WO2018012086A1 - Light emitting element, light emitting device, lighting device, backlight and display device - Google Patents

Light emitting element, light emitting device, lighting device, backlight and display device Download PDF

Info

Publication number
WO2018012086A1
WO2018012086A1 PCT/JP2017/016569 JP2017016569W WO2018012086A1 WO 2018012086 A1 WO2018012086 A1 WO 2018012086A1 JP 2017016569 W JP2017016569 W JP 2017016569W WO 2018012086 A1 WO2018012086 A1 WO 2018012086A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
length
semiconductor core
light
Prior art date
Application number
PCT/JP2017/016569
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 拓也
吐田 真一
柴田 晃秀
岩田 浩
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018012086A1 publication Critical patent/WO2018012086A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to a light-emitting element such as an LED, in particular, a micro-device configured to emit light between a first-conductivity-type semiconductor core and a second-conductivity-type semiconductor disposed around the outer peripheral surface of the semiconductor core.
  • the present invention relates to a light-emitting element having an order size or a nano-order size, a light-emitting device including the light-emitting element, and an illumination device, a backlight, and a display device including the light-emitting device.
  • Patent Document 1 discloses a light-emitting device 100 having a cross-sectional structure shown in FIGS. 39 and 40 are disclosed as Japanese Patent Application Laid-Open Nos. 2015-126048 as FIGS.
  • the light emitting element 10 included in the light emitting device 100 includes a first conductive type semiconductor core 12, a light emitting layer 14, and a second conductive type semiconductor layer 16.
  • the semiconductor core 12 has a rod shape having a regular hexagonal cross section, that is, a regular hexagonal column shape.
  • the light emitting layer 14 is disposed around the central axis CL of the semiconductor core 12 and is in contact with the six side surfaces 12 ⁇ / b> A constituting the outer peripheral surface of the semiconductor core 12.
  • the semiconductor layer 16 is disposed around the central axis CL and is in contact with the light emitting layer 14. Further, the transparent conductive film 30 covers the outside of the semiconductor layer 16.
  • the transparent conductive film 30 is removed from the light emitting layer 14 over about a half circumference of the light emitting element 10, and the semiconductor core 12 is exposed in a direction perpendicular to the central axis CL.
  • the light emitting device 100 further includes a protective film 40 and metal wirings 50 and 60.
  • Each of the wirings 50 and 60 includes contact metals 50B and 60B located in the contact holes 40A and 40B formed in the protective film 40, respectively.
  • the contact metal 50B is in contact with the exposed portion of the semiconductor core 12, and the contact metal 60B is in contact with the transparent conductive film 30.
  • the outer peripheral surface of the light emitting element emits light over the entire circumference (except for the portion corresponding to the exposed portion of the semiconductor core 12). Accordingly, there is an advantage that the light emitting area can be widened as compared with a planar light emitting element that emits light only on one plane.
  • the contact process that is, The process for wiring the light emitting element includes patterning for forming a contact hole, etching for forming a contact hole, deposition of a conductive material in the contact hole, etc.). Therefore, high accuracy (alignment accuracy, etc.) is required in the contact process when manufacturing the light emitting device, and there is a problem that it is difficult to improve the yield.
  • a light emitting element configured to emit light between the first conductive type semiconductor core and the second conductive type semiconductor disposed around the outer peripheral surface of the semiconductor core is equivalent to a conventional bar light emitting element. Even if the light emitting area is, a configuration that can increase the tolerance in the contact process is required.
  • the contact area between the semiconductor core 12 and the wiring 50 corresponds to that.
  • the contact resistance between the semiconductor core 12 and the contact metal 50B may become so large that it is not negligible (for example, 0.1 to 50 ⁇ m 2 ).
  • a large contact resistance leads to a decrease in light emission efficiency and an increase in power consumption.
  • the contact area of a normal LED that emits light only in one plane, not in a rod shape is about 3 ⁇ 10 3 ⁇ m 2 .
  • Patent Document 2 discloses that a semiconductor core of a first conductivity type (n-type) extends from one surface of a base portion of a first conductivity type made of the same semiconductor material as the semiconductor core.
  • a second conductivity type (p-type) semiconductor is formed on the entire outer peripheral surface of the core, but no second conductivity type semiconductor is formed around the outer peripheral surface (side surface) of the base.
  • Is used as the cathode electrode K, and a rod-like light emitting element provided so that the contact metal of the wiring contacts the side surface of the base is disclosed (see FIGS. 9 and 17 of Patent Document 2).
  • the contact metal of the wiring is provided so as to contact the side surface of the base portion, not the outer peripheral surface (side surface) of the semiconductor core.
  • the side surface of the base is flush with the side surface of the transparent conductive film that covers the second conductivity type semiconductor.
  • Patent Document 2 further discloses that the first conductivity type semiconductor core has a square cross section, and the cross section has a short side and a long side in order to increase the light emission amount, in other words, the light emission area in the configuration including such a base. It discloses that it has a rectangular plate shape.
  • the contact metal of the wiring contacts the base portion, not the outer peripheral surface (side surface) of the semiconductor core. Therefore, although not specified in Patent Document 2, it is considered that there is an advantage that the contact area with the contact metal can be adjusted by adjusting the size of the base.
  • the base does not contribute to the light emission at all. That is, the entire length of the light emitting element is not effectively used from the viewpoint of increasing the light emitting area. Further, since there is no second conductivity type semiconductor around the base of the first conductivity type, the current direction during driving is changed so as to flow from the p-type semiconductor to the n-type semiconductor as compared with the configuration of Patent Document 1. A circuit to control is required.
  • an object of the present invention is to provide a contact process for a light emitting element configured to emit light between a first conductivity type semiconductor core and a second conductivity type semiconductor disposed around the outer peripheral surface of the semiconductor core. Tolerance can be increased compared to a rod-shaped light emitting element having an equivalent light emitting area, and therefore, such a light emitting element, a light emitting device including the light emitting element, and a lighting device including the light emitting device, a backlight, and In addition to improving the yield of display devices, the contact resistance between the semiconductor core and the contact metal is reduced compared to a rod-like light emitting element having the same light emitting area, thereby improving the light emitting efficiency and reducing the power consumption. It is.
  • a light-emitting element includes: A first-conductivity-type semiconductor core having an outer peripheral surface composed of two end portions facing each other in the first direction and two or more side surfaces between the end portions; and disposed around the outer peripheral surface of the semiconductor core.
  • At least one of the side surfaces of the semiconductor core is covered with the semiconductor layer.
  • Another side surface is a light emitting device having an exposed portion that is exposed without being covered by the semiconductor layer,
  • the cross section of the semiconductor core orthogonal to the first direction has a length L1 in the second direction and a length L2 in the third direction orthogonal to the second direction.
  • the exposed portion of the semiconductor core has a length L3 in the second direction and a length L4 in the first direction, and the length L3 is a length in the second direction of the cross section of the semiconductor core.
  • the length is 60% to 100% of the length L1.
  • the “length” in the second direction and the third direction of the cross-section of the semiconductor core is the length of the longest portion in each direction.
  • the “length” of the exposed portion of the semiconductor core in the first and second directions is the length of the longest portion in each direction.
  • L1 2 ⁇ L2 ⁇ L1, that is, the reason why L1 is set to be twice or more of L2 is that if it is less than that, the intended effect of the present invention of increasing tolerance and reducing contact resistance cannot be obtained.
  • the semiconductor core may be a plate core whose cross section is polygonal or elliptical.
  • the “side surface” constituting the “outer peripheral surface” of the semiconductor core means each surface connected at an angle between the two end portions when the cross section is a polygonal shape.
  • the cross section is elliptical, it means two surfaces facing each other in the second direction between the two end portions.
  • ellipse includes not only an ellipse in a mathematically exact sense but also an elongated circle similar to an ellipse.
  • the semiconductor core may have a length L5 in the first direction, and L5 ⁇ L1.
  • the length L2 in the third direction and the length L1 in the second direction of the cross section of the semiconductor core are preferably in the range of 100 nm to 20 ⁇ m and 300 nm to 500 ⁇ m, respectively. More preferably, the cross-sectional lengths L2 and L1 are in the range of 300 nm to 15 ⁇ m and 1 ⁇ m to 200 ⁇ m, respectively, and more preferably in the range of 500 nm to 10 ⁇ m and 3 ⁇ m to 100 ⁇ m, respectively.
  • the length L3 in the second direction and the length L4 in the first direction of the exposed portion are preferably in the range of 300 nm to 500 ⁇ m. More preferably, the length L3 and the length L4 of the exposed portion are in the range of 1 ⁇ m to 200 ⁇ m, and more preferably in the range of 3 ⁇ m to 100 ⁇ m.
  • a light-emitting device includes: A substrate, A plurality of light-emitting elements mounted on the substrate; A wiring electrically connected to the light emitting element, The light emitting device according to any one of claims 1 to 5, further comprising a conductive film covering the semiconductor layer of the second conductivity type, The wiring includes a first wiring having a contact metal in contact with an exposed portion of the semiconductor core of the light emitting element and a second wiring having a contact metal in contact with the conductive film.
  • An illumination device includes the light emitting device.
  • a backlight according to an embodiment of the present invention includes the light emitting device.
  • a display device includes the light emitting device.
  • the display device includes various types.
  • the display device may be a liquid crystal display device using the light emitting device as a backlight, or an LED display in which each light emitting element included in the light emitting device is used as a pixel LED constituting a pixel. Also good.
  • the display device may be a see-through type with a transparent display unit.
  • the display device may be a glasses type.
  • the cross section is long.
  • the length L3 of the exposed portion of the semiconductor core is 60% to 100% of the length L1 in the second direction of the cross section of the light emitting element, it is a thin shape.
  • the tolerance for the contact process to the light emitting device can be increased by a substantial amount without substantially changing the light emitting area, and the light emitting device and the light emitting device can be used.
  • the yield of the light emitting device and the lighting device, backlight, and display device provided with the light emitting device can be improved.
  • the contact area between the contact metal and the exposed portion of the semiconductor core is smaller than that of the conventional light emitting device using a fine rod-shaped core as disclosed in Patent Document 1. Since it is possible to increase the contact resistance, the contact resistance can be reduced accordingly, and the light emission efficiency can be improved and the power consumption can be reduced. Therefore, also in a lighting device, a backlight, and a display device provided with this light emitting device, it is possible to improve luminous efficiency and reduce power consumption.
  • the exposed portion that contacts the contact metal of the wiring is only a part of the outer peripheral surface of the semiconductor core, and the other portion of the outer peripheral surface is covered with the semiconductor layer of the second conductivity type.
  • the plate-like structure of Patent Document 2 it is possible to reduce the size of the light emitting element even with the same light emitting area and the same contact area, and a circuit for controlling the current direction during driving is unnecessary. is there.
  • FIG. 1 is a schematic perspective view of a light emitting device according to a first embodiment.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 1.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 1. It is a figure which shows the alternative example of the outline shape of the cross section of the light emitting element shown by FIG. It is the figure which compared the contact area of the conventional light emitting element with the contact area of an example of the light emitting element which concerns on 1st Embodiment.
  • FIG. 5 is a diagram for explaining one of manufacturing steps of a light emitting device including the light emitting element shown in FIGS.
  • FIG. 8A and 8B are diagrams illustrating a process subsequent to the process of FIG. 7, in which FIG. 7A illustrates a cross section cut along the xz plane (hereinafter, xz cross section), and FIG. 7B illustrates a cross section cut along the yz plane (hereinafter referred to as the yz cross section).
  • xz cross section a cross section cut along the xz plane
  • yz cross section a cross section cut along the yz plane
  • FIG. 16 is a diagram showing a step that follows the step of FIG. 15 and shows a cross-section corresponding to FIG. 2.
  • FIG. 16 is a diagram showing a step that follows the step of FIG. 15, and shows a cross section corresponding to FIG. 3.
  • FIG. 16 is a diagram showing a step that follows the step of FIG. 15 and shows a cross-section corresponding to FIG. 4. It is a figure which shows the process following the process of FIG. 17 (FIG. 18, FIG. 19). It is drawing corresponding to FIG.
  • FIG. 13 for demonstrating the modification of the light emitting element which concerns on 1st Embodiment
  • (A) shows xz cross section
  • (B) shows yz cross section
  • (C) shows xy cross section.
  • FIG. 5 shows the alternative example of the outline shape of the cross section of the light emitting element shown by FIG.21 (C).
  • the alternative example of the profile shape of the cross section shown by FIG. 13 (A) and FIG. 21 (A) is shown.
  • An alternative example of the profile of the cross section shown in FIGS. 13B and 21B is shown. It is a chart which shows the effect of a 1st embodiment. It is a top view of the light-emitting device used for the illuminating device of 2nd Embodiment.
  • FIG. 32 is a side view of a liquid crystal panel as an example of a display device different from that in FIG. 31.
  • FIG. 1 of Patent Document 1 is shown.
  • FIG. 2 of Patent Document 1 is shown.
  • FIGS. 1 to 5 are views for explaining the structure of the light emitting device 200 in the first embodiment.
  • FIG. 6 shows a contact area of a conventional bar light emitting device and a contact area of an example of the light emitting device according to the first embodiment.
  • 7 to 20 are diagrams illustrating a manufacturing process of a light emitting device including the light emitting element 200
  • FIG. 21 is a diagram illustrating a modification of the light emitting element 200.
  • 22 to 24 are diagrams showing alternative examples of contour shapes of various cross sections of the light emitting element 200.
  • the light emitting device 200 includes an n-type semiconductor core 201 as a first conductivity type, an active layer 202, a p-type semiconductor layer 203 as a second conductivity type, and a transparent conductivity as a conductive layer. And a film 204.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the first conductivity type is p-type
  • the second conductivity type is n-type
  • the light emitting element 200 is an n-type semiconductor core.
  • a p-type semiconductor core may be provided, and instead of the p-type semiconductor layer 203, an n-type semiconductor layer may be provided.
  • the group V may contain As, P, or Sb, or may be a group IV semiconductor such as Si or Ge, or a group II-VI semiconductor such as ZnO or ZnSe.
  • a material of the transparent conductive film 204 for example, ITO, ZnO, SnO, or the like can be used. Of course, materials known to those skilled in the art can be appropriately used even if they are not listed here. Since the essence of this embodiment is not in the material of the light emitting element itself, the material of the light emitting element illustrated here should not be understood as limiting the present invention.
  • the semiconductor core 201 has two end portions (end surfaces) 2011 and 2012 that face each other in the z direction as the first direction, and an outer peripheral surface 2013 between these end portions.
  • the semiconductor core 201 has a hexagonal xy cross section (a cross section perpendicular to the z direction) in which two opposite sides at the center are longer than the other sides. That is, the semiconductor core 201 has a side surface 2013a corresponding to the two long sides of the xy cross section and a side surface 2013b corresponding to the remaining four sides, and these six side surfaces 2013a and 2013b are the outer peripheral surface 2013. Is configured.
  • one of the side surfaces 2013 a of the semiconductor core 201 is exposed without being covered with the active layer 202, the semiconductor layer 203, and the transparent conductive film 204 at a position close to the end portion 2012.
  • An exposed portion 205 is formed. All of the outer peripheral surface 2013 of the semiconductor core 201 excluding the exposed portion 205 is covered with the active layer 202, the semiconductor layer 203, and the transparent conductive film 204, and the active layer 202 between the semiconductor core 201 and the semiconductor layer 203 is formed. Acts as a light emitting layer.
  • the xy section of the semiconductor core 201 has a length L1 in the y direction as the second direction and a length L2 in the x direction as the third direction.
  • the length L1 is in the range of 2 ⁇ L2 ⁇ L1 ⁇ 1000 ⁇ L2, and has a horizontally long shape as viewed in FIGS.
  • the outer peripheral surface 2013 has a length L5 in the z direction.
  • the semiconductor core 201 has a thin plate-like shape that is defined by a length L1 in the y direction, a length L2 in the x direction, and a length L5 in the z direction, and the xy cross section is a long and narrow hexagon (however, the exposed portion 205 , The length in the x direction may be as small as half of L2.)
  • the range of the length L1 in the y direction of the xy section is preferably 10 ⁇ L2 ⁇ L1 ⁇ 200 ⁇ L2 when the length L2 in the x direction is 500 nm, for example, and when L2 is 1 ⁇ m. Is preferably 5 ⁇ L2 ⁇ L1 ⁇ 100 ⁇ L2.
  • the preferable range of L1 is determined within the range of 2 ⁇ L2 ⁇ L1 ⁇ 1000 ⁇ L2 by the specific value of L2.
  • the length L2 of the semiconductor core 201 in the x direction is preferably in the range of 100 nm to 20 ⁇ m, more preferably 300 nm to 15 ⁇ m, and still more preferably 500 nm to 10 ⁇ m.
  • the reason why the length L2 in the x direction is set to 300 nm or more is to reduce the stability due to the shift in the etching amount when contacting the n layer and the resistivity against the current flowing in the n-type semiconductor. Further, the reason why the length L2 in the x direction is set to 20 ⁇ m or less is that when the length is longer than this, there is a large level difference when arranged on another substrate, and the yield in the contact process is significantly deteriorated.
  • the actual numerical range is determined according to the length of L2. It is preferable to set so as to fall within the range of 300 nm to 500 ⁇ m. More preferably, it is 1 ⁇ m to 200 ⁇ m, and still more preferably 3 ⁇ m to 100 ⁇ m.
  • the exposed portion 205 of the semiconductor core 201 has a length L3 in the y direction and a length L4 in the z direction.
  • the length L4 of the exposed portion 205 in the z direction is usually less than or equal to half the length L5 of the semiconductor core 201 in the z direction.
  • the length L3 of the exposed portion 205 in the y direction is 60% to 100% of the length L1 of the semiconductor core 201 in the y direction, more preferably 70% to 100%, and still more preferably 80% to 100%. %.
  • the exposed portion 205 is not limited to a quadrangle, and may be any shape such as a rounded quadrangle, a polygon, or a circle.
  • the light emitting area of the light emitting element 200 is determined by the area of the portion covered by the light emitting layer 202 and the semiconductor layer 203 out of the total surface area of the semiconductor core 201.
  • the end face of the semiconductor core is exposed, and the area of the end face is much smaller than the area of the outer peripheral face (all the side faces). Therefore, it is the area of the outer peripheral surface 2013 of the semiconductor core 201 that greatly affects the light emitting area.
  • the length of the short side of the elongated hexagon that is the xy cross-sectional shape of the semiconductor core 201 is the same as the length of one side of the regular hexagon, the length of the long side is 2 ⁇ L2 ⁇ L1 ⁇ 1000.
  • the semiconductor core 201 Since the length of one side of the regular hexagon can be longer than the length of one side of the regular hexagon within a range satisfying the condition of ⁇ L2, if the length of the semiconductor core in the z direction is constant, the semiconductor core 201 is compared with a rod-shaped semiconductor core having a regular hexagonal cross section. The area of the outer peripheral surface 2013 increases. On the other hand, since the length L3 of the exposed portion 205 of the semiconductor core 201 is 60% to 100% of the length L1 in the y direction of the xy cross section of the light emitting element 200, the length L4 of the exposed portion 205 in the z direction.
  • the area of the exposed portion 205 of the semiconductor core 201 is larger than that of the conventional semiconductor core.
  • the area of the outer peripheral surface 2013 of the semiconductor core 201 that contributes to the light emission area is reduced by the amount by which the area of the exposed portion 205 is increased compared to the conventional bar light emitting element, the light emitting area is equal to or larger than that of the conventional bar light emitting element. Is obtained.
  • the length L3 in the y direction of the exposed portion 205 of the semiconductor core 201 can be significantly longer than that of the conventional rod-shaped core. Therefore, according to the present invention, compared with the conventional light emitting device having a rod-shaped core disclosed in Patent Document 1, the tolerance for the contact process to the light emitting device can be reduced without substantially changing the light emitting area. Therefore, the yield of the light-emitting elements can be improved.
  • the size of the light emitting element can be reduced even with the same light emitting area and the same contact area.
  • FIG. 6A and 6B are schematic perspective views for comparing a conventional bar-shaped light emitting device and the light emitting device according to the present embodiment.
  • FIG. 6A is a conventional bar-shaped light emitting device
  • FIGS. 1 shows an example of a light emitting element according to the above.
  • the rod-shaped light emitting element shown in (A) has a side of 2 ⁇ m and a length in the z direction of 50 ⁇ m.
  • the light emitting element according to this embodiment shown in FIG. 5B has a short side of 1 ⁇ m, a long side of 4 ⁇ m, and a length in the z direction of 50 ⁇ m.
  • the light emitting device 200 shown in FIGS. 1 to 5 includes an active layer 202 as a light emitting layer between a semiconductor core 201 and a semiconductor layer 203.
  • the active layer 202 may be a multilayer quantum well layer in which barrier layers and quantum well layers are alternately stacked, or may be a single quantum well layer.
  • the barrier layer is, for example, GaN.
  • the quantum well layer is, for example, InGaN. The composition ratio of In and Ga is appropriately set according to the target wavelength of light.
  • the active layer 202 is not necessarily provided. However, since the active layer 202 confines bipolar carriers (holes and electrons) in a narrow range to increase the recombination probability, the luminous efficiency can be increased as compared with the case where the active layer 202 is not provided.
  • the shape of the xy cross section of the semiconductor core 201 is a hexagonal shape with two long opposite sides at the center.
  • FIG. 5 shows an example of the shape of another xy cross-section in place of the hexagonal shape, where (A) is a long rectangle, (B) is an ellipse, and (C) is a dodecagon.
  • the xy cross section may have other elongated shapes.
  • an isosceles triangle in which the relationship between the base L1 and the height L2 satisfies 2 ⁇ L2 ⁇ L1 ⁇ 1000 ⁇ L2 may be used. That is, as long as 2 ⁇ L2 ⁇ L1 ⁇ 1000 ⁇ L2 is satisfied, the xy cross section may have any shape.
  • n-type GaN is used as the material of the n-type semiconductor core 201
  • InGaN / GaN constituting the multiple quantum well is used as the material of the active layer 202
  • p-type AlGaN and p-type are used as the material of the p-type semiconductor layer 203.
  • GaN two-layer structure
  • transparent conductive film (conductive layer) 204 is used as the material of the transparent conductive film (conductive layer) 204, but as described above, these materials are not limited, and other materials may be used. Good.
  • an n-type GaN film 201 ⁇ / b> A is formed on the main surface of a sapphire substrate (hereinafter also simply referred to as “substrate”) 210.
  • the thickness of the n-type GaN film 201A is, for example, 30 ⁇ m.
  • Examples of the method for forming the n-type GaN film 201A include HVPE (Hydride (Vapor Phase Epitaxy) method, MOCVD (Metal Organic Chemical Vapor Deposition) method, MBE (Molecular Beam Epitaxy) method and the like.
  • This n-type GaN film 201A is processed to finally become the semiconductor core 201.
  • a plurality of plate-like masks 220 that are long in the y direction are formed on the n-type GaN film 201A.
  • the mask 220 is a silicon oxide (SiO 2 ) film.
  • the mask 220 is formed as follows. First, a silicon oxide film is formed on the entire surface of the n-type GaN film 201A. Examples of the method for forming the silicon oxide film include a plasma CVD (Chemical Vapor Deposition) method and a sputtering method. The silicon oxide film formed on the entire surface of the n-type GaN film 201A is patterned by photolithography.
  • the pattern of the mask 220 determines the shape of the xy cross section of the semiconductor core 201 and can be various polygonal shapes or elliptical shapes as described above. Here, the two opposite sides at the center shown in FIG. The hexagon is longer than the side.
  • the n-type GaN film 201A is etched by reactive ion etching (a kind of dry etching). As a result, as shown in FIG. 9, a plurality of plate-like n-type GaN films 201B (only three are shown in FIG. 9) are formed. At this stage, the mask 220 remains.
  • As an etching gas for example, there is a mixed gas of chlorine gas (Cl 2 ) and argon gas (Ar).
  • the volume ratio of chlorine gas and argon gas is, for example, 2: 3.
  • the length in the z direction of the plate-like n-type GaN film 201B is, for example, 30 ⁇ m.
  • the side surface of the plate-like n-type GaN film 201B is etched by wet etching.
  • the etching solution is, for example, an aqueous tetramethylammonium hydroxide (TMAH) solution (mass percent concentration: 5%) heated to 70 ° C.
  • TMAH aqueous tetramethylammonium hydroxide
  • the etching time is, for example, 3 hours.
  • TMAH aqueous tetramethylammonium hydroxide
  • the side surface of the n-type GaN film 201B can be made vertical. If the same etching is performed without using the mask 220, the side surface is not vertical and a tapered structure is formed.
  • FIG. 11 shows a state after the mask 220 is removed.
  • the side surface of the columnar n-type GaN film 201B is perpendicular to the substrate 210, but there are irregularities on the surface.
  • an n-type GaN layer is formed on the n-type GaN film 201B using an MOCVD apparatus. Thereby, the semiconductor core 201 is completed.
  • the substrate temperature (growth temperature) when forming the n-type GaN layer is, for example, 850 to 1100 degrees.
  • a multi-quantum well layer in which InGaN (well layers) and GaN (barrier layers) are alternately stacked is formed as the active layer 202 using the MOCVD apparatus.
  • the substrate temperature (growth temperature) when forming the multiple quantum well layer is, for example, 650 to 850 degrees.
  • FIG. 12 shows a state after the p-type semiconductor layer 203 is formed.
  • an ITO film is formed on the p-type GaN layer constituting the p-type semiconductor layer 203.
  • the transparent conductive film 204 is formed on the surface of the p-type GaN layer.
  • the upper surface (the portion on the opposite side of the substrate 210) may be cut by CMP or the like, and the light emitting surface may be limited to the side surface. Further, the light emitting surface can be limited to the side surface by performing this process without removing the mask 220. Of course, this is not necessary when the light emitting surface is not limited to the side surface.
  • a plurality of plate-like light emitting elements (before forming the exposed portion 205 of the semiconductor core 201) 200 ⁇ / b> A is separated from the sapphire substrate 210.
  • a plurality of plate-like light emitting elements 200A are embedded in an organic film (for example, wax).
  • laser is irradiated from the back surface of the sapphire substrate 210.
  • the interface between the sapphire substrate 210 and the semiconductor core 201 is melted, and the plurality of plate-like light emitting elements 200A are peeled from the substrate 210 (laser lift-off).
  • the sapphire substrate 210 is put into an acetone solution to dissolve the organic film.
  • the plurality of plate-like light emitting elements 200 ⁇ / b> A are separated from the sapphire substrate 210.
  • the plurality of light emitting elements 200A are precipitated by a centrifuge, and the supernatant is removed.
  • acetone is added, and the above treatment is repeated, and the components of the organic film are removed from the acetone solution containing the plurality of light emitting elements 200A.
  • the solution containing the plurality of light emitting elements 200A is replaced with isopropyl alcohol (IPA) from the acetone solution.
  • IPA isopropyl alcohol
  • the method of separating the plurality of light emitting elements 200A from the sapphire substrate 210 may be, for example, a method of folding each light emitting element 200A from the root using ultrasonic waves or the like.
  • a light emitting element 200A is placed on a glass substrate 301 on which light emitting element placement electrodes 311 and 321 are formed.
  • the plurality of light-emitting elements 200A are arranged in two regions.
  • six light emitting elements 200A are arranged in one area, but the number of light emitting elements 200A arranged in one area and the number of arrangement areas are arbitrary.
  • another insulating substrate having translucency may be used.
  • it is not necessary to use a light-transmitting substrate, and a glass substrate, a semiconductor substrate, or the like on which a metal for light reflection is formed may be used.
  • FIG. 15A shows the glass substrate 301 before the light emitting element 200A is arranged.
  • the arrangement electrode 310 formed near the main surface of the glass substrate 301 includes a connection electrode 311 and a plurality (two in this example) of drive electrodes 312.
  • Each drive electrode 312 includes a main body 312A and a plurality (six in this example) of convex portions 312B.
  • the other arrangement electrode 320 includes a connection electrode 321 disposed at a position facing the connection electrode 311 and a plurality (two in this example) of drive electrodes 322.
  • Each drive electrode 322 includes a main body portion 322A and a plurality (six in this example) of convex portions 322B.
  • FIG. 16 is a cross-sectional view showing one of the plurality of light emitting elements 200A arranged on the glass substrate 301.
  • the light emitting element 200 ⁇ / b> A is arranged in a state where a side surface (widest side surface) parallel to the yz plane is in contact with the surface of the glass substrate 301.
  • the two end portions in the z direction of each light emitting element 200A overlap the concave portion 312B of the drive electrode 312 and the drive electrode 322B.
  • Examples of a method for arranging a plurality of light emitting elements 200A on the glass substrate 301 include the following.
  • the main surface of the glass substrate 301 is covered with water containing a plurality of light emitting elements 200A. Specifically, first, water is caused to flow on the glass substrate 301. Water containing a plurality of light emitting elements 200A is injected little by little into this water. The amount of water covering the main surface of the glass substrate 301 may be an amount that allows the plurality of light emitting elements 200A to freely move.
  • the light emitting element 200 ⁇ / b> A is disposed along the lines of electric force generated between the electrode 310 and the electrode 320. Further, the charges induced in each light emitting element 200A are substantially equal. Therefore, the interval between the two light emitting elements 200A arranged in a predetermined direction is substantially the same due to the repulsive force due to the electric charge.
  • the solution containing the plurality of light emitting elements 200A is replaced with IPA from water.
  • IPA IPA from water
  • the solution (IPA) containing the plurality of light emitting elements 200A is evaporated and dried.
  • the plurality of light emitting elements 200A are arranged at predetermined positions on the glass substrate 301.
  • each light emitting element 200 ⁇ / b> A becomes the light emitting element 200 having the exposed portion 205.
  • a method for removing the transparent conductive film 204, the p-type semiconductor layer 203, and the active layer 202 for example, there is reactive ion etching using chlorine gas. In this step, a part of the semiconductor core 201 may be removed.
  • the side surface of the light emitting element 200A where the exposed portion 205 is formed has a wider width (length in the y direction) than the conventional bar light emitting element, and therefore has a larger tolerance than the bar light emitting element. Can take.
  • a protective film 330 is formed on the main surface of the glass substrate 301 by a slit coater (see FIGS. 17 to 19). Thereby, each light emitting element 200 is covered with the protective film 330.
  • a material of the protective film 330 for example, silicon oxide (SiO 2 ) that is a transparent insulating film can be used.
  • contact holes 331 and 332 are formed (see FIGS. 17 to 19).
  • the contact hole 331 communicates with the exposed portion 205 of the semiconductor core 201, and the contact hole 332 communicates with the transparent conductive film 204.
  • the contact holes 331 and 332 are formed by, for example, a photolithography method.
  • the side surface of the light emitting element 200 has a wider width (length in the y direction) than the conventional bar light emitting element, so that the tolerance in the contact hole forming step is larger than that of the bar light emitting element. Can do.
  • a first wiring 340 and a second wiring 350 are formed. Specifically, first, a metal film (for example, a laminated film of a Ti layer and an Al layer) is formed on the entire surface of the protective film 330. Subsequently, the metal film is patterned by photolithography. As a result, the first wiring 340 including the contact metal 341 in the contact hole 331 and the second wiring 350 including the contact metal 351 in the contact hole 332 are formed, and a light emitting device is obtained. The contact metal 341 is in contact with the exposed portion 205 of the semiconductor core 201, and the contact metal 351 is in contact with the transparent conductive film 204.
  • a metal film for example, a laminated film of a Ti layer and an Al layer
  • FIGS. 17 to 19 show only one light emitting element
  • the same processing is simultaneously performed on a plurality of light emitting elements 200A arranged on the glass substrate 301 as shown in FIG. 15B.
  • a surface light emitting substrate (light emitting device) 400 including the glass substrate 301 and the wired light emitting elements can be obtained as shown in FIG.
  • divided substrates (light emitting devices) 430A to 430E having a desired size can be obtained.
  • the plate-like structure of the semiconductor core is formed by etching, but instead of etching, a selective growth method, a VLS method, or the like may be used.
  • FIG. 21 is a diagram corresponding to FIG. 13 in such a case.
  • the length of the light emitting element 200A in the z direction is the y direction (the direction parallel to the main surface of the sapphire substrate 210 in FIG. 13). Since the length is longer than the length, in the step of arranging the light emitting elements, two end portions of the light emitting elements facing each other in the z direction are arranged so as to overlap the concave portion 312B and the driving electrode 322B of the driving electrode 312 and end portions in the z direction. An exposed portion 205 was formed in the vicinity, and a first wiring 340 and a second wiring 350 were formed on both sides in the z direction.
  • the length of the light emitting element 200A in the y direction is longer than the length in the z direction (the direction perpendicular to the sapphire substrate 210 in FIG. 13).
  • two end portions of the light emitting elements facing in the y direction are arranged so as to overlap the concave portion 312B of the drive electrode 312 and the drive electrode 322B, and near one end portion in the y direction. It is convenient to form the exposed portion 205 and form the first wiring 340 and the second wiring 350 on both sides in the y direction.
  • the y direction is the first direction described in claim 1
  • the z direction is the second direction described in claim 1.
  • FIG. 22 is a view similar to FIG. 5, showing an alternative example of the cross-sectional contour shape of the light-emitting element shown in FIG.
  • FIG. 23 shows an alternative example of the profile of the cross section shown in FIGS. 13 (A) and 21 (A).
  • FIG. 24 shows an alternative example of the profile of the cross section shown in FIGS. 13 (B) and 21 (B).
  • the cross-sectional shapes shown in FIGS. 13A and 21A, and FIGS. 13B and 21B are quadrilateral, but in an alternative example, the shape has an inclined surface at the top. In addition, the upper surface may draw an arc.
  • FIG. 25 is a graph showing the effect of increasing the contact area between the contact metal of the wiring and the exposed portion of the semiconductor core according to the first embodiment.
  • the contact area of the rod-shaped light emitting element having a regular hexagonal cross section is the same as that of the first embodiment. It shows how many times the contact area of such a light emitting element (that is, a hexagonal shape having only two sides) is increased when the length of the rod-shaped light emitting element (length in the z direction) is 100 ⁇ m, 50 ⁇ m, and 20 ⁇ m.
  • the vertical axis of the graph represents the contact area increase amount (times) according to the first embodiment, that is, (contact area in the light emitting device according to the first embodiment) / (contact area in the bar light emitting device).
  • the horizontal axis of the graph represents the length ( ⁇ m) of one side of a regular hexagonal bar light emitting element.
  • the light-emitting element according to the first embodiment is a light-emitting element having a light-emitting area similar to that of a rod-shaped light-emitting element with a short side of hexagonal cross section fixed to 1 ⁇ m. It is.
  • the contact area of the light emitting device according to the first embodiment is increased by 2.5 times or more even if the light emitting area is equivalent to that of the rod-shaped light emitting device. It can be seen that the effect of increasing the contact area is more conspicuous with respect to a rod-like light emitting device having a smaller side length, in other words, a longer diameter. In particular, the smaller the diameter (in other words, the length of one side), the more the influence of the contact resistance appears, and it can be seen that the present invention is effective.
  • the light emitting element 200 can be applied to the light emitting element 200 without substantially changing the light emitting area as compared with the light emitting element having the conventional rod-shaped semiconductor core.
  • the tolerance for the contact process can be increased, and the yield of the light emitting element 200 and the light emitting device 400 (430A to 430E) using the light emitting element 200 can be improved.
  • the contact area between the contact metal 341 and the exposed portion 205 of the semiconductor core 201 can be increased as compared with a conventional light emitting device using a rod-shaped semiconductor core, and the contact resistance can be reduced accordingly.
  • the exposed portion 205 of the wiring 340 that contacts the contact metal 341 is only a part of the outer peripheral surface 2013 of the semiconductor core 201, and the other portion of the outer peripheral surface 2013 is covered with the second conductivity type semiconductor layer 203. Therefore, as compared with the plate-like structure of Patent Document 2, it is possible to reduce the size of the light emitting element 200 even with the same light emitting area and the same contact area, and the circuit for controlling the current direction during driving is as follows. It is unnecessary.
  • FIG. 26 shows a plan view of a light emitting device used in the illumination device of the second embodiment of the present invention
  • FIG. 27 shows a side view of the light emitting device.
  • the light emitting device 500 used in the illumination device of the second embodiment has ten or more plate-like light emitting elements (not shown) on a square heat sink 501.
  • the arranged circular insulating substrate 502 is mounted.
  • the plate-like light-emitting element is any of the plate-like light-emitting elements described in the first embodiment, and the manufacturing method of the light-emitting device of the first embodiment is used as the circular insulating substrate 502.
  • the divided substrate 430 on which 10 or more manufactured light emitting elements are arranged can be used.
  • FIG. 28 shows a side view of an LED bulb 510 as an example of a lighting device using the light emitting device 500 shown in FIGS.
  • the LED bulb 510 has a base 511 as a power supply connecting portion that is fitted in an external socket and connected to a commercial power source, and one end connected to the base 511, and the other end gradually expands.
  • a conical heat radiation part 512 having a diameter and a light transmission part 513 covering the other end of the heat radiation part 512 are provided.
  • the light emitting device 500 is arranged with the insulating substrate 502 facing the light transmitting part 513 side.
  • the light emitting device 500 is manufactured by the light emitting device manufacturing method of the first embodiment.
  • the illuminating device having the above configuration by using the light emitting device 500, it is possible to improve the yield, and it is possible to realize high efficiency and low power consumption of light emission efficiency by reducing contact resistance. In addition, it is possible to realize an illumination device with little variation in brightness and having a long lifetime. Further, by attaching the insulating substrate 502 on which the plurality of light emitting elements are disposed on the heat dissipation plate 501, the heat dissipation effect is improved.
  • FIG. 29 is a plan view of a backlight using the light emitting device according to the third embodiment of the present invention.
  • the backlight 600 includes a plurality of light emitting devices each having 10 or more plate-like light emitting elements on a rectangular support substrate 601 as an example of a heat sink. 602 are mounted in a grid pattern at a predetermined interval from each other.
  • the plate-like light-emitting element is any of the plate-like light-emitting elements described in the first embodiment, and is manufactured as the light-emitting device 602 using the method for manufacturing the light-emitting device of the first embodiment.
  • a divided substrate 430 on which one or more plate-like light emitting elements are arranged is used.
  • the backlight 600 uses the light emitting device 602, it is possible to improve the yield, and to realize high efficiency and low power consumption of light emission efficiency by reducing contact resistance. Manufacturing cost can be reduced, characteristic variation can be reduced, and yield can be improved. In addition, it is possible to realize an illumination device with little variation in brightness and having a long lifetime. Further, by attaching the light emitting device 602 on the support substrate 601, the heat dissipation effect is improved.
  • FIG. 30 is a plan view of a backlight using the light emitting device according to the fourth embodiment of the present invention.
  • one large light emitting device 612 is mounted on a rectangular support substrate 611 as an example of a heat sink.
  • the light emitting device 612 includes any of the light emitting elements described in the first embodiment.
  • the light emitting device 612 uses the divided substrate 430 manufactured by the method for manufacturing the light emitting device of the first embodiment.
  • the backlight 610 uses the light emitting device 612, the yield can be improved, and the light emission efficiency can be increased and the power consumption can be reduced by reducing the contact resistance. In addition, it is possible to realize an illumination device with little variation in brightness and having a long lifetime. Further, the heat radiation effect is improved by attaching the light emitting device 612 on the support substrate 611.
  • FIG. 31 shows a plan view and a side view of a liquid crystal panel as an example of a display device using the light emitting device of the fifth embodiment of the present invention.
  • a plurality of wired light emitting elements are arranged on one surface of a rectangular transparent substrate 622 as an example of a heat sink.
  • These light emitting elements are the plate-like light emitting elements described in the first embodiment.
  • the transparent substrate 622 corresponds to the glass substrate 301 shown in FIG.
  • One light emitting device is formed by the light emitting portion 621 including the plurality of wired light emitting elements wired and the transparent substrate 622.
  • pixel electrodes and TFTs thin film transistors
  • a liquid crystal sealing plate 624 is disposed on the other side of the transparent substrate 622 with a predetermined interval, and the liquid crystal 623 is sealed between the liquid crystal sealing plate 624 and the transparent substrate 622.
  • the LCD drive substrate and the backlight are separated, and due to problems such as uneven light intensity and heat generation of the backlight, the use of a light guide tube and heat dissipation element increases the cost, and the LCD panel It was getting thicker.
  • the liquid crystal panel 620 having the above-described configuration since it is composed of a plurality of light emitting elements with respect to the amount of light obtained from one conventional light emitting element, there is no problem of unevenness in light amount or heat generation. No light tube or heat dissipation element is required.
  • a light emitting device which is a divided substrate (corresponding to the divided substrate 430 described in the first embodiment) divided into a large liquid crystal panel is arranged on the side opposite to the surface having liquid crystal and used directly as a liquid crystal substrate. A low-cost and thin liquid crystal panel can be obtained.
  • the use of the light emitting device including the light emitting portion 621 including the light emitting element according to the first embodiment and the transparent substrate 622 can improve the yield and reduce the contact resistance. High luminous efficiency and low power consumption can be realized.
  • the transparent substrate 622 in which the liquid crystal panel substrate and the backlight substrate are combined the component cost and the manufacturing cost can be reduced, and a thinner liquid crystal panel can be realized.
  • a transparent substrate, a plurality of light emitting elements arranged on one surface of the transparent substrate and connected to wiring formed on one surface of the transparent substrate, and a color formed on the other surface of the transparent substrate may be applied to a liquid crystal panel provided with a filter.
  • FIG. 32 shows a liquid crystal panel 820 having such a configuration example.
  • a plurality of wired light emitting elements are arranged on one surface of a rectangular transparent substrate 822 as an example of a heat sink. These light emitting elements are the plate-like light emitting elements described in the first embodiment.
  • the transparent substrate 822 corresponds to the glass substrate 301 shown in FIG.
  • One light emitting device is formed by the light emitting portion 821 including the plurality of wired plate-like light emitting elements and the transparent substrate 822.
  • a color filter 823 is formed on the other surface of the transparent substrate 822, and a protective film 824 is formed on the color filter 823.
  • a glass substrate 827 is disposed on the other side of the transparent substrate 822 with a predetermined interval, and the liquid crystal 825 is sealed between the glass substrate 827 and the transparent substrate 822.
  • Pixel electrodes and TFTs 826 are formed in a matrix on the surface of the glass substrate 827 facing the liquid crystal 825.
  • liquid crystal panel by using a transparent substrate having a single color filter and backlight substrate, it is possible to reduce component costs and manufacturing costs, and to realize a thinner liquid crystal panel.
  • FIG. 34 is a diagram showing the external shape of the eyeglass-type display device 700 of the sixth embodiment.
  • FIG. 34 is an enlarged view of a part of the eyeglass lens 701 of the eyeglass-type display device 700.
  • the eyeglass-type display device 700 includes left and right eyeglass lenses (transparent substrates) 701, left and right temples 702, and a lens frame 703.
  • a light emitting device having a plurality of fine and transparent light emitting elements 711 is provided on the inner surfaces of the left and right eyeglass lenses 701.
  • This light-emitting device has the structure of the light-emitting device described in the first embodiment.
  • a plurality of fine microlenses 721 are provided at positions facing the plurality of light emitting elements 711 respectively.
  • the glasses-type display device 700 further includes a control circuit (control unit) (not shown) for controlling the light emission of the plurality of light emitting elements 711 in order to display an image.
  • the eyeglass-type display device 700 is provided corresponding to each of the eyeglass lens 701 that is a transparent substrate, the plurality of light emitting elements 711 disposed on the eyeglass lens 701, and the plurality of light emitting elements 711.
  • a plurality of microlenses 721 and at least a control circuit for controlling light emission of the plurality of light emitting elements 711 for displaying an image are provided.
  • the plate-like light emitting element 200 according to the first embodiment or an alternative example thereof is used. Accordingly, it is possible to improve the light emission efficiency, reduce the power consumption, and improve the yield by lowering the contact resistance.
  • FIG. 35 to 37 show an LED display 630 as an example of a display device according to the seventh embodiment of the present invention.
  • FIG. 35 is a diagram showing an external shape of the LED display 630
  • FIG. 36 is a block diagram showing a schematic configuration of the LED display 630
  • FIG. 37 is a circuit diagram showing a circuit of one subpixel of the LED display 630.
  • the LED display 630 includes a storage device 631, a control device 632, a source driver 633, a gate driver 634, and a display unit 635.
  • the storage device 631 stores image data, address information, and the like.
  • a plurality of source lines SL and a plurality of gate lines are arranged so as to cross each other, and a portion surrounded by the source lines SL and the gate lines GL is a sub-pixel PX. That is, the display unit 635 has a plurality of sub-pixels PX arranged in a matrix. Each sub-pixel PX corresponds to one of R (red), G (green), and B (blue) colors, and each of R (red), G (green), and B (blue) colors.
  • One pixel is composed of three sub-pixels PX corresponding to. A single color LED display using PX as a pixel may be used.
  • each subpixel PX has a source connected to the source line SL, a gate connected to the gate line GL, a transistor T1, a gate connected to the drain of the transistor T1, and a source connected to the power supply Vs.
  • Transistor T2 a capacitor C having one terminal connected to the source of transistor T1, and a pixel LED 636 having a gate connected to the drain of transistor T2.
  • the LED display 630 is an active matrix address system, and a selection voltage pulse is applied to the gate line GL by the source driver 633 under the control of the control device 632 based on the image data and address information read from the storage device 631.
  • the data signal is supplied to the source line SL by the gate driver 634.
  • the selection voltage pulse is input to the gate of the transistor T1 and the transistor T1 is turned on, the data signal is transmitted from the source to the drain of the transistor T1, and the data signal is stored as a voltage in the capacitor C.
  • the transistor T2 is for driving the pixel LED 636.
  • As the pixel LED 636 a plate-like light emitting element according to the first embodiment or a modification thereof is used.
  • the pixel LED 636 is connected to the power source Vs through the transistor T2. Therefore, when the transistor T2 is turned on by the data signal from the transistor T1, the pixel LED 636 is driven by the power source Vs.
  • the pixel LEDs 636 and the transistors T1 and T2 of the plurality of sub-pixels PX arranged in a matrix are formed on the substrate.
  • the LED display 636 of this embodiment can be manufactured by the following method, for example.
  • a plurality of plate-like light emitting elements 200A are formed by the method described with reference to FIGS. 7 to 14 in the first embodiment.
  • a substrate such as glass on which electrodes 310 and 320 (see FIG. 15) and source lines SL and gate lines GL for disposing these plate-like light emitting elements 200A to be the pixel LEDs 636 are formed (the glass in FIG. 16).
  • Transistors T1 and T2 are formed on the substrate 301) using a normal TFT forming method.
  • the semiconductor of the light emitting element 200A is arranged.
  • the core 201 is exposed to form a light emitting element 200 having an exposed portion 205, and further, a first wiring 340 and a second wiring 350 (see FIGS. 17 to 19) are formed, and these plate-like light emitting elements 200 are formed as pixels.
  • the LED 636 is connected to the drain of each corresponding transistor T2 and the ground line.
  • a substrate (corresponding to the surface light emitting substrate 400 in FIG. 20) on which a plurality of plate-like light emitting elements 200, that is, the pixel LEDs 636 connected to the drain and the ground line of each transistor T2 is divided into a desired size.
  • the divided substrate (corresponding to the divided substrate 430 in FIG. 20) is used, and the LED display 630 is manufactured using the divided substrate.
  • the LED display 630 uses the light emitting element itself as a pixel LED for image display, a backlight is not required unlike a liquid crystal display device or the like. Therefore, component cost and manufacturing cost can be reduced.
  • the plate-like light emitting element 200 according to the first embodiment or an alternative example thereof is used. Therefore, as in the other embodiments described above, it is possible to improve luminous efficiency, reduce power consumption, and improve yield by reducing contact resistance.
  • the appearance of the LED display 630 shown in FIG. 35 is merely an example, and the appearance of the LED display 630 may be any shape.
  • the drive system of the LED display of this embodiment is an active matrix system, it may be a passive system.
  • FIG. 38 is an external view of a see-through (transparent) LED display 640 as an example of a display device according to the eighth embodiment of the present invention.
  • This see-through type LED display 640 is different from the LED display 630 of the seventh embodiment in that the display unit 642 is see-through, that is, transparent.
  • the frame 641 surrounding the display unit is opaque, it may be transparent.
  • a protective film (see 330 in FIG. 17) that covers the substrate to be formed, the source line and the gate line formed on the substrate, the pixel LED, that is, the plate-like light emitting element, may be formed using a transparent material.
  • the see-through LED display 640 When the see-through LED display 640 is not displaying an image, an object on the back can be seen through the display unit 642. Even when an image is displayed, the portions other than the image portion remain transparent.
  • the light emitting element itself is used as a pixel LED for image display, and therefore, unlike a liquid crystal display device, a backlight is unnecessary. Therefore, component cost and manufacturing cost can be reduced.
  • the plate-like light emitting element according to the first embodiment or its alternative is used as the pixel LED, it is possible to improve the light emission efficiency, reduce the power consumption, and improve the yield by reducing the contact resistance.
  • the appearance shape of the see-through LED display 640 shown in FIG. 38 is merely an example, and the appearance shape may be any.
  • the present invention can be applied to other types of display devices.
  • the present invention can be applied to a clock-type display device and a display device for a portable terminal.

Abstract

This light emitting element is provided with: a semiconductor core (201) of a first conductivity type; and a semiconductor layer (203) of a second conductivity type, which is arranged around the outer peripheral surface of the semiconductor core. At least one of the lateral surfaces constituting the outer peripheral surface of the semiconductor core is entirely covered by the semiconductor layer (203); and another lateral surface has an exposed portion (205) that is not covered by the semiconductor layer (203) and is exposed. An xy cross-section of the light emitting element has a length L1 in the x direction and a length L2 in the y direction, and L1 and L2 satisfy the relational expression 2 × L2 ≤ L1 ≤ 1,000 × L2. The exposed portion (205) has a length L3 in the y direction and a length L4 in the z direction, and L3 is from 60% to 100% of L1.

Description

発光素子、発光装置、照明装置、バックライト、及び表示装置LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, LIGHTING DEVICE, BACKLIGHT, AND DISPLAY DEVICE 援用記載Supporting statement
 本出願は、2016年7月11日に出願された日本出願の特願2016-136934に対して、優先権の利益を主張するものであり、その日本出願に記載された全ての記載内容を援用するものである。 This application claims the benefit of priority with respect to Japanese Patent Application No. 2016-136934 filed on July 11, 2016, and uses all the descriptions in this Japanese application. To do.
 この発明は、LED等の発光素子、特に、第1導電型の半導体コアとこの半導体コアの外周面の回りに配置された第2導電型の半導体との間で発光するように構成されたマイクロオーダサイズまたはナノオーダサイズを有する発光素子、かかる発光素子を備えた発光装置、並びに上記発光装置を備えた照明装置、バックライト、表示装置に関する。 The present invention relates to a light-emitting element such as an LED, in particular, a micro-device configured to emit light between a first-conductivity-type semiconductor core and a second-conductivity-type semiconductor disposed around the outer peripheral surface of the semiconductor core. The present invention relates to a light-emitting element having an order size or a nano-order size, a light-emitting device including the light-emitting element, and an illumination device, a backlight, and a display device including the light-emitting device.
 上述のタイプの発光素子を備えた発光装置の一例として、特開2015-126048号公報(特許文献1)は、図35,36に示される断面構造を有する発光装置100を開示している。図39,40はそれぞれ特開2015-126048公報において図1、2として開示されたものである。 As an example of a light-emitting device provided with the above-described type of light-emitting element, Japanese Patent Laying-Open No. 2015-126048 (Patent Document 1) discloses a light-emitting device 100 having a cross-sectional structure shown in FIGS. 39 and 40 are disclosed as Japanese Patent Application Laid-Open Nos. 2015-126048 as FIGS.
 この発光装置100が備える発光素子10は、第1導電型の半導体コア12と、発光層14と、第2導電型の半導体層16とを備える。半導体コア12は、正六角形の横断面を有する棒状つまり正六角柱状である。発光層14は、半導体コア12の中心軸線CL周りに配置され、半導体コア12の外周面を構成する6つの側面12Aに接している。半導体層16は中心軸線CL周りに配置され、発光層14に接している。さらに半導体層16の外側を透明導電膜30が覆っている。発光素子10の軸方向一端部において、発光素子10の約半周にわたって、透明導電膜30から発光層14まで除去されており、半導体コア12が中心軸線CLに垂直な方向で露出している。 The light emitting element 10 included in the light emitting device 100 includes a first conductive type semiconductor core 12, a light emitting layer 14, and a second conductive type semiconductor layer 16. The semiconductor core 12 has a rod shape having a regular hexagonal cross section, that is, a regular hexagonal column shape. The light emitting layer 14 is disposed around the central axis CL of the semiconductor core 12 and is in contact with the six side surfaces 12 </ b> A constituting the outer peripheral surface of the semiconductor core 12. The semiconductor layer 16 is disposed around the central axis CL and is in contact with the light emitting layer 14. Further, the transparent conductive film 30 covers the outside of the semiconductor layer 16. At one end of the light emitting element 10 in the axial direction, the transparent conductive film 30 is removed from the light emitting layer 14 over about a half circumference of the light emitting element 10, and the semiconductor core 12 is exposed in a direction perpendicular to the central axis CL.
 発光装置100はさらに保護膜40、金属配線50,60を有する。配線50,60はそれぞれ、保護膜40に形成されたコンタクトホール40A,40B内に位置するコンタクトメタル50B,60Bとを備える。コンタクトメタル50Bは半導体コア12の露出部と接し、コンタクトメタル60Bは透明導電膜30に接している。 The light emitting device 100 further includes a protective film 40 and metal wirings 50 and 60. Each of the wirings 50 and 60 includes contact metals 50B and 60B located in the contact holes 40A and 40B formed in the protective film 40, respectively. The contact metal 50B is in contact with the exposed portion of the semiconductor core 12, and the contact metal 60B is in contact with the transparent conductive film 30.
 この発光装置100は、発光素子の外周面が全周にわたって(半導体コア12の露出部に対応する箇所を除く)発光する。したがって、一平面でしか発光しない平面型の発光素子に比べて、発光面積を広くすることができるという利点がある。 In the light emitting device 100, the outer peripheral surface of the light emitting element emits light over the entire circumference (except for the portion corresponding to the exposed portion of the semiconductor core 12). Accordingly, there is an advantage that the light emitting area can be widened as compared with a planar light emitting element that emits light only on one plane.
 しかし、この棒状(六角柱状)の発光素子10は、図36における横方向の長さ(直径)が小さく、半導体コア12の露出部の対応する長さは更に小さいため、特にコンタクトプロセス(つまり、発光素子に対して配線を行うプロセスで、コンタクトホール形成のためのパターニング、コンタクトホール形成のためのエッチング、コンタクトホール内への導電材料の堆積等を含む。)において採用し得る公差がかなり小さい。したがって、発光装置製造時のコンタクトプロセスにおいて高い精度(アライメント精度等)が要求され、歩留まりの向上が難しいという問題がある。 However, since the bar-shaped (hexagonal columnar) light emitting element 10 has a small lateral length (diameter) in FIG. 36 and a corresponding length of the exposed portion of the semiconductor core 12 is further smaller, the contact process (that is, The process for wiring the light emitting element includes patterning for forming a contact hole, etching for forming a contact hole, deposition of a conductive material in the contact hole, etc.). Therefore, high accuracy (alignment accuracy, etc.) is required in the contact process when manufacturing the light emitting device, and there is a problem that it is difficult to improve the yield.
 そこで、第1導電型の半導体コアとこの半導体コアの外周面の回りに配置された第2導電型の半導体との間で発光するように構成された発光素子において、従来の棒状発光素子と同等の発光面積であっても、コンタクトプロセスにおける公差を大きくできる構成が求められている。 Therefore, a light emitting element configured to emit light between the first conductive type semiconductor core and the second conductive type semiconductor disposed around the outer peripheral surface of the semiconductor core is equivalent to a conventional bar light emitting element. Even if the light emitting area is, a configuration that can increase the tolerance in the contact process is required.
 加えて、従来の棒状の発光素子は、図36における横方向の長さ(直径)が小さいために、半導体コア12と配線50(より正確には、コンタクトメタル50B)との接触面積がそれに応じて小さくなり(例えば、0.1~50μm)、半導体コア12とコンタクトメタル50Bとの間の接触抵抗が無視できないほど大きくなってしまう場合があるという問題がある。そして、大きな接触抵抗は、発光効率の低下、消費電力の増大につながる。ちなみに、棒状ではなく、一平面でしか発光しない通常LEDにおける接触面積は、3×10μm程度であるため、その接触抵抗は、半導体中の抵抗から考えると無視できるほど小さいものである。 In addition, since the conventional bar-shaped light emitting element has a small length (diameter) in the lateral direction in FIG. 36, the contact area between the semiconductor core 12 and the wiring 50 (more precisely, the contact metal 50B) corresponds to that. There is a problem that the contact resistance between the semiconductor core 12 and the contact metal 50B may become so large that it is not negligible (for example, 0.1 to 50 μm 2 ). A large contact resistance leads to a decrease in light emission efficiency and an increase in power consumption. Incidentally, the contact area of a normal LED that emits light only in one plane, not in a rod shape, is about 3 × 10 3 μm 2 .
 ところで、特開2012-074673号公報(特許文献2)は、第1導電型(n型と)の半導体コアがこの半導体コアと同じ半導体材料からなる第1導電型の基部の一面から延び、半導体コアの外周面全体に第2導電型(p型)の半導体が形成されているが、上記基部の外周面(側面)の回りには第2導電型の半導体は形成されておらず、この基部がカソード電極Kとして使用され、配線のコンタクトメタルが上記基部の側面に接触するように設けられる棒状の発光素子を開示している(特許文献2の図9,図17参照)。つまり、配線のコンタクトメタルは半導体コアの外周面(側面)ではなく、基部の側面に接触するように設けられる。基部の側面は、第2導電型の半導体を覆う透明導電膜の側面と面一である。特許文献2はさらに、このような基部を備えた構成において発光量換言すれば発光面積を増大すべく、第1導電型の半導体コアを断面正方形の棒状から、断面が短辺と長辺とを有する矩形の板状とすることを開示している。 By the way, Japanese Patent Application Laid-Open No. 2012-074673 (Patent Document 2) discloses that a semiconductor core of a first conductivity type (n-type) extends from one surface of a base portion of a first conductivity type made of the same semiconductor material as the semiconductor core. A second conductivity type (p-type) semiconductor is formed on the entire outer peripheral surface of the core, but no second conductivity type semiconductor is formed around the outer peripheral surface (side surface) of the base. Is used as the cathode electrode K, and a rod-like light emitting element provided so that the contact metal of the wiring contacts the side surface of the base is disclosed (see FIGS. 9 and 17 of Patent Document 2). That is, the contact metal of the wiring is provided so as to contact the side surface of the base portion, not the outer peripheral surface (side surface) of the semiconductor core. The side surface of the base is flush with the side surface of the transparent conductive film that covers the second conductivity type semiconductor. Patent Document 2 further discloses that the first conductivity type semiconductor core has a square cross section, and the cross section has a short side and a long side in order to increase the light emission amount, in other words, the light emission area in the configuration including such a base. It discloses that it has a rectangular plate shape.
 上記の通り、特許文献2では、配線のコンタクトメタルは半導体コアの外周面(側面)ではなく、基部に接触する。したがって、特許文献2には明記されていないものの、コンタクトメタルとの接触面積は、基部の寸法を調整することによって調整できるという利点があると考えられる。 As described above, in Patent Document 2, the contact metal of the wiring contacts the base portion, not the outer peripheral surface (side surface) of the semiconductor core. Therefore, although not specified in Patent Document 2, it is considered that there is an advantage that the contact area with the contact metal can be adjusted by adjusting the size of the base.
 その一方で、特許文献2に開示された棒状発光素子では第1導電型の基部の回りには第2導電型の半導体が存在しないため、基部は発光に全く寄与していない。つまり、発光素子の長さ全体が発光面積増大の観点からは有効に利用されていない。また、第1導電型の基部の回りには第2導電型の半導体が存在しないため、特許文献1の構成に比べて、p型半導体からn型半導体へと流れるように駆動時の電流方向を制御する回路が必要となる。 On the other hand, in the rod-shaped light emitting device disclosed in Patent Document 2, since the second conductivity type semiconductor does not exist around the first conductivity type base, the base does not contribute to the light emission at all. That is, the entire length of the light emitting element is not effectively used from the viewpoint of increasing the light emitting area. Further, since there is no second conductivity type semiconductor around the base of the first conductivity type, the current direction during driving is changed so as to flow from the p-type semiconductor to the n-type semiconductor as compared with the configuration of Patent Document 1. A circuit to control is required.
特開2015-126048号公報JP 2015-1206048 A 特開2012-074673号公報JP 2012-074673 A
 そこで、この発明の課題は、第1導電型の半導体コアとこの半導体コアの外周面の回りに配置された第2導電型の半導体との間で発光するように構成された発光素子に対するコンタクトプロセスのための公差を、同等の発光面積を有する棒状の発光素子に比べて大きくでき、したがって、かかる発光素子及びかかる発光素子を備えた発光装置並びに上記発光装置を備えた照明装置、バックライト、及び表示装置の歩留まりを向上し、併せて、同等の発光面積を有する棒状の発光素子に比べて半導体コアとコンタクトメタルとの接触抵抗を小さくして、発光効率の向上及び消費電力の低減を図ることである。 Accordingly, an object of the present invention is to provide a contact process for a light emitting element configured to emit light between a first conductivity type semiconductor core and a second conductivity type semiconductor disposed around the outer peripheral surface of the semiconductor core. Tolerance can be increased compared to a rod-shaped light emitting element having an equivalent light emitting area, and therefore, such a light emitting element, a light emitting device including the light emitting element, and a lighting device including the light emitting device, a backlight, and In addition to improving the yield of display devices, the contact resistance between the semiconductor core and the contact metal is reduced compared to a rod-like light emitting element having the same light emitting area, thereby improving the light emitting efficiency and reducing the power consumption. It is.
 上記課題を解決するために、本発明の一側面に係る発光素子は、
 第1の方向において対向する2つの端部とこれら端部の間の2以上の側面からなる外周面を有する第1導電型の半導体コアと、上記半導体コアの上記外周面の回りに配置された第2導電型の半導体層とを少なくとも備えて、上記半導体コアと上記半導体層との間で発光するようになっており、上記半導体コアの側面の少なくとも1つは側面全体が上記半導体層で覆われ、別の側面は上記半導体層によって覆われずに露出している露出部分を有する発光素子であって、
 上記第1の方向と直交する上記半導体コアの横断面は、第2の方向の長さL1と、上記第2の方向と直交する第3の方向の長さL2とを有し、長さL1は、2×L2≦L1≦1000×L2の範囲にあり、
 上記半導体コアの露出部分は、上記第2の方向の長さL3と上記第1の方向の長さL4とを有し、上記長さL3は上記半導体コアの横断面の第2の方向の長さL1の60%~100%の長さであることを特徴としている。
In order to solve the above problems, a light-emitting element according to one aspect of the present invention includes:
A first-conductivity-type semiconductor core having an outer peripheral surface composed of two end portions facing each other in the first direction and two or more side surfaces between the end portions; and disposed around the outer peripheral surface of the semiconductor core. A semiconductor layer of at least a second conductivity type, and emits light between the semiconductor core and the semiconductor layer. At least one of the side surfaces of the semiconductor core is covered with the semiconductor layer. Another side surface is a light emitting device having an exposed portion that is exposed without being covered by the semiconductor layer,
The cross section of the semiconductor core orthogonal to the first direction has a length L1 in the second direction and a length L2 in the third direction orthogonal to the second direction. Is in the range of 2 × L2 ≦ L1 ≦ 1000 × L2,
The exposed portion of the semiconductor core has a length L3 in the second direction and a length L4 in the first direction, and the length L3 is a length in the second direction of the cross section of the semiconductor core. The length is 60% to 100% of the length L1.
 ここで、本明細書において、半導体コアの横断面の第2方向及び第3方向の「長さ」とは、それぞれの方向において最も長い部分の長さである。同様に、半導体コアの露出部分の第1及び第2方向の「長さ」とは、それぞれの方向において最も長い部分の長さである。 Here, in this specification, the “length” in the second direction and the third direction of the cross-section of the semiconductor core is the length of the longest portion in each direction. Similarly, the “length” of the exposed portion of the semiconductor core in the first and second directions is the length of the longest portion in each direction.
 2×L2≦L1つまりL1をL2の2倍以上とする理由は、それ以下であれば、公差を大きくし、接触抵抗を小さくするという本発明の意図する効果が得られないからである。また、L1≦1000×L2つまりL1をL2の1000倍以下とするのは、L1をL2の1000倍よりも大きくした場合には、そのような寸法比を有する素子の製造自体が困難であるからである。 2 × L2 ≦ L1, that is, the reason why L1 is set to be twice or more of L2 is that if it is less than that, the intended effect of the present invention of increasing tolerance and reducing contact resistance cannot be obtained. Also, L1 ≦ 1000 × L2, that is, L1 is set to 1000 times or less of L2, because when L1 is made larger than 1000 times L2, it is difficult to manufacture an element having such a dimensional ratio. It is.
 上記半導体コアは、上記横断面が多角形状または楕円形状である板状コアであってよい。 The semiconductor core may be a plate core whose cross section is polygonal or elliptical.
 本明細書において、上記半導体コアの「外周面」を構成する「側面」とは、上記横断面が多角形状の場合には、上記2つの端部の間で角度をもって連結されているそれぞれの面をいい、上記横断面が楕円形状の場合には、上記2つの端部の間で上記第2の方向において対向する2つの面をいう。また、本明細書において、「楕円」は、数学的に厳密な意味での楕円はもちろんのこと、楕円に類似した細長い円も含むものとする。 In the present specification, the “side surface” constituting the “outer peripheral surface” of the semiconductor core means each surface connected at an angle between the two end portions when the cross section is a polygonal shape. In the case where the cross section is elliptical, it means two surfaces facing each other in the second direction between the two end portions. In this specification, “ellipse” includes not only an ellipse in a mathematically exact sense but also an elongated circle similar to an ellipse.
 上記半導体コアは上記第1の方向の長さL5を有し、L5≧L1であってもよい。 The semiconductor core may have a length L5 in the first direction, and L5 ≧ L1.
 上記半導体コアの横断面の上記第3の方向の長さL2および上記第2の方向の長さL1は、好ましくは、それぞれ、100nm~20μmおよび300nm~500μmの範囲内にある。より好ましくは、上記横断面の長さL2およびL1はそれぞれ、300nm~15μmおよび1μm~200μmの範囲内にあり、さらに好ましくは、それぞれ500nm~10μmおよび3μm~100μmの範囲内にあるのがよい。 The length L2 in the third direction and the length L1 in the second direction of the cross section of the semiconductor core are preferably in the range of 100 nm to 20 μm and 300 nm to 500 μm, respectively. More preferably, the cross-sectional lengths L2 and L1 are in the range of 300 nm to 15 μm and 1 μm to 200 μm, respectively, and more preferably in the range of 500 nm to 10 μm and 3 μm to 100 μm, respectively.
 上記露出部の上記第2方向の長さL3および上記第1方向の長さL4は、好ましくは、300nm~500μmの範囲内にある。より好ましくは、上記露出部の長さL3および長さL4は、1μm~200μmの範囲内にあり、さらに好ましくは、3μm~100μmの範囲内にあるのがよい。 The length L3 in the second direction and the length L4 in the first direction of the exposed portion are preferably in the range of 300 nm to 500 μm. More preferably, the length L3 and the length L4 of the exposed portion are in the range of 1 μm to 200 μm, and more preferably in the range of 3 μm to 100 μm.
 本発明の別の側面に係る発光装置は、
 基板と、
 上記基板上に載置された複数の発光素子と、
 上記発光素子に電気的に接続されている配線と
を備え、
 上記発光素子は、請求項1~5のいずれか1つに記載の発光素子であって、上記第2導電型の半導体層を覆う導電膜をさらに備え、
 上記配線は、上記発光素子の半導体コアの露出部分に接触するコンタクトメタルを有する第1の配線及び上記導電膜に接触するコンタクトメタルを有する第2の配線を含んでいることを特徴としている。
A light-emitting device according to another aspect of the present invention includes:
A substrate,
A plurality of light-emitting elements mounted on the substrate;
A wiring electrically connected to the light emitting element,
The light emitting device according to any one of claims 1 to 5, further comprising a conductive film covering the semiconductor layer of the second conductivity type,
The wiring includes a first wiring having a contact metal in contact with an exposed portion of the semiconductor core of the light emitting element and a second wiring having a contact metal in contact with the conductive film.
 本発明の一実施例に係る照明装置は上記発光装置を備えている。 An illumination device according to an embodiment of the present invention includes the light emitting device.
 本発明の一実施例に係るバックライトは上記発光装置を備えている。 A backlight according to an embodiment of the present invention includes the light emitting device.
 本発明の一実施例に係る表示装置は上記発光装置を備えている。上記表示装置には種々のタイプのものが含まれる。例えば、上記表示装置は上記発光装置をバックライトとして用いる液晶表示装置であってもよく、また、上記発光装置に含まれる各発光素子が画素を構成する画素LEDとして使用されるLEDディスプレイであってもよい。また、上記表示装置は表示部が透明なシースルー型であってもよい。また、上記表示装置は、眼鏡型であってもよい。 A display device according to an embodiment of the present invention includes the light emitting device. The display device includes various types. For example, the display device may be a liquid crystal display device using the light emitting device as a backlight, or an LED display in which each light emitting element included in the light emitting device is used as a pixel LED constituting a pixel. Also good. The display device may be a see-through type with a transparent display unit. The display device may be a glasses type.
 本発明によれば、半導体コアの横断面のサイズを規定する第2方向の長さL1と第3方向の長さL2について、2×L2≦L1≦1000×L2としているため、横断面は長細い形状となり、しかも、半導体コアの露出部分の長さL3を発光素子の横断面の第2方向の長さL1の60%~100%の長さとしているため、特許文献1に開示された従来の棒状のコアを有する発光素子に比べて、発光面積を実質的に変えることなく、発光素子へのコンタクトプロセスのための公差をその分大きく取ることができ、この発光素子及びこの発光素子を用いた発光装置並びに上記発光装置を備えた照明装置、バックライト、表示装置の歩留まりを向上できる。 According to the present invention, since the length L1 in the second direction and the length L2 in the third direction that define the size of the cross section of the semiconductor core are 2 × L2 ≦ L1 ≦ 1000 × L2, the cross section is long. In addition, since the length L3 of the exposed portion of the semiconductor core is 60% to 100% of the length L1 in the second direction of the cross section of the light emitting element, it is a thin shape. Compared to a light emitting device having a rod-shaped core, the tolerance for the contact process to the light emitting device can be increased by a substantial amount without substantially changing the light emitting area, and the light emitting device and the light emitting device can be used. The yield of the light emitting device and the lighting device, backlight, and display device provided with the light emitting device can be improved.
 それと同時に、本発明に係る発光装置においては、特許文献1に開示されたような従来の微細な棒状のコアを用いた発光装置に比べて、コンタクトメタルと半導体コアの露出部分との接触面積を大きくすることが可能となるため、その分接触抵抗を小さくでき、発光効率の向上及び消費電力の低減が可能となる。したがって、この発光装置を備えた照明装置、バックライト、表示装置においても、発光効率の向上及び消費電力の低減が可能となる。 At the same time, in the light emitting device according to the present invention, the contact area between the contact metal and the exposed portion of the semiconductor core is smaller than that of the conventional light emitting device using a fine rod-shaped core as disclosed in Patent Document 1. Since it is possible to increase the contact resistance, the contact resistance can be reduced accordingly, and the light emission efficiency can be improved and the power consumption can be reduced. Therefore, also in a lighting device, a backlight, and a display device provided with this light emitting device, it is possible to improve luminous efficiency and reduce power consumption.
 さらに、本発明によれば、配線のコンタクトメタルと接触する露出部分は半導体コアの外周面の一部のみであり、外周面の他の部分は第2導電型の半導体層で覆われているため、特許文献2の板状構造と比べると、同じ発光面積および同じ接触面積であっても、発光素子のサイズを小さくすることが可能である上、駆動時の電流方向を制御する回路は不要である。 Furthermore, according to the present invention, the exposed portion that contacts the contact metal of the wiring is only a part of the outer peripheral surface of the semiconductor core, and the other portion of the outer peripheral surface is covered with the semiconductor layer of the second conductivity type. Compared with the plate-like structure of Patent Document 2, it is possible to reduce the size of the light emitting element even with the same light emitting area and the same contact area, and a circuit for controlling the current direction during driving is unnecessary. is there.
第1実施形態に係る発光素子の概略斜視図である。1 is a schematic perspective view of a light emitting device according to a first embodiment. 図1のII-II線断面図である。FIG. 2 is a sectional view taken along line II-II in FIG. 図1のIII-III線断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 1. 図1のIV-IV線断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 1. 図4に示される発光素子の断面の輪郭形状の代替例を示す図である。It is a figure which shows the alternative example of the outline shape of the cross section of the light emitting element shown by FIG. 従来の棒状発光素子のコンタクトエリアと第1実施形態に係る発光素子の一例のコンタクトエリアとを比較した図である。It is the figure which compared the contact area of the conventional light emitting element with the contact area of an example of the light emitting element which concerns on 1st Embodiment. 図1~図4に示した発光素子を備えた発光装置の製造工程の一つを説明する図である。FIG. 5 is a diagram for explaining one of manufacturing steps of a light emitting device including the light emitting element shown in FIGS. 図7の工程に続く工程を示す図であり、(A)はxz平面で切断した断面(以下、xz断面)を、(B)はyz平面で切断した断面(以下、yz断面)を示す。8A and 8B are diagrams illustrating a process subsequent to the process of FIG. 7, in which FIG. 7A illustrates a cross section cut along the xz plane (hereinafter, xz cross section), and FIG. 7B illustrates a cross section cut along the yz plane (hereinafter referred to as the yz cross section). 図8の工程に続く工程を示す図であり、(A)はxz断面を、(B)はyz断面を示す。It is a figure which shows the process following the process of FIG. 8, (A) shows a xz cross section, (B) shows a yz cross section. 図9の工程に続く工程を示す図であり、(A)はxz断面を、(B)はyz断面を示す。It is a figure which shows the process following the process of FIG. 9, (A) shows a xz cross section, (B) shows a yz cross section. 図10の工程に続く工程を示す図であり、(A)はxz断面を、(B)はyz断面を示す。It is a figure which shows the process following the process of FIG. 10, (A) shows a xz cross section, (B) shows a yz cross section. 図11の工程に続く工程を示す図であり、(A)はxz断面を、(B)はyz断面を示す。It is a figure which shows the process following the process of FIG. 11, (A) shows a xz cross section, (B) shows a yz cross section. 図12の工程に続く工程を示す図であり、(A)はxz断面を、(B)はyz断面を、(C)はxy断面(xy平面で切断した断面)を示す。It is a figure which shows the process following the process of FIG. 12, (A) shows xz cross section, (B) shows yz cross section, (C) shows xy cross section (cross section cut | disconnected by xy plane). 図13の工程に続く工程を示す図であり、(A)はxz断面を、(B)はyz断面を示す。It is a figure which shows the process following the process of FIG. 13, (A) shows a xz cross section, (B) shows a yz cross section. 図14の工程に続く工程を示す図であり、(A)は発光素子配置前の状態を、(B)は発光素子配置後の状態を示す。It is a figure which shows the process following the process of FIG. 14, (A) shows the state before light emitting element arrangement | positioning, (B) shows the state after light emitting element arrangement | positioning. 発光素子配置箇所の断面図である。It is sectional drawing of a light emitting element arrangement | positioning location. 図15の工程に続く工程を示す図であり、図2に対応する断面を示すFIG. 16 is a diagram showing a step that follows the step of FIG. 15 and shows a cross-section corresponding to FIG. 2. 図15の工程に続く工程を示す図であり、図3に対応する断面を示す。FIG. 16 is a diagram showing a step that follows the step of FIG. 15, and shows a cross section corresponding to FIG. 3. 図15の工程に続く工程を示す図であり、図4に対応する断面を示すFIG. 16 is a diagram showing a step that follows the step of FIG. 15 and shows a cross-section corresponding to FIG. 4. 図17(図18,図19)の工程に続く工程を示す図である。It is a figure which shows the process following the process of FIG. 17 (FIG. 18, FIG. 19). 第1実施形態に係る発光素子の変形例を説明するための図13に対応する図面であり、(A)はxz断面を、(B)はyz断面を、(C)はxy断面を示す。It is drawing corresponding to FIG. 13 for demonstrating the modification of the light emitting element which concerns on 1st Embodiment, (A) shows xz cross section, (B) shows yz cross section, (C) shows xy cross section. 図21(C)に示される発光素子の断面の輪郭形状の代替例を示す、図5と同様の図である。It is a figure similar to FIG. 5 which shows the alternative example of the outline shape of the cross section of the light emitting element shown by FIG.21 (C). 図13(A)及び図21(A)に示される断面の輪郭形状の代替例を示す。The alternative example of the profile shape of the cross section shown by FIG. 13 (A) and FIG. 21 (A) is shown. 図13(B)及び図21(B)に示される断面の輪郭形状の代替例を示す。An alternative example of the profile of the cross section shown in FIGS. 13B and 21B is shown. 第1実施形態の効果を示す図表である。It is a chart which shows the effect of a 1st embodiment. 第2実施形態の照明装置に用いられる発光装置の平面図である。It is a top view of the light-emitting device used for the illuminating device of 2nd Embodiment. 上記発光装置の側面図である。It is a side view of the light-emitting device. 上記発光装置を用いた照明装置の一例としてのLED電球の側面図である。It is a side view of the LED bulb | bulb as an example of the illuminating device using the said light-emitting device. 第3実施形態の発光装置を用いたバックライトの平面図である。It is a top view of the backlight using the light-emitting device of 3rd Embodiment. 第4実施形態の発光装置を用いたバックライトの平面図である。It is a top view of the backlight using the light-emitting device of 4th Embodiment. 第5実施形態の発光装置を用いた表示装置の一例としての液晶パネルの平面図と側面図である。It is the top view and side view of a liquid crystal panel as an example of the display apparatus using the light-emitting device of 5th Embodiment. 図31とは異なる表示装置の一例としての液晶パネルの側面図である。FIG. 32 is a side view of a liquid crystal panel as an example of a display device different from that in FIG. 31. 第6実施形態における表示装置の一例としての眼鏡型表示装置の外観形状を示す図である。It is a figure which shows the external appearance shape of the spectacles type display apparatus as an example of the display apparatus in 6th Embodiment. 上記眼鏡型表示装置の眼鏡レンズの一部を拡大した図である。It is the figure which expanded a part of spectacle lens of the said spectacles type display apparatus. 第7実施形態の表示装置の一例としてのLEDディスプレイの外観形状を示す図である。It is a figure which shows the external appearance shape of the LED display as an example of the display apparatus of 7th Embodiment. 上記LEDディスプレイの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the said LED display. 上記LEDディスプレイの一サブ画素の回路を示す回路図である。It is a circuit diagram which shows the circuit of one sub pixel of the said LED display. 第8実施形態における表示装置の一例としてのシースルー型(透明)LEDディスプレイの外観形状を示す図である。It is a figure which shows the external appearance shape of the see-through type (transparent) LED display as an example of the display apparatus in 8th Embodiment. 特許文献1の図1を示す。FIG. 1 of Patent Document 1 is shown. 特許文献1の図2を示す。FIG. 2 of Patent Document 1 is shown.
 以下、この発明を図示の実施の形態により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
   (第1実施形態)
 この発明の発光素子の第1実施形態を図1~図25を用いて説明する。図1~5はこの第1実施形態における発光素子200の構造を説明するための図であり、図6は従来の棒状発光素子のコンタクトエリアと第1実施形態に係る発光素子の一例のコンタクトエリアとを比較した図であり、図7~20はこの発光素子200を備えた発光装置の製造工程を説明する図であり、図21は上記発光素子200の変形例を説明する図であり、図22~24は上記発光素子200の各種断面の輪郭形状の代替例を示す図である。
(First embodiment)
A first embodiment of the light emitting device of the present invention will be described with reference to FIGS. FIGS. 1 to 5 are views for explaining the structure of the light emitting device 200 in the first embodiment. FIG. 6 shows a contact area of a conventional bar light emitting device and a contact area of an example of the light emitting device according to the first embodiment. 7 to 20 are diagrams illustrating a manufacturing process of a light emitting device including the light emitting element 200, and FIG. 21 is a diagram illustrating a modification of the light emitting element 200. 22 to 24 are diagrams showing alternative examples of contour shapes of various cross sections of the light emitting element 200. FIG.
 この第1実施形態における発光素子200は、第1導電型としてのn型の半導体コア201と、活性層202と、第2導電型としてのp型の半導体層203と、導電層としての透明導電膜204とを備えている。 The light emitting device 200 according to the first embodiment includes an n-type semiconductor core 201 as a first conductivity type, an active layer 202, a p-type semiconductor layer 203 as a second conductivity type, and a transparent conductivity as a conductive layer. And a film 204.
 ここでは、第1導電型をn型とし、第2導電型をp型としているが、第1導電型をp型とし、第2導電型をn型とし、発光素子200がn型の半導体コア201に代えてp型の半導体コアを、p型の半導体層203に代えてn型の半導体層を備えてもよい。 Here, the first conductivity type is n-type and the second conductivity type is p-type. However, the first conductivity type is p-type, the second conductivity type is n-type, and the light emitting element 200 is an n-type semiconductor core. Instead of 201, a p-type semiconductor core may be provided, and instead of the p-type semiconductor layer 203, an n-type semiconductor layer may be provided.
 半導体コア201、活性層202、半導体層203の材料としては、InAlGaN(x+y+z=1かつ0≦x,y,z≦1を満たす)で表わされるIII族窒化物半導体であればどのような材料でも用いることができる。更に、V族としてAsやP、Sbを含んでも構わず、また、Si、Ge等のIV族半導体、ZnOやZnSe等のII-VI族半導体でも構わない。また、透明導電膜204の材料としては、例えば、ITO、ZnO、SnO等を用いることができる。もちろん、ここには挙げていない材料であっても当業者に知られた材料を適宜使用することができる。本実施例の本質は発光素子の材料自体にはないため、ここに例示する発光素子の材料は本発明を限定するものと理解されるべきではない。 The material of the semiconductor core 201, the active layer 202, and the semiconductor layer 203 may be a group III nitride semiconductor represented by In x Al y Ga z N (x + y + z = 1 and 0 ≦ x, y, z ≦ 1). Any material can be used. Further, the group V may contain As, P, or Sb, or may be a group IV semiconductor such as Si or Ge, or a group II-VI semiconductor such as ZnO or ZnSe. Moreover, as a material of the transparent conductive film 204, for example, ITO, ZnO, SnO, or the like can be used. Of course, materials known to those skilled in the art can be appropriately used even if they are not listed here. Since the essence of this embodiment is not in the material of the light emitting element itself, the material of the light emitting element illustrated here should not be understood as limiting the present invention.
 半導体コア201は、第1の方向としてのz方向において対向する2つの端部(端面)2011、2012とこれら端部の間の外周面2013を有する。図3に示すように、半導体コア201は、中央の対向する2つの辺が他の辺よりも長い六角形のxy断面(z方向と直交する横断面)を有する。つまり、半導体コア201は、xy断面の上記長い2つの辺に対応する側面2013aと残りの4つの辺に対応する側面2013bとを有しており、これらの6つの側面2013a,2013bが外周面2013を構成している。図1~3に示すように、半導体コア201の側面2013aの一つには、端部2012に近接する位置において、活性層202,半導体層203および透明導電膜204によって覆われずに露出している露出部分205が形成されている。この露出部分205を除く半導体コア201の外周面2013はすべて、活性層202,半導体層203および透明導電膜204によって覆われており、半導体コア201と半導体層203との間にある活性層202が発光層として作用する。 The semiconductor core 201 has two end portions (end surfaces) 2011 and 2012 that face each other in the z direction as the first direction, and an outer peripheral surface 2013 between these end portions. As shown in FIG. 3, the semiconductor core 201 has a hexagonal xy cross section (a cross section perpendicular to the z direction) in which two opposite sides at the center are longer than the other sides. That is, the semiconductor core 201 has a side surface 2013a corresponding to the two long sides of the xy cross section and a side surface 2013b corresponding to the remaining four sides, and these six side surfaces 2013a and 2013b are the outer peripheral surface 2013. Is configured. As shown in FIGS. 1 to 3, one of the side surfaces 2013 a of the semiconductor core 201 is exposed without being covered with the active layer 202, the semiconductor layer 203, and the transparent conductive film 204 at a position close to the end portion 2012. An exposed portion 205 is formed. All of the outer peripheral surface 2013 of the semiconductor core 201 excluding the exposed portion 205 is covered with the active layer 202, the semiconductor layer 203, and the transparent conductive film 204, and the active layer 202 between the semiconductor core 201 and the semiconductor layer 203 is formed. Acts as a light emitting layer.
 半導体コア201の上記xy断面は、第2の方向としてのy方向の長さL1と第3の方向としてのx方向の長さL2とを有する。長さL1は、2×L2≦L1≦1000×L2の範囲にあり、図2,3で見て横長の形状を有する。また、図3に示すように、外周面2013は、z方向の長さL5を有する。つまり、半導体コア201は、y方向の長さL1、x方向の長さL2、z方向の長さL5で定まる、xy断面が細長い六角形である薄い板状形状を有する(但し、露出部分205においては、x方向の長さはL2の半分まで小さくなる場合がある。)。 The xy section of the semiconductor core 201 has a length L1 in the y direction as the second direction and a length L2 in the x direction as the third direction. The length L1 is in the range of 2 × L2 ≦ L1 ≦ 1000 × L2, and has a horizontally long shape as viewed in FIGS. As shown in FIG. 3, the outer peripheral surface 2013 has a length L5 in the z direction. That is, the semiconductor core 201 has a thin plate-like shape that is defined by a length L1 in the y direction, a length L2 in the x direction, and a length L5 in the z direction, and the xy cross section is a long and narrow hexagon (however, the exposed portion 205 , The length in the x direction may be as small as half of L2.)
 xy断面のy方向の長さL1の範囲は、x方向の長さL2を例えば500nmとした場合には、10×L2≦L1≦200×L2であるのが好ましく、L2を1μmとした場合には、5×L2≦L1≦100×L2であるのが好ましい。このように、L1の好ましい範囲は、L2の具体的数値によって、2×L2≦L1≦1000×L2の範囲内で決定される。 The range of the length L1 in the y direction of the xy section is preferably 10 × L2 ≦ L1 ≦ 200 × L2 when the length L2 in the x direction is 500 nm, for example, and when L2 is 1 μm. Is preferably 5 × L2 ≦ L1 ≦ 100 × L2. Thus, the preferable range of L1 is determined within the range of 2 × L2 ≦ L1 ≦ 1000 × L2 by the specific value of L2.
 半導体コア201のx方向の長さL2は、好ましくは、100nm~20μmの範囲内にあり、より好ましくは、300nm~15μm、さらに好ましくは、500nm~10μmである。x方向の長さL2を300nm以上とするのは、n層にコンタクトする際のエッチング量のずれによる安定性とn型半導体中を流れる電流に対しての抵抗率を下げるためである。また、x方向の長さL2を20μm以下とするのは、これ以上の長さでは別基板に配列した際に生じる段差が大きく、コンタクトプロセスにおける歩留まりが著しく悪化してしまうためである。 The length L2 of the semiconductor core 201 in the x direction is preferably in the range of 100 nm to 20 μm, more preferably 300 nm to 15 μm, and still more preferably 500 nm to 10 μm. The reason why the length L2 in the x direction is set to 300 nm or more is to reduce the stability due to the shift in the etching amount when contacting the n layer and the resistivity against the current flowing in the n-type semiconductor. Further, the reason why the length L2 in the x direction is set to 20 μm or less is that when the length is longer than this, there is a large level difference when arranged on another substrate, and the yield in the contact process is significantly deteriorated.
 一方、半導体コア201のy方向の長さL1は、2×L2≦L1≦1000×L2の範囲にあるため、上述の通り、L2の長さに応じて実際の数値範囲が定まるのであるが、300nm~500μmの範囲に入るように設定するのが好ましい。より好ましくは、1μm~200μm、さらに好ましくは、3μm~100μmである。 On the other hand, since the length L1 of the semiconductor core 201 in the y direction is in the range of 2 × L2 ≦ L1 ≦ 1000 × L2, as described above, the actual numerical range is determined according to the length of L2. It is preferable to set so as to fall within the range of 300 nm to 500 μm. More preferably, it is 1 μm to 200 μm, and still more preferably 3 μm to 100 μm.
 半導体コア201の露出部分205は、y方向の長さL3とz方向の長さL4を有する。露出部分205のz方向の長さL4は、通常の場合、半導体コア201のz方向の長さL5の半分以下である。露出部分205のy方向の長さL3は、半導体コア201のy方向の長さL1の60%~100%の長さ、より好ましくは、70%~100%、さらに好ましくは、80%~100%である。露出部分205は四角形に限らず、角丸四角形や多角形、円形等形状は問わない。 The exposed portion 205 of the semiconductor core 201 has a length L3 in the y direction and a length L4 in the z direction. The length L4 of the exposed portion 205 in the z direction is usually less than or equal to half the length L5 of the semiconductor core 201 in the z direction. The length L3 of the exposed portion 205 in the y direction is 60% to 100% of the length L1 of the semiconductor core 201 in the y direction, more preferably 70% to 100%, and still more preferably 80% to 100%. %. The exposed portion 205 is not limited to a quadrangle, and may be any shape such as a rounded quadrangle, a polygon, or a circle.
 発光素子200の発光面積は、半導体コア201の全表面積のうち、発光層202、半導体層203によって覆われている部分の面積によって決まる。半導体コアの端面は露出している場合もあり、また、端面の面積は外周面(全側面)の面積に比べて格段に小さいため、発光面積を考える上で端面の面積は無視できる。したがって、発光面積に大きく影響するのは半導体コア201の外周面2013の面積である。第1実施形態において、半導体コア201のxy断面形状である細長六角形の短い辺の長さを正六角形の一辺の長さと同じとした場合、長い辺の長さは2×L2≦L1≦1000×L2の条件を満たす範囲において正六角形の一辺の長さよりも長くできるので、半導体コアのz方向の長さを一定とすると、断面正六角状の棒状の半導体コアに比べて、半導体コア201の外周面2013の面積が増大する。一方、半導体コア201の露出部分205の長さL3を発光素子200のxy断面のy方向の長さL1の60%~100%の長さとしているため、露出部分205のz方向の長さL4が、従来の断面正六角状の棒状の半導体コアと同じだとすれば、半導体コア201の露出部分205の面積はこの従来の半導体コアよりも大きくなる。露出部分205の面積が従来の棒状の発光素子よりも増加した分、発光面積に寄与する半導体コア201の外周面2013の面積は減るが、従来の棒状の発光素子と同等またはそれ以上の発光面積が得られる。 The light emitting area of the light emitting element 200 is determined by the area of the portion covered by the light emitting layer 202 and the semiconductor layer 203 out of the total surface area of the semiconductor core 201. In some cases, the end face of the semiconductor core is exposed, and the area of the end face is much smaller than the area of the outer peripheral face (all the side faces). Therefore, it is the area of the outer peripheral surface 2013 of the semiconductor core 201 that greatly affects the light emitting area. In the first embodiment, when the length of the short side of the elongated hexagon that is the xy cross-sectional shape of the semiconductor core 201 is the same as the length of one side of the regular hexagon, the length of the long side is 2 × L2 ≦ L1 ≦ 1000. Since the length of one side of the regular hexagon can be longer than the length of one side of the regular hexagon within a range satisfying the condition of × L2, if the length of the semiconductor core in the z direction is constant, the semiconductor core 201 is compared with a rod-shaped semiconductor core having a regular hexagonal cross section. The area of the outer peripheral surface 2013 increases. On the other hand, since the length L3 of the exposed portion 205 of the semiconductor core 201 is 60% to 100% of the length L1 in the y direction of the xy cross section of the light emitting element 200, the length L4 of the exposed portion 205 in the z direction. However, if it is the same as a conventional semiconductor core having a regular hexagonal cross section, the area of the exposed portion 205 of the semiconductor core 201 is larger than that of the conventional semiconductor core. Although the area of the outer peripheral surface 2013 of the semiconductor core 201 that contributes to the light emission area is reduced by the amount by which the area of the exposed portion 205 is increased compared to the conventional bar light emitting element, the light emitting area is equal to or larger than that of the conventional bar light emitting element. Is obtained.
 しかも、半導体コア201の露出部分205のy方向の長さL3は、従来の棒状のコアよりも大幅に長くできる。したがって、本発明によれば、特許文献1に開示された従来の棒状のコアを有する発光素子に比べて、発光面積を実質的に変えることなく、発光素子へのコンタクトプロセスのための公差をその分大きく取ることができ、この発光素子の歩留まりを向上できる。 Moreover, the length L3 in the y direction of the exposed portion 205 of the semiconductor core 201 can be significantly longer than that of the conventional rod-shaped core. Therefore, according to the present invention, compared with the conventional light emitting device having a rod-shaped core disclosed in Patent Document 1, the tolerance for the contact process to the light emitting device can be reduced without substantially changing the light emitting area. Therefore, the yield of the light-emitting elements can be improved.
 また、特許文献2の板状構造と比べると、同じ発光面積および同じ接触面積であっても、発光素子のサイズを小さくできる。 Further, as compared with the plate-like structure of Patent Document 2, the size of the light emitting element can be reduced even with the same light emitting area and the same contact area.
 図6は従来の棒状の発光素子と本実施形態に係る発光素子とを比較するための概略斜視図であり、(A)は従来の棒状の発光素子、(B)(C)は本実施形態に係る発光素子の一例を示している。(A)に示した棒状の発光素子は、一辺が2μm、z方向の長さが50μmである。(B)に示した本実施形態に係る発光素子は、短辺が1μm、長辺が4μm、z方向の長さが50μmである。(C)に示した本実施形態に係る発光素子は、短辺が1μm、長辺が11μm、z方向の長さが22μmである。これらの発光素子はほぼ同じ表面積を有するが、配線工程における位置ずれ(公差)をいずれも0.5μmとした場合、コンタクトエリアつまり配線と半導体コアとの接触面積は、たとえば、(A)では1μm×24μm=24μm、(B)では3μm×24μm=72μm、(C)では10μm×10μm=100μmとなる。つまり、(A)から(C)に行くにしたがって、コンタクトエリアのサイズを大きくできる。逆に言えば、(B)から(C)に行くにしたがって、後述する配線工程における位置ずれ(公差)をより大きくできる。 6A and 6B are schematic perspective views for comparing a conventional bar-shaped light emitting device and the light emitting device according to the present embodiment. FIG. 6A is a conventional bar-shaped light emitting device, and FIGS. 1 shows an example of a light emitting element according to the above. The rod-shaped light emitting element shown in (A) has a side of 2 μm and a length in the z direction of 50 μm. The light emitting element according to this embodiment shown in FIG. 5B has a short side of 1 μm, a long side of 4 μm, and a length in the z direction of 50 μm. The light emitting element according to this embodiment shown in (C) has a short side of 1 μm, a long side of 11 μm, and a length in the z direction of 22 μm. These light emitting elements have substantially the same surface area, but when the positional deviation (tolerance) in the wiring process is 0.5 μm, the contact area, that is, the contact area between the wiring and the semiconductor core is, for example, 1 μm in (A). × 24 μm = 24 μm 2 , (B) is 3 μm × 24 μm = 72 μm 2 , and (C) is 10 μm × 10 μm = 100 μm 2 . That is, the size of the contact area can be increased from (A) to (C). In other words, as it goes from (B) to (C), the positional deviation (tolerance) in the wiring process described later can be increased.
 なお、上述の具体的数値は一例であり、本発明を限定するものではないことをここで強調しておく。 It should be emphasized here that the above-described specific numerical values are examples and do not limit the present invention.
 図1~5に示した発光素子200は、半導体コア201と半導体層203との間に発光層としての活性層202を備えている。活性層202は障壁層と量子井戸層が交互に積層された多層量子井戸層であってもよいし、単一量子井戸層であってもよい。障壁層は、例えば、GaNである。量子井戸層は、例えば、InGaNである。In及びGaの組成比は、目的とする光の波長に応じて、適宜、設定される。 The light emitting device 200 shown in FIGS. 1 to 5 includes an active layer 202 as a light emitting layer between a semiconductor core 201 and a semiconductor layer 203. The active layer 202 may be a multilayer quantum well layer in which barrier layers and quantum well layers are alternately stacked, or may be a single quantum well layer. The barrier layer is, for example, GaN. The quantum well layer is, for example, InGaN. The composition ratio of In and Ga is appropriately set according to the target wavelength of light.
 活性層202は必ずしも備える必要はない。しかし、活性層202は、両極のキャリア(正孔と電子)を狭い範囲に閉じ込めて再結合確率を上げるため、活性層202がない場合に比べて発光効率を上げることが可能となる。 The active layer 202 is not necessarily provided. However, since the active layer 202 confines bipolar carriers (holes and electrons) in a narrow range to increase the recombination probability, the luminous efficiency can be increased as compared with the case where the active layer 202 is not provided.
 図1~4に示した発光素子200においては、半導体コア201の上記xy断面の形状を、中央の対向する2辺が長い六角形としている。図5はその六角形状に代わる他のxy断面の形状の例を示しており、(A)は長四角形、(B)は楕円、(C)は十二角形である。もちろん、これらは一例であって、xy断面は他の細長い形状とすることができる。例えば、底辺L1と高さL2との関係が2×L2≦L1≦1000×L2を満たす二等辺三角形であってもよい。つまり、2×L2≦L1≦1000×L2を満たす限り、xy断面は如何なる形状であってもよい。 In the light emitting device 200 shown in FIGS. 1 to 4, the shape of the xy cross section of the semiconductor core 201 is a hexagonal shape with two long opposite sides at the center. FIG. 5 shows an example of the shape of another xy cross-section in place of the hexagonal shape, where (A) is a long rectangle, (B) is an ellipse, and (C) is a dodecagon. Of course, these are only examples, and the xy cross section may have other elongated shapes. For example, an isosceles triangle in which the relationship between the base L1 and the height L2 satisfies 2 × L2 ≦ L1 ≦ 1000 × L2 may be used. That is, as long as 2 × L2 ≦ L1 ≦ 1000 × L2 is satisfied, the xy cross section may have any shape.
 次に、図7~20に示す工程図に沿って、上記構成の発光素子を複数個備えた発光装置の製造方法を説明する。なお、図7~14において、(A)はxz断面を、(B)はyz断面を、(C)はxy断面を示す。 Next, a method for manufacturing a light-emitting device including a plurality of light-emitting elements having the above-described structure will be described with reference to process diagrams shown in FIGS. 7 to 14, (A) shows the xz section, (B) shows the yz section, and (C) shows the xy section.
 以下の説明では、n型の半導体コア201の材料としてn型GaNを、活性層202の材料として多重量子井戸を構成するInGaN/GaNを、p型半導体層203の材料としてp型AlGaNとp型GaN(2層構造)を、透明導電膜(導電層)204の材料としてITOを用いることとするが、上述の通り、これらの材料は限定的なものではなく、他の材料を使用してもよい。 In the following description, n-type GaN is used as the material of the n-type semiconductor core 201, InGaN / GaN constituting the multiple quantum well is used as the material of the active layer 202, and p-type AlGaN and p-type are used as the material of the p-type semiconductor layer 203. GaN (two-layer structure) is used as the material of the transparent conductive film (conductive layer) 204, but as described above, these materials are not limited, and other materials may be used. Good.
 まず、図7に示すように、サファイア基板(以下、単に「基板」ともいう)210の主面上にn型GaN膜201Aを形成する。n型GaN膜201Aの厚みは、例えば、30μmである。n型GaN膜201Aを形成する方法としては、例えば、HVPE(Hydride Vapor Phase Epitaxy)法、MOCVD(Metal Organic Chemical Vapor Deposition)法、MBE(Molecular Beam Epitaxy)法等がある。このn型GaN膜201Aが加工されて、最終的に半導体コア201となるのである。 First, as shown in FIG. 7, an n-type GaN film 201 </ b> A is formed on the main surface of a sapphire substrate (hereinafter also simply referred to as “substrate”) 210. The thickness of the n-type GaN film 201A is, for example, 30 μm. Examples of the method for forming the n-type GaN film 201A include HVPE (Hydride (Vapor Phase Epitaxy) method, MOCVD (Metal Organic Chemical Vapor Deposition) method, MBE (Molecular Beam Epitaxy) method and the like. This n-type GaN film 201A is processed to finally become the semiconductor core 201.
 続いて、図8に示すように、n型GaN膜201A上に、y方向に長い複数の板状のマスク220を形成する。マスク220は、酸化シリコン(SiO)膜である。マスク220は、以下のようにして形成される。先ず、酸化シリコン膜をn型GaN膜201Aの表面全体に形成する。酸化シリコン膜を形成する方法としては、例えば、プラズマCVD(Chemical Vapor Deposition)法、スパッタリング法等がある。n型GaN膜201Aの表面全体に形成された酸化シリコン膜を、フォトリソグラフィ法により、パターニングする。その結果、酸化シリコン膜からなる複数の板状のマスク220が得られる。マスク220のパターンは、上記半導体コア201のxy断面の形状を定めるもので、上述した通り、各種の多角形状または楕円形状とできるが、ここでは、図4に示す中央の対向する2辺が他の辺よりも長い六角形とする。 Subsequently, as shown in FIG. 8, a plurality of plate-like masks 220 that are long in the y direction are formed on the n-type GaN film 201A. The mask 220 is a silicon oxide (SiO 2 ) film. The mask 220 is formed as follows. First, a silicon oxide film is formed on the entire surface of the n-type GaN film 201A. Examples of the method for forming the silicon oxide film include a plasma CVD (Chemical Vapor Deposition) method and a sputtering method. The silicon oxide film formed on the entire surface of the n-type GaN film 201A is patterned by photolithography. As a result, a plurality of plate-like masks 220 made of a silicon oxide film are obtained. The pattern of the mask 220 determines the shape of the xy cross section of the semiconductor core 201 and can be various polygonal shapes or elliptical shapes as described above. Here, the two opposite sides at the center shown in FIG. The hexagon is longer than the side.
 次に、反応性イオンエッチング(ドライエッチングの一種)により、n型GaN膜201Aをエッチングする。この結果、図9に示すように、板状のn型GaN膜201Bが複数個(図9では3個のみ示す)形成される。この段階では、マスク220が残存している。エッチングガスとしては、例えば、塩素ガス(Cl)とアルゴンガス(Ar)との混合ガスがある。塩素ガスとアルゴンガスとの体積比率は、例えば、2:3である。板状のn型GaN膜201Bのz方向の長さは、例えば30μmである。 Next, the n-type GaN film 201A is etched by reactive ion etching (a kind of dry etching). As a result, as shown in FIG. 9, a plurality of plate-like n-type GaN films 201B (only three are shown in FIG. 9) are formed. At this stage, the mask 220 remains. As an etching gas, for example, there is a mixed gas of chlorine gas (Cl 2 ) and argon gas (Ar). The volume ratio of chlorine gas and argon gas is, for example, 2: 3. The length in the z direction of the plate-like n-type GaN film 201B is, for example, 30 μm.
 続いて、ウェットエッチングにより、板状のn型GaN膜201Bの側面をエッチングする。これにより、各板状のn型GaN膜201Bの側面は、サファイア基板210の主面に垂直となる。エッチング溶液は、例えば、70℃に加熱した水酸化テトラメチルアンモニウム(TMAH)水溶液(質量パーセント濃度:5%)である。エッチング時間は、例えば、3時間である。図10に示すように、上部のマスク220を残したままエッチングすることで、n型GaN膜201Bの側面を垂直とできるのである。マスク220を用いずに同様のエッチングを行うと、側面が垂直では無く、テーパー構造となってしまう。 Subsequently, the side surface of the plate-like n-type GaN film 201B is etched by wet etching. Thereby, the side surface of each plate-like n-type GaN film 201 </ b> B is perpendicular to the main surface of the sapphire substrate 210. The etching solution is, for example, an aqueous tetramethylammonium hydroxide (TMAH) solution (mass percent concentration: 5%) heated to 70 ° C. The etching time is, for example, 3 hours. As shown in FIG. 10, by etching while leaving the upper mask 220, the side surface of the n-type GaN film 201B can be made vertical. If the same etching is performed without using the mask 220, the side surface is not vertical and a tapered structure is formed.
 次に、例えばフッ化水素(HF)溶液を用いて、マスク220を除去する。図11はマスク220除去後の状態を示している。この段階では、柱状のn型GaN膜201Bの側面は基板210に対して垂直になったものの、表面には凹凸が存在している。 Next, the mask 220 is removed using, for example, a hydrogen fluoride (HF) solution. FIG. 11 shows a state after the mask 220 is removed. At this stage, the side surface of the columnar n-type GaN film 201B is perpendicular to the substrate 210, but there are irregularities on the surface.
 そこで、板状のn型GaN膜201Bの表面を平坦にするために、MOCVD装置を用いてn型GaN膜201B上にn型GaN層を形成する。これにより、半導体コア201が完成する。n型GaN層を形成する際の基板温度(成長温度)は例えば850~1100度である。 Therefore, in order to flatten the surface of the plate-like n-type GaN film 201B, an n-type GaN layer is formed on the n-type GaN film 201B using an MOCVD apparatus. Thereby, the semiconductor core 201 is completed. The substrate temperature (growth temperature) when forming the n-type GaN layer is, for example, 850 to 1100 degrees.
 このn型GaN層の形成に続いて、同じくMOCVD装置を用いて、活性層202としてInGaN(井戸層)とGaN(障壁層)とを交互に積層した多重量子井戸層を形成する。多重量子井戸層を形成する際の基板温度(成長温度)は例えば650~850度である。 Subsequent to the formation of the n-type GaN layer, a multi-quantum well layer in which InGaN (well layers) and GaN (barrier layers) are alternately stacked is formed as the active layer 202 using the MOCVD apparatus. The substrate temperature (growth temperature) when forming the multiple quantum well layer is, for example, 650 to 850 degrees.
 続いて、MOCVD装置を用いて、活性層202の上に、p型の半導体層203としてp型AlGaN層とp型GaN層との2層構造を形成する。この際の基板温度(成長温度)は例えば800~1050度である。図12はp型の半導体層203形成後の状態を示す。 Subsequently, a two-layer structure of a p-type AlGaN layer and a p-type GaN layer is formed as a p-type semiconductor layer 203 on the active layer 202 using an MOCVD apparatus. The substrate temperature (growth temperature) at this time is, for example, 800 to 1050 degrees. FIG. 12 shows a state after the p-type semiconductor layer 203 is formed.
 次に、図13に示すように、p型の半導体層203を構成するp型GaN層上にITO膜を形成する。これにより、透明導電膜204がp型GaN層の表面に形成される。なお、この工程後、図13において、上部(基板210の反対側の部分)の面をCMP等で削り、発光面を側面に限定してもよい。また、マスク220を除去せずにこの工程まで行うことでも、発光面を側面に限定することが出来る。もちろん、発光面を側面に限定しない場合には、このようなことは不要である。 Next, as shown in FIG. 13, an ITO film is formed on the p-type GaN layer constituting the p-type semiconductor layer 203. Thereby, the transparent conductive film 204 is formed on the surface of the p-type GaN layer. Note that after this step, in FIG. 13, the upper surface (the portion on the opposite side of the substrate 210) may be cut by CMP or the like, and the light emitting surface may be limited to the side surface. Further, the light emitting surface can be limited to the side surface by performing this process without removing the mask 220. Of course, this is not necessary when the light emitting surface is not limited to the side surface.
 続いて、図14に示すように、複数の板状の発光素子(半導体コア201の露出部分205形成前のもの)200Aをサファイア基板210から分離する。具体的には、先ず、複数の板状の発光素子200Aを有機膜(例えば、ワックス)等に埋め込む。続いて、サファイア基板210の裏面からレーザを照射する。これにより、サファイア基板210と半導体コア201との界面を溶かして、複数の板状の発光素子200Aを基板210から剥離する(レーザリフトオフ)。その後、サファイア基板210をアセトン溶液に入れ、有機膜を溶かす。その結果、複数の板状の発光素子200Aがサファイア基板210から分離される。続いて、遠心分離機により、複数の発光素子200Aを沈殿させ、上澄み液を取り除く。その後、アセトンを加え、上記の処理を繰り返し、複数の発光素子200Aが入ったアセトン溶液から有機膜の成分を取り除く。同様の方法により、複数の発光素子200Aが入った溶液をアセトン溶液からイソプロピルアルコール(IPA)に置換する。その後、同様の方法により、複数の発光素子200Aが入った溶液をIPAから水に置換する。 Subsequently, as shown in FIG. 14, a plurality of plate-like light emitting elements (before forming the exposed portion 205 of the semiconductor core 201) 200 </ b> A is separated from the sapphire substrate 210. Specifically, first, a plurality of plate-like light emitting elements 200A are embedded in an organic film (for example, wax). Subsequently, laser is irradiated from the back surface of the sapphire substrate 210. As a result, the interface between the sapphire substrate 210 and the semiconductor core 201 is melted, and the plurality of plate-like light emitting elements 200A are peeled from the substrate 210 (laser lift-off). Thereafter, the sapphire substrate 210 is put into an acetone solution to dissolve the organic film. As a result, the plurality of plate-like light emitting elements 200 </ b> A are separated from the sapphire substrate 210. Subsequently, the plurality of light emitting elements 200A are precipitated by a centrifuge, and the supernatant is removed. Thereafter, acetone is added, and the above treatment is repeated, and the components of the organic film are removed from the acetone solution containing the plurality of light emitting elements 200A. By a similar method, the solution containing the plurality of light emitting elements 200A is replaced with isopropyl alcohol (IPA) from the acetone solution. Thereafter, the solution containing the plurality of light emitting elements 200A is replaced with water from IPA by the same method.
 なお、複数の発光素子200Aをサファイア基板210から分離する方法は、例えば、超音波等により、各発光素子200Aを根本から折る方法等であってもよい。 It should be noted that the method of separating the plurality of light emitting elements 200A from the sapphire substrate 210 may be, for example, a method of folding each light emitting element 200A from the root using ultrasonic waves or the like.
 続いて、図15(B)に示すように、半導体装置のための基板の一例として、発光素子配置用の電極311、321が形成されたガラス基板301に発光素子200Aを配置する。図15(B)に示す例では、複数の発光素子200Aは、2つの領域に分かれて配置される。理解を容易にするため、この例では、1つの領域に6つの発光素子200Aが配置されているが、1つの領域に配置される発光素子200Aの数及び配置領域の数は、任意である。ガラス基板に代えて他の透光性を有する絶縁性基板を用いてもよい。用途に応じては、透光性を有する基板である必要は無く、光反射用の金属が成膜されたガラス基板や半導体基板等を用いてもよい。 Subsequently, as shown in FIG. 15B, as an example of a substrate for a semiconductor device, a light emitting element 200A is placed on a glass substrate 301 on which light emitting element placement electrodes 311 and 321 are formed. In the example shown in FIG. 15B, the plurality of light-emitting elements 200A are arranged in two regions. In order to facilitate understanding, in this example, six light emitting elements 200A are arranged in one area, but the number of light emitting elements 200A arranged in one area and the number of arrangement areas are arbitrary. Instead of the glass substrate, another insulating substrate having translucency may be used. Depending on the application, it is not necessary to use a light-transmitting substrate, and a glass substrate, a semiconductor substrate, or the like on which a metal for light reflection is formed may be used.
 図15(A)は発光素子200Aを配置する前のガラス基板301を示す。ガラス基板301の主面近くに形成された配置用の電極310は、連結電極311と複数(この例では2個)の駆動電極312とを含んでいる。各駆動電極312は本体部312Aと複数(この例では6個)の凸部312Bとを含んでいる。同様に、もう一方の配置用の電極320は、連結電極311と対向する位置に配置された連結電極321と複数(この例では2個)の駆動電極322とを含んでいる。各駆動電極322は本体部322Aと複数(この例では6個)の凸部322Bとを含んでいる。 FIG. 15A shows the glass substrate 301 before the light emitting element 200A is arranged. The arrangement electrode 310 formed near the main surface of the glass substrate 301 includes a connection electrode 311 and a plurality (two in this example) of drive electrodes 312. Each drive electrode 312 includes a main body 312A and a plurality (six in this example) of convex portions 312B. Similarly, the other arrangement electrode 320 includes a connection electrode 321 disposed at a position facing the connection electrode 311 and a plurality (two in this example) of drive electrodes 322. Each drive electrode 322 includes a main body portion 322A and a plurality (six in this example) of convex portions 322B.
 図16は、ガラス基板301上に配置された複数の発光素子200Aの一つを示す断面図である。図16から分かるように、発光素子200Aは、yz平面に平行な側面(最も広い側面)をガラス基板301の表面に接触させた状態で配置される。そして、各発光素子200Aのz方向の2つの端部は、駆動電極312の凹部312Bと駆動電極322B上に重なっている。 FIG. 16 is a cross-sectional view showing one of the plurality of light emitting elements 200A arranged on the glass substrate 301. As can be seen from FIG. 16, the light emitting element 200 </ b> A is arranged in a state where a side surface (widest side surface) parallel to the yz plane is in contact with the surface of the glass substrate 301. The two end portions in the z direction of each light emitting element 200A overlap the concave portion 312B of the drive electrode 312 and the drive electrode 322B.
 ガラス基板301上に複数の発光素子200Aを配列させる方法としては例えば以下のものがある。 Examples of a method for arranging a plurality of light emitting elements 200A on the glass substrate 301 include the following.
 複数の発光素子200Aが入った水でガラス基板301の主面を覆う。具体的には、先ず、ガラス基板301上に水を流す。この水に対して、複数の発光素子200Aが入った水を少しずつ注入する。ガラス基板301の主面を覆う水は、複数の発光素子200Aが自由に移動できる程度の量であればよい。 The main surface of the glass substrate 301 is covered with water containing a plurality of light emitting elements 200A. Specifically, first, water is caused to flow on the glass substrate 301. Water containing a plurality of light emitting elements 200A is injected little by little into this water. The amount of water covering the main surface of the glass substrate 301 may be an amount that allows the plurality of light emitting elements 200A to freely move.
 続いて、電極310と電極320とに対して異なる電圧を印加する。これにより、電極310及び電極320の一方に負電荷が誘起され、他方の正電荷が誘起される。この状態で、発光素子200Aが電極310(より正確には凸部312B)及び電極320(より正確には凸部322B)に近づくと、発光素子200Aのうち、負電荷が誘起された電極に近いほうの軸方向(ここではz方向)端部には、静電誘導により、正電荷が誘起される。同様に、他の軸方向端部には、負電荷が誘起される。その結果、各電極310,320と発光素子200Aとの間に引力が働く。その際、発光素子200Aは、電極310と電極320との間に生じる電気力線に沿って配置される。また、各発光素子200Aに誘起された電荷は略等しい。そのため、電荷による反発力により、所定の方向に並ぶ2つの発光素子200Aの間隔は略同じとなる。 Subsequently, different voltages are applied to the electrode 310 and the electrode 320. Thereby, a negative charge is induced in one of the electrode 310 and the electrode 320, and the other positive charge is induced. In this state, when the light emitting element 200A approaches the electrode 310 (more precisely, the convex portion 312B) and the electrode 320 (more precisely, the convex portion 322B), the light emitting element 200A is close to the electrode in which a negative charge is induced. A positive charge is induced at the end in the axial direction (z direction in this case) by electrostatic induction. Similarly, negative charges are induced at the other axial ends. As a result, an attractive force acts between each electrode 310, 320 and the light emitting element 200A. At that time, the light emitting element 200 </ b> A is disposed along the lines of electric force generated between the electrode 310 and the electrode 320. Further, the charges induced in each light emitting element 200A are substantially equal. Therefore, the interval between the two light emitting elements 200A arranged in a predetermined direction is substantially the same due to the repulsive force due to the electric charge.
 続いて、複数の発光素子200Aが入った溶液を水からIPAに置換する。例えば、水にIPAを注ぐことで、複数の発光素子200Aが入った溶液を水からIPAに置換できる。 Subsequently, the solution containing the plurality of light emitting elements 200A is replaced with IPA from water. For example, by pouring IPA into water, a solution containing a plurality of light emitting elements 200A can be replaced with IPA from water.
 続いて、ガラス基板301を加熱することにより、複数の発光素子200Aが入った溶液(IPA)を蒸発させて、乾燥させる。その結果、図15(B)に示すように、複数の発光素子200Aがガラス基板301上で所定の位置に配置される。 Subsequently, by heating the glass substrate 301, the solution (IPA) containing the plurality of light emitting elements 200A is evaporated and dried. As a result, as shown in FIG. 15B, the plurality of light emitting elements 200A are arranged at predetermined positions on the glass substrate 301.
 続いて、各発光素子200Aのz方向一端部の側面において、透明導電膜204、p型の半導体層203、活性層202を除去し、半導体コア201を露出させる(図18参照)。この結果、各発光素子200Aは露出部分205を有する発光素子200となる。透明導電膜204、p型の半導体層203、活性層202を除去する方法としては、例えば、塩素ガスを用いた反応性イオンエッチング等がある。この工程において、半導体コア201の一部も除去してもよい。 Subsequently, the transparent conductive film 204, the p-type semiconductor layer 203, and the active layer 202 are removed on the side surface of one end portion in the z direction of each light emitting element 200A to expose the semiconductor core 201 (see FIG. 18). As a result, each light emitting element 200 </ b> A becomes the light emitting element 200 having the exposed portion 205. As a method for removing the transparent conductive film 204, the p-type semiconductor layer 203, and the active layer 202, for example, there is reactive ion etching using chlorine gas. In this step, a part of the semiconductor core 201 may be removed.
 この半導体コア露出工程において、露出部分205が形成される発光素子200Aの側面は従来の棒状発光素子よりも拡張された幅(y方向の長さ)を有するため、棒状発光素子よりも公差を大きくとることができる。 In this semiconductor core exposing step, the side surface of the light emitting element 200A where the exposed portion 205 is formed has a wider width (length in the y direction) than the conventional bar light emitting element, and therefore has a larger tolerance than the bar light emitting element. Can take.
 続いて、ガラス基板301の主面上にスリットコーターで保護膜330を形成する(図17~19参照)。これにより、各発光素子200が保護膜330で覆われる。保護膜330の材料として、例えば、透明の絶縁膜である酸化シリコン(SiO)を用いることができる。 Subsequently, a protective film 330 is formed on the main surface of the glass substrate 301 by a slit coater (see FIGS. 17 to 19). Thereby, each light emitting element 200 is covered with the protective film 330. As a material of the protective film 330, for example, silicon oxide (SiO 2 ) that is a transparent insulating film can be used.
 その後、コンタクトホール331、332を形成する(図17~19参照)。コンタクトホール331は半導体コア201の露出部分205に通じ、コンタクトホール332は透明導電膜204に通じている。コンタクトホール331、332は、例えば、フォトリソグラフィ法によって形成される。このコンタクトホール形成工程において、発光素子200の側面は従来の棒状発光素子よりも拡張された幅(y方向の長さ)を有するため、棒状発光素子よりもコンタクトホール形成工程における公差を大きくとることができる。 Thereafter, contact holes 331 and 332 are formed (see FIGS. 17 to 19). The contact hole 331 communicates with the exposed portion 205 of the semiconductor core 201, and the contact hole 332 communicates with the transparent conductive film 204. The contact holes 331 and 332 are formed by, for example, a photolithography method. In this contact hole forming step, the side surface of the light emitting element 200 has a wider width (length in the y direction) than the conventional bar light emitting element, so that the tolerance in the contact hole forming step is larger than that of the bar light emitting element. Can do.
 続いて、図17~19に示すように、第1配線340及び第2配線350を形成する。具体的には、先ず、保護膜330の表面全体に金属膜(例えば、Ti層とAl層との積層膜)を形成する。続いて、フォトリソグラフィ法により、当該金属膜をパターニングする。その結果、コンタクトホール331内のコンタクトメタル341を含む第1配線340及びコンタクトホール332内のコンタクトメタル351を含む第2配線350が形成され、発光装置が得られる。コンタクトメタル341は半導体コア201の露出部分205と接し、コンタクトメタル351は透明導電膜204に接している。 Subsequently, as shown in FIGS. 17 to 19, a first wiring 340 and a second wiring 350 are formed. Specifically, first, a metal film (for example, a laminated film of a Ti layer and an Al layer) is formed on the entire surface of the protective film 330. Subsequently, the metal film is patterned by photolithography. As a result, the first wiring 340 including the contact metal 341 in the contact hole 331 and the second wiring 350 including the contact metal 351 in the contact hole 332 are formed, and a light emitting device is obtained. The contact metal 341 is in contact with the exposed portion 205 of the semiconductor core 201, and the contact metal 351 is in contact with the transparent conductive film 204.
 図17~19は一つの発光素子のみを示しているが、実際には、図15(B)に示すようにガラス基板301上に配列された複数の発光素子200Aについて同時に同じ処理がなされている。この結果、配線工程が完了すると、図20に示すように、ガラス基板301と配線された発光素子とを含む面発光基板(発光装置)400を得ることが出来る。この面発光基板400を分割することにより、所望の大きさの分割基板(発光装置)430A~430Eを得ることができる。 Although FIGS. 17 to 19 show only one light emitting element, in practice, the same processing is simultaneously performed on a plurality of light emitting elements 200A arranged on the glass substrate 301 as shown in FIG. 15B. . As a result, when the wiring process is completed, a surface light emitting substrate (light emitting device) 400 including the glass substrate 301 and the wired light emitting elements can be obtained as shown in FIG. By dividing the surface light emitting substrate 400, divided substrates (light emitting devices) 430A to 430E having a desired size can be obtained.
 上記第1実施形態では、エッチングにより半導体コアの板状構造を形成しているが、エッチングに代わり、選択成長法やVLS法等を用いてもよい。 In the first embodiment, the plate-like structure of the semiconductor core is formed by etching, but instead of etching, a selective growth method, a VLS method, or the like may be used.
 以上、活性層202を含む発光素子200を複数備えた発光装置の製造方法について説明したが、発光素子200が活性層202を含まない場合には、活性層202を形成する工程が不要となり、図12に示す工程において、n型GaN膜を形成した後に、p型の半導体層203を形成することになる。図21はこのような場合の図13に対応する図である。 The method for manufacturing a light emitting device including a plurality of light emitting elements 200 including the active layer 202 has been described above. However, when the light emitting element 200 does not include the active layer 202, the step of forming the active layer 202 is not necessary, In the step shown in FIG. 12, after the n-type GaN film is formed, the p-type semiconductor layer 203 is formed. FIG. 21 is a diagram corresponding to FIG. 13 in such a case.
 上記の例においては、発光素子200Aのz方向(図13においては、サファイア基板210に垂直な方向)の長さがy方向(図13においては、サファイア基板210の主面に平行な方向)の長さよりも長いため、発光素子を配列する工程において、z方向において対向する発光素子の2つの端部を、駆動電極312の凹部312Bと駆動電極322B上に重ねて配置し、z方向の端部付近に露出部分205を形成し、z方向両側において第1配線340と第2配線350を形成した。 In the above example, the length of the light emitting element 200A in the z direction (the direction perpendicular to the sapphire substrate 210 in FIG. 13) is the y direction (the direction parallel to the main surface of the sapphire substrate 210 in FIG. 13). Since the length is longer than the length, in the step of arranging the light emitting elements, two end portions of the light emitting elements facing each other in the z direction are arranged so as to overlap the concave portion 312B and the driving electrode 322B of the driving electrode 312 and end portions in the z direction. An exposed portion 205 was formed in the vicinity, and a first wiring 340 and a second wiring 350 were formed on both sides in the z direction.
 一方、発光素子200Aのy方向(図13においては、サファイア基板210の主面に平行な方向)の長さがz方向(図13においては、サファイア基板210に垂直な方向)の長さよりも長い場合には、発光素子を配列する工程において、y方向において対向する発光素子の2つの端部を駆動電極312の凹部312Bと駆動電極322B上に重なるように配置し、y方向の一端部付近に露出部分205を形成し、y方向両側において第1配線340と第2配線350を形成するのが好都合である。この場合、y方向が請求項1に記載の第1の方向であり、z方向が請求項1に記載の第2の方向となる。 On the other hand, the length of the light emitting element 200A in the y direction (the direction parallel to the main surface of the sapphire substrate 210 in FIG. 13) is longer than the length in the z direction (the direction perpendicular to the sapphire substrate 210 in FIG. 13). In this case, in the step of arranging the light emitting elements, two end portions of the light emitting elements facing in the y direction are arranged so as to overlap the concave portion 312B of the drive electrode 312 and the drive electrode 322B, and near one end portion in the y direction. It is convenient to form the exposed portion 205 and form the first wiring 340 and the second wiring 350 on both sides in the y direction. In this case, the y direction is the first direction described in claim 1, and the z direction is the second direction described in claim 1.
 図22は、図21(C)に示される発光素子の断面の輪郭形状の代替例を示す、図5と同様の図である。 FIG. 22 is a view similar to FIG. 5, showing an alternative example of the cross-sectional contour shape of the light-emitting element shown in FIG.
 図23は図13(A)及び図21(A)に示される断面の輪郭形状の代替例を示す。また、図24は図13(B)及び図21(B)に示される断面の輪郭形状の代替例を示す。図13(A)及び図21(A)ならびに図13(B)及び図21(B)に示される断面形状は四角形であるが、代替例では上部に傾斜面を有する形状である。これ以外にも、上面が弧を描いていてもよい。 FIG. 23 shows an alternative example of the profile of the cross section shown in FIGS. 13 (A) and 21 (A). FIG. 24 shows an alternative example of the profile of the cross section shown in FIGS. 13 (B) and 21 (B). The cross-sectional shapes shown in FIGS. 13A and 21A, and FIGS. 13B and 21B are quadrilateral, but in an alternative example, the shape has an inclined surface at the top. In addition, the upper surface may draw an arc.
 図25は第1実施形態による配線のコンタクトメタルと半導体コアの露出部との接触面積増大効果を示すグラフで、断面が正六角形の棒状発光素子における接触面積に対して、上記第1実施形態に係る発光素子(つまり2辺だけが長い六角形状)の接触面積が何倍になるかを、棒状発光素子の長さ(z方向の長さ)が100μm、50μm、20μmの場合について示している。グラフの縦軸は第1実施形態による接触面積増加量(倍)つまり(第1実施形態に係る発光素子における接触面積)/(棒状発光素子における接触面積)を表す。グラフの横軸は、正六角形の棒状発光素子の一辺の長さ(μm)を表す。それぞれの場合について、第1実施形態に係る発光素子は断面六角形の短辺の長さを1μmに固定し、棒状発光素子と同様の発光面積を有する発光素子としてサイズの最適化を行ったものである。 FIG. 25 is a graph showing the effect of increasing the contact area between the contact metal of the wiring and the exposed portion of the semiconductor core according to the first embodiment. The contact area of the rod-shaped light emitting element having a regular hexagonal cross section is the same as that of the first embodiment. It shows how many times the contact area of such a light emitting element (that is, a hexagonal shape having only two sides) is increased when the length of the rod-shaped light emitting element (length in the z direction) is 100 μm, 50 μm, and 20 μm. The vertical axis of the graph represents the contact area increase amount (times) according to the first embodiment, that is, (contact area in the light emitting device according to the first embodiment) / (contact area in the bar light emitting device). The horizontal axis of the graph represents the length (μm) of one side of a regular hexagonal bar light emitting element. In each case, the light-emitting element according to the first embodiment is a light-emitting element having a light-emitting area similar to that of a rod-shaped light-emitting element with a short side of hexagonal cross section fixed to 1 μm. It is.
 このグラフから、第1実施形態に係る発光素子は、棒状発光素子に比べて、同等の発光面積であっても、接触面積が2.5倍以上に増えることが分かる。この接触面積増大効果は、一辺の長さ換言すれば直径が小さく、長さがより長い棒状発光素子に対して、より顕著であることがわかる。特に直径(換言すれば、一辺の長さ)が小さいものほど接触抵抗の影響が顕著に出てくるため、本発明が効果的であることがわかる。 From this graph, it can be seen that the contact area of the light emitting device according to the first embodiment is increased by 2.5 times or more even if the light emitting area is equivalent to that of the rod-shaped light emitting device. It can be seen that the effect of increasing the contact area is more conspicuous with respect to a rod-like light emitting device having a smaller side length, in other words, a longer diameter. In particular, the smaller the diameter (in other words, the length of one side), the more the influence of the contact resistance appears, and it can be seen that the present invention is effective.
 以上より明らかなように、第1実施形態(変形例を含む)によれば、従来の棒状の半導体コアを有する発光素子に比べて、発光面積を実質的に変えることなく、発光素子200へのコンタクトプロセスのための公差を大きく取ることができ、この発光素子200及びこの発光素子200を用いた発光装置400(430A~430E)の歩留まりを向上できる。それと同時に、従来の棒状の半導体コアを用いた発光装置に比べて、コンタクトメタル341と半導体コア201の露出部分205との接触面積を大きくすることが可能となるため、その分接触抵抗を小さくでき、発光効率の向上及び消費電力の低減が可能となる。 As is clear from the above, according to the first embodiment (including the modification), the light emitting element 200 can be applied to the light emitting element 200 without substantially changing the light emitting area as compared with the light emitting element having the conventional rod-shaped semiconductor core. The tolerance for the contact process can be increased, and the yield of the light emitting element 200 and the light emitting device 400 (430A to 430E) using the light emitting element 200 can be improved. At the same time, the contact area between the contact metal 341 and the exposed portion 205 of the semiconductor core 201 can be increased as compared with a conventional light emitting device using a rod-shaped semiconductor core, and the contact resistance can be reduced accordingly. Thus, it is possible to improve luminous efficiency and reduce power consumption.
 また、配線340のコンタクトメタル341と接触する露出部分205は半導体コア201の外周面2013の一部のみであり、外周面2013の他の部分は第2導電型の半導体層203で覆われているため、特許文献2の板状構造と比べると、同じ発光面積および同じ接触面積であっても、発光素子200のサイズを小さくすることが可能である上、駆動時の電流方向を制御する回路は不要である。 Further, the exposed portion 205 of the wiring 340 that contacts the contact metal 341 is only a part of the outer peripheral surface 2013 of the semiconductor core 201, and the other portion of the outer peripheral surface 2013 is covered with the second conductivity type semiconductor layer 203. Therefore, as compared with the plate-like structure of Patent Document 2, it is possible to reduce the size of the light emitting element 200 even with the same light emitting area and the same contact area, and the circuit for controlling the current direction during driving is as follows. It is unnecessary.
 〔第2実施形態〕
 図26はこの発明の第2実施形態の照明装置に用いられる発光装置の平面図を示し、図27は上記発光装置の側面図を示している。
[Second Embodiment]
FIG. 26 shows a plan view of a light emitting device used in the illumination device of the second embodiment of the present invention, and FIG. 27 shows a side view of the light emitting device.
 この第2実施形態の照明装置に用いられる発光装置500は、図26,図27に示すように、正方形状の放熱板501上に、10個以上の板状の発光素子(図示せず)が配置された円形状の絶縁性基板502が実装されている。ここで、上記板状の発光素子は第1実施形態で説明したいずれかの板状の発光素子であり、円形状の絶縁性基板502として、第1実施形態の発光装置の製造方法を用いて製造された10個以上の発光素子が配置された分割基板430が使用できる。 As shown in FIGS. 26 and 27, the light emitting device 500 used in the illumination device of the second embodiment has ten or more plate-like light emitting elements (not shown) on a square heat sink 501. The arranged circular insulating substrate 502 is mounted. Here, the plate-like light-emitting element is any of the plate-like light-emitting elements described in the first embodiment, and the manufacturing method of the light-emitting device of the first embodiment is used as the circular insulating substrate 502. The divided substrate 430 on which 10 or more manufactured light emitting elements are arranged can be used.
 図28は図26,図27に示す発光装置500を用いた照明装置の一例としてのLED電球510の側面図を示している。このLED電球510は、図28に示すように、外部のソケットに嵌めて商用電源に接続するための電源接続部としての口金511と、その口金511に一端が接続され、他端が徐々に拡径する円錐形状の放熱部512と、放熱部512の他端側を覆う透光部513とを備えている。上記放熱部512内に、絶縁性基板502を透光部513側に向けて発光装置500を配置している。この発光装置500は、上記第1実施形態の発光装置の製造方法により製造されたものを用いている。 FIG. 28 shows a side view of an LED bulb 510 as an example of a lighting device using the light emitting device 500 shown in FIGS. As shown in FIG. 28, the LED bulb 510 has a base 511 as a power supply connecting portion that is fitted in an external socket and connected to a commercial power source, and one end connected to the base 511, and the other end gradually expands. A conical heat radiation part 512 having a diameter and a light transmission part 513 covering the other end of the heat radiation part 512 are provided. In the heat radiating part 512, the light emitting device 500 is arranged with the insulating substrate 502 facing the light transmitting part 513 side. The light emitting device 500 is manufactured by the light emitting device manufacturing method of the first embodiment.
 上記構成の照明装置によれば、発光装置500を用いることにより、歩留まりを向上できるとともに、接触抵抗低減による発光効率の高効率化・低消費電力化を実現できる。また、明るさのばらつきが少なくかつ長寿命化の照明装置を実現することができる。また、上記複数の発光素子が配置された絶縁性基板502を放熱板501上に取り付けることによって、放熱効果が向上する。 According to the illuminating device having the above configuration, by using the light emitting device 500, it is possible to improve the yield, and it is possible to realize high efficiency and low power consumption of light emission efficiency by reducing contact resistance. In addition, it is possible to realize an illumination device with little variation in brightness and having a long lifetime. Further, by attaching the insulating substrate 502 on which the plurality of light emitting elements are disposed on the heat dissipation plate 501, the heat dissipation effect is improved.
 〔第3実施形態〕
 図29はこの発明の第3実施形態の発光装置を用いたバックライトの平面図を示している。
[Third Embodiment]
FIG. 29 is a plan view of a backlight using the light emitting device according to the third embodiment of the present invention.
 この第3実施形態のバックライト600は、図29に示すように、放熱板の一例としての長方形状の支持基板601上に、それぞれが10個以上の板状の発光素子を備える複数の発光装置602が互いに所定の間隔をあけて格子状に実装されている。ここで、上記板状の発光素子は第1実施形態で説明したいずれかの板状の発光素子であり、発光装置602として、第1実施形態の発光装置の製造方法を用いて製造された10個以上の板状の発光素子が配置された分割基板430が使用されている。 As shown in FIG. 29, the backlight 600 according to the third embodiment includes a plurality of light emitting devices each having 10 or more plate-like light emitting elements on a rectangular support substrate 601 as an example of a heat sink. 602 are mounted in a grid pattern at a predetermined interval from each other. Here, the plate-like light-emitting element is any of the plate-like light-emitting elements described in the first embodiment, and is manufactured as the light-emitting device 602 using the method for manufacturing the light-emitting device of the first embodiment. A divided substrate 430 on which one or more plate-like light emitting elements are arranged is used.
 本実施形態によれば、バックライト600が発光装置602を用いることにより、歩留まりを向上できるとともに、接触抵抗低減による発光効率の高効率化・低消費電力化を実現できる。製造コストを低減でき、特性ばらつきを小さくして歩留まりを向上できる。また、明るさのばらつきが少なくかつ長寿命化の照明装置を実現することができる。また、上記発光装置602を支持基板601上に取り付けることによって、放熱効果が向上する。 According to the present embodiment, since the backlight 600 uses the light emitting device 602, it is possible to improve the yield, and to realize high efficiency and low power consumption of light emission efficiency by reducing contact resistance. Manufacturing cost can be reduced, characteristic variation can be reduced, and yield can be improved. In addition, it is possible to realize an illumination device with little variation in brightness and having a long lifetime. Further, by attaching the light emitting device 602 on the support substrate 601, the heat dissipation effect is improved.
 〔第4実施形態〕
 図30はこの発明の第4実施形態の発光装置を用いたバックライトの平面図を示している。
[Fourth Embodiment]
FIG. 30 is a plan view of a backlight using the light emitting device according to the fourth embodiment of the present invention.
 この第4実施形態のバックライト610は、図30に示すように、放熱板の一例としての長方形状の支持基板611上に、1つの大きな発光装置612が実装されている。この発光装置612は、上記第1実施形態で説明したいずれかの発光素子を備えている。ここでは、発光装置612は、上記第1実施形態の発光装置の製造方法により製造された分割基板430を用いている。 In the backlight 610 of the fourth embodiment, as shown in FIG. 30, one large light emitting device 612 is mounted on a rectangular support substrate 611 as an example of a heat sink. The light emitting device 612 includes any of the light emitting elements described in the first embodiment. Here, the light emitting device 612 uses the divided substrate 430 manufactured by the method for manufacturing the light emitting device of the first embodiment.
 本実施形態によれば、バックライト610が発光装置612を用いることにより、歩留まりを向上できるとともに、接触抵抗低減による発光効率の高効率化・低消費電力化を実現できる。また、明るさのばらつきが少なくかつ長寿命化の照明装置を実現することができる。また、また、上記発光装置612を支持基板611上に取り付けることによって、放熱効果が向上する。 According to the present embodiment, since the backlight 610 uses the light emitting device 612, the yield can be improved, and the light emission efficiency can be increased and the power consumption can be reduced by reducing the contact resistance. In addition, it is possible to realize an illumination device with little variation in brightness and having a long lifetime. Further, the heat radiation effect is improved by attaching the light emitting device 612 on the support substrate 611.
 〔第5実施形態〕
 図31はこの発明の第5実施形態の発光装置を用いた表示装置の一例としての液晶パネルの平面図と側面図を示している。
[Fifth Embodiment]
FIG. 31 shows a plan view and a side view of a liquid crystal panel as an example of a display device using the light emitting device of the fifth embodiment of the present invention.
 この第5実施形態の液晶パネル620は、図31に示すように、放熱板の一例としての長方形状の透明基板622の一方の面に、配線された複数の発光素子(図示せず)が配置されている。これらの発光素子は、上記第1実施形態において説明した板状の発光素子である。また、透明基板622は図17に示すガラス基板301に対応している。これらの配線された複数の板状の発光素子を含む発光部分621と、透明基板622で1つの大きな発光装置を形成している。また、透明基板622の他方の面に、図示しない画素電極とTFT(Thin Film Transistor:薄膜トランジスタ)がマトリックス状に形成されている。そして、透明基板622の他方側に所定の間隔をあけて液晶封止板624が配置され、液晶封止板624と透明基板622との間に液晶623を封止している。 In the liquid crystal panel 620 of the fifth embodiment, as shown in FIG. 31, a plurality of wired light emitting elements (not shown) are arranged on one surface of a rectangular transparent substrate 622 as an example of a heat sink. Has been. These light emitting elements are the plate-like light emitting elements described in the first embodiment. The transparent substrate 622 corresponds to the glass substrate 301 shown in FIG. One light emitting device is formed by the light emitting portion 621 including the plurality of wired light emitting elements wired and the transparent substrate 622. On the other surface of the transparent substrate 622, pixel electrodes and TFTs (thin film transistors) (not shown) are formed in a matrix. A liquid crystal sealing plate 624 is disposed on the other side of the transparent substrate 622 with a predetermined interval, and the liquid crystal 623 is sealed between the liquid crystal sealing plate 624 and the transparent substrate 622.
 通常の液晶パネルは、液晶駆動基板とバックライトは分離されており、バックライトの光量ムラや発熱などの問題により、導光管や放熱素子の使用することでコストが上昇したり、液晶パネルを厚くなったりしていた。これに対して、上記構成の液晶パネル620によれば、従来の発光素子1個から得られる光量に対して複数の発光素子で構成されているので、光量ムラや発熱の問題が無いので、導光管や放熱素子を必要としない。そこで、液晶パネル大に分断された分割基板(第1実施形態で説明した分割基板430に相当)である発光装置が液晶を有する面と反対の側に配置して、直接液晶基板として用いることにより、低コストかつ薄型の液晶パネルを得ることができる。 In a normal LCD panel, the LCD drive substrate and the backlight are separated, and due to problems such as uneven light intensity and heat generation of the backlight, the use of a light guide tube and heat dissipation element increases the cost, and the LCD panel It was getting thicker. On the other hand, according to the liquid crystal panel 620 having the above-described configuration, since it is composed of a plurality of light emitting elements with respect to the amount of light obtained from one conventional light emitting element, there is no problem of unevenness in light amount or heat generation. No light tube or heat dissipation element is required. Therefore, a light emitting device which is a divided substrate (corresponding to the divided substrate 430 described in the first embodiment) divided into a large liquid crystal panel is arranged on the side opposite to the surface having liquid crystal and used directly as a liquid crystal substrate. A low-cost and thin liquid crystal panel can be obtained.
 このように、上記構成の液晶パネル620によれば、上記第1実施形態に係る発光素子を含む発光部分621と透明基板622からなる発光装置を用いることにより、歩留まりを向上できるとともに、接触抵抗低減による発光効率の高効率化・低消費電力化を実現できる。また、液晶パネル基板とバックライト基板を1つにした透明基板622を用いることにより、部品コストと製造コストを低減できると共に、より薄型の液晶パネルを実現することができる。 As described above, according to the liquid crystal panel 620 configured as described above, the use of the light emitting device including the light emitting portion 621 including the light emitting element according to the first embodiment and the transparent substrate 622 can improve the yield and reduce the contact resistance. High luminous efficiency and low power consumption can be realized. In addition, by using the transparent substrate 622 in which the liquid crystal panel substrate and the backlight substrate are combined, the component cost and the manufacturing cost can be reduced, and a thinner liquid crystal panel can be realized.
 なお、透明基板と、その透明基板の一方の面に配置され、透明基板の一方の面に形成された配線に接続された複数の発光素子と、上記透明基板の他方の面に形成されたカラーフィルタとを備えた液晶パネルにこの発明を適用してもよい。 A transparent substrate, a plurality of light emitting elements arranged on one surface of the transparent substrate and connected to wiring formed on one surface of the transparent substrate, and a color formed on the other surface of the transparent substrate The present invention may be applied to a liquid crystal panel provided with a filter.
 例えば、このような構成例の液晶パネル820を図32に示している。図32の側面図に示すように、放熱板の一例としての長方形状の透明基板822の一方の面に、配線された複数の発光素子(図示せず)が配置されている。これらの発光素子は、上記第1実施形態において説明した板状の発光素子である。また、透明基板822は図17に示すガラス基板301に対応している。これらの配線された複数の板状の発光素子を含む発光部分821と、透明基板822で1つの大きな発光装置を形成している。また、透明基板822の他方の面に、カラーフィルタ823が形成され、カラーフィルタ823上に保護膜824が形成されている。そして、透明基板822の他方側に所定の間隔をあけてガラス基板827が配置され、ガラス基板827と透明基板822との間に液晶825を封止している。上記ガラス基板827の液晶825に対向する面に、図示しない画素電極とTFT826がマトリックス状に形成されている。 For example, FIG. 32 shows a liquid crystal panel 820 having such a configuration example. As shown in the side view of FIG. 32, a plurality of wired light emitting elements (not shown) are arranged on one surface of a rectangular transparent substrate 822 as an example of a heat sink. These light emitting elements are the plate-like light emitting elements described in the first embodiment. Further, the transparent substrate 822 corresponds to the glass substrate 301 shown in FIG. One light emitting device is formed by the light emitting portion 821 including the plurality of wired plate-like light emitting elements and the transparent substrate 822. A color filter 823 is formed on the other surface of the transparent substrate 822, and a protective film 824 is formed on the color filter 823. A glass substrate 827 is disposed on the other side of the transparent substrate 822 with a predetermined interval, and the liquid crystal 825 is sealed between the glass substrate 827 and the transparent substrate 822. Pixel electrodes and TFTs 826 (not shown) are formed in a matrix on the surface of the glass substrate 827 facing the liquid crystal 825.
 この液晶パネルでは、カラーフィルタとバックライト基板を1つにした透明基板を用いることにより、部品コストと製造コストを低減できると共に、より薄型の液晶パネルを実現することができる。 In this liquid crystal panel, by using a transparent substrate having a single color filter and backlight substrate, it is possible to reduce component costs and manufacturing costs, and to realize a thinner liquid crystal panel.
(第6実施形態)
 図33、34は本発明の第6実施形態を示している。この第6実施形態は、本発明に係る発光装置を表示装置の一例としての眼鏡型表示装置に適用したものである。図34は第6実施形態の眼鏡型表示装置700の外観形状を示す図である。図34は眼鏡型表示装置700の眼鏡レンズ701の一部を拡大した図である。
(Sixth embodiment)
33 and 34 show a sixth embodiment of the present invention. In the sixth embodiment, the light-emitting device according to the present invention is applied to a glasses-type display device as an example of a display device. FIG. 34 is a diagram showing the external shape of the eyeglass-type display device 700 of the sixth embodiment. FIG. 34 is an enlarged view of a part of the eyeglass lens 701 of the eyeglass-type display device 700.
 図33に示すように、眼鏡型表示装置700は、左右の眼鏡レンズ(透明基板)701と、左右のテンプル702と、レンズフレーム703とを備える。図34に示すように、左右の眼鏡レンズ701の内側表面には、複数の微細で透明な発光素子711を有する発光装置が設けられている。この発光装置は、第1実施形態で説明した発光装置の構造を備えている。また、複数の発光素子711とそれぞれ対向した位置に、複数の微細なマイクロレンズ721が設けられている。眼鏡型表示装置700はさらに、映像を表示するために複数の発光素子711の発光を制御するための制御回路(制御部)(図示せず)を備える。 33, the eyeglass-type display device 700 includes left and right eyeglass lenses (transparent substrates) 701, left and right temples 702, and a lens frame 703. As shown in FIG. 34, a light emitting device having a plurality of fine and transparent light emitting elements 711 is provided on the inner surfaces of the left and right eyeglass lenses 701. This light-emitting device has the structure of the light-emitting device described in the first embodiment. A plurality of fine microlenses 721 are provided at positions facing the plurality of light emitting elements 711 respectively. The glasses-type display device 700 further includes a control circuit (control unit) (not shown) for controlling the light emission of the plurality of light emitting elements 711 in order to display an image.
 すなわち、本実施形態における眼鏡型表示装置700は、透明基板である眼鏡レンズ701と、眼鏡レンズ701に配置された複数の発光素子711と、複数の発光素子711の各々に対応して設けられた複数のマイクロレンズ721と、映像を表示するために複数の発光素子711の発光を制御するための制御回路を少なくとも備えている。 That is, the eyeglass-type display device 700 according to the present embodiment is provided corresponding to each of the eyeglass lens 701 that is a transparent substrate, the plurality of light emitting elements 711 disposed on the eyeglass lens 701, and the plurality of light emitting elements 711. A plurality of microlenses 721 and at least a control circuit for controlling light emission of the plurality of light emitting elements 711 for displaying an image are provided.
 本実施形態においては、発光素子711として、上記第1実施形態またはその代替例に係る板状の発光素子200を用いている。したがって、接触抵抗を下げることによる発光効率の向上および消費電力の低減、ならびに歩留まりを向上できる。 In the present embodiment, as the light emitting element 711, the plate-like light emitting element 200 according to the first embodiment or an alternative example thereof is used. Accordingly, it is possible to improve the light emission efficiency, reduce the power consumption, and improve the yield by lowering the contact resistance.
 〔第7実施形態〕
 図35~37はこの発明の第7実施形態における表示装置の一例としてのLEDディスプレイ630を示している。ここで、図35はLEDディスプレイ630の外観形状を示す図、図36はLEDディスプレイ630の概略構成を示すブロック図、図37はLEDディスプレイ630の一サブ画素の回路を示す回路図である。
[Seventh Embodiment]
35 to 37 show an LED display 630 as an example of a display device according to the seventh embodiment of the present invention. Here, FIG. 35 is a diagram showing an external shape of the LED display 630, FIG. 36 is a block diagram showing a schematic configuration of the LED display 630, and FIG. 37 is a circuit diagram showing a circuit of one subpixel of the LED display 630.
 図36に示すように、LEDディスプレイ630は、記憶装置631、制御装置632、ソースドライバ633、ゲートドライバ634、及び表示部635を有する。記憶装置631は画像データやアドレス情報等を記憶する。 36, the LED display 630 includes a storage device 631, a control device 632, a source driver 633, a gate driver 634, and a display unit 635. The storage device 631 stores image data, address information, and the like.
 表示部635には、複数のソース線SLと複数のゲート線がそれぞれ、互いに交差するように配列されており、ソース線SLとゲート線GLとによって囲まれた部分がサブ画素PXとなる。つまり、表示部635には、複数のサブ画素PXがマトリックス状に配列されている。そして、各サブ画素PXはR(赤),G(緑),B(青)色のいずれか一つに対応しており、R(赤),G(緑),B(青)色のそれぞれに対応する3つのサブ画素PXで1つの画素が構成される。なお、PXを画素とした単色のLEDディスプレイとしても良い。 In the display portion 635, a plurality of source lines SL and a plurality of gate lines are arranged so as to cross each other, and a portion surrounded by the source lines SL and the gate lines GL is a sub-pixel PX. That is, the display unit 635 has a plurality of sub-pixels PX arranged in a matrix. Each sub-pixel PX corresponds to one of R (red), G (green), and B (blue) colors, and each of R (red), G (green), and B (blue) colors. One pixel is composed of three sub-pixels PX corresponding to. A single color LED display using PX as a pixel may be used.
 各サブ画素PXは図37に示すように、ソースがソース線SLに接続され、ゲートがゲート線GLに接続されたトランジスタT1、ゲートがトランジスタT1のドレインに接続され、ソースが電源Vsに接続されたトランジスタT2、一方の端子がトランジスタT1のソースに接続されたキャパシタC、及び、ゲートがトランジスタT2のドレインに接続された画素LED636を有する。 As shown in FIG. 37, each subpixel PX has a source connected to the source line SL, a gate connected to the gate line GL, a transistor T1, a gate connected to the drain of the transistor T1, and a source connected to the power supply Vs. Transistor T2, a capacitor C having one terminal connected to the source of transistor T1, and a pixel LED 636 having a gate connected to the drain of transistor T2.
 このLEDディスプレイ630は、アクティブマトリックスアドレス方式であり、記憶装置631から読み出された画像データ及びアドレス情報に基づき、上記制御装置632の制御の下、ソースドライバ633により選択電圧パルスがゲート線GLに供給され、ゲートドライバ634によりデータ信号がソース線SLに送られる。上記選択電圧パルスがトランジスタT1のゲートに入力されて、トランジスタT1がオンすると、上記データ信号は、トランジスタT1のソースからドレインに伝達され、データ信号はキャパシタCに電圧として記憶される。トランジスタT2は画素LED636の駆動用であり、この画素LED636として、第1実施形態またはその変形例に係る板状の発光素子が用いられる。 The LED display 630 is an active matrix address system, and a selection voltage pulse is applied to the gate line GL by the source driver 633 under the control of the control device 632 based on the image data and address information read from the storage device 631. The data signal is supplied to the source line SL by the gate driver 634. When the selection voltage pulse is input to the gate of the transistor T1 and the transistor T1 is turned on, the data signal is transmitted from the source to the drain of the transistor T1, and the data signal is stored as a voltage in the capacitor C. The transistor T2 is for driving the pixel LED 636. As the pixel LED 636, a plate-like light emitting element according to the first embodiment or a modification thereof is used.
 上記画素LED636は上記トランジスタT2を経て電源Vsに接続されている。よって、トランジスタT1からのデータ信号でトランジスタT2がオンすることにより、画素LED636は上記電源Vsによって駆動される。 The pixel LED 636 is connected to the power source Vs through the transistor T2. Therefore, when the transistor T2 is turned on by the data signal from the transistor T1, the pixel LED 636 is driven by the power source Vs.
 上述の通りマトリックス状に配列された複数のサブ画素PXの画素LED636とトランジスタT1,T2は基板上に形成されている。 As described above, the pixel LEDs 636 and the transistors T1 and T2 of the plurality of sub-pixels PX arranged in a matrix are formed on the substrate.
 この実施形態のLEDディスプレイ636は、例えば、以下の方法で製造することができる。 The LED display 636 of this embodiment can be manufactured by the following method, for example.
 まず、前述の第1実施形態で図7~図14を参照して説明した方法で複数の板状の発光素子200Aを形成する。次に、画素LED636となるこれらの板状の発光素子200Aを配置するための電極310,320(図15参照)並びにソース線SL及びゲート線GLが形成されたガラス等の基板(図16のガラス基板301に相当)上に、トランジスタT1、T2を通常のTFT形成方法を用いて形成する。次に、前述の第1実施形態で図15~図19を参照して説明したように、上記基板上の所定の位置に複数の板状の発光素子200Aを配置した後、発光素子200Aの半導体コア201を露出させて、露出部分205を有する発光素子200とし、さらに、第1配線340及び第2配線350(図17~19参照)を形成して、これらの板状の発光素子200を画素LED636としてそれぞれの対応するトランジスタT2のドレインとアース線とに接続する。最後に、各トランジスタT2のドレインとアース線とに接続された複数の板状の発光素子200即ち画素LED636が配置された基板(図20の面発光基板400に相当)を所望のサイズに分割して分割基板(図20の分割基板430に相当)とし、この分割基板を用いてLEDディスプレイ630が製造される。 First, a plurality of plate-like light emitting elements 200A are formed by the method described with reference to FIGS. 7 to 14 in the first embodiment. Next, a substrate such as glass on which electrodes 310 and 320 (see FIG. 15) and source lines SL and gate lines GL for disposing these plate-like light emitting elements 200A to be the pixel LEDs 636 are formed (the glass in FIG. 16). Transistors T1 and T2 are formed on the substrate 301) using a normal TFT forming method. Next, as described with reference to FIGS. 15 to 19 in the first embodiment, after a plurality of plate-like light emitting elements 200A are arranged at predetermined positions on the substrate, the semiconductor of the light emitting element 200A is arranged. The core 201 is exposed to form a light emitting element 200 having an exposed portion 205, and further, a first wiring 340 and a second wiring 350 (see FIGS. 17 to 19) are formed, and these plate-like light emitting elements 200 are formed as pixels. The LED 636 is connected to the drain of each corresponding transistor T2 and the ground line. Finally, a substrate (corresponding to the surface light emitting substrate 400 in FIG. 20) on which a plurality of plate-like light emitting elements 200, that is, the pixel LEDs 636 connected to the drain and the ground line of each transistor T2 is divided into a desired size. The divided substrate (corresponding to the divided substrate 430 in FIG. 20) is used, and the LED display 630 is manufactured using the divided substrate.
 このLEDディスプレイ630は、発光素子自体を画像表示のための画素LEDとして使用するものであるので、液晶表示装置などとは異なり、バックライトが不要である。したがって、部品コストと製造コストを低減できる。 Since the LED display 630 uses the light emitting element itself as a pixel LED for image display, a backlight is not required unlike a liquid crystal display device or the like. Therefore, component cost and manufacturing cost can be reduced.
 本実施形態においては、画素LED636として、上記第1実施形態またはその代替例に係る板状の発光素子200を用いている。したがって、前述の他の実施形態と同様に、接触抵抗を下げることによる発光効率の向上および消費電力の低減、ならびに歩留まりを向上できる。 In the present embodiment, as the pixel LED 636, the plate-like light emitting element 200 according to the first embodiment or an alternative example thereof is used. Therefore, as in the other embodiments described above, it is possible to improve luminous efficiency, reduce power consumption, and improve yield by reducing contact resistance.
 なお、図35に示したLEDディスプレイ630の外観形状は単なる一例であり、LEDディスプレイ630の外観形状は如何なるものであってもよい。また、この実施の形態のLEDディスプレイの駆動方式はアクティブマトリックス方式であるが、パッシブ方式としてもよい。 Note that the appearance of the LED display 630 shown in FIG. 35 is merely an example, and the appearance of the LED display 630 may be any shape. Moreover, although the drive system of the LED display of this embodiment is an active matrix system, it may be a passive system.
 〔第8実施形態〕
 図38は、この発明の第8実施形態における表示装置の一例としてのシースルー型(透明)LEDディスプレイ640の外観図である。このシースルー型LEDディスプレイ640は、表示部642がシースルーつまり透明である点において、第7実施形態のLEDディスプレイ630と異なる。表示部を取り囲むフレーム641は不透明としているが、透明であってもよい。
[Eighth Embodiment]
FIG. 38 is an external view of a see-through (transparent) LED display 640 as an example of a display device according to the eighth embodiment of the present invention. This see-through type LED display 640 is different from the LED display 630 of the seventh embodiment in that the display unit 642 is see-through, that is, transparent. Although the frame 641 surrounding the display unit is opaque, it may be transparent.
 表示部642の高い透明性を確保するために、表示部642を構成する構成部材の全てを透明な材料で形成するのが理想であるが、それが難しい場合には、少なくとも、表示部642を構成する基板、及び基板に形成されるソース線及びゲート線、画素LEDつまり板状の発光素子を覆う保護膜(図17の330参照)を透明な材料で形成すればよい。 In order to ensure high transparency of the display portion 642, it is ideal that all of the constituent members constituting the display portion 642 are formed of a transparent material. However, if this is difficult, at least the display portion 642 is provided. A protective film (see 330 in FIG. 17) that covers the substrate to be formed, the source line and the gate line formed on the substrate, the pixel LED, that is, the plate-like light emitting element, may be formed using a transparent material.
 シースルー型LEDディスプレイ640が画像を表示していないとき、背部にある物体が表示部642を介して透けて見える。また、画像を表示しているときでも、画像部分以外は透明なままとなる。 When the see-through LED display 640 is not displaying an image, an object on the back can be seen through the display unit 642. Even when an image is displayed, the portions other than the image portion remain transparent.
 第7実施形態と同様、この第8実施形態においても、発光素子自体を画像表示のための画素LEDとして使用するものであるので、液晶表示装置などとは異なり、バックライトが不要である。したがって、部品コストと製造コストを低減できる。また、上記第1実施形態またはその代替例に係る板状の発光素子を画素LEDとして用いているので、接触抵抗を下げることによる発光効率の向上および消費電力の低減、ならびに歩留まりを向上できる。 As in the seventh embodiment, in the eighth embodiment, the light emitting element itself is used as a pixel LED for image display, and therefore, unlike a liquid crystal display device, a backlight is unnecessary. Therefore, component cost and manufacturing cost can be reduced. In addition, since the plate-like light emitting element according to the first embodiment or its alternative is used as the pixel LED, it is possible to improve the light emission efficiency, reduce the power consumption, and improve the yield by reducing the contact resistance.
 なお、図38に示したシースルー型LEDディスプレイ640の外観形状は単なる一例であり、その外観形状は如何なるものであってもよい。 The appearance shape of the see-through LED display 640 shown in FIG. 38 is merely an example, and the appearance shape may be any.
 上記第5実施形態~第8実施形態において幾つかのタイプの表示装置を説明したが、これらはほんの一例であり、他のタイプの表示装置にも本発明は適用出来る。例えば、時計型の表示装置、携帯端末のための表示装置にも適用可能である。 Although several types of display devices have been described in the fifth to eighth embodiments, these are only examples, and the present invention can be applied to other types of display devices. For example, the present invention can be applied to a clock-type display device and a display device for a portable terminal.
 以上、本発明を図示した種々の実施形態について説明したが、ここに記載した半導体材料、基板材料、各種寸法、各種形状、製造方法は単に例示であって、発明を限定するものではない。 As mentioned above, although various embodiment which illustrated this invention was demonstrated, the semiconductor material, board | substrate material, various dimensions, various shapes, and manufacturing method which were described here are only illustrations, Comprising: Invention is not limited.
 200 発光素子
 200A 発光素子(露出部分205形成前のもの)
 201 n型の半導体コア
 202 活性層(発光層)
 203 p型の半導体層
 204 透明導電膜(導電層)
 205 露出部分
 2011、2012 半導体コア201の2つの端部 
 2013 半導体コア201の外周面
 2013a、2013b 外周面2013を構成する側面
 201A n型GaN膜
201B 板状のn型GaN膜
210 サファイア基板
220 マスク
301 ガラス基板
310、321 配置用の電極
311 電極310の一部である連結電極
312 電極310の一部である駆動電極
312B 駆動電極312の一部である凸部
321 電極320の一部である連結電極
322 電極320の一部である駆動電極
322B 駆動電極322の一部である凸部
330 保護膜
331、332 コンタクトホール
340、350 配線
341、351 配線340、350の一部であるコンタクトメタル
400 面発光基板(発光装置)
430A~430E 分割基板(発光装置)
500 発光装置
501 放熱板
502 絶縁性基板
510 LED電球
511 口金
512 放熱部
513 透光部
600、610 バックライト
601、611 支持基板
602、612 発光装置
620 液晶パネル
621 発光部分
622 透明基板
623 液晶
624 液晶封止板
630 LEDディスプレイ
631 記憶装置
632 制御装置
633 ソースドライバ
634 ゲートドライバ
635 表示部
636 発光素子640 シースルー型LEDディスプレイ
641 フレーム
642 表示部
820 液晶パネル
821 発光部分
822 透明基板
823 カラーフィルタ
824 保護膜
825 液晶
826 TFT
827 ガラス基板
700 眼鏡型表示装置
701 眼鏡レンズ
702 テンプル
703 レンズフレーム
711 発光素子
721 マイクロレンズ
PX 画素
GL ゲート線
SL ソース線
T1,T2 トランジスタ
C キャパシタ
Vs 電源
200 light emitting element 200A light emitting element (before the exposed portion 205 is formed)
201 n-type semiconductor core 202 active layer (light emitting layer)
203 p-type semiconductor layer 204 transparent conductive film (conductive layer)
205 Exposed portions 2011, 2012 Two ends of the semiconductor core 201
2013 Outer peripheral surface of semiconductor core 201 2013a, 2013b Side surface constituting outer peripheral surface 2013 201A n-type GaN film 201B Plate-shaped n-type GaN film 210 Sapphire substrate 220 Mask 301 Glass substrate 310, 321 Disposition electrode 311 One of electrodes 310 Connecting electrode 312 which is a part Driving electrode 312B which is a part of electrode 310 Convex part 321 which is a part of driving electrode 312 Connecting electrode 322 which is a part of electrode 320 Driving electrode 322B which is a part of electrode 320 Driving electrode 322 340, 350 Contact hole 340, 350 Wiring 341, 351 Contact metal 400, part of wiring 340, 350 Surface emitting substrate (light emitting device)
430A to 430E Divided substrate (light emitting device)
500 Light-Emitting Device 501 Heat-Dissipating Plate 502 Insulating Substrate 510 LED Bulb 511 Base 512 Heat-Dissipating Unit 513 Light-Transmitting Units 600 and 610 Backlights 601 and 611 Support Substrate 602 and 612 Light-Emitting Device 620 Liquid Crystal Panel 621 Light-Emitting Portion 622 Transparent Substrate 623 Liquid Crystal 624 Liquid Crystal Sealing plate 630 LED display 631 Storage device 632 Control device 633 Source driver 634 Gate driver 635 Display unit 636 Light-emitting element 640 See-through LED display 641 Frame 642 Display unit 820 Liquid crystal panel 821 Light-emitting portion 822 Transparent substrate 823 Color filter 824 Protective film 825 Liquid crystal 826 TFT
827 Glass substrate 700 Eyeglass-type display device 701 Eyeglass lens 702 Temple 703 Lens frame 711 Light emitting element 721 Microlens PX Pixel GL Gate line SL Source line T1, T2 Transistor C Capacitor Vs Power supply

Claims (9)

  1.  第1の方向において対向する2つの端部とこれら端部の間の2以上の側面からなる外周面を有する第1導電型の半導体コアと、上記半導体コアの上記外周面の回りに配置された第2導電型の半導体層とを少なくとも備えて、上記半導体コアと上記半導体層との間で発光するようになっており、上記半導体コアの側面の少なくとも1つは側面全体が上記半導体層で覆われ、別の側面は上記半導体層によって覆われずに露出している露出部分を有する発光素子であって、
     上記第1の方向と直交する上記半導体コアの横断面は、第2の方向の長さL1と、上記第2の方向と直交する第3の方向の長さL2とを有し、長さL1は、2×L2≦L1≦1000×L2の範囲にあり、
     上記半導体コアの露出部分は、上記第2の方向の長さL3と上記第1の方向の長さL4とを有し、上記長さL3は上記半導体コアの横断面の第2の方向の長さL1の60%~100%の長さであることを特徴とする発光素子。
    A first-conductivity-type semiconductor core having an outer peripheral surface composed of two end portions facing each other in the first direction and two or more side surfaces between the end portions; and disposed around the outer peripheral surface of the semiconductor core. A semiconductor layer of at least a second conductivity type, and emits light between the semiconductor core and the semiconductor layer. At least one of the side surfaces of the semiconductor core is covered with the semiconductor layer. Another side surface is a light emitting device having an exposed portion that is exposed without being covered by the semiconductor layer,
    The cross section of the semiconductor core orthogonal to the first direction has a length L1 in the second direction and a length L2 in the third direction orthogonal to the second direction. Is in the range of 2 × L2 ≦ L1 ≦ 1000 × L2,
    The exposed portion of the semiconductor core has a length L3 in the second direction and a length L4 in the first direction, and the length L3 is a length in the second direction of the cross section of the semiconductor core. A light emitting element having a length of 60% to 100% of L1.
  2.  請求項1に記載の発光素子において、
     上記半導体コアは、上記横断面が多角形状または楕円形状である板状コアであることを特徴とする発光素子。
    The light emitting device according to claim 1,
    The light-emitting element, wherein the semiconductor core is a plate-like core having a polygonal or elliptical cross section.
  3.  請求項1または2に記載の発光素子において、
     上記半導体コアは上記第1の方向の長さL5を有し、L5≧L1であることを特徴とする発光素子。
    The light emitting device according to claim 1 or 2,
    The light emitting element, wherein the semiconductor core has a length L5 in the first direction, and L5 ≧ L1.
  4.  請求項1~3のいずれか1つに記載の発光素子において、
     上記半導体コアの横断面の上記第3の方向の長さL2および上記第2の方向の長さL1はそれぞれ、100nm~20μmおよび300nm~500μmの範囲内にあることを特徴とする発光素子。
    The light emitting device according to any one of claims 1 to 3,
    The light emitting element, wherein a length L2 in the third direction and a length L1 in the second direction of the cross section of the semiconductor core are in a range of 100 nm to 20 μm and 300 nm to 500 μm, respectively.
  5.  請求項4に記載の発光素子において、
     上記露出部の上記第2方向の長さL3および上記第1方向の長さL4はそれぞれ、300nm~500μmおよび300nm~500μmの範囲内にあることを特徴とする発光素子。
    The light emitting device according to claim 4.
    The light emitting element, wherein the length L3 in the second direction and the length L4 in the first direction of the exposed portion are in the range of 300 nm to 500 μm and 300 nm to 500 μm, respectively.
  6.  基板と、
     上記基板上に載置された複数の発光素子と、
     上記発光素子に電気的に接続されている配線と
    を備え、
     上記発光素子は、請求項1~5のいずれか1つに記載の発光素子であって、上記第2導電型の半導体層を覆う導電膜をさらに備え、
     上記配線は、上記発光素子の半導体コアの露出部分に接触するコンタクトメタルを有する第1の配線及び上記導電膜に接触するコンタクトメタルを有する第2の配線を含んでいることを特徴とする発光装置。
    A substrate,
    A plurality of light-emitting elements mounted on the substrate;
    A wiring electrically connected to the light emitting element,
    The light emitting device according to any one of claims 1 to 5, further comprising a conductive film covering the semiconductor layer of the second conductivity type,
    The wiring includes a first wiring having a contact metal in contact with an exposed portion of a semiconductor core of the light emitting element and a second wiring having a contact metal in contact with the conductive film. .
  7.  請求項6に記載の発光装置を備えたことを特徴とする照明装置。 An illumination device comprising the light-emitting device according to claim 6.
  8.  請求項6に記載の発光装置を備えたことを特徴とするバックライト。 A backlight comprising the light-emitting device according to claim 6.
  9.  請求項6に記載の発光装置を備えたことを特徴とする表示装置。 A display device comprising the light-emitting device according to claim 6.
PCT/JP2017/016569 2016-07-11 2017-04-26 Light emitting element, light emitting device, lighting device, backlight and display device WO2018012086A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016136934A JP2019149389A (en) 2016-07-11 2016-07-11 Light emitting element, light emitting device, illumination device, backlight, and display device
JP2016-136934 2016-07-11

Publications (1)

Publication Number Publication Date
WO2018012086A1 true WO2018012086A1 (en) 2018-01-18

Family

ID=60952488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016569 WO2018012086A1 (en) 2016-07-11 2017-04-26 Light emitting element, light emitting device, lighting device, backlight and display device

Country Status (2)

Country Link
JP (1) JP2019149389A (en)
WO (1) WO2018012086A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060273328A1 (en) * 2005-06-02 2006-12-07 Nanosys, Inc. Light emitting nanowires for macroelectronics
WO2007144944A1 (en) * 2006-06-14 2007-12-21 Kyosemi Corporation Rod-type semiconductor device
US20110254043A1 (en) * 2009-10-19 2011-10-20 Sharp Kabushiki Kaisha Rod-like light-emitting device, method of manufacturing rod-like light-emitting device, backlight, illuminating device, and display device
WO2012029381A1 (en) * 2010-09-01 2012-03-08 シャープ株式会社 Light emitting element and production method for same, production method for light-emitting device, illumination device, backlight, display device, and diode
JP2015126048A (en) * 2013-12-26 2015-07-06 シャープ株式会社 Light-emitting element, method of manufacturing light-emitting element, light-emitting device comprising plurality of light-emitting elements, and method of manufacturing light-emitting device
WO2016084672A1 (en) * 2014-11-26 2016-06-02 シャープ株式会社 Display device and production method for display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060273328A1 (en) * 2005-06-02 2006-12-07 Nanosys, Inc. Light emitting nanowires for macroelectronics
WO2007144944A1 (en) * 2006-06-14 2007-12-21 Kyosemi Corporation Rod-type semiconductor device
US20110254043A1 (en) * 2009-10-19 2011-10-20 Sharp Kabushiki Kaisha Rod-like light-emitting device, method of manufacturing rod-like light-emitting device, backlight, illuminating device, and display device
WO2012029381A1 (en) * 2010-09-01 2012-03-08 シャープ株式会社 Light emitting element and production method for same, production method for light-emitting device, illumination device, backlight, display device, and diode
JP2015126048A (en) * 2013-12-26 2015-07-06 シャープ株式会社 Light-emitting element, method of manufacturing light-emitting element, light-emitting device comprising plurality of light-emitting elements, and method of manufacturing light-emitting device
WO2016084672A1 (en) * 2014-11-26 2016-06-02 シャープ株式会社 Display device and production method for display device

Also Published As

Publication number Publication date
JP2019149389A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
US11114499B2 (en) Display device having light emitting stacked structure
US10886327B2 (en) Light emitting stacked structure and display device having the same
US11522006B2 (en) Light emitting stacked structure and display device having the same
US10096647B2 (en) Display apparatus having a plurality of reflective electrodes
EP3228157B1 (en) Display device using semiconductor light emitting device and method for manufacturing thereof
US20170242161A1 (en) Display panels with integrated micro lens array
EP3091578B1 (en) Transparent oled device and display device employing same
BR112020010653A2 (en) LED light for display and display device having the same
CN109656050B (en) Liquid crystal display device and method of manufacturing the same
US7315076B2 (en) Display device and manufacturing method of the same
US11742472B2 (en) Unit pixel having light emitting device, pixel module and displaying apparatus
KR102555828B1 (en) High resolution micro led display device and the manufacturing method of the same
CN107229158A (en) Liquid crystal display device
KR20220043993A (en) Display device and method of fabricating the same
US20230045618A1 (en) Display device
WO2018012086A1 (en) Light emitting element, light emitting device, lighting device, backlight and display device
US11942574B2 (en) Display device and method of manufacturing the same
KR20160001857A (en) Light emitting diode package and light emitting diode display device
KR101802778B1 (en) Organic light emitting display device
EP4024466A1 (en) Electronic device substrate and method for manufacture and electronic device thereof
WO2016163231A1 (en) Spectacle type display device
US20230155063A1 (en) Display device
US20210050479A1 (en) Micro light emitting diode and micro light emitting diode device substrate
KR102273876B1 (en) Fabricating method for thin film transistor array substrate
KR20230111697A (en) Manufacturing method for display device, panel for manufacturing display device and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17827220

Country of ref document: EP

Kind code of ref document: A1