WO2018011989A1 - Graft material for treating nerve damage including dental pulp cells - Google Patents

Graft material for treating nerve damage including dental pulp cells Download PDF

Info

Publication number
WO2018011989A1
WO2018011989A1 PCT/JP2016/071050 JP2016071050W WO2018011989A1 WO 2018011989 A1 WO2018011989 A1 WO 2018011989A1 JP 2016071050 W JP2016071050 W JP 2016071050W WO 2018011989 A1 WO2018011989 A1 WO 2018011989A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
dental pulp
fgf2
treatment
pulp cells
Prior art date
Application number
PCT/JP2016/071050
Other languages
French (fr)
Japanese (ja)
Inventor
秀文 福光
建一 手塚
杉山 健
Original Assignee
国立大学法人岐阜大学
第一三共株式会社
株式会社セルテクノロジー
秀文 福光
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岐阜大学, 第一三共株式会社, 株式会社セルテクノロジー, 秀文 福光 filed Critical 国立大学法人岐阜大学
Priority to JP2018527366A priority Critical patent/JP6998057B2/en
Priority to PCT/JP2016/071050 priority patent/WO2018011989A1/en
Publication of WO2018011989A1 publication Critical patent/WO2018011989A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/32Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to a transplant material for treating nerve damage containing pulp cells and a method for producing the same.
  • the spinal cord is a nerve transmission pathway between the brain and the periphery, and when it is damaged, it falls into serious physical disabilities such as motor paralysis and sensory disturbance. It is extremely rare for physical function lost due to spinal cord injury to be restored, and patients are severely restricted in their subsequent lives. In Japan, there are about 100,000 people with spinal cord injury, and about 5,000 people are newly injured each year. Although the development of fundamental therapy has become a social urgent task, none of the prior arts currently progressing in human clinical research has yet demonstrated a clear therapeutic effect.
  • cell transplantation therapy can be divided into autologous transplantation and allogeneic transplantation.
  • Autotransplantation is a method of transplanting a patient's own tissue or cells derived from the autologous tissue and increasing the number of cells or inducing differentiation.
  • autologous tooth transplantation, autologous skin transplantation, and the like are actually performed in clinical practice.
  • immune rejection can be avoided, but there are problems of invasion associated with extraction of transplanted tissue or tissue-derived cells, individual differences in transplantation effect, time and cost required for cell preparation.
  • allogeneic transplantation is a method of transplanting another person's tissue or tissue-derived cells.
  • immune rejection must be considered.
  • the immune response provided as a self-defense function is an obstacle to transplantation treatment.
  • immunosuppressive agents it has become possible to suppress rejection reactions, and organ transplantation and hematopoietic stem cell transplantation have developed dramatically.
  • immunosuppressive agents there is still anxiety in terms of safety because immune rejection occurs at a rate of about 20%, and in some cases it is extremely difficult to treat immune rejection.
  • dental pulp cells have several advantages as a transplant cell source.
  • the first is that it can be collected from extracted teeth such as deciduous teeth and wisdom teeth that were originally treated as medical waste (permanent teeth alone are discarded 10 million a year), and induction and culture methods have been established (non- Therefore, it can be used as an abundant source of transplanted cells.
  • immune rejection is based on attacking non-self-identified cells by collating HLA antigens, but using HLA haplotype homo donor cells halves the type of antigen, increasing the number of patients who can be applied.
  • Patent Document 1 discloses a method for producing a transplant material for treatment of nerve damage, which includes culturing dental pulp stem cells used for the transplant material in a medium substantially free of growth factors other than FGF2. Is disclosed.
  • the present invention is a dental pulp cell provided as a transplant material for treatment of nerve damage, specifies a property that the pulp cells treated with FGF2 should have, and a graft material for treatment of nerve injury containing the pulp cell. The issue is to provide.
  • dental pulp cells isolated from dental pulp tissue can be treated with FGF2 to obtain dental pulp cells preferable as a transplant material for treating nerve damage.
  • dental pulp cells treated with FGF2 expressed markers of young neurons after transplantation to the spinal cord injury site compared with dental pulp cells cultured with MSCGM, a medium for stem cell culture without FGF2. It has been confirmed that the cells differentiated into non-patent documents (Non-patent Document 1). Such properties support that pulp cells treated with FGF2 are useful for the treatment of nerve damage.
  • Patent Document 1 does not report the analysis / comparison of changes in the properties of dental pulp cells caused by FGF2 treatment, and particularly analyzes and compares the effects of FGF2 treatment among dental pulp cells derived from donors with different therapeutic effects. It is not a thing. Therefore, in FGF2-treated dental pulp cells to be used as a transplant material for treatment of nerve damage, a property that serves as an index of the effect of nerve damage treatment has not been identified.
  • the present invention is as follows:
  • the present invention as one aspect, [1]
  • the present invention relates to a transplant material for treating nerve damage, which includes dental pulp cells expressing GABRB1 gene and having resistance to active oxygen.
  • the transplant material for treatment of nerve injury of the present invention is, in one embodiment, [2]
  • the dental pulp cells are those treated with FGF2.
  • the transplant material for treatment of nerve injury of the present invention is, in one embodiment, [3]
  • the FGF2-treated dental pulp cells are characterized by having an increased GABRB1 gene expression level as compared with non-FGF2-treated dental pulp cells.
  • the transplant material for treatment of nerve injury of the present invention is, in one embodiment, [4] A transplant for treating nerve damage according to any one of [1] to [3] above,
  • the dental pulp cells further express at least one gene selected from the group consisting of MMP1 gene, DRD2 gene, ABCA6 gene, TMEM100 gene, THBD gene, NTSR1 gene, and SCG2 gene.
  • the transplant material for treatment of nerve injury of the present invention is, in one embodiment, [5] The transplant for treatment of nerve damage according to any one of [1] to [4] above,
  • the FGF2 treatment is characterized by culturing using a medium containing FGF2 at a concentration of 5 ng / ml or more.
  • the transplant material for treatment of nerve injury of the present invention is, in one embodiment, [6] The transplant material for treatment of nerve damage according to [5] above, The culture using the medium containing FGF2 is performed for at least 6 days.
  • the transplant material for treatment of nerve injury of the present invention is, in one embodiment, [7]
  • the transplant material for treatment of nerve injury of the present invention is, in one embodiment, [8] The therapeutic agent for transplantation of nerve damage according to any one of [1] to [7],
  • the nerve injury is spinal cord injury, cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, spinal cord hemorrhage, nerve compression injury due to herniated disc, sciatica, or peripheral nerve injury caused by diabetes.
  • the transplant material for treatment of nerve injury of the present invention is, in one embodiment, [9] The therapeutic graft material according to any one of the above [1] to [8], which is used in combination with an active oxygen scavenger for the treatment of nerve damage.
  • the transplant material for treatment of nerve injury of the present invention is, in one embodiment, [10] The graft material for treatment of nerve damage according to [9] above,
  • the active oxygen scavenger is at least one active oxygen scavenger selected from the group consisting of edaravone, vitamin C, Nrf2 inducer, and glutathione activity inducer.
  • the present invention provides: [11] A method for treating nerve damage,
  • the present invention relates to a treatment method comprising a step of transplanting the nerve injury treatment transplant material according to any one of the above [1] to [8] to a nerve damage site.
  • the method for treating nerve injury of the present invention is as follows.
  • the present invention relates to a treatment method including a step of transplanting a nerve injury treatment transplant material of the following i) or ii) in combination with an active oxygen scavenger to a nerve injury site: i) the graft material for treatment of nerve injury according to any one of claims 1 to 8, or ii) A transplant for treatment of nerve damage including dental pulp cells whose GABRB1 gene expression level is enhanced by FGF2 treatment.
  • the present invention provides: [13] A method for producing a transplant for treatment of nerve damage,
  • the present invention relates to a production method including a step of measuring the expression of GABRB1 gene in dental pulp cells and a step of selecting dental pulp cells expressing GABRB1 gene.
  • a method for producing a graft material for treatment of nerve injury according to the present invention includes: [14] A method for producing an implant for treating nerve damage according to [13] above, Further measure at least one gene selected from the group consisting of MMP1 gene, DRD2 gene, ABCA6 gene, TMEM100 gene, THBD gene, NTSR1 gene, and SCG2 gene, and express at least one gene selected from the group The method further includes the step of selecting dental pulp cells.
  • a method for producing a graft material for treatment of nerve injury according to the present invention includes: [15] A method for producing a graft material for treating nerve damage according to [13] or [14] above, Before the step of measuring the gene expression of the dental pulp cells, the method comprises culturing the dental pulp cells in a medium containing FGF2.
  • a method for producing a graft material for treatment of nerve injury according to the present invention includes: [16] A method for producing an implant for treating nerve damage according to any one of [13] to [15], The culture in the step of culturing the dental pulp cells in a medium containing FGF2 is performed for at least 6 days.
  • a method for producing a graft material for treatment of nerve injury according to the present invention includes: [17] A method for producing a graft material for treating nerve damage according to any one of [13] to [16],
  • the step of selecting dental pulp cells expressing the GABRB1 gene is a step of selecting dental pulp cells having a GABRB1 gene expression level that is 10 times or more higher than the GABRB1 gene expression level of FGF2-untreated dental pulp cells. It is characterized by being.
  • a method for producing a graft material for treatment of nerve injury according to the present invention includes: [18] A method for producing a graft material for treating nerve damage according to any one of [13] to [17],
  • the nerve injury is spinal cord injury, cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, spinal cord hemorrhage, nerve compression injury due to herniated disc, sciatica, or peripheral nerve injury caused by diabetes.
  • the graft material for treating spinal cord injury that expresses the GABRB1 gene and includes dental pulp stem cells having resistance to active oxygen has excellent cell engraftment after cell transplantation, and Has an excellent therapeutic effect on spinal cord injury.
  • FIG. 2a shows the transplantation of dental pulp cells of DP-1 strain or DP31 strain (DP1-FGF2 (-) or DP31-FGF2 (-)) not treated with FGF2 into spinal cord injury model rats. Or the open field motor function evaluation result by BBB score after administering PBS is shown. Error bars indicate standard deviation ( ⁇ S.D.). The significant difference test was performed by Bonferroni post hoc test after two-way ANOVA.
  • FIG. 2 b is a graph showing the results of measuring the electrophysiological action potential through a completely cut T10 site during an electrical stimulation of 0.6 mA.
  • FIG. 3a shows the results of an open field motor function evaluation by BBB score after administration of FGF2 or PBS to a spinal cord injury model rat. Error bars indicate standard deviation ( ⁇ S.D.). The significant difference test was performed by Bonferroni post hoc test after two-way ANOVA. Asterisks indicate statistical significance compared to the control group administered with PBS (* P ⁇ 0.05, ** P ⁇ 0.01).
  • FIG. 3b is a graph showing the results of measuring electrophysiological action potentials through the T10 site, which is the site of injury, when FGF2 was administered to spinal cord injury model rats and 0.6 mA electrical stimulation was performed. . Only in 1 out of 4 animals administered FGF2 could an action potential be detected beyond the injury site.
  • Figure 4a shows human dental pulp cells from different donors treated with FGF2 (DP1-FGF2 (+), DP31-FGF2 (+), DP165-FGF2 (+), DP296-FGF2 (+), PBS administration (control))
  • FGF2 DP1-FGF2 (+), DP31-FGF2 (+), DP165-FGF2 (+), DP296-FGF2 (+), PBS administration (control)
  • the result of the open field motor function evaluation by BBB score when transplanted into a spinal cord injury model rat is shown. Error bars indicate standard deviation ( ⁇ S.D.).
  • the significant difference test was performed by Bonferroni post hoc test after two-way ANOVA.
  • An asterisk (*) indicates statistical significance compared to the control group administered with PBS (* P * ⁇ 0.05, ** P ⁇ 0.01, *** P ⁇ 0.001).
  • FIG. 1 shows human dental pulp cells from different donors treated with FGF2 (DP1-FGF2 (+), DP31-FGF2 (+
  • FIG. 4b is a graph showing the results of measuring electrophysiological action potential through the T10 site, which is the damaged site, when human dental pulp cells derived from each donor were transplanted into a spinal cord injury model rat and electrical stimulation of 0.6 mA was performed. It is.
  • FIG. 4c shows a graph plotting the latency of each section in FIG. 4b.
  • FIG. 5a shows an image of a state in which 4 ⁇ 10 6 human dental pulp cells treated with FGF2 were transplanted into the vitreous cavity of a rat eye and 3 weeks after the transplantation.
  • Figures 5b and c similarly show a split face image of the removed vitreous cavity three weeks after transplantation.
  • the scale bar indicates 500 ⁇ m.
  • FIG. 6 shows an immunohistochemically-stained image of the sagittal plane of the spinal cord 8 weeks after transplanting DP165-FGF2 (+) or DP296-FGF2 (+) to a spinal cord injury model rat.
  • 6a to 6c show images of the DP165-FGF2 (+) transplantation area, and FIGS.
  • FIG. 6d to 6f show images of the DP296-FGF2 (+) transplantation area.
  • FIG. 6a shows a high magnification image of the area indicated by 1 in FIG. 6a.
  • FIG. 6 c shows a high magnification image of the caudal ventral area of the DP296-FGF2 (+) transplantation zone. Myelinated regeneration axons could be observed from the center to the caudal ventral side.
  • FIG. 6d almost no GAP43 positive cells were observed.
  • FIG. 6e shows a high magnification image of the area indicated by 3 in FIG. 6d.
  • FIG. 6f shows a high-magnification image of the caudal ventral area of the DP296-FGF2 (+) transplantation zone.
  • FIG. 6f myelinated axons have disappeared.
  • the scale bar in FIG. 6 indicates 500 ⁇ m in FIGS. 6a and 6d, and 100 ⁇ m in FIGS. 6b, 6c, 6e, and 6f.
  • the arrowheads in FIGS. 6a and 6d indicate the center of the injury site.
  • FIGS. 7a to c show images of fluorescence staining of the spinal cord at 8 weeks in the PBS administration group (FIG. 7a), the DP165 transplantation group (FIG. 7b), and the DP296 transplantation group (FIG. 7c) after spinal cord injury.
  • FIG. 10 shows Example 3 below. It is the schematic which shows the culture schedule of each human dental pulp cell used for "the influence on the tolerance with respect to the active oxygen of the human dental pulp cell by FGF2 treatment".
  • FIG. 11 is a graph showing the results of an active oxygen tolerance test (MTT assay) on human dental pulp cells cultured in each culture schedule shown in FIG.
  • FIG. 12 is a culture method of the S / F group and the F / S group of the respective culture schedules shown in FIG. 10, and further shows a reactive oxygen tolerance test of human dental pulp cells when the number of culture days is changed ( It is a graph which shows the result of MTT assay.
  • FIG. 13 shows a fluorescence microscopic image of the longitudinal section of the spinal cord in a combination of transplantation of FGF2-untreated DP31 strain human dental pulp cells (DP31-S) and edaravone administration (daily).
  • 13B and 13C are enlarged views of the region shown in FIG. 13A.
  • the scale bars in FIGS. 13A and C show 1 mm and 200 ⁇ m, respectively.
  • the right and left sides of the image indicate the caudal and rostral sides of the spinal cord, respectively.
  • FIG. 14 (A) shows an image (20 magnifications) showing the state of the spinal cord injury in the spinal cord injury model rat transplanted with DP31-S and showing the state 7 weeks after cell transplantation.
  • FIG. 14 (A) shows an image (20 magnifications) showing the state of the spinal cord injury in the spinal cord injury model rat transplanted with DP31-S and showing the state 7 weeks after cell transplantation.
  • FIG. 14 (B) shows an image (20 magnifications) showing the state of the spinal cord injury in a spinal cord injury model rat transplanted with DP31-S and combined with edaravone, and the state after 7 weeks after cell transplantation.
  • FIG. 14 (C) shows the number of GFP-positive cells at the site of spinal cord injury (average) 7 weeks after the day of transplantation to the spinal cord injury model rat in the DP31-S transplantation group and the DP31-S transplantation and edaravone combination group. Value). Values are expressed as mean ⁇ standard error. The significant difference test was performed by Student's t-test (* p ⁇ 0.05). The scale bar indicates 200 ⁇ m.
  • FIG. 14 (C) shows an image (20 magnifications) showing the state of the spinal cord injury in a spinal cord injury model rat transplanted with DP31-S and combined with edaravone, and the state after 7 weeks after cell transplantation.
  • FIG. 14 (C) shows the number of
  • the present invention is a property of dental pulp cells treated with FGF2, and is particularly important for the treatment of nerve damage, and is characterized by the expression of the GABRB1 gene and / or resistance to active oxygen. I found it important to have a combination. That is, in one aspect, the present invention provides a transplant material for treating nerve damage, comprising dental pulp cells in which the GABRB1 gene is expressed, active oxygen tolerance, or both properties are combined. . A preferred embodiment is a transplant material for treating nerve damage, which contains dental pulp cells expressing the GABRB1 gene and having active oxygen resistance. Further, another embodiment of the present invention includes dental pulp cells treated with FGF2, wherein the pulp cells express GABRB1 gene, have active oxygen resistance, or have both properties. Providing a graft for the treatment of nerve damage.
  • the “dental pulp cell” refers to a cell collected from dental pulp tissue of a deciduous tooth or a permanent tooth, and including a dental pulp stem cell.
  • the dental pulp cells used in the present invention are not limited as long as they have an effect of improving the function of nerve damage when transplanted to a nerve damage site, and even cultured cells can be cultured directly from a living body. It may also be a cell thawed after cryopreservation.
  • the present invention provides, as one embodiment, a transplant material for treating nerve damage, which is a dental pulp stem cell treated with FGF2 and containing dental pulp stem cells expressing the GABRB1 gene.
  • a transplant material for treating nerve damage which is a dental pulp stem cell treated with FGF2 and containing dental pulp stem cells expressing the GABRB1 gene.
  • dental pulp cell can be read as “dental pulp stem cell” as described above.
  • tissue stem cell is a type of tissue stem cell that can be isolated from dental pulp tissue.
  • Tissue stem cells are also referred to as somatic stem cells, and tissue stem cells are limited in the types of cells that can be differentiated from embryonic stem cells that can be differentiated into any cells.
  • Dental pulp stem cells are characterized, for example, by the surface antigen STRO-1.
  • neural crest cell markers such as Nestin, SOX10, and SOX11 as an index.
  • pulp tissue containing pulp cells can be collected from both deciduous teeth and permanent teeth, and can be obtained from pulp of extracted teeth such as deciduous teeth and wisdom teeth that have been treated as medical waste conventionally.
  • the dental pulp tissue can be removed from teeth that have been extracted dentally in a dental facility, and may be extracted from naturally extracted teeth.
  • the method of taking out pulp tissue from a tooth is well-known, and those skilled in the art can implement suitably.
  • a freezing treatment cannot be performed immediately on the spot, such as a tooth extracted in a dental procedure, the tooth is immersed in a medium such as ⁇ -MEM for transport, and the temperature is low (for example, 4 °C).
  • a method for isolating dental pulp cells from dental pulp tissue can be performed, for example, as follows. After the dental pulp tissue is shredded using a scalpel or the like, the shredded pulp tissue is enzymatically treated using dispase, collagenase, or a mixed enzyme solution thereof. After the enzyme treatment, the mixture is thoroughly mixed with a culture solution containing serum, and then impurities are removed using a cell strainer or the like. Thereafter, centrifugation (for example, 2,000 rpm, 4 ° C.) is performed, the supernatant is discarded, and pulp cells can be collected from the dental pulp tissue by adding a culture solution.
  • centrifugation for example, 2,000 rpm, 4 ° C.
  • dental pulp cells isolated from dental pulp tissues contain dental pulp stem cells in the cell population.
  • a dental pulp cell group containing dental pulp stem cells can be used as it is and cultured in a medium containing FGF2.
  • the dental pulp stem cells may be separated from the dental pulp tissue-derived cell population by a known method using the above cell surface marker and then treated with FGF2.
  • the origin of dental pulp tissue is not limited to humans, but may be other mammals (eg, mouse, rat, rabbit, dog, cat, monkey, sheep, cow, horse).
  • the dental pulp stem cells used in the transplant material for the treatment of nerve damage of the present invention are those isolated from dental pulp tissues and treated with FGF2 by culturing in a medium containing FGF2.
  • FGF2 By treating the dental pulp cells with FGF2, it is possible to obtain dental pulp cells that are enhanced in the expression of the GABRB1 gene and that are suitable as a transplant material for treating nerve damage.
  • the “GABRB1 gene” is a gene encoding gamma-aminobutyric acid type A receptor beta1 subunit.
  • the dental pulp cell says “GABRB1 gene is expressed”, it has a significantly increased GABRB1 gene expression level compared to the GABRB1 gene expression level of dental pulp cells not treated with FGF2.
  • the dental pulp cell expresses the GABRB1 gene '', it is not limited to the following.
  • the expression of the GABRB1 gene of the dental pulp cell Compared with the expression level of GABRB1 gene in dental pulp cells not treated with FGF2, the amount is about 10 times or more, about 20 times or more, about 100 times or more, more preferably about 200 times or more. Is. Due to the difference in the origin of the donor, transplantation of a treatment material containing pulp cells could not be expected to improve nerve damage, but pulp cells whose GABRB1 gene expression was enhanced by FGF2 treatment It has an excellent therapeutic effect on nerve damage when transplanted to a site.
  • MMP1 gene in addition to GABRB1 gene, "MMP1 gene, DRD2 gene, ABCA6 gene, TMEM100 gene, THBD gene, SCG2 gene, And at least one gene selected from the group consisting of NTSR1 gene "is expressed.
  • the “MMP1 gene” is a gene encoding Matrix metallopeptidase 1 (interstitial collagenase).
  • D2 gene is a gene encoding Dopamine receptor D2.
  • ABCA6 gene is a gene encoding ATP-binding cassette, sub-family A (ABC1), member6.
  • the “TMEM100 gene” is a gene encoding Transmembrane protein 100.
  • the “THBD gene” is a gene encoding thrombomodulin.
  • NTSR1 gene refers to neurotensin receptor 1.
  • the “SCG gene” is a gene encoding Secretogranin II. In the present specification, when ⁇ at least one gene selected from the group consisting of MMP1 gene, DRD2 gene, ABCA6 gene, TMEM100 gene, THBD gene, SCG2 gene, and NTSR1 gene is further expressed '' GABRB1 In addition to gene expression, it means that one, two, three, four, five, six, or seven genes of the above-listed genes are expressed.
  • dental pulp cells expressing one of the genes listed above are specifically pulp cells expressing the GABRB1 gene and MMP1 gene, GABRB1 gene and DRD2 Dental pulp cells in which GABRB1 gene and ABCA6 gene gene are expressed, dental pulp cells in which GABRB1 gene and TMEM100 gene gene are expressed, GABRB1 gene and THBD gene are expressed Dental pulp cells, dental pulp cells expressing GABRB1 gene and SCG2 gene, and dental pulp cells expressing GABRB1 gene and NTSR1 gene.
  • MMP1 gene when two, three, four, five, six, or seven genes of the gene group listed above are expressed, MMP1 gene, DRD2 gene, ABCA6 gene, TMEM100 gene, All combinations of two genes selected from the group consisting of THBD gene, SCG2 gene, and NTSR1 gene, all three gene combinations, all four gene combinations, all five gene combinations, Includes all six gene combinations or all seven gene combinations.
  • genes listed above when the genes listed above are expressed, it means that they have enhanced gene expression compared to the expression level of the corresponding gene in dental pulp cells not treated with FGF2. .
  • genes whose expression level is significantly increased are MMP1, DRD2, ABCA6, TMEM100, THBD, and SCG2 genes. is there.
  • a dental pulp cell in which the MMP1 gene is expressed is, in a preferred form, a pulp having a significantly increased expression level of the MMP1 gene compared to the expression level of the MMP1 gene in dental pulp cells not treated with FGF2.
  • a cell As with the GABRB1 gene, MMP1 gene, DRD2 gene, ABCA6 gene, TMEM100 gene, THBD gene, NTSR1 gene, and SCG2 gene are also cultured in the presence of FGF2 in dental pulp cells isolated from dental pulp tissue. Unless it passes through specific conditions such as, the expression is not enhanced. Moreover, the expression level of these genes is enhanced by culturing dental pulp cells in the presence of FGF2 for a certain period.
  • the dental pulp cells of the present invention are not limited to the following as long as the expression of each gene is enhanced.
  • the dental pulp cells whose MMP1 gene expression has been enhanced by FGF2 treatment is an MMP1 gene increased by about 145 times or more compared to the expression level of the MMP1 gene in dental pulp cells not treated with FGF2.
  • the dental pulp cells whose DRD2 gene expression has been enhanced by FGF2 treatment has an increased DRD2 of about 104 times or more compared to the expression level of the DRD2 gene in dental pulp cells not treated with FGF2.
  • pulp cells whose ABCA6 gene expression is enhanced by FGF2 treatment are increased by about 17 times or more compared to the expression level of ABCA6 gene in pulp cells not treated with FGF2.
  • the dental pulp cells in which the expression of the TMEM100 gene is enhanced by FGF2 treatment is increased by about 54 times or more compared to the expression level of the TMEM100 gene in dental pulp cells not treated with FGF2.
  • dental pulp cells whose THBD gene expression has been enhanced by FGF2 treatment are increased by about 6 times or more compared to the THBD gene expression level in dental pulp cells not treated with FGF2. Has gene expression level.
  • the dental pulp cells in which the expression of NTSR1 gene is enhanced by FGF2 treatment the SCG2 gene increased by 8 times or more compared to the expression level of NTSR1 gene in dental pulp cells not treated with FGF2. Expression level.
  • the dental pulp cells whose SCG2 gene expression is enhanced by FGF2 treatment is increased by about 5 times or more compared to the expression level of the SCG2 gene in dental pulp cells not treated with FGF2. Has gene expression level.
  • the expression of GABRB1 gene, MMP1 gene, DRD2 gene, ABCA6 gene, TMEM100 gene, THBD gene, NTSR1 gene, and SCG2 gene can be measured using a known method, for example, real time PCR, Northern blotting, Examples include in situ hybridization, RNAse protection assay, and reverse transcription polymerase chain reaction (RT-PCR).
  • RT-PCR reverse transcription polymerase chain reaction
  • the reaction conditions for Real-time PCR were as follows: using primers corresponding to each gene, 40 cycles at 95 ° C for 30 seconds, 95 ° C for 5 seconds, and 60 ° C for 30 seconds for 1 cycle. One cycle of 15 seconds, 60 ° C 30 seconds, 95 ° C 15 seconds.
  • the expression of these genes as an index, it is possible to screen for dental pulp cells suitable for a transplant material for treating nerve damage.
  • enhanced expression of the GABRB1 gene by FGF2 treatment is correlated with the therapeutic effect, and therefore, enhanced expression of the GABRB1 gene is preferably used as an index.
  • the present invention is a method for screening dental pulp cells suitable for a transplant material for treatment of nerve damage, wherein the expression of GABRB1 gene in FGF2-treated dental pulp cells is measured and the GABRB1 gene is expressed.
  • a method comprising selecting dental pulp cells that are present.
  • One embodiment of the screening method includes at least one selected from the group consisting of MMP1 gene, DRD2 gene, ABCA6 gene, TMEM100 gene, THBD gene, NTSR1 gene, and SCG2 gene in addition to GABRB1 gene. It includes a form in which gene expression is measured and dental pulp cells expressing the measured gene are selected.
  • “having active oxygen resistance” means that dental pulp cells have resistance to the toxicity of active oxygen.
  • dental pulp cells when dental pulp cells are used as a transplant material, it means that they have resistance against the toxicity of active oxygen generated in the tissue of the damaged site of the transplant destination.
  • the dental pulp cells having active oxygen resistance of the present invention have a higher cell engraftment rate after transplantation than dental pulp cells not having active oxygen resistance, and have an excellent effect on improving the function of the damaged site. is there.
  • the active oxygen tolerance of dental pulp cells is not limited to the following. For example, hydrogen peroxide (H 2 O 2 ) is added to the culture medium in which dental pulp cells are cultured, and then cultured by MTT assay or the like. Can be evaluated.
  • H 2 O 2 hydrogen peroxide
  • any one of the following conditions a) to f) is satisfied: A) Living dental pulp cells cultured in 10% FCS- ⁇ MEM medium containing 0.5 mM hydrogen peroxide for 24 hours were cultured in 10% FCS- ⁇ MEM medium without addition of hydrogen peroxide for 24 hours. Surviving at a rate of about 50% or more, preferably about 60% or more, more preferably about 70% or more, and further preferably about 80% or more with respect to the number of living dental pulp cells.
  • D) The living cells of dental pulp cells when cultured in 10% FCS- ⁇ MEM medium containing 0.5 mM hydrogen peroxide for 24 hours are the living cells when dental pulp cells not treated with FGF2 are cultured under the same conditions for 24 hours.
  • E) Living dental pulp cells when cultured in 10% FCS- ⁇ MEM medium containing 0.6 mM hydrogen peroxide for 24 hours are living cells when dental pulp cells not treated with FGF2 are cultured under the same conditions for 24 hours.
  • Living dental pulp cells when cultured in 10% FCS- ⁇ MEM medium containing 0.7 mM hydrogen peroxide for 24 hours are living cells when dental pulp cells not treated with FGF2 are cultured under the same conditions for 24 hours. It survives at a rate of about 3 times or more, more preferably about 4 times or more, and still more preferably about 5 times or more of the number.
  • the method of treating FGF2 in order to use dental pulp cells as a transplant for treatment of nerve damage can be performed, for example, according to the method described in International Publication No. 2014/185470.
  • dental pulp cells isolated from dental pulp tissue are cultured in a medium containing FGF2 for a certain period of time to perform FGF2 treatment.
  • the term “medium containing FGF2” refers to, for example, a medium in which FGF2 is added as a growth factor to a basic medium containing serum; a medium in which FGF2 is added to a basic medium not containing serum Medium supplemented with FGF2 in a basic medium containing serum; medium in which FGF2 is added as a growth factor to a medium marketed as a medium for mesenchymal stem cell culture; marketed as a medium for mesenchymal stem cell culture Examples of the medium include a medium in which FGF2 is added.
  • FGF2 means a basic fibroblast growth factor (FGF), and is also called bFGF or HBGF-2.
  • FGF2 can be used by appropriately diluting a commercially available one. Since it is used as a transplant, it is preferably filtered through an appropriate membrane and confirmed to be negative for bacteria, fungi, mycoplasma and the like.
  • concentration of FGF2 is not particularly limited as long as the obtained transplantation material has a sufficient effect of treating spinal cord injury, and can be, for example, 5 ng / ml or more, 7 ng / ml or more, 10 ng / ml or more.
  • a preferred embodiment is a method of culturing dental pulp cells using a medium supplemented with FGF2 at a concentration of 10 ng / ml.
  • the treatment with FGF2 is not limited to the following as long as the expression of the GARBR1 gene is enhanced, but an embodiment in which FGF2 is added to the medium every day is preferable.
  • basic medium refers to a medium containing only known components of low molecular weight.
  • basic medium include BME (Basal medium Eagle's), MEM (Minimum essential medium), DMEM (Dulbecco's modified) Eagle's medium such as Eagle's medium, RPMI1630, RPMI1640, RPMI medium such as Roswell'Park'Memorial'Institue, Fischer's medium, F10 medium, F12 medium, Ham's'medium, MCDB104, 107, 131, 151, MCDB media such as 153, 170, 202, and RITC80-7 media are known and can be appropriately selected.
  • “medium marketed as a medium for culturing mesenchymal stem cells” means a commercially available medium for culturing and proliferating mesenchymal stem cells while maintaining differentiation ability without inducing differentiation.
  • MSCGM medium LONZA
  • mesenchymal stem cell growth medium Takara Bio Inc.
  • mesenchymal stem cell growth medium DXF Takara Bio Inc.
  • Stemline registered trademark
  • mesenchymal stem cell growth medium Sigma) -Aldrich
  • MF-medium (trademark) mesenchymal stem cell growth medium Toyobo Life Science
  • BD Mosaic serum-free culture kit for human mesenchymal stem cells (BD bioscience). It is not limited.
  • serum is not limited as long as it is serum used for cell culture, and examples thereof include human serum, fetal bovine serum, and horse serum.
  • human serum When the therapeutic transplant according to the present invention is transplanted into a human, it is preferably human serum.
  • the serum is preferably less than 15% by weight, less than 13% by weight, less than 10% by weight, less than 8% by weight, less than 5% by weight, etc. in the medium.
  • a “medium substantially free of growth factors other than FGF2” can be used.
  • “medium substantially free of growth factors other than FGF2” means that the only growth factor that is intentionally added is FGF2.
  • growth factor means various proteins called growth factors or growth factors, such as epidermal growth factor (EGF), fibroblast growth factor (FGF), acidic fibroblast growth factor (aFGF or FGF1), basic fibroblast growth factor (bFGF or FGF2), platelet-derived growth factor (PDGF), nerve growth factor (NGF), insulin-like growth factor (IGF), hepatocyte growth factor (HGF), transforming growth Factor (TGF), vascular endothelial growth factor (VEGF), keratinocyte growth factor (KGF) interleukins and the like.
  • EGF epidermal growth factor
  • FGF fibroblast growth factor
  • aFGF or FGF1 acidic fibroblast growth factor
  • bFGF or FGF2 basic fibroblast growth factor
  • PDGF platelet-derived growth factor
  • NGF nerve growth factor
  • IGF insulin-like growth factor
  • HGF hepatocyte growth factor
  • TGF transforming growth Factor
  • VEGF vascular endothelial growth factor
  • substances useful for cell culture can be appropriately added to the medium used in the method for producing a transplant material for treatment of spinal cord injury according to the present invention.
  • Such substances include, for example, a buffer for stabilizing pH (such as HEPES), pH indicator phenol red, antibiotics (penicillin G, streptomycin, amphotericin B, gentamicin, kanamycin, ampicillin, minomycin, gentamicin, etc.), amino acids, Vitamins, lipids, carbohydrates, nucleic acids, inorganic salts, organic acid salts, minerals, and the like are included, but are not limited thereto.
  • the dental pulp cells In the method for producing a transplant material for treatment of nerve damage according to the present invention, it is also preferable to subculture the dental pulp cells twice, three times, four times, five times, or six times or more in the above-mentioned medium. In order to confer active oxygen resistance to dental pulp cells by FGF2 treatment, it is preferable to carry out at least two subculture periods or at least 6 days of culture. Even dental pulp cells treated with FGF2 lose resistance to active oxygen by subculturing 1-2 times in a medium not containing FGF2 or by culturing in a medium not containing FGF2 for about 3 days.
  • the dental pulp cells are not limited as long as they have a therapeutic effect on nerve damage, but the culture using a medium containing FGF2 is more preferably performed until just before the dental pulp cells are used as a therapeutic transplant.
  • the culture method is not particularly limited except that it is cultured in a medium that does not substantially contain a growth factor other than FGF2, and those skilled in the art can use various conditions (temperature, humidity, CO 2 concentration) depending on the type of cells to be cultured. PH, medium exchange frequency, etc.) can be selected.
  • the method for producing a transplant material for treatment of nerve damage according to the present invention can perform various processes suitable as a method for producing a transplant material in addition to the above-described culture process.
  • the step of adjusting the fluidity by mixing the culture obtained in the culturing step with a highly viscous substance such as hyaluronic acid, collagen gel, fibrinogen, soft agar, or synthetic polymer may be performed.
  • a highly viscous substance such as hyaluronic acid, collagen gel, fibrinogen, soft agar, or synthetic polymer
  • the transplant can be fixed at the damaged site.
  • three-dimensional culture may be performed by culturing for a certain period of time.
  • nerve damage means central and peripheral nerve damage, specifically spinal cord injury, cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, spinal cord hemorrhage, nerve compression injury due to disc herniation, sciatica It includes, but is not limited to, neuralgia or peripheral neuropathy due to diabetes.
  • the transplant material of the present invention can be applied to any nerve damage as long as a therapeutic effect is obtained by transplantation.
  • the therapeutic effect is not limited to the effect of curing the disease, but includes the effect of improving at least one symptom associated with the disease, the effect of preventing or delaying the progression of the disease, and the like.
  • the effect of the therapeutic transplant obtained by the method for producing a therapeutic implant for nerve injury according to the present invention can be evaluated by, for example, transplanting cells to a nerve injury model animal.
  • a nerve injury model animal For example, it can be evaluated using a rat spinal cord injury model prepared by a known method. Specifically, under anesthesia such as isoflurane, after laminectomy, the spinal cord is completely cut using a scalpel.
  • the cutting site can be, for example, the tenth thoracic vertebra (Th10). After the spinal cord is cut, hemostasis is performed, and then the medium containing dental pulp cells is transplanted to the damaged site using a syringe.
  • 10 ⁇ l of a medium containing cells at a concentration of about 1 ⁇ 10 6 cells is transplanted to the damaged site. After cell injection, leave it for about 10 minutes and close the wound with suture. Rats may be placed in a rewarming chamber until they wake up after surgery. Moreover, you may administer the antagonist of anesthesia as needed. After surgery, antibiotics and immunosuppressants may be administered as necessary. For example, at the time of 7 weeks after transplantation, evaluation of improvement of motor function, evaluation of tissue repair by immunohistochemical staining of dental pulp cell transplantation site, evaluation of functional recovery of damaged site by electrophysiological method, and treatment Confirm the effect of the transplant.
  • BBB score Basso DM et al., J Neurotrauma. 1995 Feb; 12 (1): 1-21). Further, immunohistochemical staining can be performed on a frozen section of a spinal cord injury site prepared by a known method. Specifically, the rat is transcardially fixed under anesthesia and the spinal cord tissue is collected. The tissue is frozen and embedded using an embedding agent, and a section is prepared using a cryostat. Immunostaining uses anti-growth-associated protein (GAP) 43 antibody, a growth cone marker, anti-glial fibrillary acidic protein (GFAP) antibody, an anti-GFP antibody, and anti-MBP antibody, an oligodendrocyte marker. Tissue can be stained.
  • GAP anti-growth-associated protein
  • GFAP anti-glial fibrillary acidic protein
  • oligodendrocyte marker an oligodendrocyte marker.
  • GAP43-positive spinal cord regeneration fibers are three times as large as the control group in which no pulp cells are transplanted. Above, preferably 5 times or more, more preferably 7 times or more.
  • the evaluation by an electrophysiological method can be performed by measuring the electrical action potential through the spinal cord amputation part. For example, for rats that have had their Th10 site cut, under anesthesia, a microelectrode is inserted into the spinal cord so that Th8 can be electrically stimulated through Th10 and an action potential can be detected at Th13. To do.
  • the electrical stimulation can be evaluated by, for example, applying a short rectangular wave pulse (0.2 seconds) every 2 seconds, detecting the action potential in Th13, and measuring the latency.
  • the transplant for nerve injury treatment includes the above-described dental pulp cells in which the GABRB1 gene is expressed by FGF2 treatment.
  • a medium containing FGF2 in which dental pulp cells have been cultured can be used as a therapeutic transplant material in a state containing dental pulp cells as it is.
  • the dental pulp cells may be transferred to the above-mentioned medium or solution and used as a therapeutic transplant material.
  • the transplant material may contain gel such as collagen gel, soft agar, and synthetic polymer, and the viscosity may be adjusted by a suitable gelling agent or thickener.
  • the present invention also includes a method for treating nerve damage, including the step of transplanting the above-described graft material for treating nerve damage to a nerve damage site.
  • the graft material for nerve injury treatment can be injected into the nerve injury site by a syringe or the like, for example.
  • the transplanted material may be placed by cutting the damaged site.
  • an immunosuppressant such as cyclosporine may be administered simultaneously.
  • the effect of treating nerve damage is obtained, it can be used in combination with other drugs.
  • a person skilled in the art can appropriately determine the dose and the number of doses.
  • the subject of the method for treating nerve damage is not limited to humans, but may be other mammals (eg, mouse, rat, rabbit, dog, cat, monkey, sheep, cow, horse).
  • an example of a method for treating human spinal cord injury is shown below, but the method of treatment is not limited thereto.
  • An effective amount of dental pulp cells can be directly transplanted to the site using a syringe or the like.
  • the method for treating nerve damage according to the present invention is a method including the step of transplanting the above-mentioned graft material for treating nerve damage to a nerve damage site in combination with an active oxygen removing agent.
  • an active oxygen scavenger means an agent that has an effect of preventing damage to a damaged site caused by active oxygen occurring at a nerve injury site in a living body or a transplanted dental pulp cell. Or administered in combination.
  • Such an active oxygen scavenger is not particularly limited as long as it can be administered to a living body and has an effect of protecting transplanted cells from damage of active oxygen at a damaged site.
  • edaravone for example, edaravone, vitamin C , Known active oxygen scavengers such as Nrf2 inducer and glutathione activity inducer can be used.
  • a person skilled in the art can appropriately set the administration method, dose and frequency of administration of the active oxygen scavenger depending on the active oxygen scavenger used and the site of injury.
  • edaravone is administered as an active oxygen scavenger to spinal cord injury rats in combination with pulp cell transplantation, it is not limited to the following, but edaravone is administered 3 times twice a day for 1 week immediately after cell transplantation surgery. It can be administered intraperitoneally at a dose of mg / kg.
  • edaravone alone cannot be recovered by simply administering it to a spinal cord injury model.
  • an active oxygen scavenger when edaravone is administered to humans in combination with pulp cell transplantation, it is not limited to the following, but it is divided into 1 or 2 times a day immediately after cell transplantation surgery, Edaravone can be infused intravenously at a dose of 60 mg / kg over a week.
  • the nerve injury treatment method of the present invention is a method of transplanting a nerve injury treatment graft material to a nerve injury site in combination with an active oxygen remover.
  • the active oxygen scavenger has an effect of preventing cell damage caused by active oxygen occurring at the site of nerve injury. Therefore, the dental pulp cells transplanted in combination with the administration of the active oxygen removing agent do not necessarily need to have active oxygen resistance. That is, the dental pulp cells used for transplantation do not necessarily need to be dental pulp cells that have acquired resistance to active oxygen by FGF2 treatment.
  • the present invention also includes a kit for producing an implant for treating nerve damage.
  • a kit for producing an implant for treating nerve damage contains a medium for culturing dental pulp cells or all or part of its components, FGF2, and a gene expression measurement reagent (for example, a primer for amplifying GABRB1).
  • the active oxygen removal agent used at the time of cell transplantation may be contained.
  • the medium for culturing dental pulp cells include a basal medium or a mesenchymal stem cell culture medium.
  • FGF2 may be separated from the medium or may be mixed from the beginning.
  • the medium should be prepared by the user, such as ultrapure water, which is always available in the laboratory, and contains all or part of the necessary components so that the medium of the present invention can be prepared simply by mixing it. It may be.
  • the kit of the present invention may be used for experiments in a laboratory or may be used for mass culture.
  • a culture vessel In addition to the culture solution, a culture vessel, a virus filter, a coating material for the culture vessel, various reagents, a buffer solution, and an instruction manual may be provided.
  • Example 1 Treatment of spinal cord injury with human dental pulp cells treated with FGF2> To date, it has been reported that either one of dental pulp cell transplantation or FGF2 administration has promoted functional recovery from a completely cut spinal cord. In order to confirm these effects, human dental pulp cells were transplanted into the spinal cord injury of rats, and a test for evaluating hindlimb motor function (BBB score) in combination with electrophysiological tests was conducted. In addition, the developmental stage tooth used to prepare human dental pulp cells has been confirmed to have a difference in efficiency for iPS induction for each donor. In this example, the effect of improving spinal cord injury after transplantation was compared using each human dental pulp cell line obtained from four donors with different ages and genders shown in the following table.
  • BBB score hindlimb motor function
  • the lentiviral vector contains a sequence in which a Venus gene is bound downstream of the EF1 ⁇ promoter.
  • Human dental pulp cells were cultured in MSCGM medium (Lonza) at 37 ° C. under humidified air of 21% O 2 , 5CO 2 and infected with lentivirus to trace the cells in transplants at passages 5-6. It was. After lentiviral infection, human dental pulp cells were cultured in ⁇ -MEM medium (Sigma). The efficiency of virus infection was confirmed using FACS.
  • FGF2 (R & D SYSTEMS) was added to ⁇ -MEM medium at a concentration of 10 ng / ⁇ l every day, and human dental pulp cells treated with FGF2 were used for transplantation at passage 10-13.
  • the FGF2-treated dental pulp cells transplanted from each donor are referred to as DP1-FGF (+), DP31-FGF (+), DP165-FGF (+), and DP296-FGF (+), respectively.
  • DP1 or DP31 passages were produced in ⁇ -MEM medium not containing FGF2, and were similarly used for transplantation at passages 10 to 13 (DP1 respectively).
  • antibiotics sulbactam / ampicillin, SANDOZ, 10 mg / kg weight
  • immunosuppressants ((cyclosporine, Novartis, 10 mg / kg body weight) were administered daily from the day before surgery to the rats transplanted with human dental pulp cells and control rats (PBS-treated group).
  • Laboratory animals can be easily supplied with a custom-made water supply facility equipped with a long nozzle, and are kept in an environment where food can be consumed at all times, and at 26 ° C, 65% humidity, with 12 hours of light per day. Condition.
  • hypodermic needle was then removed and a 30 gauge blunt needle (Hamilton Company, Reno, NV, USA) was inserted into the anterior chamber through the created hole and avoiding the glow and the lens.
  • the needle was inserted toward the retina surface through the vitreous cavity, and after the needle reached the retina surface, 10 ⁇ l of DMEM medium containing DP31 treated with FGF2 was injected into the vitreous cavity.
  • 10 ⁇ l of DMEM medium containing DP31 treated with FGF2 was injected into the vitreous cavity.
  • one drop of ofloxacin ophthalmic solution (Tarivid topical solution, Santen) was instilled into the eye.
  • Six rats were used in this study, two of which were transplanted with 0.5 ⁇ 10 6 cells, and the remaining four were transplanted with 4 ⁇ 10 6 cells. All rats received an immunosuppressant ((cyclosporine, Novartis, 10 mg / kg body weight) from the day before surgery to the day after surgery.
  • BBB Score> In order to objectively analyze the motor function of rats after surgery, the rats were recorded on video for 30 seconds to 2 minutes every week after surgery. The BBB locomotion rating scale was assessed by eliminating the group identity by each independent observer who had previously performed a BBB score analysis and viewing the video (Basso et al., 1996). Detailed evaluation criteria are shown in FIG.
  • Electrophysiological tests In order to confirm whether it is possible to transmit an electrical action potential through the spinal cord amputation, the rat after human dental pulp cell transplantation was subjected to an electrophysiological test by the following method. The rats were placed under anesthesia using urethane and the organs of the rats were dissected to secure the airways. The transmission of electrical activity through the graft was evaluated using the following method. In this test, a bespoke bipolar electrode equipped with tungsten microelectrodes ( ⁇ 0.2 mm, Unique Medical, Japan.) At intervals of 1 mm was used.
  • the electrodes were inserted 1.0 m below and 0.5-0.75 mm lateral to the center of the spinal cord so as to stimulate the Th8 spinal cord segment and record electrical activity at the Th13 spinal cord segment.
  • Microelectrodes are inserted by using a spinal fixation device (ST-7R-HT, NARISHIGE, Tokyo, JAPAN) to fix the rat, control the microelectrode with a manipulator, and confirm the position of the microelectrode under a surgical microscope. It was done by doing. For electrical stimulation, a short rectangular wave pulse (0.2 seconds) was applied every 2 seconds.
  • Frozen sections were prepared as anti-GFAP antibody (rabbit IgG, 1: 500, abcam), anti-GAP-43 antibody (mouse IgG, 1: 200, Millipore), anti-GFP antibody (rabbit IgG, 1: 200, Millipore) as primary antibodies. ) And anti-MBP antibody (rabbit IgG, 1: 200, Millipore). Subsequently, staining with anti-rabbit IgG-Alexa 546, anti-mouse IgG-Alexa Fluor 488, anti-mouse IgG-Alexa 546, and anti-rabbit IgG-Alexa Fluor 488 as secondary antibodies, Stained with DAPI (Sigma-Aldrich). Images of stained sections were acquired using a fluorescence microscope (BZ-9000, Keyence).
  • FIG. 6 shows the results of immunohistochemistry of the spinal cord when the spinal cord was completely cut and 8 weeks after human dental pulp cell transplantation.
  • GAP43-positive axons increased along the GFAP-positive astrocytes (Figs. 6a and b).
  • the regenerated axon was also involved in myelination, and it was possible to confirm a myelin that was MBP positive (FIG. 6c).
  • FIG. 6d, e, and f shows the results of immunohistochemistry of the spinal cord when the spinal cord was completely cut and 8 weeks after human dental pulp cell transplantation.
  • Example 2 Regulation of GABRB1 expression in human dental pulp cells by FGF2>
  • DP1, DP31, DP165, and DP296 are dental pulp cells that does not exert a therapeutic effect on nerve damage even by FGF2 treatment.
  • Each human dental pulp cell used for gene expression analysis is the above described 1-1.
  • FGF2 R & D SYSTEMS
  • FGF2 non-added group a similarly isolated human dental pulp cell cultured in an ⁇ -MEM medium not containing FGF was prepared (FGF2-non-treated group). As each cell, cells at passage 10-13 were used. In addition, comprehensive gene analysis was performed using a cDNA microarray, and then specific gene expression was analyzed using Real-time PCR. The dental pulp cells used in this example were those that had not been transfected with a lentivirus. ⁇ 2-1. cDNA Microarray> Total RNA from cultured human dental pulp cells was isolated using Rneasy (registered trademark) Plus Mini Kit (Qiagen, Valencia, CA, USA).
  • RNA quantification using the Agilent 2100 Bioanalyzer 100 ng of total RNA was reverse transcribed and amplified using the Low Input Quick Amp Labeling kit (Agilent Technologies, Santa Clara, Calif.) According to the protocol. And labeled with Cy3-labeled CTP. After the labeling and purification steps, the cDNA was quantified using an ND-1000 spectrophotometer (Nano Drop Technologies, Wilmington, DE) and hybridized with a SurePrint G3 Human 8x60K v2 oligo-DNA microarray (Agilent Technologies). After hybridization, the array was washed using Gene Expression Wash Pack (Agilent Technologies).
  • the fluorescence image of the hybridized array was acquired with an Agilent DNA microarray scanner, and the fluorescence intensity was determined using Agilent Feature Extraction software ver.10.7.3.1. Each sample was analyzed once. The level of gene expression was determined using Gene Spring GX12.6 (Agilent Technologies).
  • RNA from cultured human dental pulp cells was isolated using Rneasy (registered trademark) Plus Mini Kit (Qiagen, Valencia, CA, USA).
  • Rneasy registered trademark
  • Mini Kit Qiagen, Valencia, CA, USA
  • a PCR product consisting of cDNA was prepared using SYBR Premix Ex Taq (Takara, Shiga, Japan) and Thermal Cycler Dice Real-Time System (Takara). The primers used are shown in Table 2.
  • FGF2 The other seven genes up-regulated by FGF2 (MMP1, DRD2, ABCA6, TMEM100, THBD, NTSR1 and SCG2 genes) have similar expression profiles in four different cell lines. (FIG. 9). Therefore, for each of these seven genes, enhanced expression is important for dental pulp cells used as a transplant for treatment of nerve damage.
  • dental pulp cells were cultured according to the following culture schedules i) to iv).
  • An outline of the culture schedules i) to iv) is shown in FIG. i)
  • Pulp cells cultured for 6 passages in ⁇ -MEM medium containing 10% FCS (10% FCS- ⁇ MEM) are further cultured in 10% FCS- ⁇ MEM medium for 49 hours (S / S: DPC-S Ward).
  • F / S Pulp cells obtained by culturing in DPC-FS section are further cultured in 10% FCS- ⁇ MEM medium for 1, 2, 5, or 11 days (F / S1 section) F / S 2, F / S 5 and F / S 11). In each of the culture schedules i) to vi), after the subculture, the medium was changed every 24 hours.
  • the resistance test against active oxygen is conducted according to the above 3-1. Culturing for 24 hours in 10% FCS- ⁇ MEM medium supplemented with hydrogen peroxide (H 2 O 2 ) (manufactured by Wako Pure Chemical Industries, Ltd.) for the pulp cells obtained by each culture schedule described in 1. Resistance to active oxygen was evaluated by performing MTT assay. In the MTT assay, MTT (Sigma) was added to a concentration of 0.5 mg / mL, reacted in a CO2 incubator for 4 hours, and then the formazan formed was dissolved in isopropanol containing 0.04M HCl to obtain 570 nM. Absorption wavelength was measured. Hydrogen peroxide was added to the medium in the range of 0 mM (no addition) to 0.7 mM. In addition, a condition using a medium not added with hydrogen peroxide was used as a control group.
  • H 2 O 2 hydrogen peroxide
  • FIG. 11 shows the results of a resistance test for active oxygen of dental pulp cells cultured in the above i) to iv) culture schedule.
  • S / S: DPC-S and S / F: DPC-S compared with S / S: DPC-S, F / F: DPC-FS and F / S: DPC-FS Viable cells could be confirmed.
  • pulp cells are cultured for 24 hours in a culture solution containing hydrogen peroxide at a concentration of 0.5 mM or more, most cells survive in the S / S: DPC-S and S / F: DPC-S groups.
  • F / S DPC-FS pulp cells that acquired resistance to active oxygen lost resistance to active oxygen by culturing in a medium not containing FGF2 for 11 days (Fig. 12). Although not shown, the resistance to active oxygen is lost by culturing pulp cells that have acquired resistance to active oxygen for 1 to 2 passages (about 3 to 6 days) in a medium not containing FGF2. It was confirmed.
  • Medetomidine hydrochloride and atipamezole hydrochloride are from Nippon Zenyaku Kogyo Co., Ltd., Midazolam is from Sand Corp., Butorphanol tartrate is from Meiji seika Pharma Co., Ltd., Water for injection is from Otsuka Pharmaceutical Co., Ltd. Purchased.
  • the vertebral arch of the 10th thoracic vertebra was peeled off, and the 10th thoracic spinal cord (T10) was completely cut transversely with a scalpel for surgery (Feather disposable scalpel mini no.14).
  • a scalpel for surgery Feather disposable scalpel mini no.14.
  • 1.0 x 10 6 pulp cells suspended in 10 ⁇ l of phosphate-buffered saline (PBS) using a micropipette were removed from the rostral stump and tail of the cut. It was injected into the gap at the side stump and the back muscle and skin were sutured.
  • the dental pulp cells are the same as those in 3-2.
  • the cells cultured according to the culture schedule of S / S: DPC-S section described in 1) were used.
  • atipamezole hydrochloride a medetomidine hydrochloride antagonist
  • cyclosporin A an immunosuppressant
  • Edaravone (Wako Pure Chemical Industries, Ltd.) was administered intraperitoneally at a dose of 3 mg / kg twice a day for 1 week immediately after surgery in the edaravone administration group and the edaravone administration cell transplantation group.
  • GAP growth-associated protein
  • GFAP anti-glial fibrillary acidic protein
  • the BBB locomotor rating scale is a motor function evaluation standard widely used in spinal cord injury experiments, and the behavior of the hind limbs of the subject rat is scored based on the evaluation standard. Detailed evaluation criteria are shown in FIG.

Abstract

Provided is a graft material for treating nerve damage, the graft material including dental pulp cells, wherein properties required of dental pulp cells provided as a graft material for treating nerve damage are identified. The present invention pertains to a graft material for treating nerve damage, the graft material including dental pulp cells in which GABRB1 genes are expressed and which are resistant to active oxygen.

Description

歯髄細胞を含む神経損傷治療用移植材Transplant for nerve injury treatment containing pulp cells
 本発明は、歯髄細胞を含む神経損傷治療用移植材およびその製造方法に関する。 The present invention relates to a transplant material for treating nerve damage containing pulp cells and a method for producing the same.
 脊髄は脳と末梢の神経伝達路であり障害されると、運動麻痺や知覚障害などの重篤な身体障害に陥る。脊髄損傷により失われた身体機能が回復することは極めてまれであり、患者はその後の生活に著しい制限を受ける。わが国では、約10万人の脊髄損傷患者がおり、年間約5000人が新たに受傷している。根本治療法の開発が社会的急務になっているが、現在、ヒト臨床研究に進んでいる先行技術はいずれも明確な治療効果を示すに至っていない。 The spinal cord is a nerve transmission pathway between the brain and the periphery, and when it is damaged, it falls into serious physical disabilities such as motor paralysis and sensory disturbance. It is extremely rare for physical function lost due to spinal cord injury to be restored, and patients are severely restricted in their subsequent lives. In Japan, there are about 100,000 people with spinal cord injury, and about 5,000 people are newly injured each year. Although the development of fundamental therapy has become a social urgent task, none of the prior arts currently progressing in human clinical research has yet demonstrated a clear therapeutic effect.
 近年、ヒト歯髄細胞の移植により、脊髄損傷モデル動物に運動障害が顕著に回復することが報告されている。ここで、細胞移植療法には、自家移植と他家移植とに分けることができる。自家移植とは、患者自身の組織あるいは自己組織由来の細胞を選別して増やして、あるいは分化誘導して、移植する方法である。自家移植の代表例として、自家歯牙移植、自家皮膚移植等が実際に臨床現場で行われている。自家移植治療の場合、免疫拒絶を回避することができるが、移植組織あるいは組織由来細胞の摘出に伴う侵襲、移植効果の個人差、細胞調製に要する時間やコストの問題が生じる。 Recently, it has been reported that the movement disorder is remarkably recovered in spinal cord injury model animals by transplantation of human dental pulp cells. Here, cell transplantation therapy can be divided into autologous transplantation and allogeneic transplantation. Autotransplantation is a method of transplanting a patient's own tissue or cells derived from the autologous tissue and increasing the number of cells or inducing differentiation. As typical examples of autotransplantation, autologous tooth transplantation, autologous skin transplantation, and the like are actually performed in clinical practice. In the case of autotransplantation treatment, immune rejection can be avoided, but there are problems of invasion associated with extraction of transplanted tissue or tissue-derived cells, individual differences in transplantation effect, time and cost required for cell preparation.
 一方、他家移植は、他者の組織や組織由来細胞を移植する方法である。他者の細胞を用いる際には、免疫拒絶を考慮しなければならない。自己防衛機能として備わっている免疫反応が、逆に移植治療の障害となる。近年では、免疫抑制剤の進歩により拒絶反応を抑えることができるようになり、臓器移植や造血幹細胞移植は飛躍的に発展した。しかしながら、現在の改良された免疫抑制剤でも、約 20 %の割合で免疫拒絶反応が起こること、免疫拒絶反応の治療が困難を極めるケースも数%あることから、安全面で不安が残る。 On the other hand, allogeneic transplantation is a method of transplanting another person's tissue or tissue-derived cells. When using cells from other people, immune rejection must be considered. The immune response provided as a self-defense function is an obstacle to transplantation treatment. In recent years, with the advance of immunosuppressive agents, it has become possible to suppress rejection reactions, and organ transplantation and hematopoietic stem cell transplantation have developed dramatically. However, even with the currently improved immunosuppressive agents, there is still anxiety in terms of safety because immune rejection occurs at a rate of about 20%, and in some cases it is extremely difficult to treat immune rejection.
 他家移植を考慮した際、歯髄細胞には移植細胞源としていくつかの利点がある。ひとつは、元来医療廃棄物として処理されている乳歯や知歯などの抜去歯(永久歯だけで年間1千万本廃棄されている)から採取でき、誘導・培養法が確立している(非特許文献1)ことから、豊富な移植細胞源として利用できることである。ここで、免疫拒絶はHLA 抗原を照合して非自己と判断した細胞を攻撃することに基づくが、HLA ハプロタイプホモのドナー細胞を用いると抗原の種類が半分になるため、適応できる患者が増える。 When considering other transplantation, dental pulp cells have several advantages as a transplant cell source. The first is that it can be collected from extracted teeth such as deciduous teeth and wisdom teeth that were originally treated as medical waste (permanent teeth alone are discarded 10 million a year), and induction and culture methods have been established (non- Therefore, it can be used as an abundant source of transplanted cells. Here, immune rejection is based on attacking non-self-identified cells by collating HLA antigens, but using HLA haplotype homo donor cells halves the type of antigen, increasing the number of patients who can be applied.
 近年の報告によれば、約50ラインのHLAハプロタイプホモの細胞を準備すれば、日本人の約8割をカバーできると試算されている(非特許文献2)。つまり、供給源の豊富な歯髄細胞を治療に用いることができれば、免疫拒絶の少ない HLA ハプロタイプホモドナーの細胞を集めることができ、これを移植源とするストラテジーが現実味を帯びてくる。
 本発明者らは、これまでに、歯髄組織から単離した歯髄細胞をFGF2で処理して移植すると、細胞移植による脊髄損傷の治療効果を高めることができることを明らかにしている(例えば、特許文献1)。なお、特許文献1には、神経損傷の治療用移植材の製造方法であって、当該移植材に用いる歯髄幹細胞を、FGF2以外の成長因子を実質的に含まない培地で培養することを含む方法を開示している。
According to a recent report, it is estimated that about 80% of Japanese people can be covered by preparing about 50 lines of HLA haplotype homo cells (Non-patent Document 2). In other words, if dental pulp cells with abundant sources can be used for treatment, HLA haplotype homodonor cells with low immune rejection can be collected, and a strategy using this as a transplantation source becomes realistic.
The present inventors have previously clarified that treatment of spinal cord injury by cell transplantation can be enhanced by treating and transplanting dental pulp cells isolated from dental pulp tissue with FGF2 (for example, Patent Documents). 1). Patent Document 1 discloses a method for producing a transplant material for treatment of nerve damage, which includes culturing dental pulp stem cells used for the transplant material in a medium substantially free of growth factors other than FGF2. Is disclosed.
WO2014/185470WO2014 / 185470
 これまでに、歯や歯髄組織から歯髄細胞の単離方法が検討され、また、再生医療用途に適した歯髄細胞の培養方法の確立が検討されてきた。ここで、歯髄細胞を再生医療に供する際に、単離方法や培養方法とは別の重要な課題として、由来するドナーごとの細胞の性状の違いを把握する必要がある点を挙げることができる。細胞には、年齢、性別だけでなく、遺伝子発現パターンによって個人差が生じるため、歯髄細胞のすべてが神経損傷回復機能を有するわけではない。すなわち、由来するドナーによっては、例えば、神経損傷の治療効果を奏さない歯髄細胞の存在が想定される。これを支持するように、本発明者らは、歯髄細胞のドナーの相違により、細胞移植後のモデル動物における運動機能回復効果に顕著な違いがあることを明らかとしている(例えば、特許文献1)。このように、歯髄細胞の他家移植療法を実現させるには、臨床効果と相関する歯髄細胞のドナー間での性状の違いを解明し、その性状の違いを移植前に検査できるバイオマーカーの絞り込みが重要な課題となる。 So far, methods for isolating dental pulp cells from teeth and pulp tissues have been studied, and establishment of pulp cell culture methods suitable for regenerative medicine has been studied. Here, when subjecting dental pulp cells to regenerative medicine, an important issue different from isolation methods and culture methods is that it is necessary to grasp the difference in cell properties for each donor from which they are derived. . Not all dental pulp cells have a nerve damage recovery function because individual differences occur depending on gene expression patterns as well as age and sex. That is, depending on the donor from which it is derived, for example, the presence of dental pulp cells that do not have a therapeutic effect on nerve damage is assumed. In support of this, the present inventors have clarified that there is a significant difference in the effect of recovering motor function in the model animal after cell transplantation due to the difference in dental pulp cell donors (for example, Patent Document 1). . Thus, in order to realize the allograft treatment of dental pulp cells, the differences in the properties of dental pulp cells among donors that correlate with the clinical effects are elucidated, and the biomarkers that can be examined before transplantation are narrowed down. Is an important issue.
 しかしながら、これまでにドナー間の違いによる細胞の性状の違いや神経損傷の治療用途に好ましい歯髄細胞の性状について解明した報告はなかった。特に、FGF2の処理による歯髄細胞の性状の変化、ドナーの違いによる歯髄細胞の性状差については不明であった。そこで、本発明は、神経損傷の治療用移植材として供される歯髄細胞であって、FGF2処理した歯髄細胞が有すべき性状を特定し、当該歯髄細胞を含む神経損傷の治療用移植材を提供することを課題とする。 However, there have been no reports that have clarified the differences in cell properties due to differences between donors or the properties of dental pulp cells that are preferable for use in the treatment of nerve damage. In particular, changes in the properties of dental pulp cells due to treatment with FGF2 and differences in properties of dental pulp cells due to differences in donors were unknown. Therefore, the present invention is a dental pulp cell provided as a transplant material for treatment of nerve damage, specifies a property that the pulp cells treated with FGF2 should have, and a graft material for treatment of nerve injury containing the pulp cell. The issue is to provide.
 本発明者らは、歯髄組織より単離した歯髄細胞を、FGF2で処理することより神経損傷治療用移植材として好ましい歯髄細胞を得ることができることを見出している。ここで、FGF2で処理した歯髄細胞は、FGF2非添加の幹細胞培養用の培地であるMSCGMで培養した歯髄細胞と比較して、脊髄損傷部位への移植後に、幼弱な神経細胞のマーカーを発現する細胞へ分化したことが確認されている(非特許文献1)。
 なお、このような性質は、FGF2が処理した歯髄細胞が神経損傷の治療に有用であることを支持するものである。
The inventors of the present invention have found that dental pulp cells isolated from dental pulp tissue can be treated with FGF2 to obtain dental pulp cells preferable as a transplant material for treating nerve damage. Here, dental pulp cells treated with FGF2 expressed markers of young neurons after transplantation to the spinal cord injury site compared with dental pulp cells cultured with MSCGM, a medium for stem cell culture without FGF2. It has been confirmed that the cells differentiated into non-patent documents (Non-patent Document 1).
Such properties support that pulp cells treated with FGF2 are useful for the treatment of nerve damage.
 しかしながら、上述のように、FGF2で処理した歯髄細胞であっても、脊髄損傷モデル動物に移植した際に、ドナーの違いにより神経損傷の治療効果を奏さないものの存在が明らかとなっている。本発明らは、さらに鋭意検討の結果、FGF2処理した歯髄細胞が有する性状であって、とりわけ神経損傷の治療用途に重要な性状を見出した。本発明は当該知見に基づき完成されたものである。
 なお、本発明者らは、特許文献1において、FGF2非添加のMSCGMで培養した歯髄幹細胞であって、異なるドナー由来の歯髄幹細胞の遺伝子発現を網羅的に解析・比較した結果を示している。しかしながら、特許文献1は、FGF2処理による歯髄細胞の性状変化を解析・比較することは報告しておらず、特に治療効果の異なるドナー由来の歯髄細胞間において、FGF2処理による影響を解析・比較するものではない。したがって、神経損傷の治療用移植材に供されるためのFGF2処理した歯髄細胞において、神経損傷治療効果の指標となる性状は特定されていなかった。
However, as described above, it has been clarified that even dental pulp cells treated with FGF2 do not have a therapeutic effect on nerve damage due to differences in donors when transplanted into a spinal cord injury model animal. As a result of further intensive studies, the present inventors have found that the FGF2-treated dental pulp cells have properties that are particularly important for use in the treatment of nerve damage. The present invention has been completed based on this finding.
In addition, in the patent document 1, the present inventors have shown the result of comprehensive analysis and comparison of gene expression of dental pulp stem cells cultured in MSCGM without FGF2 and derived from different donors. However, Patent Document 1 does not report the analysis / comparison of changes in the properties of dental pulp cells caused by FGF2 treatment, and particularly analyzes and compares the effects of FGF2 treatment among dental pulp cells derived from donors with different therapeutic effects. It is not a thing. Therefore, in FGF2-treated dental pulp cells to be used as a transplant material for treatment of nerve damage, a property that serves as an index of the effect of nerve damage treatment has not been identified.
 すなわち、本発明は、以下のとおり:
 本発明は、一態様として、
〔1〕GABRB1遺伝子が発現しており、かつ、活性酸素耐性を有する歯髄細胞を含む、神経損傷の治療用移植材に関するものである。
 また、本発明の神経損傷の治療用移植材は、一実施の形態において、
〔2〕上記〔1〕に記載の神経損傷の治療用移植材であって、
 前記歯髄細胞が、FGF2処理されたものであることを特徴とする。
 また、本発明の神経損傷の治療用移植材は、一実施の形態において、
〔3〕上記〔2〕に記載の神経損傷の治療用移植材であって、
 前記FGF2処理された歯髄細胞が、FGF2処理していない歯髄細胞と比較して、増加したGABRB1遺伝子の発現量を有するものであることを特徴とする。
That is, the present invention is as follows:
The present invention, as one aspect,
[1] The present invention relates to a transplant material for treating nerve damage, which includes dental pulp cells expressing GABRB1 gene and having resistance to active oxygen.
Moreover, the transplant material for treatment of nerve injury of the present invention is, in one embodiment,
[2] A transplant for treatment of nerve damage according to [1] above,
The dental pulp cells are those treated with FGF2.
Moreover, the transplant material for treatment of nerve injury of the present invention is, in one embodiment,
[3] The graft material for treatment of nerve injury according to [2] above,
The FGF2-treated dental pulp cells are characterized by having an increased GABRB1 gene expression level as compared with non-FGF2-treated dental pulp cells.
 また、本発明の神経損傷の治療用移植材は、一実施の形態において、
〔4〕上記〔1〕~〔3〕のいずれかに記載の神経損傷の治療用移植材であって、
 前記歯髄細胞が、MMP1遺伝子、DRD2遺伝子、ABCA6遺伝子、TMEM100遺伝子、THBD遺伝子、NTSR1遺伝子、および、SCG2遺伝子からなる群より選択される少なくとも一つの遺伝子をさらに発現していることを特徴とする。
 また、本発明の神経損傷の治療用移植材は、一実施の形態において、
〔5〕上記〔1〕~〔4〕のいずれかに記載の神経損傷の治療用移植材であって、
 前記FGF2処理が、FGF2を5ng/ml以上の濃度で含む培地を用いた培養であることを特徴とする。
 また、本発明の神経損傷の治療用移植材は、一実施の形態において、
〔6〕上記〔5〕に記載の神経損傷の治療用移植材であって、
 前記FGF2を含む培地を用いた培養が、少なくとも6日間行われることを特徴とする。
Moreover, the transplant material for treatment of nerve injury of the present invention is, in one embodiment,
[4] A transplant for treating nerve damage according to any one of [1] to [3] above,
The dental pulp cells further express at least one gene selected from the group consisting of MMP1 gene, DRD2 gene, ABCA6 gene, TMEM100 gene, THBD gene, NTSR1 gene, and SCG2 gene.
Moreover, the transplant material for treatment of nerve injury of the present invention is, in one embodiment,
[5] The transplant for treatment of nerve damage according to any one of [1] to [4] above,
The FGF2 treatment is characterized by culturing using a medium containing FGF2 at a concentration of 5 ng / ml or more.
Moreover, the transplant material for treatment of nerve injury of the present invention is, in one embodiment,
[6] The transplant material for treatment of nerve damage according to [5] above,
The culture using the medium containing FGF2 is performed for at least 6 days.
 また、本発明の神経損傷の治療用移植材は、一実施の形態において、
〔7〕上記〔3〕に記載の神経損傷の治療用移植材であって、
 前記FGF2処理していない歯髄細胞と比較して、増加したGABRB1遺伝子の発現量が10倍以上であることを特徴とする。
 また、本発明の神経損傷の治療用移植材は、一実施の形態において、
〔8〕上記〔1〕~〔7〕のいずれかに記載の神経損傷の移植用治療材であって、
 前記神経損傷が、脊髄損傷、脳梗塞、脳内出血、くも膜下出血、脊髄出血、椎間板ヘルニアによる神経の圧迫損傷、坐骨神経痛、又は、糖尿病による末梢神経損傷であることを特徴とする。
 また、本発明の神経損傷の治療用移植材は、一実施の形態において、
〔9〕活性酸素除去剤と併用して神経損傷の治療に用いられる、上記〔1〕~〔8〕のいずれかに記載の治療用移植材であることを特徴とする。
 また、本発明の神経損傷の治療用移植材は、一実施の形態において、
〔10〕上記〔9〕に記載の神経損傷の治療用移植材であって、
 前記活性酸素除去剤が、エダラボン、ビタミンC、Nrf2誘導剤、および、グルタチオン活性誘導剤からなる群より選択される少なくとも一つの活性酸素除去剤であることを特徴とする。
Moreover, the transplant material for treatment of nerve injury of the present invention is, in one embodiment,
[7] The graft material for treatment of nerve injury according to [3] above,
The increased expression level of the GABRB1 gene is 10 times or more compared with the dental pulp cells not treated with FGF2.
Moreover, the transplant material for treatment of nerve injury of the present invention is, in one embodiment,
[8] The therapeutic agent for transplantation of nerve damage according to any one of [1] to [7],
The nerve injury is spinal cord injury, cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, spinal cord hemorrhage, nerve compression injury due to herniated disc, sciatica, or peripheral nerve injury caused by diabetes.
Moreover, the transplant material for treatment of nerve injury of the present invention is, in one embodiment,
[9] The therapeutic graft material according to any one of the above [1] to [8], which is used in combination with an active oxygen scavenger for the treatment of nerve damage.
Moreover, the transplant material for treatment of nerve injury of the present invention is, in one embodiment,
[10] The graft material for treatment of nerve damage according to [9] above,
The active oxygen scavenger is at least one active oxygen scavenger selected from the group consisting of edaravone, vitamin C, Nrf2 inducer, and glutathione activity inducer.
 また、本発明は、別の態様において、
〔11〕神経損傷を治療する方法であって、
 上記〔1〕~〔8〕のいずれか一つに記載の神経損傷の治療用移植材を、神経損傷部位に移植する工程を含む、治療方法に関する。
 また、本発明の神経損傷を治療する方法は、一実施の形態において、
〔12〕活性酸素除去剤と併用して、下記i)またはii)の神経損傷の治療用移植材を、神経損傷部位に移植する工程を含む、治療方法に関する:
i)請求項1~8のいずれか一項に記載の神経損傷の治療用移植材、または、
ii)FGF2処理によりGABRB1遺伝子の発現量が亢進する歯髄細胞を含む神経損傷の治療用移植材。
In another aspect, the present invention provides:
[11] A method for treating nerve damage,
The present invention relates to a treatment method comprising a step of transplanting the nerve injury treatment transplant material according to any one of the above [1] to [8] to a nerve damage site.
In one embodiment, the method for treating nerve injury of the present invention is as follows.
[12] The present invention relates to a treatment method including a step of transplanting a nerve injury treatment transplant material of the following i) or ii) in combination with an active oxygen scavenger to a nerve injury site:
i) the graft material for treatment of nerve injury according to any one of claims 1 to 8, or
ii) A transplant for treatment of nerve damage including dental pulp cells whose GABRB1 gene expression level is enhanced by FGF2 treatment.
 また、本発明は、別の態様において、
〔13〕神経損傷の治療用移植材を製造する方法であって、
 歯髄細胞のGABRB1遺伝子の発現を測定する工程と
 GABRB1遺伝子を発現している歯髄細胞を選択する工程と
を含む、製造方法に関する。
 また、本発明の神経損傷の治療用移植材を製造する方法は、一実施の形態において、
〔14〕上記〔13〕に記載の神経損傷の治療用移植材を製造する方法であって、
 MMP1遺伝子、DRD2遺伝子、ABCA6遺伝子、TMEM100遺伝子、THBD遺伝子、NTSR1遺伝子、および、SCG2遺伝子からなる群より選択される少なくとも一つの遺伝子をさらに測定し、前記群より選択される少なくとも一つの遺伝子を発現している歯髄細胞を選択する工程をさらに含むことを特徴とする。
 また、本発明の神経損傷の治療用移植材を製造する方法は、一実施の形態において、
〔15〕上記〔13〕または〔14〕に記載の神経損傷の治療用移植材を製造する方法であって、
 前記歯髄細胞の遺伝子発現を測定する工程の前に、前記歯髄細胞を、FGF2を含む培地中で培養する工程を含むことを特徴とする。
In another aspect, the present invention provides:
[13] A method for producing a transplant for treatment of nerve damage,
The present invention relates to a production method including a step of measuring the expression of GABRB1 gene in dental pulp cells and a step of selecting dental pulp cells expressing GABRB1 gene.
In addition, in one embodiment, a method for producing a graft material for treatment of nerve injury according to the present invention includes:
[14] A method for producing an implant for treating nerve damage according to [13] above,
Further measure at least one gene selected from the group consisting of MMP1 gene, DRD2 gene, ABCA6 gene, TMEM100 gene, THBD gene, NTSR1 gene, and SCG2 gene, and express at least one gene selected from the group The method further includes the step of selecting dental pulp cells.
In addition, in one embodiment, a method for producing a graft material for treatment of nerve injury according to the present invention includes:
[15] A method for producing a graft material for treating nerve damage according to [13] or [14] above,
Before the step of measuring the gene expression of the dental pulp cells, the method comprises culturing the dental pulp cells in a medium containing FGF2.
 また、本発明の神経損傷の治療用移植材を製造する方法は、一実施の形態において、
〔16〕上記〔13〕~〔15〕のいずれかに記載の神経損傷の治療用移植材を製造する方法であって、
 前記歯髄細胞を、FGF2を含む培地中で培養する工程における前記培養が、少なくとも6日間行われることを特徴とする。
 また、本発明の神経損傷の治療用移植材を製造する方法は、一実施の形態において、
〔17〕上記〔13〕~〔16〕のいずれかに記載の神経損傷の治療用移植材を製造する方法であって、
 前記GABRB1遺伝子を発現している歯髄細胞を選択する工程が、FGF2非処理の歯髄細胞のGABRB1遺伝子の発現量と比較して10倍以上高いGABRB1遺伝子の発現量を有する歯髄細胞を選択する工程であることを特徴とする。
 また、本発明の神経損傷の治療用移植材を製造する方法は、一実施の形態において、
〔18〕上記〔13〕~〔17〕のいずれかに記載の神経損傷の治療用移植材を製造する方法であって、
 前記神経損傷が、脊髄損傷、脳梗塞、脳内出血、くも膜下出血、脊髄出血、椎間板ヘルニアによる神経の圧迫損傷、坐骨神経痛、又は、糖尿病による末梢神経損傷であることを特徴とする。
In addition, in one embodiment, a method for producing a graft material for treatment of nerve injury according to the present invention includes:
[16] A method for producing an implant for treating nerve damage according to any one of [13] to [15],
The culture in the step of culturing the dental pulp cells in a medium containing FGF2 is performed for at least 6 days.
In addition, in one embodiment, a method for producing a graft material for treatment of nerve injury according to the present invention includes:
[17] A method for producing a graft material for treating nerve damage according to any one of [13] to [16],
The step of selecting dental pulp cells expressing the GABRB1 gene is a step of selecting dental pulp cells having a GABRB1 gene expression level that is 10 times or more higher than the GABRB1 gene expression level of FGF2-untreated dental pulp cells. It is characterized by being.
In addition, in one embodiment, a method for producing a graft material for treatment of nerve injury according to the present invention includes:
[18] A method for producing a graft material for treating nerve damage according to any one of [13] to [17],
The nerve injury is spinal cord injury, cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, spinal cord hemorrhage, nerve compression injury due to herniated disc, sciatica, or peripheral nerve injury caused by diabetes.
 本発明に係る、GABRB1遺伝子を発現しておりかつ、活性酸素耐性を有する歯髄幹細胞を含む脊髄損傷の治療用移植材によれば、細胞移植後の優れた細胞生着性を有し、かつ、脊髄損傷に対する優れた治療効果を有する。 According to the present invention, the graft material for treating spinal cord injury that expresses the GABRB1 gene and includes dental pulp stem cells having resistance to active oxygen has excellent cell engraftment after cell transplantation, and Has an excellent therapeutic effect on spinal cord injury.
BBBスコアの評価基準を示す。The evaluation standard of a BBB score is shown. 図2aは、脊髄損傷モデルラットに対して、FGF2処理していないDP-1株の歯髄細胞もしくはDP31株の歯髄細胞(DP1-FGF2(-)、もしくは、DP31-FGF2(-))の移植、または、PBSを投与した後のBBBスコアによるオープンフィールド運動機能評価結果を示す。エラーバーは標準偏差(± S.D.)を示す。有意差検定は、two-way ANOVAの後、Bonferroni post hoc testにより行った。図2bは、0.6mAの電気刺激時における完全に切断したT10部位を介した電気生理学的活動電位を測定した結果を示すグラフである。Fig. 2a shows the transplantation of dental pulp cells of DP-1 strain or DP31 strain (DP1-FGF2 (-) or DP31-FGF2 (-)) not treated with FGF2 into spinal cord injury model rats. Or the open field motor function evaluation result by BBB score after administering PBS is shown. Error bars indicate standard deviation (± S.D.). The significant difference test was performed by Bonferroni post hoc test after two-way ANOVA. FIG. 2 b is a graph showing the results of measuring the electrophysiological action potential through a completely cut T10 site during an electrical stimulation of 0.6 mA. 図3aは、脊髄損傷モデルラットに対して、FGF2の投与、または、PBSを投与した後のBBBスコアによるオープンフィールド運動機能評価の結果を示す。エラーバーは標準偏差(± S.D.)を示す。有意差検定は、two-way ANOVAの後、Bonferroni post hoc testにより行った。アスタリスクは、PBSを投与した対照区と比較して、統計的に有意であることを示す(*P < 0.05、**P < 0.01)。図3bは、脊髄損傷モデルラットにFGF2を投与した区であって、0.6mAの電気刺激をした際、損傷部位であるT10部位を介した電気生理学的活動電位を測定した結果を示すグラフである。FGF2を投与した4匹のうち1匹においてのみ、損傷部位を越えて活動電位が検出できた。FIG. 3a shows the results of an open field motor function evaluation by BBB score after administration of FGF2 or PBS to a spinal cord injury model rat. Error bars indicate standard deviation (± S.D.). The significant difference test was performed by Bonferroni post hoc test after two-way ANOVA. Asterisks indicate statistical significance compared to the control group administered with PBS (* P <0.05, ** P <0.01). FIG. 3b is a graph showing the results of measuring electrophysiological action potentials through the T10 site, which is the site of injury, when FGF2 was administered to spinal cord injury model rats and 0.6 mA electrical stimulation was performed. . Only in 1 out of 4 animals administered FGF2 could an action potential be detected beyond the injury site. 図4aは、FGF2で処理した異なるドナー由来のヒト歯髄細胞(DP1-FGF2(+)、DP31-FGF2(+)、DP165-FGF2(+)、DP296-FGF2(+)、PBS投与(control))を脊椎損傷モデルラットへ移植した際の、BBBスコアによるオープンフィールド運動機能評価の結果を示す。エラーバーは、標準偏差(± S.D.)を示す。有意差検定は、two-way ANOVAの後、Bonferroni post hoc testにより行った。アスタリスク(*)は、PBSを投与した対照区と比較して、統計的に有意であることを示す(*P < 0.05、**P < 0.01、***P < 0.001)。図4bは、脊髄損傷モデルラットに各ドナー由来のヒト歯髄細胞を移植し、0.6mAの電気刺激をした際、損傷部位であるT10部位を介した電気生理学的活動電位を測定した結果を示すグラフである。図4cは、図4bにおける各区の潜時をプロットしたグラフを示す。有意差検定は、two-way ANOVAの後、Tukey's multiple comparisons testにより行った。アスタリスクは、全ての区と比較して、統計的に有意であることを示す(**P < 0.01)。また、エラーバーは、標準誤差(± SEM)(n=3)を示す。Figure 4a shows human dental pulp cells from different donors treated with FGF2 (DP1-FGF2 (+), DP31-FGF2 (+), DP165-FGF2 (+), DP296-FGF2 (+), PBS administration (control)) The result of the open field motor function evaluation by BBB score when transplanted into a spinal cord injury model rat is shown. Error bars indicate standard deviation (± S.D.). The significant difference test was performed by Bonferroni post hoc test after two-way ANOVA. An asterisk (*) indicates statistical significance compared to the control group administered with PBS (* P * <0.05, ** P <0.01, *** P <0.001). FIG. 4b is a graph showing the results of measuring electrophysiological action potential through the T10 site, which is the damaged site, when human dental pulp cells derived from each donor were transplanted into a spinal cord injury model rat and electrical stimulation of 0.6 mA was performed. It is. FIG. 4c shows a graph plotting the latency of each section in FIG. 4b. Significant difference test was performed by Tukey's multiple comparisons test after two-way ANOVA. Asterisk indicates statistical significance compared to all plots (** P <0.01). Error bars indicate standard error (± SEM) (n = 3). 図5aは、FGF2で処理したヒト歯髄細胞をラットの眼の硝子体腔に4×106個移植し、移植から3週間後の状態の画像を示す。図5bおよびcは、同様に移植から3週間後において、取り出した硝子体腔の割面像を示す。スケールバーは、500μmを示す。FIG. 5a shows an image of a state in which 4 × 10 6 human dental pulp cells treated with FGF2 were transplanted into the vitreous cavity of a rat eye and 3 weeks after the transplantation. Figures 5b and c similarly show a split face image of the removed vitreous cavity three weeks after transplantation. The scale bar indicates 500 μm. 図6は、脊髄損傷モデルラットに対して、DP165-FGF2(+)、または、DP296-FGF2(+)を移植した後8週目における脊髄の矢状面の免疫組織化学染色画像を示す。図6a~cはDP165-FGF2(+)移植区の画像を示し、図6d~fはDP296-FGF2(+)移植区の画像を示す。図6aの画像中央において、GAP-43陽性成長円錐がGFAP陽性細胞の間に検出された。図6bは、図6aにおける1で示すエリアの高倍率画像を示す。図6cは、DP296-FGF2(+)移植区の尾側腹側エリアの高倍率画像を示す。有髄再生軸索が、中央から尾方腹側に観察できた。図6dにおいては、GAP43陽性細胞はほとんど観察されなかった。図6eは、図6dにおける3で示すエリアの高倍率画像を示す。図6fは、DP296-FGF2(+)移植区の尾側腹側エリアの高倍率画像を示す。図6fにおいて、有髄軸索は消失していた。図6中スケールバーは、図6aおよび図6dにおいて500μm、図6b、図6c、図6e、および、図6fにおいて 100μmを示す。図6aおよび図6dにおける矢頭は、損傷部位中央を示す。FIG. 6 shows an immunohistochemically-stained image of the sagittal plane of the spinal cord 8 weeks after transplanting DP165-FGF2 (+) or DP296-FGF2 (+) to a spinal cord injury model rat. 6a to 6c show images of the DP165-FGF2 (+) transplantation area, and FIGS. 6d to 6f show images of the DP296-FGF2 (+) transplantation area. In the center of the image of FIG. 6a, GAP-43 positive growth cones were detected between GFAP positive cells. FIG. 6b shows a high magnification image of the area indicated by 1 in FIG. 6a. FIG. 6 c shows a high magnification image of the caudal ventral area of the DP296-FGF2 (+) transplantation zone. Myelinated regeneration axons could be observed from the center to the caudal ventral side. In FIG. 6d, almost no GAP43 positive cells were observed. FIG. 6e shows a high magnification image of the area indicated by 3 in FIG. 6d. FIG. 6f shows a high-magnification image of the caudal ventral area of the DP296-FGF2 (+) transplantation zone. In FIG. 6f, myelinated axons have disappeared. The scale bar in FIG. 6 indicates 500 μm in FIGS. 6a and 6d, and 100 μm in FIGS. 6b, 6c, 6e, and 6f. The arrowheads in FIGS. 6a and 6d indicate the center of the injury site. 図7a~cは、脊髄損傷後、PBS投与区(図7a)、DP165移植区(図7b)、DP296移植区(図7c)における8週目の脊髄の蛍光染色画像を示す。スケールバーは、1.0mmを示す。FIGS. 7a to c show images of fluorescence staining of the spinal cord at 8 weeks in the PBS administration group (FIG. 7a), the DP165 transplantation group (FIG. 7b), and the DP296 transplantation group (FIG. 7c) after spinal cord injury. The scale bar indicates 1.0 mm. 図8は、各ドナー由来のヒト歯髄細胞について、FGF2で処理した区、またはFGF2非処理区におけるGABRB1の発現量を示すグラフである。エラーバーは標準偏差(± S.D.)(n=3)を示す。アスタリスク(*)は、それぞれの細胞株におけるFGF2非処理区と比較して、統計的に有意であることを示す(*P < 0.05、**P < 0.01)。FIG. 8 is a graph showing the expression level of GABRB1 in a group treated with FGF2 or a group not treated with FGF2 for human dental pulp cells derived from each donor. Error bars indicate standard deviation (± S.D.) (n = 3). An asterisk (*) indicates statistical significance as compared to the FGF2-untreated group in each cell line (* P <0.05, ** P <0.01). 図9は、各ドナー由来のヒト歯髄細胞について、FGF2で処理した区、またはFGF2非処理区における特定の遺伝子発現をreal-time PCRにより定量化した結果のグラフを示す。エラーバーは標準偏差(± S.D.)(n=3)を示す。アスタリスク(*)は、FGF2非処理区と比較して、統計的に有意であることを示す(*P < 0.05 and ***P < 0.001)。FIG. 9 shows a graph of the results of quantifying the expression of specific genes in a group treated with FGF2 or a group not treated with FGF2 by real-time PCR for human dental pulp cells derived from each donor. Error bars indicate standard deviation (± S.D.) (n = 3). An asterisk (*) indicates statistical significance compared to the FGF2-untreated group (* P <0.05 and *** P <0.001). 図10は、下記実施例3.「FGF2処理によるヒト歯髄細胞の活性酸素に対する耐性への影響」に使用した各ヒト歯髄細胞の培養スケジュールを示す概略図である。FIG. 10 shows Example 3 below. It is the schematic which shows the culture schedule of each human dental pulp cell used for "the influence on the tolerance with respect to the active oxygen of the human dental pulp cell by FGF2 treatment". 図11は、図10に示す各培養スケジュールで培養したヒト歯髄細胞についての活性酸素耐性試験(MTTアッセイ)の結果を示すグラフである。FIG. 11 is a graph showing the results of an active oxygen tolerance test (MTT assay) on human dental pulp cells cultured in each culture schedule shown in FIG. 図12は、図10に示す各培養スケジュールのうちのS/F区、および、F/S区の培養方法であって、さらに培養日数を変化させた際のヒト歯髄細胞の活性酸素耐性試験(MTTアッセイ)の結果を示すグラフである。FIG. 12 is a culture method of the S / F group and the F / S group of the respective culture schedules shown in FIG. 10, and further shows a reactive oxygen tolerance test of human dental pulp cells when the number of culture days is changed ( It is a graph which shows the result of MTT assay. 図13は、FGF2非処理のDP31株ヒト歯髄細胞(DP31-S)の移植とエダラボン投与(毎日)との併用区における脊髄の縦断面の蛍光顕微鏡画像を示す。図13Bおよび図13Cは、図13Aで示す領域を拡大したものである。図13AおよびCにおけるスケールバーは、それぞれ1mmおよび200μmを示す。画像の右側および左側は、それぞれ脊髄の尾側、吻側を示す。FIG. 13 shows a fluorescence microscopic image of the longitudinal section of the spinal cord in a combination of transplantation of FGF2-untreated DP31 strain human dental pulp cells (DP31-S) and edaravone administration (daily). 13B and 13C are enlarged views of the region shown in FIG. 13A. The scale bars in FIGS. 13A and C show 1 mm and 200 μm, respectively. The right and left sides of the image indicate the caudal and rostral sides of the spinal cord, respectively. 図14(A)は、DP31-Sを移植した脊髄損傷モデルラットの脊髄損傷部位であって、細胞移植より7週間後の状態を示す画像(20倍率)を示す。図14(B)は、DP31-Sを移植し、かつ、エダラボン投与を併用した脊髄損傷モデルラットの脊髄損傷部位であって、細胞移植より7週間後の状態を示す画像(20倍率)を示す。図14(C)は、DP31-S移植区およびDP31-S移植とエダラボン併用との区において、脊髄損傷モデルラットへ移植を行った日より7週間後の脊髄損傷部位におけるGFP陽性細胞数(平均値)を示すグラフである。値は平均±標準誤差で示した。有意差検定はStudent’s t-testで行った(*p<0.05)。スケールバーは200μmを示す。FIG. 14 (A) shows an image (20 magnifications) showing the state of the spinal cord injury in the spinal cord injury model rat transplanted with DP31-S and showing the state 7 weeks after cell transplantation. FIG. 14 (B) shows an image (20 magnifications) showing the state of the spinal cord injury in a spinal cord injury model rat transplanted with DP31-S and combined with edaravone, and the state after 7 weeks after cell transplantation. . FIG. 14 (C) shows the number of GFP-positive cells at the site of spinal cord injury (average) 7 weeks after the day of transplantation to the spinal cord injury model rat in the DP31-S transplantation group and the DP31-S transplantation and edaravone combination group. Value). Values are expressed as mean ± standard error. The significant difference test was performed by Student's t-test (* p <0.05). The scale bar indicates 200 μm. 図15は、脊髄損傷モデルラットに対して、歯髄細胞(DP31-S)の移植とともにエダラボンの投与を併用した区(n=5)、歯髄細胞(DP31-S)を移植した区(n=9)、および、エダラボンを毎日投与した区(n=3)におけるBBBスコアの経時的変化を示すグラフである。値は平均±標準誤差で示した。有意差は、有意差検定は、two-way ANOVAの後、Tukey's multiple comparisons testにより行った(アスタリスク(*)は対照区との比較を示す: *p<0.05, **p<0.01, ***p<0.0001, ****p<0.0001。†は、歯髄細胞移植区との比較を示す: ††p<0.01, †††p<0.001 )。FIG. 15 shows a group in which spinal cord injury model rats were transplanted with dental pulp cells (DP31-S) together with administration of edaravone (n = 5) and a group in which dental pulp cells (DP31-S) were transplanted (n = 9). ) And the time course change of the BBB score in the group (n = 3) to which edaravone was administered daily. Values are expressed as mean ± standard error. Significance was determined by two-way ANOVA followed by Tukey's multiple comparisons test (asterisk (*) indicates comparison with control group: * p <0.05, ** p <0.01, ** * p <0.0001, **** p <0.0001. † indicates comparison with pulp cell transplantation: †† p <0.01, ††† p <0.001).
 本発明らは、FGF2処理した歯髄細胞が有する性状であって、とりわけ神経損傷の治療用途に重要な性状として、GABRB1遺伝子が発現している、または活性酸素耐性を有する、あるいはその両方の性質を併せ持つことが重要であることを見出した。
 すなわち、本発明は、一態様において、GABRB1遺伝子が発現している、活性酸素耐性を有している、または、その両方の性質を併せ持つ歯髄細胞を含む、神経損傷の治療用移植材を提供する。なお、好ましい実施形態としては、GABRB1遺伝子が発現しており、かつ、活性酸素耐性を有する歯髄細胞を含む、神経損傷の治療用移植材である。また、本発明の別の形態としては、FGF2処理された歯髄細胞であって、GABRB1遺伝子が発現している、活性酸素耐性を有している、または、その両方の性質を併せ持つ歯髄細胞を含む、神経損傷の治療用移植材を提供する。
The present invention is a property of dental pulp cells treated with FGF2, and is particularly important for the treatment of nerve damage, and is characterized by the expression of the GABRB1 gene and / or resistance to active oxygen. I found it important to have a combination.
That is, in one aspect, the present invention provides a transplant material for treating nerve damage, comprising dental pulp cells in which the GABRB1 gene is expressed, active oxygen tolerance, or both properties are combined. . A preferred embodiment is a transplant material for treating nerve damage, which contains dental pulp cells expressing the GABRB1 gene and having active oxygen resistance. Further, another embodiment of the present invention includes dental pulp cells treated with FGF2, wherein the pulp cells express GABRB1 gene, have active oxygen resistance, or have both properties. Providing a graft for the treatment of nerve damage.
 本明細書において「歯髄細胞」とは、乳歯や永久歯の歯髄組織より採取される細胞であって、歯髄幹細胞を含む細胞をいう。なお、本発明に用いられる歯髄細胞は、神経損傷部位に移植した際に、神経損傷の機能の改善効果を有するものであれば制限されず、生体から直接採取した細胞であっても、培養細胞であってもよく、また、凍結保存後に解凍した細胞であってもよい。なお、好ましい一実施の形態として、本発明の神経損傷の治療用移植材に用いられる歯髄細胞の全て、または、そのほとんどが歯髄幹細胞である形態を挙げることができる。
 よって、本発明は、一実施の形態として、FGF2処理した歯髄幹細胞であって、GABRB1遺伝子が発現している歯髄幹細胞を含む神経損傷の治療用移植材を提供する。その他、本明細書に開示される発明は、好ましい一実施の形態において、上記のように、「歯髄細胞」を「歯髄幹細胞」と読み替えることができる。
In the present specification, the “dental pulp cell” refers to a cell collected from dental pulp tissue of a deciduous tooth or a permanent tooth, and including a dental pulp stem cell. The dental pulp cells used in the present invention are not limited as long as they have an effect of improving the function of nerve damage when transplanted to a nerve damage site, and even cultured cells can be cultured directly from a living body. It may also be a cell thawed after cryopreservation. As a preferred embodiment, there can be mentioned a form in which all or most of the dental pulp cells used in the transplant material for treatment of nerve damage of the present invention are dental pulp stem cells.
Therefore, the present invention provides, as one embodiment, a transplant material for treating nerve damage, which is a dental pulp stem cell treated with FGF2 and containing dental pulp stem cells expressing the GABRB1 gene. In addition, in the preferred embodiment of the invention disclosed in the present specification, “dental pulp cell” can be read as “dental pulp stem cell” as described above.
 本明細書において「歯髄幹細胞」とは、歯髄組織から単離できる組織幹細胞の一種である。組織幹細胞は体性幹細胞とも呼ばれ、あらゆる細胞に分化することができる胚性幹細胞に対して、組織幹細胞は分化できる細胞の種類が限られている。歯髄幹細胞は、例えば、表面抗原STRO-1で特徴付けられる。その他、Nestin、SOX10、SOX11などの神経堤細胞マーカーを指標として歯髄幹細胞を識別することも可能である。 In this specification, “dental pulp stem cell” is a type of tissue stem cell that can be isolated from dental pulp tissue. Tissue stem cells are also referred to as somatic stem cells, and tissue stem cells are limited in the types of cells that can be differentiated from embryonic stem cells that can be differentiated into any cells. Dental pulp stem cells are characterized, for example, by the surface antigen STRO-1. In addition, it is also possible to identify dental pulp stem cells using neural crest cell markers such as Nestin, SOX10, and SOX11 as an index.
 ここで、歯髄細胞を含む「歯髄組織」は、乳歯及び永久歯のいずれからも採取することができ、従来医療廃棄物として処理されてきた乳歯や親知らずなどの抜去歯の歯髄から得ることが可能である。歯髄組織は、歯科医療施設において歯科処置的に抜歯された歯から取り出すことができ、自然抜歯された歯から取り出されてもよい。なお、歯より歯髄組織を取り出す方法は公知であり、当業者は適宜実施することができる。また、歯科処置的に抜歯された歯など、その場ですぐに凍結処理を行うことができない場合には、輸送のため、例えば、α-MEMなどの培地に歯を浸し、低温(例えば、4℃)で保存することができる。歯髄細胞の調製及び保存は、Takeda, T. et al.: J. Dent. Res., 87:676-681, 2008;Tamaoki et al., J Dent Res. 2010 89:773-778などに記載の方法に従って行うことができる。 Here, "pulp tissue" containing pulp cells can be collected from both deciduous teeth and permanent teeth, and can be obtained from pulp of extracted teeth such as deciduous teeth and wisdom teeth that have been treated as medical waste conventionally. is there. The dental pulp tissue can be removed from teeth that have been extracted dentally in a dental facility, and may be extracted from naturally extracted teeth. In addition, the method of taking out pulp tissue from a tooth is well-known, and those skilled in the art can implement suitably. In addition, when a freezing treatment cannot be performed immediately on the spot, such as a tooth extracted in a dental procedure, the tooth is immersed in a medium such as α-MEM for transport, and the temperature is low (for example, 4 ℃). Preparation and storage of dental pulp cells is described in Takeda, T. et al .: J. Dent. Res., 87: 676-681, 2008; Tamaoki et al., J Dent Res. 2010 89: 773-778, etc. Can be done according to the method.
 歯髄組織から歯髄細胞を単離する方法は、具体的には、例えば以下のようにして行うことができる。メスなどを用いて歯髄組織を細断した後、細断した歯髄組織をディスパーゼやコラゲナーゼ、またはそれらの混合酵素液などを用いて酵素処理する。酵素処理の後、血清を含む培養液にて十分に混和した後、セルストレーナーなどを用いて夾雑物を取り除く。その後、遠心処理(例えば、2,000 rpm、4℃)を行い、上清を捨て、培養液を添加することで歯髄組織より歯髄細胞を採取することができる。上記のように、歯髄組織から歯髄細胞を採取する方法は公知であり当業者であれば、適宜、使用する試薬や試験条件を設定して行うことができる。
 また、歯髄組織より単離された歯髄細胞は、その細胞集団中に歯髄幹細胞を含んでいる。本発明において、FGF2処理する際には、歯髄幹細胞を含む歯髄細胞群をそのまま用いてFGF2を含む培地で培養することができる。または、歯髄幹細胞を歯髄組織由来の細胞集団より上記の細胞表面マーカーを用いた公知の方法などにより分離してからFGF2処理を行ってもよい。
 なお、歯髄組織の由来はヒトに限られず、その他の哺乳動物(例えば、マウス、ラット、ウサギ、イヌ、ネコ、サル、ヒツジ、ウシ、ウマ)であってもよい。
Specifically, a method for isolating dental pulp cells from dental pulp tissue can be performed, for example, as follows. After the dental pulp tissue is shredded using a scalpel or the like, the shredded pulp tissue is enzymatically treated using dispase, collagenase, or a mixed enzyme solution thereof. After the enzyme treatment, the mixture is thoroughly mixed with a culture solution containing serum, and then impurities are removed using a cell strainer or the like. Thereafter, centrifugation (for example, 2,000 rpm, 4 ° C.) is performed, the supernatant is discarded, and pulp cells can be collected from the dental pulp tissue by adding a culture solution. As described above, methods for collecting dental pulp cells from dental pulp tissues are known, and those skilled in the art can appropriately perform reagents and test conditions to be used.
In addition, dental pulp cells isolated from dental pulp tissues contain dental pulp stem cells in the cell population. In the present invention, when treated with FGF2, a dental pulp cell group containing dental pulp stem cells can be used as it is and cultured in a medium containing FGF2. Alternatively, the dental pulp stem cells may be separated from the dental pulp tissue-derived cell population by a known method using the above cell surface marker and then treated with FGF2.
The origin of dental pulp tissue is not limited to humans, but may be other mammals (eg, mouse, rat, rabbit, dog, cat, monkey, sheep, cow, horse).
 本発明の神経損傷の治療用移植材に用いられる歯髄幹細胞は、歯髄組織より単離後に、FGF2含有培地による培養によりFGF2処理されたものである。歯髄細胞をFGF2処理することにより、GABRB1遺伝子の発現が亢進した歯髄細胞であって、神経損傷の治療用移植材に適した歯髄細胞を得ることができる。
 ここで、「GABRB1遺伝子」とは、gamma-aminobutyric acid type A receptor beta1 subunitをコードする遺伝子である。
 本明細書において、歯髄細胞が「GABRB1遺伝子が発現している」というとき、FGF2処理していない歯髄細胞のGABRB1遺伝子の発現量と比較して、有意に増加したGABRB1遺伝子の発現量を有していることを意味する。なお、歯髄組織より単離した歯髄細胞は、FGF2存在下で培養するなどの特定の条件を経ない限り、GABRB1遺伝子の発現は亢進していない状態にある。また、歯髄細胞をFGF2存在下で一定の期間培養することにより、GABRB1遺伝子の発現量が亢進する。特に、GABRB1遺伝子はFGF2の存在下において最も発現が亢進される遺伝子である。なお、FGF2処理以外の方法によりGABRB1遺伝子の発現を亢進する場合には、当該方法を適用する前の細胞のGABRB1遺伝子の発現量と比較して、GABRB1遺伝子の発現量が有意に増加していることを意味する。
The dental pulp stem cells used in the transplant material for the treatment of nerve damage of the present invention are those isolated from dental pulp tissues and treated with FGF2 by culturing in a medium containing FGF2. By treating the dental pulp cells with FGF2, it is possible to obtain dental pulp cells that are enhanced in the expression of the GABRB1 gene and that are suitable as a transplant material for treating nerve damage.
Here, the “GABRB1 gene” is a gene encoding gamma-aminobutyric acid type A receptor beta1 subunit.
In the present specification, when the dental pulp cell says “GABRB1 gene is expressed”, it has a significantly increased GABRB1 gene expression level compared to the GABRB1 gene expression level of dental pulp cells not treated with FGF2. Means that In addition, dental pulp cells isolated from dental pulp tissues are in a state where expression of GABRB1 gene is not enhanced unless specific conditions such as culturing in the presence of FGF2 are passed. In addition, the expression level of the GABRB1 gene is enhanced by culturing dental pulp cells in the presence of FGF2 for a certain period. In particular, the GABRB1 gene is the gene whose expression is most enhanced in the presence of FGF2. In addition, when the expression of GABRB1 gene is enhanced by a method other than FGF2 treatment, the expression level of GABRB1 gene is significantly increased compared to the expression level of GABRB1 gene in cells before applying this method. Means that.
 また、本明細書において、「歯髄細胞がGABRB1遺伝子が発現している」というとき、以下に限定されないが、例えば、ヒト歯髄細胞における好ましい一実施の形態としては、当該歯髄細胞のGABRB1遺伝子の発現量が、FGF2処理していない歯髄細胞におけるGABRB1遺伝子の発現量と比較して、約10倍以上、約20倍以上、約100倍以上、より好ましくは約200倍以上の増加した発現量を有するものである。
 由来するドナーの違いにより、歯髄細胞を含む移植用治療材の移植によっても、神経損傷の改善効果が望めない場合があったが、FGF2処理によりGABRB1遺伝子の発現が亢進した歯髄細胞は、神経損傷部位に移植された際に、優れた神経損傷の治療効果を有するものである。
In the present specification, when `` the dental pulp cell expresses the GABRB1 gene '', it is not limited to the following. For example, as a preferred embodiment in human dental pulp cells, the expression of the GABRB1 gene of the dental pulp cell Compared with the expression level of GABRB1 gene in dental pulp cells not treated with FGF2, the amount is about 10 times or more, about 20 times or more, about 100 times or more, more preferably about 200 times or more. Is.
Due to the difference in the origin of the donor, transplantation of a treatment material containing pulp cells could not be expected to improve nerve damage, but pulp cells whose GABRB1 gene expression was enhanced by FGF2 treatment It has an excellent therapeutic effect on nerve damage when transplanted to a site.
 また、本発明の神経損傷の治療用移植材に用いられる歯髄細胞の一実施の形態においては、GABRB1遺伝子に加えて、「MMP1遺伝子、DRD2遺伝子、ABCA6遺伝子、TMEM100遺伝子、THBD遺伝子、SCG2遺伝子、および、NTSR1遺伝子からなる群より選択される少なくとも一つの遺伝子」が発現している。「MMP1遺伝子」とは、Matrix metallopeptidase 1 (interstitial collagenase)をコードする遺伝子である。「DRD2遺伝子」とは、Dopamine receptor D2をコードする遺伝子である。「ABCA6遺伝子」とは、ATP-binding cassette,sub-family A (ABC1) ,member6をコードする遺伝子である。「TMEM100遺伝子」とは、Transmembrane protein 100をコードする遺伝子である。「THBD遺伝子」とは、thrombomodulinをコードする遺伝子である。「NTSR1遺伝子」とは、neurotensin receptor 1である。「SCG遺伝子」とは、Secretogranin IIをコードする遺伝子である。
 本明細書において、「MMP1遺伝子、DRD2遺伝子、ABCA6遺伝子、TMEM100遺伝子、THBD遺伝子、SCG2遺伝子、および、NTSR1遺伝子からなる群より選択される少なくとも一つの遺伝子がさらに発現している」というとき、GABRB1遺伝子の発現に加えて、上記列挙する遺伝子群のうちの一つ、二つ、三つ、四つ、五つ、六つ、または、七つの遺伝子が発現していることをいう。
Further, in one embodiment of dental pulp cells used in the transplant material for treatment of nerve damage of the present invention, in addition to GABRB1 gene, "MMP1 gene, DRD2 gene, ABCA6 gene, TMEM100 gene, THBD gene, SCG2 gene, And at least one gene selected from the group consisting of NTSR1 gene "is expressed. The “MMP1 gene” is a gene encoding Matrix metallopeptidase 1 (interstitial collagenase). “DRD2 gene” is a gene encoding Dopamine receptor D2. The “ABCA6 gene” is a gene encoding ATP-binding cassette, sub-family A (ABC1), member6. The “TMEM100 gene” is a gene encoding Transmembrane protein 100. The “THBD gene” is a gene encoding thrombomodulin. “NTSR1 gene” refers to neurotensin receptor 1. The “SCG gene” is a gene encoding Secretogranin II.
In the present specification, when `` at least one gene selected from the group consisting of MMP1 gene, DRD2 gene, ABCA6 gene, TMEM100 gene, THBD gene, SCG2 gene, and NTSR1 gene is further expressed '' GABRB1 In addition to gene expression, it means that one, two, three, four, five, six, or seven genes of the above-listed genes are expressed.
 GABRB1遺伝子に加えて、上記列挙する遺伝子群のうちの一つの遺伝子が発現している歯髄細胞としては、具体的には、GABRB1遺伝子とMMP1遺伝子とが発現している歯髄細胞、GABRB1遺伝子とDRD2遺伝子とが発現している歯髄細胞、GABRB1遺伝子とABCA6遺伝子遺伝子とが発現している歯髄細胞、GABRB1遺伝子とTMEM100遺伝子遺伝子とが発現している歯髄細胞、GABRB1遺伝子とTHBD遺伝子とが発現している歯髄細胞、GABRB1遺伝子とSCG2遺伝子とが発現している歯髄細胞、GABRB1遺伝子とNTSR1遺伝子とが発現している歯髄細胞である。また、上記列挙する遺伝子群のうちの二つ、三つ、四つ、五つ、六つ、または、七つの遺伝子が発現しているというとき、MMP1遺伝子、DRD2遺伝子、ABCA6遺伝子、TMEM100遺伝子、THBD遺伝子、SCG2遺伝子、および、NTSR1遺伝子とからなる群より選択される二つの遺伝子の組み合わせの全て、三つの遺伝子の組み合わせの全て、四つの遺伝子の組み合わせの全て、五つの遺伝子の組み合わせの全て、六つの遺伝子の組み合わせの全て、または、七つの遺伝子の組み合わせの全てを含む。 In addition to the GABRB1 gene, dental pulp cells expressing one of the genes listed above are specifically pulp cells expressing the GABRB1 gene and MMP1 gene, GABRB1 gene and DRD2 Dental pulp cells in which GABRB1 gene and ABCA6 gene gene are expressed, dental pulp cells in which GABRB1 gene and TMEM100 gene gene are expressed, GABRB1 gene and THBD gene are expressed Dental pulp cells, dental pulp cells expressing GABRB1 gene and SCG2 gene, and dental pulp cells expressing GABRB1 gene and NTSR1 gene. In addition, when two, three, four, five, six, or seven genes of the gene group listed above are expressed, MMP1 gene, DRD2 gene, ABCA6 gene, TMEM100 gene, All combinations of two genes selected from the group consisting of THBD gene, SCG2 gene, and NTSR1 gene, all three gene combinations, all four gene combinations, all five gene combinations, Includes all six gene combinations or all seven gene combinations.
 本明細書において、上記列挙される遺伝子が発現しているというとき、FGF2処理していない歯髄細胞の対応する遺伝子の発現量と比較して、亢進した遺伝子発現を有していることを意味する。好ましくは、FGF2処理していない歯髄細胞の対応する遺伝子の発現量と比較して、有意に増加した遺伝子発現量を有していることを意味する。FGF2処理していない歯髄細胞の対応する遺伝子の発現量と比較して、遺伝子発現量が有意に増加する遺伝子は、MMP1遺伝子、DRD2遺伝子、ABCA6遺伝子、TMEM100遺伝子、THBD遺伝子、および、SCG2遺伝子である。よって、例えば、MMP1遺伝子が発現している歯髄細胞とは、好ましい形態において、FGF2処理していない歯髄細胞におけるMMP1遺伝子の発現量と比較して、有意に増加したMMP1遺伝子の発現量を有する歯髄細胞をいう。なお、GABRB1遺伝子と同様に、MMP1遺伝子、DRD2遺伝子、ABCA6遺伝子、TMEM100遺伝子、THBD遺伝子、NTSR1遺伝子、および、SCG2遺伝子についても、歯髄組織より単離した歯髄細胞においては、FGF2存在下で培養するなどの特定の条件を経ない限り、発現が亢進していない状態にある。また、歯髄細胞をFGF2存在下で一定の期間培養することにより、これらの遺伝子の発現量が亢進する。 In the present specification, when the genes listed above are expressed, it means that they have enhanced gene expression compared to the expression level of the corresponding gene in dental pulp cells not treated with FGF2. . Preferably, it means that the gene expression level is significantly increased compared to the expression level of the corresponding gene in dental pulp cells not treated with FGF2. Compared with the expression level of the corresponding gene in dental pulp cells not treated with FGF2, genes whose expression level is significantly increased are MMP1, DRD2, ABCA6, TMEM100, THBD, and SCG2 genes. is there. Thus, for example, a dental pulp cell in which the MMP1 gene is expressed is, in a preferred form, a pulp having a significantly increased expression level of the MMP1 gene compared to the expression level of the MMP1 gene in dental pulp cells not treated with FGF2. A cell. As with the GABRB1 gene, MMP1 gene, DRD2 gene, ABCA6 gene, TMEM100 gene, THBD gene, NTSR1 gene, and SCG2 gene are also cultured in the presence of FGF2 in dental pulp cells isolated from dental pulp tissue. Unless it passes through specific conditions such as, the expression is not enhanced. Moreover, the expression level of these genes is enhanced by culturing dental pulp cells in the presence of FGF2 for a certain period.
 以下、ヒト歯髄細胞を例に、各遺伝子の発現が亢進している歯髄細胞の好ましい形態について具体的に説明する。しかしながら、本発明の歯髄細胞は、各遺伝子の発現が亢進している限りにおいて、以下に制限されない。
 FGF2処理によりMMP1遺伝子の発現が亢進している歯髄細胞は、好ましい実施の形態において、FGF2処理していない歯髄細胞におけるMMP1遺伝子の発現量と比較して、約145倍以上の増加したMMP1遺伝子の発現量を有する。
 また、FGF2処理によりDRD2遺伝子の発現が亢進している歯髄細胞は、好ましい実施の形態において、FGF2処理していない歯髄細胞におけるDRD2遺伝子の発現量と比較して、約104倍以上の増加したDRD2遺伝子の発現量を有する。
 また、FGF2処理によりABCA6遺伝子の発現が亢進している歯髄細胞は、好ましい実施の形態において、FGF2処理していない歯髄細胞におけるABCA6遺伝子の発現量と比較して、約17倍以上の増加したABCA6遺伝子の発現量を有する。
 また、FGF2処理によりTMEM100遺伝子の発現が亢進している歯髄細胞は、好ましい実施の形態において、FGF2処理していない歯髄細胞におけるTMEM100遺伝子の発現量と比較して、約54倍以上の増加したTMEM100遺伝子の発現量を有する。
 また、FGF2処理によりTHBD遺伝子の発現が亢進している歯髄細胞は、好ましい実施の形態において、FGF2処理していない歯髄細胞におけるTHBD遺伝子の発現量と比較して、約6倍以上の増加したTHBD遺伝子の発現量を有する。
 また、FGF2処理によりNTSR1遺伝子の発現が亢進している歯髄細胞は、好ましい実施の形態において、FGF2処理していない歯髄細胞におけるNTSR1遺伝子の発現量と比較して、8倍以上の増加したSCG2遺伝子の発現量を有する。
 また、FGF2処理によりSCG2遺伝子の発現が亢進している歯髄細胞は、好ましい実施の形態において、FGF2処理していない歯髄細胞におけるSCG2遺伝子の発現量と比較して、約5倍以上の増加したSCG2遺伝子の発現量を有する。 
Hereinafter, the preferred form of the dental pulp cell in which the expression of each gene is enhanced will be specifically described taking human dental pulp cells as an example. However, the dental pulp cells of the present invention are not limited to the following as long as the expression of each gene is enhanced.
In a preferred embodiment, the dental pulp cells whose MMP1 gene expression has been enhanced by FGF2 treatment is an MMP1 gene increased by about 145 times or more compared to the expression level of the MMP1 gene in dental pulp cells not treated with FGF2. Has an expression level.
In addition, in a preferred embodiment, the dental pulp cells whose DRD2 gene expression has been enhanced by FGF2 treatment has an increased DRD2 of about 104 times or more compared to the expression level of the DRD2 gene in dental pulp cells not treated with FGF2. Has gene expression level.
In addition, in preferred embodiments, pulp cells whose ABCA6 gene expression is enhanced by FGF2 treatment are increased by about 17 times or more compared to the expression level of ABCA6 gene in pulp cells not treated with FGF2. Has gene expression level.
In addition, in a preferred embodiment, the dental pulp cells in which the expression of the TMEM100 gene is enhanced by FGF2 treatment is increased by about 54 times or more compared to the expression level of the TMEM100 gene in dental pulp cells not treated with FGF2. Has gene expression level.
In addition, in preferred embodiments, dental pulp cells whose THBD gene expression has been enhanced by FGF2 treatment are increased by about 6 times or more compared to the THBD gene expression level in dental pulp cells not treated with FGF2. Has gene expression level.
In addition, in a preferred embodiment, the dental pulp cells in which the expression of NTSR1 gene is enhanced by FGF2 treatment, the SCG2 gene increased by 8 times or more compared to the expression level of NTSR1 gene in dental pulp cells not treated with FGF2. Expression level.
In addition, in a preferred embodiment, the dental pulp cells whose SCG2 gene expression is enhanced by FGF2 treatment is increased by about 5 times or more compared to the expression level of the SCG2 gene in dental pulp cells not treated with FGF2. Has gene expression level.
 GABRB1遺伝子、MMP1遺伝子、DRD2遺伝子、ABCA6遺伝子、TMEM100遺伝子、THBD遺伝子、NTSR1遺伝子、および、SCG2遺伝子の発現は、公知の方法を用いて測定することができ、例えば、real time PCR、ノーザンブロッティング、in situハイブリダイゼーション、RNAse保護アッセイ、及び逆転写ポリメラーゼ連鎖反応(RT-PCR)などを挙げることができる。
 なお、各遺伝子の発現量について、FGF2非処理の歯髄細胞における遺伝子の発現量を比較する際には、下記実施例2-2.Real-time PCRに記載の方法に準じて行うことが好ましい。
 具体的には、Real-time PCRの反応条件は、各遺伝子に対応するプライマーを用いて、95℃ 30秒を1サイクル、95℃ 5秒、60℃ 30秒を1サイクルとして40サイクル、95℃ 15秒、60℃ 30秒、95℃ 15秒を1サイクルを行う。
 また、これらの遺伝子の発現を指標とすることで、神経損傷の治療用移植材に適した歯髄細胞をスクリーニングすることが可能である。特に、FGF2処理によるGABRB1遺伝子の発現の亢進は、治療効果に相関を示すため、GABRB1遺伝子の発現の亢進を指標とすることが好ましい。
The expression of GABRB1 gene, MMP1 gene, DRD2 gene, ABCA6 gene, TMEM100 gene, THBD gene, NTSR1 gene, and SCG2 gene can be measured using a known method, for example, real time PCR, Northern blotting, Examples include in situ hybridization, RNAse protection assay, and reverse transcription polymerase chain reaction (RT-PCR).
Regarding the expression level of each gene, when comparing the gene expression level in FGF2-untreated dental pulp cells, the following Example 2-2. It is preferable to carry out according to the method described in Real-time PCR.
Specifically, the reaction conditions for Real-time PCR were as follows: using primers corresponding to each gene, 40 cycles at 95 ° C for 30 seconds, 95 ° C for 5 seconds, and 60 ° C for 30 seconds for 1 cycle. One cycle of 15 seconds, 60 ° C 30 seconds, 95 ° C 15 seconds.
Further, by using the expression of these genes as an index, it is possible to screen for dental pulp cells suitable for a transplant material for treating nerve damage. In particular, enhanced expression of the GABRB1 gene by FGF2 treatment is correlated with the therapeutic effect, and therefore, enhanced expression of the GABRB1 gene is preferably used as an index.
 すなわち、本発明には、一態様において、神経損傷の治療用移植材に適した歯髄細胞をスクリーニングする方法であって、FGF2処理した歯髄細胞のGABRB1遺伝子の発現を測定し、GABRB1遺伝子を発現している歯髄細胞を選択することを含む方法が含まれる。また、当該スクリーニング方法における一実施の形態は、GABRB1遺伝子に加えて、MMP1遺伝子、DRD2遺伝子、ABCA6遺伝子、TMEM100遺伝子、THBD遺伝子、NTSR1遺伝子、および、SCG2遺伝子からなる群より選択される少なくとも一つの遺伝子の発現を測定し、測定した遺伝子が発現している歯髄細胞を選択する形態を含む。これらの遺伝子を指標としてFGF2処理した歯髄細胞をスクリーニングすることで、例えば、複数のドナー由来の歯髄細胞の中から、神経損傷の治療効果を有する歯髄細胞を選択することが可能となる。 That is, in one aspect, the present invention is a method for screening dental pulp cells suitable for a transplant material for treatment of nerve damage, wherein the expression of GABRB1 gene in FGF2-treated dental pulp cells is measured and the GABRB1 gene is expressed. A method comprising selecting dental pulp cells that are present. One embodiment of the screening method includes at least one selected from the group consisting of MMP1 gene, DRD2 gene, ABCA6 gene, TMEM100 gene, THBD gene, NTSR1 gene, and SCG2 gene in addition to GABRB1 gene. It includes a form in which gene expression is measured and dental pulp cells expressing the measured gene are selected. By screening dental pulp cells treated with FGF2 using these genes as an index, for example, dental pulp cells having a therapeutic effect on nerve damage can be selected from dental pulp cells derived from a plurality of donors.
 また、本明細書において、「活性酸素耐性を有する」とは、歯髄細胞が活性酸素の毒性に対して耐性を有していることを意味する。特に、歯髄細胞を移植材として用いたときに、移植先の損傷部位の組織において生じた活性酸素の毒性に対して耐性を有することを意味する。本発明の活性酸素耐性を有する歯髄細胞は、活性酸素耐性を有していない歯髄細胞と比較して、移植後の細胞生着率が高く、損傷部位の機能改善に対する優れた効果を有するものである。
 ここで、歯髄細胞の活性酸素耐性は、以下に限定されないが、例えば、歯髄細胞を培養している培地中に過酸化水素(H2O2)を加えて培養し、その後、MTTアッセイなどにより評価することができる。
In the present specification, “having active oxygen resistance” means that dental pulp cells have resistance to the toxicity of active oxygen. In particular, when dental pulp cells are used as a transplant material, it means that they have resistance against the toxicity of active oxygen generated in the tissue of the damaged site of the transplant destination. The dental pulp cells having active oxygen resistance of the present invention have a higher cell engraftment rate after transplantation than dental pulp cells not having active oxygen resistance, and have an excellent effect on improving the function of the damaged site. is there.
Here, the active oxygen tolerance of dental pulp cells is not limited to the following. For example, hydrogen peroxide (H 2 O 2 ) is added to the culture medium in which dental pulp cells are cultured, and then cultured by MTT assay or the like. Can be evaluated.
 本明細書において、「活性酸素耐性を有する歯髄細胞」というとき、好ましい一実施の形態において、以下の条件ア)~カ)のいずれかを満たす:
ア)0.5mM過酸化水素を含む10% FCS-αMEM培地中で24時間培養した時点の歯髄細胞の生細胞が、過酸化水素を添加していない10% FCS-αMEM培地中で24時間培養した歯髄細胞の生細胞数に対して、約50%以上、好ましくは約60%以上、より好ましくは約70%以上、さらに好ましくは約80%以上の割合で生存している、
イ)0.6mM過酸化水素を含む10% FCS-αMEM培地中で24時間培養した時点の歯髄細胞の生細胞が、過酸化水素を添加していない10% FCS-αMEM培地中で24時間培養した歯髄細胞の生細胞数に対して、約40%以上、より好ましくは約50%以上、さらに好ましくは約60%以上の割合で生存している、
ウ)0.7mM過酸化水素を含む10% FCS-αMEM培地中で24時間培養した時点の歯髄細胞の生細胞が、過酸化水素を添加していない10% FCS-αMEM培地中で24時間培養した歯髄細胞の生細胞数に対して、約15%以上、より好ましくは約20%以上、さらに好ましくは約25%以上の割合で生存している、
エ)0.5mM過酸化水素を含む10% FCS-αMEM培地中で24時間培養した時点の歯髄細胞の生細胞が、FGF2処理していない歯髄細胞を同様の条件で24時間培養した時点の生細胞数に対して、約3倍以上、より好ましくは約4倍以上、さらに好ましくは約5倍以上の割合で生存している、
オ)0.6mM過酸化水素を含む10% FCS-αMEM培地中で24時間培養した時点の歯髄細胞の生細胞が、FGF2処理していない歯髄細胞を同様の条件で24時間培養した時点の生細胞数に対して、約3倍以上、より好ましくは約4倍以上、さらに好ましくは約5倍以上の割合で生存している、
カ)0.7mM過酸化水素を含む10% FCS-αMEM培地中で24時間培養した時点の歯髄細胞の生細胞が、FGF2処理していない歯髄細胞を同様の条件で24時間培養した時点の生細胞数に対して、約3倍以上、より好ましくは約4倍以上、さらに好ましくは約5倍以上の割合で生存している。
In the present specification, when referring to “dental pulp cells having resistance to active oxygen”, in one preferred embodiment, any one of the following conditions a) to f) is satisfied:
A) Living dental pulp cells cultured in 10% FCS-αMEM medium containing 0.5 mM hydrogen peroxide for 24 hours were cultured in 10% FCS-αMEM medium without addition of hydrogen peroxide for 24 hours. Surviving at a rate of about 50% or more, preferably about 60% or more, more preferably about 70% or more, and further preferably about 80% or more with respect to the number of living dental pulp cells.
B) Living dental pulp cells cultured in 10% FCS-αMEM medium containing 0.6 mM hydrogen peroxide for 24 hours were cultured in 10% FCS-αMEM medium without addition of hydrogen peroxide for 24 hours. Alive at a rate of about 40% or more, more preferably about 50% or more, and still more preferably about 60% or more with respect to the number of living dental pulp cells.
C) Living dental pulp cells cultured in 10% FCS-αMEM medium containing 0.7 mM hydrogen peroxide for 24 hours were cultured in 10% FCS-αMEM medium without addition of hydrogen peroxide for 24 hours. Alive at a rate of about 15% or more, more preferably about 20% or more, and even more preferably about 25% or more with respect to the number of living dental pulp cells.
D) The living cells of dental pulp cells when cultured in 10% FCS-αMEM medium containing 0.5 mM hydrogen peroxide for 24 hours are the living cells when dental pulp cells not treated with FGF2 are cultured under the same conditions for 24 hours. About 3 times or more, more preferably about 4 times or more, more preferably about 5 times or more of the number,
E) Living dental pulp cells when cultured in 10% FCS-αMEM medium containing 0.6 mM hydrogen peroxide for 24 hours are living cells when dental pulp cells not treated with FGF2 are cultured under the same conditions for 24 hours. About 3 times or more, more preferably about 4 times or more, more preferably about 5 times or more of the number,
F) Living dental pulp cells when cultured in 10% FCS-αMEM medium containing 0.7 mM hydrogen peroxide for 24 hours are living cells when dental pulp cells not treated with FGF2 are cultured under the same conditions for 24 hours. It survives at a rate of about 3 times or more, more preferably about 4 times or more, and still more preferably about 5 times or more of the number.
 歯髄細胞を神経損傷の治療用移植材として用いるためにFGF2処理する方法は、例えば、国際公開第2014/185470号に記載の方法に従って行うことができる。以下の実施形態に限定されないが、具体的には、例えば、歯髄組織より単離した歯髄細胞を、FGF2を含む培地中で一定期間培養することによりFGF2処理を行う。 The method of treating FGF2 in order to use dental pulp cells as a transplant for treatment of nerve damage can be performed, for example, according to the method described in International Publication No. 2014/185470. Although not limited to the following embodiments, specifically, for example, dental pulp cells isolated from dental pulp tissue are cultured in a medium containing FGF2 for a certain period of time to perform FGF2 treatment.
 ここで、本明細書において、「FGF2を含む培地」とは、例えば、血清を含む基本培地に、成長因子としてFGF2が加えられた培地;血清を含まない基本培地に、FGF2が加えられた培地;血清を含む基本培地に、FGF2が加えられた培地;間葉系幹細胞培養用培地として市販される培地に、成長因子としてFGF2が加えられた培地;間葉系幹細胞培養用培地として市販される培地に、FGF2が加えられた培地が挙げられる。 As used herein, the term “medium containing FGF2” refers to, for example, a medium in which FGF2 is added as a growth factor to a basic medium containing serum; a medium in which FGF2 is added to a basic medium not containing serum Medium supplemented with FGF2 in a basic medium containing serum; medium in which FGF2 is added as a growth factor to a medium marketed as a medium for mesenchymal stem cell culture; marketed as a medium for mesenchymal stem cell culture Examples of the medium include a medium in which FGF2 is added.
 また、本明細書において、FGF2は、塩基性の線維芽細胞増殖因子(fibroblast growth factor;FGF)を意味し、bFGF又はHBGF-2とも呼ばれる。
 FGF2は、市販のものを適宜希釈等して使用することができる。移植材に用いられるため、適当なメンブレンでろ過され、細菌、真菌、マイコプラズマ等の陰性が確認されたものが好ましい。FGF2の濃度は、得られる移植材に十分な脊髄損傷治療効果がある限り特に限定されないが、例えば5ng/ml以上、7ng/ml以上、10ng/ml以上とすることができる。好ましい一実施形態としては、10ng/mlの濃度でFGF2が添加された培地を用いて歯髄細胞を培養する方法である。また、FGF2処理は、GARBR1遺伝子の発現が亢進する限りにおいて以下に限定されないが、毎日培地にFGF2を添加する実施形態が好ましい。
Moreover, in this specification, FGF2 means a basic fibroblast growth factor (FGF), and is also called bFGF or HBGF-2.
FGF2 can be used by appropriately diluting a commercially available one. Since it is used as a transplant, it is preferably filtered through an appropriate membrane and confirmed to be negative for bacteria, fungi, mycoplasma and the like. The concentration of FGF2 is not particularly limited as long as the obtained transplantation material has a sufficient effect of treating spinal cord injury, and can be, for example, 5 ng / ml or more, 7 ng / ml or more, 10 ng / ml or more. A preferred embodiment is a method of culturing dental pulp cells using a medium supplemented with FGF2 at a concentration of 10 ng / ml. The treatment with FGF2 is not limited to the following as long as the expression of the GARBR1 gene is enhanced, but an embodiment in which FGF2 is added to the medium every day is preferable.
 本明細書において「基本培地」とは、低分子量の既知成分のみの培地をいい、基本培地の非限定的な例として、BME(Basal medium Eagle's)、MEM(Minimum essential medium)、DMEM(Dulbecco's modified Eagle's medium)などのイーグル培地、RPMI1630、RPMI1640などRPMI(Roswell Park Memorial Institue)培地、フィッシャー培地(Fischer's medium)、F10培地、F12培地などのハム培地(Ham's medium)、MCDB104、107、131、151、153、170、202などのMCDB培地、RITC80-7培地が知られており、適宜選択することができる。 In this specification, “basic medium” refers to a medium containing only known components of low molecular weight. Non-limiting examples of basic medium include BME (Basal medium Eagle's), MEM (Minimum essential medium), DMEM (Dulbecco's modified) Eagle's medium such as Eagle's medium, RPMI1630, RPMI1640, RPMI medium such as Roswell'Park'Memorial'Institue, Fischer's medium, F10 medium, F12 medium, Ham's'medium, MCDB104, 107, 131, 151, MCDB media such as 153, 170, 202, and RITC80-7 media are known and can be appropriately selected.
 本明細書において「間葉系幹細胞培養用培地として市販される培地」は、分化誘導することなく、分化能を維持した状態で間葉系幹細胞を培養し増殖させるための市販の培地を意味し、例えば、MSCGM培地(LONZA社)、間葉系幹細胞増殖培地(タカラバイオ株式会社)、間葉系幹細胞増殖培地DXF(タカラバイオ株式会社)、Stemline(登録商標)間葉系幹細胞増殖培地(Sigma-Aldrich社)、MF-medium(商標)間葉系幹細胞増殖培地(東洋紡ライフサイエンス)、BD Mosaic(商標)ヒト間葉系幹細胞用無血清培養キット(BDバイオサイエンス)が挙げられるが、これらに限定されない。 In the present specification, “medium marketed as a medium for culturing mesenchymal stem cells” means a commercially available medium for culturing and proliferating mesenchymal stem cells while maintaining differentiation ability without inducing differentiation. For example, MSCGM medium (LONZA), mesenchymal stem cell growth medium (Takara Bio Inc.), mesenchymal stem cell growth medium DXF (Takara Bio Inc.), Stemline (registered trademark) mesenchymal stem cell growth medium (Sigma) -Aldrich), MF-medium (trademark) mesenchymal stem cell growth medium (Toyobo Life Science), BD Mosaic (trademark) serum-free culture kit for human mesenchymal stem cells (BD bioscience). It is not limited.
 本明細書において「血清」は、細胞培養に用いられる血清であれば制限されず、例えば、ヒト血清、ウシ胎児血清、ウマ血清などが挙げられる。本発明に係る治療用移植材がヒトに移植される場合は、ヒト血清であることが好ましい。血清は、培地中、15重量%未満、13重量%未満、10重量%未満、8重量%未満、5重量%未満等であることが好ましい。 In the present specification, “serum” is not limited as long as it is serum used for cell culture, and examples thereof include human serum, fetal bovine serum, and horse serum. When the therapeutic transplant according to the present invention is transplanted into a human, it is preferably human serum. The serum is preferably less than 15% by weight, less than 13% by weight, less than 10% by weight, less than 8% by weight, less than 5% by weight, etc. in the medium.
 また、FGF2を含む培地を用いた歯髄細胞の培養工程における一実施の形態としては、「FGF2以外の成長因子を実質的に含まない培地」を用いることができる。本明細書において「FGF2以外の成長因子を実質的に含まない培地」とは、意図的に添加する成長因子がFGF2のみであることを意味する。 Also, as one embodiment in the pulp cell culture step using a medium containing FGF2, a “medium substantially free of growth factors other than FGF2” can be used. In the present specification, “medium substantially free of growth factors other than FGF2” means that the only growth factor that is intentionally added is FGF2.
 本明細書において「成長因子」は、成長因子又は増殖因子と呼ばれる各種タンパク質を意味し、例えば、上皮成長因子(EGF)、線維芽細胞成長因子(FGF)、酸性線維芽細胞成長因子(aFGF又はFGF1)、塩基性線維芽細胞成長因子(bFGF又はFGF2)、血小板由来成長因子(PDGF)、神経成長因子(NGF)、インスリン様成長因子(IGF)、肝細胞増殖因子(HGF)、トランスフォーミング成長因子(TGF)、血管内皮成長因子(VEGF)、ケラチノサイト成長因子(KGF)インターロイキン類などが挙げられる。 As used herein, “growth factor” means various proteins called growth factors or growth factors, such as epidermal growth factor (EGF), fibroblast growth factor (FGF), acidic fibroblast growth factor (aFGF or FGF1), basic fibroblast growth factor (bFGF or FGF2), platelet-derived growth factor (PDGF), nerve growth factor (NGF), insulin-like growth factor (IGF), hepatocyte growth factor (HGF), transforming growth Factor (TGF), vascular endothelial growth factor (VEGF), keratinocyte growth factor (KGF) interleukins and the like.
 本発明に係る脊髄損傷治療用移植材の製造方法で用いる培地には、その他、細胞の培養に有用な物質を適宜添加することができる。かかる物質として、例えば、pHを安定させるための緩衝剤(HEPESなど)、pH指示薬のフェノールレッド、抗生物質(ペニシリンG、ストレプトマイシン、アンフォテリシンB、ゲンタマイシン、カナマイシン、アンピシリン、ミノマイシン、ゲンタシン等)、アミノ酸、ビタミン、脂質、糖質、核酸、無機塩、有機酸塩、ミネラル、等が挙げられるがこれらに限定されない。 In addition, substances useful for cell culture can be appropriately added to the medium used in the method for producing a transplant material for treatment of spinal cord injury according to the present invention. Such substances include, for example, a buffer for stabilizing pH (such as HEPES), pH indicator phenol red, antibiotics (penicillin G, streptomycin, amphotericin B, gentamicin, kanamycin, ampicillin, minomycin, gentamicin, etc.), amino acids, Vitamins, lipids, carbohydrates, nucleic acids, inorganic salts, organic acid salts, minerals, and the like are included, but are not limited thereto.
 本発明に係る神経損傷の治療用移植材の製造方法では、上述した培地の中で、歯髄細胞を2回、3回、4回、5回、又は6回以上継代培養することも好ましい。なお、FGF2処理により歯髄細胞に対して活性酸素耐性を付与するには、少なくとも2回以上の継代培養の期間、または、少なくとも6日以上の培養を行うことが好ましい。FGF2処理した歯髄細胞であっても、FGF2を含まない培地中に1~2継代培養する、または、FGF2を含まない培地中に3日程度培養することにより活性酸素耐性を失ってしまう。よって、歯髄細胞が神経損傷の治療効果を奏する限りにおいて制限されないが、FGF2を含む培地を用いた培養は、治療用移植材として歯髄細胞を用いる直前まで行うことがより好ましい。
 培養方法は、FGF2以外の成長因子を実質的に含まない培地で培養すること以外特に限定されず、当業者が、培養する細胞の種類に応じて、種々の条件(温度、湿度、CO2濃度、pH、培地の交換頻度等)を選択することが可能である。
In the method for producing a transplant material for treatment of nerve damage according to the present invention, it is also preferable to subculture the dental pulp cells twice, three times, four times, five times, or six times or more in the above-mentioned medium. In order to confer active oxygen resistance to dental pulp cells by FGF2 treatment, it is preferable to carry out at least two subculture periods or at least 6 days of culture. Even dental pulp cells treated with FGF2 lose resistance to active oxygen by subculturing 1-2 times in a medium not containing FGF2 or by culturing in a medium not containing FGF2 for about 3 days. Therefore, the dental pulp cells are not limited as long as they have a therapeutic effect on nerve damage, but the culture using a medium containing FGF2 is more preferably performed until just before the dental pulp cells are used as a therapeutic transplant.
The culture method is not particularly limited except that it is cultured in a medium that does not substantially contain a growth factor other than FGF2, and those skilled in the art can use various conditions (temperature, humidity, CO 2 concentration) depending on the type of cells to be cultured. PH, medium exchange frequency, etc.) can be selected.
 本発明に係る神経損傷の治療用移植材の製造方法は、上述した培養工程に加え、移植材の製造方法として適切な各種の工程を行うことができる。例えば、培養工程で得られた培養物を、ヒアルロン酸、コラーゲンゲル、フィブリノーゲン、軟寒天、合成ポリマーなどの粘性の高い物質と混合して流動性を調節する工程を行ってもよい。適度な流動性を付与することにより、移植材を損傷部位に定着させることができる。
 コラーゲンゲル、軟寒天、合成ポリマーなどのゲルと混合後、ある程度の期間培養を行って、三次元培養を行ってもよい。
The method for producing a transplant material for treatment of nerve damage according to the present invention can perform various processes suitable as a method for producing a transplant material in addition to the above-described culture process. For example, the step of adjusting the fluidity by mixing the culture obtained in the culturing step with a highly viscous substance such as hyaluronic acid, collagen gel, fibrinogen, soft agar, or synthetic polymer may be performed. By imparting appropriate fluidity, the transplant can be fixed at the damaged site.
After mixing with a gel such as collagen gel, soft agar, or synthetic polymer, three-dimensional culture may be performed by culturing for a certain period of time.
 本明細書において「神経損傷」は、中枢及び末梢の神経損傷を意味し、具体的には、脊髄損傷、脳梗塞、脳内出血、くも膜下出血、脊髄出血、椎間板ヘルニアによる神経の圧迫損傷、坐骨神経痛、又は糖尿病による末梢神経障害などを含むがこれらに限定されない。本発明の移植材は、移植によって治療効果が得られる限りあらゆる神経損傷に適用することができる。治療効果とは、疾患を治癒させる効果に限定されず、疾患に伴う少なくとも一つの症状を改善する効果や、疾患の進行を阻止又は遅延する効果等を含む。 As used herein, “nerve damage” means central and peripheral nerve damage, specifically spinal cord injury, cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, spinal cord hemorrhage, nerve compression injury due to disc herniation, sciatica It includes, but is not limited to, neuralgia or peripheral neuropathy due to diabetes. The transplant material of the present invention can be applied to any nerve damage as long as a therapeutic effect is obtained by transplantation. The therapeutic effect is not limited to the effect of curing the disease, but includes the effect of improving at least one symptom associated with the disease, the effect of preventing or delaying the progression of the disease, and the like.
 本発明に係る神経損傷の治療用移植材の製造方法で得られた治療用移植材の効果は、例えば神経損傷モデル動物に対して細胞移植をすることにより評価することができる。
 例えば、公知の方法により作製したラット脊髄損傷モデルを用いて評価することができる。具体的には、ラットをイソフルレンなどの麻酔下で、椎弓切除後、脊髄を、外科用メスを用いて完全に切断する。なお、切断部位は、例えば、第10胸椎(Th10)とすることができる。脊髄を切断後に止血処理を行い、次いで、歯髄細胞を含む培地を、シリンジを用いて損傷部位に移植する。なお、例えば、約1×106個の濃度で細胞を含む培地10μlを、損傷部位に移植する。細胞注入後、10分間程度静置し、縫合により傷口をふさぐ。ラットは、手術後に目を覚ますまで、復温用チャンバーに置いてもよい。また、必要に応じて、麻酔の拮抗薬を投与してもよい。手術後は、必要に応じて、抗生物質や免疫抑制剤を投与してもよい。
 例えば、移植より7週間後の時点において、運動機能の改善の評価や歯髄細胞移植部位の免疫組織化学染色による組織修復の評価、電気生理学的手法による損傷部位の機能回復の評価を行い、治療用移植剤の効果を確認する。
The effect of the therapeutic transplant obtained by the method for producing a therapeutic implant for nerve injury according to the present invention can be evaluated by, for example, transplanting cells to a nerve injury model animal.
For example, it can be evaluated using a rat spinal cord injury model prepared by a known method. Specifically, under anesthesia such as isoflurane, after laminectomy, the spinal cord is completely cut using a scalpel. The cutting site can be, for example, the tenth thoracic vertebra (Th10). After the spinal cord is cut, hemostasis is performed, and then the medium containing dental pulp cells is transplanted to the damaged site using a syringe. For example, 10 μl of a medium containing cells at a concentration of about 1 × 10 6 cells is transplanted to the damaged site. After cell injection, leave it for about 10 minutes and close the wound with suture. Rats may be placed in a rewarming chamber until they wake up after surgery. Moreover, you may administer the antagonist of anesthesia as needed. After surgery, antibiotics and immunosuppressants may be administered as necessary.
For example, at the time of 7 weeks after transplantation, evaluation of improvement of motor function, evaluation of tissue repair by immunohistochemical staining of dental pulp cell transplantation site, evaluation of functional recovery of damaged site by electrophysiological method, and treatment Confirm the effect of the transplant.
 運動機能の評価はBBBスコア(Basso DM et al., J Neurotrauma. 1995 Feb;12(1):1-21)により評価することができる。
 また、免疫組織化学染色は、公知の方法により作製した脊髄損傷部位の凍結切片に対して行うことができる。具体的には、麻酔下でラットを経心的に灌流固定し、脊髄組織を採取する。包埋剤を用いて組織を凍結包埋し、クリオスタットを用いて切片を作製する。免疫染色は、成長円錐マーカーである抗growth-associated protein (GAP) 43抗体、アストロサイトマーカーである抗glial fibrillary acidic protein (GFAP)抗体、抗GFP抗体、オリゴデンドロサイトマーカーである抗MBP抗体を用いて組織を染色することができる。神経損傷部位に歯髄細胞を移植した際、損傷部を介して、GAP43陽性細胞の再生軸索が伸長し、その軸索をMBP陽性細胞が取り囲むようにして有髄化した再生軸索が確認できる、または、その再生軸索の足場としてGFAP陽性の内在性アストロサイトが保全されていることが好ましい。
 また、例えば、歯髄細胞を神経損傷部位に移植した際、好ましい形態においては、歯髄細胞移植1週間後において、GAP-43 陽性の脊髄再生線維が歯髄細胞を移植していない対照区よりも3倍以上、好ましくは5倍以上、さらに好ましくは7倍以上認められる。
 また、電気生理学的手法による評価は、脊髄切断部を介した電気的な活動電位を測定することにより行うことができる。例えば、Th10の部位を切断したラットに対しては、麻酔下において、Th10を介して、Th8にて電気刺激を加え、Th13にて活動電位を検出できるように、脊髄に対して微小電極を挿入する。電気刺激としては、例えば、短い矩形波パルス(0.2秒)を2秒ごとに与え、Th13における活動電位の検出および潜時を測定することにより評価することができる。
Motor function can be evaluated by BBB score (Basso DM et al., J Neurotrauma. 1995 Feb; 12 (1): 1-21).
Further, immunohistochemical staining can be performed on a frozen section of a spinal cord injury site prepared by a known method. Specifically, the rat is transcardially fixed under anesthesia and the spinal cord tissue is collected. The tissue is frozen and embedded using an embedding agent, and a section is prepared using a cryostat. Immunostaining uses anti-growth-associated protein (GAP) 43 antibody, a growth cone marker, anti-glial fibrillary acidic protein (GFAP) antibody, an anti-GFP antibody, and anti-MBP antibody, an oligodendrocyte marker. Tissue can be stained. When dental pulp cells are transplanted to the nerve damage site, the regenerated axons of GAP43-positive cells extend through the damaged part, and the regenerated axons that are myelinated can be confirmed by surrounding the axons with MBP-positive cells. Alternatively, it is preferable that GFAP-positive endogenous astrocytes are preserved as a scaffold for the regenerating axon.
In addition, for example, when dental pulp cells are transplanted to the site of nerve injury, in a preferred form, one week after pulp cell transplantation, GAP-43-positive spinal cord regeneration fibers are three times as large as the control group in which no pulp cells are transplanted. Above, preferably 5 times or more, more preferably 7 times or more.
Moreover, the evaluation by an electrophysiological method can be performed by measuring the electrical action potential through the spinal cord amputation part. For example, for rats that have had their Th10 site cut, under anesthesia, a microelectrode is inserted into the spinal cord so that Th8 can be electrically stimulated through Th10 and an action potential can be detected at Th13. To do. The electrical stimulation can be evaluated by, for example, applying a short rectangular wave pulse (0.2 seconds) every 2 seconds, detecting the action potential in Th13, and measuring the latency.
 本発明に係る神経損傷の治療用移植材は、上述した、FGF2処理することによりGABRB1遺伝子が発現している歯髄細胞を含むものである。神経損傷の治療用移植材の製造方法における一実施の形態としては、歯髄細胞を培養していたFGF2を含む培地を、そのまま歯髄細胞を含む状態で治療用移植材とすることもできるし、別の培地や溶液などに歯髄細胞を移してから治療用移植材としてもよい。移植材は、コラーゲンゲル、軟寒天、合成ポリマーなどのゲルを含んでいてもよく、適当なゲル化剤や増粘剤によって粘性を調節してもよい。 The transplant for nerve injury treatment according to the present invention includes the above-described dental pulp cells in which the GABRB1 gene is expressed by FGF2 treatment. As one embodiment of the method for producing a transplant material for treating nerve damage, a medium containing FGF2 in which dental pulp cells have been cultured can be used as a therapeutic transplant material in a state containing dental pulp cells as it is. The dental pulp cells may be transferred to the above-mentioned medium or solution and used as a therapeutic transplant material. The transplant material may contain gel such as collagen gel, soft agar, and synthetic polymer, and the viscosity may be adjusted by a suitable gelling agent or thickener.
 本発明は、上述した神経損傷の治療用移植材を、神経損傷部位に移植する工程を含む、神経損傷の治療方法も包含する。
 神経損傷治療用移植材は、例えば、神経損傷部位に、注射器等によって注入することができる。また、損傷部位を切開して移植材を配置してもよい。移植材が他家細胞を含む場合、シクロスポリンなどの免疫抑制剤を同時に投与してもよい。神経損傷治療効果が得られる限り、他の医薬と併用することも可能である。
 投与量及び投与回数は、当業者が適宜決定することが可能である。
 神経損傷の治療方法の対象はヒトに限られず、その他の哺乳動物(例えば、マウス、ラット、ウサギ、イヌ、ネコ、サル、ヒツジ、ウシ、ウマ)であってもよい。
 本明細書においては、ヒト脊髄損傷の治療方法の例を以下に示すが、治療方法はこれに限られない。
 上述した本発明に係る神経損傷の治療用移植材の製造方法によって製造した治療用移植材、又は、本発明に係る神経損傷の治療用移植材を、麻酔下にあるヒト脊髄損傷患者の脊髄損傷部位に対して注射器等を用いて直接、歯髄細胞の有効量を移植することができる。
The present invention also includes a method for treating nerve damage, including the step of transplanting the above-described graft material for treating nerve damage to a nerve damage site.
The graft material for nerve injury treatment can be injected into the nerve injury site by a syringe or the like, for example. In addition, the transplanted material may be placed by cutting the damaged site. When the transplant material contains allogeneic cells, an immunosuppressant such as cyclosporine may be administered simultaneously. As long as the effect of treating nerve damage is obtained, it can be used in combination with other drugs.
A person skilled in the art can appropriately determine the dose and the number of doses.
The subject of the method for treating nerve damage is not limited to humans, but may be other mammals (eg, mouse, rat, rabbit, dog, cat, monkey, sheep, cow, horse).
In this specification, an example of a method for treating human spinal cord injury is shown below, but the method of treatment is not limited thereto.
Spinal cord injury of a human spinal cord injury patient under anesthesia using the therapeutic graft material manufactured by the above-described method for manufacturing a therapeutic implant for nerve injury according to the present invention or the transplant material for therapeutic nerve injury according to the present invention. An effective amount of dental pulp cells can be directly transplanted to the site using a syringe or the like.
 また、本発明の神経損傷の治療方法は、一実施の形態において、活性酸素除去剤と併用して、上述した神経損傷の治療用移植材を、神経損傷部位に移植する工程を含む方法である。
 本明細書において「活性酸素除去剤」とは、生体内の神経損傷部位に生じる活性酸素による損傷部位または移植した歯髄細胞への障害を防ぐ効果を有するものを意味し、歯髄細胞の移植と同時に、または、併用して投与されるものである。
 このような、活性酸素除去剤としては、生体に投与することができ、損傷部位における活性酸素の障害から移植細胞を保護する効果を有するものであれば特に制限されず、例えば、エダラボン、ビタミンC、Nrf2 誘導剤、グルタチオン活性誘導剤などの公知の活性酸素除去剤を用いることができる。
 活性酸素除去剤の投与方法や投与量、投与回数は、使用する活性酸素除去剤や損傷部位により、当業者であれば適宜設定することができる。
 なお、例えば、活性酸素除去剤として、エダラボンを歯髄細胞の移植と併用して脊髄損傷ラットに投与する場合、以下に限定されないが、細胞移植手術の直後から1日2回1週間にわたりエダラボンを3 mg/kgの用量で腹腔内に投与することができる。なお、エダラボンを脊髄損傷モデルに単独投与するだけでは、優位な機能回復が得られないことが確認されている。
 また、例えば、活性酸素除去剤として、エダラボンを歯髄細胞の移植と併用してヒトに投与する場合、以下に限定されないが、細胞移植手術の直後から1日1回または2回に分けて、2週間にわたりエダラボンを60mg/kgの用量で点滴静注することができる。
In one embodiment, the method for treating nerve damage according to the present invention is a method including the step of transplanting the above-mentioned graft material for treating nerve damage to a nerve damage site in combination with an active oxygen removing agent. .
As used herein, the term “reactive oxygen scavenger” means an agent that has an effect of preventing damage to a damaged site caused by active oxygen occurring at a nerve injury site in a living body or a transplanted dental pulp cell. Or administered in combination.
Such an active oxygen scavenger is not particularly limited as long as it can be administered to a living body and has an effect of protecting transplanted cells from damage of active oxygen at a damaged site. For example, edaravone, vitamin C , Known active oxygen scavengers such as Nrf2 inducer and glutathione activity inducer can be used.
A person skilled in the art can appropriately set the administration method, dose and frequency of administration of the active oxygen scavenger depending on the active oxygen scavenger used and the site of injury.
For example, when edaravone is administered as an active oxygen scavenger to spinal cord injury rats in combination with pulp cell transplantation, it is not limited to the following, but edaravone is administered 3 times twice a day for 1 week immediately after cell transplantation surgery. It can be administered intraperitoneally at a dose of mg / kg. It has been confirmed that edaravone alone cannot be recovered by simply administering it to a spinal cord injury model.
Also, for example, as an active oxygen scavenger, when edaravone is administered to humans in combination with pulp cell transplantation, it is not limited to the following, but it is divided into 1 or 2 times a day immediately after cell transplantation surgery, Edaravone can be infused intravenously at a dose of 60 mg / kg over a week.
 また、本発明の神経損傷の治療方法は、活性酸素除去剤と併用して、神経損傷の治療用移植材を神経損傷部位に移植するものである。活性酸素除去剤は、上述のように、神経損傷部位に生じる活性酸素の細胞障害を防ぐ効果を有するものである。したがって、活性酸素除去剤の投与と併用して移植される歯髄細胞は、必ずしも活性酸素耐性を有している必要はない。すなわち、移植に用いる歯髄細胞は、必ずしも、FGF2処理により活性酸素耐性を得た歯髄細胞でなくても良い。 In addition, the nerve injury treatment method of the present invention is a method of transplanting a nerve injury treatment graft material to a nerve injury site in combination with an active oxygen remover. As described above, the active oxygen scavenger has an effect of preventing cell damage caused by active oxygen occurring at the site of nerve injury. Therefore, the dental pulp cells transplanted in combination with the administration of the active oxygen removing agent do not necessarily need to have active oxygen resistance. That is, the dental pulp cells used for transplantation do not necessarily need to be dental pulp cells that have acquired resistance to active oxygen by FGF2 treatment.
 本発明は、神経損傷の治療用移植材の製造用キットも包含する。かかるキットには、歯髄細胞を培養するための培地またはその成分の全部又は一部と、FGF2と、遺伝子の発現測定用試薬(例えば、GABRB1増幅用のプライマーなど)とが含まれている。また、細胞移植時に用いる活性酸素除去剤が含まれていても良い。歯髄細胞を培養するための培地としては、基本培地又は間葉系幹細胞培養用培地が挙げられる。FGF2は培地と別になっていてもよく、最初から混合されていてもよい。また、培地は、超純水など、実験室に常備される材料はユーザにおいて準備するものとし、それに混合するだけで本発明の培地を調製できるよう、必要な成分の全部又は一部を含むものであってもよい。
 本発明のキットは、実験室での実験に使用されるものであってもよいし、大量培養に用いられるものであってもよい。培養液のほか、培養容器、ウイルスフィルタ、培養容器のコーティング材料、各種試薬、緩衝液、使用説明書等を備えていてもよい。
The present invention also includes a kit for producing an implant for treating nerve damage. Such a kit contains a medium for culturing dental pulp cells or all or part of its components, FGF2, and a gene expression measurement reagent (for example, a primer for amplifying GABRB1). Moreover, the active oxygen removal agent used at the time of cell transplantation may be contained. Examples of the medium for culturing dental pulp cells include a basal medium or a mesenchymal stem cell culture medium. FGF2 may be separated from the medium or may be mixed from the beginning. In addition, the medium should be prepared by the user, such as ultrapure water, which is always available in the laboratory, and contains all or part of the necessary components so that the medium of the present invention can be prepared simply by mixing it. It may be.
The kit of the present invention may be used for experiments in a laboratory or may be used for mass culture. In addition to the culture solution, a culture vessel, a virus filter, a coating material for the culture vessel, various reagents, a buffer solution, and an instruction manual may be provided.
 以下、実施例をあげて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。また、本明細書中に引用する文献の内容は、本明細書に参照として組み込まれる。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. Moreover, the content of the literature referred in this specification is integrated in this specification as a reference.
 下記実施例1および2に記載するヒト歯髄組織の回収、ゲノム/遺伝子解析は、岐阜大学倫理委員会により承認されたものである(承認番号26-116)。全ての動物実験は、岐阜大学の動物実験委員会により承認されたプロトコール(承認番号25-20,25-68,27-83)に厳密に従った。 The recovery and genome / gene analysis of human dental pulp tissue described in Examples 1 and 2 below were approved by the Gifu University Ethics Committee (approval number 26-116). All animal experiments strictly followed a protocol approved by the Animal Experiment Committee at Gifu University (approval numbers 25-20, 25-68, 27-83).
<実施例1.FGF2処理したヒト歯髄細胞による脊髄損傷治療>
 これまでに、歯髄細胞の移植またはFGF2投与のどちらかが一方のみで、完全に脊髄が切断された状態から機能的回復が促進されたことが報告されていた。これらの効果を確かめるために、ラットの脊髄損傷部にヒト歯髄細胞を移植し、電気生理学的テストと組み合わせて後肢の運動機能を評価(BBBスコア)する試験を行った。
 また、ヒト歯髄細胞を調製するために用いた発育段階の歯については、由来するドナーごとにiPS誘導への効率に違いがあることを確認している。本実施例においては、下記表に示す、年齢および性別の異なる4人のドナーより得られたそれぞれのヒト歯髄細胞系統を用いて、移植後の脊髄損傷の改善効果を比較した。
<Example 1. Treatment of spinal cord injury with human dental pulp cells treated with FGF2>
To date, it has been reported that either one of dental pulp cell transplantation or FGF2 administration has promoted functional recovery from a completely cut spinal cord. In order to confirm these effects, human dental pulp cells were transplanted into the spinal cord injury of rats, and a test for evaluating hindlimb motor function (BBB score) in combination with electrophysiological tests was conducted.
In addition, the developmental stage tooth used to prepare human dental pulp cells has been confirmed to have a difference in efficiency for iPS induction for each donor. In this example, the effect of improving spinal cord injury after transplantation was compared using each human dental pulp cell line obtained from four donors with different ages and genders shown in the following table.
Figure JPOXMLDOC01-appb-T000001
 なお、具体的には、下記方法により行った。
Figure JPOXMLDOC01-appb-T000001
Specifically, the following method was used.
<1-1.ヒト歯髄細胞の単離および培養、ならびに、ウイルス感染>
 本発明者らは、岐阜大学医学部付属大学病院にて、およそ300DPC系統を収集した。インフォームドコンセントに基づき提供された患者由来のヒト歯髄細胞は、公知の方法(Gronthos et al., 2000, Takeda et al., 2008)により単離および培養を行った。
 遺伝子導入用のレンチウイルスを、レンチウイルスベクター(EF-1α promoter, Venus) (Supplementary Table S.)およびプラスミド(pLP/VSV-G, pLP1, pLP2) (Miyoshi, H. et al., Development of a self-inactivating lentivirus vector. J. Virol. 1998)を用いて、HEK293FT細胞株中で産生した。なお、レンチウイルスベクターは、EF1αプロモーターの下流にVenus遺伝子を結合した配列を含むものである。
 ヒト歯髄細胞は、37℃、MSCGM培地(Lonza)中、21%O2、5CO2の加湿空気下において培養し、5~6継代時の移植において細胞をトレースするためにレンチウイルスを感染させた。レンチウイルス感染後、ヒト歯髄細胞はα-MEM培地(Sigma)中で培養を行った。ウイルス感染の効率は、FACSを用いて確認した。
 また、FGF2(R&D SYSTEMS)をα-MEM培地中に、毎日10ng/μlの濃度で添加し、FGF2で処理したヒト歯髄細胞は、継代10~13代目において、移植に使用した。FGF2処理した各ドナー由来の歯髄細胞移植区を、それぞれ、DP1-FGF(+)区、DP31-FGF(+)、DP165-FGF(+)、DP296-FGF(+)という。また、FGF2添加に対する対照区として、FGF2を含まないα-MEM培地中で、DP1またはDP31を継代したものを作製し、継代10~13代目において、同様に移植に使用した(それぞれ、DP1-FGF(-)区、または、DP31-FGF(-)区という)。
<1-1. Isolation and culture of human dental pulp cells and viral infection>
The inventors collected approximately 300 DPC strains at Gifu University Medical University Hospital. Human dental pulp cells derived from patients provided based on informed consent were isolated and cultured by a known method (Gronthos et al., 2000, Takeda et al., 2008).
Lentiviruses for gene transfer are classified into lentiviral vectors (EF-1α promoter, Venus) (Supplementary Table S.) and plasmids (pLP / VSV-G, pLP1, pLP2) (Miyoshi, H. et al., Development of a self-inactivating lentivirus vector. J. Virol. 1998) and produced in HEK293FT cell line. The lentiviral vector contains a sequence in which a Venus gene is bound downstream of the EF1α promoter.
Human dental pulp cells were cultured in MSCGM medium (Lonza) at 37 ° C. under humidified air of 21% O 2 , 5CO 2 and infected with lentivirus to trace the cells in transplants at passages 5-6. It was. After lentiviral infection, human dental pulp cells were cultured in α-MEM medium (Sigma). The efficiency of virus infection was confirmed using FACS.
In addition, FGF2 (R & D SYSTEMS) was added to α-MEM medium at a concentration of 10 ng / μl every day, and human dental pulp cells treated with FGF2 were used for transplantation at passage 10-13. The FGF2-treated dental pulp cells transplanted from each donor are referred to as DP1-FGF (+), DP31-FGF (+), DP165-FGF (+), and DP296-FGF (+), respectively. In addition, as a control group for the addition of FGF2, DP1 or DP31 passages were produced in α-MEM medium not containing FGF2, and were similarly used for transplantation at passages 10 to 13 (DP1 respectively). -FGF (-) group or DP31-FGF (-) group).
<1-2.動物および移植手術>
 雌のウィスター系成体ラット(148g~168g)を日本エスエルシー株式会社より購入した。ラットは、1.5~2%イソフルレン(TK-7、株式会社バイオマシナリー、日本)の吸入により適当な麻酔下におき、椎弓切除後、脊髄の第10胸椎(Th10)を、外科用メス(Surgical blade stainless steel no.11 mini, kai medical, Japan)を用いて正確にゆっくりと2度切断することにより、完全に脊髄を切断した。また、切断は目視により確認した。止血処理後、10μl培地中に約1×106個の濃度で細胞を含む培地を、ハミルトンシリンジ(Sigma-Aldrich, Missouri, USA)を用いて注意深く、ゆっくりと損傷部位に注入した。細胞注入後、10分間接触しないように放置した。10分間の放置後、縫合により傷口をふさいだ。また、対照区のラットには、細胞を注入する代わりに、脊髄切断部位に同量のPBSを添加し、同様に10分間の静置後、縫合により傷口をふさいだ(PBS投与区)。ラットは、手術後に目を覚ますまで、復温用チャンバーに置いた。
<1-2. Animals and transplant surgery>
Female Wistar adult rats (148 to 168 g) were purchased from Nippon SLC. Rats were placed under appropriate anesthesia by inhalation of 1.5-2% isoflurane (TK-7, Biomachinery, Japan). After laminectomy, the tenth thoracic vertebra (Th10) of the spinal cord was replaced with a surgical scalpel (Surgical). The spinal cord was completely cut by cutting twice slowly and precisely using a blade stainless steel no. 11 mini, kai medical, Japan. Moreover, the cutting | disconnection was confirmed visually. After hemostasis treatment, medium containing cells at a concentration of about 1 × 10 6 in 10 μl medium was carefully and slowly injected into the injury site using a Hamilton syringe (Sigma-Aldrich, Missouri, USA). After cell injection, the cells were left out of contact for 10 minutes. After leaving for 10 minutes, the wound was closed with sutures. In addition, instead of injecting the cells, the same amount of PBS was added to the spinal cord amputation site in the control group of rats, and after standing for 10 minutes, the wound was closed with sutures (PBS administration group). Rats were placed in a rewarming chamber until they woke up after surgery.
 その後、抗生物質(sulbactam/ampicillin, SANDOZ, 10 mg/kg body weight)を1週間の間毎日投与した。また、ヒト歯髄細胞を移植したラットと対照区のラット(PBS投与区)に対して、免疫抑制剤((cyclosporine, Novartis, 10mg/kg body weight)を手術前日から手術後毎日投与した。全ての実験動物は、長いノズルを備えた特注の給水設備により容易に給水を行うことができ、かつ、常時食餌できる環境下で飼育し、かつ、26℃、65%湿度、1日12時間の照明の条件とした。 Thereafter, antibiotics (sulbactam / ampicillin, SANDOZ, 10 mg / kg weight) were administered daily for one week. In addition, immunosuppressants ((cyclosporine, Novartis, 10 mg / kg body weight) were administered daily from the day before surgery to the rats transplanted with human dental pulp cells and control rats (PBS-treated group). Laboratory animals can be easily supplied with a custom-made water supply facility equipped with a long nozzle, and are kept in an environment where food can be consumed at all times, and at 26 ° C, 65% humidity, with 12 hours of light per day. Condition.
<1-3.ラット硝子体腔へのヒト歯髄細胞の移植>
 FGF2で処理したヒト歯髄細胞の発がん性を調べるために、上記1-1.に記載の方法によりFGF2含有培地で培養したヒト歯髄細胞(DP31)を、ラット硝子体腔に移植した。
 具体的には、1.5~2%イソフルレンによりラットを麻酔下におき、ラットの角膜を4%オキシブプロカイン(Benoxil, Santen)によりさらに麻酔した。角膜に対して、27ゲージの皮下注射針(terumo, USA)を用いて穴を開けた。その後、皮下注射針を取り除き、30ゲージの鈍針(Hamilton Company, Reno, NV, USA)を、作成した穴を通じて、かつ、光彩と水晶体を避けて、前房へ挿入した。針は、硝子体腔を通じて網膜表面に向けて挿入を進め、針が網膜表面に届いた後、FGF2で処理したDP31を含むDMEM培地10μlを硝子体腔内へ注入した。細胞の注入後、オフロキサシン点眼液(Tarivid topical solution, Santen)1滴を、目に点眼した。本試験には6匹のラットを用い、そのうち2匹は、0.5 × 106の細胞を移植し、残りの4匹は4 × 106の細胞を移植した。全てのラットは、免疫抑制剤((cyclosporine, Novartis, 10mg/kg body weight)を手術前日から手術後毎日投与した。
<1-3. Transplantation of human dental pulp cells into rat vitreous cavity>
In order to examine the carcinogenicity of human dental pulp cells treated with FGF2, 1-1. Human dental pulp cells (DP31) cultured in a medium containing FGF2 by the method described in 1) were transplanted into the rat vitreous cavity.
Specifically, the rats were placed under anesthesia with 1.5-2% isoflurane and the rat cornea was further anesthetized with 4% oxybuprocaine (Benoxil, Santen). The cornea was punctured using a 27 gauge hypodermic needle (terumo, USA). The hypodermic needle was then removed and a 30 gauge blunt needle (Hamilton Company, Reno, NV, USA) was inserted into the anterior chamber through the created hole and avoiding the glow and the lens. The needle was inserted toward the retina surface through the vitreous cavity, and after the needle reached the retina surface, 10 μl of DMEM medium containing DP31 treated with FGF2 was injected into the vitreous cavity. Following cell injection, one drop of ofloxacin ophthalmic solution (Tarivid topical solution, Santen) was instilled into the eye. Six rats were used in this study, two of which were transplanted with 0.5 × 10 6 cells, and the remaining four were transplanted with 4 × 10 6 cells. All rats received an immunosuppressant ((cyclosporine, Novartis, 10 mg / kg body weight) from the day before surgery to the day after surgery.
<1-4.BBBスコア>
 客観的に手術後のラットの運動機能を分析するために、手術後、毎週30秒から2分間の間、ラットをビデオに記録した。BBBスコア分析を以前に行ったことのあるそれぞれ独立した観察者により集団同一性を排除し、当該ビデオを見ることによりBBB locomotion rating scaleを評価した(Basso et al., 1996)。詳細な評価基準を下記図1に示した。
<1-4. BBB Score>
In order to objectively analyze the motor function of rats after surgery, the rats were recorded on video for 30 seconds to 2 minutes every week after surgery. The BBB locomotion rating scale was assessed by eliminating the group identity by each independent observer who had previously performed a BBB score analysis and viewing the video (Basso et al., 1996). Detailed evaluation criteria are shown in FIG.
<1-5.電気生理学的試験>
 ヒト歯髄細胞移植後のラットについて、脊髄切断部を介した電気的な活動電位を伝達することが可能であるか確かめるために、下記方法により電気生理学的試験を行った。
 ウレタンを用いてラットを麻酔下におき、気道を確保するためラットの器官を切開した。移植片を通した電気的活動の伝達について、下記方法を用いて評価した。
 本試験においては、タングステン微小電極(φ0.2 mm, Unique Medical, Japan.)を1mmの間隔で備える別注の双極型電極を使用した。当該電極は、Th8脊髄文節を刺激し、かつ、Th13脊髄文節にて電気的活動を記録するように、脊髄の中心に対して1.0m下方かつ0.5~0.75mm側方に挿入した。微小電極の挿入は、脊椎固定装置(ST-7R-HT, NARISHIGE, Tokyo, JAPAN)を用いてラットを固定し、マニュピレーターにより微小電極を制御するとともに、手術用顕微鏡下で微小電極の位置を確認することにより行った。電気刺激としては、短い矩形波パルス(0.2秒)を2秒ごとに与えた。
<1-5. Electrophysiological tests>
In order to confirm whether it is possible to transmit an electrical action potential through the spinal cord amputation, the rat after human dental pulp cell transplantation was subjected to an electrophysiological test by the following method.
The rats were placed under anesthesia using urethane and the organs of the rats were dissected to secure the airways. The transmission of electrical activity through the graft was evaluated using the following method.
In this test, a bespoke bipolar electrode equipped with tungsten microelectrodes (φ0.2 mm, Unique Medical, Japan.) At intervals of 1 mm was used. The electrodes were inserted 1.0 m below and 0.5-0.75 mm lateral to the center of the spinal cord so as to stimulate the Th8 spinal cord segment and record electrical activity at the Th13 spinal cord segment. Microelectrodes are inserted by using a spinal fixation device (ST-7R-HT, NARISHIGE, Tokyo, JAPAN) to fix the rat, control the microelectrode with a manipulator, and confirm the position of the microelectrode under a surgical microscope. It was done by doing. For electrical stimulation, a short rectangular wave pulse (0.2 seconds) was applied every 2 seconds.
<1-6.免疫組織化学>
 免疫組織染色のために、手術より8週間後、ラットを麻酔し、1%PBSおよび4%パラホルムアルデヒドを用いて経心腔的灌流により固定処理を行った。脊髄組織を取り出し、24時間、4%パラホルムアルデヒドでさらに後固定し、その後、30%スクロース溶液中で一晩置いた。その後、脊髄をOCTコンパウンド(Sakura Finetek)中で凍結切片とし、クライオスタット(CM3050S, Leica)を用いて25mmの矢状断面凍結切片を作製した。凍結切片は、一次抗体として、抗GFAP抗体(rabbit IgG,1:500, abcam)、抗GAP-43抗体(mouse IgG, 1:200, Millipore)、抗GFP抗体(rabbit IgG, 1:200,Millipore)、抗MBP抗体(rabbit IgG, 1:200, Millipore)を反応させた。次いで、二次抗体として、anti-rabbit IgG-Alexa 546、anti-mouse IgG-Alexa Fluor 488、anti-mouse IgG-Alexa 546、および、anti-rabbit IgG-Alexa Fluor 488を用いて染色し、また、DAPI (Sigma-Aldrich)により染色した。染色した切片の画像は蛍光顕微鏡(BZ-9000, Keyence)を用いて取得した。
<1-6. Immunohistochemistry>
For immunohistochemical staining, the rats were anesthetized 8 weeks after the surgery and fixed by transcardial perfusion using 1% PBS and 4% paraformaldehyde. Spinal cord tissue was removed and further postfixed with 4% paraformaldehyde for 24 hours and then placed in 30% sucrose solution overnight. Thereafter, the spinal cord was frozen in an OCT compound (Sakura Finetek), and a 25 mm sagittal section frozen section was prepared using a cryostat (CM3050S, Leica). Frozen sections were prepared as anti-GFAP antibody (rabbit IgG, 1: 500, abcam), anti-GAP-43 antibody (mouse IgG, 1: 200, Millipore), anti-GFP antibody (rabbit IgG, 1: 200, Millipore) as primary antibodies. ) And anti-MBP antibody (rabbit IgG, 1: 200, Millipore). Subsequently, staining with anti-rabbit IgG-Alexa 546, anti-mouse IgG-Alexa Fluor 488, anti-mouse IgG-Alexa 546, and anti-rabbit IgG-Alexa Fluor 488 as secondary antibodies, Stained with DAPI (Sigma-Aldrich). Images of stained sections were acquired using a fluorescence microscope (BZ-9000, Keyence).
<1-7.結果>
 その結果、FGF2を添加せずに培養したDP1(DP1-FGF2(-)区)およびDP31(DP31-FGF2(-)区)を移植した区は、PBS投与区と比較して運動機能の有意な回復を観察することができなかった(図2a)。同様に、DP1-FGF2(-)およびDP31-FGF2(-)を移植した6匹のうち、脊髄損傷後8週間目において、完全に切断された部位を介した電気的な活動電位を検出できたのは1匹のみであった(図2b)。次に、10μg/mlFGF2含有α‐MEM(FGF2単独投与区)を用いた同様の試験を試みたところ、PBS投与区であって免疫抑制剤を使用しなかったものと比較してわずかな機能改善のみを示した(図3a)。FGF2単独投与区では4匹のうちたった一匹のみから活動電位を検出することができた(図3b)。
 一方、FGF2含有培地で培養したDP1またはDP31を投与した区(DP1-FGF2(+)区またはDP31-FGF2(+)区)は、いずれの区についても、脊髄損傷後の有意な回復を示し、活動電位の改善が見られた(図4)。
<1-7. Result>
As a result, the group transplanted with DP1 (DP1-FGF2 (-) group) and DP31 (DP31-FGF2 (-) group) cultured without adding FGF2 had a significant motor function compared to the PBS-treated group. No recovery could be observed (Figure 2a). Similarly, among 6 animals transplanted with DP1-FGF2 (-) and DP31-FGF2 (-), an electrical action potential through a completely cut site could be detected at 8 weeks after spinal cord injury. There was only one (Figure 2b). Next, a similar test using α-MEM containing 10 μg / ml FGF2 (FGF2 alone administration group) was attempted, and a slight improvement in function was observed compared to the PBS administration group without using an immunosuppressant. Only shown (Figure 3a). In the FGF2 single administration group, action potential could be detected from only one of the 4 animals (FIG. 3b).
On the other hand, the group administered with DP1 or DP31 cultured in a medium containing FGF2 (DP1-FGF2 (+) group or DP31-FGF2 (+) group) showed significant recovery after spinal cord injury in any group, Improvement of action potential was observed (FIG. 4).
 FGF2で処理したヒト歯髄細胞が移植後の部位において長い時間維持されず、脊髄損傷部位からすぐに消失することを確認するために、核移行シグナルを含むVenusタンパク質を発現するヒト歯髄細胞を移植した。その結果、脊髄損傷より8週間後の時点において損傷部位においてはほとんど蛍光が検出されなかった。この結果を支持するように、同じヒト歯髄細胞を硝子体腔へ移植した際にも、移植より3週間後の時点において硝子体の割面を蛍光顕微鏡 (SZX-RFL2, OLYMPUS)にて観察したところ、蛍光を検出することができなかった(図5)。これは、移植した細胞が本試験の脊髄損傷モデルシステムにおいて検出されるのに十分な長さで細胞が維持されず、移植した細胞の腫瘍化は観察されなかったことを示す(なお、実施例4の結果ではFGF2処理した歯髄細胞は移植7週経過後もわずかながら残存しており、検出されないことはなかった。レンチウイルスベクターの構造の違いにより、検出力に違いがあるものの、二つの結果はいずれも移植した細胞のほとんどは移植した脊髄組織では維持されないことを示すものである。) In order to confirm that human dental pulp cells treated with FGF2 are not maintained for a long time at the site after transplantation and disappear immediately from the site of spinal cord injury, human dental pulp cells expressing Venus protein containing a nuclear translocation signal were transplanted . As a result, almost no fluorescence was detected at the injured site at 8 weeks after the spinal cord injury. To support this result, when the same human dental pulp cells were transplanted into the vitreous cavity, the cleavage plane of the vitreous was observed with a fluorescence microscope (SZX-RFL2, OLYMPUS) three weeks after the transplantation. The fluorescence could not be detected (FIG. 5). This indicates that the cells were not maintained long enough for the transplanted cells to be detected in the spinal cord injury model system of the present study, and no neoplasia of the transplanted cells was observed (note that the Examples The results of 4 showed that FGF2-treated dental pulp cells remained slightly after 7 weeks of transplantation and were not detected, although there were differences in detection power due to differences in the structure of lentiviral vectors, but two results. All indicate that most of the transplanted cells are not maintained in the transplanted spinal cord tissue.)
 また、由来するドナーごとに治療効果を比較したところ、FGF2含有培地で培養したDP1、DP31、または、DP165を移植した区(DP1-FGF(+)区、DP31-FGF2(+)区、または、DP165-FGF2(+)区)では、いずれの区も同様に、対照区(PBS投与区)と比較して、BBBスコアにおいて運動機能の有意な改善が見られた(図4a)。しかしながら、興味深いことに、FGF2含有培地で培養したDP296を移植した区(DP296-FGF2(+)区)においては、同様の効果を確認することができなかった(図4a)。 In addition, when comparing the therapeutic effect for each donor derived, DP1, DP31, or DP165 cultured in a medium containing FGF2 (DP1-FGF (+) group, DP31-FGF2 (+) group, or In the DP165-FGF2 (+) group), the motor function was significantly improved in the BBB score as compared with the control group (PBS administration group) (FIG. 4a). However, interestingly, the same effect could not be confirmed in the group transplanted with DP296 cultured in a medium containing FGF2 (DP296-FGF2 (+) group) (FIG. 4a).
 また、これを支持するように、DP296-FGF2(+)区では、0.6mA の電気刺激を与えた際に、DP1-FGF(+)区、DP31-FGF2(+)区、または、DP165-FGF2(+)区の3つの区の潜時(4.24±0.38ms, 3.67±0.34ms, 3.72±0.32ms)と比較して、有意に潜時が延長していた(6.14±1.4ms) (図4bおよびc)。
 なお、脊髄損傷を受けていない場合、Th8における刺激は、Th13において短潜時誘発電位を引き起こす。PBS投与区における活動電位は、全く生じなかった。一方で、DP1、DP31、およびDP165を移植した区では、潜時が延長した誘発反応の回復が観察された。また、DP296においては、上述のように、活動電位を観察することができたが、脊髄損傷していない区と比較した場合、潜時反応がかなり延長した。
To support this, in the DP296-FGF2 (+) group, when an electrical stimulus of 0.6 mA was applied, the DP1-FGF (+) group, the DP31-FGF2 (+) group, or the DP165-FGF2 group Compared with the latencies (4.24 ± 0.38ms, 3.67 ± 0.34ms, 3.72 ± 0.32ms) of the three wards of (+) ward, the latency was significantly extended (6.14 ± 1.4ms) (Fig. 4b) And c).
In the absence of spinal cord injury, stimulation at Th8 causes a short latency evoked potential at Th13. No action potential occurred in the PBS administration group. On the other hand, in the group transplanted with DP1, DP31, and DP165, recovery of the evoked response with an extended latency was observed. In DP296, the action potential could be observed as described above, but the latency response was considerably prolonged when compared with the section without spinal cord injury.
 完全に脊髄を切断し、ヒト歯髄細胞移植より8週間後の時点における脊髄の免疫組織化学の結果を図6に示す。DP165-FGF(+)区では、内在するGFAP陽性アストロサイトに沿って、GAP43陽性軸索が大量に増加していた(図6aおよびb)。
 加えて、再生した軸索は髄鞘形成にも関与しており、MBP陽性である髄鞘を確認することができた(図6c)。一方で、DP296-FGF(+)区では、ごくわずかな限られた再生のみが観察された(図6d,e,およびf)。PBS投与区およびDP296-FGF(+)区において、GFAP陽性細胞は、そのほとんどが尾側の脊髄において消失していた。一方で、DP165-FGF(+)区においては、脊髄を完全に切断してから8週間後の時点においても維持されていた(図7)。
FIG. 6 shows the results of immunohistochemistry of the spinal cord when the spinal cord was completely cut and 8 weeks after human dental pulp cell transplantation. In the DP165-FGF (+) group, GAP43-positive axons increased along the GFAP-positive astrocytes (Figs. 6a and b).
In addition, the regenerated axon was also involved in myelination, and it was possible to confirm a myelin that was MBP positive (FIG. 6c). On the other hand, only a very limited regeneration was observed in the DP296-FGF (+) group (FIGS. 6d, e, and f). In the PBS-treated group and the DP296-FGF (+) group, most of the GFAP-positive cells disappeared in the caudal spinal cord. On the other hand, in the DP165-FGF (+) group, it was maintained even when 8 weeks after the spinal cord was completely cut (FIG. 7).
<実施例2.FGF2によるヒト歯髄細胞のGABRB1発現制御>
 FGF2処理により歯髄細胞の遺伝子発現が制御されることを確認するために、DP1、DP31、DP165、および、DP296を用いて網羅的な遺伝子発現解析を行った。なお、DP296は、実施例1において示すように、FGF2処理によっても神経損傷の治療効果を奏しない歯髄細胞である。遺伝子発現解析に用いた各ヒト歯髄細胞は、上記1-1.の方法により単離・培養し、FGF2(R&D SYSTEMS)をα-MEM培地中に毎日10ng/μlの終濃度で添加し、FGF2で処理したヒト歯髄細胞を調製した(FGF2処理区)。また、FGF2非添加区として、同様に単離したヒト歯髄細胞について、FGFを含まないα-MEM培地で培養したものを作製した(FGF2非処理区)。各細胞は、継代10~13代目の細胞を用いた。また、cDNAマイクロアレイにより網羅的な遺伝子解析を行い、その後、特定の遺伝子発現についてReal-time PCR法を用いて解析した。なお、本実施例に用いた歯髄細胞は、レンチウイルスによる遺伝子導入を行っていないものを用いた。
<2-1.cDNAマイクロアレイ>
 培養後のヒト歯髄細胞からのTotal RNAは、Rneasy(登録商標) Plus Mini Kit(Qiagen, Valencia, CA, USA)を用いて単離した。Agilent 2100 バイオアナライザを用いてRNAの定量化を行った後、100ngのtotal RNAは、Low Input Quick Amp Labeling kit(Agilent Technologies, Santa Clara, CA)を用いて、プロトコールに従い、cDNAへ逆転写し、増幅し、Cy3標識CTPで標識した。標識および精製工程の後、cDNAはND-1000 分光光度計(Nano Drop Technologies, Wilmington, DE)を用いて定量化し、SurePrint G3 Human 8x60K v2 oligo-DNAマイクロアレイ(Agilent Technologies)とハイブリダイズさせた。ハイブリダイズの後、アレイは、Gene Expression Wash Pack (Agilent Technologies)を用いて洗浄した。ハイブリダイズしたアレイの蛍光画像は、Agilent DNAマイクロアレイスキャナーにより取得し、蛍光強度はAgilent Feature Extraction software ver.10.7.3.1を用いて決定した。各サンプルは、一回ずつ分析を行った。遺伝子発現のレベルはGene Spring GX12.6 (Agilent Technologies)を用いて決定した。
<Example 2. Regulation of GABRB1 expression in human dental pulp cells by FGF2>
In order to confirm that gene expression of dental pulp cells is controlled by FGF2 treatment, comprehensive gene expression analysis was performed using DP1, DP31, DP165, and DP296. As shown in Example 1, DP296 is a dental pulp cell that does not exert a therapeutic effect on nerve damage even by FGF2 treatment. Each human dental pulp cell used for gene expression analysis is the above described 1-1. Then, FGF2 (R & D SYSTEMS) was added to α-MEM medium at a final concentration of 10 ng / μl every day to prepare human dental pulp cells treated with FGF2 (FGF2 treatment group). In addition, as an FGF2 non-added group, a similarly isolated human dental pulp cell cultured in an α-MEM medium not containing FGF was prepared (FGF2-non-treated group). As each cell, cells at passage 10-13 were used. In addition, comprehensive gene analysis was performed using a cDNA microarray, and then specific gene expression was analyzed using Real-time PCR. The dental pulp cells used in this example were those that had not been transfected with a lentivirus.
<2-1. cDNA Microarray>
Total RNA from cultured human dental pulp cells was isolated using Rneasy (registered trademark) Plus Mini Kit (Qiagen, Valencia, CA, USA). After RNA quantification using the Agilent 2100 Bioanalyzer, 100 ng of total RNA was reverse transcribed and amplified using the Low Input Quick Amp Labeling kit (Agilent Technologies, Santa Clara, Calif.) According to the protocol. And labeled with Cy3-labeled CTP. After the labeling and purification steps, the cDNA was quantified using an ND-1000 spectrophotometer (Nano Drop Technologies, Wilmington, DE) and hybridized with a SurePrint G3 Human 8x60K v2 oligo-DNA microarray (Agilent Technologies). After hybridization, the array was washed using Gene Expression Wash Pack (Agilent Technologies). The fluorescence image of the hybridized array was acquired with an Agilent DNA microarray scanner, and the fluorescence intensity was determined using Agilent Feature Extraction software ver.10.7.3.1. Each sample was analyzed once. The level of gene expression was determined using Gene Spring GX12.6 (Agilent Technologies).
<2-2.Real-time PCR>
 培養後のヒト歯髄細胞からのTotal RNAは、Rneasy(登録商標) Plus Mini Kit(Qiagen, Valencia, CA, USA)を用いて単離した。real-time PCRのために、cDNAからなるPCR産物を、SYBR Premix Ex Taq (Takara, Shiga, Japan)およびThermal Cycler Dice Real-Time System (Takara)を用いて作成した。使用したプライマーを表2に示す。
Figure JPOXMLDOC01-appb-T000002
<2-2. Real-time PCR>
Total RNA from cultured human dental pulp cells was isolated using Rneasy (registered trademark) Plus Mini Kit (Qiagen, Valencia, CA, USA). For real-time PCR, a PCR product consisting of cDNA was prepared using SYBR Premix Ex Taq (Takara, Shiga, Japan) and Thermal Cycler Dice Real-Time System (Takara). The primers used are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
<2-3.結果>
 cDNAマイクロアレイ解析の結果、FGF処理区とFGF非処理区とで比較し、FGF2処理により5倍以上有意に発現が上昇した遺伝子が131遺伝子存在した。とりわけ、GABRB1は、FGF2処理により357倍発現上昇を示した。なお、下記表は、FGF処理区とFGF非処理区とで比較し、FGF2処理により5倍以上有意に発現が上昇した遺伝子のリストである。
Figure JPOXMLDOC01-appb-T000003
<2-3. Result>
As a result of the cDNA microarray analysis, there were 131 genes whose expression was significantly increased 5 times or more by the FGF2 treatment compared with the FGF-treated group and the non-FGF-treated group. In particular, GABRB1 showed a 357-fold increase in expression due to FGF2 treatment. The following table is a list of genes whose expression was significantly increased by 5 times or more by the FGF2 treatment compared with the FGF treatment group and the non-FGF treatment group.
Figure JPOXMLDOC01-appb-T000003
 ここで、DP1、DP31、DP165、およびDP296におけるGABRB1の発現レベルを評価するために、Real-time PCRアッセイを行った。その結果、予想通り、DP1、DP31、およびDP165においては、FGF2処理によりGABRB1の発現が有意に上昇しており、発現が亢進していた遺伝子のうち最も発現量が増加していた。しかしながら、DP296におけるGABRB1の発現は有意な変化を示さなかった(図8)。この結果は、FGF2処理によるGABRB1遺伝子発現が、神経損傷の治療効果の指標として用いることができることを示す。また、FGF2により上方制御される他の7つの遺伝子(MMP1遺伝子、DRD2遺伝子、ABCA6遺伝子、TMEM100遺伝子、THBD遺伝子、NTSR1遺伝子、および、SCG2遺伝子)は、4つの異なる細胞株において同様の発現プロファイルを示した(図9)。したがって、これらの7つの遺伝子のそれぞれについて、発現の亢進は神経損傷の治療用移植材として用いる歯髄細胞には重要である。 Here, in order to evaluate the expression level of GABRB1 in DP1, DP31, DP165, and DP296, a real-time PCR assay was performed. As a result, as expected, in DP1, DP31, and DP165, the expression of GABRB1 was significantly increased by FGF2 treatment, and the expression level was the highest among the genes whose expression was enhanced. However, the expression of GABRB1 in DP296 did not show a significant change (FIG. 8). This result indicates that GABRB1 gene expression by FGF2 treatment can be used as an index of the therapeutic effect of nerve damage. The other seven genes up-regulated by FGF2 (MMP1, DRD2, ABCA6, TMEM100, THBD, NTSR1 and SCG2 genes) have similar expression profiles in four different cell lines. (FIG. 9). Therefore, for each of these seven genes, enhanced expression is important for dental pulp cells used as a transplant for treatment of nerve damage.
<実施例3.FGF2処理によるヒト歯髄細胞の活性酸素に対する耐性への影響>
 FGF2非処理の歯髄細胞の移植では、神経損傷の改善に有効な効果を示さなかった。ここで、脊髄損傷部では、急性期に活性酸素の濃度が上昇することが知られている。活性酸素は、脊髄内の神経系細胞だけでなく、移植した細胞も傷害すると考えられる。そこで、FGF2処理が歯髄細胞の活性酸素に対する細胞毒性に耐性を有するのか否かについて確認するため、下記試験を行った。
<Example 3. Effect of FGF2 treatment on resistance of human dental pulp cells to active oxygen>
Transplantation of FGF2-untreated dental pulp cells did not show an effective effect on improving nerve damage. Here, it is known that in the spinal cord injury part, the concentration of active oxygen increases in the acute phase. Reactive oxygen is thought to damage not only the nervous system cells in the spinal cord but also the transplanted cells. In order to confirm whether FGF2 treatment is resistant to the cytotoxicity of dental pulp cells to active oxygen, the following test was performed.
<3-1.実験材料>
 ヒト歯髄組織は岐阜大学医学部口腔病態学講座において、患者の研究目的での使用を書面により同意を得たうえで採取した。また誘導・培養した歯髄細胞は連結不可能匿名化された形で凍結保存・管理されており、個人情報は厳密に守られている。岐阜大学・岐阜薬科大学それぞれの生命倫理委員会に同細胞を用いた研究計画を提出、承認を受けて、同ストックから一部の細胞を供与され実験に用いた。間葉系幹細胞基本培地 (mesenchymal stem cell basal medium : MSCBM) はロンザジャパン株式会社、α-MEM培地はシグマアルドリッチジャパン株式会社からそれぞれ購入した。また、ウシ胎仔血清 (fetal calf serum : FCS) はHyclone社、FGF-2はR&D System社からそれぞれ購入した。
<3-1. Experimental Materials>
Human dental pulp tissue was collected after obtaining written consent from the patient at the Gifu University School of Medicine, Department of Oral Pathology. In addition, induced and cultured dental pulp cells are cryopreserved and managed in an anonymized form that cannot be connected, and personal information is strictly protected. A research plan using the same cells was submitted to the bioethics committees of Gifu University and Gifu Pharmaceutical University, and after receiving approval, some cells were donated from the stock and used for experiments. Mesenchymal stem cell basal medium (MSCBM) was purchased from Lonza Japan Co., Ltd., and α-MEM medium was purchased from Sigma Aldrich Japan Co., Ltd. Fetal calf serum (FCS) was purchased from Hyclone, and FGF-2 was purchased from R & D System.
<3-2.歯髄細胞の培養>
 歯髄組織から単離したヒト歯髄細胞DP31(すなわち、実施例1および2で用いたDP31と同じドナー由来の歯髄細胞)を10 cm シャーレ1枚にセミコンフレントになった状態から、2-3日に1度継代(1枚を3枚に継代)し、12継代までをMSCBMにて培養した。その後、組織内動態を評価するために、レンチウイルスベクターを用いてCAG プロモーターに連結したEGFP遺伝子およびpuromycin耐性遺伝子を歯髄細胞に導入し、puromycin を添加培養することで、遺伝子導入細胞のみを選別した。この際、細胞死を起こした細胞はほとんど認められなかった。遺伝子導入した歯髄細胞を継代後、下記の培養スケジュールで歯髄細胞を培養した。
 まず、FGF2の添加のタイミングと活性酸素に対する耐性への影響との関係を調べるために、歯髄細胞を下記i)~iv)の培養スケジュールで培養した。また、i)~iv)の培養スケジュールの概要を図10に示す。
 i)10%FCS含有α-MEM培地(10% FCS-αMEM)にて6継代培養した歯髄細胞を、10%FCS-αMEM培地にて、さらに49時間培養する(S/S:DPC-S区)。
 ii)10%FCS含有αMEM培地(10% FCS-αMEM)にて6継代培養した歯髄細胞を、10%FCS-αMEM培地にて、さらに48時間培養した後、FGF-2(最終濃度: 10 ng/ml)を含む10% FCS-αMEMで1時間培養する(S/F:DPC-S区)。
 iii)FGF-2(最終濃度: 10 ng/ml)を含む10% FCS-αMEM培地にて6継代培養した歯髄細胞を、FGF-2(最終濃度: 10 ng/ml)を含む10% FCS-αMEM培地にて、さらに49時間培養する(F/F:DPC-FS区)。
 iv)FGF-2(最終濃度: 10 ng/ml)を含む10% FCS-αMEM培地にて6継代培養した歯髄細胞を、FGF-2(最終濃度: 10 ng/ml)を含む10% FCS-αMEM培地にて、さらに24時間培養した後、10%FCS-αMEM培地にて25時間培養する(F/S:DPC-FS区)。
 また、S/F:DPC-S区として培養した歯髄細胞をFGF2含有培地で培養した際の培養期間と活性酸素耐性への影響との関係、または、F/S:DPC-FS区として培養した歯髄細胞をFGF2不含培地で培養した際の培養期間と活性酸素耐性への影響との関係を調べるために、培養期間を変更した下記v)およびvi)の条件で歯髄細胞を培養した。
 v)S/F:DPC-S区の培養により得られた歯髄細胞を、FGF-2(最終濃度: 10 ng/ml)を含む10% FCS-αMEM培地にて、さらに1日、2日、5日、または、11日間培養する(S/F1区、S/F2区、S/F5区、または、S/F11区)。
 vi)F/S:DPC-FS区の培養により得られた歯髄細胞を、10% FCS-αMEM培地にて、さらに1日、2日、5日、または、11日間培養する(F/S1区、F/S 2区、F/S 5区、F/S 11区とする)。
 なお、i)~vi)の各培養スケジュールにおいて、継代培養後の培養は、24時間ごとに培地の交換を行った。
<3-2. Pulp Cell Culture>
From the state in which human dental pulp cells DP31 isolated from dental pulp tissue (ie, dental pulp cells derived from the same donor as DP31 used in Examples 1 and 2) became semi-confluent in one 10 cm dish, 2-3 days 1 passage (1 passage to 3 passages) and cultured up to passage 12 in MSCBM. Then, in order to evaluate the tissue kinetics, the EGFP gene linked to the CAG promoter and the puromycin resistance gene were introduced into dental pulp cells using a lentiviral vector, and puromycin was added and cultured to select only the transgenic cells. . At this time, almost no cells that caused cell death were observed. After passage of the gene-introduced dental pulp cells, dental pulp cells were cultured according to the following culture schedule.
First, in order to examine the relationship between the timing of addition of FGF2 and the effect on resistance to active oxygen, dental pulp cells were cultured according to the following culture schedules i) to iv). An outline of the culture schedules i) to iv) is shown in FIG.
i) Pulp cells cultured for 6 passages in α-MEM medium containing 10% FCS (10% FCS-αMEM) are further cultured in 10% FCS-αMEM medium for 49 hours (S / S: DPC-S Ward).
ii) Dental pulp cells cultured for 6 passages in 10% FCS-containing αMEM medium (10% FCS-αMEM) were further cultured in 10% FCS-αMEM medium for 48 hours, and then FGF-2 (final concentration: 10 Incubate for 1 hour in 10% FCS-αMEM containing (ng / ml) (S / F: DPC-S).
iii) Pulp cells cultured for 6 passages in 10% FCS-αMEM medium containing FGF-2 (final concentration: 10 ng / ml) were treated with 10% FCS containing FGF-2 (final concentration: 10 ng / ml). -Incubate for another 49 hours in αMEM medium (F / F: DPC-FS).
iv) Pulp cells cultured for 6 passages in 10% FCS-αMEM medium containing FGF-2 (final concentration: 10 ng / ml) were treated with 10% FCS containing FGF-2 (final concentration: 10 ng / ml). -After further culturing in αMEM medium for 24 hours, culture in 10% FCS-αMEM medium for 25 hours (F / S: DPC-FS).
In addition, the relationship between the culture period and the effect on active oxygen tolerance when dental pulp cells cultured as S / F: DPC-S section were cultured in FGF2-containing medium, or cultured as F / S: DPC-FS section In order to examine the relationship between the culture period when the dental pulp cells were cultured in a medium not containing FGF2 and the effect on the resistance to active oxygen, the dental pulp cells were cultured under the following conditions v) and vi) with the culture period changed.
v) S / F: Pulp cells obtained by DPC-S culture were further cultured in 10% FCS-αMEM medium containing FGF-2 (final concentration: 10 ng / ml) for 1 or 2 days. Culture for 5 days or 11 days (S / F1, S / F2, S / F5, or S / F11).
vi) F / S: Pulp cells obtained by culturing in DPC-FS section are further cultured in 10% FCS-αMEM medium for 1, 2, 5, or 11 days (F / S1 section) F / S 2, F / S 5 and F / S 11).
In each of the culture schedules i) to vi), after the subculture, the medium was changed every 24 hours.
<3-3.活性酸素に対する耐性試験>
 活性酸素に対する耐性試験は、上記3-1.に記載の各培養スケジュールで得られた歯髄細胞に対して過酸化水素(H2O2)(和光純薬工業株式会社製)を添加した10% FCS-αMEM培地中で24時間培養し、その後MTTアッセイを行うことで活性酸素に対する耐性を評価した。MTTアッセイは、MTT (Sigma 社製)を0.5mg/mL になるように添加し、CO2 インキュベーターにて 4時間反応させ、その後形成されたホルマザンを 0.04M HCl を含む イソプロパノールで溶解して 570 nM の吸光波長を測定した。
 なお、過酸化水素は、0mM(添加なし)~0.7mMの範囲で培地に添加した。また、過酸化水素を添加しない培地を用いた条件を対照区とした。
<3-3. Resistance test against active oxygen>
The resistance test against active oxygen is conducted according to the above 3-1. Culturing for 24 hours in 10% FCS-αMEM medium supplemented with hydrogen peroxide (H 2 O 2 ) (manufactured by Wako Pure Chemical Industries, Ltd.) for the pulp cells obtained by each culture schedule described in 1. Resistance to active oxygen was evaluated by performing MTT assay. In the MTT assay, MTT (Sigma) was added to a concentration of 0.5 mg / mL, reacted in a CO2 incubator for 4 hours, and then the formazan formed was dissolved in isopropanol containing 0.04M HCl to obtain 570 nM. Absorption wavelength was measured.
Hydrogen peroxide was added to the medium in the range of 0 mM (no addition) to 0.7 mM. In addition, a condition using a medium not added with hydrogen peroxide was used as a control group.
<3-4.結果>
 上記i)~iv)培養スケジュールで培養した歯髄細胞の活性酸素に対する耐性試験の結果を図11に示す。図11に示すように、S/S:DPC-S区およびS/F:DPC-S区と比較して、F/F:DPC-FS区およびF/S:DPC-FS区ではより多くの生細胞を確認することできた。特に、過酸化水素を0.5mM以上の濃度で含む培養液中で歯髄細胞を24時間培養した際、S/S:DPC-S区およびS/F:DPC-S区ではほとんどの細胞が生存していなかったのに対して、F/F:DPC-FS区およびF/S:DPC-FS区ではより多くの生細胞を確認することできた。
 また、上記v)およびvi)培養スケジュールで培養した歯髄細胞の活性酸素に対する耐性試験の結果を図12に示す。図12に示すように、S/F:DPC-S区の歯髄細胞であっても、FGF2を含む培地中で11日間培養した区では、活性酸素に対する抵抗性が増大した。また、図示はないが、FGF2を含まない培地での培養期間(1~7継代)によらず、FGF2含有培地で2~4回継代培養する(約6~12日間)ことにより、歯髄細胞の活性酸素に対する抵抗性が増大することを確認した。一方で、活性酸素に対する抵抗性を獲得したF/S:DPC-FS区の歯髄細胞であっても、FGF2を含まない培地中で11日間培養することにより活性酸素に対する抵抗性を消失した(図12)。また、図示はないが、活性酸素に対する抵抗性を獲得した歯髄細胞を、FGF2を含まない培地で1~2継代(約3~6日間)培養することにより活性酸素に対する抵抗性が消失することを確認した。
<3-4. Result>
FIG. 11 shows the results of a resistance test for active oxygen of dental pulp cells cultured in the above i) to iv) culture schedule. As shown in FIG. 11, compared with S / S: DPC-S and S / F: DPC-S, F / F: DPC-FS and F / S: DPC-FS Viable cells could be confirmed. In particular, when pulp cells are cultured for 24 hours in a culture solution containing hydrogen peroxide at a concentration of 0.5 mM or more, most cells survive in the S / S: DPC-S and S / F: DPC-S groups. In contrast, more viable cells could be confirmed in the F / F: DPC-FS group and the F / S: DPC-FS group.
Moreover, the result of the tolerance test with respect to the active oxygen of the pulp cell cultured by said v) and vi) culture schedule is shown in FIG. As shown in FIG. 12, even in the pulp cells in the S / F: DPC-S group, resistance to active oxygen increased in the group cultured for 11 days in a medium containing FGF2. Although not shown, the pulp is subcultured 2 to 4 times (approximately 6 to 12 days) in a medium containing FGF2 regardless of the culture period (passage 1 to 7) in a medium not containing FGF2. It was confirmed that the resistance of the cells to active oxygen increased. On the other hand, even F / S: DPC-FS pulp cells that acquired resistance to active oxygen lost resistance to active oxygen by culturing in a medium not containing FGF2 for 11 days (Fig. 12). Although not shown, the resistance to active oxygen is lost by culturing pulp cells that have acquired resistance to active oxygen for 1 to 2 passages (about 3 to 6 days) in a medium not containing FGF2. It was confirmed.
<実施例4.活性酸素除去剤併用による歯髄細胞の移植>
<4-1.脊髄損傷モデルラット>
 Wistar系ラット(7週齢、雌)は岐阜薬科大学動物飼育・動物実験委員会の承認を経て日本エスエルシー社から購入した。また塩酸メデトミジン、塩酸アチパメゾールは日本全薬工業株式会社、ミダゾラムはサンド株式会社、酒石酸ブトルファノールはMeiji seika ファルマ株式会社、注射用水は大塚製薬株式会社、免疫抑制剤であるシクロスポリンAはエルシーラボラトリーズ社からそれぞれ購入した。
<Example 4. Dental pulp cell transplantation with active oxygen scavenger>
<4-1. Spinal Cord Injury Model Rat>
Wistar rats (7 weeks old, female) were purchased from Japan SLC, Inc. after approval by the Animal Care and Animal Experiment Committee of Gifu Pharmaceutical University. Medetomidine hydrochloride and atipamezole hydrochloride are from Nippon Zenyaku Kogyo Co., Ltd., Midazolam is from Sand Corp., Butorphanol tartrate is from Meiji seika Pharma Co., Ltd., Water for injection is from Otsuka Pharmaceutical Co., Ltd. Purchased.
<4-2.脊髄損傷モデルラットの作製と脊髄損傷モデルラットへの歯髄細胞の移植におけるエダラボンとの併用>
 塩酸メデトミジン、ミダゾラム、酒石酸ブトルファノールを混合し、3種混合麻酔薬として調製し、7週齢雌性Wistarラットに5 ml/kgの投与量で腹腔内投与した。正向反射等の有無や肉球に対する刺激等により深麻酔を確認後、第10胸椎周辺で背部を正中線に沿って2 cm切開し、脂肪及び筋組織を剥離して脊柱を露出させた。その後第10胸椎の椎弓を剥離し、手術用メス(Feather disposable scalpel mini no.14)で第10胸髄(T10)を横断的に完全切断した。止血の確認後、マイクロピペットを用いて 10 μlのリン酸緩衝化生理食塩水(phosphate-buffered saline: PBS)に懸濁した 1.0×10個の歯髄細胞を切断部の吻側断端と尾側断端の間隙に注入し、背筋と皮膚を縫合した。なお、歯髄細胞は、上記3-2.に記載のS/S:DPC-S区の培養スケジュールにより培養した細胞を用いた。手術後は塩酸メデトミジン拮抗薬である塩酸アチパメゾールを 0.75 mg/kgの容量で腹腔内投与した。脊髄を全切断したラットは排尿能力を完全に失うため、飼育期間中1日2回、膀胱を刺激し排尿させた。また、異種間移植であるため、免疫抑制剤であるシクロスポリンAを 10 mg/kg体重の用量で1日1回腹腔内に投与した。
 エダラボン投与区およびエダラボン投与併用細胞移植区には、術後直後から1日2回1週間にわたりエダラボン(和光純薬工業株式会社)を3 mg/kgの用量で腹腔内に投与した。
<4-2. Preparation of spinal cord injury model rat and combination with edaravone in dental pulp cell transplantation into spinal cord injury model rat>
Medetomidine hydrochloride, midazolam, and butorphanol tartrate were mixed and prepared as a three-type mixed anesthetic, and intraperitoneally administered to 7-week-old female Wistar rats at a dose of 5 ml / kg. After confirming deep anesthesia by the presence or absence of forward reflexes, stimulation of the paws, etc., the back was incised 2 cm along the midline around the 10th thoracic vertebra, and the spine was exposed by exfoliating fat and muscle tissue. Thereafter, the vertebral arch of the 10th thoracic vertebra was peeled off, and the 10th thoracic spinal cord (T10) was completely cut transversely with a scalpel for surgery (Feather disposable scalpel mini no.14). After confirming hemostasis, 1.0 x 10 6 pulp cells suspended in 10 μl of phosphate-buffered saline (PBS) using a micropipette were removed from the rostral stump and tail of the cut. It was injected into the gap at the side stump and the back muscle and skin were sutured. The dental pulp cells are the same as those in 3-2. The cells cultured according to the culture schedule of S / S: DPC-S section described in 1) were used. After surgery, atipamezole hydrochloride, a medetomidine hydrochloride antagonist, was administered intraperitoneally in a volume of 0.75 mg / kg. Rats that had their entire spinal cord disconnected lost their ability to urinate completely, so the bladder was stimulated and urinated twice a day during the breeding period. In addition, because of the xenotransplantation, cyclosporin A, an immunosuppressant, was administered intraperitoneally once a day at a dose of 10 mg / kg body weight.
Edaravone (Wako Pure Chemical Industries, Ltd.) was administered intraperitoneally at a dose of 3 mg / kg twice a day for 1 week immediately after surgery in the edaravone administration group and the edaravone administration cell transplantation group.
<4-3.凍結切片作製>
 細胞移植より7週間後において、脊髄損傷モデルラットはエーテル過麻酔下、4 % (w/v) パラホルムアルデヒド(paraformaldehyde : PFA) 溶液で経心的に灌流固定した。続いて組織を摘出して同溶液で4 ℃にて1晩、後固定したのち、20 % (w/v) スクロースを含むPBSに浸漬し固定液を置換した (一晩)。その後、包埋剤のO.C.T. compoundで凍結包埋して凍結ブロックとし、-80 ℃にて保存した。作製した凍結ブロックからクリオスタット (Leika社製、M1800) を用い25 μm厚の矢状断連続切片を作製し、細切したMASコート付蛍光用スライドガラスに貼り付け、以下の組織化学的解析に用いた。
<4-3. Preparation of frozen section>
Seven weeks after cell transplantation, spinal cord injury model rats were perfused and fixed transcardially with 4% (w / v) paraformaldehyde (PFA) solution under ether anesthesia. Subsequently, the tissue was excised and postfixed with the same solution at 4 ° C. overnight and then immersed in PBS containing 20% (w / v) sucrose to replace the fixative (overnight). After that, it was frozen and embedded in an embedding agent OCT compound and stored at −80 ° C. A cryostat (Leika, M1800) was used to prepare a 25 μm-thick sagittal slice from the prepared frozen block and affixed to a MAS-coated fluorescent slide glass for histological analysis. Using.
<4-4.免疫組織化学染色>
 免疫組織化学染色に用いた試薬は下記のように準備した。ブロックエースは大日本住友製薬株式会社、Vectastain ABC elite kitはVector社、MAS(Matsunami adhesive silane)コートスライドガラスは松波硝子株式会社、包埋剤O.C.T. Compoundはサクラファインテック社、封入剤であるPermaFluor Aqueous Mounting MediumはThermo Fisher Scientific社から購入した。抗growth-associated protein (GAP) 43マウス抗体、抗glial fibrillary acidic protein (GFAP) ウサギ抗体は Chemicon 社、Alexa Fluor 488 標識抗マウス IgG 抗体、Alexa Fluor 546 標識抗ウサギ IgG 抗体は Molecular Probes 社からそれぞれ購入した。
<4-4. Immunohistochemical staining>
Reagents used for immunohistochemical staining were prepared as follows. Block Ace is Dainippon Sumitomo Pharma Co., Ltd., Vectastain ABC elite kit is Vector, MAS (Matsunami adhesive silane) coated slide glass is Matsunami Glass Co., Ltd. Embedding agent OCT Compound is Sakura Finetech, Inc. PermaFluor Aqueous Mounting Medium was purchased from Thermo Fisher Scientific. Anti-growth-associated protein (GAP) 43 mouse antibody, anti-glial fibrillary acidic protein (GFAP) rabbit antibody purchased from Chemicon, Alexa Fluor 488-labeled anti-mouse IgG antibody, Alexa Fluor 546-labeled anti-rabbit IgG antibody purchased from Molecular Probes, respectively did.
 以下、具体的な方法を記載する。上記4-3.で作製した薄切片をPBSで洗浄後、抗体の浸透性を高めるために、0.3 % (v/v) Triton X-100を含む0.1 M Tris-HCl buffer ( pH.7.4 ) に37 ℃、30分間浸漬処理した。組織切片をPBSにて洗浄後、2 % ブロックエースでブロッキングした。その後GFAP、GAP-43またはGFPをそれぞれ特異的に認識する1次抗体を加えて4 ℃で一晩反応させた。PBSで3回洗浄したのち、2 % ブロックエースを含む PBS で500倍に希釈した二次抗体 (Alexa Fluor 488 標識抗マウス IgG 抗体または Alexa Fluor 546 標識抗ウサギ IgG 抗体) を加え、室温にて3時間反応させた。PBSで3回洗浄したのちPermaFluor Aqueous Mounting Mediumを用いて封入した。封入後十分に乾燥させ、オールインワン蛍光顕微鏡 (KEYENCE社、BZ-9000) を用いて染色像を観察、撮影した。 The specific method is described below. 4-3. After washing the thin sections prepared in PBS with PBS, in order to increase the antibody permeability, 0.1 M sTris-HCl buffer (pH.7.4) containing 0.3% (v / v) Triton X-100 at 37 C for 30 minutes Immersion treatment. Tissue sections were washed with PBS and then blocked with 2% Block Ace. Thereafter, a primary antibody specifically recognizing GFAP, GAP-43 or GFP was added and reacted overnight at 4 ° C. After washing 3 times with PBS, add secondary antibody (Alexa 488 labeled anti-mouse IgG antibody or Alexa 546 labeled anti-rabbit IgG antibody) し た diluted 500-fold with PBS containing 2% block ace, and add 3 at room temperature. Reacted for hours. After washing 3 times with PBS, it was encapsulated using PermaFluor Aqueous Mounting Medium. After encapsulating, the sample was sufficiently dried, and the stained image was observed and photographed using an all-in-one fluorescence microscope (KEYENCE, BZ-9000).
<4-5.脊髄損傷モデルラットへ歯髄細胞移植後の脊髄組織内の生着歯髄細胞の定量解析>
 上記4-3.で作製した矢状断連続切片の内、脊髄正中線および正中線から左右両側にそれぞれ0.2および0.4 mmの位置の切片を各1枚ずつ、計5枚準備した。次いで、上記4-4.に記載の方法に準じて抗 GFP 抗体を用いた免疫染色を行った。損傷中心から吻・尾側にそれぞれ2mmの範囲内におけるGFP陽性細胞数を計測し、切片ごとのGFP陽性細胞数を定量化した。
<4-5. Quantitative analysis of engrafted dental pulp cells in spinal cord tissue after transplantation of dental pulp cells into spinal cord injury model rats>
4-3. Among the serial sagittal slices prepared in step 1, 5 slices were prepared, one each at a position of 0.2 mm and 0.4 mm respectively on the left and right sides from the midline of the spinal cord and the midline. Then, the above 4-4. According to the method described in 1., immunostaining using an anti-GFP antibody was performed. The number of GFP positive cells within a range of 2 mm from the center of injury to the rostral and caudal sides was measured, and the number of GFP positive cells per section was quantified.
<4-6.後肢の運動機能評価>
 BBBスコアを用いて、脊髄損傷モデルラットの後肢の運動機能を損傷直後より1週ごとに、7週間にわたり評価した。BBB locomotor rating scale とは、広く脊髄損傷実験で用いられている運動機能評価基準であり、対象ラットの後肢の挙動を評価基準に基づいてスコアリングする。詳細な評価基準は、図1に示すものである。
<4-6. Evaluation of hindlimb motor function>
Using the BBB score, the motor function of the hindlimbs of spinal cord injury model rats was evaluated every week for 7 weeks immediately after the injury. The BBB locomotor rating scale is a motor function evaluation standard widely used in spinal cord injury experiments, and the behavior of the hind limbs of the subject rat is scored based on the evaluation standard. Detailed evaluation criteria are shown in FIG.
<4-7.結果>
 免疫組織化学染色の結果を図13に示す。図13に示すように、S/S:DPC-S区の細胞移植とエダラボンの毎日投与との併用により、GAP-43陽性を示す再生軸索のほとんどは、GFAP陽性細胞へ浸潤していた。
 また、S/S:DPC-S区の細胞移植のみの区と比較して、S/S:DPC-S区の細胞移植とエダラボン投与とを併用した際には、脊髄損傷部位におけるGFP陽性細胞が有意に増加していた(図14a~c)。これは、神経損傷部位にFGF2処理していない歯髄細胞を移植する場合であっても、活性酸素除去剤を併用することにより歯髄細胞の生着を有意に増加できることを示す。
 さらに、図15のBBBスコアの結果が示すように、S/S:DPC-S区の細胞移植とエダラボン投与との併用を行ったものでは、エダラボン投与のみ、および、S/S:DPC-S区の細胞移植のみ(エダラボン投与せず)のBBBスコアと比較して、有意に運動活性の改善効果を示した。この結果は、神経損傷部位に歯髄細胞を移植する際、活性酸素除去剤を併用することで、歯髄細胞の生着率の向上に加えて、運動活性の改善効果を向上させることができることを示す。

 
<4-7. Result>
The results of immunohistochemical staining are shown in FIG. As shown in FIG. 13, most of the regenerated axons showing GAP-43 positivity infiltrated into GFAP-positive cells by the combined use of cell transplantation in the S / S: DPC-S section and daily administration of edaravone.
In addition, GFP positive cells at the site of spinal cord injury when cell transplantation of S / S: DPC-S group and edaravone administration were used in combination, compared with the group of cell transplantation only of S / S: DPC-S group Was significantly increased (FIGS. 14a-c). This shows that engraftment of dental pulp cells can be significantly increased by using an active oxygen scavenger in combination even when transplanting dental pulp cells not treated with FGF2 at the site of nerve injury.
Furthermore, as shown in the results of the BBB score in FIG. 15, in the case where cell transplantation in the S / S: DPC-S section and edaravone administration were performed in combination, only edaravone administration and S / S: DPC-S Compared with the BBB score of the cell transplantation alone (no edaravone administration), the motor activity was significantly improved. This result shows that when pulp cells are transplanted into nerve damage sites, the use of an active oxygen remover can improve the effect of improving motor activity in addition to improving the engraftment rate of dental pulp cells. .

Claims (18)

  1.  GABRB1遺伝子が発現しており、かつ、活性酸素耐性を有する歯髄細胞を含む、神経損傷の治療用移植材。 A transplant for treatment of nerve damage, which contains dental pulp cells expressing GABRB1 gene and having resistance to active oxygen.
  2.  請求項1に記載の神経損傷の治療用移植材であって、
     前記歯髄細胞が、FGF2処理されたものである、治療用移植材。
    The graft material for treatment of nerve injury according to claim 1,
    A therapeutic transplant, wherein the dental pulp cells are treated with FGF2.
  3.  請求項2に記載の神経損傷の治療用移植材であって、
     前記FGF2処理された歯髄細胞が、FGF2処理していない歯髄細胞と比較して、増加したGABRB1遺伝子の発現量を有する、治療用移植材。
    The graft material for treatment of nerve injury according to claim 2,
    A therapeutic transplant material, wherein the FGF2-treated dental pulp cells have an increased expression level of GABRB1 gene compared to dental pulp cells not treated with FGF2.
  4.  請求項1~3のいずれか一項に記載の神経損傷の治療用移植材であって、
     前記歯髄細胞が、MMP1遺伝子、DRD2遺伝子、ABCA6遺伝子、TMEM100遺伝子、THBD遺伝子、NTSR1遺伝子、および、SCG2遺伝子からなる群より選択される少なくとも一つの遺伝子をさらに発現している、治療用移植材。
    The graft material for treatment of nerve damage according to any one of claims 1 to 3,
    A therapeutic transplant material, wherein the dental pulp cells further express at least one gene selected from the group consisting of MMP1 gene, DRD2 gene, ABCA6 gene, TMEM100 gene, THBD gene, NTSR1 gene, and SCG2 gene.
  5.  請求項1~4のいずれか一項に記載の神経損傷の治療用移植材であって、
     前記FGF2処理が、FGF2を5ng/ml以上の濃度で含む培地を用いた培養である、治療用移植材。
    The graft material for treatment of nerve damage according to any one of claims 1 to 4,
    A therapeutic transplant, wherein the FGF2 treatment is a culture using a medium containing FGF2 at a concentration of 5 ng / ml or more.
  6.  請求項5に記載の神経損傷の治療用移植材であって、
     前記FGF2を含む培地を用いた培養が、少なくとも6日間行われる、治療用移植材。
    The graft material for treatment of nerve injury according to claim 5,
    A therapeutic transplant, wherein the culture using the medium containing FGF2 is performed for at least 6 days.
  7.  請求項3に記載の神経損傷の治療用移植材であって、
     前記FGF2処理していない歯髄細胞と比較して、増加したGABRB1遺伝子の発現量が10倍以上である、
    治療用移植材。
    The graft material for treatment of nerve injury according to claim 3,
    Compared with the dental pulp cells not treated with FGF2, the increased expression level of GABRB1 gene is 10 times or more,
    Therapeutic implants.
  8.  請求項1~7のいずれか一項に記載の神経損傷の移植用治療材であって、
     前記神経損傷が、脊髄損傷、脳梗塞、脳内出血、くも膜下出血、脊髄出血、椎間板ヘルニアによる神経の圧迫損傷、坐骨神経痛、又は、糖尿病による末梢神経損傷である、治療用移植剤。
    A therapeutic agent for transplantation of nerve damage according to any one of claims 1 to 7,
    A therapeutic transplant, wherein the nerve damage is spinal cord injury, cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, spinal cord hemorrhage, nerve compression injury due to herniated disc, sciatica, or peripheral nerve injury caused by diabetes.
  9.  活性酸素除去剤と併用して神経損傷の治療に用いられる、請求項1~8のいずれか一項に記載の治療用移植材。 The therapeutic transplant according to any one of claims 1 to 8, which is used in combination with an active oxygen scavenger for the treatment of nerve damage.
  10.  請求項9に記載の神経損傷の治療用移植材であって、
     前記活性酸素除去剤が、エダラボン、ビタミンC、Nrf2誘導剤、および、グルタチオン活性誘導剤からなる群より選択される少なくとも一つの活性酸素除去剤である、治療用移植材。
    The graft material for treatment of nerve injury according to claim 9,
    A therapeutic transplant, wherein the active oxygen scavenger is at least one active oxygen scavenger selected from the group consisting of edaravone, vitamin C, Nrf2 inducer, and glutathione activity inducer.
  11.  神経損傷を治療する方法であって、
     請求項1~8のいずれか一項に記載の神経損傷の治療用移植材を、神経損傷部位に移植する工程を含む、治療方法。
    A method of treating nerve damage,
    A therapeutic method comprising the step of transplanting the nerve injury treatment graft material according to any one of claims 1 to 8 to a nerve injury site.
  12.  神経損傷を治療する方法であって、
     活性酸素除去剤と併用して、下記i)またはii)の神経損傷の治療用移植材を神経損傷部位に移植する工程を含む、治療方法:
    i)請求項1~8のいずれか一項に記載の神経損傷の治療用移植材、または、
    ii)FGF2処理によりGABRB1遺伝子の発現量が亢進する歯髄細胞を含む神経損傷の治療用移植材。
    A method of treating nerve damage,
    In combination with an active oxygen scavenger, a method of treatment comprising the step of transplanting the following i) or ii) nerve injury treatment graft material into a nerve injury site:
    i) the graft material for treatment of nerve injury according to any one of claims 1 to 8, or
    ii) A transplant for treatment of nerve damage including dental pulp cells whose GABRB1 gene expression level is enhanced by FGF2 treatment.
  13.  神経損傷の治療用移植材を製造する方法であって、
     歯髄幹細胞のGABRB1遺伝子の発現を測定する工程と
     GABRB1遺伝子を発現している歯髄細胞を選択する工程と
    を含む、製造方法。
    A method of manufacturing an implant for the treatment of nerve injury comprising:
    A production method comprising a step of measuring the expression of a GABRB1 gene in a dental pulp stem cell and a step of selecting a dental pulp cell expressing the GABRB1 gene.
  14.  請求項13に記載の神経損傷の治療用移植材を製造する方法であって、
     MMP1遺伝子、DRD2遺伝子、ABCA6遺伝子、TMEM100遺伝子、THBD遺伝子、NTSR1遺伝子、および、SCG2遺伝子からなる群より選択される少なくとも一つの遺伝子をさらに測定し、前記群より選択される少なくとも一つの遺伝子を発現している歯髄細胞を選択する工程をさらに含む、製造方法。
    A method for producing an implant for the treatment of nerve injury according to claim 13,
    Further measure at least one gene selected from the group consisting of MMP1 gene, DRD2 gene, ABCA6 gene, TMEM100 gene, THBD gene, NTSR1 gene, and SCG2 gene, and express at least one gene selected from the group The manufacturing method which further includes the process of selecting the dental pulp cell which is carrying out.
  15.  請求項13または14に記載の神経損傷の治療用移植材を製造する方法であって、
     前記歯髄細胞の遺伝子発現を測定する工程の前に、前記歯髄細胞を、FGF2を含む培地中で培養する工程を含む、製造方法。
    A method for producing an implant for treating nerve damage according to claim 13 or 14,
    A production method comprising culturing the dental pulp cell in a medium containing FGF2 before the step of measuring gene expression of the dental pulp cell.
  16.  請求項13~15のいずれか一項に記載の神経損傷の治療用移植材を製造する方法であって、
     前記歯髄細胞を、FGF2を含む培地中で培養する工程における前記培養が、少なくとも6日間行われる、製造方法。
    A method for producing a graft for treatment of nerve damage according to any one of claims 13 to 15, comprising
    The production method, wherein the culturing in the step of culturing the dental pulp cells in a medium containing FGF2 is performed for at least 6 days.
  17.  請求項13~16のいずれか一項に記載の神経損傷の治療用移植材を製造する方法であって、
     前記GABRB1遺伝子を発現している歯髄細胞を選択する工程が、FGF2非処理の歯髄細胞のGABRB1遺伝子の発現量と比較して10倍以上高いGABRB1遺伝子の発現量を有する歯髄細胞を選択する工程である、製造方法。
    A method for producing an implant for the treatment of nerve damage according to any one of claims 13 to 16, comprising
    The step of selecting dental pulp cells expressing the GABRB1 gene is a step of selecting dental pulp cells having a GABRB1 gene expression level that is 10 times or more higher than the GABRB1 gene expression level of FGF2-untreated dental pulp cells. A manufacturing method.
  18.  請求項13~17のいずれか一項に記載の神経損傷の治療用移植材を製造する方法であって、
     前記神経損傷が、脊髄損傷、脳梗塞、脳内出血、くも膜下出血、脊髄出血、椎間板ヘルニアによる神経の圧迫損傷、坐骨神経痛、又は、糖尿病による末梢神経損傷である、製造方法。
    A method for producing an implant for treating nerve damage according to any one of claims 13 to 17, comprising
    The production method, wherein the nerve damage is spinal cord injury, cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, spinal cord hemorrhage, nerve compression injury due to disc herniation, sciatica, or peripheral nerve injury due to diabetes.
PCT/JP2016/071050 2016-07-15 2016-07-15 Graft material for treating nerve damage including dental pulp cells WO2018011989A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018527366A JP6998057B2 (en) 2016-07-15 2016-07-15 Nerve injury treatment transplant material containing dental pulp cells
PCT/JP2016/071050 WO2018011989A1 (en) 2016-07-15 2016-07-15 Graft material for treating nerve damage including dental pulp cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/071050 WO2018011989A1 (en) 2016-07-15 2016-07-15 Graft material for treating nerve damage including dental pulp cells

Publications (1)

Publication Number Publication Date
WO2018011989A1 true WO2018011989A1 (en) 2018-01-18

Family

ID=60952457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071050 WO2018011989A1 (en) 2016-07-15 2016-07-15 Graft material for treating nerve damage including dental pulp cells

Country Status (2)

Country Link
JP (1) JP6998057B2 (en)
WO (1) WO2018011989A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509034A (en) * 1994-11-08 1998-09-08 ダイアクリン・インコーポレーテツド Porcine cortical cells and their use in treating neurological deficits due to neurodegenerative diseases
WO2007119578A1 (en) * 2006-03-29 2007-10-25 Kaneka Corporation Agent for improving nervous system cell functions
WO2014185470A1 (en) * 2013-05-14 2014-11-20 株式会社再生医療推進機構 Method for producing graft material for treating nerve damage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509034A (en) * 1994-11-08 1998-09-08 ダイアクリン・インコーポレーテツド Porcine cortical cells and their use in treating neurological deficits due to neurodegenerative diseases
WO2007119578A1 (en) * 2006-03-29 2007-10-25 Kaneka Corporation Agent for improving nervous system cell functions
WO2014185470A1 (en) * 2013-05-14 2014-11-20 株式会社再生医療推進機構 Method for producing graft material for treating nerve damage

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
HIDEFUMI FUKUMITSU ET AL.: "FGF2 de Shori shita Hito Shizui Saibo no Ishoku ni yoru Sekizui Sonsho Model Rat no Undo Kino Kaifuku Koka", ABSTRACTS OF ANNUAL MEETING OF PHARMACEUTICAL SOCIETY OF JAPAN, vol. 135, 2015 *
HIDEFUMI FUKUMITSU ET AL.: "Sekizui Sonsho Model Rat no Koshi Undo Kino Mahi ni Taisuru Hito Shizui Saibo Ishoku no Koka", REGENERATIVE MEDICINE, vol. 15, March 2016 (2016-03-01), pages 132 *
HIDEFUMI FUKUMITSU: "Sekizui Sonsho Chiryo o Shiko shita FGF2 Toyo to Shizui Saibo Ishoku no Hirinsho Kenkyu", CONFERENCE ON MEDICINE AND BIOLOGY OF THE BRAIN SHOROKU, vol. 60, January 2016 (2016-01-01), pages 7 - 23 *
HIDEFUMI FUKUMITSU: "Shizui Saibo Ishoku ga Sekizui Sonsho Rat no Undo Kino Kaifuku ni Oyobosu Eikyo to FGF2 no Koka", A LECTURE AT THE 20TH ACADEMIC-INDUSTRIAL PARTNERSHIP FORUM, March 2016 (2016-03-01) *
KEN SUGIYAMA ET AL.: "Sekizui Sonsho Chiryo o Mokuteki to shita Hito Shizui Saibo no bFGF ni Taisuru Otosei no Kento", THE ANNUAL MEETING OF THE JAPANESE SOCIETY FOR BONE AND MINERAL RESEARCH: PROGRAM & ABSTRACTS, vol. 33, 2015, pages 163 *
KEN SUGIYAMA ET AL.: "Sekizui Sonsho Chiryo o Mokuteki to shita Hito Shizui Saibo no FGF2 ni Taisuru Donor Kojinsa no Kento", DAI 70 KAI JAPANESE STOMATOLOGICAL SOCIETY GAKUJUTSU SHUKAI PROGRAM·SHOROKUSHU, April 2016 (2016-04-01), pages 223 *
KEN SUGIYAMA ET AL.: "Sekizui Sonsho Chiryo o Mokuteki to shita Hito Shizui Saibo no FGF2 ni Taisuru Donor Kojinsa no Kento", REGENERATIVE MEDICINE, vol. 15, March 2016 (2016-03-01), pages 231 *
OSATHANON T. ET AL.: "Neurogenic differentiation of human dental pulp stem cells using different induction protocols.", ORAL DIS., vol. 20, no. 4, 2014, pages 352 - 358, XP055460090 *
TAKEDA-KAWAGUCHI T. ET AL.: "Derivation of iPSCs after culture of human dental pulp cells under defined conditions.", PLOS ONE, vol. 9, no. 12, 2014, pages 1 - 15, XP055460092 *
YOUNG PARK S. ET AL.: "Epigallocatechin gallate protects against nitric oxide-induced apoptosis via scavenging ROS and modulating the Bcl-2 family in human dental pulp cells.", J. TOXICOL. SCI., vol. 38, no. 3, 2013, pages 371 - 378, XP055459784 *

Also Published As

Publication number Publication date
JPWO2018011989A1 (en) 2019-04-25
JP6998057B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
KR101834687B1 (en) Novel method for producing differentiated cells
JP6316938B2 (en) Method for preparing induced neural stem cells reprogrammed from non-neuronal cells using HMGA2
US20060247195A1 (en) Method of altering cell properties by administering rna
US10870830B2 (en) Method for culturing differentiation-promoting and -sustaining spheroid form of tonsil-derived stem cells
US20220213502A1 (en) Methods and Compositions for Selective Generation of Dopaminergic Precursors
JP2020202865A (en) Neural precursor cell populations and uses thereof
KR20210018832A (en) Cell composition and use thereof
JP2023116525A (en) Method for reprogramming fibroblasts to retinal cells
US20210246422A1 (en) Method to generate induced oligodendrocyte-lineage cells and treatment using such cells
CN112839709A (en) Neural stem cell compositions and methods for treating neurodegenerative diseases
JP5268009B2 (en) Methods for establishing and differentiating adult pancreatic stem cells
JP6998057B2 (en) Nerve injury treatment transplant material containing dental pulp cells
US20080233090A1 (en) Method of Treatment by Administration of Rna
US20210228741A1 (en) Methods and compositions to stimulate retinal regeneration
US10662407B2 (en) Method for controlling differentiation of embryonic stem cells into adipocytes or kidney precursor cells by regulating SIRT1 expression
JP5294041B2 (en) Pancreatic cell regenerative transplant kit for pancreatic disease or diabetes
WO2019093047A1 (en) Method for producing functional exocrine gland in vitro, and exocrine gland produced thereby
US20220396772A1 (en) Materials and methods for generating therapeutic mesenchymal stem cells
AU2017202019B2 (en) Novel Method for Producing Differentiated Cells
KR20230140802A (en) Composition for enhancing function of stem cells and uses thereof
Tütüncü Generation of a reporter-retinitis pigmentosa mouse model for retinal regeneration studies using crispr/dcas9-based artificial transcription factors
JP6654323B2 (en) Cells capable of forming stratified epithelial tissue and method for producing the same
Xue et al. Favorable proliferation and differentiation capabilities of neural precursor cells derived from rat cochlear nucleus
Sorensen Stem cell applications in diseases
JP2020058333A (en) Neural stem cell therapy for cerebral stroke

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018527366

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908889

Country of ref document: EP

Kind code of ref document: A1