WO2018011994A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2018011994A1
WO2018011994A1 PCT/JP2016/071081 JP2016071081W WO2018011994A1 WO 2018011994 A1 WO2018011994 A1 WO 2018011994A1 JP 2016071081 W JP2016071081 W JP 2016071081W WO 2018011994 A1 WO2018011994 A1 WO 2018011994A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
unit
leakage
detection device
Prior art date
Application number
PCT/JP2016/071081
Other languages
French (fr)
Japanese (ja)
Inventor
祐治 本村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018527371A priority Critical patent/JP6701337B2/en
Priority to GB1820586.4A priority patent/GB2566201B/en
Priority to PCT/JP2016/071081 priority patent/WO2018011994A1/en
Publication of WO2018011994A1 publication Critical patent/WO2018011994A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0312Pressure sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves

Definitions

  • the present invention relates to an air conditioner applied to a building multi air conditioner or the like.
  • an outdoor unit that is a heat source unit is disposed outside a building such as a rooftop of a building
  • an indoor unit is disposed in a building, such as a multi air conditioner for buildings.
  • the refrigerant circulating in the refrigerant circuit dissipates or absorbs heat by exchanging heat with the air supplied to the use side heat exchanger provided in the indoor unit, and heats or cools the air. To do. Then, the heated or cooled air is sent into the air-conditioning target space, thereby heating or cooling the space.
  • an air conditioner for example, there is a multi-air conditioner for simultaneous cooling and heating that can simultaneously use both cooling operation and heating operation in the same system (see, for example, Patent Document 1).
  • a branch unit is provided between the outdoor unit and the indoor unit, and the refrigerant heated or cooled by the outdoor unit is separated into liquid refrigerant and gas refrigerant in the branch unit.
  • the liquid refrigerant is allowed to flow into the use side heat exchanger of the indoor unit, and the liquid refrigerant evaporates, whereby the cooling operation can be performed, and the gas refrigerant is allowed to flow into the use side heat exchanger.
  • the heating operation can be performed by condensing the gas refrigerant.
  • a refrigerant used for an air conditioner generally, a substance containing hydrogen and carbon such as R410A which is nonflammable, R32 which is weakly flammable, and propane which shows strong flammability is used. These refrigerants, when released into the atmosphere, have different lifetimes until they are decomposed and changed to other substances, but they are highly stable in refrigerant circuits and used as refrigerants for a long period of several decades. can do.
  • a refrigerant that uses a natural refrigerant such as carbon dioxide (CO 2 ) has been proposed.
  • a plurality of indoor units are connected to one refrigerant pipe, and the refrigerant is conveyed to the plurality of indoor units in order to perform a cooling operation or a heating operation.
  • the number of connected indoor units increases, the total refrigerant amount of the refrigerant circulating in the refrigerant circuit increases accordingly. Therefore, when refrigerant leakage occurs, the amount of refrigerant that leaks increases in proportion to the total amount of refrigerant. For example, when refrigerant leaks indoors, the refrigerant concentration in the space may increase as the indoor space becomes narrower.
  • the refrigerant pipe connecting the outdoor unit and the indoor unit becomes long.
  • coolant which circulates through a refrigerant circuit will increase according to it.
  • the amount of refrigerant leaking increases in proportion to the total refrigerant amount. Therefore, for example, when refrigerant leakage occurs in the room, the refrigerant concentration in the space may increase as the indoor space becomes narrower.
  • the present invention has been made in view of the above-described problems in the prior art, and is an air conditioner that can easily identify a leakage location while suppressing the leakage of the refrigerant when the refrigerant leaks.
  • the purpose is to provide.
  • An air conditioner of the present invention is an air conditioner in which a refrigerant circuit is formed by connecting an outdoor unit and a plurality of indoor units with refrigerant pipes and circulating a refrigerant, and is provided in an air-conditioning target space.
  • a refrigerant leakage detection device that detects leakage of the refrigerant to the air-conditioning target space; a plurality of refrigerant pressure detection devices that are provided in the refrigerant piping and that detect the pressure of the refrigerant flowing through the refrigerant piping; and the refrigerant piping.
  • a refrigerant shut-off valve provided to permit or block the flow of the refrigerant, and a control device that controls opening and closing of the refrigerant shut-off valve, wherein the control device detects the refrigerant leak detection device or the refrigerant pressure detection device Based on the result, it is determined whether or not the refrigerant has leaked.
  • the refrigerant shut-off valve is controlled to be closed, and the refrigerant pressure detection device detects the refrigerant. Based on the variation of the pressure of the refrigerant in the medium pipe, it is to identify the leakage location of the refrigerant.
  • the refrigerant shut-off valve is closed to The leakage of the refrigerant when the leakage occurs can be suppressed, and the leakage location can be easily identified by the pressure fluctuation of the refrigerant in the refrigerant piping based on the detection result of the refrigerant pressure detection device.
  • FIG. 6 is a schematic diagram illustrating an example of a circuit configuration of an air-conditioning apparatus according to Embodiment 2.
  • FIG. It is a block diagram which shows an example of a structure of the control apparatus of FIG.
  • FIG. 6 is a flowchart illustrating an example of a flow of refrigerant leakage detection processing in the air-conditioning apparatus according to Embodiment 2. It is the schematic which shows the example of installation of the air conditioning apparatus which concerns on this Embodiment 3.
  • FIG. 6 is a flowchart illustrating an example of a flow of refrigerant leakage detection processing in the air-conditioning apparatus according to Embodiment 2. It is the schematic which shows the example of installation of the air conditioning apparatus which concerns on this Embodiment 3.
  • Embodiment 1 FIG.
  • the air conditioner according to Embodiment 1 is a cooling / heating switching type air conditioner in which a plurality of indoor units can simultaneously perform either one of a cooling operation and a heating operation.
  • FIG. 1 is a schematic diagram illustrating an installation example of the air-conditioning apparatus 1 according to the first embodiment.
  • the air conditioner 1 includes an outdoor unit 10 as a heat source unit and a plurality of indoor units 20.
  • the outdoor unit 10 and the plurality of indoor units 20 are connected by two refrigerant pipes 30. Thereby, a refrigerant circuit in which the refrigerant circulates in the refrigerant pipe 30 is formed.
  • indoor unit 20 two indoor units 20A and 20B are connected to one outdoor unit 10.
  • indoor unit 20 when it is not necessary to distinguish between the indoor units 20A and 20B, they are simply referred to as “indoor unit 20” as appropriate.
  • the outdoor unit 10 is usually installed in a space outside the building 2 such as a building, for example, an outdoor space 3 such as a rooftop.
  • the outdoor unit 10 generates cold or warm heat, and supplies the generated cold or warm heat to the indoor unit 20 via the refrigerant pipe 30.
  • the indoor unit 20 supplies cooling air or heating air to a space inside the building 2, for example, an indoor space 4 that is an air-conditioning target space such as a living room or a server room, by the cooling or heating supplied from the outdoor unit 10.
  • a space inside the building 2 for example, an indoor space 4 that is an air-conditioning target space such as a living room or a server room
  • the indoor unit 20 is installed in a space 5 such as the back of the ceiling, which is inside the building 2 but is different from the indoor space 4.
  • the indoor unit 20 can also be used, for example, as floor heating that is installed under the floor and warms the floor surface by heat supplied during heating operation.
  • the number of indoor units 20 connected to the outdoor unit 10 is not limited to this example.
  • one indoor unit 20 may be connected to one outdoor unit 10, or two or four indoor units 20 may be connected. Two or more indoor units 20 may be connected.
  • a plurality of outdoor units 10 may be provided, and one or a plurality of indoor units 20 may be connected to the plurality of outdoor units 10. That is, the number of outdoor units 10 and indoor units 20 can be appropriately determined according to the scale of the building 2 where the air conditioner 1 is installed.
  • the refrigerant pipe 30 is provided with a refrigerant pressure detection device 6 for detecting the pressure of the refrigerant flowing inside.
  • the refrigerant pipe 30 is provided with a refrigerant shut-off valve 7 for blocking the refrigerant flowing into and out of each indoor unit 20 corresponding to each indoor unit 20. Details of the refrigerant pressure detection device 6 and the refrigerant cutoff valve 7 will be described later.
  • a refrigerant leak detection device 8 is installed in the indoor space 4.
  • the refrigerant leak detection device 8 is for detecting the refrigerant leak when the refrigerant leaks from the refrigerant pipe 30 and flows into the indoor space 4.
  • the refrigerant leakage detection device 8 supplies a detection signal indicating a detection result of refrigerant leakage into the indoor space 4 to the control device 40 described later.
  • the refrigerant leak detection device 8 is installed, for example, at the lower end of the indoor space 4. Note that the installation position of the refrigerant leakage detection device 8 is not limited to this example, and may be installed at any position as long as the refrigerant leakage can be accurately detected.
  • refrigerant leak detection device 8 for example, a semiconductor or infrared leak detection device can be used.
  • the refrigerant leakage detection device 8 is not limited to this, and any apparatus can be used as long as the refrigerant can be detected, for example.
  • FIG. 2 is a schematic diagram illustrating an example of a circuit configuration of the air-conditioning apparatus 1 according to the first embodiment.
  • a case where two indoor units 20 ⁇ / b> A and 20 ⁇ / b> B are connected to one outdoor unit 10 via the refrigerant pipe 30 is shown.
  • the number of outdoor units 10 and indoor units 20 is not limited to this example.
  • the outdoor unit 10 includes a compressor 11, a refrigerant flow switching device 12, a heat source side heat exchanger 13, and an accumulator 14.
  • the compressor 11 sucks a low-temperature and low-pressure refrigerant, compresses the refrigerant, and discharges it in a high-temperature and high-pressure state.
  • the compressor 11 for example, an inverter compressor or the like that can control the capacity that is the refrigerant delivery amount per unit time by arbitrarily changing the drive frequency can be used.
  • the refrigerant flow switching device 12 is, for example, a four-way valve, and switches between a cooling operation and a heating operation by switching the direction in which the refrigerant flows.
  • the refrigerant flow switching device 12 is not limited to the above-described four-way valve, and for example, other valves may be used in combination.
  • the heat source side heat exchanger 13 performs heat exchange between air (hereinafter referred to as “outdoor air” as appropriate) supplied by a blower such as a fan (not shown) and the refrigerant. Specifically, the heat source side heat exchanger 13 functions as a condenser that radiates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation. The heat source side heat exchanger 13 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air by the heat of vaporization at that time.
  • the accumulator 14 is provided on the low pressure side that is the suction side of the compressor 11.
  • the accumulator 14 stores surplus refrigerant generated due to a difference in operating state between the cooling operation and the heating operation, surplus refrigerant with respect to a transient change in operation, and the like.
  • the indoor units 20A and 20B perform, for example, cooling and heating of air in an air-conditioning target space.
  • the indoor unit 20A includes an expansion device 21A that is an indoor heat exchanger and a use side heat exchanger 22A.
  • the indoor unit 20B includes a throttle device 21B and a use side heat exchanger 22B.
  • the diaphragm devices 21A and 21B when it is not necessary to distinguish between the diaphragm devices 21A and 21B, they will be simply referred to as “the diaphragm device 21” as appropriate.
  • the use side heat exchangers 22A and 22B are simply referred to as “use side heat exchanger 22” as appropriate.
  • the expansion device 21 decompresses and expands the refrigerant by adjusting the flow rate of the refrigerant.
  • the expansion device 21 is constituted by a valve capable of controlling the opening, such as an electronic expansion valve.
  • the diaphragm device 21 is not limited to this, and other diaphragm devices such as capillaries can also be used.
  • the use side heat exchanger 22 performs heat exchange between air and a refrigerant supplied by a blower such as a fan (not shown). Thereby, heating air or cooling air supplied to the indoor space 4 is generated.
  • the use-side heat exchanger 22 functions as an evaporator when the refrigerant carries cold heat during the cooling operation, and cools the air in the indoor space 4 that is the air-conditioning target space by cooling the air.
  • the use side heat exchanger 22 functions as a condenser when the refrigerant is transporting warm heat during the heating operation, and heats the air in the indoor space 4 to perform heating.
  • Refrigerant pressure detection devices 6 a and 6 b are provided in the refrigerant pipe 30 that connects the outdoor unit 10 and the indoor unit 20.
  • the refrigerant pressure detection device 6a is provided between the branch point 35a of the refrigerant pipe 30 and the indoor unit 20B.
  • the refrigerant pressure detection device 6b is provided between the branch point 35b of the refrigerant pipe 30 and the indoor unit 20B.
  • These refrigerant pressure detection devices 6a and 6b are used in an outdoor space when the air conditioner 1 is in an operating state and the refrigerant is circulating in the refrigerant pipe 30 or when the air conditioner 1 is in an operation stop state. 3 and the refrigerant saturation pressure corresponding to the temperature of the indoor space 4 are detected. Then, the refrigerant pressure detection devices 6a and 6b output a detection signal indicating the refrigerant pressure as a detection result to the control device 40 described later.
  • the refrigerant piping 30 that connects the outdoor unit 10 and the indoor unit 20 is provided with refrigerant cutoff valves 7a to 7d.
  • the refrigerant shut-off valve 7a is provided between the branch point 35a of the refrigerant pipe 30 and the indoor unit 20A.
  • the refrigerant shut-off valve 7b is provided between the indoor unit 20A and the branch point 35b of the refrigerant pipe 30.
  • the refrigerant cutoff valve 7c is provided between the branch point 35a and the indoor unit 20B.
  • the refrigerant shut-off valve 7d is provided between the indoor unit 20B and the branch point 35b.
  • These refrigerant cutoff valves 7a to 7d are controlled by the control device 40 to open and close the valves, and allow or block the refrigerant flow in the refrigerant piping 30.
  • the refrigerant shut-off valves 7a to 7d are in the “open” state in the normal state, and the refrigerant flow is allowed.
  • the refrigerant cutoff valves 7a to 7d are brought into a “closed” state based on the control of the control device 40, and the refrigerant flow is blocked.
  • the indoor unit 20A When the refrigerant shutoff valves 7a and 7b are in the “closed” state, the indoor unit 20A is disconnected from the outdoor unit 10 and can be made independent of the air conditioner 1. Further, when the refrigerant shutoff valves 7c and 7d are in the “closed” state, the indoor unit 20B is disconnected from the outdoor unit and can be made independent of the air conditioner 1. Any one of the refrigerant shut-off valves 7a to 7d can be used as long as it has a function of shutting off the refrigerant circuit.
  • the air conditioner 1 is provided with a control device 40.
  • the control device 40 includes, for example, software executed on an arithmetic device such as a microcomputer or a CPU (Central Processing Unit), hardware such as a circuit device that realizes various functions, and the like. To control.
  • control device 40 determines the compressor frequency of the compressor 11 and the valve opening degree of the expansion device 21 based on the operation contents instructed by the user, the detection results from the refrigerant pressure detection device 6 and the refrigerant leakage detection device 8, and the like. The opening and closing of the refrigerant shutoff valve 7 is controlled. In addition, the control device 40 performs a process of specifying a refrigerant leakage location based on detection results from the refrigerant pressure detection device 6 and the refrigerant leakage detection device 8 when the refrigerant leaks from the refrigerant pipe 30.
  • FIG. 3 is a block diagram showing an example of the configuration of the control device 40 of FIG.
  • the control device 40 includes a leak determination unit 41, a pressure comparison unit 42, a shut-off valve control unit 43, and a leak location determination unit 44.
  • the control apparatus 40 in this example only the part relevant to this Embodiment 1 is shown in figure, and illustration is abbreviate
  • the leakage determination unit 41 determines whether or not refrigerant leakage has occurred based on information indicated by the detection signal received from the refrigerant leakage detection device 8 or information indicating a comparison result from the pressure comparison unit 42 described later.
  • the leakage determination unit 41 supplies information indicating the determination result to the cutoff valve control unit 43.
  • the pressure comparison unit 42 compares the pressure indicated by the detection signal received from the refrigerant pressure detection device 6 with a reference pressure (hereinafter referred to as “pressure determination value” as appropriate) P as a preset pressure determination value. To do.
  • the pressure comparison unit 42 supplies information indicating the comparison result to the leakage determination unit 41 or a leakage point determination unit 44 described later.
  • the pressure determination value P is determined from, for example, the pressure of the refrigerant existing in the refrigerant pipe 30 during operation stop.
  • the pressure determination value P for example, a low value or an average value of the refrigerant saturation pressure calculated from the temperature of the outdoor space 3 (hereinafter referred to as “outdoor temperature” as appropriate) or the indoor temperature of the indoor space 4 is used. Can be used.
  • the shut-off valve control unit 43 receives information indicating the judgment result by the leak judgment unit 41 and controls the opening and closing of the refrigerant shut-off valve 7 based on this information. For example, when the information indicating the determination result indicates the leakage of the refrigerant, the cutoff valve control unit 43 controls the refrigerant cutoff valve 7 to close.
  • the leak location determination unit 44 determines the leak location based on the information received from the pressure comparison unit 42. Then, the leakage location determination unit 44 supplies information indicating the determination result to the cutoff valve control unit 43. For example, the leakage location determination unit 44 determines that the refrigerant has leaked from the surrounding refrigerant pipe 30 in which the refrigerant pressure detection device 6 showing a pressure lower than the pressure determination value P is installed.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the heat source side heat exchanger 13 via the refrigerant flow switching device 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 13 condenses while exchanging heat with the outdoor air and dissipates heat, and becomes a supercooled high-pressure liquid refrigerant that flows out of the heat source side heat exchanger 13. Then, the high-pressure liquid refrigerant flows out from the outdoor unit 10.
  • the high-pressure liquid refrigerant that has flowed out of the outdoor unit 10 branches via the refrigerant pipe 30 and flows into the indoor units 20A and 20B.
  • the high-pressure liquid refrigerant that has flowed into the indoor unit 20A is depressurized by the expansion device 21A via the refrigerant shut-off valve 7a provided in the refrigerant pipe 30, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant, which is supplied to the use-side heat exchanger 22A. Inflow.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the use side heat exchanger 22A exchanges heat with the room air, absorbs heat and evaporates, thereby cooling the room air and becomes a low-temperature and low-pressure gas refrigerant to use side heat exchange.
  • the low-temperature and low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22A flows out of the indoor unit 20A.
  • the high-pressure liquid refrigerant that has flowed into the indoor unit 20B is decompressed by the expansion device 21B via the refrigerant shut-off valve 7c provided in the refrigerant pipe 30, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant. It flows into 22B.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the use side heat exchanger 22B exchanges heat with the indoor air, absorbs heat and evaporates, thereby cooling the indoor air and becomes a low-temperature and low-pressure gas refrigerant to use-side heat exchange.
  • Out of the vessel 22B The low-temperature and low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22B flows out of the indoor unit 20B.
  • the low-temperature and low-pressure gas refrigerant that has flowed out of the indoor unit 20A and the low-temperature and low-pressure gas refrigerant that has flowed out of the indoor unit 20B are joined together via the refrigerant shut-off valve 7c and the refrigerant shut-off valve 7d provided in the refrigerant pipe 30, respectively. It flows into the outdoor unit 10.
  • the low-temperature and low-pressure gas refrigerant that has flowed into the outdoor unit 10 passes through the refrigerant flow switching device 12 and the accumulator 14 and is sucked into the compressor 11.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows out of the outdoor unit 10 through the refrigerant flow switching device 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 10 branches via the refrigerant pipe 30 and flows into the indoor units 20A and 20B.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 20A flows into the use-side heat exchanger 22A, exchanges heat with the indoor air, condenses while dissipating heat, and becomes a high-pressure liquid refrigerant in a supercooled state. It flows out of the exchanger 22A.
  • the high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 22A is decompressed by the expansion device 21A, becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant, and flows out of the indoor unit 20A.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 20B flows into the use-side heat exchanger 22B, condenses while exchanging heat by exchanging heat with room air, and is used as a supercooled high-pressure liquid refrigerant. It flows out from the side heat exchanger 22B.
  • the high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 22B is decompressed by the expansion device 21B, becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant, and flows out of the indoor unit 20B.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed out of the indoor unit 20A and the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed out of the indoor unit 20B are joined together via the refrigerant shut-off valve 7a and the refrigerant shut-off valve 7c. Flows into the machine 10.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor unit 10 flows into the heat source side heat exchanger 13, exchanges heat with outdoor air, absorbs and evaporates, and becomes a low-temperature and low-pressure gas refrigerant, thereby heat-source-side heat exchange. It flows out of the vessel 13.
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 13 passes through the refrigerant flow switching device 12 and the accumulator 14 and is sucked into the compressor 11. Thereafter, the above-described circulation is repeated.
  • the air conditioner 1 performs the cooling operation or the heating operation so that the temperature of the indoor space 4 (hereinafter, appropriately referred to as “indoor temperature”) becomes a set temperature. At this time, when the room temperature reaches the set temperature, the air conditioner 1 stops the supply of the refrigerant to the use side heat exchanger 22 of the indoor unit 20 and performs a blowing operation by the blower attached to the use side heat exchanger 22. Switch to mode.
  • the air conditioner 1 stops the supply of the refrigerant to the use side heat exchanger 22 when, for example, there is an instruction from the user,
  • the operation mode is switched to a stop mode in which the operation of the blower attached to the use side heat exchanger 22 is also stopped.
  • FIG. 4 is a flowchart illustrating an example of the flow of the refrigerant leakage detection process in the air-conditioning apparatus 1 according to Embodiment 1.
  • the case where the leakage of the refrigerant is detected in a state where the operation of the air conditioner 1 is stopped will be described.
  • the leakage determination unit 41 of the control device 40 determines whether the refrigerant leakage is detected by the refrigerant leakage detection device 8 in step S2. Judge whether or not.
  • step S2 When it is determined that the refrigerant leakage is detected by the refrigerant leakage detection device 8 (step S2; Yes), the leakage determination unit 41 determines that the refrigerant has leaked into the indoor space 4, and the process proceeds to step S3. To do. In step S ⁇ b> 3, the cutoff valve control unit 43 of the control device 40 performs control so that the target refrigerant cutoff valve 7 is closed.
  • the shut-off valve control unit 43 since it is necessary to suppress the leakage of the refrigerant to the indoor space 4, the shut-off valve control unit 43 includes the refrigerant shut-off valves of the refrigerant pipes 30 connected to all the indoor units 20 installed in the indoor space 4. 7 and the refrigerant shutoff valve 7 on the upstream side thereof are controlled to close. Therefore, in the example shown in FIGS. 1 and 2, the shutoff valve control unit 43 controls the coolant shutoff valves 7a to 7d as the “target coolant shutoff valve 7” to be closed. Thereby, the refrigerant circuit corresponding to the indoor unit 20 installed in the indoor space 4 can be separated from the air conditioner 1.
  • step S ⁇ b> 4 the leakage point determination unit 44 of the control device 40 identifies the leakage point of the refrigerant in the refrigerant pipe 30.
  • the location of the refrigerant leakage can be identified based on, for example, fluctuations in the pressure of the refrigerant in the refrigerant pipe 30 using the detection result of the refrigerant pressure detection device 6.
  • the pressure comparison unit 42 compares the pressure indicated by the detection signal received from each refrigerant pressure detection device 6 provided in the refrigerant pipe 30 with the pressure determination value P.
  • the leak location determination part 44 judges that the refrigerant
  • step S2 when it is determined in step S2 that the refrigerant leakage detection device 8 has not detected the leakage (step S2; No), the leakage determination unit 41 determines that the refrigerant has leaked into the outdoor space 3, and the processing is performed in step S2. The process proceeds to S5.
  • step S ⁇ b> 5 the leakage determination unit 41 determines whether or not the refrigerant leakage is detected by the refrigerant pressure detection device 6 provided in the refrigerant pipe 30 connected to the indoor unit 20. When it is determined that the refrigerant leakage is detected by the refrigerant pressure detection device 6 (step S5; Yes), the process proceeds to step S6.
  • detection of refrigerant leakage by the refrigerant pressure detection device 6 can be performed based on, for example, fluctuations in the pressure of the refrigerant in the refrigerant pipe 30. Specifically, when the pressure indicated by the detection result of each refrigerant pressure detection device 6 is compared with the pressure determination value P, and the pressure of the refrigerant pressure detection device 6 is lower than the pressure determination value P, It can be determined that the refrigerant has leaked.
  • step S6 the shutoff valve control unit 43 performs control so that the target coolant shutoff valve 7 is closed.
  • the leakage determination unit 41 determines that the refrigerant has leaked from the surrounding refrigerant pipe 30 where the refrigerant pressure detection device 6 showing a pressure lower than the pressure determination value P is installed.
  • the cutoff valve control part 43 is controlled to close the refrigerant cutoff valve 7 of the refrigerant
  • the cutoff valve control unit 43 controls to close the refrigerant cutoff valve 7 c.
  • step S ⁇ b> 7 the leak location determination unit 44 specifies the leak location of the refrigerant in the refrigerant pipe 30.
  • the method of identifying the refrigerant location at this time is the same as that in step S4 described above.
  • step S5 when it is determined in step S5 that there is no refrigerant leakage detected by the refrigerant pressure detection device 6 provided in the refrigerant pipe 30 connected to the indoor unit 20 (step S5; No), the process is performed. The process proceeds to step S8.
  • step S8 the shutoff valve control unit 43 performs control so that the target coolant shutoff valve 7 is closed.
  • the refrigerant leakage at this time is not from the refrigerant pipe 30 connected to the indoor unit 20, and it is difficult to specify the leakage location. Therefore, the shutoff valve control unit 43 performs control so as to close the coolant shutoff valve 7 provided in the refrigerant pipe 30 connected to the outdoor unit 10 in order to prevent further refrigerant leakage.
  • the air-conditioning apparatus 1 is configured such that a refrigerant circuit is formed by connecting the outdoor unit 10 and the plurality of indoor units 20 with the refrigerant pipe 30 and circulating the refrigerant.
  • a refrigerant leak detection device 8 that is provided in the indoor space 4 and detects refrigerant leakage to the indoor space 4, and a plurality of refrigerant pressures that are provided in the refrigerant pipe 30 and detect the pressure of the refrigerant flowing through the refrigerant pipe 30.
  • a detection device 6, a refrigerant shut-off valve 7 that is provided in the refrigerant pipe 30 and allows or blocks the flow of the refrigerant, and a control device 40 that controls opening and closing of the refrigerant shut-off valve 7 are provided.
  • the control apparatus 40 judges the presence or absence of the leakage of a refrigerant
  • the refrigerant leakage point is specified based on the fluctuation of the refrigerant pressure in the refrigerant pipe 30 detected by the refrigerant pressure detection device 6.
  • Embodiment 2 is a cooling / heating simultaneous type air conditioning apparatus in which a plurality of indoor units can perform both cooling operation and heating operation at the same time.
  • FIG. 5 is a schematic diagram illustrating an installation example of the air-conditioning apparatus 1 according to the second embodiment.
  • the air conditioner 1 includes an outdoor unit 10 installed in the outdoor space 3, a plurality of indoor units 20 installed in the indoor space 4, and between the outdoor unit 10 and the indoor unit 20. And a branch unit 50 interposed therebetween.
  • the outdoor unit 10 and the branch unit 50 are connected by two refrigerant pipes 30a.
  • each of the branch unit 50 and the plurality of indoor units 20 is connected by a refrigerant pipe 30b.
  • the branch unit 50 is configured as a housing different from the outdoor unit 10 and the indoor unit 20 so that it can be installed in a position different from the outdoor space 3 and the indoor space 4, for example, the space 5.
  • the branch unit 50 is connected to the outdoor unit 10 through the refrigerant pipe 30a, and is connected to the indoor unit 20 through the refrigerant pipe 30b.
  • the branch unit 50 is for transmitting the cold heat or the heat generated by the outdoor unit 10 to the indoor unit 20.
  • the refrigerant pressure detection device 6 and the refrigerant cutoff valve 7 are provided in the refrigerant pipes 30a and 30b, respectively. Further, similarly to the first embodiment, a refrigerant leak detection device 8 is installed in the indoor space 4.
  • FIG. 6 is a schematic diagram illustrating an example of a circuit configuration of the air-conditioning apparatus 1 according to the second embodiment.
  • the air conditioning apparatus 1 is comprised with the one outdoor unit 10, the branch unit 50, and the two indoor units 20A and 20B is shown.
  • the outdoor unit 10 includes a compressor 11, a refrigerant flow switching device 12, a heat source side heat exchanger 13, an accumulator 14, and four check valves 15a to 15d.
  • the check valves 15a to 15d allow the flow of the refrigerant flowing through the refrigerant pipe 30a only in a predetermined direction.
  • the check valve 15a is provided in the refrigerant pipe 30a between the branch unit 50 and the refrigerant flow switching device 12, and from the branch unit 50 to the outdoor unit 10 during the cooling operation including the cooling only operation and the cooling main operation described later. Circulate in the direction of The check valve 15 b is provided in the first connection pipe 31 a that connects the two refrigerant pipes 30 a, and the refrigerant returned from the branch unit 50 during the heating operation including the all heating operation and the heating main operation is supplied to the compressor 11. Distribute to the suction side.
  • the check valve 15c is provided in the second connection pipe 31b that connects the two refrigerant pipes 30a, and causes the refrigerant discharged from the compressor 11 to flow through the branch unit 50 during the heating operation.
  • the check valve 15d is provided in the refrigerant pipe 30a between the heat source side heat exchanger 13 and the branch unit 50, and causes the refrigerant to flow in the direction from the outdoor unit 10 to the branch unit 50 during the cooling operation.
  • the branch unit 50 has a function of supplying the cold or hot energy supplied from the outdoor unit 10 to the indoor unit 20.
  • the branch unit 50 includes a gas-liquid separator 51, a flow path switching valve 54, a throttle device 52, and a throttle device 53. Note that the number of flow path switching valves 54A and 54B corresponding to the number of indoor units 20 connected to the branch unit 50 is provided.
  • the flow path switching valves 54A and 54B switch the flow of refrigerant supplied to the indoor unit 20. By switching the refrigerant flow path using the flow path switching valves 54A and 54B, the indoor units 20A and 20B connected to the branch unit 50 can simultaneously perform the cooling operation and the heating operation.
  • the flow path switching valves 54A and 54B are constituted by, for example, three-way valves.
  • One of the flow path switching valves 54A is connected to the refrigerant pipe 30a, the other is connected to the gas-liquid separator 51, and the other is connected to the use side heat exchanger 22A of the indoor unit 20A.
  • One of the flow path switching valves 54B is connected to the refrigerant pipe 30a, the other is connected to the gas-liquid separator 51, and the other is connected to the use side heat exchanger 22B of the indoor unit 20B.
  • the flow switching valves 54A and 54B are controlled by the control device 40 to open and close the valves.
  • the gas-liquid separator 51 is connected to the refrigerant pipe 30a and to each of the inflow / outflow sides of the indoor unit 20.
  • the gas-liquid separator 51 has a function of separating the inflowing refrigerant into a gas refrigerant and a liquid refrigerant.
  • the expansion device 52 is provided between the gas-liquid separator 51 and the expansion device 21A of the indoor unit 20A and the expansion device 21B of the indoor unit 20B, and expands the refrigerant by decompressing it.
  • the expansion device 53 is provided in a connection pipe connecting the refrigerant pipe 30a and the expansion device 52, the expansion device 21A of the indoor unit 20A, and the expansion device 21B of the indoor unit 20B, and depressurizes the refrigerant. Inflate.
  • the expansion device 52 and the expansion device 53 are configured by, for example, valves, capillaries, and the like capable of controlling the opening degree, such as an electronic expansion valve. When the expansion device 52 and the expansion device 53 are expansion valves, the valve opening degree is controlled by the control device 40.
  • Refrigerant pressure detection devices 6A and 6B are provided in the refrigerant pipe 30b that connects the branch unit 50 and the indoor unit 20.
  • the refrigerant pressure detection device 6A is provided between the expansion device 52 of the branch unit 50 and the indoor unit 20A in the refrigerant pipe 30b.
  • the refrigerant pressure detection device 6B is provided between the expansion device 52 of the branch unit 50 and the indoor unit 20B in the refrigerant pipe 30b.
  • a refrigerant pressure detection device 6C is provided in the refrigerant pipe 30a connecting the outdoor unit 10 and the branch unit 50.
  • the refrigerant pressure detection device 6 ⁇ / b> C is provided between the check valve 15 d in the outdoor unit 10 and the gas-liquid separator 51 in the branch unit 50.
  • the installation position and the number of installation of the refrigerant pressure detection device 6 are not limited to this example.
  • the length of the refrigerant pipes 30a and 30b, the handling of the pipe when installing the branch unit 50 and the indoor unit 20, and the pipe joint It can be determined according to the installation position, the necessary amount of refrigerant, and the like.
  • refrigerant shut-off valves 7a to 7d are provided in the refrigerant pipe 30b connecting the branch unit 50 and the indoor unit 20.
  • Refrigerant shut-off valves 7e and 7f are provided in the refrigerant pipe 30a that connects the outdoor unit 10 and the branch unit 50.
  • the refrigerant shut-off valve 7e is provided between the check valve 15d of the outdoor unit 10 and the gas-liquid separator 51 of the branch unit 50 in the refrigerant pipe 30a.
  • the refrigerant shut-off valve 7f is provided between the flow path switching valve 54B of the branch unit 50 and the check valve 15a of the outdoor unit 10 in the refrigerant pipe 30a.
  • These refrigerant shut-off valves 7a to 7f are controlled to open and close by the control device 40, and are in an “open” state in a normal state. Then, when a refrigerant leak is detected, the refrigerant shut-off valves 7a to 7f are brought into a “closed” state based on the control of the control device 40.
  • the branch unit 50 and the indoor unit 20A are disconnected from the outdoor unit 10 and can be made independent of the air conditioner 1.
  • any one of the refrigerant shut-off valves 7e and 7f can be used as long as it has a function of shutting off the refrigerant circuit, similarly to the refrigerant shut-off valves 7a to 7d.
  • the installation position and the number of installation of the refrigerant shut-off valve 7 are not limited to this example.
  • the length of the refrigerant pipes 30a and 30b, the handling of the pipe when installing the branch unit 50 and the indoor unit 20, and the installation of the pipe joint It can be determined according to the position, the necessary amount of refrigerant, and the like.
  • FIG. 7 is a block diagram showing an example of the configuration of the control device 40 of FIG.
  • the control device 40 includes a leak determination unit 41, a pressure comparison unit 42, a shut-off valve control unit 43, a leak location determination unit 44, and a flow path switching valve control unit 45.
  • the control apparatus 40 in this example only the part relevant to this Embodiment 2 is illustrated, and illustration is abbreviate
  • the leakage determination unit 41 determines whether or not refrigerant leakage has occurred based on information indicated by the detection signal received from the refrigerant leakage detection device 8 or information indicating a comparison result from the pressure comparison unit 42 described later.
  • the leakage determination unit 41 supplies information indicating the determination result to the cutoff valve control unit 43 and the flow path switching valve control unit 45.
  • the flow path switching valve control unit 45 receives information indicating the determination result by the leakage determination unit 41, and controls opening / closing of the flow path switching valve 54 of the branch unit 50 based on this information.
  • movement in the various operation modes in the air conditioning apparatus 1 which has the said structure is demonstrated.
  • the indoor units 20A and 20B are both in the cooling operation and the heating operation.
  • the operation of the refrigerant in the cooling only operation mode, the heating only operation mode, the cooling main operation mode, and the heating main operation mode in the air conditioner 1 will be described.
  • the refrigerant flow switching device 12 in the outdoor unit 10 is switched to the state indicated by the solid line in FIG.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the heat source side heat exchanger 13 via the refrigerant flow switching device 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 13 condenses while exchanging heat with the outdoor air and dissipates heat, and flows out of the heat source side heat exchanger 13 as a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 13 flows out of the outdoor unit 10 through the check valve 15 d and flows into the branch unit 50.
  • the high-pressure liquid refrigerant that has flowed into the branch unit 50 flows out of the branch unit 50 via the gas-liquid separator 51 and the expansion device 52, and flows into the indoor units 20A and 20B.
  • the high-pressure liquid refrigerant that has flowed into the indoor unit 20A is decompressed and expanded by the expansion device 21A to become a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows into the use-side heat exchanger 22A.
  • the low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the use-side heat exchanger 22A exchanges heat with the room air to absorb heat and evaporate, thereby cooling the room air and becoming a low-pressure gas refrigerant. It flows out of the exchanger 22A.
  • the high-pressure liquid refrigerant that has flowed into the indoor unit 20B is decompressed and expanded by the expansion device 21B, becomes a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows into the use-side heat exchanger 22B.
  • the low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the use side heat exchanger 22B exchanges heat with the room air to absorb heat and evaporate, thereby cooling the room air and becoming a low pressure gas refrigerant. It flows out of the exchanger 22B.
  • the low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22A flows out of the branch unit 50 via the flow path switching valve 54A and flows into the outdoor unit 10.
  • the low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22B flows out of the branch unit 50 through the flow path switching valve 54B, and flows out of the branch unit 50 through the flow path switching valve 54A. And flows into the outdoor unit 10.
  • the low-pressure gas refrigerant that has flowed into the outdoor unit 10 passes through the check valve 15a, the refrigerant flow switching device 12, and the accumulator 14, and is sucked into the compressor 11. Thereafter, the above-described circulation is repeated.
  • the refrigerant flow switching device 12 in the outdoor unit 10 is switched to the state indicated by the dotted line in FIG.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows out of the outdoor unit 10 through the refrigerant flow switching device 12 and the check valve 15c, and flows into the branch unit 50.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the branch unit 50 flows out of the branch unit 50 via the gas-liquid separator 51 and the flow path switching valves 54A and 54B, and flows into the indoor units 20A and 20B.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 20A flows into the use-side heat exchanger 22A, heats the indoor air and condenses while radiating heat, thereby heating the indoor air and becomes a high-pressure liquid refrigerant. It flows out of the use side heat exchanger 22A.
  • the high-pressure liquid refrigerant flowing out from the use side heat exchanger 22A is decompressed and expanded by the expansion device 21A to become a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows out from the indoor unit 20A.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 20B flows into the use-side heat exchanger 22B, heats the indoor air and condenses while dissipating heat, thereby heating the indoor air, And flows out from the use side heat exchanger 22B.
  • the high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 22B is decompressed and expanded by the expansion device 21B, becomes a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows out of the indoor unit 20B.
  • the low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed out of the indoor units 20A and 20B flows into the branch unit 50, flows out of the branch unit via the expansion device 53, and flows into the outdoor unit 10.
  • the low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the heat source side heat exchanger 13 exchanges heat with outdoor air, absorbs heat and evaporates, and becomes a low-temperature and low-pressure gas refrigerant and flows out of the heat source side heat exchanger 13. .
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 13 passes through the refrigerant flow switching device 12 and the accumulator 14 and is sucked into the compressor 11. Thereafter, the above-described circulation is repeated.
  • the refrigerant flow switching device 12 in the outdoor unit 10 is switched to the state shown by the solid line in FIG.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the heat source side heat exchanger 13 via the refrigerant flow switching device 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat-source-side heat exchanger 13 is condensed while radiating heat by exchanging heat with outdoor air, and becomes a high-pressure gas-liquid two-phase refrigerant and flows out from the heat-source-side heat exchanger 13.
  • the high-pressure gas refrigerant separated by the gas-liquid separator 51 flows out of the branch unit 50 via the flow path switching valve 54B and flows into the indoor unit 20B.
  • the high-pressure gas refrigerant that has flowed into the indoor unit 20B flows into the use-side heat exchanger 22B, heats the indoor air and condenses while dissipating heat, thereby heating the indoor air and using it as a high-pressure liquid refrigerant. It flows out from the side heat exchanger 22B.
  • the high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 22B is decompressed and expanded by the expansion device 21B, becomes an intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows out of the indoor unit 20B.
  • the high-pressure liquid refrigerant separated by the gas-liquid separator 51 and the intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant flowing out of the indoor unit 20B flow out of the branch unit 50 and flow into the indoor unit 20A.
  • the high-pressure liquid refrigerant that has flowed into the indoor unit 20A and the intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed out of the indoor unit 20B are decompressed and expanded by the expansion device 21A to be low-pressure gas-liquid two-phase refrigerant or liquid refrigerant. And flows into the use side heat exchanger 22A.
  • the low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the use-side heat exchanger 22A exchanges heat with the room air to absorb heat and evaporate, thereby cooling the room air and becoming a low-pressure gas refrigerant. It flows out of the exchanger 22A.
  • the low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22A flows out of the branch unit 50 via the flow path switching valve 54A and flows into the outdoor unit 10.
  • the low-pressure gas refrigerant that has flowed into the outdoor unit 10 passes through the check valve 15a, the refrigerant flow switching device 12, and the accumulator 14, and is sucked into the compressor 11. Thereafter, the above-described circulation is repeated.
  • Heating main operation mode Next, the operation of the refrigerant in the heating main operation mode will be described.
  • the cooling main operation mode an example will be described in which the indoor unit 20A performs the cooling operation and the indoor unit 20B performs the heating operation.
  • the refrigerant flow switching device 12 in the outdoor unit 10 is switched to the state indicated by the dotted line in FIG.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows out of the outdoor unit 10 through the refrigerant flow switching device 12 and the check valve 15c, and flows into the branch unit 50.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the branch unit 50 flows out of the branch unit 50 via the gas-liquid separator 51 and the flow path switching valve 54B.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the branch unit 50 flows into the indoor unit 20B.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 20B flows into the use-side heat exchanger 22B, heats the indoor air and condenses while dissipating heat, thereby heating the indoor air and becomes a high-pressure liquid refrigerant. It flows out from the use side heat exchanger 22B.
  • the high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 22B is decompressed and expanded by the expansion device 21B, becomes an intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows out of the indoor unit 20B.
  • the intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed out of the indoor unit 20B flows into the indoor unit 20A.
  • the intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the indoor unit 20A is decompressed and expanded by the expansion device 21A to become a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows into the use-side heat exchanger 22A.
  • the low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the use-side heat exchanger 22A exchanges heat with the room air to absorb heat and evaporate, thereby cooling the room air and becoming a low-pressure gas refrigerant. It flows out of the exchanger 22A.
  • the low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22A flows out of the branch unit 50 via the flow path switching valve 54A and flows into the outdoor unit 10.
  • the low-pressure gas refrigerant that has flowed into the outdoor unit 10 flows into the heat source side heat exchanger 13 through the check valve 15b.
  • the low-pressure gas refrigerant that has flowed into the heat source-side heat exchanger 13 exchanges heat with outdoor air, absorbs heat and evaporates, and becomes a low-temperature and low-pressure gas refrigerant that flows out of the heat source-side heat exchanger 13.
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 13 passes through the refrigerant flow switching device 12 and the accumulator 14 and is sucked into the compressor 11. Thereafter, the above-described circulation is repeated.
  • the air conditioner 1 supplies the refrigerant to the use side heat exchanger 22 of the indoor unit 20 when the indoor temperature reaches the set temperature. It stops, and it switches to the ventilation operation mode by the air blower attached to the utilization side heat exchanger 22.
  • the air conditioner 1 stops the supply of the refrigerant to the use side heat exchanger 22 when, for example, there is an instruction from the user,
  • the operation mode is switched to a stop mode in which the operation of the blower attached to the use side heat exchanger 22 is also stopped.
  • FIG. 8 is a flowchart illustrating an example of the flow of the refrigerant leakage detection process in the air-conditioning apparatus 1 according to Embodiment 2.
  • the same processes as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the leakage determination unit 41 of the control device 40 determines whether the refrigerant leakage is detected by the refrigerant leakage detection device 8 in step S2. Judge whether or not.
  • the leakage determination unit 41 determines that the refrigerant has leaked into the indoor space 4, and the process proceeds to step S3. To do.
  • the shutoff valve control unit 43 of the control device 40 includes the coolant shutoff valve 7 of the refrigerant pipe 30 connected to all the indoor units 20 installed in the indoor space 4, and the coolant shutoff valve 7 on the upstream side thereof. Is controlled to close.
  • step S ⁇ b> 4 the leakage location determination unit 44 of the control device 40 identifies the location of refrigerant leakage in the refrigerant piping 30 based on the pressure and the pressure determination value P by each refrigerant pressure detection device 6.
  • step S2 when it is determined in step S2 that the refrigerant leakage detection device 8 has not detected the leakage (step S2; No), the leakage determination unit 41 determines that the refrigerant has leaked into the outdoor space 3, and the processing is performed in step S2. The process proceeds to S5.
  • step S ⁇ b> 5 the leakage determination unit 41 determines whether or not the refrigerant leakage is detected by the refrigerant pressure detection device 6 provided in the refrigerant pipe 30 connected to the indoor unit 20. When it is determined that the refrigerant leakage is detected by the refrigerant pressure detection device 6 (step S5; Yes), the process proceeds to step S6.
  • step S6 the shut-off valve control unit 43 performs control so as to close the refrigerant shut-off valve 7 of the refrigerant pipe 30 provided with the refrigerant pressure detection device 6 that exhibits a pressure lower than the pressure determination value P.
  • the cutoff valve control unit 43 controls the refrigerant cutoff valve 7e installed in the refrigerant pipe 30a to be closed.
  • the shutoff valve control unit 43 can prevent further refrigerant leakage by controlling so as to close the refrigerant shutoff valve 7 installed in the refrigerant pipe 30b.
  • step S ⁇ b> 11 the flow path switching valve control unit 45 of the control device 40 is connected to the indoor unit 20 connected to the refrigerant pipe 30 in which the refrigerant pressure detection device 6 that detects refrigerant leakage is installed in the branch unit 50. Control is performed so that the corresponding flow path switching valve 54 is closed. Thereby, further refrigerant leakage can be prevented.
  • step S7 the leak location determination part 44 specifies the leak location of the refrigerant
  • step S5 when it is determined in step S5 that there is no refrigerant leakage detected by the refrigerant pressure detection device 6 provided in the refrigerant pipe 30 connected to the indoor unit 20 (step S5; No), the process is performed. The process proceeds to step S8.
  • step S8 the shutoff valve control unit 43 controls the refrigerant shutoff valve 7 provided in the refrigerant pipe 30 connected to the outdoor unit 10 to be closed in order to prevent further refrigerant leakage.
  • the air-conditioning apparatus 1 has a gas-liquid separator 51 that separates the refrigerant supplied from the outdoor unit 10 into a gas refrigerant and a liquid refrigerant, as compared with the first embodiment.
  • a branch unit 50 having a plurality of flow path switching valves 54 for switching the flow of refrigerant supplied to the plurality of indoor units 20, and being interposed between the outdoor unit 10 and the plurality of indoor units 20.
  • the device 40 controls to close the flow path switching valve 54 when it is determined that the refrigerant has leaked. Thereby, when a refrigerant
  • Embodiment 3 FIG. Next, an air conditioner according to Embodiment 3 will be described.
  • a plurality of refrigerant pressure detection devices 6 and a plurality of refrigerant shut-off valves 7 are further installed in the air conditioner 1 according to the first embodiment described above.
  • FIG. 9 is a schematic diagram illustrating an installation example of the air-conditioning apparatus 1 according to the third embodiment.
  • the air conditioner 1 includes an outdoor unit 10 and a plurality of indoor units 20 as in the first embodiment.
  • the refrigerant pressure detection device 6c and the refrigerant provided on the outdoor unit 10 side in the refrigerant pipe 30 A pressure detection device 6d is provided.
  • the refrigerant cutoff valves 7g to 7j are provided.
  • the refrigerant cutoff valve 7g and the refrigerant cutoff valve 7h are provided in a pipe between the indoor unit 20A and the indoor unit 20B in the refrigerant pipe 30.
  • the refrigerant shut-off valves 7 i and 7 j are provided in the pipe on the outdoor unit 10 side in the refrigerant pipe 30.
  • the installation position and the number of installation of the refrigerant pressure detection device 6 and the refrigerant cutoff valve 7 are not limited to this example.
  • the length of the refrigerant pipe 30a and the refrigerant pipe 30b, the branch unit 50, and the indoor unit 20 are installed. It can be determined according to the handling of the pipe, the installation position of the pipe joint, the required amount of refrigerant, and the like.
  • the air conditioner 1 according to the third embodiment is provided with more refrigerant pressure detection devices 6 and refrigerant shut-off valves 7 in the refrigerant pipe 30 than in the first embodiment. It can be identified more easily.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is an air conditioning device having a refrigerant circuit which is formed by connecting an outdoor unit and a plurality of indoor units by refrigerant piping and through which a refrigerant is circulated. The air conditioning device comprises: a refrigerant leakage detection device which is provided in a space to be air conditioned and which detects the leakage of the refrigerant to the space to be air conditioned; a plurality of refrigerant pressure detection devices provided to the refrigerant piping and detecting the pressure of the refrigerant flowing through the refrigerant piping; a refrigerant shutoff valve provided in the refrigerant piping and permitting or preventing the flow of the refrigerant; and a control device for controlling the opening and closing of the refrigerant shutoff valve. The control device determines, on the basis of the result of detection by the refrigerant leakage detection device or the refrigerant pressure detection devices, whether the refrigerant has leaked. Upon determining that the refrigerant has leaked, the control device performs control to close the refrigerant shutoff valve and specifies the location of the leakage of the refrigerant on the basis of a variation in the pressure of the refrigerant within the refrigerant piping, the variation being detected by the refrigerant pressure detection devices.

Description

空気調和装置Air conditioner
 本発明は、ビル用マルチエアコン等に適用される空気調和装置に関するものである。 The present invention relates to an air conditioner applied to a building multi air conditioner or the like.
 従来、空気調和装置には、ビル用マルチエアコンなどのように、熱源機である室外機が建物の屋上等の建物外に配置され、室内機が建物内に配置されたものがある。このような空気調和装置において、冷媒回路を循環する冷媒は、室内機に設けられた利用側熱交換器に供給される空気と熱交換を行うことによって放熱または吸熱し、当該空気を加熱または冷却する。そして、加熱または冷却された空気が空調対象空間に送り込まれることにより、当該空間に対する暖房または冷房を行っている。 2. Description of the Related Art Conventionally, there are air conditioners in which an outdoor unit that is a heat source unit is disposed outside a building such as a rooftop of a building, and an indoor unit is disposed in a building, such as a multi air conditioner for buildings. In such an air conditioner, the refrigerant circulating in the refrigerant circuit dissipates or absorbs heat by exchanging heat with the air supplied to the use side heat exchanger provided in the indoor unit, and heats or cools the air. To do. Then, the heated or cooled air is sent into the air-conditioning target space, thereby heating or cooling the space.
 また、空気調和装置としては、例えば同一システム内で冷房運転および暖房運転の両方を同時に利用することができる冷暖同時ビル用マルチエアコンといったものも存在する(例えば、特許文献1参照)。このような空気調和装置では、室外機と室内機との間に分岐ユニットを設け、室外機で加熱または冷却された冷媒を、分岐ユニット内で液冷媒とガス冷媒とに分離させている。そして、この空気調和装置では、室内機の利用側熱交換器に液冷媒を流入させ、液冷媒が蒸発することにより、冷房運転を行うことができ、利用側熱交換器にガス冷媒を流入させ、ガス冷媒が凝縮することにより、暖房運転を行うことができる。 Further, as an air conditioner, for example, there is a multi-air conditioner for simultaneous cooling and heating that can simultaneously use both cooling operation and heating operation in the same system (see, for example, Patent Document 1). In such an air conditioner, a branch unit is provided between the outdoor unit and the indoor unit, and the refrigerant heated or cooled by the outdoor unit is separated into liquid refrigerant and gas refrigerant in the branch unit. In this air conditioner, the liquid refrigerant is allowed to flow into the use side heat exchanger of the indoor unit, and the liquid refrigerant evaporates, whereby the cooling operation can be performed, and the gas refrigerant is allowed to flow into the use side heat exchanger. The heating operation can be performed by condensing the gas refrigerant.
 空気調和装置に使用される冷媒としては、一般的に、不燃性であるR410A、弱い可燃性を有するR32、強い可燃性を示すプロパン等の水素および炭素を含む物質が用いられている。これらの冷媒は、大気中に放出された場合に、分解されて別の物質に変化するまでの寿命が異なるが、冷媒回路内においては、安定性が高く、数十年といった長い期間冷媒として使用することができる。また、冷媒としては、これ以外に、二酸化炭素(CO)等の自然冷媒を使用するものも提案されている。 As a refrigerant used for an air conditioner, generally, a substance containing hydrogen and carbon such as R410A which is nonflammable, R32 which is weakly flammable, and propane which shows strong flammability is used. These refrigerants, when released into the atmosphere, have different lifetimes until they are decomposed and changed to other substances, but they are highly stable in refrigerant circuits and used as refrigerants for a long period of several decades. can do. In addition, a refrigerant that uses a natural refrigerant such as carbon dioxide (CO 2 ) has been proposed.
特開2011-112233号公報JP 2011-112233 A
 ところで、上述した従来の空気調和装置では、1つの冷媒配管に対して複数の室内機を接続し、冷房運転または暖房運転を行うためにこれら複数の室内機に対して冷媒を搬送している。そして、接続された室内機の台数が増加すると、それに応じて冷媒回路を循環する冷媒の総冷媒量が多くなる。そのため、冷媒漏洩が発生した場合、漏洩する冷媒量は、総冷媒量に比例して増加してしまう。例えば、室内で冷媒漏洩が発生した場合には、室内空間が狭小となるにしたがって、空間内の冷媒濃度が高くなってしまう可能性がある。 By the way, in the above-described conventional air conditioner, a plurality of indoor units are connected to one refrigerant pipe, and the refrigerant is conveyed to the plurality of indoor units in order to perform a cooling operation or a heating operation. When the number of connected indoor units increases, the total refrigerant amount of the refrigerant circulating in the refrigerant circuit increases accordingly. Therefore, when refrigerant leakage occurs, the amount of refrigerant that leaks increases in proportion to the total amount of refrigerant. For example, when refrigerant leaks indoors, the refrigerant concentration in the space may increase as the indoor space becomes narrower.
 また、室外機の設置場所から室内機の設置場所までの距離が長い場合には、室外機と室内機とを接続する冷媒配管が長くなる。そして、冷媒配管が長くなると、それに応じて冷媒回路を循環する冷媒の総冷媒量が多くなる。この場合においても、冷媒漏洩が発生した場合に、漏洩する冷媒量が総冷媒量に比例して増加してしまう。そのため、例えば室内で冷媒漏洩が発生した場合には、室内空間が狭小となるにしたがって、空間内の冷媒濃度が高くなってしまう可能性がある。 In addition, when the distance from the installation location of the outdoor unit to the installation location of the indoor unit is long, the refrigerant pipe connecting the outdoor unit and the indoor unit becomes long. And if refrigerant piping becomes long, the total refrigerant | coolant amount of the refrigerant | coolant which circulates through a refrigerant circuit will increase according to it. Even in this case, when refrigerant leakage occurs, the amount of refrigerant leaking increases in proportion to the total refrigerant amount. Therefore, for example, when refrigerant leakage occurs in the room, the refrigerant concentration in the space may increase as the indoor space becomes narrower.
 一方、大規模の空気調和装置において冷媒漏洩が発生した場合には、冷媒回路における冷媒の漏洩箇所を特定するのに時間を要するとともに、漏洩箇所の修復、漏洩した冷媒の再充填等の復旧に時間を要してしまう。そのため、利便性が悪化してしまう虞がある。 On the other hand, when a refrigerant leak occurs in a large-scale air conditioner, it takes time to identify the location of the refrigerant leakage in the refrigerant circuit, and it can be used to restore the leakage location and to refill the leaked refrigerant. It takes time. Therefore, there is a possibility that convenience may deteriorate.
 本発明は、上記従来の技術における課題に鑑みてなされたものであって、冷媒の漏洩が発生した場合における冷媒の漏洩を抑制するとともに、漏洩箇所を容易に特定することができる空気調和装置を提供することを目的とする。 The present invention has been made in view of the above-described problems in the prior art, and is an air conditioner that can easily identify a leakage location while suppressing the leakage of the refrigerant when the refrigerant leaks. The purpose is to provide.
 本発明の空気調和装置は、室外機と複数の室内機とを冷媒配管で接続し、冷媒を循環させることによって冷媒回路が形成された空気調和装置であって、空調対象空間に設けられ、該空調対象空間に対する前記冷媒の漏洩を検知する冷媒漏洩検知装置と、前記冷媒配管に設けられ、該冷媒配管内を流通する前記冷媒の圧力を検知する複数の冷媒圧力検知装置と、前記冷媒配管に設けられ、前記冷媒の流通を許容または遮断する冷媒遮断弁と、前記冷媒遮断弁の開閉を制御する制御装置とを備え、前記制御装置は、前記冷媒漏洩検知装置または前記冷媒圧力検知装置の検知結果に基づき、前記冷媒の漏洩の有無を判断し、前記冷媒が漏洩したと判断した場合に、前記冷媒遮断弁を閉止するように制御し、前記冷媒圧力検知装置で検知された前記冷媒配管内の前記冷媒の圧力の変動に基づき、前記冷媒の漏洩箇所を特定するものである。 An air conditioner of the present invention is an air conditioner in which a refrigerant circuit is formed by connecting an outdoor unit and a plurality of indoor units with refrigerant pipes and circulating a refrigerant, and is provided in an air-conditioning target space. A refrigerant leakage detection device that detects leakage of the refrigerant to the air-conditioning target space; a plurality of refrigerant pressure detection devices that are provided in the refrigerant piping and that detect the pressure of the refrigerant flowing through the refrigerant piping; and the refrigerant piping. A refrigerant shut-off valve provided to permit or block the flow of the refrigerant, and a control device that controls opening and closing of the refrigerant shut-off valve, wherein the control device detects the refrigerant leak detection device or the refrigerant pressure detection device Based on the result, it is determined whether or not the refrigerant has leaked. When it is determined that the refrigerant has leaked, the refrigerant shut-off valve is controlled to be closed, and the refrigerant pressure detection device detects the refrigerant. Based on the variation of the pressure of the refrigerant in the medium pipe, it is to identify the leakage location of the refrigerant.
 以上のように、本発明の空気調和装置によれば、冷媒漏洩検知装置または冷媒圧力検知装置の検知結果に基づいて冷媒が漏洩したと判断した場合に、冷媒遮断弁を閉止することにより、冷媒の漏洩が発生した場合における冷媒の漏洩を抑制することができ、冷媒圧力検知装置の検知結果に基づく冷媒配管内の冷媒の圧力変動により、漏洩箇所を容易に特定することができる。 As described above, according to the air conditioning apparatus of the present invention, when it is determined that the refrigerant has leaked based on the detection result of the refrigerant leak detection device or the refrigerant pressure detection device, the refrigerant shut-off valve is closed to The leakage of the refrigerant when the leakage occurs can be suppressed, and the leakage location can be easily identified by the pressure fluctuation of the refrigerant in the refrigerant piping based on the detection result of the refrigerant pressure detection device.
実施の形態1に係る空気調和装置の設置例を示す概略図である。It is the schematic which shows the example of installation of the air conditioning apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置の回路構成の一例を示す概略図である。It is the schematic which shows an example of the circuit structure of the air conditioning apparatus which concerns on Embodiment 1. FIG. 図2の制御装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the control apparatus of FIG. 実施の形態1に係る空気調和装置における冷媒漏洩検知処理の流れの一例を示すフローチャートである。3 is a flowchart illustrating an example of a flow of refrigerant leakage detection processing in the air-conditioning apparatus according to Embodiment 1. 実施の形態2に係る空気調和装置の設置例を示す概略図である。It is the schematic which shows the example of installation of the air conditioning apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る空気調和装置の回路構成の一例を示す概略図である。6 is a schematic diagram illustrating an example of a circuit configuration of an air-conditioning apparatus according to Embodiment 2. FIG. 図6の制御装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the control apparatus of FIG. 実施の形態2に係る空気調和装置における冷媒漏洩検知処理の流れの一例を示すフローチャートである。6 is a flowchart illustrating an example of a flow of refrigerant leakage detection processing in the air-conditioning apparatus according to Embodiment 2. 本実施の形態3に係る空気調和装置の設置例を示す概略図である。It is the schematic which shows the example of installation of the air conditioning apparatus which concerns on this Embodiment 3. FIG.
 実施の形態1.
 以下、本発明の実施の形態1に係る空気調和装置について説明する。本実施の形態1に係る空気調和装置は、複数の室内機が冷房運転および暖房運転のいずれか一方の運転を同時に行うことができる冷暖切替タイプの空気調和装置である。
Embodiment 1 FIG.
Hereinafter, the air-conditioning apparatus according to Embodiment 1 of the present invention will be described. The air conditioner according to Embodiment 1 is a cooling / heating switching type air conditioner in which a plurality of indoor units can simultaneously perform either one of a cooling operation and a heating operation.
[空気調和装置の設置例]
 図1は、本実施の形態1に係る空気調和装置1の設置例を示す概略図である。図1に示すように、空気調和装置1は、熱源機としての室外機10と、複数台の室内機20とを備えている。室外機10および複数の室内機20は、2本の冷媒配管30で接続されている。これにより、冷媒配管30内を冷媒が循環する冷媒回路が形成されている。
[Installation example of air conditioner]
FIG. 1 is a schematic diagram illustrating an installation example of the air-conditioning apparatus 1 according to the first embodiment. As shown in FIG. 1, the air conditioner 1 includes an outdoor unit 10 as a heat source unit and a plurality of indoor units 20. The outdoor unit 10 and the plurality of indoor units 20 are connected by two refrigerant pipes 30. Thereby, a refrigerant circuit in which the refrigerant circulates in the refrigerant pipe 30 is formed.
 この例では、1台の室外機10に対して2台の室内機20Aおよび20Bが接続されている。なお、以下の説明において、室内機20Aおよび20Bを特に区別する必要がない場合には、単に「室内機20」と適宜称する。 In this example, two indoor units 20A and 20B are connected to one outdoor unit 10. In the following description, when it is not necessary to distinguish between the indoor units 20A and 20B, they are simply referred to as “indoor unit 20” as appropriate.
 室外機10は、通常、ビル等の建物2の外の空間、例えば屋上等である室外空間3に設置されている。室外機10は、冷熱または温熱を生成し、生成した冷熱または温熱を、冷媒配管30を介して室内機20に供給する。 The outdoor unit 10 is usually installed in a space outside the building 2 such as a building, for example, an outdoor space 3 such as a rooftop. The outdoor unit 10 generates cold or warm heat, and supplies the generated cold or warm heat to the indoor unit 20 via the refrigerant pipe 30.
 室内機20は、室外機10から供給された冷熱または温熱により、冷房用空気または暖房用空気を、建物2の内部の空間、例えば居室やサーバールーム等の空調対象空間である室内空間4に供給する。この例において、室内機20は、建物2の内部ではあるが室内空間4とは異なる空間である天井裏等の空間5に設置されている。また、室内機20は、例えば床下に設置され、暖房運転時に供給される温熱により、床面を暖める床暖房として使用することもできる。 The indoor unit 20 supplies cooling air or heating air to a space inside the building 2, for example, an indoor space 4 that is an air-conditioning target space such as a living room or a server room, by the cooling or heating supplied from the outdoor unit 10. To do. In this example, the indoor unit 20 is installed in a space 5 such as the back of the ceiling, which is inside the building 2 but is different from the indoor space 4. Moreover, the indoor unit 20 can also be used, for example, as floor heating that is installed under the floor and warms the floor surface by heat supplied during heating operation.
 なお、室外機10に接続される室内機20の数は、この例に限られず、例えば1台の室外機10に対して1台の室内機20が接続されてもよいし、2台あるいは4台以上の室内機20が接続されてもよい。また、例えば、室外機10を複数設け、複数の室外機10に対して1台または複数台の室内機20が接続されてもよい。すなわち、室外機10、室内機20の台数は、空気調和装置1が設置される建物2の規模等に応じて、適宜決定することができる。 The number of indoor units 20 connected to the outdoor unit 10 is not limited to this example. For example, one indoor unit 20 may be connected to one outdoor unit 10, or two or four indoor units 20 may be connected. Two or more indoor units 20 may be connected. Further, for example, a plurality of outdoor units 10 may be provided, and one or a plurality of indoor units 20 may be connected to the plurality of outdoor units 10. That is, the number of outdoor units 10 and indoor units 20 can be appropriately determined according to the scale of the building 2 where the air conditioner 1 is installed.
 ここで、本実施の形態1の空気調和装置1において、冷媒循環回路を循環させる冷媒として、例えばR-22、R-134a、R-32等の単一冷媒、R-410A、R-404A等の擬似共沸混合冷媒、R-407C等の非共沸混合冷媒、化学式内に二重結合を含むCFCF=CH等の地球温暖化係数が比較的小さい値とされている冷媒やその混合物、あるいはCO、プロパン等の自然冷媒を用いることができる。 Here, in the air conditioner 1 of the first embodiment, as the refrigerant circulating in the refrigerant circuit, for example, a single refrigerant such as R-22, R-134a, R-32, R-410A, R-404A, etc. azeotropic refrigerant mixture, and the refrigerant non-azeotropic refrigerant such as R-407C, global warming potential such as CF 3 CF = CH 2 including a double bond in the chemical formula is a relatively small value that Mixtures or natural refrigerants such as CO 2 and propane can be used.
 冷媒配管30には、内部を流通する冷媒の圧力を検知するための冷媒圧力検知装置6が設けられている。また、冷媒配管30には、それぞれの室内機20に対して流出入する冷媒を遮断するための冷媒遮断弁7が、室内機20毎に対応して設けられている。なお、冷媒圧力検知装置6および冷媒遮断弁7の詳細については、後述する。 The refrigerant pipe 30 is provided with a refrigerant pressure detection device 6 for detecting the pressure of the refrigerant flowing inside. The refrigerant pipe 30 is provided with a refrigerant shut-off valve 7 for blocking the refrigerant flowing into and out of each indoor unit 20 corresponding to each indoor unit 20. Details of the refrigerant pressure detection device 6 and the refrigerant cutoff valve 7 will be described later.
 また、室内空間4には、冷媒漏洩検知装置8が設置されている。冷媒漏洩検知装置8は、冷媒配管30から冷媒が漏洩して室内空間4に流出した場合に、冷媒の漏洩を検知するためのものである。冷媒漏洩検知装置8は、室内空間4への冷媒漏洩の検知結果を示す検知信号を後述する制御装置40に供給する。 In the indoor space 4, a refrigerant leak detection device 8 is installed. The refrigerant leak detection device 8 is for detecting the refrigerant leak when the refrigerant leaks from the refrigerant pipe 30 and flows into the indoor space 4. The refrigerant leakage detection device 8 supplies a detection signal indicating a detection result of refrigerant leakage into the indoor space 4 to the control device 40 described later.
 この例において、冷媒漏洩検知装置8は、例えば室内空間4の下端部に設置されている。なお、冷媒漏洩検知装置8の設置位置は、この例に限られず、冷媒の漏洩を正確に検知できる位置であれば、いずれの位置に設置されてもよい。 In this example, the refrigerant leak detection device 8 is installed, for example, at the lower end of the indoor space 4. Note that the installation position of the refrigerant leakage detection device 8 is not limited to this example, and may be installed at any position as long as the refrigerant leakage can be accurately detected.
 冷媒漏洩検知装置8としては、例えば半導体方式または赤外線方式の漏洩検知装置を用いることができる。なお、冷媒漏洩検知装置8としては、これに限られず、例えば冷媒を検知できるものであればいずれのものも用いることができる。 As the refrigerant leak detection device 8, for example, a semiconductor or infrared leak detection device can be used. The refrigerant leakage detection device 8 is not limited to this, and any apparatus can be used as long as the refrigerant can be detected, for example.
[空気調和装置の回路構成]
 図2は、本実施の形態1に係る空気調和装置1の回路構成の一例を示す概略図である。図2の例では、1台の室外機10に対して2台の室内機20Aおよび20Bが冷媒配管30を介して接続される場合を示す。なお、上述したように、室外機10および室内機20の台数は、この例に限られない。
[Circuit configuration of air conditioner]
FIG. 2 is a schematic diagram illustrating an example of a circuit configuration of the air-conditioning apparatus 1 according to the first embodiment. In the example of FIG. 2, a case where two indoor units 20 </ b> A and 20 </ b> B are connected to one outdoor unit 10 via the refrigerant pipe 30 is shown. As described above, the number of outdoor units 10 and indoor units 20 is not limited to this example.
(室外機)
 室外機10は、圧縮機11、冷媒流路切替装置12、熱源側熱交換器13およびアキュムレータ14で構成されている。
(Outdoor unit)
The outdoor unit 10 includes a compressor 11, a refrigerant flow switching device 12, a heat source side heat exchanger 13, and an accumulator 14.
 圧縮機11は、低温低圧の冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にして吐出する。圧縮機11としては、例えば、駆動周波数を任意に変化させることにより、単位時間あたりの冷媒送出量である容量を制御することが可能なインバータ圧縮機等を用いることができる。 The compressor 11 sucks a low-temperature and low-pressure refrigerant, compresses the refrigerant, and discharges it in a high-temperature and high-pressure state. As the compressor 11, for example, an inverter compressor or the like that can control the capacity that is the refrigerant delivery amount per unit time by arbitrarily changing the drive frequency can be used.
 冷媒流路切替装置12は、例えば四方弁であり、冷媒の流れる方向を切り替えることにより、冷房運転および暖房運転の切り替えを行う。冷媒流路切替装置12としては、上述した四方弁に限らず、例えば他の弁を組み合わせて使用してもよい。 The refrigerant flow switching device 12 is, for example, a four-way valve, and switches between a cooling operation and a heating operation by switching the direction in which the refrigerant flows. The refrigerant flow switching device 12 is not limited to the above-described four-way valve, and for example, other valves may be used in combination.
 熱源側熱交換器13は、図示しないファン等の送風機によって供給される空気(以下、「室外空気」と適宜称する)と冷媒との間で熱交換を行う。具体的には、熱源側熱交換器13は、冷房運転の際に、冷媒の熱を室外空気に放熱して冷媒を凝縮させる凝縮器として機能する。また、熱源側熱交換器13は、暖房運転の際に、冷媒を蒸発させ、その際の気化熱により室外空気を冷却する蒸発器として機能する。 The heat source side heat exchanger 13 performs heat exchange between air (hereinafter referred to as “outdoor air” as appropriate) supplied by a blower such as a fan (not shown) and the refrigerant. Specifically, the heat source side heat exchanger 13 functions as a condenser that radiates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation. The heat source side heat exchanger 13 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air by the heat of vaporization at that time.
 アキュムレータ14は、圧縮機11の吸入側である低圧側に設けられる。アキュムレータ14は、冷房運転と暖房運転の運転状態の違いによって生じる余剰冷媒、過渡的な運転の変化に対する余剰冷媒等を貯留する。 The accumulator 14 is provided on the low pressure side that is the suction side of the compressor 11. The accumulator 14 stores surplus refrigerant generated due to a difference in operating state between the cooling operation and the heating operation, surplus refrigerant with respect to a transient change in operation, and the like.
(室内機)
 室内機20Aおよび20Bは、例えば、空調対象空間の空気の冷房および暖房を行うものである。室内機20Aは、室内熱交換器である絞り装置21Aおよび利用側熱交換器22Aで構成されている。室内機20Bは、絞り装置21Bおよび利用側熱交換器22Bで構成されている。
(Indoor unit)
The indoor units 20A and 20B perform, for example, cooling and heating of air in an air-conditioning target space. The indoor unit 20A includes an expansion device 21A that is an indoor heat exchanger and a use side heat exchanger 22A. The indoor unit 20B includes a throttle device 21B and a use side heat exchanger 22B.
 なお、以下の説明において、絞り装置21Aおよび21Bを特に区別する必要がない場合には、単に「絞り装置21」と適宜称して説明する。また、利用側熱交換器22Aおよび22Bについても同様に、単に「利用側熱交換器22」と適宜称して説明する。 In the following description, when it is not necessary to distinguish between the diaphragm devices 21A and 21B, they will be simply referred to as “the diaphragm device 21” as appropriate. Similarly, the use side heat exchangers 22A and 22B are simply referred to as “use side heat exchanger 22” as appropriate.
 絞り装置21は、冷媒の流量を調整することによって冷媒を減圧して膨張させる。絞り装置21は、例えば、電子式膨張弁等の開度の制御が可能な弁で構成される。なお、絞り装置21としては、これに限らず、例えばキャピラリ等の他の絞り装置を用いることもできる。 The expansion device 21 decompresses and expands the refrigerant by adjusting the flow rate of the refrigerant. The expansion device 21 is constituted by a valve capable of controlling the opening, such as an electronic expansion valve. The diaphragm device 21 is not limited to this, and other diaphragm devices such as capillaries can also be used.
 利用側熱交換器22は、図示しないファン等の送風機によって供給される空気と冷媒との間で熱交換を行う。これにより、室内空間4に供給される暖房用空気または冷房用空気が生成される。具体的には、利用側熱交換器22は、冷房運転の際に冷媒が冷熱を搬送している場合に蒸発器として機能し、空調対象空間である室内空間4の空気を冷却して冷房を行う。また、利用側熱交換器22は、暖房運転の際に冷媒が温熱を搬送している場合に凝縮器として機能し、室内空間4の空気を加熱して暖房を行う。 The use side heat exchanger 22 performs heat exchange between air and a refrigerant supplied by a blower such as a fan (not shown). Thereby, heating air or cooling air supplied to the indoor space 4 is generated. Specifically, the use-side heat exchanger 22 functions as an evaporator when the refrigerant carries cold heat during the cooling operation, and cools the air in the indoor space 4 that is the air-conditioning target space by cooling the air. Do. In addition, the use side heat exchanger 22 functions as a condenser when the refrigerant is transporting warm heat during the heating operation, and heats the air in the indoor space 4 to perform heating.
 室外機10と室内機20とを接続する冷媒配管30には、冷媒圧力検知装置6aおよび6bが設けられている。冷媒圧力検知装置6aは、冷媒配管30の分岐点35aと室内機20Bとの間に設けられている。冷媒圧力検知装置6bは、冷媒配管30の分岐点35bと室内機20Bとの間に設けられている。 Refrigerant pressure detection devices 6 a and 6 b are provided in the refrigerant pipe 30 that connects the outdoor unit 10 and the indoor unit 20. The refrigerant pressure detection device 6a is provided between the branch point 35a of the refrigerant pipe 30 and the indoor unit 20B. The refrigerant pressure detection device 6b is provided between the branch point 35b of the refrigerant pipe 30 and the indoor unit 20B.
 これらの冷媒圧力検知装置6aおよび6bは、空気調和装置1が運転状態であり、冷媒配管30内を冷媒が流通している場合、または空気調和装置1が運転停止状態である場合に、室外空間3および室内空間4の温度に応じた冷媒飽和圧力を検出する。そして、冷媒圧力検知装置6aおよび6bは、検知結果としての冷媒圧力を示す検知信号を、後述する制御装置40に対して出力する。 These refrigerant pressure detection devices 6a and 6b are used in an outdoor space when the air conditioner 1 is in an operating state and the refrigerant is circulating in the refrigerant pipe 30 or when the air conditioner 1 is in an operation stop state. 3 and the refrigerant saturation pressure corresponding to the temperature of the indoor space 4 are detected. Then, the refrigerant pressure detection devices 6a and 6b output a detection signal indicating the refrigerant pressure as a detection result to the control device 40 described later.
 また、室外機10と室内機20とを接続する冷媒配管30には、冷媒遮断弁7a~7dが設けられている。冷媒遮断弁7aは、冷媒配管30の分岐点35aと室内機20Aとの間に設けられている。冷媒遮断弁7bは、室内機20Aと冷媒配管30の分岐点35bとの間に設けられている。冷媒遮断弁7cは、分岐点35aと室内機20Bとの間に設けられている。冷媒遮断弁7dは、室内機20Bと分岐点35bとの間に設けられている。 The refrigerant piping 30 that connects the outdoor unit 10 and the indoor unit 20 is provided with refrigerant cutoff valves 7a to 7d. The refrigerant shut-off valve 7a is provided between the branch point 35a of the refrigerant pipe 30 and the indoor unit 20A. The refrigerant shut-off valve 7b is provided between the indoor unit 20A and the branch point 35b of the refrigerant pipe 30. The refrigerant cutoff valve 7c is provided between the branch point 35a and the indoor unit 20B. The refrigerant shut-off valve 7d is provided between the indoor unit 20B and the branch point 35b.
 これらの冷媒遮断弁7a~7dは、弁の開閉が制御装置40によって制御され、冷媒配管30内の冷媒の流通を許容または遮断する。冷媒遮断弁7a~7dは、通常状態においては「開」状態とされ、冷媒の流通が許容されている。そして、冷媒の漏洩が検知された場合等に、冷媒遮断弁7a~7dは、制御装置40の制御に基づき「閉」状態とされ、冷媒の流通が遮断される。 These refrigerant cutoff valves 7a to 7d are controlled by the control device 40 to open and close the valves, and allow or block the refrigerant flow in the refrigerant piping 30. The refrigerant shut-off valves 7a to 7d are in the “open” state in the normal state, and the refrigerant flow is allowed. When refrigerant leakage is detected, the refrigerant cutoff valves 7a to 7d are brought into a “closed” state based on the control of the control device 40, and the refrigerant flow is blocked.
 冷媒遮断弁7aおよび7bが「閉」状態とされると、室内機20Aは、室外機10から切り離された状態となり、空気調和装置1から独立させることができる。また、冷媒遮断弁7cおよび7dが「閉」状態とされると、室内機20Bは、室外機から切り離された状態となり、空気調和装置1から独立させることができる。なお、冷媒遮断弁7a~7dは、冷媒回路を遮断する機能を有していれば、いずれのものも使用することができる。 When the refrigerant shutoff valves 7a and 7b are in the “closed” state, the indoor unit 20A is disconnected from the outdoor unit 10 and can be made independent of the air conditioner 1. Further, when the refrigerant shutoff valves 7c and 7d are in the “closed” state, the indoor unit 20B is disconnected from the outdoor unit and can be made independent of the air conditioner 1. Any one of the refrigerant shut-off valves 7a to 7d can be used as long as it has a function of shutting off the refrigerant circuit.
(制御装置)
 空気調和装置1には、制御装置40が設けられている。制御装置40は、例えばマイクロコンピュータ、CPU(Central Processing Unit)などの演算装置上で実行されるソフトウェア、各種機能を実現する回路デバイスなどのハードウェア等で構成され、この空気調和装置1全体の運転を制御する。
(Control device)
The air conditioner 1 is provided with a control device 40. The control device 40 includes, for example, software executed on an arithmetic device such as a microcomputer or a CPU (Central Processing Unit), hardware such as a circuit device that realizes various functions, and the like. To control.
 例えば、制御装置40は、利用者から指示される運転内容、冷媒圧力検知装置6および冷媒漏洩検知装置8からの検知結果等に基づき、圧縮機11の圧縮機周波数、絞り装置21の弁開度、冷媒遮断弁7の開閉等を制御する。また、制御装置40は、冷媒配管30から冷媒が漏洩した際の冷媒圧力検知装置6および冷媒漏洩検知装置8からの検知結果等に基づき、冷媒の漏洩箇所を特定する処理を行う。 For example, the control device 40 determines the compressor frequency of the compressor 11 and the valve opening degree of the expansion device 21 based on the operation contents instructed by the user, the detection results from the refrigerant pressure detection device 6 and the refrigerant leakage detection device 8, and the like. The opening and closing of the refrigerant shutoff valve 7 is controlled. In addition, the control device 40 performs a process of specifying a refrigerant leakage location based on detection results from the refrigerant pressure detection device 6 and the refrigerant leakage detection device 8 when the refrigerant leaks from the refrigerant pipe 30.
[制御装置の構成]
 図3は、図2の制御装置40の構成の一例を示すブロック図である。図3に示すように、制御装置40は、漏洩判断部41、圧力比較部42、遮断弁制御部43および漏洩箇所判断部44で構成されている。なお、この例における制御装置40については、本実施の形態1に関連する部分のみを図示し、それ以外の部分については、図示を省略する。
[Configuration of control device]
FIG. 3 is a block diagram showing an example of the configuration of the control device 40 of FIG. As shown in FIG. 3, the control device 40 includes a leak determination unit 41, a pressure comparison unit 42, a shut-off valve control unit 43, and a leak location determination unit 44. In addition, about the control apparatus 40 in this example, only the part relevant to this Embodiment 1 is shown in figure, and illustration is abbreviate | omitted about the other part.
 漏洩判断部41は、冷媒漏洩検知装置8から受け取った検知信号が示す情報、または後述する圧力比較部42からの比較結果を示す情報に基づき、冷媒の漏洩が発生したか否かを判断する。漏洩判断部41は、判断結果を示す情報を遮断弁制御部43に供給する。 The leakage determination unit 41 determines whether or not refrigerant leakage has occurred based on information indicated by the detection signal received from the refrigerant leakage detection device 8 or information indicating a comparison result from the pressure comparison unit 42 described later. The leakage determination unit 41 supplies information indicating the determination result to the cutoff valve control unit 43.
 圧力比較部42は、冷媒圧力検知装置6から受け取った検知信号が示す圧力と、予め設定された圧力判定値としての基準となる圧力(以下、「圧力判定値」と適宜称する)Pとを比較する。圧力比較部42は、比較結果を示す情報を漏洩判断部41または後述する漏洩箇所判断部44に供給する。 The pressure comparison unit 42 compares the pressure indicated by the detection signal received from the refrigerant pressure detection device 6 with a reference pressure (hereinafter referred to as “pressure determination value” as appropriate) P as a preset pressure determination value. To do. The pressure comparison unit 42 supplies information indicating the comparison result to the leakage determination unit 41 or a leakage point determination unit 44 described later.
 なお、圧力判定値Pは、例えば、運転停止中の冷媒配管30内に存在する冷媒の圧力から決定されるものである。この圧力判定値Pとしては、例えば、室外空間3の温度(以下、「室外温度」と適宜称する)または室内空間4の室内温度から算出される冷媒の飽和圧力のうちの低い値または平均値を用いることができる。 Note that the pressure determination value P is determined from, for example, the pressure of the refrigerant existing in the refrigerant pipe 30 during operation stop. As the pressure determination value P, for example, a low value or an average value of the refrigerant saturation pressure calculated from the temperature of the outdoor space 3 (hereinafter referred to as “outdoor temperature” as appropriate) or the indoor temperature of the indoor space 4 is used. Can be used.
 遮断弁制御部43は、漏洩判断部41による判断結果を示す情報を受け取り、この情報に基づき冷媒遮断弁7の開閉を制御する。遮断弁制御部43は、例えば、判断結果を示す情報が冷媒の漏洩を示すものである場合に、冷媒遮断弁7を閉止するように制御する。 The shut-off valve control unit 43 receives information indicating the judgment result by the leak judgment unit 41 and controls the opening and closing of the refrigerant shut-off valve 7 based on this information. For example, when the information indicating the determination result indicates the leakage of the refrigerant, the cutoff valve control unit 43 controls the refrigerant cutoff valve 7 to close.
 漏洩箇所判断部44は、圧力比較部42から受け取った情報に基づき、漏洩箇所を判断する。そして、漏洩箇所判断部44は、判断結果を示す情報を遮断弁制御部43に供給する。漏洩箇所判断部44は、例えば、圧力判定値Pよりも低い圧力を示す冷媒圧力検知装置6が設置された周囲の冷媒配管30から冷媒が漏洩したと判断する。 The leak location determination unit 44 determines the leak location based on the information received from the pressure comparison unit 42. Then, the leakage location determination unit 44 supplies information indicating the determination result to the cutoff valve control unit 43. For example, the leakage location determination unit 44 determines that the refrigerant has leaked from the surrounding refrigerant pipe 30 in which the refrigerant pressure detection device 6 showing a pressure lower than the pressure determination value P is installed.
[空気調和装置の動作]
 次に、上記構成を有する空気調和装置1における全冷房運転モードおよび全暖房運転モードでの冷媒の動作について説明する。本実施の形態1に係る空気調和装置1における運転モードとしては、室内機20Aおよび20Bの両方が冷房運転を行う全冷房運転モードと、暖房運転を行う全暖房運転モードがある。なお、図2に示す例において、冷媒流路切替装置12の実線で示す状態が全冷房運転モードでの状態を示し、点線で示す状態が全暖房運転モードでの状態を示す。
[Operation of air conditioner]
Next, the operation | movement of the refrigerant | coolant in the cooling only operation mode in the air conditioning apparatus 1 which has the said structure and a heating only operation mode is demonstrated. As operation modes in the air-conditioning apparatus 1 according to Embodiment 1, there are a cooling only operation mode in which both the indoor units 20A and 20B perform a cooling operation, and a heating only operation mode in which a heating operation is performed. In the example shown in FIG. 2, the state indicated by the solid line of the refrigerant flow switching device 12 indicates the state in the cooling only operation mode, and the state indicated by the dotted line indicates the state in the heating only operation mode.
(全冷房運転モード)
 まず、室内機20Aおよび20Bが冷房運転を行う全冷房運転モードでの冷媒の動作について説明する。全冷房運転モードでは、室外機10における冷媒流路切替装置12が図2の実線で示す状態に切り替えられる。そして、低温低圧の冷媒が圧縮機11によって圧縮され、高温高圧のガス冷媒となって吐出される。
(Cooling mode only)
First, the operation of the refrigerant in the cooling only operation mode in which the indoor units 20A and 20B perform the cooling operation will be described. In the cooling only operation mode, the refrigerant flow switching device 12 in the outdoor unit 10 is switched to the state shown by the solid line in FIG. The low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
 圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して熱源側熱交換器13に流入する。熱源側熱交換器13に流入した高温高圧のガス冷媒は、室外空気と熱交換して放熱しながら凝縮し、過冷却状態の高圧の液冷媒となって熱源側熱交換器13から流出する。そして、高圧の液冷媒は、室外機10から流出する。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the heat source side heat exchanger 13 via the refrigerant flow switching device 12. The high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 13 condenses while exchanging heat with the outdoor air and dissipates heat, and becomes a supercooled high-pressure liquid refrigerant that flows out of the heat source side heat exchanger 13. Then, the high-pressure liquid refrigerant flows out from the outdoor unit 10.
 室外機10から流出した高圧の液冷媒は、冷媒配管30を介して分岐し、室内機20Aおよび20Bに流入する。室内機20Aに流入した高圧の液冷媒は、冷媒配管30に設けられた冷媒遮断弁7aを介して絞り装置21Aによって減圧され、低温低圧の気液二相冷媒となり、利用側熱交換器22Aに流入する。利用側熱交換器22Aに流入した低温低圧の気液二相冷媒は、室内空気と熱交換して吸熱および蒸発することにより室内空気を冷却し、低温低圧のガス冷媒となって利用側熱交換器22Aから流出する。そして、利用側熱交換器22Aから流出した低温低圧のガス冷媒は、室内機20Aから流出する。 The high-pressure liquid refrigerant that has flowed out of the outdoor unit 10 branches via the refrigerant pipe 30 and flows into the indoor units 20A and 20B. The high-pressure liquid refrigerant that has flowed into the indoor unit 20A is depressurized by the expansion device 21A via the refrigerant shut-off valve 7a provided in the refrigerant pipe 30, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant, which is supplied to the use-side heat exchanger 22A. Inflow. The low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the use side heat exchanger 22A exchanges heat with the room air, absorbs heat and evaporates, thereby cooling the room air and becomes a low-temperature and low-pressure gas refrigerant to use side heat exchange. Out of the vessel 22A. The low-temperature and low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22A flows out of the indoor unit 20A.
 また、室内機20Bに流入した高圧の液冷媒は、冷媒配管30に設けられた冷媒遮断弁7cを介して絞り装置21Bによって減圧され、低温低圧の気液二相冷媒となり、利用側熱交換器22Bに流入する。利用側熱交換器22Bに流入した低温低圧の気液二相冷媒は、室内空気と熱交換して吸熱および蒸発することにより室内空気を冷却し、低温低圧のガス冷媒となって利用側熱交換器22Bから流出する。そして、利用側熱交換器22Bから流出した低温低圧のガス冷媒は、室内機20Bから流出する。 The high-pressure liquid refrigerant that has flowed into the indoor unit 20B is decompressed by the expansion device 21B via the refrigerant shut-off valve 7c provided in the refrigerant pipe 30, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant. It flows into 22B. The low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the use side heat exchanger 22B exchanges heat with the indoor air, absorbs heat and evaporates, thereby cooling the indoor air and becomes a low-temperature and low-pressure gas refrigerant to use-side heat exchange. Out of the vessel 22B. The low-temperature and low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22B flows out of the indoor unit 20B.
 室内機20Aから流出した低温低圧のガス冷媒、および室内機20Bから流出した低温低圧のガス冷媒は、それぞれが冷媒配管30に設けられた冷媒遮断弁7cおよび冷媒遮断弁7dを介して合流し、室外機10に流入する。室外機10に流入した低温低圧のガス冷媒は、冷媒流路切替装置12およびアキュムレータ14を通過して、圧縮機11へ吸入される。 The low-temperature and low-pressure gas refrigerant that has flowed out of the indoor unit 20A and the low-temperature and low-pressure gas refrigerant that has flowed out of the indoor unit 20B are joined together via the refrigerant shut-off valve 7c and the refrigerant shut-off valve 7d provided in the refrigerant pipe 30, respectively. It flows into the outdoor unit 10. The low-temperature and low-pressure gas refrigerant that has flowed into the outdoor unit 10 passes through the refrigerant flow switching device 12 and the accumulator 14 and is sucked into the compressor 11.
(全暖房運転モード)
 次に、室内機20Aおよび20Bが暖房運転を行う全暖房運転モードでの冷媒の動作について説明する。全暖房運転モードでは、冷媒流路切替装置12が図2の点線で示す状態に切り替えられる。そして、低温低圧の冷媒が圧縮機11によって圧縮され、高温高圧のガス冷媒となって吐出される。
(All heating operation mode)
Next, the operation of the refrigerant in the heating only operation mode in which the indoor units 20A and 20B perform the heating operation will be described. In the heating only operation mode, the refrigerant flow switching device 12 is switched to the state indicated by the dotted line in FIG. The low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
 圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して室外機10から流出する。室外機10から流出した高温高圧のガス冷媒は、冷媒配管30を介して分岐し、室内機20Aおよび20Bに流入する。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows out of the outdoor unit 10 through the refrigerant flow switching device 12. The high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 10 branches via the refrigerant pipe 30 and flows into the indoor units 20A and 20B.
 室内機20Aに流入した高温高圧のガス冷媒は、利用側熱交換器22Aに流入し、室内空気と熱交換して放熱しながら凝縮し、過冷却状態の高圧の液冷媒となって利用側熱交換器22Aから流出する。利用側熱交換器22Aから流出した高圧の液冷媒は、絞り装置21Aによって減圧されて低温低圧の気液二相冷媒となり、室内機20Aから流出する。 The high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 20A flows into the use-side heat exchanger 22A, exchanges heat with the indoor air, condenses while dissipating heat, and becomes a high-pressure liquid refrigerant in a supercooled state. It flows out of the exchanger 22A. The high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 22A is decompressed by the expansion device 21A, becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant, and flows out of the indoor unit 20A.
 また、室内機20Bに流入した高温高圧のガス冷媒は、利用側熱交換器22Bに流入し、室内空気と熱交換して放熱しながら凝縮し、過冷却状態の高圧の液冷媒となって利用側熱交換器22Bから流出する。利用側熱交換器22Bから流出した高圧の液冷媒は、絞り装置21Bによって減圧されて低温低圧の気液二相冷媒となり、室内機20Bから流出する。 The high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 20B flows into the use-side heat exchanger 22B, condenses while exchanging heat by exchanging heat with room air, and is used as a supercooled high-pressure liquid refrigerant. It flows out from the side heat exchanger 22B. The high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 22B is decompressed by the expansion device 21B, becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant, and flows out of the indoor unit 20B.
 室内機20Aから流出した低温低圧の気液二相冷媒、および室内機20Bから流出した低温低圧の気液二相冷媒は、それぞれが冷媒遮断弁7aおよび冷媒遮断弁7cを介して合流し、室外機10に流入する。 The low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed out of the indoor unit 20A and the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed out of the indoor unit 20B are joined together via the refrigerant shut-off valve 7a and the refrigerant shut-off valve 7c. Flows into the machine 10.
 室外機10に流入した低温低圧の気液二相冷媒は、熱源側熱交換器13に流入し、室外空気と熱交換して吸熱および蒸発し、低温低圧のガス冷媒となって熱源側熱交換器13から流出する。熱源側熱交換器13から流出した低温低圧のガス冷媒は、冷媒流路切替装置12およびアキュムレータ14を通過して、圧縮機11へ吸入される。そして、以下、上述した循環が繰り返される。 The low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor unit 10 flows into the heat source side heat exchanger 13, exchanges heat with outdoor air, absorbs and evaporates, and becomes a low-temperature and low-pressure gas refrigerant, thereby heat-source-side heat exchange. It flows out of the vessel 13. The low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 13 passes through the refrigerant flow switching device 12 and the accumulator 14 and is sucked into the compressor 11. Thereafter, the above-described circulation is repeated.
 なお、本実施の形態1において、空気調和装置1は、室内空間4の温度(以下、「室内温度」と適宜称する)が設定温度となるように冷房運転または暖房運転を行う。このとき、室内温度が設定温度に達すると、空気調和装置1では、室内機20の利用側熱交換器22に対する冷媒の供給を停止させ、利用側熱交換器22に付設された送風機による送風運転モードに切り替わる。 In the first embodiment, the air conditioner 1 performs the cooling operation or the heating operation so that the temperature of the indoor space 4 (hereinafter, appropriately referred to as “indoor temperature”) becomes a set temperature. At this time, when the room temperature reaches the set temperature, the air conditioner 1 stops the supply of the refrigerant to the use side heat exchanger 22 of the indoor unit 20 and performs a blowing operation by the blower attached to the use side heat exchanger 22. Switch to mode.
 また、空気調和装置1は、室内温度が設定温度に達していないときであっても、例えば利用者による指示があった場合には、利用側熱交換器22に対する冷媒の供給を停止させるとともに、利用側熱交換器22に付設された送風機の運転も停止させる停止モードに切り替わる。 In addition, even when the room temperature does not reach the set temperature, the air conditioner 1 stops the supply of the refrigerant to the use side heat exchanger 22 when, for example, there is an instruction from the user, The operation mode is switched to a stop mode in which the operation of the blower attached to the use side heat exchanger 22 is also stopped.
[冷媒漏洩検知処理]
 次に、冷媒の漏洩が発生した際の処理について説明する。図4は、本実施の形態1に係る空気調和装置1における冷媒漏洩検知処理の流れの一例を示すフローチャートである。ここでは、空気調和装置1の運転が停止している状態で冷媒の漏洩が検知された場合について説明する。
[Refrigerant leak detection processing]
Next, processing when refrigerant leakage occurs will be described. FIG. 4 is a flowchart illustrating an example of the flow of the refrigerant leakage detection process in the air-conditioning apparatus 1 according to Embodiment 1. Here, the case where the leakage of the refrigerant is detected in a state where the operation of the air conditioner 1 is stopped will be described.
 まず、ステップS1において、冷媒配管30から冷媒の漏洩が検知されると、ステップS2において、制御装置40の漏洩判断部41は、当該冷媒漏洩が冷媒漏洩検知装置8によって検知されたものであるか否かを判断する。 First, when leakage of the refrigerant is detected from the refrigerant pipe 30 in step S1, the leakage determination unit 41 of the control device 40 determines whether the refrigerant leakage is detected by the refrigerant leakage detection device 8 in step S2. Judge whether or not.
 冷媒漏洩が冷媒漏洩検知装置8によって検知されたものであると判断した場合(ステップS2;Yes)、漏洩判断部41は、室内空間4へ冷媒が漏洩したと判断し、処理がステップS3に移行する。ステップS3において、制御装置40の遮断弁制御部43は、対象となる冷媒遮断弁7を閉止するように制御する。 When it is determined that the refrigerant leakage is detected by the refrigerant leakage detection device 8 (step S2; Yes), the leakage determination unit 41 determines that the refrigerant has leaked into the indoor space 4, and the process proceeds to step S3. To do. In step S <b> 3, the cutoff valve control unit 43 of the control device 40 performs control so that the target refrigerant cutoff valve 7 is closed.
 この場合には、室内空間4に対する冷媒の漏洩を抑制する必要があるため、遮断弁制御部43は、室内空間4に設置されたすべての室内機20に接続された冷媒配管30の冷媒遮断弁7と、その上流側の冷媒遮断弁7とを閉止するように制御する。したがって、図1および図2に示す例において、遮断弁制御部43は、「対象となる冷媒遮断弁7」として、冷媒遮断弁7a~7dを閉止するように制御する。これにより、室内空間4に設置された室内機20に対応する冷媒回路を空気調和装置1から分離させることができる。 In this case, since it is necessary to suppress the leakage of the refrigerant to the indoor space 4, the shut-off valve control unit 43 includes the refrigerant shut-off valves of the refrigerant pipes 30 connected to all the indoor units 20 installed in the indoor space 4. 7 and the refrigerant shutoff valve 7 on the upstream side thereof are controlled to close. Therefore, in the example shown in FIGS. 1 and 2, the shutoff valve control unit 43 controls the coolant shutoff valves 7a to 7d as the “target coolant shutoff valve 7” to be closed. Thereby, the refrigerant circuit corresponding to the indoor unit 20 installed in the indoor space 4 can be separated from the air conditioner 1.
 次に、ステップS4において、制御装置40の漏洩箇所判断部44は、冷媒配管30における冷媒の漏洩箇所を特定する。冷媒の漏洩箇所の特定は、例えば、冷媒圧力検知装置6の検知結果を用い、冷媒配管30内の冷媒の圧力の変動に基づいて行うことができる。具体的には、圧力比較部42は、冷媒配管30に設けられたそれぞれの冷媒圧力検知装置6から受け取った検知信号が示す圧力と圧力判定値Pとを比較する。そして、漏洩箇所判断部44は、圧力判定値Pよりも低い圧力を示す冷媒圧力検知装置6が設置された周囲の冷媒配管30から冷媒が漏洩したと判断する。 Next, in step S <b> 4, the leakage point determination unit 44 of the control device 40 identifies the leakage point of the refrigerant in the refrigerant pipe 30. The location of the refrigerant leakage can be identified based on, for example, fluctuations in the pressure of the refrigerant in the refrigerant pipe 30 using the detection result of the refrigerant pressure detection device 6. Specifically, the pressure comparison unit 42 compares the pressure indicated by the detection signal received from each refrigerant pressure detection device 6 provided in the refrigerant pipe 30 with the pressure determination value P. And the leak location determination part 44 judges that the refrigerant | coolant leaked from the surrounding refrigerant | coolant piping 30 in which the refrigerant | coolant pressure detection apparatus 6 which shows a pressure lower than the pressure judgment value P was installed.
 一方、ステップS2において、冷媒漏洩検知装置8によって検知されたものではないと判断した場合(ステップS2;No)、漏洩判断部41は、室外空間3へ冷媒が漏洩したと判断し、処理がステップS5に移行する。 On the other hand, when it is determined in step S2 that the refrigerant leakage detection device 8 has not detected the leakage (step S2; No), the leakage determination unit 41 determines that the refrigerant has leaked into the outdoor space 3, and the processing is performed in step S2. The process proceeds to S5.
 ステップS5において、漏洩判断部41は、冷媒漏洩が室内機20に接続された冷媒配管30に設けられた冷媒圧力検知装置6によって検知されたものであるか否かを判断する。冷媒漏洩が当該冷媒圧力検知装置6によって検知されたものであると判断した場合(ステップS5;Yes)には、処理がステップS6に移行する。 In step S <b> 5, the leakage determination unit 41 determines whether or not the refrigerant leakage is detected by the refrigerant pressure detection device 6 provided in the refrigerant pipe 30 connected to the indoor unit 20. When it is determined that the refrigerant leakage is detected by the refrigerant pressure detection device 6 (step S5; Yes), the process proceeds to step S6.
 なお、冷媒圧力検知装置6による冷媒漏洩の検知は、例えば、冷媒配管30内の冷媒の圧力の変動に基づいて行うことができる。具体的には、それぞれの冷媒圧力検知装置6の検知結果が示す圧力と、圧力判定値Pとを比較し、冷媒圧力検知装置6の圧力が圧力判定値Pよりも低い値となった場合に、冷媒が漏洩したと判断することができる。 Note that detection of refrigerant leakage by the refrigerant pressure detection device 6 can be performed based on, for example, fluctuations in the pressure of the refrigerant in the refrigerant pipe 30. Specifically, when the pressure indicated by the detection result of each refrigerant pressure detection device 6 is compared with the pressure determination value P, and the pressure of the refrigerant pressure detection device 6 is lower than the pressure determination value P, It can be determined that the refrigerant has leaked.
 ステップS6において、遮断弁制御部43は、対象となる冷媒遮断弁7を閉止するように制御する。この場合、漏洩判断部41は、圧力判定値Pよりも低い圧力を示す冷媒圧力検知装置6が設置された周囲の冷媒配管30から冷媒が漏洩したと判断する。そして、遮断弁制御部43は、当該冷媒圧力検知装置6が設置された冷媒配管30の冷媒遮断弁7を閉止するように制御する。具体的には、図2に示す例において、例えば、冷媒圧力検知装置6aによって冷媒漏洩が検知された場合、遮断弁制御部43は、冷媒遮断弁7cを閉止するように制御する。 In step S6, the shutoff valve control unit 43 performs control so that the target coolant shutoff valve 7 is closed. In this case, the leakage determination unit 41 determines that the refrigerant has leaked from the surrounding refrigerant pipe 30 where the refrigerant pressure detection device 6 showing a pressure lower than the pressure determination value P is installed. And the cutoff valve control part 43 is controlled to close the refrigerant cutoff valve 7 of the refrigerant | coolant piping 30 in which the said refrigerant | coolant pressure detection apparatus 6 was installed. Specifically, in the example illustrated in FIG. 2, for example, when refrigerant leakage is detected by the refrigerant pressure detection device 6 a, the cutoff valve control unit 43 controls to close the refrigerant cutoff valve 7 c.
 次に、ステップS7において、漏洩箇所判断部44は、冷媒配管30における冷媒の漏洩箇所を特定する。このときの冷媒箇所の特定方法は、上述したステップS4と同様である。 Next, in step S <b> 7, the leak location determination unit 44 specifies the leak location of the refrigerant in the refrigerant pipe 30. The method of identifying the refrigerant location at this time is the same as that in step S4 described above.
 一方、ステップS5において、冷媒漏洩が室内機20に接続された冷媒配管30に設けられた冷媒圧力検知装置6によって検知されたものはないと判断した場合(ステップS5;No)には、処理がステップS8に移行する。 On the other hand, when it is determined in step S5 that there is no refrigerant leakage detected by the refrigerant pressure detection device 6 provided in the refrigerant pipe 30 connected to the indoor unit 20 (step S5; No), the process is performed. The process proceeds to step S8.
 ステップS8において、遮断弁制御部43は、対象となる冷媒遮断弁7を閉止するように制御する。このときの冷媒漏洩は、室内機20に接続された冷媒配管30からのものではなく、漏洩箇所を特定することが困難である。したがって、遮断弁制御部43は、さらなる冷媒漏洩を防止するため、室外機10に接続された冷媒配管30に設けられた冷媒遮断弁7を閉止するように制御する。 In step S8, the shutoff valve control unit 43 performs control so that the target coolant shutoff valve 7 is closed. The refrigerant leakage at this time is not from the refrigerant pipe 30 connected to the indoor unit 20, and it is difficult to specify the leakage location. Therefore, the shutoff valve control unit 43 performs control so as to close the coolant shutoff valve 7 provided in the refrigerant pipe 30 connected to the outdoor unit 10 in order to prevent further refrigerant leakage.
 以上のように、本実施の形態1に係る空気調和装置1は、室外機10と複数の室内機20とを冷媒配管30で接続し、冷媒を循環させることによって冷媒回路が形成されたものであり、室内空間4に設けられ、室内空間4に対する冷媒の漏洩を検知する冷媒漏洩検知装置8と、冷媒配管30に設けられ、冷媒配管30内を流通する冷媒の圧力を検知する複数の冷媒圧力検知装置6と、冷媒配管30に設けられ、冷媒の流通を許容または遮断する冷媒遮断弁7と、冷媒遮断弁7の開閉を制御する制御装置40とを備えている。そして、制御装置40は、冷媒漏洩検知装置8または冷媒圧力検知装置6の検知結果に基づき、冷媒の漏洩の有無を判断し、冷媒が漏洩したと判断した場合に、冷媒遮断弁7を閉止するように制御し、冷媒圧力検知装置6で検知された冷媒配管30内の冷媒の圧力の変動に基づき、冷媒の漏洩箇所を特定する。 As described above, the air-conditioning apparatus 1 according to Embodiment 1 is configured such that a refrigerant circuit is formed by connecting the outdoor unit 10 and the plurality of indoor units 20 with the refrigerant pipe 30 and circulating the refrigerant. Yes, a refrigerant leak detection device 8 that is provided in the indoor space 4 and detects refrigerant leakage to the indoor space 4, and a plurality of refrigerant pressures that are provided in the refrigerant pipe 30 and detect the pressure of the refrigerant flowing through the refrigerant pipe 30. A detection device 6, a refrigerant shut-off valve 7 that is provided in the refrigerant pipe 30 and allows or blocks the flow of the refrigerant, and a control device 40 that controls opening and closing of the refrigerant shut-off valve 7 are provided. And the control apparatus 40 judges the presence or absence of the leakage of a refrigerant | coolant based on the detection result of the refrigerant | coolant leakage detection apparatus 8 or the refrigerant | coolant pressure detection apparatus 6, and closes the refrigerant | coolant cutoff valve 7 when it is judged that the refrigerant | coolant leaked. The refrigerant leakage point is specified based on the fluctuation of the refrigerant pressure in the refrigerant pipe 30 detected by the refrigerant pressure detection device 6.
 このように、冷媒が漏洩したと判断した場合に、冷媒遮断弁7を閉止するように制御するため、冷媒がさらに漏洩するのを抑制することができる。また、冷媒圧力検知装置6で検知された冷媒配管30内の冷媒の圧力の変動に基づくことにより、冷媒の漏洩箇所を容易に特定することができる。そして、このようにして冷媒の漏洩箇所を容易に特定することができるため、空気調和装置1の安全性だけでなく、工事性、経済性、利便性を向上させることができる。 Thus, since it is controlled to close the refrigerant shutoff valve 7 when it is determined that the refrigerant has leaked, it is possible to prevent the refrigerant from further leaking. Further, based on the change in the pressure of the refrigerant in the refrigerant pipe 30 detected by the refrigerant pressure detection device 6, the leakage point of the refrigerant can be easily identified. And since the leak location of a refrigerant | coolant can be specified easily in this way, not only the safety | security of the air conditioning apparatus 1 but construction property, economical efficiency, and the convenience can be improved.
 実施の形態2.
 次に、本実施の形態2に係る空気調和装置について説明する。本実施の形態2に係る空気調和装置は、複数の室内機が冷房運転および暖房運転の両方を同時に行うことができる冷暖同時タイプの空気調和装置である。
Embodiment 2. FIG.
Next, an air conditioner according to Embodiment 2 will be described. The air conditioning apparatus according to Embodiment 2 is a cooling / heating simultaneous type air conditioning apparatus in which a plurality of indoor units can perform both cooling operation and heating operation at the same time.
[空気調和装置の設置例]
 図5は、本実施の形態2に係る空気調和装置1の設置例を示す概略図である。図5に示すように、空気調和装置1は、室外空間3に設置された室外機10と、室内空間4に設置された複数台の室内機20と、室外機10と室内機20との間に介在する分岐ユニット50とを備えている。室外機10および分岐ユニット50は、2本の冷媒配管30aで接続されている。また、分岐ユニット50および複数の室内機20のそれぞれは、冷媒配管30bで接続されている。
[Installation example of air conditioner]
FIG. 5 is a schematic diagram illustrating an installation example of the air-conditioning apparatus 1 according to the second embodiment. As shown in FIG. 5, the air conditioner 1 includes an outdoor unit 10 installed in the outdoor space 3, a plurality of indoor units 20 installed in the indoor space 4, and between the outdoor unit 10 and the indoor unit 20. And a branch unit 50 interposed therebetween. The outdoor unit 10 and the branch unit 50 are connected by two refrigerant pipes 30a. In addition, each of the branch unit 50 and the plurality of indoor units 20 is connected by a refrigerant pipe 30b.
 なお、以下の説明において、上述した実施の形態1と同様の部分については、同一の符号を付し、説明を省略する。 In addition, in the following description, the same code | symbol is attached | subjected about the part similar to Embodiment 1 mentioned above, and description is abbreviate | omitted.
 分岐ユニット50は、室外機10および室内機20とは異なる筐体として、室外空間3および室内空間4とは別の位置、例えば空間5等に設置できるように構成されている。分岐ユニット50は、室外機10と冷媒配管30aで接続されるとともに、室内機20と冷媒配管30bで接続されている。分岐ユニット50は、室外機10で生成された冷熱または温熱を、室内機20に伝達するためのものである。 The branch unit 50 is configured as a housing different from the outdoor unit 10 and the indoor unit 20 so that it can be installed in a position different from the outdoor space 3 and the indoor space 4, for example, the space 5. The branch unit 50 is connected to the outdoor unit 10 through the refrigerant pipe 30a, and is connected to the indoor unit 20 through the refrigerant pipe 30b. The branch unit 50 is for transmitting the cold heat or the heat generated by the outdoor unit 10 to the indoor unit 20.
 冷媒圧力検知装置6および冷媒遮断弁7は、冷媒配管30aおよび30bのそれぞれに設けられている。また、室内空間4には、実施の形態1と同様に、冷媒漏洩検知装置8が設置されている。 The refrigerant pressure detection device 6 and the refrigerant cutoff valve 7 are provided in the refrigerant pipes 30a and 30b, respectively. Further, similarly to the first embodiment, a refrigerant leak detection device 8 is installed in the indoor space 4.
[空気調和装置の回路構成]
 図6は、本実施の形態2に係る空気調和装置1の回路構成の一例を示す概略図である。図6の例では、空気調和装置1が1台の室外機10、分岐ユニット50、2台の室内機20Aおよび20Bで構成される場合を示す。
[Circuit configuration of air conditioner]
FIG. 6 is a schematic diagram illustrating an example of a circuit configuration of the air-conditioning apparatus 1 according to the second embodiment. In the example of FIG. 6, the case where the air conditioning apparatus 1 is comprised with the one outdoor unit 10, the branch unit 50, and the two indoor units 20A and 20B is shown.
(室外機)
 室外機10は、圧縮機11、冷媒流路切替装置12、熱源側熱交換器13、アキュムレータ14、4つの逆止弁15a~15dで構成されている。
(Outdoor unit)
The outdoor unit 10 includes a compressor 11, a refrigerant flow switching device 12, a heat source side heat exchanger 13, an accumulator 14, and four check valves 15a to 15d.
 逆止弁15a~15dは、冷媒配管30aを流通する冷媒の流れを予め定められた方向にのみ許容する。逆止弁15aは、分岐ユニット50と冷媒流路切替装置12との間の冷媒配管30aに設けられ、後述する全冷房運転および冷房主体運転を含む冷房運転時に冷媒を分岐ユニット50から室外機10への方向に流通させる。逆止弁15bは、2本の冷媒配管30aを接続する第1の接続配管31aに設けられ、全暖房運転および暖房主体運転を含む暖房運転時に分岐ユニット50から戻ってきた冷媒を圧縮機11の吸入側に流通させる。 The check valves 15a to 15d allow the flow of the refrigerant flowing through the refrigerant pipe 30a only in a predetermined direction. The check valve 15a is provided in the refrigerant pipe 30a between the branch unit 50 and the refrigerant flow switching device 12, and from the branch unit 50 to the outdoor unit 10 during the cooling operation including the cooling only operation and the cooling main operation described later. Circulate in the direction of The check valve 15 b is provided in the first connection pipe 31 a that connects the two refrigerant pipes 30 a, and the refrigerant returned from the branch unit 50 during the heating operation including the all heating operation and the heating main operation is supplied to the compressor 11. Distribute to the suction side.
 逆止弁15cは、2本の冷媒配管30aを接続する第2の接続配管31bに設けられ、暖房運転時に圧縮機11から吐出された冷媒を分岐ユニット50に流通させる。逆止弁15dは、熱源側熱交換器13と分岐ユニット50との間の冷媒配管30aに設けられ、冷房運転時に冷媒を室外機10から分岐ユニット50への方向に流通させる。 The check valve 15c is provided in the second connection pipe 31b that connects the two refrigerant pipes 30a, and causes the refrigerant discharged from the compressor 11 to flow through the branch unit 50 during the heating operation. The check valve 15d is provided in the refrigerant pipe 30a between the heat source side heat exchanger 13 and the branch unit 50, and causes the refrigerant to flow in the direction from the outdoor unit 10 to the branch unit 50 during the cooling operation.
(分岐ユニット)
 分岐ユニット50は、室外機10から供給された冷熱または温熱を、室内機20に供給する機能を有している。分岐ユニット50は、気液分離器51、流路切替弁54、絞り装置52および絞り装置53で構成されている。なお、流路切替弁54Aおよび54Bは、分岐ユニット50に接続されている室内機20の台数に対応した個数が設けられている。
(Branch unit)
The branch unit 50 has a function of supplying the cold or hot energy supplied from the outdoor unit 10 to the indoor unit 20. The branch unit 50 includes a gas-liquid separator 51, a flow path switching valve 54, a throttle device 52, and a throttle device 53. Note that the number of flow path switching valves 54A and 54B corresponding to the number of indoor units 20 connected to the branch unit 50 is provided.
 流路切替弁54Aおよび54Bは、室内機20に供給する冷媒の流れを切り替えるものである。この流路切替弁54Aおよび54Bによって冷媒流路を切り替えることで、分岐ユニット50に接続されているそれぞれの室内機20Aおよび20Bが冷房運転および暖房運転を同時に実行することができる。流路切替弁54Aおよび54Bは、例えば三方弁等で構成されている。 The flow path switching valves 54A and 54B switch the flow of refrigerant supplied to the indoor unit 20. By switching the refrigerant flow path using the flow path switching valves 54A and 54B, the indoor units 20A and 20B connected to the branch unit 50 can simultaneously perform the cooling operation and the heating operation. The flow path switching valves 54A and 54B are constituted by, for example, three-way valves.
 流路切替弁54Aは、一方が冷媒配管30aに接続され、他方が気液分離器51に接続され、更にもう他方が室内機20Aの利用側熱交換器22Aに接続されている。また、流路切替弁54Bは、一方が冷媒配管30aに接続され、他方が気液分離器51に接続され、更にもう他方が室内機20Bの利用側熱交換器22Bに接続されている。流路切替弁54Aおよび54Bは、弁の開閉が制御装置40によって制御される。 One of the flow path switching valves 54A is connected to the refrigerant pipe 30a, the other is connected to the gas-liquid separator 51, and the other is connected to the use side heat exchanger 22A of the indoor unit 20A. One of the flow path switching valves 54B is connected to the refrigerant pipe 30a, the other is connected to the gas-liquid separator 51, and the other is connected to the use side heat exchanger 22B of the indoor unit 20B. The flow switching valves 54A and 54B are controlled by the control device 40 to open and close the valves.
 気液分離器51は、冷媒配管30aに接続されるとともに、室内機20の流出入側のそれぞれに接続される。気液分離器51は、流入した冷媒をガス冷媒と液冷媒とに分離する機能を有している。 The gas-liquid separator 51 is connected to the refrigerant pipe 30a and to each of the inflow / outflow sides of the indoor unit 20. The gas-liquid separator 51 has a function of separating the inflowing refrigerant into a gas refrigerant and a liquid refrigerant.
 絞り装置52は、気液分離器51と室内機20Aの絞り装置21Aおよび室内機20Bの絞り装置21Bとの間に設けられ、冷媒を減圧して膨張させるものである。絞り装置53は、冷媒配管30aと、絞り装置52と室内機20Aの絞り装置21Aおよび室内機20Bの絞り装置21Bとの間における配管と、を接続した接続配管に設けられ、冷媒を減圧して膨張させるものである。絞り装置52および絞り装置53は、例えば、電子式膨張弁等の開度の制御が可能な弁、キャピラリ等で構成される。絞り装置52および絞り装置53が膨張弁である場合には、弁開度が制御装置40によって制御される。 The expansion device 52 is provided between the gas-liquid separator 51 and the expansion device 21A of the indoor unit 20A and the expansion device 21B of the indoor unit 20B, and expands the refrigerant by decompressing it. The expansion device 53 is provided in a connection pipe connecting the refrigerant pipe 30a and the expansion device 52, the expansion device 21A of the indoor unit 20A, and the expansion device 21B of the indoor unit 20B, and depressurizes the refrigerant. Inflate. The expansion device 52 and the expansion device 53 are configured by, for example, valves, capillaries, and the like capable of controlling the opening degree, such as an electronic expansion valve. When the expansion device 52 and the expansion device 53 are expansion valves, the valve opening degree is controlled by the control device 40.
 分岐ユニット50と室内機20とを接続する冷媒配管30bには、冷媒圧力検知装置6Aおよび6Bが設けられている。冷媒圧力検知装置6Aは、冷媒配管30bにおける分岐ユニット50の絞り装置52と室内機20Aとの間に設けられている。冷媒圧力検知装置6Bは、冷媒配管30bにおける分岐ユニット50の絞り装置52と室内機20Bとの間に設けられている。 Refrigerant pressure detection devices 6A and 6B are provided in the refrigerant pipe 30b that connects the branch unit 50 and the indoor unit 20. The refrigerant pressure detection device 6A is provided between the expansion device 52 of the branch unit 50 and the indoor unit 20A in the refrigerant pipe 30b. The refrigerant pressure detection device 6B is provided between the expansion device 52 of the branch unit 50 and the indoor unit 20B in the refrigerant pipe 30b.
 室外機10と分岐ユニット50とを接続する冷媒配管30aには、冷媒圧力検知装置6Cが設けられている。冷媒圧力検知装置6Cは、室外機10における逆止弁15dと分岐ユニット50における気液分離器51との間に設けられている。 A refrigerant pressure detection device 6C is provided in the refrigerant pipe 30a connecting the outdoor unit 10 and the branch unit 50. The refrigerant pressure detection device 6 </ b> C is provided between the check valve 15 d in the outdoor unit 10 and the gas-liquid separator 51 in the branch unit 50.
 なお、冷媒圧力検知装置6の設置位置および設置数は、この例に限られず、例えば冷媒配管30aおよび30bの長さ、分岐ユニット50および室内機20を設置する際の配管の取り回し、配管継ぎ手の設置位置、必要な冷媒量等に応じて決定することができる。 In addition, the installation position and the number of installation of the refrigerant pressure detection device 6 are not limited to this example. For example, the length of the refrigerant pipes 30a and 30b, the handling of the pipe when installing the branch unit 50 and the indoor unit 20, and the pipe joint It can be determined according to the installation position, the necessary amount of refrigerant, and the like.
 また、分岐ユニット50と室内機20とを接続する冷媒配管30bには、冷媒遮断弁7a~7dが設けられている。室外機10と分岐ユニット50とを接続する冷媒配管30aには、冷媒遮断弁7eおよび7fが設けられている。 In addition, refrigerant shut-off valves 7a to 7d are provided in the refrigerant pipe 30b connecting the branch unit 50 and the indoor unit 20. Refrigerant shut-off valves 7e and 7f are provided in the refrigerant pipe 30a that connects the outdoor unit 10 and the branch unit 50.
 冷媒遮断弁7eは、冷媒配管30aにおける、室外機10の逆止弁15dと分岐ユニット50の気液分離器51との間に設けられている。冷媒遮断弁7fは、冷媒配管30aにおける、分岐ユニット50の流路切替弁54Bと室外機10の逆止弁15aとの間に設けられている。 The refrigerant shut-off valve 7e is provided between the check valve 15d of the outdoor unit 10 and the gas-liquid separator 51 of the branch unit 50 in the refrigerant pipe 30a. The refrigerant shut-off valve 7f is provided between the flow path switching valve 54B of the branch unit 50 and the check valve 15a of the outdoor unit 10 in the refrigerant pipe 30a.
 これらの冷媒遮断弁7a~7fは、弁の開閉が制御装置40によって制御され、通常状態においては「開」状態とされている。そして、冷媒の漏洩が検知された場合等に、冷媒遮断弁7a~7fは、制御装置40の制御に基づき「閉」状態とされる。 These refrigerant shut-off valves 7a to 7f are controlled to open and close by the control device 40, and are in an “open” state in a normal state. Then, when a refrigerant leak is detected, the refrigerant shut-off valves 7a to 7f are brought into a “closed” state based on the control of the control device 40.
 冷媒遮断弁7eおよび7fが「閉」状態とされると、分岐ユニット50および室内機20Aは、室外機10から切り離された状態となり、空気調和装置1から独立させることができる。 When the refrigerant shutoff valves 7e and 7f are in the “closed” state, the branch unit 50 and the indoor unit 20A are disconnected from the outdoor unit 10 and can be made independent of the air conditioner 1.
 なお、冷媒遮断弁7eおよび7fは、冷媒遮断弁7a~7dと同様に、冷媒回路を遮断する機能を有していれば、いずれのものも使用することができる。また、冷媒遮断弁7の設置位置および設置数は、この例に限られず、例えば冷媒配管30aおよび30bの長さ、分岐ユニット50および室内機20を設置する際の配管の取り回し、配管継ぎ手の設置位置、必要な冷媒量等に応じて決定することができる。 Note that any one of the refrigerant shut-off valves 7e and 7f can be used as long as it has a function of shutting off the refrigerant circuit, similarly to the refrigerant shut-off valves 7a to 7d. Moreover, the installation position and the number of installation of the refrigerant shut-off valve 7 are not limited to this example. For example, the length of the refrigerant pipes 30a and 30b, the handling of the pipe when installing the branch unit 50 and the indoor unit 20, and the installation of the pipe joint It can be determined according to the position, the necessary amount of refrigerant, and the like.
[制御装置の構成]
 図7は、図6の制御装置40の構成の一例を示すブロック図である。図7に示すように、制御装置40は、漏洩判断部41、圧力比較部42、遮断弁制御部43、漏洩箇所判断部44および流路切替弁制御部45で構成されている。なお、この例における制御装置40については、本実施の形態2に関連する部分のみを図示し、それ以外の部分については、図示を省略する。また、上述した実施の形態1と共通する部分については、説明を省略する。
[Configuration of control device]
FIG. 7 is a block diagram showing an example of the configuration of the control device 40 of FIG. As shown in FIG. 7, the control device 40 includes a leak determination unit 41, a pressure comparison unit 42, a shut-off valve control unit 43, a leak location determination unit 44, and a flow path switching valve control unit 45. In addition, about the control apparatus 40 in this example, only the part relevant to this Embodiment 2 is illustrated, and illustration is abbreviate | omitted about the other part. Further, description of portions common to the above-described first embodiment will be omitted.
 漏洩判断部41は、冷媒漏洩検知装置8から受け取った検知信号が示す情報、または後述する圧力比較部42からの比較結果を示す情報に基づき、冷媒の漏洩が発生したか否かを判断する。漏洩判断部41は、判断結果を示す情報を遮断弁制御部43および流路切替弁制御部45に供給する。 The leakage determination unit 41 determines whether or not refrigerant leakage has occurred based on information indicated by the detection signal received from the refrigerant leakage detection device 8 or information indicating a comparison result from the pressure comparison unit 42 described later. The leakage determination unit 41 supplies information indicating the determination result to the cutoff valve control unit 43 and the flow path switching valve control unit 45.
 流路切替弁制御部45は、漏洩判断部41による判断結果を示す情報を受け取り、この情報に基づき分岐ユニット50の流路切替弁54の開閉を制御する。 The flow path switching valve control unit 45 receives information indicating the determination result by the leakage determination unit 41, and controls opening / closing of the flow path switching valve 54 of the branch unit 50 based on this information.
[空気調和装置の動作]
 次に、上記構成を有する空気調和装置1における各種運転モードでの冷媒の動作について説明する。本実施の形態2に係る空気調和装置1における運転モードとしては、実施の形態1で説明した全冷房運転モードおよび全暖房運転モードに加えて、室内機20Aおよび20Bが冷房運転および暖房運転の両方を同時に行い、いずれか一方の運転を主体的に行う冷房主体運転モードおよび暖房主体運転モードがある。ここでは、空気調和装置1における全冷房運転モード、全暖房運転モード、冷房主体運転モードおよび暖房主体運転モードでの冷媒の動作について説明する。
[Operation of air conditioner]
Next, the refrigerant | coolant operation | movement in the various operation modes in the air conditioning apparatus 1 which has the said structure is demonstrated. As an operation mode in the air conditioner 1 according to Embodiment 2, in addition to the cooling only operation mode and the heating only operation mode described in Embodiment 1, the indoor units 20A and 20B are both in the cooling operation and the heating operation. There are a cooling main operation mode and a heating main operation mode in which one of the operations is performed at the same time. Here, the operation of the refrigerant in the cooling only operation mode, the heating only operation mode, the cooling main operation mode, and the heating main operation mode in the air conditioner 1 will be described.
(全冷房運転モード)
 まず、全冷房運転モードでの冷媒の動作について説明する。全冷房運転モードでは、室内機20Aおよび20Bが共に冷房運転を行う。
(Cooling mode only)
First, the operation of the refrigerant in the cooling only operation mode will be described. In the all-cooling operation mode, both the indoor units 20A and 20B perform the cooling operation.
 全冷房運転モードでは、室外機10における冷媒流路切替装置12が図6の実線で示す状態に切り替えられる。そして、低温低圧の冷媒が圧縮機11によって圧縮され、高温高圧のガス冷媒となって吐出される。 In the cooling only operation mode, the refrigerant flow switching device 12 in the outdoor unit 10 is switched to the state indicated by the solid line in FIG. The low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
 圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して熱源側熱交換器13に流入する。熱源側熱交換器13に流入した高温高圧のガス冷媒は、室外空気と熱交換して放熱しながら凝縮し、高圧の液冷媒となって熱源側熱交換器13から流出する。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the heat source side heat exchanger 13 via the refrigerant flow switching device 12. The high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 13 condenses while exchanging heat with the outdoor air and dissipates heat, and flows out of the heat source side heat exchanger 13 as a high-pressure liquid refrigerant.
 熱源側熱交換器13から流出した高圧の液冷媒は、逆止弁15dを介して室外機10から流出し、分岐ユニット50に流入する。分岐ユニット50に流入した高圧の液冷媒は、気液分離器51および絞り装置52を介して分岐ユニット50から流出し、室内機20Aおよび20Bに流入する。 The high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 13 flows out of the outdoor unit 10 through the check valve 15 d and flows into the branch unit 50. The high-pressure liquid refrigerant that has flowed into the branch unit 50 flows out of the branch unit 50 via the gas-liquid separator 51 and the expansion device 52, and flows into the indoor units 20A and 20B.
 室内機20Aに流入した高圧の液冷媒は、絞り装置21Aによって減圧および膨張されて低圧の気液二相冷媒または液冷媒となり、利用側熱交換器22Aに流入する。利用側熱交換器22Aに流入した低圧の気液二相冷媒または液冷媒は、室内空気と熱交換して吸熱および蒸発することにより室内空気を冷却し、低圧のガス冷媒となって利用側熱交換器22Aから流出する。 The high-pressure liquid refrigerant that has flowed into the indoor unit 20A is decompressed and expanded by the expansion device 21A to become a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows into the use-side heat exchanger 22A. The low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the use-side heat exchanger 22A exchanges heat with the room air to absorb heat and evaporate, thereby cooling the room air and becoming a low-pressure gas refrigerant. It flows out of the exchanger 22A.
 また、室内機20Bに流入した高圧の液冷媒は、絞り装置21Bによって減圧および膨張されて低圧の気液二相冷媒または液冷媒となり、利用側熱交換器22Bに流入する。利用側熱交換器22Bに流入した低圧の気液二相冷媒または液冷媒は、室内空気と熱交換して吸熱および蒸発することにより室内空気を冷却し、低圧のガス冷媒となって利用側熱交換器22Bから流出する。 Also, the high-pressure liquid refrigerant that has flowed into the indoor unit 20B is decompressed and expanded by the expansion device 21B, becomes a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows into the use-side heat exchanger 22B. The low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the use side heat exchanger 22B exchanges heat with the room air to absorb heat and evaporate, thereby cooling the room air and becoming a low pressure gas refrigerant. It flows out of the exchanger 22B.
 利用側熱交換器22Aから流出した低圧のガス冷媒は、流路切替弁54Aを介して分岐ユニット50から流出し、室外機10に流入する。また、利用側熱交換器22Bから流出した低圧のガス冷媒は、流路切替弁54Bを介して分岐ユニット50から流出し、流路切替弁54Aを介して分岐ユニット50から流出した低圧のガス冷媒と合流して室外機10に流入する。 The low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22A flows out of the branch unit 50 via the flow path switching valve 54A and flows into the outdoor unit 10. The low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22B flows out of the branch unit 50 through the flow path switching valve 54B, and flows out of the branch unit 50 through the flow path switching valve 54A. And flows into the outdoor unit 10.
 室外機10に流入した低圧のガス冷媒は、逆止弁15a、冷媒流路切替装置12およびアキュムレータ14を通過して、圧縮機11へ吸入される。そして、以下、上述した循環が繰り返される。 The low-pressure gas refrigerant that has flowed into the outdoor unit 10 passes through the check valve 15a, the refrigerant flow switching device 12, and the accumulator 14, and is sucked into the compressor 11. Thereafter, the above-described circulation is repeated.
(全暖房運転モード)
 次に、全暖房運転モードでの冷媒の動作について説明する。全暖房運転モードでは、室内機20Aおよび20Bが共に暖房運転を行う。
(All heating operation mode)
Next, the operation of the refrigerant in the heating only operation mode will be described. In the all heating operation mode, both the indoor units 20A and 20B perform the heating operation.
 全暖房運転モードでは、室外機10における冷媒流路切替装置12が図6の点線で示す状態に切り替えられる。そして、低温低圧の冷媒が圧縮機11によって圧縮され、高温高圧のガス冷媒となって吐出される。 In the heating only operation mode, the refrigerant flow switching device 12 in the outdoor unit 10 is switched to the state indicated by the dotted line in FIG. The low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
 圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12および逆止弁15cを介して室外機10から流出し、分岐ユニット50に流入する。分岐ユニット50に流入した高温高圧のガス冷媒は、気液分離器51、流路切替弁54Aおよび54Bを介して分岐ユニット50から流出し、室内機20Aおよび20Bに流入する。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows out of the outdoor unit 10 through the refrigerant flow switching device 12 and the check valve 15c, and flows into the branch unit 50. The high-temperature and high-pressure gas refrigerant that has flowed into the branch unit 50 flows out of the branch unit 50 via the gas-liquid separator 51 and the flow path switching valves 54A and 54B, and flows into the indoor units 20A and 20B.
 室内機20Aに流入した高温高圧のガス冷媒は、利用側熱交換器22Aに流入し、室内空気と熱交換して放熱しながら凝縮することにより室内空気を加熱し、高圧の液冷媒となって利用側熱交換器22Aから流出する。利用側熱交換器22Aから流出した高圧の液冷媒は、絞り装置21Aによって減圧および膨張されて低圧の気液二相冷媒または液冷媒となり、室内機20Aから流出する。 The high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 20A flows into the use-side heat exchanger 22A, heats the indoor air and condenses while radiating heat, thereby heating the indoor air and becomes a high-pressure liquid refrigerant. It flows out of the use side heat exchanger 22A. The high-pressure liquid refrigerant flowing out from the use side heat exchanger 22A is decompressed and expanded by the expansion device 21A to become a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows out from the indoor unit 20A.
 また、室内機20Bに流入した高温高圧のガス冷媒は、利用側熱交換器22Bに流入し、室内空気と熱交換して放熱しながら凝縮することにより室内空気を加熱し、高圧の液冷媒となって利用側熱交換器22Bから流出する。利用側熱交換器22Bから流出した高圧の液冷媒は、絞り装置21Bによって減圧および膨張されて低圧の気液二相冷媒または液冷媒となり、室内機20Bから流出する。 Further, the high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 20B flows into the use-side heat exchanger 22B, heats the indoor air and condenses while dissipating heat, thereby heating the indoor air, And flows out from the use side heat exchanger 22B. The high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 22B is decompressed and expanded by the expansion device 21B, becomes a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows out of the indoor unit 20B.
 室内機20Aおよび20Bから流出した低圧の気液二相冷媒または液冷媒は、分岐ユニット50に流入し、絞り装置53を介して分岐ユニットから流出し、室外機10に流入する。 The low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed out of the indoor units 20A and 20B flows into the branch unit 50, flows out of the branch unit via the expansion device 53, and flows into the outdoor unit 10.
 室外機10に流入した低圧の気液二相冷媒または液冷媒は、逆止弁15bを介して熱源側熱交換器13に流入する。熱源側熱交換器13に流入した低圧の気液二相冷媒または液冷媒は、室外空気と熱交換して吸熱および蒸発し、低温低圧のガス冷媒となって熱源側熱交換器13から流出する。 The low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the outdoor unit 10 flows into the heat source side heat exchanger 13 through the check valve 15b. The low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the heat source side heat exchanger 13 exchanges heat with outdoor air, absorbs heat and evaporates, and becomes a low-temperature and low-pressure gas refrigerant and flows out of the heat source side heat exchanger 13. .
 熱源側熱交換器13から流出した低温低圧のガス冷媒は、冷媒流路切替装置12およびアキュムレータ14を通過して、圧縮機11へ吸入される。そして、以下、上述した循環が繰り返される。 The low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 13 passes through the refrigerant flow switching device 12 and the accumulator 14 and is sucked into the compressor 11. Thereafter, the above-described circulation is repeated.
(冷房主体運転モード)
 次に、冷房主体運転モードでの冷媒の動作について説明する。ここでは、室内機20Aが冷房運転を行い、室内機20Bが暖房運転を行う場合を例にとって説明する。
(Cooling operation mode)
Next, the operation of the refrigerant in the cooling main operation mode will be described. Here, the case where the indoor unit 20A performs the cooling operation and the indoor unit 20B performs the heating operation will be described as an example.
 冷房主体運転モードでは、室外機10における冷媒流路切替装置12が図6の実線で示す状態に切り替えられる。そして、低温低圧の冷媒が圧縮機11によって圧縮され、高温高圧のガス冷媒となって吐出される。 In the cooling main operation mode, the refrigerant flow switching device 12 in the outdoor unit 10 is switched to the state shown by the solid line in FIG. The low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
 圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して熱源側熱交換器13に流入する。熱源側熱交換器13に流入した高温高圧のガス冷媒は、室外空気と熱交換して放熱しながら凝縮し、高圧の気液二相冷媒となって熱源側熱交換器13から流出する。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the heat source side heat exchanger 13 via the refrigerant flow switching device 12. The high-temperature and high-pressure gas refrigerant that has flowed into the heat-source-side heat exchanger 13 is condensed while radiating heat by exchanging heat with outdoor air, and becomes a high-pressure gas-liquid two-phase refrigerant and flows out from the heat-source-side heat exchanger 13.
 熱源側熱交換器13から流出した高圧の気液二相冷媒は、逆止弁15dを介して室外機10から流出し、分岐ユニット50に流入する。分岐ユニット50に流入した高圧の気液二相冷媒は、気液分離器51に流入し、高圧のガス冷媒と高圧の液冷媒とに分離される。 The high-pressure gas-liquid two-phase refrigerant that has flowed out of the heat source side heat exchanger 13 flows out of the outdoor unit 10 through the check valve 15d and flows into the branch unit 50. The high-pressure gas-liquid two-phase refrigerant that has flowed into the branch unit 50 flows into the gas-liquid separator 51 and is separated into a high-pressure gas refrigerant and a high-pressure liquid refrigerant.
 気液分離器51によって分離された高圧のガス冷媒は、流路切替弁54Bを介して分岐ユニット50から流出し、室内機20Bに流入する。室内機20Bに流入した高圧のガス冷媒は、利用側熱交換器22Bに流入し、室内空気と熱交換して放熱しながら凝縮することにより室内空気を加熱し、高圧の液冷媒となって利用側熱交換器22Bから流出する。利用側熱交換器22Bから流出した高圧の液冷媒は、絞り装置21Bによって減圧および膨張されて中間圧の気液二相冷媒または液冷媒となり、室内機20Bから流出する。 The high-pressure gas refrigerant separated by the gas-liquid separator 51 flows out of the branch unit 50 via the flow path switching valve 54B and flows into the indoor unit 20B. The high-pressure gas refrigerant that has flowed into the indoor unit 20B flows into the use-side heat exchanger 22B, heats the indoor air and condenses while dissipating heat, thereby heating the indoor air and using it as a high-pressure liquid refrigerant. It flows out from the side heat exchanger 22B. The high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 22B is decompressed and expanded by the expansion device 21B, becomes an intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows out of the indoor unit 20B.
 一方、気液分離器51によって分離された高圧の液冷媒、および室内機20Bから流出した中間圧の気液二相冷媒または液冷媒は、分岐ユニット50から流出し、室内機20Aに流入する。室内機20Aに流入した高圧の液冷媒、および室内機20Bから流出した中間圧の気液二相冷媒または液冷媒は、絞り装置21Aによって減圧および膨張されて低圧の気液二相冷媒または液冷媒となり、利用側熱交換器22Aに流入する。 Meanwhile, the high-pressure liquid refrigerant separated by the gas-liquid separator 51 and the intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant flowing out of the indoor unit 20B flow out of the branch unit 50 and flow into the indoor unit 20A. The high-pressure liquid refrigerant that has flowed into the indoor unit 20A and the intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed out of the indoor unit 20B are decompressed and expanded by the expansion device 21A to be low-pressure gas-liquid two-phase refrigerant or liquid refrigerant. And flows into the use side heat exchanger 22A.
 利用側熱交換器22Aに流入した低圧の気液二相冷媒または液冷媒は、室内空気と熱交換して吸熱および蒸発することにより室内空気を冷却し、低圧のガス冷媒となって利用側熱交換器22Aから流出する。利用側熱交換器22Aから流出した低圧のガス冷媒は、流路切替弁54Aを介して分岐ユニット50から流出し、室外機10に流入する。 The low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the use-side heat exchanger 22A exchanges heat with the room air to absorb heat and evaporate, thereby cooling the room air and becoming a low-pressure gas refrigerant. It flows out of the exchanger 22A. The low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22A flows out of the branch unit 50 via the flow path switching valve 54A and flows into the outdoor unit 10.
 室外機10に流入した低圧のガス冷媒は、逆止弁15a、冷媒流路切替装置12およびアキュムレータ14を通過して、圧縮機11へ吸入される。そして、以下、上述した循環が繰り返される。 The low-pressure gas refrigerant that has flowed into the outdoor unit 10 passes through the check valve 15a, the refrigerant flow switching device 12, and the accumulator 14, and is sucked into the compressor 11. Thereafter, the above-described circulation is repeated.
(暖房主体運転モード)
 次に、暖房主体運転モードでの冷媒の動作について説明する。ここでは、冷房主体運転モードと同様に、室内機20Aが冷房運転を行い、室内機20Bが暖房運転を行う場合を例にとって説明する。
(Heating main operation mode)
Next, the operation of the refrigerant in the heating main operation mode will be described. Here, as in the cooling main operation mode, an example will be described in which the indoor unit 20A performs the cooling operation and the indoor unit 20B performs the heating operation.
 暖房主体運転モードでは、室外機10における冷媒流路切替装置12が図6の点線で示す状態に切り替えられる。そして、低温低圧の冷媒が圧縮機11によって圧縮され、高温高圧のガス冷媒となって吐出される。 In the heating main operation mode, the refrigerant flow switching device 12 in the outdoor unit 10 is switched to the state indicated by the dotted line in FIG. The low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
 圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12および逆止弁15cを介して室外機10から流出し、分岐ユニット50に流入する。分岐ユニット50に流入した高温高圧のガス冷媒は、気液分離器51および流路切替弁54Bを介して分岐ユニット50から流出する。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows out of the outdoor unit 10 through the refrigerant flow switching device 12 and the check valve 15c, and flows into the branch unit 50. The high-temperature and high-pressure gas refrigerant that has flowed into the branch unit 50 flows out of the branch unit 50 via the gas-liquid separator 51 and the flow path switching valve 54B.
 分岐ユニット50から流出した高温高圧のガス冷媒は、室内機20Bに流入する。室内機20Bに流入した高温高圧のガス冷媒は、利用側熱交換器22Bに流入し、室内空気と熱交換して放熱しながら凝縮することにより室内空気を加熱し、高圧の液冷媒となって利用側熱交換器22Bから流出する。利用側熱交換器22Bから流出した高圧の液冷媒は、絞り装置21Bによって減圧および膨張されて中間圧の気液二相冷媒または液冷媒となり、室内機20Bから流出する。 The high-temperature and high-pressure gas refrigerant that has flowed out of the branch unit 50 flows into the indoor unit 20B. The high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 20B flows into the use-side heat exchanger 22B, heats the indoor air and condenses while dissipating heat, thereby heating the indoor air and becomes a high-pressure liquid refrigerant. It flows out from the use side heat exchanger 22B. The high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 22B is decompressed and expanded by the expansion device 21B, becomes an intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows out of the indoor unit 20B.
 室内機20Bから流出した中間圧の気液二相冷媒または液冷媒は、室内機20Aに流入する。室内機20Aに流入した中間圧の気液二相冷媒または液冷媒は、絞り装置21Aによって減圧および膨張されて低圧の気液二相冷媒または液冷媒となり、利用側熱交換器22Aに流入する。 The intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed out of the indoor unit 20B flows into the indoor unit 20A. The intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the indoor unit 20A is decompressed and expanded by the expansion device 21A to become a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows into the use-side heat exchanger 22A.
 利用側熱交換器22Aに流入した低圧の気液二相冷媒または液冷媒は、室内空気と熱交換して吸熱および蒸発することにより室内空気を冷却し、低圧のガス冷媒となって利用側熱交換器22Aから流出する。利用側熱交換器22Aから流出した低圧のガス冷媒は、流路切替弁54Aを介して分岐ユニット50から流出し、室外機10に流入する。 The low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the use-side heat exchanger 22A exchanges heat with the room air to absorb heat and evaporate, thereby cooling the room air and becoming a low-pressure gas refrigerant. It flows out of the exchanger 22A. The low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22A flows out of the branch unit 50 via the flow path switching valve 54A and flows into the outdoor unit 10.
 室外機10に流入した低圧のガス冷媒は、逆止弁15bを介して熱源側熱交換器13に流入する。熱源側熱交換器13に流入した低圧のガス冷媒は、室外空気と熱交換して吸熱および蒸発し、低温低圧のガス冷媒となって熱源側熱交換器13から流出する。 The low-pressure gas refrigerant that has flowed into the outdoor unit 10 flows into the heat source side heat exchanger 13 through the check valve 15b. The low-pressure gas refrigerant that has flowed into the heat source-side heat exchanger 13 exchanges heat with outdoor air, absorbs heat and evaporates, and becomes a low-temperature and low-pressure gas refrigerant that flows out of the heat source-side heat exchanger 13.
 熱源側熱交換器13から流出した低温低圧のガス冷媒は、冷媒流路切替装置12およびアキュムレータ14を通過して、圧縮機11へ吸入される。そして、以下、上述した循環が繰り返される。 The low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 13 passes through the refrigerant flow switching device 12 and the accumulator 14 and is sucked into the compressor 11. Thereafter, the above-described circulation is repeated.
 なお、本実施の形態2においても、実施の形態1と同様に、空気調和装置1は、室内温度が設定温度に達した場合に、室内機20の利用側熱交換器22に対する冷媒の供給を停止させ、利用側熱交換器22に付設された送風機による送風運転モードに切り替わる。 In the second embodiment as well, as in the first embodiment, the air conditioner 1 supplies the refrigerant to the use side heat exchanger 22 of the indoor unit 20 when the indoor temperature reaches the set temperature. It stops, and it switches to the ventilation operation mode by the air blower attached to the utilization side heat exchanger 22. FIG.
 また、空気調和装置1は、室内温度が設定温度に達していないときであっても、例えば利用者による指示があった場合には、利用側熱交換器22に対する冷媒の供給を停止させるとともに、利用側熱交換器22に付設された送風機の運転も停止させる停止モードに切り替わる。 In addition, even when the room temperature does not reach the set temperature, the air conditioner 1 stops the supply of the refrigerant to the use side heat exchanger 22 when, for example, there is an instruction from the user, The operation mode is switched to a stop mode in which the operation of the blower attached to the use side heat exchanger 22 is also stopped.
[冷媒漏洩検知処理]
 次に、冷媒の漏洩が発生した際の処理について説明する。図8は、本実施の形態2に係る空気調和装置1における冷媒漏洩検知処理の流れの一例を示すフローチャートである。ここでは、空気調和装置1の運転が停止している状態で冷媒の漏洩が検知された場合について説明する。なお、以下の説明において、上述した実施の形態1と同様の処理については同一の符号を付し、詳細な説明を省略する。
[Refrigerant leak detection processing]
Next, processing when refrigerant leakage occurs will be described. FIG. 8 is a flowchart illustrating an example of the flow of the refrigerant leakage detection process in the air-conditioning apparatus 1 according to Embodiment 2. Here, the case where the leakage of the refrigerant is detected in a state where the operation of the air conditioner 1 is stopped will be described. In the following description, the same processes as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 まず、ステップS1において、冷媒配管30から冷媒の漏洩が検知されると、ステップS2において、制御装置40の漏洩判断部41は、当該冷媒漏洩が冷媒漏洩検知装置8によって検知されたものであるか否かを判断する。 First, when leakage of the refrigerant is detected from the refrigerant pipe 30 in step S1, the leakage determination unit 41 of the control device 40 determines whether the refrigerant leakage is detected by the refrigerant leakage detection device 8 in step S2. Judge whether or not.
 冷媒漏洩が冷媒漏洩検知装置8によって検知されたものであると判断した場合(ステップS2;Yes)、漏洩判断部41は、室内空間4へ冷媒が漏洩したと判断し、処理がステップS3に移行する。ステップS3において、制御装置40の遮断弁制御部43は、室内空間4に設置されたすべての室内機20に接続された冷媒配管30の冷媒遮断弁7と、その上流側の冷媒遮断弁7とを閉止するように制御する。 When it is determined that the refrigerant leakage is detected by the refrigerant leakage detection device 8 (step S2; Yes), the leakage determination unit 41 determines that the refrigerant has leaked into the indoor space 4, and the process proceeds to step S3. To do. In step S3, the shutoff valve control unit 43 of the control device 40 includes the coolant shutoff valve 7 of the refrigerant pipe 30 connected to all the indoor units 20 installed in the indoor space 4, and the coolant shutoff valve 7 on the upstream side thereof. Is controlled to close.
 次に、ステップS4において、制御装置40の漏洩箇所判断部44は、それぞれの冷媒圧力検知装置6による圧力と圧力判定値Pとに基づき、冷媒配管30における冷媒の漏洩箇所を特定する。 Next, in step S <b> 4, the leakage location determination unit 44 of the control device 40 identifies the location of refrigerant leakage in the refrigerant piping 30 based on the pressure and the pressure determination value P by each refrigerant pressure detection device 6.
 一方、ステップS2において、冷媒漏洩検知装置8によって検知されたものではないと判断した場合(ステップS2;No)、漏洩判断部41は、室外空間3へ冷媒が漏洩したと判断し、処理がステップS5に移行する。 On the other hand, when it is determined in step S2 that the refrigerant leakage detection device 8 has not detected the leakage (step S2; No), the leakage determination unit 41 determines that the refrigerant has leaked into the outdoor space 3, and the processing is performed in step S2. The process proceeds to S5.
 ステップS5において、漏洩判断部41は、冷媒漏洩が室内機20に接続された冷媒配管30に設けられた冷媒圧力検知装置6によって検知されたものであるか否かを判断する。冷媒漏洩が当該冷媒圧力検知装置6によって検知されたものであると判断した場合(ステップS5;Yes)には、処理がステップS6に移行する。 In step S <b> 5, the leakage determination unit 41 determines whether or not the refrigerant leakage is detected by the refrigerant pressure detection device 6 provided in the refrigerant pipe 30 connected to the indoor unit 20. When it is determined that the refrigerant leakage is detected by the refrigerant pressure detection device 6 (step S5; Yes), the process proceeds to step S6.
 ステップS6において、遮断弁制御部43は、圧力判定値Pよりも低い圧力を示す冷媒圧力検知装置6が設置された冷媒配管30の冷媒遮断弁7を閉止するように制御する。ここで、例えば、冷媒漏洩を図6に示す冷媒圧力検知装置6Cで検知した場合、遮断弁制御部43は、冷媒配管30aに設置された冷媒遮断弁7eを閉止するように制御する。また、このとき、遮断弁制御部43は、冷媒配管30bに設置された冷媒遮断弁7も閉止するように制御することにより、さらなる冷媒漏洩を防止することができる。 In step S6, the shut-off valve control unit 43 performs control so as to close the refrigerant shut-off valve 7 of the refrigerant pipe 30 provided with the refrigerant pressure detection device 6 that exhibits a pressure lower than the pressure determination value P. Here, for example, when the refrigerant leakage is detected by the refrigerant pressure detection device 6C shown in FIG. 6, the cutoff valve control unit 43 controls the refrigerant cutoff valve 7e installed in the refrigerant pipe 30a to be closed. At this time, the shutoff valve control unit 43 can prevent further refrigerant leakage by controlling so as to close the refrigerant shutoff valve 7 installed in the refrigerant pipe 30b.
 次に、ステップS11において、制御装置40の流路切替弁制御部45は、分岐ユニット50における、冷媒漏洩を検知した冷媒圧力検知装置6が設置された冷媒配管30が接続された室内機20に対応する流路切替弁54を閉止するように制御する。これにより、さらなる冷媒漏洩を防止することができる。 Next, in step S <b> 11, the flow path switching valve control unit 45 of the control device 40 is connected to the indoor unit 20 connected to the refrigerant pipe 30 in which the refrigerant pressure detection device 6 that detects refrigerant leakage is installed in the branch unit 50. Control is performed so that the corresponding flow path switching valve 54 is closed. Thereby, further refrigerant leakage can be prevented.
 そして、ステップS7において、漏洩箇所判断部44は、上述したステップS4と同様にして、冷媒配管30における冷媒の漏洩箇所を特定する。 And in step S7, the leak location determination part 44 specifies the leak location of the refrigerant | coolant in the refrigerant | coolant piping 30 similarly to step S4 mentioned above.
 一方、ステップS5において、冷媒漏洩が室内機20に接続された冷媒配管30に設けられた冷媒圧力検知装置6によって検知されたものはないと判断した場合(ステップS5;No)には、処理がステップS8に移行する。 On the other hand, when it is determined in step S5 that there is no refrigerant leakage detected by the refrigerant pressure detection device 6 provided in the refrigerant pipe 30 connected to the indoor unit 20 (step S5; No), the process is performed. The process proceeds to step S8.
 ステップS8において、遮断弁制御部43は、さらなる冷媒漏洩を防止するため、室外機10に接続された冷媒配管30に設けられた冷媒遮断弁7を閉止するように制御する。 In step S8, the shutoff valve control unit 43 controls the refrigerant shutoff valve 7 provided in the refrigerant pipe 30 connected to the outdoor unit 10 to be closed in order to prevent further refrigerant leakage.
 以上のように、本実施の形態2に係る空気調和装置1は、実施の形態1と比較して、室外機10から供給される冷媒をガス冷媒と液冷媒とに分離させる気液分離器51と、複数の室内機20に供給する冷媒の流れを切り替える複数の流路切替弁54とを有し、室外機10と複数の室内機20との間に介在する分岐ユニット50をさらに備え、制御装置40は、冷媒が漏洩したと判断した場合に、流路切替弁54を閉止するように制御する。これにより、冷媒が漏洩した場合に、冷媒がさらに漏洩してしまうのを抑制することができる。 As described above, the air-conditioning apparatus 1 according to the second embodiment has a gas-liquid separator 51 that separates the refrigerant supplied from the outdoor unit 10 into a gas refrigerant and a liquid refrigerant, as compared with the first embodiment. And a branch unit 50 having a plurality of flow path switching valves 54 for switching the flow of refrigerant supplied to the plurality of indoor units 20, and being interposed between the outdoor unit 10 and the plurality of indoor units 20. The device 40 controls to close the flow path switching valve 54 when it is determined that the refrigerant has leaked. Thereby, when a refrigerant | coolant leaks, it can suppress that a refrigerant | coolant leaks further.
 実施の形態3.
 次に、本実施の形態3に係る空気調和装置について説明する。本実施の形態3では、上述した実施の形態1に係る空気調和装置1に対して、さらに複数の冷媒圧力検知装置6および複数の冷媒遮断弁7を設置している。
Embodiment 3 FIG.
Next, an air conditioner according to Embodiment 3 will be described. In the third embodiment, a plurality of refrigerant pressure detection devices 6 and a plurality of refrigerant shut-off valves 7 are further installed in the air conditioner 1 according to the first embodiment described above.
[空気調和装置の設置例]
 図9は、本実施の形態3に係る空気調和装置1の設置例を示す概略図である。図9に示すように、空気調和装置1は、上述した実施の形態1と同様に、室外機10と、複数台の室内機20とを備えている。
[Installation example of air conditioner]
FIG. 9 is a schematic diagram illustrating an installation example of the air-conditioning apparatus 1 according to the third embodiment. As shown in FIG. 9, the air conditioner 1 includes an outdoor unit 10 and a plurality of indoor units 20 as in the first embodiment.
 また、本実施の形態3では、実施の形態1で説明した冷媒圧力検知装置6aおよび冷媒圧力検知装置6bに加えて、冷媒配管30における室外機10側に設けられた冷媒圧力検知装置6cおよび冷媒圧力検知装置6dを備えている。 In the third embodiment, in addition to the refrigerant pressure detection device 6a and the refrigerant pressure detection device 6b described in the first embodiment, the refrigerant pressure detection device 6c and the refrigerant provided on the outdoor unit 10 side in the refrigerant pipe 30 A pressure detection device 6d is provided.
 さらに、本実施の形態3では、実施の形態1で説明した冷媒遮断弁7a~7dに加えて、冷媒遮断弁7g~7jを備えている。冷媒遮断弁7gおよび冷媒遮断弁7hは、冷媒配管30において室内機20Aと室内機20Bとの間の配管に設けられている。冷媒遮断弁7iおよび7jは、冷媒配管30における室外機10側の配管に設けられている。 Further, in the third embodiment, in addition to the refrigerant cutoff valves 7a to 7d described in the first embodiment, the refrigerant cutoff valves 7g to 7j are provided. The refrigerant cutoff valve 7g and the refrigerant cutoff valve 7h are provided in a pipe between the indoor unit 20A and the indoor unit 20B in the refrigerant pipe 30. The refrigerant shut-off valves 7 i and 7 j are provided in the pipe on the outdoor unit 10 side in the refrigerant pipe 30.
 このように、実施の形態1と比較してより多くの冷媒圧力検知装置6および冷媒遮断弁7を設けることにより、冷媒の漏洩をより確実に検知できるとともに、漏洩箇所を容易に特定することができる。 Thus, by providing more refrigerant pressure detectors 6 and refrigerant shutoff valves 7 as compared with the first embodiment, it is possible to more reliably detect refrigerant leakage and to easily identify the leakage location. it can.
 なお、冷媒圧力検知装置6および冷媒遮断弁7の設置位置および設置数は、この例に限られず、例えば冷媒配管30aおよび冷媒配管30bの長さ、分岐ユニット50および室内機20を設置する際の配管の取り回し、配管継ぎ手の設置位置、必要な冷媒量等に応じて決定することができる。 In addition, the installation position and the number of installation of the refrigerant pressure detection device 6 and the refrigerant cutoff valve 7 are not limited to this example. For example, the length of the refrigerant pipe 30a and the refrigerant pipe 30b, the branch unit 50, and the indoor unit 20 are installed. It can be determined according to the handling of the pipe, the installation position of the pipe joint, the required amount of refrigerant, and the like.
 以上のように、本実施の形態3に係る空気調和装置1は、実施の形態1と比較して、冷媒配管30により多くの冷媒圧力検知装置6および冷媒遮断弁7を設けるため、漏洩箇所をより容易に特定することができる。 As described above, the air conditioner 1 according to the third embodiment is provided with more refrigerant pressure detection devices 6 and refrigerant shut-off valves 7 in the refrigerant pipe 30 than in the first embodiment. It can be identified more easily.
 1 空気調和装置、2 建物、3 室外空間、4 室内空間、5 空間、6、6A、6B、6C、6a、6b、6c、6d 冷媒圧力検知装置、7、7a、7b、7c、7d、7e、7f、7g、7h、7i、7j 冷媒遮断弁、8 冷媒漏洩検知装置、10 室外機、11 圧縮機、12 冷媒流路切替装置、13 熱源側熱交換器、14 アキュムレータ、15a、15b、15c、15d 逆止弁、20、20A、20B 室内機、21、21A、21B 絞り装置、22、22A、22B 利用側熱交換器、30、30a、30b 冷媒配管、31a 第1の接続配管、31b 第2の接続配管、35a、35b 分岐点、40 制御装置、41 漏洩判断部、42 圧力比較部、43 遮断弁制御部、44 漏洩箇所判断部、45 流路切替弁制御部、50 分岐ユニット、51 気液分離器、52、53 絞り装置、54、54A、54B 流路切替弁。 1 air conditioner, 2 building, 3 outdoor space, 4 indoor space, 5 space, 6, 6A, 6B, 6C, 6a, 6b, 6c, 6d refrigerant pressure detecting device, 7, 7a, 7b, 7c, 7d, 7e 7f, 7g, 7h, 7i, 7j Refrigerant shut-off valve, 8 Refrigerant leak detection device, 10 Outdoor unit, 11 Compressor, 12 Refrigerant flow path switching device, 13 Heat source side heat exchanger, 14 Accumulator, 15a, 15b, 15c , 15d check valve, 20, 20A, 20B indoor unit, 21, 21A, 21B throttle device, 22, 22A, 22B use side heat exchanger, 30, 30a, 30b refrigerant piping, 31a first connection piping, 31b first 2 connection pipes, 35a, 35b branch point, 40 control device, 41 leak judgment unit, 42 pressure comparison unit, 43 shutoff valve control unit, 44 leak location judgment unit, 4 Channel switching valve control unit, 50 branch unit, 51 gas-liquid separator, 52, 53 expansion device, 54 and 54A, 54B the flow path switching valve.

Claims (6)

  1.  室外機と複数の室内機とを冷媒配管で接続し、冷媒を循環させることによって冷媒回路が形成された空気調和装置であって、
     空調対象空間に設けられ、該空調対象空間に対する前記冷媒の漏洩を検知する冷媒漏洩検知装置と、
     前記冷媒配管に設けられ、該冷媒配管内を流通する前記冷媒の圧力を検知する複数の冷媒圧力検知装置と、
     前記冷媒配管に設けられ、前記冷媒の流通を許容または遮断する冷媒遮断弁と、
     前記冷媒遮断弁の開閉を制御する制御装置と
    を備え、
     前記制御装置は、
     前記冷媒漏洩検知装置または前記冷媒圧力検知装置の検知結果に基づき、前記冷媒の漏洩の有無を判断し、前記冷媒が漏洩したと判断した場合に、前記冷媒遮断弁を閉止するように制御し、
     前記冷媒圧力検知装置で検知された前記冷媒配管内の前記冷媒の圧力の変動に基づき、前記冷媒の漏洩箇所を特定する
    空気調和装置。
    An air conditioner in which a refrigerant circuit is formed by connecting an outdoor unit and a plurality of indoor units with a refrigerant pipe and circulating the refrigerant,
    A refrigerant leakage detection device that is provided in the air conditioning target space and detects leakage of the refrigerant to the air conditioning target space;
    A plurality of refrigerant pressure detection devices that are provided in the refrigerant pipe and detect the pressure of the refrigerant flowing through the refrigerant pipe;
    A refrigerant shut-off valve provided in the refrigerant pipe and allowing or blocking the flow of the refrigerant;
    A control device for controlling opening and closing of the refrigerant shut-off valve,
    The control device includes:
    Based on the detection result of the refrigerant leakage detection device or the refrigerant pressure detection device, the presence or absence of leakage of the refrigerant is determined, and when it is determined that the refrigerant has leaked, the refrigerant shut-off valve is controlled to be closed,
    An air conditioner that identifies a leakage location of the refrigerant based on a change in pressure of the refrigerant in the refrigerant pipe detected by the refrigerant pressure detection device.
  2.  前記冷媒圧力検知装置および前記冷媒遮断弁は、
     前記冷媒配管における前記室外機と複数の前記室内機とを接続する位置に設けられる
    請求項1に記載の空気調和装置。
    The refrigerant pressure detection device and the refrigerant cutoff valve are:
    The air conditioning apparatus according to claim 1, wherein the air conditioner is provided at a position in the refrigerant pipe connecting the outdoor unit and the plurality of indoor units.
  3.  前記制御装置は、
     前記冷媒漏洩検知装置の検知結果によって前記冷媒の漏洩を検知した場合に、前記冷媒圧力検知装置で検知された圧力と、基準となる圧力判定値とを比較し、
     前記冷媒圧力検知装置で検知された前記圧力が前記圧力判定値よりも低い場合に、前記冷媒圧力検知装置が設けられた位置の付近で前記冷媒が漏洩したと判断する
    請求項1または2に記載の空気調和装置。
    The control device includes:
    When the refrigerant leakage is detected by the detection result of the refrigerant leakage detection device, the pressure detected by the refrigerant pressure detection device is compared with a reference pressure determination value,
    3. The method according to claim 1, wherein when the pressure detected by the refrigerant pressure detection device is lower than the pressure determination value, it is determined that the refrigerant has leaked near a position where the refrigerant pressure detection device is provided. Air conditioner.
  4.  前記制御装置は、
     前記冷媒圧力検知装置で検知された圧力と、基準となる圧力判定値とを比較し、
     検知された前記圧力が前記圧力判定値よりも低い場合に、前記冷媒が漏洩したと判断し、
     前記圧力判定値よりも低い圧力を検知した前記冷媒圧力検知装置が設けられた位置の付近で前記冷媒が漏洩したと判断する
    請求項1または2に記載の空気調和装置。
    The control device includes:
    Comparing the pressure detected by the refrigerant pressure detection device with a reference pressure judgment value;
    When the detected pressure is lower than the pressure determination value, it is determined that the refrigerant has leaked,
    The air conditioning apparatus according to claim 1 or 2, wherein it is determined that the refrigerant has leaked in a vicinity of a position where the refrigerant pressure detection device that detects a pressure lower than the pressure determination value is provided.
  5.  前記圧力判定値は、
     室外空間の温度に基づき算出される前記冷媒の飽和圧力、または前記空調対象空間の温度に基づき算出される前記冷媒の飽和圧力のうち、いずれか低い飽和圧力または2つの前記飽和圧力の平均値である
    請求項3または4に記載の空気調和装置。
    The pressure judgment value is
    Of the saturation pressure of the refrigerant calculated based on the temperature of the outdoor space or the saturation pressure of the refrigerant calculated based on the temperature of the air conditioning target space, whichever is the lower saturation pressure or the average value of the two saturation pressures The air conditioning apparatus according to claim 3 or 4.
  6.  前記室外機から供給される前記冷媒をガス冷媒と液冷媒とに分離させる気液分離器と、
     複数の前記室内機に供給する前記冷媒の流れを切り替える複数の流路切替弁と
    を有し、
     前記室外機と複数の前記室内機との間に介在する分岐ユニット
    をさらに備え、
     前記制御装置は、
     前記冷媒が漏洩したと判断した場合に、前記流路切替弁を閉止するように制御する
    請求項1~5のいずれか一項に記載の空気調和装置。
    A gas-liquid separator that separates the refrigerant supplied from the outdoor unit into a gas refrigerant and a liquid refrigerant;
    A plurality of flow path switching valves for switching the flow of the refrigerant supplied to the plurality of indoor units,
    A branching unit interposed between the outdoor unit and the plurality of indoor units;
    The control device includes:
    The air conditioner according to any one of claims 1 to 5, wherein when it is determined that the refrigerant has leaked, the flow path switching valve is controlled to close.
PCT/JP2016/071081 2016-07-15 2016-07-15 Air conditioning device WO2018011994A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018527371A JP6701337B2 (en) 2016-07-15 2016-07-15 Air conditioner
GB1820586.4A GB2566201B (en) 2016-07-15 2016-07-15 Air-conditioning apparatus
PCT/JP2016/071081 WO2018011994A1 (en) 2016-07-15 2016-07-15 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/071081 WO2018011994A1 (en) 2016-07-15 2016-07-15 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2018011994A1 true WO2018011994A1 (en) 2018-01-18

Family

ID=60952908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071081 WO2018011994A1 (en) 2016-07-15 2016-07-15 Air conditioning device

Country Status (3)

Country Link
JP (1) JP6701337B2 (en)
GB (1) GB2566201B (en)
WO (1) WO2018011994A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009769A (en) * 2016-07-15 2018-01-18 ダイキン工業株式会社 Refrigeration system
WO2020049646A1 (en) * 2018-09-05 2020-03-12 三菱電機株式会社 Water-cooled air conditioner
JPWO2021161407A1 (en) * 2020-02-12 2021-08-19
EP3770530A4 (en) * 2018-03-22 2021-12-15 Fujitsu General Limited Air conditioner
WO2022019007A1 (en) * 2020-07-20 2022-01-27 パナソニックIpマネジメント株式会社 Air conditioner
EP3919840A4 (en) * 2019-01-31 2022-03-16 Daikin Industries, Ltd. Refrigerant cycle device
WO2023276535A1 (en) * 2021-07-01 2023-01-05 ダイキン工業株式会社 Air conditioning system
WO2023084779A1 (en) * 2021-11-15 2023-05-19 三菱電機株式会社 Air conditioner
US11959675B2 (en) * 2018-11-28 2024-04-16 Mitsubishi Electric Corporation Air-conditioning apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11428448B2 (en) * 2020-01-20 2022-08-30 Kenneth Ray Green Refrigerant metering system and method
US11231198B2 (en) 2019-09-05 2022-01-25 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184055A (en) * 1990-11-15 1992-07-01 Takenaka Komuten Co Ltd Safety device for liquid transportation piping
JP2003130482A (en) * 2001-10-26 2003-05-08 Mitsubishi Electric Corp Air conditioner
JP2005241050A (en) * 2004-02-24 2005-09-08 Mitsubishi Electric Building Techno Service Co Ltd Air conditioning system
WO2011099063A1 (en) * 2010-02-10 2011-08-18 三菱電機株式会社 Air-conditioning device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274894A (en) * 1999-03-18 2000-10-06 Sanyo Electric Co Ltd Heat pump
KR20140056965A (en) * 2012-11-02 2014-05-12 엘지전자 주식회사 An air conditioner and a control method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184055A (en) * 1990-11-15 1992-07-01 Takenaka Komuten Co Ltd Safety device for liquid transportation piping
JP2003130482A (en) * 2001-10-26 2003-05-08 Mitsubishi Electric Corp Air conditioner
JP2005241050A (en) * 2004-02-24 2005-09-08 Mitsubishi Electric Building Techno Service Co Ltd Air conditioning system
WO2011099063A1 (en) * 2010-02-10 2011-08-18 三菱電機株式会社 Air-conditioning device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009769A (en) * 2016-07-15 2018-01-18 ダイキン工業株式会社 Refrigeration system
US11428450B2 (en) 2018-03-22 2022-08-30 Fujitsu General Limited Air conditioner
EP3770530A4 (en) * 2018-03-22 2021-12-15 Fujitsu General Limited Air conditioner
WO2020049646A1 (en) * 2018-09-05 2020-03-12 三菱電機株式会社 Water-cooled air conditioner
JPWO2020049646A1 (en) * 2018-09-05 2021-01-07 三菱電機株式会社 Water-cooled air conditioner
US11959675B2 (en) * 2018-11-28 2024-04-16 Mitsubishi Electric Corporation Air-conditioning apparatus
US11448440B2 (en) 2019-01-31 2022-09-20 Daikin Industries, Ltd. Refrigerant cycle apparatus having refrigerant leak detector used to control first and second shutoff valves
EP3919840A4 (en) * 2019-01-31 2022-03-16 Daikin Industries, Ltd. Refrigerant cycle device
JPWO2021161407A1 (en) * 2020-02-12 2021-08-19
WO2021161407A1 (en) * 2020-02-12 2021-08-19 三菱電機株式会社 Air conditioning system
WO2022019007A1 (en) * 2020-07-20 2022-01-27 パナソニックIpマネジメント株式会社 Air conditioner
WO2023276535A1 (en) * 2021-07-01 2023-01-05 ダイキン工業株式会社 Air conditioning system
WO2023084779A1 (en) * 2021-11-15 2023-05-19 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
GB2566201B (en) 2021-02-24
GB201820586D0 (en) 2019-01-30
JP6701337B2 (en) 2020-05-27
GB2566201A (en) 2019-03-06
JPWO2018011994A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
WO2018011994A1 (en) Air conditioning device
KR101678324B1 (en) Refrigeration system
US9797618B2 (en) Air-conditioning apparatus
US8820106B2 (en) Air conditioning apparatus
JP5306449B2 (en) Air conditioner
JP6328245B2 (en) Air conditioner
JP5774225B2 (en) Air conditioner
JP5939828B2 (en) Heat pump cycle equipment
US8844301B2 (en) Air-conditioning apparatus
US8794020B2 (en) Air-conditioning apparatus
JP6079061B2 (en) Refrigeration equipment
JP5780977B2 (en) Heat pump cycle equipment
US9644906B2 (en) Method for selecting heat medium of use side heat exchanger in installing air-conditioning system
WO2014128830A1 (en) Air conditioning device
US9651287B2 (en) Air-conditioning apparatus
US9857113B2 (en) Air-conditioning apparatus
JP2016095130A (en) Heat pump cycle device
JP5908183B1 (en) Air conditioner
WO2014132433A1 (en) Air conditioning device
JP6605156B2 (en) Flow path switching valve and air conditioner using the same
WO2018105039A1 (en) Air conditioning apparatus
JP6238202B2 (en) Air conditioner
JP6257812B2 (en) Air conditioner
US20230056663A1 (en) Refrigeration cycle system
JP7442741B2 (en) air conditioner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527371

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201820586

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160715

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908894

Country of ref document: EP

Kind code of ref document: A1