 2 O 3 in total greater than 1% and less than 20% At least one oxide of
At least one oxide of element M 3 selected from the group formed by ZrO 2 , Ce 2 O 3 and HfO 2 in a total of more than 1% and less than 25%,
Less than 20% SiO 2 ,
And the composition is
Less than 10% MgO,
More than 1% and less than 20% Fe 2 O 3 ,
More than 1% and less than 10% ZrO 2 ,
And the material is obtained by reaction sintering of the corresponding simple oxide or one of their precursors, or by heat treatment of sintered particles satisfying the above composition, The present invention relates to a porous structure containing a ceramic material.

既に説明したように、上記配合中において、上記材料の酸化物を構成している種々の元素の比率は、対応する単純な酸化物の重量を参照して、当該化学組成中に存在している酸化物の合計に対するwt%でもって示される。とは言え、本発明との関連において、上述の関係において元素M1、M2及びM3は対応する単純な酸化物の形でもって表されてはいるが、これは固体化学において伝統的なものであり、それらは通常、少なくとも大部分は、本発明による材料中に別のより複雑な形態でもって存在しており、そして特に混合酸化物中に含まれていてよく、とりわけチタン酸アルミニウムタイプの相中に含まれていてよい、ということは明らかである。 As already explained, during the formulation, the proportions of the various elements constituting the oxide of the material are present in the chemical composition with reference to the corresponding simple oxide weight. It is expressed in wt% with respect to the total oxide. Nevertheless, in the context of the present invention, the elements M 1 , M 2 and M 3 in the above relation are represented in the form of the corresponding simple oxides, which are traditional in solid state chemistry. They are usually present, at least in large part, in other more complex forms in the material according to the invention, and may be included in particular in mixed oxides, in particular aluminum titanate type It is clear that it may be included in the phase of

好ましくは、多孔質構造体は前記セラミック材料により形成される。   Preferably, the porous structure is formed of the ceramic material.

更に、本発明による前記多孔質構造体は、前記組成中に存在している酸化物の合計に基づくモル%で表して、a’−t+2m1+m2が−6と6の間であるような組成を満足し、ここでは、
・aはAl23の含有量(モル%)であり、
・sはSiO2の含有量(モル%)であり、
・a’=a−0.37sであり、
・tはTiO2の含有量(モル%)であり、
・m1はM1の酸化物の合計の含有量(モル%)であり、
・m2はM2の酸化物の合計の含有量(モル%)である。
Further, the porous structure according to the present invention is such that a′−t + 2m 1 + m 2 is between −6 and 6, expressed in mol% based on the total of oxides present in the composition. Satisfied composition, here
A is the content (mol%) of Al 2 O 3 ,
S is the SiO 2 content (mol%),
A ′ = a−0.37 s
T is the content (mol%) of TiO 2 ,
· M 1 is the total content of oxides of M 1 (mol%),
· M 2 is the total content of oxides of M 2 (mol%).

好ましくは、Al23は化学組成の30%より多くに相当する。好ましくは、Al23は化学組成の51%未満又は50%未満に相当し、これらの百分率の含有量は酸化物に基づく重量で与えられる。 Preferably, Al 2 O 3 represents more than 30% of the chemical composition. Preferably, Al 2 O 3 represents less than 51% or less than 50% of the chemical composition, and the percentage content is given by weight based on the oxide.

好ましくは、TiO2は化学組成の50%未満、あるいは45%未満であり、この百分率の含有量は酸化物に基づく重量で与えられる。 Preferably, TiO 2 is less than 50% or less than 45% of the chemical composition, and this percentage content is given by weight based on the oxide.

好ましくは、存在する場合、M1の酸化物は化学組成の1.5%より多くに相当し、非常に好ましくは2%より多くに相当する。好ましくは、M1の酸化物は化学組成の6%未満に相当し、これらの百分率は酸化物に基づく重量で与えられる。 Preferably, when present, the oxide of M 1 represents more than 1.5% of the chemical composition, very preferably more than 2%. Preferably, the M 1 oxide represents less than 6% of the chemical composition, and these percentages are given by weight based on the oxide.

好ましくは、M1はまさしくMgである。 Preferably, M 1 is exactly Mg.

好ましくは、M2の酸化物は化学組成の1.5%より多く、非常に好ましくは2%より多く、更には3%より多くに相当する。好ましくは、M2の酸化物は合計で化学組成の20%未満、非常に好ましくは15%未満に相当し、これらの百分率は酸化物に基づく重量で与えられる。 Preferably, the M 2 oxide represents more than 1.5% of the chemical composition, very preferably more than 2% and even more than 3%. Preferably, the M 2 oxides together represent less than 20%, very preferably less than 15% of the chemical composition, and these percentages are given by weight based on the oxide.

好ましくは、M2はまさしくFeである。やはり好ましくは、別の実施形態として、元素M2は、Fe23の含有量が1.0%より多い、あるいは更に1.5%より多いままであることを条件に、鉄とランタンとの組み合わせにより構成されてもよい。 Preferably, M 2 is just Fe. Again preferably, in another embodiment, the element M 2 comprises iron and lanthanum, provided that the content of Fe 2 O 3 remains greater than 1.0%, or even greater than 1.5%. You may comprise by the combination of these.

そのような実施形態では、Fe23(又はFe23種とLa23種の重量含有量の合計)は化学組成の1%より多く、非常に好ましくは1.5%より多くに相当する。好ましくは、Fe23(又はFe23+La23の重量含有量の合計)は化学組成の20%未満、非常に好ましくは18%未満、あるいは更には15%未満に相当し、これらの百分率は酸化物に基づく重量で与えられる。 In such embodiments, Fe 2 O 3 (or the combined weight content of Fe 2 O 3 and La 2 O 3 species) is greater than 1% of the chemical composition, very preferably greater than 1.5%. It corresponds to. Preferably, Fe 2 O 3 (or the total weight content of Fe 2 O 3 + La 2 O 3 ) corresponds to less than 20%, very preferably less than 18%, or even less than 15% of the chemical composition, These percentages are given by weight based on the oxide.

一つの実施形態において、上記組成は鉄とマグネシウムを含み、そして所望に応じランタンを含む。この場合、対応する酸化物のFe23とMgO、そして所望に応じLa23は、合計した重量で表して、当該化学組成の1%より多く、更には1.5%より多く、非常に好ましくは2%より多くに相当する。好ましくは、Fe23とMgO、そして所望に応じLa23は、一緒になって、当該化学組成の18%未満、非常に好ましくは15%未満に相当し、これらの百分率は酸化物に基づく重量によるものである。 In one embodiment, the composition comprises iron and magnesium, and optionally lanthanum. In this case, the corresponding oxides Fe 2 O 3 and MgO, and optionally La 2 O 3 , expressed in total weight, are greater than 1% of the chemical composition, even greater than 1.5%, Very preferably it corresponds to more than 2%. Preferably, Fe 2 O 3 and MgO, and optionally La 2 O 3 together represent less than 18%, very preferably less than 15% of the chemical composition, these percentages being oxides Is based on weight.

3の酸化物は合計して、上記化学組成の1%より多くに相当し、この百分率は酸化物に基づく重量で与えられる。好ましくは、M3の酸化物は合計して、上記化学組成の10%未満、非常に好ましくは8%未満に相当する。 The oxides of M 3 together represent more than 1% of the chemical composition, and this percentage is given by weight based on the oxide. Preferably, the M 3 oxides together represent less than 10%, very preferably less than 8% of the chemical composition.

好ましくは、M3はまさしくZrである。やはり好ましくは、別の実施形態として、元素M3はジルコニウムとセリウムとの組み合わせにより構成されてもよい。 Preferably M 3 is exactly Zr. Still preferably, as another embodiment, the element M 3 may be composed of a combination of zirconium and cerium.

従って、上記の粒子の組成において、本発明のこの他方の好ましい実施形態によれば、ZrO2含有量が1%より多いままであることを条件に、ZrO2(M3はZr)をZrO2とCeO2との組み合わせ(この場合はM3はZrとCeとの組み合わせである)に置き換えることができる。このような場合、例えば、前記材料は1wt%より多く10wt%未満の(ZrO2+CeO2)を含み、(ZrO2+CeO2)は当該組成中の当該2つの酸化物の重量による含有量の合計である。 Therefore, in the composition of the above particles, according to this other preferred embodiment of the present invention, ZrO 2 (M 3 is Zr) is replaced by ZrO 2, provided that the ZrO 2 content remains greater than 1%. And CeO 2 (in this case, M 3 is a combination of Zr and Ce). In such a case, for example, the material contains more than 1 wt% and less than 10 wt% (ZrO 2 + CeO 2 ), where (ZrO 2 + CeO 2 ) is the sum of the contents by weight of the two oxides in the composition It is.

言うまでもなく、ここでの説明との関連において、当該組成はそれでもなお、そのほかの化合物を不可避の不純物の形でもって含むことが可能である。特に、本発明による構造体を製造するためのプロセスに1種類のジルコニウム含有反応物だけが最初に導入される場合であっても、その反応物は通常、不可避の不純物の形で少量のハフニウムを含むことが知られており、それは時には導入されるジルコニウムの合計量の最大で1又は2モル%になることがある。   Needless to say, in the context of the description herein, the composition may nevertheless contain other compounds in the form of inevitable impurities. In particular, even if only one zirconium-containing reactant is initially introduced into the process for producing the structure according to the present invention, the reactant usually contains a small amount of hafnium in the form of inevitable impurities. It is known to contain, sometimes up to 1 or 2 mol% of the total amount of zirconium introduced.

例えば、材料は、酸化物に基づくwt%で表して次の化学組成物、すなわち、35%より多く50%未満のAl23、26%より多く50%未満のTiO2、6%未満のMgO、2%より多く15%未満のFe23、2%より多く8%未満のZrO2、及び0.5%より多く15%未満のSiO2、を有することができる。 For example, the material may be expressed in wt% based on oxide in the following chemical composition: more than 35% and less than 50% Al 2 O 3 , more than 26% and less than 50% TiO 2 , less than 6%. It can have MgO, more than 2% and less than 15% Fe 2 O 3 , more than 2% and less than 8% ZrO 2 , and more than 0.5% and less than 15% SiO 2 .

存在する酸化物の全てのものの重量による含有量に加えて、本発明による構造体はまた、そのほかの微量元素を含有してもよい。特に、構造体はケイ素を、対応する酸化物SiO2に基づき0.1wt%と20wt%の間の量で含有してもよい。例えば、SiO2は、化学組成の0.1%より多く、特に0.5%より多くあるいは1%より多く、さもなければ2%より多く、実際には3%より多くあるいは5%より多くに相当する。例えば、SiO2は、化学組成の18%未満、特に15%未満、あるいは12%未満又は10%未満に相当し、これらの百分率は酸化物に基づく重量により与えられる。 In addition to the content by weight of all the oxides present, the structure according to the invention may also contain other trace elements. In particular, the structure may contain silicon in an amount between 0.1 wt% and 20 wt% based on the corresponding oxide SiO 2 . For example, SiO 2 is more than 0.1% of the chemical composition, in particular more than 0.5% or more than 1%, otherwise more than 2%, actually more than 3% or more than 5%. Equivalent to. For example, SiO 2 represents less than 18% of the chemical composition, in particular less than 15%, alternatively less than 12% or less than 10%, these percentages being given by the weight based on the oxide.

多孔質構造体は、例えばホウ素や、Ca、Sr、Na、K、Baタイプのアルカリ金属又はアルカリ土類金属などの、他の元素を含有してもよく、存在するこれらの元素の合計量は、多孔質構造体中に存在する元素に対応する全ての酸化物の重量による含有量に加えて、対応する酸化物B23、CaO、SrO、Na2O、K2O、BaOに基づいて、10wt%未満、例えば5wt%未満、又は4wt%未満、あるいは3wt%未満であるのが好ましい。対応する酸化物の重量に基づく、各微量元素の百分率の含有量は、例えば4%未満、又は3%未満、あるいは1%未満である。 The porous structure may contain other elements such as boron, Ca, Sr, Na, K, Ba type alkali metals or alkaline earth metals, the total amount of these elements present being Based on the corresponding oxides B 2 O 3 , CaO, SrO, Na 2 O, K 2 O, BaO in addition to the content by weight of all oxides corresponding to the elements present in the porous structure And preferably less than 10 wt%, such as less than 5 wt%, or less than 4 wt%, or less than 3 wt%. The percentage content of each trace element based on the weight of the corresponding oxide is, for example, less than 4%, or less than 3%, or less than 1%.

本発明の一つの可能性のある実施形態によれば、本発明による多孔質構造体は、酸化物に基づくwt%で表して、以下の化学組成、すなわち、
・25%より多く52%未満のAl23
・26%より多く55%未満のTiO2
・1%より多く20%未満のFe23
・20%未満のSiO2
・10%未満のMgOあるいは2%未満のMgO、
・1%より多く10%未満のZrO2、及び
・所望により、合計で2%より多く13%未満の、B23、CaO、Na2O、K2O、SrO及びBaOにより形成される群から選ばれる少なくとも1種の酸化物、
を有する。
According to one possible embodiment of the invention, the porous structure according to the invention, expressed in wt% based on oxide, has the following chemical composition:
More than 25% and less than 52% Al 2 O 3 ,
More than 26% and less than 55% TiO 2 ,
More than 1% and less than 20% Fe 2 O 3 ,
Less than 20% SiO 2 ,
Less than 10% MgO or less than 2% MgO,
More than 1% and less than 10% ZrO 2 and, optionally, a total of more than 2% and less than 13% B 2 O 3 , CaO, Na 2 O, K 2 O, SrO and BaO At least one oxide selected from the group;
Have

上記の化学組成において、Fe23は、Fe23とLa23との組み合わせと、同じ比率でもって置き換えてもよい。 In the above chemical composition, Fe 2 O 3 may be replaced with the same ratio as the combination of Fe 2 O 3 and La 2 O 3 .

同様に、これまでに説明したものと組み合わせることができる別の実施形態によれば、上記化学組成において、ZrO2を、ZrO2とCeO2との組み合わせと、同じ比率でもって置き換えてもよい。 Similarly, according to another embodiment that can be combined with what has been described so far, in the above chemical composition, ZrO 2 may be replaced with the same ratio as the combination of ZrO 2 and CeO 2 .

本発明の別の可能性のある実施形態によれば、本発明による多孔質構造体は、酸化物に基づくwt%で表して、以下の化学組成、すなわち、
・35%より多く51%未満のAl23、例えば38%と50%の間のAl23
・26%より多く45%未満のTiO2
・1%より多く20%未満のFe23又は(Fe23+La23)の組み合わせ、
・所望により、0.1%より多く20%未満のSiO2
・2%未満のMgOあるいは1%未満のMgO、
・1%より多く10%未満のZrO2、及び
・所望により、合計で2%より多く13%未満の、B23、CaO、Na2O、K2O、SrO及びBaOにより形成される群から選ばれる少なくとも1種の酸化物、
を有する。
According to another possible embodiment of the invention, the porous structure according to the invention, expressed in wt% based on oxide, has the following chemical composition:
More than 35% and less than 51% Al 2 O 3 , for example between 38% and 50% Al 2 O 3 ,
More than 26% and less than 45% TiO 2 ,
More than 1% and less than 20% Fe 2 O 3 or a combination of (Fe 2 O 3 + La 2 O 3 ),
If desired, more than 0.1% and less than 20% SiO 2 ;
Less than 2% MgO or less than 1% MgO,
More than 1% and less than 10% ZrO 2 and, optionally, a total of more than 2% and less than 13% B 2 O 3 , CaO, Na 2 O, K 2 O, SrO and BaO At least one oxide selected from the group;
Have

上記の化学組成において、Fe23は、Fe23とLa23との組み合わせと、同じ比率でもって置き換えてもよい。 In the above chemical composition, Fe 2 O 3 may be replaced with the same ratio as the combination of Fe 2 O 3 and La 2 O 3 .

同様に、これまでに説明したものと組み合わせることができる別の実施形態によれば、上記化学組成において、ZrO2を、ZrO2とCeO2との組み合わせと、同じ比率でもって置き換えてもよい。 Similarly, according to another embodiment that can be combined with what has been described so far, in the above chemical composition, ZrO 2 may be replaced with the same ratio as the combination of ZrO 2 and CeO 2 .

そのような化学組成は、酸化物に基づくwt%で表して、
・1%と18%の間のFe23又は(Fe23+La23)、
・3%と18%の間のSiO2、及び
・1%と8%の間のZrO2又は(ZrO2+CeO2)、
を有するのが好ましい。
Such chemical composition is expressed in wt% based on oxide,
Between 1% and 18% Fe 2 O 3 or (Fe 2 O 3 + La 2 O 3 ),
Between 3% and 18% SiO 2 , and between 1% and 8% ZrO 2 or (ZrO 2 + CeO 2 ),
It is preferable to have.

ここでの説明が不必要に冗長にならないように、上記の本発明による材料の組成の様々な好ましい実施形態間の本発明による全ての可能性のある組み合わせを報告はしない。しかしながら、もちろん、上で説明した最初の及び/又は好ましい値と範囲の全ての可能性のある組み合わせを想定することができ、そしてそれらはここでの説明の中で出願人によって説明されていると見なされなければならない(特に2つ、3つ又はそれ以上の組み合わせ)。   In order not to make the description herein unnecessarily redundant, not all possible combinations according to the invention between the various preferred embodiments of the composition of the material according to the invention described above are reported. However, of course, all possible combinations of the first and / or preferred values and ranges described above can be envisioned, and they are described by the applicant in the description herein. Must be considered (especially a combination of two, three or more).

本発明による多孔質構造体は更に、チタン、アルミニウム、M2から選ばれる少なくとも1つの元素、M3から選ばれる少なくとも1つの元素、そして所望によりM1から選ばれる元素を含む固溶体タイプの酸化物相と、酸化チタンTiO2及び/又は酸化ジルコニウムZrO2及び/又は酸化セリウムCeO2及び/又は酸化ハフニウムHfO2から本質的になる少なくとも1つの相と、及び所望により少なくとも1つのケイ酸塩相、を主として含むことができ、あるいはそれらにより形成することができる。 The porous structure according to the present invention further comprises a solid solution type oxide containing at least one element selected from titanium, aluminum, M 2 , at least one element selected from M 3 , and optionally an element selected from M 1 . A phase, at least one phase consisting essentially of titanium oxide TiO 2 and / or zirconium oxide ZrO 2 and / or cerium oxide CeO 2 and / or hafnium oxide HfO 2 , and optionally at least one silicate phase; Can be mainly included or formed by them.

好ましくは、本発明による多孔質構造体は、チタン、アルミニウム、鉄、ジルコニウム、そして所望によりマグネシウムを含む固溶体タイプの酸化物相と、酸化チタンTiO2及び/又は酸化ジルコニウムZrO2から本質的になる少なくとも1つの相と、及び所望により少なくとも1つのケイ酸塩相、を主として含むことができ、あるいはそれらにより形成することができる。 Preferably, the porous structure according to the invention consists essentially of a solid solution type oxide phase comprising titanium, aluminum, iron, zirconium and optionally magnesium and titanium oxide TiO 2 and / or zirconium oxide ZrO 2. At least one phase and, if desired, at least one silicate phase can mainly be included or formed therewith.

上記のケイ酸塩相は、材料の総重量の0〜45%の範囲にあることができる比率で存在することができる。一般的に、上記のケイ酸塩相は主としてシリカとアルミナからなり、ケイ酸塩相中のシリカの重量比率は34%より大きい。   The silicate phase described above can be present in a proportion that can range from 0 to 45% of the total weight of the material. In general, the silicate phase consists mainly of silica and alumina, and the weight ratio of silica in the silicate phase is greater than 34%.

可能性のある別の実施形態によれば、
・Al23は48wt%と54wt%の間に相当することができ、
・TiO2は35wt%と48wt%の間、例えば38wt%と45wt%の間に相当することができ、
・Fe23又は(Fe23+La23)は1wt%と8wt%の間、例えば2wt%と6wt%の間に相当することができ、
・SiO2は1wt%未満、あるいは0.5wt%未満の比率で存在し、
・ZrO2(又はZrO2+CeO2)は3wt%未満であり、
・MgOは1wt%と8wt%の間、例えば2wt%と6wt%の間に相当することができる。
According to another possible embodiment,
Al 2 O 3 can correspond between 48 wt% and 54 wt%,
TiO 2 can correspond between 35 wt% and 48 wt%, for example between 38 wt% and 45 wt%,
Fe 2 O 3 or (Fe 2 O 3 + La 2 O 3 ) can correspond between 1 wt% and 8 wt%, for example between 2 wt% and 6 wt%,
-SiO 2 is present in a proportion of less than 1 wt% or less than 0.5 wt%,
ZrO 2 (or ZrO 2 + CeO 2 ) is less than 3 wt%,
MgO can correspond between 1 wt% and 8 wt%, for example between 2 wt% and 6 wt%.

本発明による多孔質構造体を構成する材料は、当該分野で普通に使用される任意の技術により得ることができる。   The material constituting the porous structure according to the present invention can be obtained by any technique commonly used in the art.

第一の変形実施形態によれば、構造体を構成する材料は、通常のやり方でもって直接得てもよく、所望の組成を得るためのしかるべき比率で初期反応物を単純に混合し、その後加熱し固体状態で反応させる(反応焼結)ことにより得てもよい。   According to the first variant embodiment, the material making up the structure may be obtained directly in the usual manner, simply mixing the initial reactants in the appropriate ratio to obtain the desired composition, and then You may obtain by heating and making it react in a solid state (reaction sintering).

上記の反応物は、例えば、単純な酸化物のAl23、TiO2でよく、そして所望により、構造体中に、例えば固溶体の形でもって、存在しやすい元素のその他の酸化物でよい。本発明によれば、例えば上記元素の炭酸塩、水酸化物又はその他の有機金属化合物の形をした、当該酸化物の任意の前駆物質を使用することも可能である。「前駆物質」という用語は、多くの場合熱処理の前の段階で、すなわち一般に1000℃未満、あるいは800℃未満、更には500℃未満の加熱温度で、分解して対応する単純な酸化物になる物質を意味するものと解される。 The reactants can be, for example, simple oxides Al 2 O 3 , TiO 2 and, if desired, other oxides of the elements easily present in the structure, for example in the form of a solid solution. . According to the invention, it is also possible to use any precursor of the oxide, for example in the form of carbonates, hydroxides or other organometallic compounds of the above elements. The term “precursor” often decomposes into the corresponding simple oxide at a stage prior to heat treatment, ie generally at temperatures below 1000 ° C., alternatively below 800 ° C., and even below 500 ° C. It is understood to mean a substance.

本発明による構造体を製造する別の方法によれば、当該反応物は、上述の化学組成に対応しそして上記の単純な酸化物から得られる焼結された粒子である。初期の反応物の混合物を予備焼結し、すなわちそれを、チタン酸アルミニウムタイプの構造の少なくとも1つの主相を含む焼結された粒子を形成するよう単純な酸化物が反応するのを可能にする温度に加熱する。この実施形態によれば、前述の酸化物の前駆物質を使用することも可能である。この場合もやはり、上述のように、前駆物質の混合物を焼結し、すなわちそれを、チタン酸アルミニウムタイプの構造を有する少なくとも1つの相を主として含む焼結された粒子を形成するよう前駆物質が反応するのを可能にする温度に加熱する。   According to another method for producing the structure according to the invention, the reactants are sintered particles corresponding to the chemical composition described above and obtained from the simple oxides described above. Presinter the mixture of initial reactants, that is, allow a simple oxide to react to form sintered particles containing at least one main phase of an aluminum titanate type structure Heat to the temperature you want. According to this embodiment, it is also possible to use the aforementioned oxide precursors. Again, as described above, the precursor is sintered to form a sintered particle that mainly comprises at least one phase having an aluminum titanate type structure. Heat to a temperature that allows it to react.

本発明によるそのような構造体を製造するための一つの方法は、一般に次のとおりである。すなわち、初めに、所望の組成を得るためのしかるべき比率でもって初期反応物を混合する。   One method for producing such a structure according to the present invention is generally as follows. That is, first, the initial reactants are mixed in an appropriate ratio to obtain the desired composition.

当該分野においてよく知られているように、この製造方法は一般に、反応物の初期の混合物をメチルセルロースタイプの有機結合剤及び細孔形成剤、例えばスターチ、グラファイト、ポリエチレン、PMMAなどと混合し、そしてハニカム構造体を押出し加工する工程を可能にするのに必要な流動性が得られるまで水を徐々に加える工程を含む。   As is well known in the art, this process generally involves mixing an initial mixture of reactants with a methylcellulose type organic binder and pore former, such as starch, graphite, polyethylene, PMMA, and the like, and Gradually adding water until the fluidity necessary to enable the process of extruding the honeycomb structure is obtained.

例えば、この最初の工程の間に、初期の混合物を1〜30wt%の、所望の細孔寸法に応じて選ばれる少なくとも1種の細孔形成剤と混合し、次いで少なくとも1種の有機流動化剤及び/又は有機結合剤と水を加える。   For example, during this first step, the initial mixture is mixed with 1-30 wt% of at least one pore former selected according to the desired pore size and then at least one organic fluidization. Add agent and / or organic binder and water.

この混合の結果、ペーストの形の均質生成物が得られる。この生成物を適切な形状のダイを通して押出す工程が、ハニカム形状の一体品をよく知られた技術を用いて得るのを可能にする。この方法は、この場合、例えば、得られた一体品を乾燥させる工程を含むことができる。この乾燥工程の間に、得られた未焼結のセラミック一体品を通常は、マイクロ波乾燥又は熱乾燥により、化学的に結合していない水の含有量を1wt%未満とするのに十分な時間乾燥させる。粒状媒体フィルタを得るのが求められる場合は、この方法は更に、一体品の各端部のあらゆる他の流路を閉鎖する工程を含むことができる。   This mixing results in a homogeneous product in the form of a paste. The process of extruding this product through a suitably shaped die allows a honeycomb shaped monolith to be obtained using well known techniques. In this case, the method can include, for example, a step of drying the resulting monolith. During this drying step, the resulting green ceramic monolith is usually sufficient by microwave drying or heat drying to bring the content of chemically unbound water to less than 1 wt%. Let dry for hours. If it is desired to obtain a particulate media filter, the method can further include the step of closing any other flow path at each end of the monolith.

フィルタ部分がチタン酸アルミニウムを基礎材料としている一体品を焼成する工程は、原則として、1300℃より高く1800℃を超えない、好ましくは1750℃を超えない温度で行われる。この温度は、特に多孔質材料中に存在しているその他の相及び/又は酸化物に応じて、調整される。通常は、焼成工程の間に、一体品の構造体を酸素又は不活性ガスを含有している雰囲気中において1300℃と1600℃の間の温度に加熱する。   The step of firing the integral part in which the filter part is based on aluminum titanate is in principle carried out at a temperature above 1300 ° C. and not exceeding 1800 ° C., preferably not exceeding 1750 ° C. This temperature is adjusted in particular depending on the other phases and / or oxides present in the porous material. Usually, during the firing step, the monolithic structure is heated to a temperature between 1300 ° C. and 1600 ° C. in an atmosphere containing oxygen or an inert gas.

本発明の利点の一つは、SiCフィルタ(上記のとおり)とは異なり分割の必要なしに、非常に大きくした寸法の一体式構造体を得る可能性にあるとは言うものの、それほど好ましくはないながら一つの実施形態によると、上記方法は所望により、複数の一体品を周知の技術、例えばヨーロッパ特許出願公開第816065号明細書に記載されたものを使って組み立てて、集成したフィルタ構造体にする工程を含んでもよい。   One advantage of the present invention is that, unlike SiC filters (as described above), it is possible to obtain a monolithic structure with very large dimensions without the need for splitting, but it is less preferred. However, according to one embodiment, the method optionally assembles a plurality of integral parts into a combined filter structure using known techniques such as those described in EP-A-816065. The process of carrying out may be included.

本発明による多孔質セラミック材料で製作されたフィルタ構造体は、好ましくはハニカムタイプのものである。それは、10%より大きく、一般には20%と70%の間、あるいは30%と60%の間の好適な細孔率を有し、平均細孔サイズは、Micromeritics 9500装置での水銀ポロシメトリーで測定して、理想的には5μmと60μmの間、特に10μmと20μmの間である。   The filter structure made of the porous ceramic material according to the invention is preferably of the honeycomb type. It has a preferred porosity of greater than 10%, generally between 20% and 70%, or between 30% and 60%, and the average pore size is determined by mercury porosimetry on a Micromeritics 9500 instrument. Measured, ideally between 5 and 60 μm, in particular between 10 and 20 μm.

このようなフィルタ構造体は一般に、多孔質材料で形成された壁によって切り離された互いに平行な軸線の多数の隣り合った流路又は通路を含む中央部分を有する。   Such filter structures generally have a central portion that includes a number of adjacent channels or passages of parallel axes separated by a wall formed of a porous material.

粒状媒体フィルタにおいては、それらの流路は、ガスが多孔質の壁を通過するように、ガスの入口面に開口する入口室とガスの排出面に開口する出口室とを画定するようそれらの端部の一方又は他方をプラグによって閉鎖される。   In a particulate media filter, the flow paths are defined to define an inlet chamber that opens to the gas inlet surface and an outlet chamber that opens to the gas discharge surface so that the gas passes through the porous wall. One or the other end is closed by a plug.

本発明はまた、上に規定した構造体から、一般に少なくとも1種の貴金属、例えばPt及び/又はRh及び/又はPdなどを含み、そして所望によりCeO2、ZrO2又はCeO2−ZrO2などの酸化物を含む、支持されている又は好ましくは支持されていない少なくとも1つの活性触媒相を被着させることによって、好ましくは含浸させることによって得られる、フィルタ又は触媒担体にも関する。触媒担体はやはりハニカム構造を有するが、流路はプラグで閉鎖されず、触媒は流路の細孔に被着される。 The present invention also generally comprises at least one noble metal such as Pt and / or Rh and / or Pd from the structures defined above, and optionally such as CeO 2 , ZrO 2 or CeO 2 —ZrO 2 . It also relates to a filter or catalyst support, obtained by depositing, preferably impregnating, at least one active catalyst phase comprising oxide, supported or preferably unsupported. The catalyst carrier also has a honeycomb structure, but the flow path is not closed with a plug, and the catalyst is deposited in the pores of the flow path.

本発明とその利点は、以下の限定されない例を読むとよりよく理解される。これらの例においては、特に断らない限り、百分率による全ての含有量は重量により与えられる。   The invention and its advantages are better understood on reading the following non-limiting examples. In these examples, unless stated otherwise, all percentage contents are given by weight.

これらの例では、次の原料から試料を作製した。それらの原料とは、
・99.8%のAl23を含みメジアン径d50が約5.2μmのAlmatis CL4400FGアルミナ、
・99.5%のTiO2を含み直径が約0.3μmのTRONOX T−R酸化チタン、
・純度99.7%のElkem Microsilicia Grade 971UのSiO2
・98%より高い純度のFe23
・約97%のCaOを含み、80%より多くの粒子の直径が80μm未満である石灰、
・Societe des Produits Chimiques Harbonnieresにより市販されている、SrCO3を98.5%より多く含む炭酸ストロンチウム、
・Saint−Gobain ZirPro社によりCC10の呼称で市販されている、純度が98.5%より高くメジアン径d50が3.5μmの酸化ジルコニウム、
・99%より高い純度の酸化ランタンLa23
・約99%のCeO2を含み粒子の平均径が20μm未満の酸化セリウム、
である。
In these examples, samples were made from the following raw materials. These raw materials are
Almatis CL4400FG alumina containing 99.8% Al 2 O 3 and having a median diameter d 50 of about 5.2 μm,
-TRONOX T-R titanium oxide containing 99.5% TiO 2 and having a diameter of about 0.3 μm,
Elchem Microsilica Grade 971U SiO 2 with a purity of 99.7%,
Fe 2 O 3 with a purity higher than 98%,
Lime containing about 97% CaO and having a particle diameter of more than 80% less than 80 μm,
· Societe des Produits Chimiques Harbonnieres marketed by, strontium carbonate containing more than a SrCO 3 98.5%,
Zirconium oxide with a purity higher than 98.5% and a median diameter d 50 of 3.5 μm, marketed under the name CC10 by the company Saint-Gobain ZirPro,
Lanthanum oxide La 2 O 3 with a purity higher than 99%,
Cerium oxide containing about 99% CeO 2 and having an average particle size of less than 20 μm,
It is.

しかるべき比率で混合した上記の反応物から、本発明による試料と比較用の試料を得た。   A sample according to the present invention and a sample for comparison were obtained from the above reactants mixed at an appropriate ratio.

より正確に言うと、初期の反応物の混合物を混合し、次いで円柱の形にプレスし、そしてその後それらを空気中において表1に示した温度で4時間焼結した。   More precisely, the initial reactant mixture was mixed and then pressed into a cylindrical shape and then they were sintered in air at the temperatures shown in Table 1 for 4 hours.

次に、作製した試料を分析した。各例の試料ごとに行った分析の結果を表1に示す。   Next, the produced sample was analyzed. Table 1 shows the results of analysis performed for each sample of each example.

表1において、
1)酸化物に基づくwt%で示した化学組成は、蛍光X線により測定した。
2)耐火製品中に存在する結晶相の特性を、X線回折とマイクロプローブ分析EPMA(電子線マイクロアナリシス)により調べた。こうして得られた結果を基に、各相の重量百分率とその組成を推定することができた。表1において、ATはチタン酸アルミニウムタイプの酸化物の固溶体(主相)を示し、PSはケイ酸塩相の存在を示し、その他の相は少なくとも1つの他の微量相P2の存在を示し、そして「〜」は相が痕跡の形で存在していることを意味している。
3)存在する結晶相の安定性は、最初に存在した結晶相と1100℃で100時間の熱処理後に存在するものとをX線回折により比較することにある試験で測定した。この処理後のコランダムAl23の出現に対応する主ピークの最大強度がAT相の3つの主ピークの最大強度の平均の50%未満にとどまっている場合に、製品は安定であると見なし、そしてそれが30%未満にとどまっている場合に非常に安定であると見なした(このような製品は表1で「yes」と表示されている)。
4)圧縮強度(R)は、10kNのロードセルを装備したLLOYD設備で、作製した試料を1mm/minの速度で圧縮することにより、室温で測定した。
5)密度は、通常の技術(アルキメデス法)により測定した。表1に示した細孔率は、理論密度(粉砕した製品についてヘリウム比重びん法により測定した、多孔質でない材料の予測最大密度)と測定密度との差を百分率として示したものに相当する。
In Table 1,
1) The chemical composition expressed in wt% based on oxide was measured by fluorescent X-ray.
2) The characteristics of the crystalline phase present in the refractory product were examined by X-ray diffraction and microprobe analysis EPMA (electron beam microanalysis). Based on the results thus obtained, the weight percentage of each phase and its composition could be estimated. In Table 1, AT indicates an aluminum titanate type oxide solid solution (main phase), PS indicates the presence of a silicate phase, the other phases indicate the presence of at least one other minor phase P2, “˜” means that the phase is present in the form of a trace.
3) The stability of the crystalline phase present was measured in a test which consists in comparing the initially present crystalline phase with that present after heat treatment at 1100 ° C. for 100 hours by X-ray diffraction. A product is considered stable when the maximum intensity of the main peak corresponding to the appearance of corundum Al 2 O 3 after this treatment remains below 50% of the average of the maximum intensity of the three main peaks of the AT phase. And was considered very stable if it remained below 30% (such products are labeled “yes” in Table 1).
4) Compressive strength (R) was measured at room temperature by compressing the prepared sample at a speed of 1 mm / min with an LLOYD facility equipped with a 10 kN load cell.
5) The density was measured by an ordinary technique (Archimedes method). The porosity shown in Table 1 corresponds to the difference between the theoretical density (the predicted maximum density of a non-porous material measured by the helium specific gravity method for the pulverized product) and the measured density as a percentage.

Figure 2013505197
Figure 2013505197

表1のデータから、細孔率特性と機械的強度特性との組み合わせが改善されていることが分かる。すなわち、同じ焼結温度について、この表は、本発明による例の細孔率は比較例のそれと比較できることを示している。同時に、表1に示したように、本発明による例は比較例のものより有意に大きな強度Rを有している。   From the data in Table 1, it can be seen that the combination of porosity characteristics and mechanical strength characteristics is improved. That is, for the same sintering temperature, this table shows that the porosity of the example according to the invention can be compared with that of the comparative example. At the same time, as shown in Table 1, the examples according to the present invention have a strength R that is significantly greater than that of the comparative examples.

このとおり、本発明の製品は、必要条件に応じて、
・所定の焼結(焼成)温度で、材料の所望される組成に関係してより良好な特性を得ることか、
・あるいは材料の高い細孔率レベルを調節する(特に初期の反応物に細孔形成剤を添加することによって)一方で、良好な機械的一体性を保持すること、
を可能にする。
As described above, the product of the present invention can be used according to the requirements.
To obtain better properties in relation to the desired composition of the material at a given sintering (firing) temperature,
-Or adjusting the high porosity level of the material (especially by adding a pore former to the initial reactants) while maintaining good mechanical integrity,
Enable.

Claims (12)

酸化物セラミック材料によって形成された多孔質構造体であって、当該酸化物セラミック材料は、酸化物に基づくwt%で表して、下記の組成、すなわち、
・25%より多く52%未満のAl23
・26%より多く55%未満のTiO2
・合計で20%未満の、MgO及びCoOから選ばれる元素M1の少なくとも1種の酸化物、
・合計で1%より多く20%未満の、Fe23、Cr23、MnO2、La23、Y23及びGa23により形成される群から選ばれる元素M2の少なくとも1種の酸化物、
・合計で1%より多く25%未満の、ZrO2、Ce23及びHfO2により形成される群から選ばれる元素M3の少なくとも1種の酸化物、
・20%未満のSiO2
を満足し、当該組成は、
・10%未満のMgO、
・1%より多く20%未満のFe23
・1%より多く10%未満のZrO2
を有し、そして当該材料は、対応する単純な酸化物の反応焼結又はそれらの前駆物質の1つの反応焼結によって得られ、あるいは焼結した粒子の熱処理により得られ、当該組成は、当該組成中に存在している酸化物の全てに基づくモル%で表して、a’−t+2m1+m2が−6と6の間であるようなものであり、この式において、
・aはAl23のモル%での含有量であり、
・sはSiO2のモル%での含有量であり、
・a’=a−0.37sであり、
・tはTiO2のモル%での含有量であり、
・m1はM1の酸化物のモル%での合計含有量であり、
・m2はM2の酸化物のモル%での合計含有量である、
酸化物セラミック材料によって形成された多孔質構造体。
A porous structure formed of an oxide ceramic material, the oxide ceramic material expressed in wt% based on oxide, and having the following composition:
More than 25% and less than 52% Al 2 O 3 ,
More than 26% and less than 55% TiO 2 ,
At least one oxide of element M 1 selected from MgO and CoO, less than 20% in total,
An element M 2 selected from the group formed by Fe 2 O 3 , Cr 2 O 3 , MnO 2 , La 2 O 3 , Y 2 O 3 and Ga 2 O 3 in total greater than 1% and less than 20% At least one oxide of
At least one oxide of element M 3 selected from the group formed by ZrO 2 , Ce 2 O 3 and HfO 2 in a total of more than 1% and less than 25%,
Less than 20% SiO 2 ,
Satisfied, the composition is
Less than 10% MgO,
More than 1% and less than 20% Fe 2 O 3 ,
More than 1% and less than 10% ZrO 2 ,
And the material is obtained by reaction sintering of the corresponding simple oxide or one of their precursors, or obtained by heat treatment of the sintered particles, the composition of which In terms of mole percent based on all oxides present in the composition, a′−t + 2m 1 + m 2 is such that it is between −6 and 6,
A is the content of Al 2 O 3 in mol%,
S is the content of SiO 2 in mol%,
A ′ = a−0.37 s
T is the content in mole percent of TiO 2
M 1 is the total content in mole% of M 1 oxide,
M 2 is the total content of M 2 oxide in mol%,
A porous structure formed of an oxide ceramic material.
3がZr又はZrとCeとの組み合わせから選ばれ、前記材料中のZrO2含有量が0.7%より多い、請求項1記載の多孔質構造体。 The porous structure according to claim 1, wherein M 3 is selected from Zr or a combination of Zr and Ce, and the content of ZrO 2 in the material is more than 0.7%. 1がMgであり、M2がFeを含むかFeであり、M3がZrを含むかZrである、請求項1又は2記載の多孔質構造体。 The porous structure according to claim 1 or 2, wherein M 1 is Mg, M 2 contains Fe or Fe, and M 3 contains Zr or Zr. 2が鉄とランタンとの組み合わせにより構成されている、請求項1〜3の1つに記載の多孔質構造体。 The porous structure according to claim 1, wherein M 2 is composed of a combination of iron and lanthanum. 3がジルコニウムとセリウムとの組み合わせにより構成されている、請求項1〜4の1つに記載の多孔質構造体。 The porous structure according to claim 1, wherein M 3 is composed of a combination of zirconium and cerium. 前記材料が、酸化物に基づくwt%で表して、下記の化学組成、すなわち、
・25%より多く52%未満のAl23
・26%より多く55%未満のTiO2
・10%未満のMgO、
・1%より多く20%未満のFe23又は(Fe23+La23)、
・1%より多く10%未満のZrO2又は(ZrO2+CeO2)、
・20%未満のSiO2
を有する、請求項1〜5の1つに記載の多孔質構造体。
The material, expressed as wt% based on oxide, has the following chemical composition:
More than 25% and less than 52% Al 2 O 3 ,
More than 26% and less than 55% TiO 2 ,
Less than 10% MgO,
More than 1% and less than 20% Fe 2 O 3 or (Fe 2 O 3 + La 2 O 3 ),
More than 1% and less than 10% ZrO 2 or (ZrO 2 + CeO 2 ),
Less than 20% SiO 2 ,
The porous structure according to claim 1, comprising:
前記材料が、酸化物に基づくwt%で表して、下記の化学組成、すなわち、
・35%より多く50%未満のAl23
・26%より多く50%未満のTiO2
・6%未満のMgO、
・2%より多く15%未満のFe23又は(Fe23+La23)、
・2%より多く8%未満のZrO2又は(ZrO2+CeO2)、
・0.5%より多く15%未満のSiO2
を有する、請求項6記載の多孔質構造体。
The material, expressed as wt% based on oxide, has the following chemical composition:
More than 35% and less than 50% Al 2 O 3 ,
More than 26% and less than 50% TiO 2 ,
Less than 6% MgO,
More than 2% and less than 15% Fe 2 O 3 or (Fe 2 O 3 + La 2 O 3 ),
More than 2% and less than 8% ZrO 2 or (ZrO 2 + CeO 2 ),
More than 0.5% and less than 15% SiO 2 ,
The porous structure according to claim 6, comprising:
1%より多くのSiO2を含む、好ましくは3%より多くのSiO2を含む、好ましくは5%より多くのSiO2を含む、請求項1〜7の1つに記載の多孔質構造体。 Including many SiO 2 than 1%, preferably a number of SiO 2 than 3%, preferably from many SiO 2 than 5%, porous structure according to one of claims 1 to 7. 前記材料が、チタン、アルミニウム、鉄、ジルコニウムを含み、所望によりマグネシウムを含む、固溶体タイプの相からなる主相と、酸化チタンTiO2及び/又は酸化ジルコニウムZrO2から本質的になる少なくとも1つの相と、及び所望により少なくとも1つのケイ酸塩相、を含む、請求項1〜8の1つに記載の多孔質構造体。 The material comprises titanium, aluminum, iron, zirconium, and optionally a magnesium-containing main phase consisting of a solid solution type phase and at least one phase consisting essentially of titanium oxide TiO 2 and / or zirconium oxide ZrO 2. And, optionally, at least one silicate phase. 前記ケイ酸塩相が前記材料の総重量の0〜45%の範囲にあることができる比率で存在している、請求項9記載の多孔質構造体。   The porous structure of claim 9, wherein the silicate phase is present in a proportion that can range from 0 to 45% of the total weight of the material. 前記ケイ酸塩相が主としてシリカとアルミナからなり、当該ケイ酸塩相中のシリカの重量比率が34%より大きい、請求項10記載の多孔質構造体。   The porous structure according to claim 10, wherein the silicate phase is mainly composed of silica and alumina, and the weight ratio of silica in the silicate phase is larger than 34%. ハニカムタイプの構造を有し、特に自動車用途向けの触媒担体又はフィルタであって、当該構造体を構成しているセラミック材料の細孔率が10%より大きく、細孔サイズの中心が5μmと60μmの間にある、請求項1〜11の1つに記載の多孔質構造体。   It has a honeycomb type structure, and is a catalyst carrier or filter especially for automobile applications. The ceramic material constituting the structure has a porosity of more than 10%, and the pore size centers are 5 μm and 60 μm. The porous structure according to claim 1, which is between
JP2012530316A 2009-09-22 2010-09-21 Alumina titanate porous structure Expired - Fee Related JP5543604B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR0956502A FR2950341B1 (en) 2009-09-22 2009-09-22 POROUS STRUCTURE OF ALUMINA TITANATE TYPE
FR0956502 2009-09-22
FR1056155 2010-07-27
FR1056155 2010-07-27
PCT/FR2010/051971 WO2011036397A1 (en) 2009-09-22 2010-09-21 Alumina titanate porous structure

Publications (2)

Publication Number Publication Date
JP2013505197A true JP2013505197A (en) 2013-02-14
JP5543604B2 JP5543604B2 (en) 2014-07-09

Family

ID=43382410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012530316A Expired - Fee Related JP5543604B2 (en) 2009-09-22 2010-09-21 Alumina titanate porous structure

Country Status (6)

Country Link
US (1) US20120276325A1 (en)
EP (1) EP2480518A1 (en)
JP (1) JP5543604B2 (en)
KR (1) KR20120083349A (en)
CN (1) CN102639460A (en)
WO (1) WO2011036397A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012564A1 (en) * 2016-07-14 2018-01-18 イビデン株式会社 Honeycomb structure and production method for said honeycomb structure
JP2018030105A (en) * 2016-08-25 2018-03-01 日本碍子株式会社 Porous ceramic structure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9988311B2 (en) * 2013-11-27 2018-06-05 Corning Incorporated Aluminum titanate compositions, ceramic articles comprising same, and methods of manufacturing same
CN107406328A (en) * 2015-03-19 2017-11-28 衡所华威电子有限公司 Alumina ceramic of black color powder, alumina ceramic of black color body prepared therefrom and the method for preparing the alumina ceramic of black color body
CN106007777B (en) * 2016-05-12 2018-08-03 梅州市溪山陶瓷有限公司 A kind of porous ceramics and preparation method thereof
CN108946680A (en) * 2018-07-03 2018-12-07 贵州大学 A kind of technique preparing Aluminum titanate powder coproduction acid
FR3088831B1 (en) * 2018-11-27 2020-12-04 Tech Avancees Et Membranes Industrielles Manufacturing process by adding material from inorganic filtration media from a hot-melt filament and membrane obtained
CN111390116A (en) * 2020-04-15 2020-07-10 淄博建宗复合材料有限公司 Preparation process flow of aluminum titanate ceramic composite heat-insulating riser

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134561A (en) * 1980-03-26 1981-10-21 Ngk Insulators Ltd Low expansion ceramics and manufacture
US4327188A (en) * 1979-12-25 1982-04-27 Asahi Glass Company, Ltd. Multicellular monolithic ceramic body and preparation thereof
JPS63170260A (en) * 1986-12-30 1988-07-14 デイデイエル−ヴエルケ・アクチエンゲゼルシヤフト Aluminum titanate ceramic
JPS63201060A (en) * 1987-02-13 1988-08-19 ダブリユー・アール・グレイス・アンド・カンパニー−コネチカツト Low expansion zrtio4-al2tio5-zro2 base composition
JPH01257165A (en) * 1988-04-04 1989-10-13 Corning Glass Works High temperature stable low thermal expansion ceramic and production thereof
WO2007015495A1 (en) * 2005-08-01 2007-02-08 Hitachi Metals, Ltd. Process for producing ceramic honeycomb structure
WO2008106014A2 (en) * 2007-02-27 2008-09-04 Corning Incorporated Ceramic materials for 4-way and nox adsorber and method for making same
JP2011526576A (en) * 2008-07-04 2011-10-13 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Aluminum titanate type porous structure
JP2011526575A (en) * 2008-07-04 2011-10-13 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Molten oxide particles containing Al, Ti, Mg and Zr and ceramic materials containing such particles
JP2013500232A (en) * 2009-07-28 2013-01-07 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Molten oxide particles containing Al and Ti and ceramic material containing the particles

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758542A (en) * 1987-02-13 1988-07-19 W. R. Grace & Co. Low thermal expansion ZrTiO4 --Al2 TiO5 --ZrO2 compositions
JP2828986B2 (en) * 1988-03-31 1998-11-25 株式会社東芝 Ceramic sintered body
DK1270202T3 (en) 1996-01-12 2006-08-07 Ibiden Co Ltd Exhaust gas purification filter
DE60033977T2 (en) 1999-09-29 2007-12-20 Ibiden Co., Ltd., Ogaki Honeycomb filter and arrangement of ceramic filters
FR2833857B1 (en) 2001-12-20 2004-10-15 Saint Gobain Ct Recherches FILTER BODY COMPRISING A PLURALITY OF FILTER BLOCKS, IN PARTICULAR FOR A PARTICLE FILTER
US6849181B2 (en) 2002-07-31 2005-02-01 Corning Incorporated Mullite-aluminum titanate diesel exhaust filter
JP4324799B2 (en) 2002-11-01 2009-09-02 オーセラ株式会社 Method for producing sintered aluminum magnesium titanate
JP4723173B2 (en) 2003-01-20 2011-07-13 日本碍子株式会社 Manufacturing method of honeycomb structure
FR2853256B1 (en) 2003-04-01 2005-10-21 Saint Gobain Ct Recherches FILTRATION STRUCTURE, PARTICULARLY PARTICLE FILTER FOR THE EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE.
US7259120B2 (en) * 2004-04-21 2007-08-21 Corning Incorporated Aluminum titanate ceramic articles and methods of making same
CN101357843A (en) * 2008-08-08 2009-02-04 东营新科信特陶有限责任公司 Alumina titanate ceramica lift tube preparation method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4327188A (en) * 1979-12-25 1982-04-27 Asahi Glass Company, Ltd. Multicellular monolithic ceramic body and preparation thereof
JPS56134561A (en) * 1980-03-26 1981-10-21 Ngk Insulators Ltd Low expansion ceramics and manufacture
JPS63170260A (en) * 1986-12-30 1988-07-14 デイデイエル−ヴエルケ・アクチエンゲゼルシヤフト Aluminum titanate ceramic
JPS63201060A (en) * 1987-02-13 1988-08-19 ダブリユー・アール・グレイス・アンド・カンパニー−コネチカツト Low expansion zrtio4-al2tio5-zro2 base composition
JPH01257165A (en) * 1988-04-04 1989-10-13 Corning Glass Works High temperature stable low thermal expansion ceramic and production thereof
WO2007015495A1 (en) * 2005-08-01 2007-02-08 Hitachi Metals, Ltd. Process for producing ceramic honeycomb structure
WO2008106014A2 (en) * 2007-02-27 2008-09-04 Corning Incorporated Ceramic materials for 4-way and nox adsorber and method for making same
JP2011526576A (en) * 2008-07-04 2011-10-13 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Aluminum titanate type porous structure
JP2011526575A (en) * 2008-07-04 2011-10-13 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Molten oxide particles containing Al, Ti, Mg and Zr and ceramic materials containing such particles
JP2013500232A (en) * 2009-07-28 2013-01-07 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Molten oxide particles containing Al and Ti and ceramic material containing the particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012564A1 (en) * 2016-07-14 2018-01-18 イビデン株式会社 Honeycomb structure and production method for said honeycomb structure
JP2018030105A (en) * 2016-08-25 2018-03-01 日本碍子株式会社 Porous ceramic structure

Also Published As

Publication number Publication date
CN102639460A (en) 2012-08-15
US20120276325A1 (en) 2012-11-01
EP2480518A1 (en) 2012-08-01
KR20120083349A (en) 2012-07-25
JP5543604B2 (en) 2014-07-09
WO2011036397A1 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP5543604B2 (en) Alumina titanate porous structure
JP5563568B2 (en) Molten oxide particles containing Al, Ti, Mg and Zr and ceramic materials containing such particles
JP5681184B2 (en) Molten oxide particles containing Al and Ti and ceramic material containing the particles
JP5406286B2 (en) Aluminum titanate type porous structure
US8557010B2 (en) Fused grains of oxides comprising Al, Ti, Si and ceramic products comprising such grains
JP2011523616A (en) Porous structure containing aluminum titanate
EP1493724A1 (en) Porous material and method for production thereof
JP5632369B2 (en) Fused particles of oxides containing Al, Ti and Mg and ceramic products containing such particles
JPWO2012046577A1 (en) Exhaust gas purification filter and manufacturing method thereof
JP5543603B2 (en) Alumina titanate porous structure
JP5491500B2 (en) Particle mixture for producing an aluminum titanate type porous structure
JP4609831B2 (en) Honeycomb carrier for exhaust gas purification catalyst and manufacturing method thereof
US20110143928A1 (en) Catalytic filter or substrate containing silicon carbide and aluminum titanate
US11505504B2 (en) Non-oxide inorganic pore-formers for cordierite ceramic articles
FR2950341A1 (en) Porous structure useful as e.g. filter in automobiles, comprises ceramic material comprising oxide material corresponding to composition including aluminum trioxide, titanium oxide, magnesium oxide, iron oxide and zirconium oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140508

R150 Certificate of patent or registration of utility model

Ref document number: 5543604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees