WO2018011873A1 - Indoor heat exchanging unit and air conditioner - Google Patents

Indoor heat exchanging unit and air conditioner Download PDF

Info

Publication number
WO2018011873A1
WO2018011873A1 PCT/JP2016/070512 JP2016070512W WO2018011873A1 WO 2018011873 A1 WO2018011873 A1 WO 2018011873A1 JP 2016070512 W JP2016070512 W JP 2016070512W WO 2018011873 A1 WO2018011873 A1 WO 2018011873A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat exchanger
exchange unit
heat transfer
indoor
Prior art date
Application number
PCT/JP2016/070512
Other languages
French (fr)
Japanese (ja)
Inventor
松本 崇
教将 上村
繁佳 松井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018527277A priority Critical patent/JP6605144B2/en
Priority to PCT/JP2016/070512 priority patent/WO2018011873A1/en
Publication of WO2018011873A1 publication Critical patent/WO2018011873A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • the present invention relates to an indoor heat exchange unit that transfers heat by radiation, and an air conditioner including the heat exchange unit.
  • an indoor heat exchange unit is composed of a blower, a heat exchanger, and a housing for storing them.
  • a conventional indoor heat exchange unit an indoor heat exchange unit in which a blower is arranged upstream of the heat exchanger and an indoor heat exchange unit in which a heat exchanger is arranged downstream of the heat exchanger are proposed.
  • the heat exchange between the airflow and the refrigerant is performed in the heat exchanger in which the refrigerant is supplied from the outside by blowing the airflow to the heat exchanger. Done.
  • the airflow is cooled or heated, and the airflow is blown into the room from the blowout port of the housing, thereby achieving indoor air conditioning.
  • indoor air conditioning for example, in the case of an indoor heat exchange unit in which a blower is arranged on the downstream side of the heat exchanger, in the heat exchanger in which the refrigerant is supplied from the outside by sucking the air flow from the downstream side of the heat exchanger, The heat exchange is performed.
  • the airflow is cooled or heated, and the airflow is blown into the room from the blowout port of the housing, thereby achieving indoor air conditioning.
  • Such an indoor heat exchange unit adjusts indoor air to a desired temperature by forced convection in which air is circulated through the heat exchanger and heat is exchanged with the internal refrigerant.
  • air is circulated through the heat exchanger and heat is exchanged with the internal refrigerant.
  • indoor heat exchange unit does not directly transfer heat with the human body surface, the comfort of the thermal environment is impaired.
  • the conventional indoor heat exchange unit does not have a wide heat transfer surface that has a large difference in surface temperature from the air temperature and faces the living space, and cannot obtain a radiation effect for transmitting and receiving infrared rays. It was.
  • a conventional indoor heat exchange unit is newly provided with a large radiant panel that does not allow air flow to generate a radiant effect, the amount of heat exchanger that performs convection heat transfer decreases, and the temperature of the air There is a problem that the time required for raising the temperature increases and the comfort of the user is lowered, and a problem that the indoor heat exchange unit is enlarged.
  • the present invention has been made to solve the above-described problems, and can heat or cool an object by both heat transfer modes of convection and radiation, and can form a compact indoor heat exchange unit. It is an object of the present invention to obtain an indoor heat exchange unit that can improve the comfort of the user and an air conditioner equipped with the heat exchange unit.
  • the indoor heat exchange unit has a plurality of flat cross-sectional shapes in which a first opening and a second opening are formed, and a casing installed indoors and a flow path through which a heat medium flows are formed.
  • the first heat transfer tubes are arranged side by side with a first specified interval so that air flows between the first heat transfer tubes, and the first opening is provided to the room.
  • a first heat exchanger that is exposed to the heat and transmits heat of the heat medium to the room by radiation, and is disposed at a position closer to the inner side of the housing than the first heat exchanger.
  • a second heat exchanger having a gap through which air flows, and air is sucked from the first opening, and the air that has passed through the first heat exchanger and the second heat exchanger is blown out from the second opening. And a blower.
  • the air conditioner according to the present invention supplies heat to the indoor heat exchange unit according to the present invention and the heat medium flowing through the first heat exchanger and the second heat exchanger of the indoor heat exchange unit.
  • a heat source unit for generating heat to the indoor heat exchange unit according to the present invention and the heat medium flowing through the first heat exchanger and the second heat exchanger of the indoor heat exchange unit.
  • the indoor heat exchange unit In the indoor heat exchange unit according to the present invention, the first heat exchanger is exposed from the first opening of the casing. For this reason, the indoor heat exchange unit which concerns on this invention can heat or cool a target object with the heat-transfer form by radiation using a 1st heat exchanger. Moreover, the indoor heat exchange unit which concerns on this invention can heat or cool the air suck
  • the indoor heat exchanging unit according to the present invention arranges a plurality of first heat transfer tubes having a flat cross-sectional shape in which a flow path through which a heat medium flows is formed, arranged at first predetermined intervals, so that the first heat exchange is performed.
  • the first heat exchanger can also function as a convection heat exchanger, and the air sucked from the first opening is converted into the first heat exchanger and the second heat exchanger.
  • Both exchangers can be heated or cooled by convective heat transfer. That is, the indoor heat exchange unit according to the present invention can increase the mounting amount of the heat exchanger that performs convective heat transfer while forming the indoor heat exchange unit compact. Therefore, the indoor heat exchange unit and the air conditioner according to the present invention can heat or cool an object by both heat transfer modes of convection and radiation, and form the indoor heat exchange unit in a compact manner. User comfort can be improved.
  • FIG. 1 It is a perspective perspective view which shows the indoor heat exchange unit which concerns on Embodiment 1 of this invention. It is the longitudinal cross-sectional view which observed the indoor heat exchange unit which concerns on Embodiment 1 of this invention from the side. It is a cross-sectional view which shows the 1st heat exchanger and 2nd heat exchanger which concern on Embodiment 1 of this invention. It is a cross-sectional view of the 1st heat exchanger which concerns on Embodiment 1 of this invention, and a 2nd heat exchanger, and is a figure which shows the radiation of a 1st heat exchanger. It is a perspective view which shows the 1st heat exchanger and 2nd heat exchanger which concern on Embodiment 2 of this invention.
  • FIG. 1 is a perspective perspective view showing an indoor heat exchange unit according to Embodiment 1 of the present invention.
  • FIG. 2 is a longitudinal sectional view of the indoor heat exchange unit according to Embodiment 1 of the present invention observed from the side.
  • FIG. 3 is a cross-sectional view showing the first heat exchanger and the second heat exchanger according to Embodiment 1 of the present invention.
  • FIG. 4 is a cross-sectional view of the first heat exchanger and the second heat exchanger according to Embodiment 1 of the present invention, and is a view showing radiation of the first heat exchanger.
  • the housing 10 is shown in a transparent manner for easy understanding of the arrangement positions of the first heat exchanger 31 and the second heat exchanger 32.
  • 3 and 4 are cross-sectional views of the first heat exchanger 31 and the second heat exchanger 32 taken along the line AA in FIG.
  • the indoor heat exchange unit 1 according to Embodiment 1 is installed and used, for example, on a floor near an indoor wall, and includes a first heat exchanger 31, a second heat exchanger 32, a blower 20, and the like. And a housing 10 for storing them.
  • the housing 10 has, for example, a flat rectangular parallelepiped shape whose depth is smaller than the height and width, and the first opening 11 is formed on one side which is a wide flat surface having the height and width. .
  • the first opening 11 is on the opposite side of the wall and faces the indoor side.
  • the first opening 11 occupies a large area, for example, occupies most of the wide surface facing the room side of the housing 10.
  • a second opening 12 is formed in the housing 10 at a position above the first opening, such as an upper surface.
  • the height of the first opening 11 is, for example, about 50 to 100 cm from the floor.
  • the height of the second opening 12 is, for example, about 10 cm higher than the height of the first opening 11.
  • the second opening 12 is provided on the upper surface of the housing 10 or on the first opening 11 on the front side facing the room.
  • casing 10 was made into the rectangular parallelepiped shape, it is a rectangular parallelepiped shape where the upper surface inclined, Comprising: You may provide in the inclined upper surface.
  • the opening area of the first opening 11 is larger than the opening area of the second opening 12.
  • the blower 20 is a propeller fan, for example, and is disposed below the second opening 12. By driving the blower 20, indoor air is drawn into the housing 10 from the first opening 11 and blown out from the second opening 12 to the outside of the housing 10 (that is, indoors).
  • the first heat exchanger 31 is provided so as to be exposed from the first opening 11 toward the indoor side.
  • the first heat exchanger 31 is disposed along the opening surface of the first opening 11.
  • the first heat exchanger 31 includes a plurality of first heat transfer tubes 41 extending along the vertical direction, for example.
  • Each of the first heat transfer tubes 41 has a flat shape with a rectangular cross section, for example, and a plurality of flow paths 41a through which a heat medium such as water or refrigerant flows is formed. Further, each of the first heat transfer tubes 41 is arranged side by side in the horizontal direction with a first specified interval 41b. Between the adjacent first heat transfer tubes 41, air flows from the front side to the back side of the first opening 11.
  • the first heat transfer tube 41 is formed by extruding aluminum having high thermal conductivity.
  • the cross-sectional shape of the first heat transfer tube 41 is rectangular, but of course, the cross-sectional shape of the first heat transfer tube 41 may be other shapes (elliptical shape, oval shape, etc.). Good.
  • the second heat exchanger 32 is located behind the first heat exchanger 31 when viewed from the outside of the housing 10 that is the front of the first opening 11, in other words, the housing 10 is more than the first heat exchanger 31. For example, it is arranged facing the first heat exchanger 31 at a position on the inner side of the first heat exchanger 31.
  • the second heat exchanger 32 includes a plurality of second heat transfer tubes 42 extending along, for example, the vertical direction.
  • Each of the second heat transfer tubes 42 has a flat shape with a rectangular cross section, for example, and a plurality of flow paths 42a in which a heat medium such as water or a refrigerant circulates are formed therein.
  • the second heat transfer tubes 42 are arranged side by side in the horizontal direction with a second specified interval 42b.
  • the second specified interval 42b is smaller than the first specified interval 41b.
  • the second heat transfer tube 42 is formed by extruding aluminum having high thermal conductivity.
  • the cross-sectional shape of the second heat transfer tube 42 is rectangular, but of course, the cross-sectional shape of the second heat transfer tube 42 may be other shapes (elliptical shape, oval shape, etc.). Good.
  • circulates a heat medium to the flow path 41a of the 1st heat exchanger 31 and the flow path 42a of the 2nd heat exchanger 32 is not specifically limited, For example, it is set as the following structures. That is, as shown in FIG. 1, both ends of the first heat transfer pipe 41 of the first heat exchanger 31 are inserted into the branch pipe 70. Similarly, both ends of the second heat transfer pipe 42 of the second heat exchanger 32 are inserted into the branch pipe 70. Thereby, the heat medium supplied from one of the branch pipes 70 flows into the flow path 41 a of the first heat exchanger 31 and the flow path 42 a of the second heat exchanger 32.
  • the branch tube 70 has a function of fixing these heat transfer tubes.
  • the indoor heat exchange unit 1 configured as described above.
  • a heating operation in which a heat medium having a temperature higher than the room temperature is circulated through the flow path 41a of the first heat exchanger 31 and the flow path 42a of the second heat exchanger 32 will be described.
  • a heat medium having a temperature lower than the room temperature may be circulated through the flow path 41a of the first heat exchanger 31 and the flow path 42a of the second heat exchanger 32.
  • the blower 20 When operating the indoor heat exchange unit 1, the blower 20 is driven, and a heat medium having a temperature higher than the room temperature is circulated through the flow path 41a of the first heat exchanger 31 and the flow path 42a of the second heat exchanger 32.
  • the indoor heat exchange unit 1 can heat the room by radiation.
  • the indoor heat exchange unit 1 can be heated by forced convection. That is, by driving the blower 20, indoor air is sucked into the housing 10 from the first opening 11. At this time, the air sucked into the housing 10 passes through the first heat exchanger 31 (between the first heat transfer tubes 41) and then the second heat exchanger 32 (between the second heat transfer tubes 42). Pass through. That is, the second heat exchanger 32 is downstream of the first heat exchanger 31 in the air flow generated by the blower 20. At this time, the air passing through the first heat exchanger 31 and the second heat exchanger 32 is heated by a high-temperature heat medium that flows through these heat exchangers. The heated air is blown out from the second opening 12 into the room.
  • each of the front surface and the upper surface of the housing 10 is released by releasing radiant heat from the first opening 11 and blowing out warm air from the second opening 12. It becomes possible to supply heat into the room. For this reason, the indoor heat exchange unit 1 according to the first embodiment can reduce the temperature unevenness of the room, and the comfort of the user can be improved.
  • the indoor heat exchange unit 1 allows the first heat exchanger 31 to perform heat exchange by forced convection by allowing air to pass through both the first heat exchanger 31 and the second heat exchanger 32. And the heat exchange performance is improved. That is, after the air is heated to some extent by the first heat exchanger 31 that is a heat exchanger for radiation at the front stage, it is further heated by the second heat exchanger 32 that is a heat exchanger for convection at the rear stage. The temperature of the room air sucked from the one opening 11 can be increased to a temperature suitable for room heating. For this reason, it is not necessary to enlarge the heat exchanger for convection, and the indoor heat exchange unit 1 can be formed compactly.
  • the indoor heat exchange unit 1 includes an electronic board or the like that controls the blower 20 or the like
  • the electronic board or the like may be disposed between the second heat exchanger 32 and the rear wall of the housing 10. Good.
  • An electronic board or the like can be accommodated in the housing 10 while the indoor heat exchange unit 1 is made compact.
  • the indoor heat exchange unit 1 according to Embodiment 1 has a configuration in which the opening area of the first opening 11 on the suction side is larger than the opening area of the second opening 12 on the blowing side. For this reason, the speed of intake air can be reduced and the passage loss can be reduced, and the speed of blowout can be increased to allow the temperature-controlled wind to reach far into the room. You may adjust the angle which blows off by providing a louver etc. in the 2nd opening part 12. FIG. On the other hand, since the first opening 11 used for radiation has a large opening area, the air speed (wind speed) is reduced, and gentle temperature control is possible.
  • the indoor heat exchange unit 1 according to the first embodiment uses the first specified interval 41 b that is the interval between the first heat transfer tubes 41 of the first heat exchanger 31 as the second heat transfer of the second heat exchanger 32. It is smaller than the second specified interval 42b, which is the interval between the heat tubes 42. For this reason, the indoor heat exchange unit 1 according to Embodiment 1 can efficiently exchange heat in the second heat exchanger 32 even if the temperature difference between the air and the heat medium becomes small. .
  • the first heat transfer pipe 41 of the first heat exchanger 31 and the second heat transfer pipe 42 of the second heat exchanger 32 are arranged in the vertical direction, but the arrangement posture is limited. is not.
  • the 1st heat exchanger tube 41 of the 1st heat exchanger 31 and the 2nd heat exchanger tube 42 of the 2nd heat exchanger 32 both use the same pipe
  • the branch pipe 70 was comprised with the circular pipe, you may comprise the branch pipe 70 other than a circular pipe.
  • the first heat transfer pipe 41 of the first heat exchanger 31 and the second heat transfer pipe 42 of the second heat exchanger 32 are fixed by the branch pipe 70. You may fix with a member.
  • the first heat transfer tube 41 of the first heat exchanger 31 and the second heat transfer tube 42 of the second heat exchanger 32 are made of aluminum, but may be made of other materials.
  • the first heat transfer tube 41 and the second heat exchanger 32 of the first heat exchanger 31 are made of a material having a good heat conductivity such as copper or stainless steel or a material through which a heat medium can be circulated such as a resin using alumina powder as a filler.
  • the second heat transfer tube 42 may be formed.
  • a propeller fan is used as the blower 20.
  • the blower 20 may be a blower such as a crossflow fan or a turbo fan.
  • the rotating shaft of the blower 20 is not limited to vertical, but may be oblique or horizontal.
  • the second opening 12 may be formed on the front side (side surface on which the first opening 11 is formed) instead of the upper surface of the housing 10.
  • the indoor side is at a higher temperature than the first heat exchanger 31 or the second heat exchanger 32.
  • the 1st heat exchanger 31 cools by absorbing the radiation heat from a room (anti-radiation).
  • the first heat exchanger 31 uses radiation, and the description of the radiation of the first heat exchanger 31 described above can be replaced with the description of anti-radiation during the cooling operation.
  • the air passing through the first heat exchanger 31 and the second heat exchanger 32 is cooled by a cold heat medium flowing through these heat exchangers.
  • FIG. The second heat exchanger 32 is not limited to the configuration of the first embodiment, and may include a heat transfer fin between the adjacent second heat transfer tubes 42, for example.
  • items not particularly described are the same as those in the first embodiment.
  • FIG. 5 is a perspective view showing a first heat exchanger and a second heat exchanger according to Embodiment 2 of the present invention.
  • FIG. 6 is a cross-sectional perspective view showing a first heat exchanger and a second heat exchanger according to Embodiment 2 of the present invention. 6 is a cross-sectional view of the first heat exchanger 31 and the second heat exchanger 32 taken along the line AA in FIG.
  • the second heat transfer tubes 42 of the second heat exchanger 32 are arranged side by side with a second specified interval 42b. And between the adjacent 2nd heat exchanger tubes 42, the heat transfer fin 50 which contacts these 2nd heat exchanger tubes 42 is provided.
  • the heat transfer fins 50 are formed so as to fold a plurality of thin plates less than 1 mm, for example, so as to have a width of a second specified interval 42 b that is a gap between the second heat transfer tubes 42.
  • the heat transfer fins 50 are configured to promote convective heat transfer by providing protrusions, cut-and-raised shapes, and the like on the surface.
  • the material of the heat transfer fin 50 is not limited like the 2nd heat transfer tube 42, in this Embodiment 2, aluminum with high heat conductivity is used. Moreover, in this Embodiment 2, the 2nd heat exchanger tube 42 is also formed with aluminum with high heat conductivity.
  • the second heat transfer tubes 42 and the heat transfer fins 50 are connected to each other by metal bonding including, for example, a sawlock brazing method.
  • the first heat exchanger 31 in which the plurality of first heat transfer tubes 41 are arranged at intervals of the first specified interval 41b does not include heat transfer fins between the adjacent first heat transfer tubes 41. Yes. Accordingly, heat is radiated from the surface of the first heat transfer tube 41 into the room. And the 1st specified space
  • the first specified interval 41b is, for example, an interval of less than 5 mm so that the finger of the child does not touch the heat transfer fins 50 of the second heat exchanger 32.
  • the room can be heated by both the convection and radiation heat transfer modes, and the user Can improve comfort.
  • the first heat exchanger 31 in addition to the second heat exchanger 32, the first heat exchanger 31 also functions as a convection heat exchanger,
  • the indoor heat exchange unit 1 can be made compact.
  • the indoor heat exchange unit 1 according to the second embodiment includes the heat transfer fins 50 in the second heat exchanger 32, the efficiency is improved even when the temperature difference between the air and the heat medium is reduced. Heat exchange.
  • the first specified interval 41b which is the gap between the first heat transfer tubes 41, has a child's finger placed on the heat transfer fin 50 of the second heat exchanger 32. In order not to touch, it is the interval where children's fingers do not enter. For this reason, the indoor heat exchange unit 1 according to the second embodiment can prevent the user and child from touching the heat transfer fins 50 of the second heat exchanger 32 and being injured.
  • the first specified interval 41 b that is the interval between the first heat transfer tubes 41 of the first heat exchanger 31 is the first interval that is the interval between the second heat transfer tubes 42 of the second heat exchanger 32. It is larger than the two specified intervals 42b. However, if the first specified interval 41b is an interval that does not allow the user's fingers to enter, the first specified interval 41b may be smaller than the second specified interval 42b as in the first embodiment. Even if the temperature difference between the air and the heat medium is reduced in the second heat exchanger 32, both can be more efficiently heat-exchanged.
  • the corrugated fin formed by folding a plurality of thin plates is exemplified as the heat transfer fin 50.
  • the heat transfer fin 50 may be configured by other fin shapes such as a plate fin.
  • Embodiment 3 FIG. In the third embodiment, an example of an air conditioner according to the present invention, that is, an example of an air conditioner including the indoor heat exchange unit according to the present invention will be described.
  • items that are not particularly described are the same as those in Embodiment 1 or Embodiment 2.
  • FIG. 7 is a circuit diagram showing an air conditioner according to Embodiment 3 of the present invention.
  • the air conditioner 200 includes an indoor heat exchange unit 1 and a heat source unit 100 that supplies heat to a heat medium flowing through the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1.
  • the heat source unit 100 includes a refrigeration cycle circuit 110.
  • the refrigeration cycle circuit 110 is configured by connecting a compressor 111, a water-refrigerant heat exchanger 112, for example, a refrigerant flow rate control device 113 such as an expansion valve, and a heat source side heat exchanger 114.
  • the water-refrigerant heat exchanger 112 includes a refrigerant channel and a water channel.
  • the compressor 111 and the refrigerant flow control device 113 are connected to the refrigerant flow path of the water-refrigerant heat exchanger 112.
  • refrigerants such as R410A, R32, and CO 2 that enable a vapor compression cycle circulate.
  • the water-refrigerant heat exchanger 112 has a water circuit in which the water flow path of the water-refrigerant heat exchanger 112 is connected to the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1 by piping. 120 constitutes a part.
  • the water circuit 120 includes a water flow path of the water-refrigerant heat exchanger 112, a pump 121, and the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1 connected to each other by piping. Yes. Water circulates in the water circuit 120.
  • the pump 121 for circulating water in the water circuit 120 may be mounted on the heat source unit 100 or may be mounted on the indoor heat exchange unit 1.
  • brine or the like may be circulated in the water circuit 120.
  • the 1st heat exchanger 31 and the 2nd heat exchanger 32 are connected in series so that the water which flowed through the 1st heat exchanger 31 may flow through the 2nd heat exchanger 32. Has been.
  • the air conditioner 200 configured as described above is operated, the high-temperature gaseous refrigerant discharged from the compressor 111 of the heat source unit 100 flows into the refrigerant flow path of the water-refrigerant heat exchanger 112. Then, the high-pressure gaseous refrigerant that has flowed into the refrigerant flow path of the water-refrigerant heat exchanger 112 enters a gas-liquid two-phase state to supply heat to the water flowing through the water flow path of the water-refrigerant heat exchanger 112, It becomes a liquid refrigerant.
  • the liquid refrigerant is reduced in pressure by passing through the refrigerant flow control device 113 to be in a gas-liquid two-phase state, gasified by absorbing heat from outside air in the heat source side heat exchanger 114, and returned to the compressor 111.
  • the water heated by the water-refrigerant heat exchanger 112 is sent to the indoor heat exchange unit 1 by the pump 121. Then, the water sent to the indoor heat exchange unit 1 exchanges heat with the indoor air in the indoor heat exchange unit 1 and returns to the water-refrigerant heat exchanger 112 at a low temperature.
  • the first heat exchanger 31 is connected to the upstream side of the second heat exchanger 32. For this reason, the high-temperature water heated by the water-refrigerant heat exchanger 112 first flows into the first heat exchanger 31, and the amount of radiant heat of the first heat exchanger 31 can be increased.
  • the second heat exchanger 32 with high heat exchange efficiency on the downstream side of the first heat exchanger 31, it is possible to efficiently exchange heat even if the temperature difference between air and hot water becomes small. .
  • Embodiment 4 The indoor heat exchange unit according to the present invention may be provided with the following filter.
  • items that are not particularly described are the same as those in the first to third embodiments.
  • FIG. 8 is a perspective view showing the vicinity of the first heat exchanger and the second heat exchanger of the indoor heat exchange unit according to Embodiment 4 of the present invention.
  • FIG. 9 is a cross-sectional view showing the vicinity of the first heat exchanger and the second heat exchanger of the indoor heat exchange unit according to Embodiment 4 of the present invention. 9 is a cross-sectional view taken along the line AA of FIG.
  • the first heat exchanger 31 according to the fourth embodiment has the same configuration as that of the first embodiment. That is, the first heat exchanger 31 according to the fourth embodiment includes a plurality of first heat transfer tubes 41. Each of the first heat transfer tubes 41 has a flat cross section, and for example, a plurality of flow paths 41a through which a heat medium such as water or a refrigerant flows is formed. The first heat transfer tubes 41 are arranged side by side with a first specified interval 41b. For example, the first heat transfer tube 41 is formed by extruding aluminum having high thermal conductivity.
  • the second heat exchanger 32 also has the same configuration as that of the first embodiment. That is, the second heat exchanger 32 is opposed to the first heat exchanger 31, for example, at a position behind the first heat exchanger 31, in other words, on the inner side of the housing 10 with respect to the first heat exchanger 31. Are arranged.
  • the second heat exchanger 32 includes a plurality of second heat transfer tubes 42.
  • Each of the second heat transfer tubes 42 has a flat cross section, and for example, a plurality of flow paths 42a through which a heat medium such as water or a refrigerant flows is formed.
  • the second heat transfer tubes 42 are arranged side by side with a second specified interval 42b.
  • the second specified interval 42b is smaller than the first specified interval 41b.
  • the second heat transfer tube 42 is formed by extruding aluminum having high thermal conductivity.
  • a filter 60 that removes dust from the air after passing through the first heat exchanger 31 is provided between the first heat exchanger 31 and the second heat exchanger 32.
  • the filter 60 is, for example, provided with a plastic lattice on a non-woven fabric formed so that air can pass through. Further, for example, the filter 60 is made of a porous material.
  • the first specified interval 41 b that is the interval between the first heat transfer tubes 41 of the first heat exchanger 31 is the interval between the second heat transfer tubes 42 of the second heat exchanger 32.
  • the second specified interval 42b By making it smaller than the second specified interval 42b, even if the temperature difference between the air and the heat medium is reduced in the second heat exchanger 32, both can be efficiently heat-exchanged.
  • the second specified interval 42b dust is likely to accumulate in the second heat exchanger 32.
  • the indoor heat exchange unit 1 according to Embodiment 4 includes the filter 60 between the first heat exchanger 31 and the second heat exchanger 32, dust can be captured by the filter 60. It is possible to suppress the accumulation of dust on the second heat exchanger 32. That is, a decrease in the heat exchange performance of the second heat exchanger 32 can be suppressed. Further, by providing the filter 60 behind the first heat exchanger 31, the filter 60 is hidden by the first heat exchanger 31 when the indoor heat exchange unit 1 is viewed from the front side (first opening 11 side). . For this reason, the effect that dust is hard to be seen by the user and the aesthetic appearance is not impaired is also obtained.
  • the first specified interval 41b which is the interval between the first heat transfer tubes 41 of the first heat exchanger 31, is smaller than the second specified interval 42b, which is the interval between the second heat transfer tubes 42 of the second heat exchanger 32.
  • Embodiment 5 By configuring the first heat exchanger 31 as follows, the heat exchange performance by radiation can be improved.
  • items that are not particularly described are the same as those in the first to fourth embodiments.
  • FIG. 10 is a cross-sectional view showing a first heat exchanger according to Embodiment 5 of the present invention.
  • FIG. 11 is a cross-sectional view of the first heat exchanger according to Embodiment 5 of the present invention, and is a view showing radiation of the first heat exchanger.
  • FIG.10 and FIG.11 is a cross section perpendicular
  • the first heat exchanger 31 includes a plurality of first heat transfer tubes 41.
  • Each of the first heat transfer tubes 41 has a flat shape with a rectangular cross section, for example, and a plurality of flow paths 41a through which a heat medium such as water or refrigerant flows is formed. Further, each of the first heat transfer tubes 41 is arranged side by side in the horizontal direction with a first specified interval 41b.
  • each first heat transfer tube 41 of the first heat exchanger 31 has a center line BB in the direction along the long side in the cross section of the first heat transfer tube 41, and the straight line F- Inclined with respect to F.
  • the first heat exchanger 31 configured in this way, as shown in FIG. 11, when the first heat transfer tubes 41 are observed in the direction of the center line CC, the first heat transfer tubes 41 arranged in front are provided. Therefore, the tip end portion of the first heat transfer tube 41 disposed rearward is exposed. As a result, as indicated by an arrow G in FIG. 11, heat exchange by radiation between the human body, the wall surface, the floor surface, and the like facing the first heat exchanger 31 in the direction of the center line CC can be improved. .
  • H in the figure by passing the airflow through the gaps provided between the first heat transfer tubes 41, heat exchange between the airflow and the refrigerant can be realized simultaneously by convective heat transfer.
  • Embodiment 6 FIG.
  • another example of the air conditioner according to the present invention which is different from the third embodiment, will be introduced.
  • items that are not particularly described are the same as those in the first to fifth embodiments.
  • FIG. 12 is a circuit diagram showing an air conditioner according to Embodiment 6 of the present invention.
  • the air conditioner 200 according to Embodiment 6 includes an indoor heat exchange unit 1 and a heat source unit that supplies heat to the heat medium flowing through the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1. 100.
  • the air conditioner 200 according to the sixth embodiment is different from the third embodiment in that it does not have the water circuit 120 and the first heat exchanger 31 and the second heat of the indoor heat exchange unit 1.
  • the exchanger 32 is connected to the refrigeration cycle circuit 110. That is, the air conditioner 200 according to the sixth embodiment causes the refrigerant of the refrigeration cycle circuit 110 to flow through the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1 as a heat medium, and the heat source side
  • the heat collected in the heat exchanger 114 is configured to be supplied to the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1.
  • the refrigeration cycle circuit 110 includes the compressor 111, the first heat exchanger 31 of the indoor heat exchange unit 1, the second heat exchanger 32 of the indoor heat exchange unit 1, the refrigerant flow rate control device 113, and the heat source side heat exchange.
  • the vessel 114 is connected by piping.
  • the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1 are connected in series so that the refrigerant (heat medium) that has flowed through the first heat exchanger 31 flows through the second heat exchanger 32. It is connected to the.
  • refrigerants such as R410A, R32, and CO 2 that enable a vapor compression cycle circulate.
  • the high-temperature gaseous refrigerant discharged from the compressor 111 of the heat source unit 100 is sent to the indoor heat exchange unit 1.
  • the high-pressure gaseous refrigerant sent to the indoor heat exchange unit 1 becomes a gas-liquid two-phase state, supplies heat into the room in the indoor heat exchange unit 1, and becomes a liquid refrigerant.
  • the liquid refrigerant is decompressed by passing through the refrigerant flow rate control device 113 to be in a gas-liquid two-phase state, and is gasified by absorbing heat from outside air in the heat source side heat exchanger 114, Return to the compressor 111.
  • the first heat exchanger 31 is connected to the upstream side of the second heat exchanger 32.
  • the high-temperature refrigerant discharged from the compressor 111 first flows into the first heat exchanger 31, and the amount of radiant heat of the first heat exchanger 31 can be increased.
  • the second heat exchanger 32 can create a state with a high heat transfer rate by allowing the gas-liquid two-phase refrigerant that has partially exchanged heat to flow into the second heat exchanger 32.
  • Embodiment 7 As described above in the first embodiment, the arrangement postures of the first heat transfer tube 41 of the first heat exchanger 31 and the second heat transfer tube 42 of the second heat exchanger 32 are not limited.
  • the first heat transfer tube 41 of the first heat exchanger 31 and the second heat transfer tube 42 of the second heat exchanger 32 may have different shapes. Therefore, in Embodiment 7 and Embodiment 8 described later, an example in which at least one of the arrangement posture and the shape of the second heat transfer tube 42 is changed with respect to each of the above-described embodiments will be described.
  • items not particularly described are the same as those in Embodiments 1 to 6.
  • FIG. 13 is a perspective view showing a first heat exchanger and a second heat exchanger according to Embodiment 7 of the present invention.
  • the first heat exchanger 31 includes a plurality of first heat transfer tubes 41 extending along the vertical direction, for example.
  • Each of the first heat transfer tubes 41 has a flat shape with a rectangular cross section, for example, and a plurality of flow paths 41a through which a heat medium such as water or a refrigerant circulates are formed therein.
  • each of the first heat transfer tubes 41 is arranged side by side in the horizontal direction with a first specified interval 41b.
  • the first heat transfer tube 41 is formed by extruding aluminum having high thermal conductivity.
  • the second heat exchanger 32 disposed behind the first heat exchanger 31 includes a plurality of second heat transfer tubes 42 having, for example, a tubular shape extending along the lateral direction. Moreover, each of the 2nd heat exchanger tubes 42 is arranged in the up-down direction at predetermined intervals. In the seventh embodiment, each of the second heat transfer tubes 42 is arranged in a staggered manner in a side view.
  • the second heat exchanger 32 according to the seventh embodiment includes a plurality of plate-like heat transfer fins 50 through which the second heat transfer tubes 42 pass. These heat transfer fins 50 are arranged side by side in the extending direction (lateral direction) of the second heat transfer tube 42 at regular intervals.
  • the surface of the heat transfer fin 50 and the second heat transfer tube 42 are substantially vertical.
  • the heat transfer fin 50 and the second heat transfer tube are thermally coupled.
  • the heat transfer fins 50 may be configured to provide protrusions and cut-and-raised shapes on the surface of the heat transfer fins 50 to promote convective heat transfer.
  • the first specified interval 41b which is a gap between the first heat transfer tubes 41, is an interval at which the user's fingers do not enter so that the user's fingers do not touch the heat transfer fins 50 of the second heat exchanger 32. It has become.
  • the first specified interval 41b is an interval of, for example, less than 5 mm so that the child's fingers do not touch the heat transfer fins 50 of the second heat exchanger 32.
  • the room can be heated by both convection and radiation heat transfer modes. Can improve comfort.
  • the first heat exchanger 31 in addition to the second heat exchanger 32, the first heat exchanger 31 also functions as a convection heat exchanger,
  • the indoor heat exchange unit 1 can be made compact.
  • the indoor heat exchange unit 1 which concerns on this Embodiment 7 is provided with the heat-transfer fin 50 in the 2nd heat exchanger 32 similarly to Embodiment 2, the temperature difference of air and a heat medium has become. Even if it becomes small, both can be heat-exchanged efficiently.
  • the indoor heat exchange unit 1 according to the seventh embodiment as in the second embodiment, the first specified interval 41b, which is the gap between the first heat transfer tubes 41, is transmitted by the second heat exchanger 32.
  • the interval is such that the fingers of the child do not enter. For this reason, the indoor heat exchange unit 1 according to the seventh embodiment can prevent the user and the child from being injured by touching the heat transfer fins 50 of the second heat exchanger 32 as in the second embodiment. .
  • FIG. 14 and 15 are perspective views showing a first heat exchanger and a second heat exchanger according to Embodiment 8 of the present invention.
  • FIG. 14 illustrates the vicinity of the center of the first heat exchanger 31 and the second heat exchanger 32.
  • FIG. 15 illustrates the vicinity of the lateral ends of the first heat exchanger 31 and the second heat exchanger 32.
  • the first heat exchanger 31 includes, for example, a plurality of first heat transfer tubes 41 extending in the vertical direction.
  • Each of the first heat transfer tubes 41 has a flat shape with a rectangular cross section, for example, and a plurality of flow paths 41a through which a heat medium such as water or refrigerant flows is formed. Further, each of the first heat transfer tubes 41 is arranged side by side in the horizontal direction with a first specified interval 41b.
  • the first heat transfer tube 41 is formed by extruding aluminum having high thermal conductivity.
  • the second heat exchanger 32 disposed behind the first heat exchanger 31 includes a plurality of second heat transfer tubes 42 extending in the lateral direction.
  • Each of the second heat transfer tubes 42 has a flat shape with a rectangular cross section, for example, and a plurality of flow paths 42a in which a heat medium such as water or a refrigerant circulates are formed therein.
  • Each of the second heat transfer tubes 42 is arranged side by side in the vertical direction with a second specified interval 42b.
  • a heat transfer tube having a flat cross section is bent into a U shape, and the two second heat transfer tubes 42 are formed as one component.
  • the second heat exchanger 32 includes a plurality of plate-like heat transfer fins 50 through which the second heat transfer tubes 42 pass. These heat transfer fins 50 are arranged side by side in the extending direction (lateral direction) of the second heat transfer tube 42 at regular intervals. That is, the surface of the heat transfer fin 50 and the second heat transfer tube 42 are substantially vertical.
  • the heat transfer fins 50 and the second heat transfer tubes 42 are made of, for example, aluminum having high thermal conductivity, and are connected by metal bonding including, for example, a noclock brazing method. Note that the heat transfer fins 50 may be configured to provide protrusions and cut-and-raised shapes on the surface of the heat transfer fins 50 to promote convective heat transfer.
  • the first specified interval 41b which is a gap between the first heat transfer tubes 41, is an interval at which the user's fingers do not enter so that the user's fingers do not touch the heat transfer fins 50 of the second heat exchanger 32. It has become.
  • the first specified interval 41b is, for example, an interval of less than 5 mm so that the child's fingers do not touch the heat transfer fins 50 of the second heat exchanger 32.
  • indoor heating can be performed by both convection and radiation heat transfer modes. Can improve comfort.
  • the indoor heat exchange unit 1 according to the eighth embodiment in addition to the second heat exchanger 32, the first heat exchanger 31 also functions as a convection heat exchanger, The indoor heat exchange unit 1 can be made compact.
  • the indoor heat exchange unit 1 according to the eighth embodiment includes the heat transfer fins 50 in the second heat exchanger 32 as in the second embodiment, the temperature difference between the air and the heat medium is small. Even if it becomes small, both can be heat-exchanged efficiently.
  • the indoor heat exchange unit 1 according to the eighth embodiment as in the second embodiment, the first specified interval 41b, which is the gap between the first heat transfer tubes 41, is transmitted by the second heat exchanger 32. In order to prevent the fingers of the child from touching the heat fin 50, the interval is such that the fingers of the child do not enter. For this reason, the indoor heat exchange unit 1 according to the eighth embodiment can prevent the user and child from touching the heat transfer fins 50 of the second heat exchanger 32 and being injured as in the second embodiment. .
  • Embodiment 9 FIG.
  • another example of the air conditioner according to the present invention which is different from the third and sixth embodiments, will be introduced.
  • an example of an indoor heat exchange unit according to the present invention in which some of the configurations described in the above embodiments are combined will be described.
  • an example of how to install the air conditioner according to the present invention will also be described.
  • items not particularly described are the same as those in the first to eighth embodiments.
  • FIG. 16 is a perspective perspective view showing an indoor heat exchange unit according to Embodiment 9 of the present invention.
  • FIG. 17 is the longitudinal cross-sectional view which observed the indoor heat exchange unit which concerns on Embodiment 9 of this invention from the side.
  • FIG. 18 is a perspective view showing the vicinity of the first heat exchanger and the second heat exchanger of the indoor heat exchange unit according to Embodiment 9 of the present invention.
  • FIG. 19 is a cross-sectional view showing the vicinity of the first heat exchanger and the second heat exchanger of the indoor heat exchange unit according to Embodiment 9 of the present invention.
  • the housing 10 is shown in a transparent manner in order to facilitate understanding of the arrangement positions of the first heat exchanger 31 and the second heat exchanger 32.
  • 18 and 19 are cross-sectional views of the first heat exchanger 31 and the second heat exchanger 32 taken along the line AA in FIG.
  • the indoor heat exchange unit 1 includes a first heat exchanger 31, a second heat exchanger 32, a blower 20, and a housing 10 that houses them.
  • the housing 10 has, for example, a rectangular parallelepiped shape, and a first opening 11 is formed on one side surface.
  • a second opening 12 is formed in the housing 10 at a position above the first opening, such as an upper surface.
  • the blower 20 is a propeller fan, for example, and is disposed below the second opening 12. By driving the blower 20, air in the room (room 300 described later) is sucked into the housing 10 from the first opening 11, and from the second opening 12 to the outside of the housing 10 (room 300 described later). Blown out.
  • the first heat exchanger 31 is provided so as to be exposed from the first opening 11.
  • the first heat exchanger 31 is disposed along the opening surface of the first opening 11.
  • the first heat exchanger 31 includes a plurality of first heat transfer tubes 41 extending along the vertical direction, for example.
  • Each of the first heat transfer tubes 41 has a flat shape with a rectangular cross section, for example, and a plurality of flow paths 41a through which a heat medium such as water or refrigerant flows is formed.
  • each of the first heat transfer tubes 41 is arranged side by side in the horizontal direction with a first specified interval 41b.
  • the first heat transfer tube 41 is formed by extruding aluminum having high thermal conductivity.
  • the second heat exchanger 32 is located behind the first heat exchanger 31, in other words, at a position closer to the inner side of the housing 10 than the first heat exchanger 31, for example, facing the first heat exchanger 31. Has been placed.
  • the second heat exchanger 32 includes a plurality of second heat transfer tubes 42 extending along, for example, the vertical direction.
  • Each of the second heat transfer tubes 42 has a flat shape with a rectangular cross section, for example, and a plurality of flow paths 42a in which a heat medium such as water or a refrigerant circulates are formed therein.
  • the second heat transfer tubes 42 are arranged side by side in the horizontal direction with a second specified interval 42b.
  • the second heat transfer tube 42 is formed by extruding aluminum having high thermal conductivity.
  • heat transfer fins 50 that are in contact with the second heat transfer tubes 42 are provided.
  • the heat transfer fins 50 are formed so as to fold a plurality of thin plates less than 1 mm, for example, so as to have a width of a second specified interval 42 b that is a gap between the second heat transfer tubes 42.
  • the heat transfer fins 50 are configured to promote convective heat transfer by providing protrusions, cut-and-raised shapes, and the like on the surface.
  • the material of the heat transfer fin 50 is not limited like the 2nd heat transfer tube 42, in this Embodiment 9, aluminum with high heat conductivity is used.
  • the second heat transfer tubes 42 and the heat transfer fins 50 are connected to each other by metal bonding including, for example, a sawlock brazing method.
  • the first heat exchanger 31 in which the plurality of first heat transfer tubes 41 are arranged at intervals of the first specified interval 41b is configured not to include heat transfer fins between the adjacent first heat transfer tubes 41. ing.
  • interval 41b which is the clearance gap between the 1st heat exchanger tubes 41 is the space
  • the first specified interval 41b is an interval of, for example, less than 5 mm so that the child's fingers do not touch the heat transfer fins 50 of the second heat exchanger 32.
  • circulates a heat medium to the flow path 41a of the 1st heat exchanger 31 and the flow path 42a of the 2nd heat exchanger 32 is not specifically limited, For example, it is set as the following structures. That is, as shown in FIG. 16, both ends of the first heat transfer pipe 41 of the first heat exchanger 31 are inserted into the branch pipe 70. Similarly, both ends of the second heat transfer pipe 42 of the second heat exchanger 32 are inserted into the branch pipe 70. Thereby, the heat medium supplied from one of the branch pipes 70 flows into the flow path 41 a of the first heat exchanger 31 and the flow path 42 a of the second heat exchanger 32.
  • the branch tube 70 has a function of fixing these heat transfer tubes.
  • a filter 60 that removes dust from the air after passing through the first heat exchanger 31 is provided between the first heat exchanger 31 and the second heat exchanger 32.
  • the filter 60 is, for example, provided with a plastic lattice on a non-woven fabric formed to allow air to pass therethrough. Further, for example, the filter 60 is made of a porous material.
  • FIG. 20 is a circuit diagram showing an air conditioner according to Embodiment 9 of the present invention.
  • the air conditioner 200 includes an indoor heat exchange unit 1 and a heat source unit 100 that supplies heat to a heat medium flowing through the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1.
  • the heat source unit 100 includes a refrigeration cycle circuit 110.
  • the refrigeration cycle circuit 110 is configured by connecting a compressor 111, a refrigerant flow path of a water-refrigerant heat exchanger 112, a refrigerant flow rate control device 113, and a heat source side heat exchanger 114.
  • refrigerants such as R410A, R32, and CO 2 that enable a vapor compression cycle circulate.
  • the water-refrigerant heat exchanger 112 has a water circuit in which the water flow path of the water-refrigerant heat exchanger 112 is connected to the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1 by piping. 120 constitutes a part.
  • the water circuit 120 includes a water flow path of the water-refrigerant heat exchanger 112, a pump 121, and the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1 connected to each other by piping. Yes. Water circulates in the water circuit 120.
  • the first heat exchanger 31 and the second heat exchanger 32 are connected in series so that the water that has flowed through the first heat exchanger 31 flows through the second heat exchanger 32. Has been.
  • the indoor heat exchange unit 1 according to the ninth embodiment includes a bypass pipe 72 connected in parallel with the first heat exchanger 31 in the water circuit 120. That is, in the water circuit 120, one end of the bypass pipe 72 is connected to the upstream side of the first heat exchanger 31, and the other end of the bypass pipe 72 is the downstream side of the first heat exchanger 31 and the second heat It is connected to a position on the upstream side of the exchanger 32.
  • the indoor heat exchange unit 1 according to the ninth embodiment includes a flow rate adjuster 71 that adjusts the flow rate of water flowing through the bypass pipe 72 in the bypass pipe 72.
  • the flow controller 71 is, for example, a needle type flow controller. Further, for example, the flow controller 71 may be configured by using an electromagnetic on-off valve or a flow resistor. That is, the air conditioner 200 according to the ninth embodiment has a configuration in which a bypass pipe 72 and a flow rate controller 71 are added to the circuit of the air conditioner 200 shown in the third embodiment (FIG. 7). .
  • FIG. 21 is a schematic diagram showing an installation configuration of an air conditioner according to Embodiment 9 of the present invention.
  • the indoor heat exchange unit 1 is installed in a room 300 on, for example, a floor near a wall.
  • the heat source unit 100 is disposed outside the room 300, for example, outdoors.
  • the indoor heat exchange unit 1 and the heat source unit 100 are connected by a pipe constituting the water circuit 120.
  • the heat source unit 100 drives the compressor 111.
  • the heat source unit 100 drives the pump 121.
  • the indoor heat exchange unit 1 drives the blower 20.
  • the high-temperature gaseous refrigerant discharged from the compressor 111 of the heat source unit 100 flows into the refrigerant flow path of the water-refrigerant heat exchanger 112. Then, the high-pressure gaseous refrigerant that has flowed into the refrigerant flow path of the water-refrigerant heat exchanger 112 enters a gas-liquid two-phase state to supply heat to the water flowing through the water flow path of the water-refrigerant heat exchanger 112, It becomes a liquid refrigerant.
  • the liquid refrigerant is reduced in pressure by passing through the refrigerant flow control device 113 to be in a gas-liquid two-phase state, gasified by absorbing heat from outside air in the heat source side heat exchanger 114, and returned to the compressor 111.
  • the water heated by the water-refrigerant heat exchanger 112 is sent to the indoor heat exchange unit 1 by the pump 121. Then, the water sent to the indoor heat exchange unit 1 exchanges heat with the air in the room 300 in the indoor heat exchange unit 1 and returns to the water-refrigerant heat exchanger 112 at a low temperature.
  • the operation of the indoor heat exchange unit 1 in the room 300 will be described in detail.
  • the flow path 41 a of the first heat exchanger 31 and the flow path of the second heat exchanger 32 Water having a temperature higher than the room temperature of the room 300 flows to 42a.
  • the first heat exchanger 31 releases radiant heat from the first opening 11 into the room 300.
  • the air in the room 300 is sucked into the housing 10 from the first opening 11.
  • the air sucked into the housing 10 passes through the first heat exchanger 31, passes through the filter 60, and then passes through the second heat exchanger 32.
  • the air passing through the first heat exchanger 31 and the second heat exchanger 32 is heated with high-temperature water flowing through these heat exchangers.
  • the heated air is blown out from the second opening 12 into the room 300. That is, the heat by radiation is supplied from the first opening 11 to the room 300 and the heat by hot air is supplied from the second opening 12 to the room 300, so that the temperature of the room 300 rises and the user's residence
  • the part is in an air-conditioned state.
  • the first heat exchanger 31 is connected to the upstream side of the second heat exchanger 32. For this reason, the high-temperature water heated by the water-refrigerant heat exchanger 112 first flows into the first heat exchanger 31, and the amount of radiant heat of the first heat exchanger 31 can be increased.
  • the second heat exchanger 32 with high heat exchange efficiency on the downstream side of the first heat exchanger 31, it is possible to efficiently exchange heat even if the temperature difference between air and hot water becomes small. .
  • the indoor heat exchange unit 1 since the indoor heat exchange unit 1 according to the ninth embodiment includes the bypass pipe 72 and the flow rate controller 71, the flow rate controller 71 adjusts the amount of water flowing through the bypass pipe 72, thereby The amount of water flowing through one heat exchanger 31 can be adjusted.
  • the air conditioner 200 according to Embodiment 9 can further improve the comfort of residents in the room 300.
  • the room can be heated by both the convection and radiation heat transfer modes, and the comfort of the user can be improved.
  • the air conditioner 200 according to the ninth embodiment allows the indoor heat exchange unit 1 to be compactly formed by causing the first heat exchanger 31 to function as a convection heat exchanger in addition to the second heat exchanger 32. can do.
  • the air conditioner 200 according to the ninth embodiment emits radiant heat from the first opening 11 and blows out warm air from the second opening 12, so that a room is formed from each of the front surface and the upper surface of the housing 10. Heat can be supplied into 300. For this reason, the air conditioner 200 according to the ninth embodiment can reduce the temperature unevenness of the room and further improve the comfort of the user.
  • the air conditioner 200 according to the ninth embodiment includes the heat transfer fins 50 in the second heat exchanger 32, even if the temperature difference between the air and the heat medium becomes small, both can be efficiently used. Heat exchange.
  • the first specified interval 41b which is the gap between the first heat transfer tubes 41, is touched by the child's fingers on the heat transfer fins 50 of the second heat exchanger 32. There is an interval where children's fingers do not enter. For this reason, the air conditioner 200 according to Embodiment 9 can prevent the user and child from touching the heat transfer fins 50 of the second heat exchanger 32 and being injured.
  • the air conditioner 200 according to the ninth embodiment includes the filter 60 between the first heat exchanger 31 and the second heat exchanger 32, the filter 60 can capture dust and It is possible to prevent dust from accumulating on the second heat exchanger 32 that is difficult to clean because of no reach. That is, a decrease in the heat exchange performance of the second heat exchanger 32 can be suppressed. Further, by providing the filter 60 behind the first heat exchanger 31, the filter 60 is hidden by the first heat exchanger 31 when the indoor heat exchange unit 1 is viewed from the front side (first opening 11 side). . For this reason, the effect that dust is hard to be seen by the user and the aesthetic appearance is not impaired is also obtained.
  • the air conditioner 200 according to the ninth embodiment includes the bypass pipe 72 and the flow rate adjuster 71, the flow rate adjuster 71 adjusts the amount of water flowing through the bypass pipe 72 so that the first The amount of water flowing through the heat exchanger 31 can be adjusted.
  • the air conditioner 200 according to Embodiment 9 can further improve the comfort of residents in the room 300.
  • the amount of the refrigerant flowing through the first heat exchanger 31 can be adjusted by adjusting the amount of the refrigerant flowing through the bypass pipe 72 with the flow rate controller 71.
  • the increase and decrease of the heat exchange amount of each of the first heat exchanger 31 and the second heat exchanger 32 can be adjusted, and the heat supply by radiation and the hot air The balance of heat supply can be controlled. For this reason, even if the bypass pipe 72 and the flow controller 71 are added to the circuit of the air conditioner 200 shown in Embodiment 6 (FIG. 12), the comfort of the occupants in the room 300 can be further improved. it can.
  • Embodiment 10 FIG.
  • the tenth embodiment another example of the air conditioner according to the present invention, which is different from the third embodiment, the sixth embodiment, and the ninth embodiment, will be introduced.
  • items that are not particularly described are the same as those in the first to ninth embodiments.
  • FIG. 22 is a circuit diagram showing an air conditioner according to Embodiment 10 of the present invention.
  • the air conditioner 200 includes an indoor heat exchange unit 1 and a heat source unit 100 that supplies heat to a heat medium flowing through the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1.
  • the heat source unit 100 includes a refrigeration cycle circuit 110.
  • the refrigeration cycle circuit 110 is configured by connecting a compressor 111, a refrigerant flow path of a water-refrigerant heat exchanger 112, a refrigerant flow rate control device 113, and a heat source side heat exchanger 114.
  • refrigerants such as R410A, R32, and CO 2 that enable a vapor compression cycle circulate.
  • the water-refrigerant heat exchanger 112 has a water circuit in which the water flow path of the water-refrigerant heat exchanger 112 is connected to the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1 by piping. 120 constitutes a part.
  • the water circuit 120 includes a water flow path of the water-refrigerant heat exchanger 112, a pump 121, and the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1 connected to each other by piping. Yes. Water circulates in the water circuit 120.
  • the flow path 41a of the first heat exchanger 31 and the flow path 42a of the second heat exchanger 32 are connected in parallel.
  • a flow rate controller 71 that adjusts the flow rate of water flowing through these heat exchangers is provided on the upstream side of at least one of the first heat exchanger 31 and the second heat exchanger 32.
  • FIG. 22 the example provided with the flow volume regulator 71 in the upstream of the 1st heat exchanger 31 is shown.
  • the flow controller 71 is, for example, a needle type flow controller. Further, for example, the flow controller 71 may be configured by using an electromagnetic on-off valve or a flow resistor.
  • the high-temperature gaseous refrigerant discharged from the compressor 111 of the heat source unit 100 flows into the refrigerant flow path of the water-refrigerant heat exchanger 112. Then, the high-pressure gaseous refrigerant that has flowed into the refrigerant flow path of the water-refrigerant heat exchanger 112 enters a gas-liquid two-phase state to supply heat to the water flowing through the water flow path of the water-refrigerant heat exchanger 112, It becomes a liquid refrigerant.
  • the liquid refrigerant is reduced in pressure by passing through the refrigerant flow control device 113 to be in a gas-liquid two-phase state, gasified by absorbing heat from outside air in the heat source side heat exchanger 114, and returned to the compressor 111.
  • the water heated by the water-refrigerant heat exchanger 112 is sent to the indoor heat exchange unit 1 by the pump 121. Then, the water sent to the indoor heat exchange unit 1 exchanges heat with the air in the room 300 in the indoor heat exchange unit 1 and returns to the water-refrigerant heat exchanger 112 at a low temperature.
  • the flow path 41a of the first heat exchanger 31 and the flow path 42a of the second heat exchanger 32 are connected in parallel. For this reason, the amount of water flowing into the first heat exchanger 31 and the amount of water flowing through the second heat exchanger 32 are adjusted by adjusting the amount of water flowing into the first heat exchanger 31 with the flow rate controller 71. Both can be adjusted. Thereby, increase / decrease in each heat exchange amount of the 1st heat exchanger 31 and the 2nd heat exchanger 32 can be adjusted, and the balance of the heat supply by radiation and the heat supply by warm air can be controlled. For this reason, the air conditioner 200 according to Embodiment 10 can further improve the comfort of indoor residents.
  • the flow path 41a of the first heat exchanger 31 and the flow path 42a of the second heat exchanger 32 May be connected in parallel. And it is good to equip the upstream of at least one of the 1st heat exchanger 31 and the 2nd heat exchanger 32 with the flow regulator 71 which adjusts the flow of the refrigerant which flows into these heat exchangers. Even if comprised in this way, since the increase / decrease in each heat exchange amount of the 1st heat exchanger 31 and the 2nd heat exchanger 32 can be adjusted, since the balance of the heat supply by radiation and the heat supply by warm air can be controlled, It becomes possible to improve the comfort of the occupants in the room.

Abstract

An indoor heat exchanging unit is provided with: a case in which a first opening and a second opening are formed and that is disposed inside a room; a first heat exchanger that has a plurality of first heat transfer tubes that have flat cross sections and that have a channel in which a heating medium flows formed therein, that is configured such that the first heat transfer tubes are arranged spaced at a first predetermined interval so that air flows between the first heat transfer tubes, that is disposed so as to be exposed from the first opening toward the inside of the room, and that transfers the heat of the heating medium to the inside of the room by radiation; a second heat exchanger that is disposed in a position further toward the interior of the case than the first heat exchanger and that has a gap through which air flows; and a fan that takes in air from the first opening and blows air that passes through the first heat exchanger and the second heat exchanger from the second opening.

Description

室内熱交換ユニット及び空気調和機Indoor heat exchange unit and air conditioner
 本発明は、輻射によって熱を伝達する室内熱交換ユニット、及び該熱交換ユニットを備えた空気調和機に関するものである。 The present invention relates to an indoor heat exchange unit that transfers heat by radiation, and an air conditioner including the heat exchange unit.
 一般に室内熱交換ユニットは、送風機と、熱交換器と、それらを収納する筐体と、で構成される。このような従来の室内熱交換ユニットには、熱交換器の上流側に送風機を配置した室内熱交換ユニット、及び、熱交換器の下流側に熱交換器を配置した室内熱交換ユニットが提案されている。例えば、熱交換器の上流側に送風機を配置した室内熱交換ユニットの場合、熱交換器へ気流を吹き付けることで、外部から冷媒が供給される熱交換器において、気流と冷媒との熱交換が行われる。そして、気流が冷却又は加熱され、当該気流が筐体の吹出口から室内へと吹き出されることにより、室内の空気調和を達成する。また例えば、熱交換器の下流側に送風機を配置した室内熱交換ユニットの場合、熱交換器の下流側から気流を吸い出すことで、外部から冷媒が供給される熱交換器において、気流と冷媒との熱交換が行われる。そして、気流が冷却又は加熱され、当該気流が筐体の吹出口から室内へと吹き出されることにより、室内の空気調和を達成する。 Generally, an indoor heat exchange unit is composed of a blower, a heat exchanger, and a housing for storing them. As such a conventional indoor heat exchange unit, an indoor heat exchange unit in which a blower is arranged upstream of the heat exchanger and an indoor heat exchange unit in which a heat exchanger is arranged downstream of the heat exchanger are proposed. ing. For example, in the case of an indoor heat exchange unit in which a blower is arranged on the upstream side of the heat exchanger, the heat exchange between the airflow and the refrigerant is performed in the heat exchanger in which the refrigerant is supplied from the outside by blowing the airflow to the heat exchanger. Done. The airflow is cooled or heated, and the airflow is blown into the room from the blowout port of the housing, thereby achieving indoor air conditioning. In addition, for example, in the case of an indoor heat exchange unit in which a blower is arranged on the downstream side of the heat exchanger, in the heat exchanger in which the refrigerant is supplied from the outside by sucking the air flow from the downstream side of the heat exchanger, The heat exchange is performed. The airflow is cooled or heated, and the airflow is blown into the room from the blowout port of the housing, thereby achieving indoor air conditioning.
 このような室内熱交換ユニットは、熱交換器に空気を流通させ内部の冷媒と熱交換する強制対流により室内の空気を所望の温度へと調整している。しかしながら、このような室内熱交換ユニットは、人体表面と熱を直接授受しないため、温熱環境の快適性が損なわれていた。 Such an indoor heat exchange unit adjusts indoor air to a desired temperature by forced convection in which air is circulated through the heat exchanger and heat is exchanged with the internal refrigerant. However, since such an indoor heat exchange unit does not directly transfer heat with the human body surface, the comfort of the thermal environment is impaired.
 このため、従来、室内熱交換ユニットの筐体に送風機とプレートフィン式の熱交換器とを設け、熱交換器の表面の一部を筐体から露出させることで、対流と輻射の両方の伝熱形態によって対象物(人体、建物、食品等)の加熱又は冷却を行う空気調和装置が提案されている(例えば特許文献1参照)。 For this reason, conventionally, a fan and a plate fin type heat exchanger are provided in the casing of the indoor heat exchange unit, and a part of the surface of the heat exchanger is exposed from the casing, thereby transmitting both convection and radiation. An air conditioner that heats or cools an object (such as a human body, a building, or a food) according to a heat form has been proposed (see, for example, Patent Document 1).
特開2002-162057号公報JP 2002-162057 A
 従来の室内熱交換ユニットは、表面温度が空気の温度と大きな差を持っている広い伝熱面が居住空間を向いて配置されておらず、赤外線の授受をする輻射効果を得ることが出来なかった。また、従来の室内熱交換ユニットは、輻射効果を発生させるために気流を流通させない面積の広い輻射パネルを新たに設けると、対流伝熱を行う熱交換器の搭載量が減少し、空気の温度を上昇させるための所要時間が増加して使用者の快適性が低回してしまうという課題、及び、室内熱交換ユニットが大型化するという課題等があった。 The conventional indoor heat exchange unit does not have a wide heat transfer surface that has a large difference in surface temperature from the air temperature and faces the living space, and cannot obtain a radiation effect for transmitting and receiving infrared rays. It was. In addition, when a conventional indoor heat exchange unit is newly provided with a large radiant panel that does not allow air flow to generate a radiant effect, the amount of heat exchanger that performs convection heat transfer decreases, and the temperature of the air There is a problem that the time required for raising the temperature increases and the comfort of the user is lowered, and a problem that the indoor heat exchange unit is enlarged.
 本発明は、上述のような課題を解決するためになされたものであり、対流と輻射の両方の伝熱形態によって対象物の加熱又は冷却を行うことができ、室内熱交換ユニットをコンパクトに形成しつつ使用者の快適性を向上できる室内熱交換ユニット、及び該熱交換ユニットを備えた空気調和機を得ることを目的とする。 The present invention has been made to solve the above-described problems, and can heat or cool an object by both heat transfer modes of convection and radiation, and can form a compact indoor heat exchange unit. It is an object of the present invention to obtain an indoor heat exchange unit that can improve the comfort of the user and an air conditioner equipped with the heat exchange unit.
 本発明に係る室内熱交換ユニットは、第一開口部及び第二開口部が形成され、室内に設置される筐体と、内部に熱媒体が流通する流路が形成された断面扁平形状の複数の第一伝熱管を有し、これら前記第一伝熱管の間を空気が流通するようにこれら前記第一伝熱管を第一規定間隔ずつ空けて並べて構成され、前記第一開口部から前記室内に向けて露出して配置され、前記熱媒体の熱を輻射により前記室内に伝える第一熱交換器と、前記第一熱交換器よりも前記筐体の内部側となる位置に配置されて空気が流通する隙間を有する第二熱交換器と、前記第一開口部から空気を吸い込み、前記第一熱交換器と前記第二熱交換器とを通過した空気を、前記第二開口部から吹き出す送風機と、を備えたものである。 The indoor heat exchange unit according to the present invention has a plurality of flat cross-sectional shapes in which a first opening and a second opening are formed, and a casing installed indoors and a flow path through which a heat medium flows are formed. The first heat transfer tubes are arranged side by side with a first specified interval so that air flows between the first heat transfer tubes, and the first opening is provided to the room. A first heat exchanger that is exposed to the heat and transmits heat of the heat medium to the room by radiation, and is disposed at a position closer to the inner side of the housing than the first heat exchanger. A second heat exchanger having a gap through which air flows, and air is sucked from the first opening, and the air that has passed through the first heat exchanger and the second heat exchanger is blown out from the second opening. And a blower.
 また、本発明に係る空気調和機は、本発明に係る室内熱交換ユニットと、前記室内熱交換ユニットの前記第一熱交換器及び前記第二熱交換器を流れる前記熱媒体に熱を供給する熱源ユニットと、を備えたものである。 The air conditioner according to the present invention supplies heat to the indoor heat exchange unit according to the present invention and the heat medium flowing through the first heat exchanger and the second heat exchanger of the indoor heat exchange unit. A heat source unit.
 本発明に係る室内熱交換ユニットは、第一熱交換器が筐体の第一開口部から露出している。このため、本発明に係る室内熱交換ユニットは、第一熱交換器を用い、輻射による伝熱形態で対象物の加熱又は冷却を行うことができる。また、本発明に係る室内熱交換ユニットは、第二熱交換器を対流熱交換器として用い、第一開口部から吸い込まれた空気を対流伝熱により加熱又は冷却することができる。つまり、本発明に係る室内熱交換ユニット及び空気調和機は、対流と輻射の両方の伝熱形態によって対象物の加熱又は冷却を行うことができる。 In the indoor heat exchange unit according to the present invention, the first heat exchanger is exposed from the first opening of the casing. For this reason, the indoor heat exchange unit which concerns on this invention can heat or cool a target object with the heat-transfer form by radiation using a 1st heat exchanger. Moreover, the indoor heat exchange unit which concerns on this invention can heat or cool the air suck | inhaled from the 1st opening part by convection heat transfer, using a 2nd heat exchanger as a convection heat exchanger. That is, the indoor heat exchange unit and the air conditioner according to the present invention can heat or cool an object by both convection and radiation heat transfer modes.
 この際、本発明に係る室内熱交換ユニットは、内部に熱媒体が流通する流路が形成された断面扁平形状の複数の第一伝熱管を第一規定間隔ずつ空けて並べて、第一熱交換器を構成している。このため、本発明に係る室内熱交換ユニットは、第一熱交換器も対流熱交換器として機能させることができ、第一開口部から吸い込まれた空気を、第一熱交換器及び第二熱交換器の双方で対流伝熱により加熱又は冷却することができる。つまり、本発明に係る室内熱交換ユニットは、室内熱交換ユニットをコンパクトに形成しつつ、対流伝熱を行う熱交換器の搭載量を増大できる。したがって、本発明に係る室内熱交換ユニット及び空気調和機は、対流と輻射の両方の伝熱形態によって対象物の加熱又は冷却を行うことができ、かつ、室内熱交換ユニットをコンパクトに形成しつつ使用者の快適性を向上できる。 At this time, the indoor heat exchanging unit according to the present invention arranges a plurality of first heat transfer tubes having a flat cross-sectional shape in which a flow path through which a heat medium flows is formed, arranged at first predetermined intervals, so that the first heat exchange is performed. Make up the vessel. Therefore, in the indoor heat exchange unit according to the present invention, the first heat exchanger can also function as a convection heat exchanger, and the air sucked from the first opening is converted into the first heat exchanger and the second heat exchanger. Both exchangers can be heated or cooled by convective heat transfer. That is, the indoor heat exchange unit according to the present invention can increase the mounting amount of the heat exchanger that performs convective heat transfer while forming the indoor heat exchange unit compact. Therefore, the indoor heat exchange unit and the air conditioner according to the present invention can heat or cool an object by both heat transfer modes of convection and radiation, and form the indoor heat exchange unit in a compact manner. User comfort can be improved.
本発明の実施の形態1に係る室内熱交換ユニットを示す斜視透視図である。It is a perspective perspective view which shows the indoor heat exchange unit which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る室内熱交換ユニットを側方から観察した縦断面図である。It is the longitudinal cross-sectional view which observed the indoor heat exchange unit which concerns on Embodiment 1 of this invention from the side. 本発明の実施の形態1に係る第一熱交換器及び第二熱交換器を示す横断面図である。It is a cross-sectional view which shows the 1st heat exchanger and 2nd heat exchanger which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係る第一熱交換器及び第二熱交換器の横断面図であり、第一熱交換器の輻射を示す図である。It is a cross-sectional view of the 1st heat exchanger which concerns on Embodiment 1 of this invention, and a 2nd heat exchanger, and is a figure which shows the radiation of a 1st heat exchanger. 本発明の実施の形態2に係る第一熱交換器及び第二熱交換器を示す斜視図である。It is a perspective view which shows the 1st heat exchanger and 2nd heat exchanger which concern on Embodiment 2 of this invention. 本発明の実施の形態2に係る第一熱交換器及び第二熱交換器を示す断面斜視図である。It is a cross-sectional perspective view which shows the 1st heat exchanger and 2nd heat exchanger which concern on Embodiment 2 of this invention. 本発明の実施の形態3に係る空気調和機を示す回路図である。It is a circuit diagram which shows the air conditioner which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る室内熱交換ユニットの第一熱交換器及び第二熱交換器近傍を示す斜視図である。It is a perspective view which shows the 1st heat exchanger of the indoor heat exchange unit which concerns on Embodiment 4 of this invention, and the 2nd heat exchanger vicinity. 本発明の実施の形態4に係る室内熱交換ユニットの第一熱交換器及び第二熱交換器近傍を示す横断面図である。It is a cross-sectional view which shows the 1st heat exchanger and 2nd heat exchanger vicinity of the indoor heat exchange unit which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る第一熱交換器を示す横断面図である。It is a cross-sectional view which shows the 1st heat exchanger which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る第一熱交換器の横断面図であり、第一熱交換器の輻射を示す図である。It is a transverse cross section of the 1st heat exchanger concerning Embodiment 5 of the present invention, and is a figure showing radiation of the 1st heat exchanger. 本発明の実施の形態6に係る空気調和機を示す回路図である。It is a circuit diagram which shows the air conditioner which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係る第一熱交換器及び第二熱交換器を示す斜視図である。It is a perspective view which shows the 1st heat exchanger and 2nd heat exchanger which concern on Embodiment 7 of this invention. 本発明の実施の形態8に係る第一熱交換器及び第二熱交換器を示す斜視図である。It is a perspective view which shows the 1st heat exchanger and 2nd heat exchanger which concern on Embodiment 8 of this invention. 本発明の実施の形態8に係る第一熱交換器及び第二熱交換器を示す斜視図である。It is a perspective view which shows the 1st heat exchanger and 2nd heat exchanger which concern on Embodiment 8 of this invention. 本発明の実施の形態9に係る室内熱交換ユニットを示す斜視透視図である。It is a perspective perspective view which shows the indoor heat exchange unit which concerns on Embodiment 9 of this invention. 本発明の実施の形態9に係る室内熱交換ユニットを側方から観察した縦断面図である。It is the longitudinal cross-sectional view which observed the indoor heat exchange unit which concerns on Embodiment 9 of this invention from the side. 本発明の実施の形態9に係る室内熱交換ユニットの第一熱交換器及び第二熱交換器近傍を示す斜視図である。It is a perspective view which shows the 1st heat exchanger and 2nd heat exchanger vicinity of the indoor heat exchange unit which concerns on Embodiment 9 of this invention. 本発明の実施の形態9に係る室内熱交換ユニットの第一熱交換器及び第二熱交換器近傍を示す横断面図である。It is a cross-sectional view showing the vicinity of the first heat exchanger and the second heat exchanger of the indoor heat exchange unit according to Embodiment 9 of the present invention. 本発明の実施の形態9に係る空気調和機を示す回路図である。It is a circuit diagram which shows the air conditioner which concerns on Embodiment 9 of this invention. 本発明の実施の形態9に係る空気調和機の設置構成を示す模式図である。It is a schematic diagram which shows the installation structure of the air conditioner which concerns on Embodiment 9 of this invention. 本発明の実施の形態10に係る空気調和機を示す回路図である。It is a circuit diagram which shows the air conditioner which concerns on Embodiment 10 of this invention.
 以下、本発明の好適な実施の形態について添付図面を参照して説明する。なお、以下の各実施の形態、及び各図面では、同一又は相当部分には同一符号を付している。また、図面は模式的なものであり、各構成の寸法の比率等は設計により適宜変化する。また、図面相互間においても互いの寸法の関係や比率が異なる場合があることは勿論である。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In the following embodiments and drawings, the same or corresponding parts are denoted by the same reference numerals. Further, the drawings are schematic, and the ratio of the dimensions of each component changes as appropriate according to the design. Of course, dimensional relationships and ratios may differ between drawings.
実施の形態1.
 図1は、本発明の実施の形態1に係る室内熱交換ユニットを示す斜視透視図である。図2は、本発明の実施の形態1に係る室内熱交換ユニットを側方から観察した縦断面図である。図3は、本発明の実施の形態1に係る第一熱交換器及び第二熱交換器を示す横断面図である。図4は、本発明の実施の形態1に係る第一熱交換器及び第二熱交換器の横断面図であり、第一熱交換器の輻射を示す図である。
 なお、図1では、第一熱交換器31及び第二熱交換器32の配置位置の理解を容易とするため、筐体10を透過して示している。また、図3及び図4は、図1のA-A断面における第一熱交換器31及び第二熱交換器32の断面図である。
Embodiment 1 FIG.
FIG. 1 is a perspective perspective view showing an indoor heat exchange unit according to Embodiment 1 of the present invention. FIG. 2 is a longitudinal sectional view of the indoor heat exchange unit according to Embodiment 1 of the present invention observed from the side. FIG. 3 is a cross-sectional view showing the first heat exchanger and the second heat exchanger according to Embodiment 1 of the present invention. FIG. 4 is a cross-sectional view of the first heat exchanger and the second heat exchanger according to Embodiment 1 of the present invention, and is a view showing radiation of the first heat exchanger.
In FIG. 1, the housing 10 is shown in a transparent manner for easy understanding of the arrangement positions of the first heat exchanger 31 and the second heat exchanger 32. 3 and 4 are cross-sectional views of the first heat exchanger 31 and the second heat exchanger 32 taken along the line AA in FIG.
 本実施の形態1に係る室内熱交換ユニット1は、例えば室内の壁際の床に設置されて使用されるものであり、第一熱交換器31と、第二熱交換器32と、送風機20と、これらを収納する筐体10とを備えている。 The indoor heat exchange unit 1 according to Embodiment 1 is installed and used, for example, on a floor near an indoor wall, and includes a first heat exchanger 31, a second heat exchanger 32, a blower 20, and the like. And a housing 10 for storing them.
 筐体10は、例えば高さと横幅に比べて奥行きが小さい扁平な直方体形状をしており、高さと横幅とを有して広い扁平面である一側面に第一開口部11が形成されている。筐体10が室内の壁に沿って設置された場合、第一開口部11は壁と反対側にあり、室内側に向いている。第一開口部11は筐体10の室内側に向いた広い面の大半を占めるなど、広い面積を占めるようにされる。また、筐体10には、例えば上面部等、第一開口部よりも上方となる位置に第二開口部12が形成されている。第一開口部11の高さは、例えば、床から50~100cm程度となっている。また、第二開口部12の高さは、例えば、第一開口部11の高さより10cm程度高い高さとなっている。第二開口部12は筐体10の上面、または室内側を向いた正面側で第一開口部11の上、などに設けられる。なお、筐体10を直方体形状としたが、上面が傾斜した直方体形状であって、傾斜した上面に設けられてもよい。本実施の形態1では、第一開口部11の開口面積が、第二開口部12の開口面積よりも大きくなっている。 The housing 10 has, for example, a flat rectangular parallelepiped shape whose depth is smaller than the height and width, and the first opening 11 is formed on one side which is a wide flat surface having the height and width. . When the housing 10 is installed along the indoor wall, the first opening 11 is on the opposite side of the wall and faces the indoor side. The first opening 11 occupies a large area, for example, occupies most of the wide surface facing the room side of the housing 10. In addition, a second opening 12 is formed in the housing 10 at a position above the first opening, such as an upper surface. The height of the first opening 11 is, for example, about 50 to 100 cm from the floor. The height of the second opening 12 is, for example, about 10 cm higher than the height of the first opening 11. The second opening 12 is provided on the upper surface of the housing 10 or on the first opening 11 on the front side facing the room. In addition, although the housing | casing 10 was made into the rectangular parallelepiped shape, it is a rectangular parallelepiped shape where the upper surface inclined, Comprising: You may provide in the inclined upper surface. In the first embodiment, the opening area of the first opening 11 is larger than the opening area of the second opening 12.
 送風機20は、例えばプロペラファンであり、第二開口部12の下方に配置されている。送風機20を駆動することにより、室内の空気が第一開口部11から筐体10内部に吸い込まれ、第二開口部12から筐体10の外部(つまり室内)に吹き出される。 The blower 20 is a propeller fan, for example, and is disposed below the second opening 12. By driving the blower 20, indoor air is drawn into the housing 10 from the first opening 11 and blown out from the second opening 12 to the outside of the housing 10 (that is, indoors).
 第一熱交換器31は、第一開口部11から室内側に向けて露出するように設けられている。本実施の形態1では、第一熱交換器31は、第一開口部11の開口面に沿って配置されている。この第一熱交換器31は、例えば上下方向に沿って延びた複数の第一伝熱管41を備えている。第一伝熱管41のそれぞれは、断面が例えば矩形状の扁平形状となっており、その内部に水又は冷媒等の熱媒体が流通する例えば複数の流路41aが形成されている。また、第一伝熱管41のそれぞれは、第一規定間隔41bずつ空けて、横方向に並べて配置されている。隣接する第一伝熱管41どうしの間は、第一開口部11の正面側から背面側に空気が流通するようにされる。第一伝熱管41は、例えば、熱伝導性の高いアルミニウムを押し出して成型する。ここで、本実施の形態1では、第一伝熱管41の断面形状を矩形状としているが、第一伝熱管41の断面形状をその他の形状(楕円形状、長丸形状等)にしても勿論よい。 The first heat exchanger 31 is provided so as to be exposed from the first opening 11 toward the indoor side. In the first embodiment, the first heat exchanger 31 is disposed along the opening surface of the first opening 11. The first heat exchanger 31 includes a plurality of first heat transfer tubes 41 extending along the vertical direction, for example. Each of the first heat transfer tubes 41 has a flat shape with a rectangular cross section, for example, and a plurality of flow paths 41a through which a heat medium such as water or refrigerant flows is formed. Further, each of the first heat transfer tubes 41 is arranged side by side in the horizontal direction with a first specified interval 41b. Between the adjacent first heat transfer tubes 41, air flows from the front side to the back side of the first opening 11. For example, the first heat transfer tube 41 is formed by extruding aluminum having high thermal conductivity. Here, in the first embodiment, the cross-sectional shape of the first heat transfer tube 41 is rectangular, but of course, the cross-sectional shape of the first heat transfer tube 41 may be other shapes (elliptical shape, oval shape, etc.). Good.
 第二熱交換器32は、第一開口部11の正面となる筐体10の外部から見たときに第一熱交換器31の後方に、換言すると第一熱交換器31よりも筐体10の内部側となる位置に、例えば第一熱交換器31と対向して配置されている。この第二熱交換器32は、例えば上下方向に沿って延びた複数の第二伝熱管42を備えている。第二伝熱管42のそれぞれは、断面が例えば矩形状の扁平形状となっており、その内部に水又は冷媒等の熱媒体が流通する例えば複数の流路42aが形成されている。また、第二伝熱管42のそれぞれは、第二規定間隔42bずつ空けて、横方向に並べて配置されている。隣接する第二伝熱管42どうしの間(隙間)は、第一開口部11の正面側から背面側に空気が流通するようにされる。本実施の形態1では、第二規定間隔42bは、第一規定間隔41bよりも小さくなっている。第二伝熱管42は、例えば、熱伝導性の高いアルミニウムを押し出して成型する。ここで、本実施の形態1では、第二伝熱管42の断面形状を矩形状としているが、第二伝熱管42の断面形状をその他の形状(楕円形状、長丸形状等)にしても勿論よい。 The second heat exchanger 32 is located behind the first heat exchanger 31 when viewed from the outside of the housing 10 that is the front of the first opening 11, in other words, the housing 10 is more than the first heat exchanger 31. For example, it is arranged facing the first heat exchanger 31 at a position on the inner side of the first heat exchanger 31. The second heat exchanger 32 includes a plurality of second heat transfer tubes 42 extending along, for example, the vertical direction. Each of the second heat transfer tubes 42 has a flat shape with a rectangular cross section, for example, and a plurality of flow paths 42a in which a heat medium such as water or a refrigerant circulates are formed therein. The second heat transfer tubes 42 are arranged side by side in the horizontal direction with a second specified interval 42b. Between the adjacent second heat transfer tubes 42 (gap), air flows from the front side to the back side of the first opening 11. In the first embodiment, the second specified interval 42b is smaller than the first specified interval 41b. For example, the second heat transfer tube 42 is formed by extruding aluminum having high thermal conductivity. Here, in the first embodiment, the cross-sectional shape of the second heat transfer tube 42 is rectangular, but of course, the cross-sectional shape of the second heat transfer tube 42 may be other shapes (elliptical shape, oval shape, etc.). Good.
 なお、第一熱交換器31の流路41a及び第二熱交換器32の流路42aへ熱媒体を流通させる構成は特に限定されないが、例えば次のような構成としている。すなわち、図1に示すように、第一熱交換器31の第一伝熱管41の両端を分岐管70に挿入している。同様に、第二熱交換器32の第二伝熱管42の両端を分岐管70に挿入している。これにより、分岐管70の一方から供給された熱媒体が第一熱交換器31の流路41a及び第二熱交換器32の流路42aへ流入する。そして、第一熱交換器31の流路41a及び第二熱交換器32の流路42aを流れた熱媒体は、分岐管70の他方へ流出する。本実施の形態1では、第一伝熱管41及び第二伝熱管42の両端を分岐管70に挿入することにより、分岐管70に、これら伝熱管を固定する機能も持たせている。 In addition, although the structure which distribute | circulates a heat medium to the flow path 41a of the 1st heat exchanger 31 and the flow path 42a of the 2nd heat exchanger 32 is not specifically limited, For example, it is set as the following structures. That is, as shown in FIG. 1, both ends of the first heat transfer pipe 41 of the first heat exchanger 31 are inserted into the branch pipe 70. Similarly, both ends of the second heat transfer pipe 42 of the second heat exchanger 32 are inserted into the branch pipe 70. Thereby, the heat medium supplied from one of the branch pipes 70 flows into the flow path 41 a of the first heat exchanger 31 and the flow path 42 a of the second heat exchanger 32. The heat medium that has flowed through the flow path 41 a of the first heat exchanger 31 and the flow path 42 a of the second heat exchanger 32 flows out to the other side of the branch pipe 70. In the first embodiment, by inserting both ends of the first heat transfer tube 41 and the second heat transfer tube 42 into the branch tube 70, the branch tube 70 has a function of fixing these heat transfer tubes.
 続いて、このように構成された室内熱交換ユニット1の動作について説明する。なお、以下では、第一熱交換器31の流路41a及び第二熱交換器32の流路42aへ室内温度より高温の熱媒体を流通させる暖房運転について説明する。冷房運転を行う場合には、第一熱交換器31の流路41a及び第二熱交換器32の流路42aへ、室内温度より低温の熱媒体を流通させればよい。 Subsequently, the operation of the indoor heat exchange unit 1 configured as described above will be described. Hereinafter, a heating operation in which a heat medium having a temperature higher than the room temperature is circulated through the flow path 41a of the first heat exchanger 31 and the flow path 42a of the second heat exchanger 32 will be described. When performing the cooling operation, a heat medium having a temperature lower than the room temperature may be circulated through the flow path 41a of the first heat exchanger 31 and the flow path 42a of the second heat exchanger 32.
 室内熱交換ユニット1を動作させる場合、送風機20を駆動し、第一熱交換器31の流路41a及び第二熱交換器32の流路42aへ室内温度より高温の熱媒体を流通させる。 When operating the indoor heat exchange unit 1, the blower 20 is driven, and a heat medium having a temperature higher than the room temperature is circulated through the flow path 41a of the first heat exchanger 31 and the flow path 42a of the second heat exchanger 32.
 第一熱交換器31の流路41aに高温の熱媒体が流れると、第一熱交換器31は、第一開口部11から輻射熱を放出する。すなわち、本実施の形態1に係る室内熱交換ユニット1は、室内を輻射によって暖房することが可能となっている。 When a high-temperature heat medium flows through the flow path 41 a of the first heat exchanger 31, the first heat exchanger 31 releases radiant heat from the first opening 11. That is, the indoor heat exchange unit 1 according to the first embodiment can heat the room by radiation.
 また、本実施の形態1に係る室内熱交換ユニット1は、強制対流による暖房も可能となっている。すなわち、送風機20を駆動することにより、室内の空気が第一開口部11から筐体10内に吸い込まれる。この際、筐体10内に吸い込まれる空気は、第一熱交換器31(第一伝熱管41どうしの間)を通過した後、第二熱交換器32(第二伝熱管42どうしの間)を通過する。つまり、送風機20によって生じる空気の流れにおいて第二熱交換器32は第一熱交換器31の下流にある。このとき、第一熱交換器31及び第二熱交換器32を通過する空気は、これらの熱交換器を流れる高温の熱媒体に加熱される。そして、加熱された空気は、第二開口部12から室内へ吹き出される。 Moreover, the indoor heat exchange unit 1 according to the first embodiment can be heated by forced convection. That is, by driving the blower 20, indoor air is sucked into the housing 10 from the first opening 11. At this time, the air sucked into the housing 10 passes through the first heat exchanger 31 (between the first heat transfer tubes 41) and then the second heat exchanger 32 (between the second heat transfer tubes 42). Pass through. That is, the second heat exchanger 32 is downstream of the first heat exchanger 31 in the air flow generated by the blower 20. At this time, the air passing through the first heat exchanger 31 and the second heat exchanger 32 is heated by a high-temperature heat medium that flows through these heat exchangers. The heated air is blown out from the second opening 12 into the room.
 以上、本実施の形態1に係る室内熱交換ユニット1においては、第一開口部11から輻射熱を放出し、第二開口部12から温風を吹き出すことで、筐体10の前面及び上面の各々から室内へ熱を供給することが可能となる。このため、本実施の形態1に係る室内熱交換ユニット1は、部屋の温度ムラを低減でき、使用者の快適性が向上することが可能となる。 As described above, in the indoor heat exchange unit 1 according to Embodiment 1, each of the front surface and the upper surface of the housing 10 is released by releasing radiant heat from the first opening 11 and blowing out warm air from the second opening 12. It becomes possible to supply heat into the room. For this reason, the indoor heat exchange unit 1 according to the first embodiment can reduce the temperature unevenness of the room, and the comfort of the user can be improved.
 また、本実施の形態1に係る室内熱交換ユニット1は、第一熱交換器31及び第二熱交換器32に共に空気を通過させることで、第一熱交換器31が強制対流による熱交換としても機能し、熱交換性能が向上する。すなわち、前段の輻射用の熱交換器である第一熱交換器31である程度空気を加熱した後に、後段の対流用の熱交換器である第二熱交換器32でさらに加熱することで、第一開口部11から吸い込んだ室内空気の温度を室内暖房に適する温度に高めることができる。このため、対流用の熱交換器を大きくする必要がなく、室内熱交換ユニット1をコンパクトに形成することができる。
 なお、送風機20の制御等を行う電子基板等を室内熱交換ユニット1が備える場合には、第二熱交換器32と筐体10の後壁との間に当該電子基板等を配置してもよい。室内熱交換ユニット1をコンパクトにしたまま、電子基板等を筐体10内に収納することができる。
Moreover, the indoor heat exchange unit 1 according to Embodiment 1 allows the first heat exchanger 31 to perform heat exchange by forced convection by allowing air to pass through both the first heat exchanger 31 and the second heat exchanger 32. And the heat exchange performance is improved. That is, after the air is heated to some extent by the first heat exchanger 31 that is a heat exchanger for radiation at the front stage, it is further heated by the second heat exchanger 32 that is a heat exchanger for convection at the rear stage. The temperature of the room air sucked from the one opening 11 can be increased to a temperature suitable for room heating. For this reason, it is not necessary to enlarge the heat exchanger for convection, and the indoor heat exchange unit 1 can be formed compactly.
When the indoor heat exchange unit 1 includes an electronic board or the like that controls the blower 20 or the like, the electronic board or the like may be disposed between the second heat exchanger 32 and the rear wall of the housing 10. Good. An electronic board or the like can be accommodated in the housing 10 while the indoor heat exchange unit 1 is made compact.
 また、本実施の形態1に係る室内熱交換ユニット1は、吸い込む側の第一開口部11の開口面積が、吹き出す側の第二開口部12の開口面積よりも大きな構成となっている。このため、吸気の速度を小さく、かつ通過損失を小さくすることができ、かつ、吹出しの速度を高めて、室内の遠くまで温調した風を到達させることができる。第二開口部12にルーバー等を設けて吹出す角度を調整してもよい。一方、輻射に用いられる第一開口部11は開口面積が大きいため、空気の速度(風速)が小さくなり、穏やかな温調が可能となる。 Moreover, the indoor heat exchange unit 1 according to Embodiment 1 has a configuration in which the opening area of the first opening 11 on the suction side is larger than the opening area of the second opening 12 on the blowing side. For this reason, the speed of intake air can be reduced and the passage loss can be reduced, and the speed of blowout can be increased to allow the temperature-controlled wind to reach far into the room. You may adjust the angle which blows off by providing a louver etc. in the 2nd opening part 12. FIG. On the other hand, since the first opening 11 used for radiation has a large opening area, the air speed (wind speed) is reduced, and gentle temperature control is possible.
 また、本実施の形態1に係る室内熱交換ユニット1は、第一熱交換器31の第一伝熱管41間の間隔である第一規定間隔41bを、第二熱交換器32の第二伝熱管42間の間隔である第二規定間隔42bよりも小さくしている。このため、本実施の形態1に係る室内熱交換ユニット1は、第二熱交換器32において、空気と熱媒体との温度差が小さくなっても、両者を効率的に熱交換させることができる。 Further, the indoor heat exchange unit 1 according to the first embodiment uses the first specified interval 41 b that is the interval between the first heat transfer tubes 41 of the first heat exchanger 31 as the second heat transfer of the second heat exchanger 32. It is smaller than the second specified interval 42b, which is the interval between the heat tubes 42. For this reason, the indoor heat exchange unit 1 according to Embodiment 1 can efficiently exchange heat in the second heat exchanger 32 even if the temperature difference between the air and the heat medium becomes small. .
 なお、本実施の形態1では、第一熱交換器31の第一伝熱管41及び第二熱交換器32の第二伝熱管42を上下方向に配置したが、その配置姿勢は限定されるものではない。また、第一熱交換器31の第一伝熱管41と第二熱交換器32の第二伝熱管42とはいずれも同一の管を用いているが、これらの伝熱管を異なる形状としても、上記の効果を得ることができる。また、本実施の形態1では、分岐管70を円管で構成したが、分岐管70を円管以外で構成してもよい。また、本実施の形態1は、第一熱交換器31の第一伝熱管41及び第二熱交換器32の第二伝熱管42を分岐管70で固定したが、これらの伝熱管を別の部材で固定してもよい。 In the first embodiment, the first heat transfer pipe 41 of the first heat exchanger 31 and the second heat transfer pipe 42 of the second heat exchanger 32 are arranged in the vertical direction, but the arrangement posture is limited. is not. Moreover, although the 1st heat exchanger tube 41 of the 1st heat exchanger 31 and the 2nd heat exchanger tube 42 of the 2nd heat exchanger 32 both use the same pipe | tube, even if these heat exchanger tubes are made into different shapes, The above effects can be obtained. Moreover, in this Embodiment 1, although the branch pipe 70 was comprised with the circular pipe, you may comprise the branch pipe 70 other than a circular pipe. In the first embodiment, the first heat transfer pipe 41 of the first heat exchanger 31 and the second heat transfer pipe 42 of the second heat exchanger 32 are fixed by the branch pipe 70. You may fix with a member.
 また、本実施の形態1は、第一熱交換器31の第一伝熱管41及び第二熱交換器32の第二伝熱管42をアルミニウムで形成したが、他の材料で構成してもよい。例えば、銅又はステンレスといった熱伝導性の良い材料、アルミナ粉をフィラーとした樹脂等、熱媒体を流通させられる材料で第一熱交換器31の第一伝熱管41及び第二熱交換器32の第二伝熱管42を形成してもよい。 In the first embodiment, the first heat transfer tube 41 of the first heat exchanger 31 and the second heat transfer tube 42 of the second heat exchanger 32 are made of aluminum, but may be made of other materials. . For example, the first heat transfer tube 41 and the second heat exchanger 32 of the first heat exchanger 31 are made of a material having a good heat conductivity such as copper or stainless steel or a material through which a heat medium can be circulated such as a resin using alumina powder as a filler. The second heat transfer tube 42 may be formed.
 また、本実施の形態1は、送風機20にプロペラファンを用いた形態を示したが、送風機20をクロスフローファン又はターボファン等の送風機としてもよい。また、送風機20の回転軸は、垂直に限らず、斜め又は水平であってもよい。また、第二開口部12が筐体10の上面でなく、正面側(第一開口部11が形成された側面)に形成されていてもよい。 In the first embodiment, a propeller fan is used as the blower 20. However, the blower 20 may be a blower such as a crossflow fan or a turbo fan. Moreover, the rotating shaft of the blower 20 is not limited to vertical, but may be oblique or horizontal. Further, the second opening 12 may be formed on the front side (side surface on which the first opening 11 is formed) instead of the upper surface of the housing 10.
 上記は暖房運転に関して説明したが、本実施の形態1を用いて冷房運転する場合は、室内側が第一熱交換器31または第二熱交換器32よりも高温である。その場合、第一熱交換器31は室内からの輻射熱を吸収(反輻射)することで冷房する。冷房においても第一熱交換器31が輻射を利用する点で同じであり、上記で述べた第一熱交換器31の輻射の説明は、冷房運転時において反輻射の説明に置き換えることができる。また、冷房運転時は、第一熱交換器31及び第二熱交換器32を通過する空気は、これらの熱交換器を流れる冷温の熱媒体に冷却される。 Although the above has been described with respect to the heating operation, when the cooling operation is performed using the first embodiment, the indoor side is at a higher temperature than the first heat exchanger 31 or the second heat exchanger 32. In that case, the 1st heat exchanger 31 cools by absorbing the radiation heat from a room (anti-radiation). The same applies to the cooling in that the first heat exchanger 31 uses radiation, and the description of the radiation of the first heat exchanger 31 described above can be replaced with the description of anti-radiation during the cooling operation. Further, during the cooling operation, the air passing through the first heat exchanger 31 and the second heat exchanger 32 is cooled by a cold heat medium flowing through these heat exchangers.
実施の形態2.
 第二熱交換器32は、実施の形態1の構成に限定されるものではなく、例えば隣接する第二伝熱管42の間に伝熱フィンを備えていてもよい。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とする。
Embodiment 2. FIG.
The second heat exchanger 32 is not limited to the configuration of the first embodiment, and may include a heat transfer fin between the adjacent second heat transfer tubes 42, for example. In the second embodiment, items not particularly described are the same as those in the first embodiment.
 図5は、本発明の実施の形態2に係る第一熱交換器及び第二熱交換器を示す斜視図である。図6は、本発明の実施の形態2に係る第一熱交換器及び第二熱交換器を示す断面斜視図である。なお、図6は、図5のA-A断面における第一熱交換器31及び第二熱交換器32の断面図である。 FIG. 5 is a perspective view showing a first heat exchanger and a second heat exchanger according to Embodiment 2 of the present invention. FIG. 6 is a cross-sectional perspective view showing a first heat exchanger and a second heat exchanger according to Embodiment 2 of the present invention. 6 is a cross-sectional view of the first heat exchanger 31 and the second heat exchanger 32 taken along the line AA in FIG.
 第二熱交換器32の第二伝熱管42のそれぞれは、第二規定間隔42bずつ空けて並べて配置されている。そして、隣接する第二伝熱管42の間には、これら第二伝熱管42に接触する伝熱フィン50が設けられている。伝熱フィン50は、第二伝熱管42間の間隙である第二規定間隔42bの幅を持つように、例えば1mm未満の薄板を複数回折りたたむように形成されている。また、伝熱フィン50は、その表面に突起及び切り起こし形状等を設けることで、対流熱伝達を促進するように構成されている。 The second heat transfer tubes 42 of the second heat exchanger 32 are arranged side by side with a second specified interval 42b. And between the adjacent 2nd heat exchanger tubes 42, the heat transfer fin 50 which contacts these 2nd heat exchanger tubes 42 is provided. The heat transfer fins 50 are formed so as to fold a plurality of thin plates less than 1 mm, for example, so as to have a width of a second specified interval 42 b that is a gap between the second heat transfer tubes 42. The heat transfer fins 50 are configured to promote convective heat transfer by providing protrusions, cut-and-raised shapes, and the like on the surface.
 なお、伝熱フィン50の材質は、第二伝熱管42と同様に限定されるものではないが、本実施の形態2では熱伝導性の高いアルミニウムを使用している。また、本実施の形態2では、第二伝熱管42も、熱伝導性の高いアルミニウムで形成している。第二伝熱管42と伝熱フィン50とは、例えばノコロックロウ付け法をはじめとした金属接合により接続されている。 In addition, although the material of the heat transfer fin 50 is not limited like the 2nd heat transfer tube 42, in this Embodiment 2, aluminum with high heat conductivity is used. Moreover, in this Embodiment 2, the 2nd heat exchanger tube 42 is also formed with aluminum with high heat conductivity. The second heat transfer tubes 42 and the heat transfer fins 50 are connected to each other by metal bonding including, for example, a sawlock brazing method.
 一方、複数の第一伝熱管41が第一規定間隔41bずつ空けて並べられている第一熱交換器31は、隣接する第一伝熱管41の間に伝熱フィンを備えない構成となっている。従って、第一伝熱管41の表面から室内に熱を輻射する。そして、第一伝熱管41間の間隙である第一規定間隔41bは、第二熱交換器32の伝熱フィン50に使用者の手指が触れないように、使用者の手指が入らない間隔となっている。本実施の形態2では、第一規定間隔41bは、子供の手指が第二熱交換器32の伝熱フィン50に触れないように、例えば5mm未満の間隔となっている。 On the other hand, the first heat exchanger 31 in which the plurality of first heat transfer tubes 41 are arranged at intervals of the first specified interval 41b does not include heat transfer fins between the adjacent first heat transfer tubes 41. Yes. Accordingly, heat is radiated from the surface of the first heat transfer tube 41 into the room. And the 1st specified space | interval 41b which is the clearance gap between the 1st heat exchanger tubes 41 is the space | interval which a user's finger does not enter so that a user's finger may not touch the heat transfer fin 50 of the 2nd heat exchanger 32. It has become. In the second embodiment, the first specified interval 41b is, for example, an interval of less than 5 mm so that the finger of the child does not touch the heat transfer fins 50 of the second heat exchanger 32.
 以上、本実施の形態2のように構成された室内熱交換ユニット1においては、実施の形態1と同様に、対流と輻射の両方の伝熱形態によって室内の暖房を行うことができ、使用者の快適性を向上できる。また、本実施の形態2に係る室内熱交換ユニット1は、実施の形態1と同様に、第二熱交換器32に加えて第一熱交換器31も対流熱交換器として機能させることにより、室内熱交換ユニット1をコンパクトに形成することができる。 As described above, in the indoor heat exchange unit 1 configured as in the second embodiment, similarly to the first embodiment, the room can be heated by both the convection and radiation heat transfer modes, and the user Can improve comfort. Further, in the indoor heat exchange unit 1 according to the second embodiment, as in the first embodiment, in addition to the second heat exchanger 32, the first heat exchanger 31 also functions as a convection heat exchanger, The indoor heat exchange unit 1 can be made compact.
 また、本実施の形態2に係る室内熱交換ユニット1は、第二熱交換器32に伝熱フィン50を備えているので、空気と熱媒体との温度差が小さくなっても、両者を効率的に熱交換させることができる。 Moreover, since the indoor heat exchange unit 1 according to the second embodiment includes the heat transfer fins 50 in the second heat exchanger 32, the efficiency is improved even when the temperature difference between the air and the heat medium is reduced. Heat exchange.
 また、本実施の形態2に係る室内熱交換ユニット1においては、第一伝熱管41間の間隙である第一規定間隔41bは、第二熱交換器32の伝熱フィン50に子供の手指が触れないように、子供の手指が入らない間隔となっている。このため、本実施の形態2に係る室内熱交換ユニット1は、使用者及び子供が第二熱交換器32の伝熱フィン50に触れて負傷することも防止できる。 Further, in the indoor heat exchange unit 1 according to the second embodiment, the first specified interval 41b, which is the gap between the first heat transfer tubes 41, has a child's finger placed on the heat transfer fin 50 of the second heat exchanger 32. In order not to touch, it is the interval where children's fingers do not enter. For this reason, the indoor heat exchange unit 1 according to the second embodiment can prevent the user and child from touching the heat transfer fins 50 of the second heat exchanger 32 and being injured.
 なお、本実施の形態2では、第一熱交換器31の第一伝熱管41間の間隔である第一規定間隔41bが第二熱交換器32の第二伝熱管42間の間隔である第二規定間隔42bよりも大きくなっている。しかしながら、第一規定間隔41bが使用者の手指が入らない間隔となっていれば、実施の形態1と同様に、第一規定間隔41bを第二規定間隔42bよりも小さくしてもよい。第二熱交換器32において、空気と熱媒体との温度差が小さくなっても、両者をより効率的に熱交換させることができる。 In the second embodiment, the first specified interval 41 b that is the interval between the first heat transfer tubes 41 of the first heat exchanger 31 is the first interval that is the interval between the second heat transfer tubes 42 of the second heat exchanger 32. It is larger than the two specified intervals 42b. However, if the first specified interval 41b is an interval that does not allow the user's fingers to enter, the first specified interval 41b may be smaller than the second specified interval 42b as in the first embodiment. Even if the temperature difference between the air and the heat medium is reduced in the second heat exchanger 32, both can be more efficiently heat-exchanged.
 また、本実施の形態2では、伝熱フィン50として薄板を複数回折りたたんで形成したコルゲートフィンを例示したが、プレートフィン等の他のフィン形状で伝熱フィン50を構成してもよい。 In the second embodiment, the corrugated fin formed by folding a plurality of thin plates is exemplified as the heat transfer fin 50. However, the heat transfer fin 50 may be configured by other fin shapes such as a plate fin.
実施の形態3.
 本実施の形態3では、本発明に係る空気調和機の一例、すなわち本発明に係る室内熱交換ユニットを備えた空気調機の一例について説明する。なお、本実施の形態3において、特に記述しない項目については実施の形態1又は実施の形態2と同様とする。
Embodiment 3 FIG.
In the third embodiment, an example of an air conditioner according to the present invention, that is, an example of an air conditioner including the indoor heat exchange unit according to the present invention will be described. In Embodiment 3, items that are not particularly described are the same as those in Embodiment 1 or Embodiment 2.
 図7は、本発明の実施の形態3に係る空気調和機を示す回路図である。
 以下、図7を参照して、本実施の形態3に係る空気調和機200の回路について説明する。
 空気調和機200は、室内熱交換ユニット1と、室内熱交換ユニット1の第一熱交換器31及び第二熱交換器32を流れる熱媒体に熱を供給する熱源ユニット100と、を備える。
FIG. 7 is a circuit diagram showing an air conditioner according to Embodiment 3 of the present invention.
Hereinafter, the circuit of the air conditioner 200 according to Embodiment 3 will be described with reference to FIG.
The air conditioner 200 includes an indoor heat exchange unit 1 and a heat source unit 100 that supplies heat to a heat medium flowing through the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1.
 熱源ユニット100は、冷凍サイクル回路110を備える。この冷凍サイクル回路110は、圧縮機111、水-冷媒熱交換器112、例えば膨張弁等である冷媒流量制御装置113、及び熱源側熱交換器114を配管接続して構成されている。詳しくは、水-冷媒熱交換器112は、冷媒流路と水流路とを備えている。そして、圧縮機111及び冷媒流量制御装置113は、水-冷媒熱交換器112の冷媒流路と接続されている。この冷凍サイクル回路110には、R410A、R32及びCO等、蒸気圧縮サイクルを可能とする冷媒が循環する。 The heat source unit 100 includes a refrigeration cycle circuit 110. The refrigeration cycle circuit 110 is configured by connecting a compressor 111, a water-refrigerant heat exchanger 112, for example, a refrigerant flow rate control device 113 such as an expansion valve, and a heat source side heat exchanger 114. Specifically, the water-refrigerant heat exchanger 112 includes a refrigerant channel and a water channel. The compressor 111 and the refrigerant flow control device 113 are connected to the refrigerant flow path of the water-refrigerant heat exchanger 112. In the refrigeration cycle circuit 110, refrigerants such as R410A, R32, and CO 2 that enable a vapor compression cycle circulate.
 また、水-冷媒熱交換器112は、該水-冷媒熱交換器112の水流路が室内熱交換ユニット1の第一熱交換器31及び第二熱交換器32と配管接続されて、水回路120の一部を構成する。詳しくは、水回路120は、該水-冷媒熱交換器112の水流路、ポンプ121、室内熱交換ユニット1の第一熱交換器31及び第二熱交換器32が配管接続されて構成されている。この水回路120には、水が循環する。なお、水回路120に水を循環させるポンプ121は、熱源ユニット100に搭載してもよいし、室内熱交換ユニット1に搭載してもよい。また、水回路120に、ブライン等を循環させてもよい。
 ここで、本実施の形態3では、第一熱交換器31及び第二熱交換器32は、第一熱交換器31を流れた水が第二熱交換器32を流れるように、直列に接続されている。
Further, the water-refrigerant heat exchanger 112 has a water circuit in which the water flow path of the water-refrigerant heat exchanger 112 is connected to the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1 by piping. 120 constitutes a part. Specifically, the water circuit 120 includes a water flow path of the water-refrigerant heat exchanger 112, a pump 121, and the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1 connected to each other by piping. Yes. Water circulates in the water circuit 120. The pump 121 for circulating water in the water circuit 120 may be mounted on the heat source unit 100 or may be mounted on the indoor heat exchange unit 1. Further, brine or the like may be circulated in the water circuit 120.
Here, in this Embodiment 3, the 1st heat exchanger 31 and the 2nd heat exchanger 32 are connected in series so that the water which flowed through the 1st heat exchanger 31 may flow through the 2nd heat exchanger 32. Has been.
 このように構成した空気調和機200を動作させると、熱源ユニット100の圧縮機111から吐出された高温のガス状冷媒は、水-冷媒熱交換器112の冷媒流路に流入する。そして、水-冷媒熱交換器112の冷媒流路に流入した高圧のガス状冷媒は、気液二相状態となって水-冷媒熱交換器112の水流路を流れる水へ熱を供給し、液状冷媒となる。この液状冷媒は、冷媒流量制御装置113を通過することで減圧されて気液二相状態となり、熱源側熱交換器114において外気から吸熱することでガス化し、圧縮機111へと戻る。 When the air conditioner 200 configured as described above is operated, the high-temperature gaseous refrigerant discharged from the compressor 111 of the heat source unit 100 flows into the refrigerant flow path of the water-refrigerant heat exchanger 112. Then, the high-pressure gaseous refrigerant that has flowed into the refrigerant flow path of the water-refrigerant heat exchanger 112 enters a gas-liquid two-phase state to supply heat to the water flowing through the water flow path of the water-refrigerant heat exchanger 112, It becomes a liquid refrigerant. The liquid refrigerant is reduced in pressure by passing through the refrigerant flow control device 113 to be in a gas-liquid two-phase state, gasified by absorbing heat from outside air in the heat source side heat exchanger 114, and returned to the compressor 111.
 一方、水回路120においては、水-冷媒熱交換器112で加熱された水が、ポンプ121により、室内熱交換ユニット1へ送られる。そして、室内熱交換ユニット1へ送られた水は、室内熱交換ユニット1において室内の空気と熱交換を行い、低温となって水-冷媒熱交換器112へと戻る。 On the other hand, in the water circuit 120, the water heated by the water-refrigerant heat exchanger 112 is sent to the indoor heat exchange unit 1 by the pump 121. Then, the water sent to the indoor heat exchange unit 1 exchanges heat with the indoor air in the indoor heat exchange unit 1 and returns to the water-refrigerant heat exchanger 112 at a low temperature.
 ここで、上述のように、室内熱交換ユニット1では、第一熱交換器31が第二熱交換器32の上流側に接続されている。このため、水-冷媒熱交換器112で加熱された高温の水が、まず第一熱交換器31に流入することとなり、第一熱交換器31の輻射熱量を増大することが可能となる。また、熱交換効率の高い第二熱交換器32を第一熱交換器31の下流側に設けることで、空気と温水の温度差が小さくなっても効率的に熱交換することが可能となる。 Here, as described above, in the indoor heat exchange unit 1, the first heat exchanger 31 is connected to the upstream side of the second heat exchanger 32. For this reason, the high-temperature water heated by the water-refrigerant heat exchanger 112 first flows into the first heat exchanger 31, and the amount of radiant heat of the first heat exchanger 31 can be increased. In addition, by providing the second heat exchanger 32 with high heat exchange efficiency on the downstream side of the first heat exchanger 31, it is possible to efficiently exchange heat even if the temperature difference between air and hot water becomes small. .
実施の形態4.
 本発明に係る室内熱交換ユニットに、以下のようなフィルタを設けてもよい。なお、本実施の形態4において、特に記述しない項目については実施の形態1~実施の形態3と同様とする。
Embodiment 4 FIG.
The indoor heat exchange unit according to the present invention may be provided with the following filter. In the fourth embodiment, items that are not particularly described are the same as those in the first to third embodiments.
 図8は、本発明の実施の形態4に係る室内熱交換ユニットの第一熱交換器及び第二熱交換器近傍を示す斜視図である。図9は、本発明の実施の形態4に係る室内熱交換ユニットの第一熱交換器及び第二熱交換器近傍を示す横断面図である。なお、図9は、図8のA-A断面における断面図である。 FIG. 8 is a perspective view showing the vicinity of the first heat exchanger and the second heat exchanger of the indoor heat exchange unit according to Embodiment 4 of the present invention. FIG. 9 is a cross-sectional view showing the vicinity of the first heat exchanger and the second heat exchanger of the indoor heat exchange unit according to Embodiment 4 of the present invention. 9 is a cross-sectional view taken along the line AA of FIG.
 本実施の形態4に係る第一熱交換器31は、実施の形態1と同様の構成となっている。すなわち、本実施の形態4に係る第一熱交換器31は、複数の第一伝熱管41を備えている。第一伝熱管41のそれぞれは、断面が扁平形状となっており、その内部に水又は冷媒等の熱媒体が流通する例えば複数の流路41aが形成されている。また、第一伝熱管41のそれぞれは、第一規定間隔41bずつ空けて、並べて配置されている。第一伝熱管41は、例えば、熱伝導性の高いアルミニウムを押し出して成型する。 The first heat exchanger 31 according to the fourth embodiment has the same configuration as that of the first embodiment. That is, the first heat exchanger 31 according to the fourth embodiment includes a plurality of first heat transfer tubes 41. Each of the first heat transfer tubes 41 has a flat cross section, and for example, a plurality of flow paths 41a through which a heat medium such as water or a refrigerant flows is formed. The first heat transfer tubes 41 are arranged side by side with a first specified interval 41b. For example, the first heat transfer tube 41 is formed by extruding aluminum having high thermal conductivity.
 本実施の形態4に係る第二熱交換器32も、実施の形態1と同様の構成となっている。すなわち、第二熱交換器32は、第一熱交換器31の後方に、換言すると第一熱交換器31よりも筐体10の内部側となる位置に、例えば第一熱交換器31と対向して配置されている。この第二熱交換器32は、複数の第二伝熱管42を備えている。第二伝熱管42のそれぞれは、断面が扁平形状となっており、その内部に水又は冷媒等の熱媒体が流通する例えば複数の流路42aが形成されている。また、第二伝熱管42のそれぞれは、第二規定間隔42bずつ空けて、並べて配置されている。第二規定間隔42bは、第一規定間隔41bよりも小さくなっている。第二伝熱管42は、例えば、熱伝導性の高いアルミニウムを押し出して成型する。 The second heat exchanger 32 according to the fourth embodiment also has the same configuration as that of the first embodiment. That is, the second heat exchanger 32 is opposed to the first heat exchanger 31, for example, at a position behind the first heat exchanger 31, in other words, on the inner side of the housing 10 with respect to the first heat exchanger 31. Are arranged. The second heat exchanger 32 includes a plurality of second heat transfer tubes 42. Each of the second heat transfer tubes 42 has a flat cross section, and for example, a plurality of flow paths 42a through which a heat medium such as water or a refrigerant flows is formed. In addition, the second heat transfer tubes 42 are arranged side by side with a second specified interval 42b. The second specified interval 42b is smaller than the first specified interval 41b. For example, the second heat transfer tube 42 is formed by extruding aluminum having high thermal conductivity.
 ここで、本実施の形態4では、第一熱交換器31と第二熱交換器32との間に、第一熱交換器31を通過後の空気中から塵埃を除去するフィルタ60が設けられている。フィルタ60は、例えば、空気を通過可能に形成した不織布にプラスチックの格子を設けたものである。また例えば、フィルタ60は、多孔質体からなるもの等を用いる。 Here, in the fourth embodiment, a filter 60 that removes dust from the air after passing through the first heat exchanger 31 is provided between the first heat exchanger 31 and the second heat exchanger 32. ing. The filter 60 is, for example, provided with a plastic lattice on a non-woven fabric formed so that air can pass through. Further, for example, the filter 60 is made of a porous material.
 実施の形態1で示したように、第一熱交換器31の第一伝熱管41間の間隔である第一規定間隔41bを第二熱交換器32の第二伝熱管42間の間隔である第二規定間隔42bよりも小さくすることにより、第二熱交換器32において、空気と熱媒体との温度差が小さくなっても、両者を効率的に熱交換させることができる。一方、第二規定間隔42bを小さくすることにより、第二熱交換器32に塵埃が堆積しやすくなる。また、第二熱交換器32は、第一熱交換器31の後方に配置されているため、清掃を行いづらい。 As shown in the first embodiment, the first specified interval 41 b that is the interval between the first heat transfer tubes 41 of the first heat exchanger 31 is the interval between the second heat transfer tubes 42 of the second heat exchanger 32. By making it smaller than the second specified interval 42b, even if the temperature difference between the air and the heat medium is reduced in the second heat exchanger 32, both can be efficiently heat-exchanged. On the other hand, by reducing the second specified interval 42b, dust is likely to accumulate in the second heat exchanger 32. Moreover, since the 2nd heat exchanger 32 is arrange | positioned behind the 1st heat exchanger 31, it is difficult to clean.
 しかしながら、本実施の形態4に係る室内熱交換ユニット1は、第一熱交換器31と第二熱交換器32との間にフィルタ60を備えているので、該フィルタ60で塵埃を捕獲でき、第二熱交換器32に塵埃が堆積することを抑制できる。つまり、第二熱交換器32の熱交換性能の低下を抑制できる。また、フィルタ60を第一熱交換器31の後方に備えることにより、正面側(第一開口部11側)から室内熱交換ユニット1を見た際にフィルタ60が第一熱交換器31で隠れる。このため、使用者から塵埃が見えにくく美観を損なわないという効果も得られる。 However, since the indoor heat exchange unit 1 according to Embodiment 4 includes the filter 60 between the first heat exchanger 31 and the second heat exchanger 32, dust can be captured by the filter 60. It is possible to suppress the accumulation of dust on the second heat exchanger 32. That is, a decrease in the heat exchange performance of the second heat exchanger 32 can be suppressed. Further, by providing the filter 60 behind the first heat exchanger 31, the filter 60 is hidden by the first heat exchanger 31 when the indoor heat exchange unit 1 is viewed from the front side (first opening 11 side). . For this reason, the effect that dust is hard to be seen by the user and the aesthetic appearance is not impaired is also obtained.
 なお、第一熱交換器31の第一伝熱管41間の間隔である第一規定間隔41bを第二熱交換器32の第二伝熱管42間の間隔である第二規定間隔42bよりも小さくしない場合でも、第一熱交換器31と第二熱交換器32との間にフィルタ60を備えるとよい。第一熱交換器31の後方に配置されて清掃を行いにくい第二熱交換器32に、塵埃が堆積することを抑制できる。また、フィルタ60が第一熱交換器31で隠れ、使用者から塵埃が見えにくく美観を損なわないという効果も得られる。また、実施の形態2で示した伝熱フィン50を備えた第二熱交換器32においても、第二熱交換器32に塵埃が堆積しやすくなる。このため、このような第二熱交換器32を採用した場合にも、第一熱交換器31と第二熱交換器32との間にフィルタ60を備えることにより、上記の効果を得ることができる。 The first specified interval 41b, which is the interval between the first heat transfer tubes 41 of the first heat exchanger 31, is smaller than the second specified interval 42b, which is the interval between the second heat transfer tubes 42 of the second heat exchanger 32. Even if not, it is preferable to provide a filter 60 between the first heat exchanger 31 and the second heat exchanger 32. It is possible to suppress the accumulation of dust on the second heat exchanger 32 that is disposed behind the first heat exchanger 31 and is difficult to clean. In addition, the filter 60 is hidden by the first heat exchanger 31 so that it is difficult for the user to see dust and the aesthetic appearance is not impaired. Further, in the second heat exchanger 32 including the heat transfer fins 50 shown in the second embodiment, dust easily accumulates on the second heat exchanger 32. For this reason, even when such a second heat exchanger 32 is adopted, the above effect can be obtained by providing the filter 60 between the first heat exchanger 31 and the second heat exchanger 32. it can.
実施の形態5.
 以下のように第一熱交換器31を構成することにより、輻射による熱交換性能を向上させることができる。なお、本実施の形態5において、特に記述しない項目については実施の形態1~実施の形態4と同様とする。
Embodiment 5 FIG.
By configuring the first heat exchanger 31 as follows, the heat exchange performance by radiation can be improved. In the fifth embodiment, items that are not particularly described are the same as those in the first to fourth embodiments.
 図10は、本発明の実施の形態5に係る第一熱交換器を示す横断面図である。図11は、本発明の実施の形態5に係る第一熱交換器の横断面図であり、第一熱交換器の輻射を示す図である。なお、これら図10及び図11は、第一熱交換器31の第一伝熱管41に形成された流路41aと垂直な断面となっている。
 第一熱交換器31は、複数の第一伝熱管41を備えている。第一伝熱管41のそれぞれは、断面が例えば矩形状の扁平形状となっており、その内部に水又は冷媒等の熱媒体が流通する例えば複数の流路41aが形成されている。また、第一伝熱管41のそれぞれは、第一規定間隔41bずつ空けて、横方向に並べて配置されている。
FIG. 10 is a cross-sectional view showing a first heat exchanger according to Embodiment 5 of the present invention. FIG. 11 is a cross-sectional view of the first heat exchanger according to Embodiment 5 of the present invention, and is a view showing radiation of the first heat exchanger. In addition, these FIG.10 and FIG.11 is a cross section perpendicular | vertical to the flow path 41a formed in the 1st heat exchanger tube 41 of the 1st heat exchanger 31. FIG.
The first heat exchanger 31 includes a plurality of first heat transfer tubes 41. Each of the first heat transfer tubes 41 has a flat shape with a rectangular cross section, for example, and a plurality of flow paths 41a through which a heat medium such as water or refrigerant flows is formed. Further, each of the first heat transfer tubes 41 is arranged side by side in the horizontal direction with a first specified interval 41b.
 ここで、第一伝熱管41の断面における長辺に沿った方向の中心線をB-Bとする。第一伝熱管41の断面における短辺に沿った方向の中心線をC-Cとする。第一伝熱管41の断面における幾何的な重心を点Eとし、各第一伝熱管41の点Eを結んだ線をD-Dとする。すなわち、第一伝熱管41の並び方向をD-Dとする。また、D-Dと直交する直線をF-Fとする。このとき、本実施の形態5に係る第一熱交換器31の各第一伝熱管41は、第一伝熱管41の断面における長辺に沿った方向の中心線B-Bが、直線F-Fに対して傾いている。 Here, the center line in the direction along the long side in the cross section of the first heat transfer tube 41 is BB. The center line in the direction along the short side in the cross section of the first heat transfer tube 41 is defined as CC. A geometric center of gravity in the cross section of the first heat transfer tube 41 is a point E, and a line connecting the points E of the first heat transfer tubes 41 is DD. That is, the arrangement direction of the first heat transfer tubes 41 is DD. A straight line perpendicular to DD is defined as FF. At this time, each first heat transfer tube 41 of the first heat exchanger 31 according to the fifth embodiment has a center line BB in the direction along the long side in the cross section of the first heat transfer tube 41, and the straight line F- Inclined with respect to F.
 このように構成された第一熱交換器31においては、図11に示すように、中心線C-C方向に各第一伝熱管41を観察した際、前方に配置された第一伝熱管41から、後方に配置された第一伝熱管41の先端部が露出する。これにより図11中に矢印Gで示すように、中心線C-C方向に第一熱交換器31に相対する人体、壁面及び床面等と冷媒との輻射による熱交換を向上させることができる。加えて、図中Hに示すように、各第一伝熱管41間に設けた間隙に気流を通風することで、対流伝熱により気流と冷媒との熱交換を同時に実現が可能となる。 In the first heat exchanger 31 configured in this way, as shown in FIG. 11, when the first heat transfer tubes 41 are observed in the direction of the center line CC, the first heat transfer tubes 41 arranged in front are provided. Therefore, the tip end portion of the first heat transfer tube 41 disposed rearward is exposed. As a result, as indicated by an arrow G in FIG. 11, heat exchange by radiation between the human body, the wall surface, the floor surface, and the like facing the first heat exchanger 31 in the direction of the center line CC can be improved. . In addition, as shown by H in the figure, by passing the airflow through the gaps provided between the first heat transfer tubes 41, heat exchange between the airflow and the refrigerant can be realized simultaneously by convective heat transfer.
実施の形態6.
 本実施の形態6では、実施の形態3とは異なる、本発明に係る空気調和機の別の一例について紹介する。なお、本実施の形態6において、特に記述しない項目については実施の形態1~実施の形態5と同様とする。
Embodiment 6 FIG.
In the sixth embodiment, another example of the air conditioner according to the present invention, which is different from the third embodiment, will be introduced. In the sixth embodiment, items that are not particularly described are the same as those in the first to fifth embodiments.
 図12は、本発明の実施の形態6に係る空気調和機を示す回路図である。
 以下、図12を参照して本実施の形態6に係る空気調和機の回路について説明する。
 本実施の形態6に係る空気調和機200は、室内熱交換ユニット1と、室内熱交換ユニット1の第一熱交換器31及び第二熱交換器32を流れる熱媒体に熱を供給する熱源ユニット100と、を備える。
FIG. 12 is a circuit diagram showing an air conditioner according to Embodiment 6 of the present invention.
Hereinafter, the circuit of the air conditioner according to Embodiment 6 will be described with reference to FIG.
The air conditioner 200 according to Embodiment 6 includes an indoor heat exchange unit 1 and a heat source unit that supplies heat to the heat medium flowing through the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1. 100.
 ここで、本実施の形態6に係る空気調和機200が実施の形態3と異なる点は、水回路120を有しておらず、室内熱交換ユニット1の第一熱交換器31及び第二熱交換器32が冷凍サイクル回路110に接続されている点である。すなわち、本実施の形態6に係る空気調和機200は、冷凍サイクル回路110の冷媒を熱媒体として室内熱交換ユニット1の第一熱交換器31及び第二熱交換器32に流通させ、熱源側熱交換器114において採取した熱を室内熱交換ユニット1の第一熱交換器31及び第二熱交換器32に供給する構成となっている。 Here, the air conditioner 200 according to the sixth embodiment is different from the third embodiment in that it does not have the water circuit 120 and the first heat exchanger 31 and the second heat of the indoor heat exchange unit 1. The exchanger 32 is connected to the refrigeration cycle circuit 110. That is, the air conditioner 200 according to the sixth embodiment causes the refrigerant of the refrigeration cycle circuit 110 to flow through the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1 as a heat medium, and the heat source side The heat collected in the heat exchanger 114 is configured to be supplied to the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1.
 詳しくは、冷凍サイクル回路110は、圧縮機111、室内熱交換ユニット1の第一熱交換器31、室内熱交換ユニット1の第二熱交換器32、冷媒流量制御装置113、及び熱源側熱交換器114を配管接続して構成されている。また、室内熱交換ユニット1の第一熱交換器31及び第二熱交換器32は、第一熱交換器31を流れた冷媒(熱媒体)が第二熱交換器32を流れるように、直列に接続されている。この冷凍サイクル回路110には、R410A、R32及びCO等、蒸気圧縮サイクルを可能とする冷媒が循環する。 Specifically, the refrigeration cycle circuit 110 includes the compressor 111, the first heat exchanger 31 of the indoor heat exchange unit 1, the second heat exchanger 32 of the indoor heat exchange unit 1, the refrigerant flow rate control device 113, and the heat source side heat exchange. The vessel 114 is connected by piping. The first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1 are connected in series so that the refrigerant (heat medium) that has flowed through the first heat exchanger 31 flows through the second heat exchanger 32. It is connected to the. In the refrigeration cycle circuit 110, refrigerants such as R410A, R32, and CO 2 that enable a vapor compression cycle circulate.
 このように構成した空気調和機200を動作させると、熱源ユニット100の圧縮機111から吐出された高温のガス状冷媒は、室内熱交換ユニット1へ送られる。そして、室内熱交換ユニット1へ送られた高圧のガス状冷媒は気液二相状態となって、室内熱交換ユニット1において室内へ熱を供給し、液状冷媒となる。この液状冷媒は、室内熱交換ユニット1から流出後、冷媒流量制御装置113を通過することで減圧されて気液二相状態となり、熱源側熱交換器114において外気から吸熱することでガス化し、圧縮機111へと戻る。 When the air conditioner 200 configured as described above is operated, the high-temperature gaseous refrigerant discharged from the compressor 111 of the heat source unit 100 is sent to the indoor heat exchange unit 1. Then, the high-pressure gaseous refrigerant sent to the indoor heat exchange unit 1 becomes a gas-liquid two-phase state, supplies heat into the room in the indoor heat exchange unit 1, and becomes a liquid refrigerant. After flowing out of the indoor heat exchange unit 1, the liquid refrigerant is decompressed by passing through the refrigerant flow rate control device 113 to be in a gas-liquid two-phase state, and is gasified by absorbing heat from outside air in the heat source side heat exchanger 114, Return to the compressor 111.
 ここで、上述のように、室内熱交換ユニット1では、第一熱交換器31が第二熱交換器32の上流側に接続されている。このため、圧縮機111から吐出された高温の冷媒が、まず第一熱交換器31に流入することとなり、第一熱交換器31の輻射熱量を増大することが可能となる。また、一部熱交換した気液二相状態の冷媒が第二熱交換器32に流入することで、熱伝達率の高い状態を第二熱交換器32で作り出すことができる。このため、第一熱交換器31に対して気流の下流に配置された第二熱交換器32において、空気と冷媒の温度差が小さくなっても効率的に熱交換することが可能となる。 Here, as described above, in the indoor heat exchange unit 1, the first heat exchanger 31 is connected to the upstream side of the second heat exchanger 32. For this reason, the high-temperature refrigerant discharged from the compressor 111 first flows into the first heat exchanger 31, and the amount of radiant heat of the first heat exchanger 31 can be increased. In addition, the second heat exchanger 32 can create a state with a high heat transfer rate by allowing the gas-liquid two-phase refrigerant that has partially exchanged heat to flow into the second heat exchanger 32. For this reason, in the 2nd heat exchanger 32 arrange | positioned downstream of the airflow with respect to the 1st heat exchanger 31, it becomes possible to exchange heat efficiently, even if the temperature difference of air and a refrigerant | coolant becomes small.
実施の形態7.
 実施の形態1で上述したように、第一熱交換器31の第一伝熱管41及び第二熱交換器32の第二伝熱管42の配置姿勢は限定されるものではない。また、第一熱交換器31の第一伝熱管41と第二熱交換器32の第二伝熱管42とを、異なる形状としてもよい。そこで、本実施の形態7及び後述の実施の形態8では、上述の各実施の形態に対して、第二伝熱管42の配置姿勢及び形状のうちの少なくとも一方を変更した例について説明する。なお、本実施の形態7及び後述の実施の形態8において、特に記述しない項目については実施の形態1~実施の形態6と同様とする。
Embodiment 7 FIG.
As described above in the first embodiment, the arrangement postures of the first heat transfer tube 41 of the first heat exchanger 31 and the second heat transfer tube 42 of the second heat exchanger 32 are not limited. The first heat transfer tube 41 of the first heat exchanger 31 and the second heat transfer tube 42 of the second heat exchanger 32 may have different shapes. Therefore, in Embodiment 7 and Embodiment 8 described later, an example in which at least one of the arrangement posture and the shape of the second heat transfer tube 42 is changed with respect to each of the above-described embodiments will be described. In Embodiment 7 and Embodiment 8 to be described later, items not particularly described are the same as those in Embodiments 1 to 6.
 図13は、本発明の実施の形態7に係る第一熱交換器及び第二熱交換器を示す斜視図である。
 第一熱交換器31は、例えば上下方向に沿って延びた複数の第一伝熱管41を備えている。第一伝熱管41のそれぞれは、断面が例えば矩形状の扁平形状となっており、その内部に水又は冷媒等の熱媒体が流通する例えば複数の流路41aが形成されている。また、第一伝熱管41のそれぞれは、第一規定間隔41bずつ空けて、横方向に並べて配置されている。第一伝熱管41は、例えば、熱伝導性の高いアルミニウムを押し出して成型する。
FIG. 13 is a perspective view showing a first heat exchanger and a second heat exchanger according to Embodiment 7 of the present invention.
The first heat exchanger 31 includes a plurality of first heat transfer tubes 41 extending along the vertical direction, for example. Each of the first heat transfer tubes 41 has a flat shape with a rectangular cross section, for example, and a plurality of flow paths 41a through which a heat medium such as water or a refrigerant circulates are formed therein. Further, each of the first heat transfer tubes 41 is arranged side by side in the horizontal direction with a first specified interval 41b. For example, the first heat transfer tube 41 is formed by extruding aluminum having high thermal conductivity.
 一方、第一熱交換器31の後方に配置された第二熱交換器32は、横方向に沿って延びた例えば円管状の複数の第二伝熱管42を備えている。また、第二伝熱管42のそれぞれは、規定間隔ずつ空けて、上下方向に並べて配置されている。また、本実施の形態7では、第二伝熱管42のそれぞれは、側面視において千鳥状に配置されている。また、本実施の形態7に係る第二熱交換器32は、第二伝熱管42のそれぞれが貫通する板状の伝熱フィン50を複数備えている。これら伝熱フィン50は、規定間隔ずつ空けて、第二伝熱管42の延設方向(横方向)に並べて配置されている。すなわち、伝熱フィン50の表面と、第二伝熱管42とが略垂直となっている。伝熱フィン50に形成された貫通孔に第二伝熱管42を挿入し、該第二伝熱管42を拡管することにより、伝熱フィン50と第二伝熱管とは熱的に結合されている。なお、伝熱フィン50の表面に突起及び切り起こし形状等を設け、対流熱伝達を促進するように伝熱フィン50を構成してもよい。 On the other hand, the second heat exchanger 32 disposed behind the first heat exchanger 31 includes a plurality of second heat transfer tubes 42 having, for example, a tubular shape extending along the lateral direction. Moreover, each of the 2nd heat exchanger tubes 42 is arranged in the up-down direction at predetermined intervals. In the seventh embodiment, each of the second heat transfer tubes 42 is arranged in a staggered manner in a side view. The second heat exchanger 32 according to the seventh embodiment includes a plurality of plate-like heat transfer fins 50 through which the second heat transfer tubes 42 pass. These heat transfer fins 50 are arranged side by side in the extending direction (lateral direction) of the second heat transfer tube 42 at regular intervals. That is, the surface of the heat transfer fin 50 and the second heat transfer tube 42 are substantially vertical. By inserting the second heat transfer tube 42 into the through-hole formed in the heat transfer fin 50 and expanding the second heat transfer tube 42, the heat transfer fin 50 and the second heat transfer tube are thermally coupled. . Note that the heat transfer fins 50 may be configured to provide protrusions and cut-and-raised shapes on the surface of the heat transfer fins 50 to promote convective heat transfer.
 ここで、第一伝熱管41間の間隙である第一規定間隔41bは、第二熱交換器32の伝熱フィン50に使用者の手指が触れないように、使用者の手指が入らない間隔となっている。本実施の形態7では、第一規定間隔41bは、子供の手指が第二熱交換器32の伝熱フィン50に触れないように、例えば5mm未満の間隔となっている。 Here, the first specified interval 41b, which is a gap between the first heat transfer tubes 41, is an interval at which the user's fingers do not enter so that the user's fingers do not touch the heat transfer fins 50 of the second heat exchanger 32. It has become. In the seventh embodiment, the first specified interval 41b is an interval of, for example, less than 5 mm so that the child's fingers do not touch the heat transfer fins 50 of the second heat exchanger 32.
 以上、本実施の形態7のように第二熱交換器32を構成しても、実施の形態2で説明した効果と同様の効果を得ることができる。 As described above, even if the second heat exchanger 32 is configured as in the seventh embodiment, the same effects as those described in the second embodiment can be obtained.
 すなわち、本実施の形態7のように構成された室内熱交換ユニット1においては、実施の形態1と同様に、対流と輻射の両方の伝熱形態によって室内の暖房を行うことができ、使用者の快適性を向上できる。また、本実施の形態7に係る室内熱交換ユニット1は、実施の形態1と同様に、第二熱交換器32に加えて第一熱交換器31も対流熱交換器として機能させることにより、室内熱交換ユニット1をコンパクトに形成することができる。また、本実施の形態7に係る室内熱交換ユニット1は、実施の形態2と同様に、第二熱交換器32に伝熱フィン50を備えているので、空気と熱媒体との温度差が小さくなっても、両者を効率的に熱交換させることができる。 That is, in the indoor heat exchange unit 1 configured as in the seventh embodiment, similarly to the first embodiment, the room can be heated by both convection and radiation heat transfer modes. Can improve comfort. Further, in the indoor heat exchange unit 1 according to the seventh embodiment, as in the first embodiment, in addition to the second heat exchanger 32, the first heat exchanger 31 also functions as a convection heat exchanger, The indoor heat exchange unit 1 can be made compact. Moreover, since the indoor heat exchange unit 1 which concerns on this Embodiment 7 is provided with the heat-transfer fin 50 in the 2nd heat exchanger 32 similarly to Embodiment 2, the temperature difference of air and a heat medium has become. Even if it becomes small, both can be heat-exchanged efficiently.
 また、本実施の形態7に係る室内熱交換ユニット1においては、実施の形態2と同様に、第一伝熱管41間の間隙である第一規定間隔41bは、第二熱交換器32の伝熱フィン50に子供の手指が触れないように、子供の手指が入らない間隔となっている。このため、本実施の形態7に係る室内熱交換ユニット1は、実施の形態2と同様に、使用者及び子供が第二熱交換器32の伝熱フィン50に触れて負傷することも防止できる。 In the indoor heat exchange unit 1 according to the seventh embodiment, as in the second embodiment, the first specified interval 41b, which is the gap between the first heat transfer tubes 41, is transmitted by the second heat exchanger 32. In order to prevent the fingers of the child from touching the heat fin 50, the interval is such that the fingers of the child do not enter. For this reason, the indoor heat exchange unit 1 according to the seventh embodiment can prevent the user and the child from being injured by touching the heat transfer fins 50 of the second heat exchanger 32 as in the second embodiment. .
実施の形態8.
 図14及び図15は、本発明の実施の形態8に係る第一熱交換器及び第二熱交換器を示す斜視図である。なお、図14は、第一熱交換器31及び第二熱交換器32の中央付近を図示したものである。また、図15は、第一熱交換器31及び第二熱交換器32の横側端部近傍を図示したものである。
Embodiment 8 FIG.
14 and 15 are perspective views showing a first heat exchanger and a second heat exchanger according to Embodiment 8 of the present invention. FIG. 14 illustrates the vicinity of the center of the first heat exchanger 31 and the second heat exchanger 32. FIG. 15 illustrates the vicinity of the lateral ends of the first heat exchanger 31 and the second heat exchanger 32.
 第一熱交換器31は、例えば上下方向に沿って延びた複数の第一伝熱管41を備えている。第一伝熱管41のそれぞれは、断面が例えば矩形状の扁平形状となっており、その内部に水又は冷媒等の熱媒体が流通する例えば複数の流路41aが形成されている。また、第一伝熱管41のそれぞれは、第一規定間隔41bずつ空けて、横方向に並べて配置されている。第一伝熱管41は、例えば、熱伝導性の高いアルミニウムを押し出して成型する。 The first heat exchanger 31 includes, for example, a plurality of first heat transfer tubes 41 extending in the vertical direction. Each of the first heat transfer tubes 41 has a flat shape with a rectangular cross section, for example, and a plurality of flow paths 41a through which a heat medium such as water or refrigerant flows is formed. Further, each of the first heat transfer tubes 41 is arranged side by side in the horizontal direction with a first specified interval 41b. For example, the first heat transfer tube 41 is formed by extruding aluminum having high thermal conductivity.
 一方、第一熱交換器31の後方に配置された第二熱交換器32は、横方向に沿って延びた複数の第二伝熱管42を備えている。第二伝熱管42のそれぞれは、断面が例えば矩形状の扁平形状となっており、その内部に水又は冷媒等の熱媒体が流通する例えば複数の流路42aが形成されている。また、第二伝熱管42のそれぞれは、第二規定間隔42bずつ空けて、上下方向に並べて配置されている。なお、本実施の形態8では、断面扁平形状の伝熱管をU字状に曲げ形成し、二本の第二伝熱管42を1つの部品として形成している。 On the other hand, the second heat exchanger 32 disposed behind the first heat exchanger 31 includes a plurality of second heat transfer tubes 42 extending in the lateral direction. Each of the second heat transfer tubes 42 has a flat shape with a rectangular cross section, for example, and a plurality of flow paths 42a in which a heat medium such as water or a refrigerant circulates are formed therein. Each of the second heat transfer tubes 42 is arranged side by side in the vertical direction with a second specified interval 42b. In the eighth embodiment, a heat transfer tube having a flat cross section is bent into a U shape, and the two second heat transfer tubes 42 are formed as one component.
 また、本実施の形態8に係る第二熱交換器32は、第二伝熱管42のそれぞれが貫通する板状の伝熱フィン50を複数備えている。これら伝熱フィン50は、規定間隔ずつ空けて、第二伝熱管42の延設方向(横方向)に並べて配置されている。すなわち、伝熱フィン50の表面と、第二伝熱管42とが略垂直となっている。伝熱フィン50及び第二伝熱管42は、例えば熱伝導性の高いアルミニウムで形成されており、例えばノコロックロウ付け法をはじめとした金属接合により接続されている。なお、伝熱フィン50の表面に突起及び切り起こし形状等を設け、対流熱伝達を促進するように伝熱フィン50を構成してもよい。 The second heat exchanger 32 according to the eighth embodiment includes a plurality of plate-like heat transfer fins 50 through which the second heat transfer tubes 42 pass. These heat transfer fins 50 are arranged side by side in the extending direction (lateral direction) of the second heat transfer tube 42 at regular intervals. That is, the surface of the heat transfer fin 50 and the second heat transfer tube 42 are substantially vertical. The heat transfer fins 50 and the second heat transfer tubes 42 are made of, for example, aluminum having high thermal conductivity, and are connected by metal bonding including, for example, a noclock brazing method. Note that the heat transfer fins 50 may be configured to provide protrusions and cut-and-raised shapes on the surface of the heat transfer fins 50 to promote convective heat transfer.
 ここで、第一伝熱管41間の間隙である第一規定間隔41bは、第二熱交換器32の伝熱フィン50に使用者の手指が触れないように、使用者の手指が入らない間隔となっている。本実施の形態8では、第一規定間隔41bは、子供の手指が第二熱交換器32の伝熱フィン50に触れないように、例えば5mm未満の間隔となっている。 Here, the first specified interval 41b, which is a gap between the first heat transfer tubes 41, is an interval at which the user's fingers do not enter so that the user's fingers do not touch the heat transfer fins 50 of the second heat exchanger 32. It has become. In the eighth embodiment, the first specified interval 41b is, for example, an interval of less than 5 mm so that the child's fingers do not touch the heat transfer fins 50 of the second heat exchanger 32.
 以上、本実施の形態8のように第二熱交換器32を構成しても、実施の形態2で説明した効果と同様の効果を得ることができる。 As described above, even when the second heat exchanger 32 is configured as in the eighth embodiment, the same effects as those described in the second embodiment can be obtained.
 すなわち、本実施の形態8のように構成された室内熱交換ユニット1においては、実施の形態1と同様に、対流と輻射の両方の伝熱形態によって室内の暖房を行うことができ、使用者の快適性を向上できる。また、本実施の形態8に係る室内熱交換ユニット1は、実施の形態1と同様に、第二熱交換器32に加えて第一熱交換器31も対流熱交換器として機能させることにより、室内熱交換ユニット1をコンパクトに形成することができる。また、本実施の形態8に係る室内熱交換ユニット1は、実施の形態2と同様に、第二熱交換器32に伝熱フィン50を備えているので、空気と熱媒体との温度差が小さくなっても、両者を効率的に熱交換させることができる。 That is, in the indoor heat exchange unit 1 configured as in the eighth embodiment, similarly to the first embodiment, indoor heating can be performed by both convection and radiation heat transfer modes. Can improve comfort. Further, in the indoor heat exchange unit 1 according to the eighth embodiment, as in the first embodiment, in addition to the second heat exchanger 32, the first heat exchanger 31 also functions as a convection heat exchanger, The indoor heat exchange unit 1 can be made compact. Moreover, since the indoor heat exchange unit 1 according to the eighth embodiment includes the heat transfer fins 50 in the second heat exchanger 32 as in the second embodiment, the temperature difference between the air and the heat medium is small. Even if it becomes small, both can be heat-exchanged efficiently.
 また、本実施の形態8に係る室内熱交換ユニット1においては、実施の形態2と同様に、第一伝熱管41間の間隙である第一規定間隔41bは、第二熱交換器32の伝熱フィン50に子供の手指が触れないように、子供の手指が入らない間隔となっている。このため、本実施の形態8に係る室内熱交換ユニット1は、実施の形態2と同様に、使用者及び子供が第二熱交換器32の伝熱フィン50に触れて負傷することも防止できる。 In the indoor heat exchange unit 1 according to the eighth embodiment, as in the second embodiment, the first specified interval 41b, which is the gap between the first heat transfer tubes 41, is transmitted by the second heat exchanger 32. In order to prevent the fingers of the child from touching the heat fin 50, the interval is such that the fingers of the child do not enter. For this reason, the indoor heat exchange unit 1 according to the eighth embodiment can prevent the user and child from touching the heat transfer fins 50 of the second heat exchanger 32 and being injured as in the second embodiment. .
実施の形態9.
 本実施の形態9では、実施の形態3及び実施の形態6とは異なる、本発明に係る空気調和機のさらに別の一例について紹介する。また、本実施の形態9では、上述の各実施の形態で説明した構成のいくつかを組み合わせた本発明に係る室内熱交換ユニットの一例についても説明する。また、本実施の形態9では、本発明に係る空気調和装置の設置の仕方の一例についても説明する。なお、本実施の形態9において、特に記述しない項目については実施の形態1~実施の形態8と同様とする。
Embodiment 9 FIG.
In the ninth embodiment, another example of the air conditioner according to the present invention, which is different from the third and sixth embodiments, will be introduced. In the ninth embodiment, an example of an indoor heat exchange unit according to the present invention in which some of the configurations described in the above embodiments are combined will be described. In the ninth embodiment, an example of how to install the air conditioner according to the present invention will also be described. In the ninth embodiment, items not particularly described are the same as those in the first to eighth embodiments.
 図16は、本発明の実施の形態9に係る室内熱交換ユニットを示す斜視透視図である。図17は、本発明の実施の形態9に係る室内熱交換ユニットを側方から観察した縦断面図である。図18は、本発明の実施の形態9に係る室内熱交換ユニットの第一熱交換器及び第二熱交換器近傍を示す斜視図である。図19は、本発明の実施の形態9に係る室内熱交換ユニットの第一熱交換器及び第二熱交換器近傍を示す横断面図である。
 なお、図16では、第一熱交換器31及び第二熱交換器32の配置位置の理解を容易とするため、筐体10を透過して示している。また、図18及び図19は、図16のA-A断面における第一熱交換器31及び第二熱交換器32の断面図である。
FIG. 16 is a perspective perspective view showing an indoor heat exchange unit according to Embodiment 9 of the present invention. FIG. 17: is the longitudinal cross-sectional view which observed the indoor heat exchange unit which concerns on Embodiment 9 of this invention from the side. FIG. 18 is a perspective view showing the vicinity of the first heat exchanger and the second heat exchanger of the indoor heat exchange unit according to Embodiment 9 of the present invention. FIG. 19 is a cross-sectional view showing the vicinity of the first heat exchanger and the second heat exchanger of the indoor heat exchange unit according to Embodiment 9 of the present invention.
In FIG. 16, the housing 10 is shown in a transparent manner in order to facilitate understanding of the arrangement positions of the first heat exchanger 31 and the second heat exchanger 32. 18 and 19 are cross-sectional views of the first heat exchanger 31 and the second heat exchanger 32 taken along the line AA in FIG.
 本実施の形態9に係る室内熱交換ユニット1は、第一熱交換器31と、第二熱交換器32と、送風機20と、これらを収納する筐体10とを備えている。 The indoor heat exchange unit 1 according to the ninth embodiment includes a first heat exchanger 31, a second heat exchanger 32, a blower 20, and a housing 10 that houses them.
 筐体10は、例えば直方体形状をしており、一側面に第一開口部11が形成されている。また、筐体10には、例えば上面部等、第一開口部よりも上方となる位置に第二開口部12が形成されている。送風機20は、例えばプロペラファンであり、第二開口部12の下方に配置されている。送風機20を駆動することにより、室内(後述する部屋300)の空気が第一開口部11から筐体10内部に吸い込まれ、第二開口部12から筐体10の外部(後述する部屋300)に吹き出される。 The housing 10 has, for example, a rectangular parallelepiped shape, and a first opening 11 is formed on one side surface. In addition, a second opening 12 is formed in the housing 10 at a position above the first opening, such as an upper surface. The blower 20 is a propeller fan, for example, and is disposed below the second opening 12. By driving the blower 20, air in the room (room 300 described later) is sucked into the housing 10 from the first opening 11, and from the second opening 12 to the outside of the housing 10 (room 300 described later). Blown out.
 第一熱交換器31は、第一開口部11から露出するように設けられている。本実施の形態9では、第一熱交換器31は、第一開口部11の開口面に沿って配置されている。この第一熱交換器31は、例えば上下方向に沿って延びた複数の第一伝熱管41を備えている。第一伝熱管41のそれぞれは、断面が例えば矩形状の扁平形状となっており、その内部に水又は冷媒等の熱媒体が流通する例えば複数の流路41aが形成されている。また、第一伝熱管41のそれぞれは、第一規定間隔41bずつ空けて、横方向に並べて配置されている。第一伝熱管41は、例えば、熱伝導性の高いアルミニウムを押し出して成型する。 The first heat exchanger 31 is provided so as to be exposed from the first opening 11. In the ninth embodiment, the first heat exchanger 31 is disposed along the opening surface of the first opening 11. The first heat exchanger 31 includes a plurality of first heat transfer tubes 41 extending along the vertical direction, for example. Each of the first heat transfer tubes 41 has a flat shape with a rectangular cross section, for example, and a plurality of flow paths 41a through which a heat medium such as water or refrigerant flows is formed. Further, each of the first heat transfer tubes 41 is arranged side by side in the horizontal direction with a first specified interval 41b. For example, the first heat transfer tube 41 is formed by extruding aluminum having high thermal conductivity.
 第二熱交換器32は、第一熱交換器31の後方に、換言すると第一熱交換器31よりも筐体10の内部側となる位置に、例えば第一熱交換器31と対向して配置されている。この第二熱交換器32は、例えば上下方向に沿って延びた複数の第二伝熱管42を備えている。第二伝熱管42のそれぞれは、断面が例えば矩形状の扁平形状となっており、その内部に水又は冷媒等の熱媒体が流通する例えば複数の流路42aが形成されている。また、第二伝熱管42のそれぞれは、第二規定間隔42bずつ空けて、横方向に並べて配置されている。第二伝熱管42は、例えば、熱伝導性の高いアルミニウムを押し出して成型する。 The second heat exchanger 32 is located behind the first heat exchanger 31, in other words, at a position closer to the inner side of the housing 10 than the first heat exchanger 31, for example, facing the first heat exchanger 31. Has been placed. The second heat exchanger 32 includes a plurality of second heat transfer tubes 42 extending along, for example, the vertical direction. Each of the second heat transfer tubes 42 has a flat shape with a rectangular cross section, for example, and a plurality of flow paths 42a in which a heat medium such as water or a refrigerant circulates are formed therein. The second heat transfer tubes 42 are arranged side by side in the horizontal direction with a second specified interval 42b. For example, the second heat transfer tube 42 is formed by extruding aluminum having high thermal conductivity.
 また、隣接する第二伝熱管42の間には、これら第二伝熱管42に接触する伝熱フィン50が設けられている。伝熱フィン50は、第二伝熱管42間の間隙である第二規定間隔42bの幅を持つように、例えば1mm未満の薄板を複数回折りたたむように形成されている。また、伝熱フィン50は、その表面に突起及び切り起こし形状等を設けることで、対流熱伝達を促進するように構成されている。なお、伝熱フィン50の材質は、第二伝熱管42と同様に限定されるものではないが、本実施の形態9では熱伝導性の高いアルミニウムを使用している。第二伝熱管42と伝熱フィン50とは、例えばノコロックロウ付け法をはじめとした金属接合により接続されている。 Further, between the adjacent second heat transfer tubes 42, heat transfer fins 50 that are in contact with the second heat transfer tubes 42 are provided. The heat transfer fins 50 are formed so as to fold a plurality of thin plates less than 1 mm, for example, so as to have a width of a second specified interval 42 b that is a gap between the second heat transfer tubes 42. The heat transfer fins 50 are configured to promote convective heat transfer by providing protrusions, cut-and-raised shapes, and the like on the surface. In addition, although the material of the heat transfer fin 50 is not limited like the 2nd heat transfer tube 42, in this Embodiment 9, aluminum with high heat conductivity is used. The second heat transfer tubes 42 and the heat transfer fins 50 are connected to each other by metal bonding including, for example, a sawlock brazing method.
 ここで、複数の第一伝熱管41が第一規定間隔41bずつ空けて並べられている第一熱交換器31は、隣接する第一伝熱管41の間に伝熱フィンを備えない構成となっている。そして、第一伝熱管41間の間隙である第一規定間隔41bは、第二熱交換器32の伝熱フィン50に使用者の手指が触れないように、使用者の手指が入らない間隔となっている。本実施の形態9では、第一規定間隔41bは、子供の手指が第二熱交換器32の伝熱フィン50に触れないように、例えば5mm未満の間隔となっている。 Here, the first heat exchanger 31 in which the plurality of first heat transfer tubes 41 are arranged at intervals of the first specified interval 41b is configured not to include heat transfer fins between the adjacent first heat transfer tubes 41. ing. And the 1st specified space | interval 41b which is the clearance gap between the 1st heat exchanger tubes 41 is the space | interval which a user's finger does not enter so that a user's finger may not touch the heat transfer fin 50 of the 2nd heat exchanger 32. It has become. In the ninth embodiment, the first specified interval 41b is an interval of, for example, less than 5 mm so that the child's fingers do not touch the heat transfer fins 50 of the second heat exchanger 32.
 なお、第一熱交換器31の流路41a及び第二熱交換器32の流路42aへ熱媒体を流通させる構成は特に限定されないが、例えば次のような構成としている。すなわち、図16に示すように、第一熱交換器31の第一伝熱管41の両端を分岐管70に挿入している。同様に、第二熱交換器32の第二伝熱管42の両端を分岐管70に挿入している。これにより、分岐管70の一方から供給された熱媒体が第一熱交換器31の流路41a及び第二熱交換器32の流路42aへ流入する。そして、第一熱交換器31の流路41a及び第二熱交換器32の流路42aを流れた熱媒体は、分岐管70の他方へ流出する。本実施の形態9では、第一伝熱管41及び第二伝熱管42の両端を分岐管70に挿入することにより、分岐管70に、これら伝熱管を固定する機能も持たせている。 In addition, although the structure which distribute | circulates a heat medium to the flow path 41a of the 1st heat exchanger 31 and the flow path 42a of the 2nd heat exchanger 32 is not specifically limited, For example, it is set as the following structures. That is, as shown in FIG. 16, both ends of the first heat transfer pipe 41 of the first heat exchanger 31 are inserted into the branch pipe 70. Similarly, both ends of the second heat transfer pipe 42 of the second heat exchanger 32 are inserted into the branch pipe 70. Thereby, the heat medium supplied from one of the branch pipes 70 flows into the flow path 41 a of the first heat exchanger 31 and the flow path 42 a of the second heat exchanger 32. The heat medium that has flowed through the flow path 41 a of the first heat exchanger 31 and the flow path 42 a of the second heat exchanger 32 flows out to the other side of the branch pipe 70. In the ninth embodiment, by inserting both ends of the first heat transfer tube 41 and the second heat transfer tube 42 into the branch tube 70, the branch tube 70 has a function of fixing these heat transfer tubes.
 さらに、本実施の形態9では、第一熱交換器31と第二熱交換器32との間に、第一熱交換器31を通過後の空気中から塵埃を除去するフィルタ60が設けられている。フィルタ60は、例えば、空気を通風可能に形成した不織布にプラスチックの格子を設けたものである。また例えば、フィルタ60は、多孔質体からなるもの等を用いる。 Further, in the ninth embodiment, a filter 60 that removes dust from the air after passing through the first heat exchanger 31 is provided between the first heat exchanger 31 and the second heat exchanger 32. Yes. The filter 60 is, for example, provided with a plastic lattice on a non-woven fabric formed to allow air to pass therethrough. Further, for example, the filter 60 is made of a porous material.
 図20は、本発明の実施の形態9に係る空気調和機を示す回路図である。
 空気調和機200は、室内熱交換ユニット1と、室内熱交換ユニット1の第一熱交換器31及び第二熱交換器32を流れる熱媒体に熱を供給する熱源ユニット100と、を備える。
FIG. 20 is a circuit diagram showing an air conditioner according to Embodiment 9 of the present invention.
The air conditioner 200 includes an indoor heat exchange unit 1 and a heat source unit 100 that supplies heat to a heat medium flowing through the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1.
 熱源ユニット100は、冷凍サイクル回路110を備える。この冷凍サイクル回路110は、圧縮機111、水-冷媒熱交換器112の冷媒流路、冷媒流量制御装置113、及び熱源側熱交換器114を配管接続して構成されている。この冷凍サイクル回路110には、R410A、R32及びCO等、蒸気圧縮サイクルを可能とする冷媒が循環する。 The heat source unit 100 includes a refrigeration cycle circuit 110. The refrigeration cycle circuit 110 is configured by connecting a compressor 111, a refrigerant flow path of a water-refrigerant heat exchanger 112, a refrigerant flow rate control device 113, and a heat source side heat exchanger 114. In the refrigeration cycle circuit 110, refrigerants such as R410A, R32, and CO 2 that enable a vapor compression cycle circulate.
 また、水-冷媒熱交換器112は、該水-冷媒熱交換器112の水流路が室内熱交換ユニット1の第一熱交換器31及び第二熱交換器32と配管接続されて、水回路120の一部を構成する。詳しくは、水回路120は、該水-冷媒熱交換器112の水流路、ポンプ121、室内熱交換ユニット1の第一熱交換器31及び第二熱交換器32が配管接続されて構成されている。この水回路120には、水が循環する。ここで、本実施の形態9では、第一熱交換器31及び第二熱交換器32は、第一熱交換器31を流れた水が第二熱交換器32を流れるように、直列に接続されている。 Further, the water-refrigerant heat exchanger 112 has a water circuit in which the water flow path of the water-refrigerant heat exchanger 112 is connected to the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1 by piping. 120 constitutes a part. Specifically, the water circuit 120 includes a water flow path of the water-refrigerant heat exchanger 112, a pump 121, and the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1 connected to each other by piping. Yes. Water circulates in the water circuit 120. Here, in the ninth embodiment, the first heat exchanger 31 and the second heat exchanger 32 are connected in series so that the water that has flowed through the first heat exchanger 31 flows through the second heat exchanger 32. Has been.
 また、本実施の形態9に係る室内熱交換ユニット1は、水回路120において第一熱交換器31と並列に接続されたバイパス配管72を備えている。つまり、水回路120において、バイパス配管72の一端は第一熱交換器31の上流側に接続されており、バイパス配管72の他端は第一熱交換器31の下流側であって第二熱交換器32の上流側となる位置に接続されている。また、本実施の形態9に係る室内熱交換ユニット1は、バイパス配管72に、該バイパス配管72を流れる水の流量を調節する流量調節機71を備える。流量調節機71は、例えば、ニードル式の流量調節機である。また例えば、電磁開閉弁又は流量抵抗器等を用いて、流量調節機71を構成してもよい。
 すなわち、本実施の形態9に係る空気調和機200は、実施の形態3(図7)で示した空気調和機200の回路に、バイパス配管72及び流量調節機71を追加した構成となっている。
The indoor heat exchange unit 1 according to the ninth embodiment includes a bypass pipe 72 connected in parallel with the first heat exchanger 31 in the water circuit 120. That is, in the water circuit 120, one end of the bypass pipe 72 is connected to the upstream side of the first heat exchanger 31, and the other end of the bypass pipe 72 is the downstream side of the first heat exchanger 31 and the second heat It is connected to a position on the upstream side of the exchanger 32. The indoor heat exchange unit 1 according to the ninth embodiment includes a flow rate adjuster 71 that adjusts the flow rate of water flowing through the bypass pipe 72 in the bypass pipe 72. The flow controller 71 is, for example, a needle type flow controller. Further, for example, the flow controller 71 may be configured by using an electromagnetic on-off valve or a flow resistor.
That is, the air conditioner 200 according to the ninth embodiment has a configuration in which a bypass pipe 72 and a flow rate controller 71 are added to the circuit of the air conditioner 200 shown in the third embodiment (FIG. 7). .
 図21は、本発明の実施の形態9に係る空気調和機の設置構成を示す模式図である。
 図21に示すように、室内熱交換ユニット1は、部屋300内において、例えば壁際の床に設置される。また、熱源ユニット100は、部屋300の外部に、例えば屋外に配置される。室内熱交換ユニット1と熱源ユニット100とは、水回路120を構成する配管で接続されている。
FIG. 21 is a schematic diagram showing an installation configuration of an air conditioner according to Embodiment 9 of the present invention.
As shown in FIG. 21, the indoor heat exchange unit 1 is installed in a room 300 on, for example, a floor near a wall. The heat source unit 100 is disposed outside the room 300, for example, outdoors. The indoor heat exchange unit 1 and the heat source unit 100 are connected by a pipe constituting the water circuit 120.
 続いて、本実施の形態9に係る空気調和機200の動作について説明する。空気調和機200の運転を開始する際、熱源ユニット100は、圧縮機111を駆動する。また、例えば熱源ユニット100は、ポンプ121を駆動する。また、室内熱交換ユニット1は、送風機20を駆動する。 Subsequently, the operation of the air conditioner 200 according to Embodiment 9 will be described. When starting the operation of the air conditioner 200, the heat source unit 100 drives the compressor 111. For example, the heat source unit 100 drives the pump 121. The indoor heat exchange unit 1 drives the blower 20.
 熱源ユニット100の圧縮機111から吐出された高温のガス状冷媒は、水-冷媒熱交換器112の冷媒流路に流入する。そして、水-冷媒熱交換器112の冷媒流路に流入した高圧のガス状冷媒は、気液二相状態となって水-冷媒熱交換器112の水流路を流れる水へ熱を供給し、液状冷媒となる。この液状冷媒は、冷媒流量制御装置113を通過することで減圧されて気液二相状態となり、熱源側熱交換器114において外気から吸熱することでガス化し、圧縮機111へと戻る。 The high-temperature gaseous refrigerant discharged from the compressor 111 of the heat source unit 100 flows into the refrigerant flow path of the water-refrigerant heat exchanger 112. Then, the high-pressure gaseous refrigerant that has flowed into the refrigerant flow path of the water-refrigerant heat exchanger 112 enters a gas-liquid two-phase state to supply heat to the water flowing through the water flow path of the water-refrigerant heat exchanger 112, It becomes a liquid refrigerant. The liquid refrigerant is reduced in pressure by passing through the refrigerant flow control device 113 to be in a gas-liquid two-phase state, gasified by absorbing heat from outside air in the heat source side heat exchanger 114, and returned to the compressor 111.
 一方、水回路120においては、水-冷媒熱交換器112で加熱された水が、ポンプ121により、室内熱交換ユニット1へ送られる。そして、室内熱交換ユニット1へ送られた水は、室内熱交換ユニット1において部屋300の空気と熱交換を行い、低温となって水-冷媒熱交換器112へと戻る。 On the other hand, in the water circuit 120, the water heated by the water-refrigerant heat exchanger 112 is sent to the indoor heat exchange unit 1 by the pump 121. Then, the water sent to the indoor heat exchange unit 1 exchanges heat with the air in the room 300 in the indoor heat exchange unit 1 and returns to the water-refrigerant heat exchanger 112 at a low temperature.
 部屋300内の室内熱交換ユニット1の動作を詳細に説明すると、室内熱交換ユニット1の運転が開始されると、第一熱交換器31の流路41a及び第二熱交換器32の流路42aへ、部屋300の室温より高温の水が流通する。第一熱交換器31の流路41aに高温の水が流れると、第一熱交換器31は、第一開口部11から部屋300内に輻射熱を放出する。 The operation of the indoor heat exchange unit 1 in the room 300 will be described in detail. When the operation of the indoor heat exchange unit 1 is started, the flow path 41 a of the first heat exchanger 31 and the flow path of the second heat exchanger 32. Water having a temperature higher than the room temperature of the room 300 flows to 42a. When high-temperature water flows through the flow path 41 a of the first heat exchanger 31, the first heat exchanger 31 releases radiant heat from the first opening 11 into the room 300.
 また、送風機20を駆動することにより、部屋300内の空気が第一開口部11から筐体10内に吸い込まれる。この際、筐体10内に吸い込まれる空気は、第一熱交換器31を通過し、フィルタ60を通った後、第二熱交換器32を通過する。このとき、第一熱交換器31及び第二熱交換器32を通過する空気は、これらの熱交換器を流れる高温の水で加熱される。そして、加熱された空気は、第二開口部12から部屋300内へ吹き出される。つまり、第一開口部11から輻射による熱が部屋300に供給され、第二開口部12から温風による熱が部屋300に供給されることで、部屋300の気温が上昇し、使用者の居住部が空気調和された状態となる。 Also, by driving the blower 20, the air in the room 300 is sucked into the housing 10 from the first opening 11. At this time, the air sucked into the housing 10 passes through the first heat exchanger 31, passes through the filter 60, and then passes through the second heat exchanger 32. At this time, the air passing through the first heat exchanger 31 and the second heat exchanger 32 is heated with high-temperature water flowing through these heat exchangers. Then, the heated air is blown out from the second opening 12 into the room 300. That is, the heat by radiation is supplied from the first opening 11 to the room 300 and the heat by hot air is supplied from the second opening 12 to the room 300, so that the temperature of the room 300 rises and the user's residence The part is in an air-conditioned state.
 ここで、図20に示すように、室内熱交換ユニット1では、第一熱交換器31が第二熱交換器32の上流側に接続されている。このため、水-冷媒熱交換器112で加熱された高温の水が、まず第一熱交換器31に流入することとなり、第一熱交換器31の輻射熱量を増大することが可能となる。また、熱交換効率の高い第二熱交換器32を第一熱交換器31の下流側に設けることで、空気と温水の温度差が小さくなっても効率的に熱交換することが可能となる。 Here, as shown in FIG. 20, in the indoor heat exchange unit 1, the first heat exchanger 31 is connected to the upstream side of the second heat exchanger 32. For this reason, the high-temperature water heated by the water-refrigerant heat exchanger 112 first flows into the first heat exchanger 31, and the amount of radiant heat of the first heat exchanger 31 can be increased. In addition, by providing the second heat exchanger 32 with high heat exchange efficiency on the downstream side of the first heat exchanger 31, it is possible to efficiently exchange heat even if the temperature difference between air and hot water becomes small. .
 また、本実施の形態9に係る室内熱交換ユニット1は、バイパス配管72及び流量調節機71を備えているので、流量調節機71でバイパス配管72を流れる水の量を調節することにより、第一熱交換器31を流れる水の量を調節できる。第一熱交換器31を流れる水の量を調節することで、第一熱交換器31及び第二熱交換器32の各々の熱交換量の増減を調節でき、輻射による熱供給と温風による熱供給のバランスを制御できる。このため、本実施の形態9に係る空気調和機200は、部屋300内の居住者の快適性をより向上することが可能となる。 In addition, since the indoor heat exchange unit 1 according to the ninth embodiment includes the bypass pipe 72 and the flow rate controller 71, the flow rate controller 71 adjusts the amount of water flowing through the bypass pipe 72, thereby The amount of water flowing through one heat exchanger 31 can be adjusted. By adjusting the amount of water flowing through the first heat exchanger 31, it is possible to adjust the increase and decrease of the heat exchange amount of each of the first heat exchanger 31 and the second heat exchanger 32, and by heat supply by radiation and hot air The balance of heat supply can be controlled. For this reason, the air conditioner 200 according to Embodiment 9 can further improve the comfort of residents in the room 300.
 以上、本実施の形態9に係る空気調和機200においては、対流と輻射の両方の伝熱形態によって室内の暖房を行うことができ、使用者の快適性を向上できる。また、本実施の形態9に係る空気調和機200は、第二熱交換器32に加えて第一熱交換器31も対流熱交換器として機能させることにより、室内熱交換ユニット1をコンパクトに形成することができる。 As described above, in the air conditioner 200 according to the ninth embodiment, the room can be heated by both the convection and radiation heat transfer modes, and the comfort of the user can be improved. In addition, the air conditioner 200 according to the ninth embodiment allows the indoor heat exchange unit 1 to be compactly formed by causing the first heat exchanger 31 to function as a convection heat exchanger in addition to the second heat exchanger 32. can do.
 また、本実施の形態9に係る空気調和機200は、第一開口部11から輻射熱を放出し、第二開口部12から温風を吹き出すことで、筐体10の前面及び上面の各々から部屋300内へ熱を供給することが可能となる。このため、本実施の形態9に係る空気調和機200は、部屋の温度ムラを低減でき、使用者の快適性がさらに向上する。 In addition, the air conditioner 200 according to the ninth embodiment emits radiant heat from the first opening 11 and blows out warm air from the second opening 12, so that a room is formed from each of the front surface and the upper surface of the housing 10. Heat can be supplied into 300. For this reason, the air conditioner 200 according to the ninth embodiment can reduce the temperature unevenness of the room and further improve the comfort of the user.
 また、本実施の形態9に係る空気調和機200は、第二熱交換器32に伝熱フィン50を備えているので、空気と熱媒体との温度差が小さくなっても、両者を効率的に熱交換させることができる。 In addition, since the air conditioner 200 according to the ninth embodiment includes the heat transfer fins 50 in the second heat exchanger 32, even if the temperature difference between the air and the heat medium becomes small, both can be efficiently used. Heat exchange.
 また、本実施の形態9に係る空気調和機200においては、第一伝熱管41間の間隙である第一規定間隔41bは、第二熱交換器32の伝熱フィン50に子供の手指が触れないように、子供の手指が入らない間隔となっている。このため、本実施の形態9に係る空気調和機200は、使用者及び子供が第二熱交換器32の伝熱フィン50に触れて負傷することも防止できる。 In the air conditioner 200 according to the ninth embodiment, the first specified interval 41b, which is the gap between the first heat transfer tubes 41, is touched by the child's fingers on the heat transfer fins 50 of the second heat exchanger 32. There is an interval where children's fingers do not enter. For this reason, the air conditioner 200 according to Embodiment 9 can prevent the user and child from touching the heat transfer fins 50 of the second heat exchanger 32 and being injured.
 また、本実施の形態9に係る空気調和機200は、第一熱交換器31と第二熱交換器32との間にフィルタ60を備えているので、該フィルタ60で塵埃を捕獲でき、手指が届かず清掃が困難な第二熱交換器32に塵埃が堆積することを抑制できる。つまり、第二熱交換器32の熱交換性能の低下を抑制できる。また、フィルタ60を第一熱交換器31の後方に備えることにより、正面側(第一開口部11側)から室内熱交換ユニット1を見た際にフィルタ60が第一熱交換器31で隠れる。このため、使用者から塵埃が見えにくく美観を損なわないという効果も得られる。 Moreover, since the air conditioner 200 according to the ninth embodiment includes the filter 60 between the first heat exchanger 31 and the second heat exchanger 32, the filter 60 can capture dust and It is possible to prevent dust from accumulating on the second heat exchanger 32 that is difficult to clean because of no reach. That is, a decrease in the heat exchange performance of the second heat exchanger 32 can be suppressed. Further, by providing the filter 60 behind the first heat exchanger 31, the filter 60 is hidden by the first heat exchanger 31 when the indoor heat exchange unit 1 is viewed from the front side (first opening 11 side). . For this reason, the effect that dust is hard to be seen by the user and the aesthetic appearance is not impaired is also obtained.
 また、本実施の形態9に係る空気調和機200は、バイパス配管72及び流量調節機71を備えているので、流量調節機71でバイパス配管72を流れる水の量を調節することにより、第一熱交換器31を流れる水の量を調節できる。第一熱交換器31を流れる水の量を調節することで、第一熱交換器31及び第二熱交換器32の各々の熱交換量の増減を調節でき、輻射による熱供給と温風による熱供給のバランスを制御できる。このため、本実施の形態9に係る空気調和機200は、部屋300内の居住者の快適性をより向上することができる。 In addition, since the air conditioner 200 according to the ninth embodiment includes the bypass pipe 72 and the flow rate adjuster 71, the flow rate adjuster 71 adjusts the amount of water flowing through the bypass pipe 72 so that the first The amount of water flowing through the heat exchanger 31 can be adjusted. By adjusting the amount of water flowing through the first heat exchanger 31, it is possible to adjust the increase and decrease of the heat exchange amount of each of the first heat exchanger 31 and the second heat exchanger 32, and by heat supply by radiation and hot air The balance of heat supply can be controlled. For this reason, the air conditioner 200 according to Embodiment 9 can further improve the comfort of residents in the room 300.
 なお、実施の形態6(図12)に示した空気調和機200の回路に、バイパス配管72及び流量調節機71を追加してもよい。流量調節機71でバイパス配管72を流れる冷媒の量を調節することにより、第一熱交換器31を流れる冷媒の量を調節できる。第一熱交換器31を流れる冷媒の量を調節することで、第一熱交換器31及び第二熱交換器32の各々の熱交換量の増減を調節でき、輻射による熱供給と温風による熱供給のバランスを制御できる。このため、実施の形態6(図12)に示した空気調和機200の回路にバイパス配管72及び流量調節機71を追加しても、部屋300内の居住者の快適性をより向上することができる。 In addition, you may add the bypass piping 72 and the flow regulator 71 to the circuit of the air conditioner 200 shown in Embodiment 6 (FIG. 12). The amount of the refrigerant flowing through the first heat exchanger 31 can be adjusted by adjusting the amount of the refrigerant flowing through the bypass pipe 72 with the flow rate controller 71. By adjusting the amount of refrigerant flowing through the first heat exchanger 31, the increase and decrease of the heat exchange amount of each of the first heat exchanger 31 and the second heat exchanger 32 can be adjusted, and the heat supply by radiation and the hot air The balance of heat supply can be controlled. For this reason, even if the bypass pipe 72 and the flow controller 71 are added to the circuit of the air conditioner 200 shown in Embodiment 6 (FIG. 12), the comfort of the occupants in the room 300 can be further improved. it can.
実施の形態10.
 本実施の形態10では、実施の形態3、実施の形態6及び実施の形態9とは異なる、本発明に係る空気調和機のさらに別の一例について紹介する。なお、本実施の形態10において、特に記述しない項目については実施の形態1~実施の形態9と同様とする。
Embodiment 10 FIG.
In the tenth embodiment, another example of the air conditioner according to the present invention, which is different from the third embodiment, the sixth embodiment, and the ninth embodiment, will be introduced. In the tenth embodiment, items that are not particularly described are the same as those in the first to ninth embodiments.
 図22は、本発明の実施の形態10に係る空気調和機を示す回路図である。
 空気調和機200は、室内熱交換ユニット1と、室内熱交換ユニット1の第一熱交換器31及び第二熱交換器32を流れる熱媒体に熱を供給する熱源ユニット100と、を備える。
FIG. 22 is a circuit diagram showing an air conditioner according to Embodiment 10 of the present invention.
The air conditioner 200 includes an indoor heat exchange unit 1 and a heat source unit 100 that supplies heat to a heat medium flowing through the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1.
 熱源ユニット100は、冷凍サイクル回路110を備える。この冷凍サイクル回路110は、圧縮機111、水-冷媒熱交換器112の冷媒流路、冷媒流量制御装置113、及び熱源側熱交換器114を配管接続して構成されている。この冷凍サイクル回路110には、R410A、R32及びCO等、蒸気圧縮サイクルを可能とする冷媒が循環する。 The heat source unit 100 includes a refrigeration cycle circuit 110. The refrigeration cycle circuit 110 is configured by connecting a compressor 111, a refrigerant flow path of a water-refrigerant heat exchanger 112, a refrigerant flow rate control device 113, and a heat source side heat exchanger 114. In the refrigeration cycle circuit 110, refrigerants such as R410A, R32, and CO 2 that enable a vapor compression cycle circulate.
 また、水-冷媒熱交換器112は、該水-冷媒熱交換器112の水流路が室内熱交換ユニット1の第一熱交換器31及び第二熱交換器32と配管接続されて、水回路120の一部を構成する。詳しくは、水回路120は、該水-冷媒熱交換器112の水流路、ポンプ121、室内熱交換ユニット1の第一熱交換器31及び第二熱交換器32が配管接続されて構成されている。この水回路120には、水が循環する。 Further, the water-refrigerant heat exchanger 112 has a water circuit in which the water flow path of the water-refrigerant heat exchanger 112 is connected to the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1 by piping. 120 constitutes a part. Specifically, the water circuit 120 includes a water flow path of the water-refrigerant heat exchanger 112, a pump 121, and the first heat exchanger 31 and the second heat exchanger 32 of the indoor heat exchange unit 1 connected to each other by piping. Yes. Water circulates in the water circuit 120.
 ここで、本実施の形態10では、第一熱交換器31の流路41aと第二熱交換器32の流路42aとが、並列に接続されている。また、水回路120にいて、第一熱交換器31及び第二熱交換器32のうちの少なくとも一方の上流側には、これら熱交換器に流れる水の流量を調節する流量調節機71を備えている。なお、図22では、第一熱交換器31の上流側に流量調節機71を備えた例を示している。流量調節機71は、例えば、ニードル式の流量調節機である。また例えば、電磁開閉弁又は流量抵抗器等を用いて、流量調節機71を構成してもよい。 Here, in the tenth embodiment, the flow path 41a of the first heat exchanger 31 and the flow path 42a of the second heat exchanger 32 are connected in parallel. Further, in the water circuit 120, a flow rate controller 71 that adjusts the flow rate of water flowing through these heat exchangers is provided on the upstream side of at least one of the first heat exchanger 31 and the second heat exchanger 32. ing. In addition, in FIG. 22, the example provided with the flow volume regulator 71 in the upstream of the 1st heat exchanger 31 is shown. The flow controller 71 is, for example, a needle type flow controller. Further, for example, the flow controller 71 may be configured by using an electromagnetic on-off valve or a flow resistor.
 続いて、本実施の形態10に係る空気調和機200の動作について説明する。
 熱源ユニット100の圧縮機111から吐出された高温のガス状冷媒は、水-冷媒熱交換器112の冷媒流路に流入する。そして、水-冷媒熱交換器112の冷媒流路に流入した高圧のガス状冷媒は、気液二相状態となって水-冷媒熱交換器112の水流路を流れる水へ熱を供給し、液状冷媒となる。この液状冷媒は、冷媒流量制御装置113を通過することで減圧されて気液二相状態となり、熱源側熱交換器114において外気から吸熱することでガス化し、圧縮機111へと戻る。
Next, the operation of the air conditioner 200 according to Embodiment 10 will be described.
The high-temperature gaseous refrigerant discharged from the compressor 111 of the heat source unit 100 flows into the refrigerant flow path of the water-refrigerant heat exchanger 112. Then, the high-pressure gaseous refrigerant that has flowed into the refrigerant flow path of the water-refrigerant heat exchanger 112 enters a gas-liquid two-phase state to supply heat to the water flowing through the water flow path of the water-refrigerant heat exchanger 112, It becomes a liquid refrigerant. The liquid refrigerant is reduced in pressure by passing through the refrigerant flow control device 113 to be in a gas-liquid two-phase state, gasified by absorbing heat from outside air in the heat source side heat exchanger 114, and returned to the compressor 111.
 一方、水回路120においては、水-冷媒熱交換器112で加熱された水が、ポンプ121により、室内熱交換ユニット1へ送られる。そして、室内熱交換ユニット1へ送られた水は、室内熱交換ユニット1において部屋300の空気と熱交換を行い、低温となって水-冷媒熱交換器112へと戻る。 On the other hand, in the water circuit 120, the water heated by the water-refrigerant heat exchanger 112 is sent to the indoor heat exchange unit 1 by the pump 121. Then, the water sent to the indoor heat exchange unit 1 exchanges heat with the air in the room 300 in the indoor heat exchange unit 1 and returns to the water-refrigerant heat exchanger 112 at a low temperature.
 ここで、室内熱交換ユニット1では、第一熱交換器31の流路41aと第二熱交換器32の流路42aとが、並列に接続されている。このため、流量調節機71で第一熱交換器31に流入する水の量を調節することにより、第一熱交換器31を流れる水の量及び第二熱交換器32を流れる水の量の双方を調節できる。これにより、第一熱交換器31及び第二熱交換器32の各々の熱交換量の増減を調節でき、輻射による熱供給と温風による熱供給のバランスを制御できる。このため、本実施の形態10に係る空気調和機200は、室内の居住者の快適性をより向上することが可能となる。 Here, in the indoor heat exchange unit 1, the flow path 41a of the first heat exchanger 31 and the flow path 42a of the second heat exchanger 32 are connected in parallel. For this reason, the amount of water flowing into the first heat exchanger 31 and the amount of water flowing through the second heat exchanger 32 are adjusted by adjusting the amount of water flowing into the first heat exchanger 31 with the flow rate controller 71. Both can be adjusted. Thereby, increase / decrease in each heat exchange amount of the 1st heat exchanger 31 and the 2nd heat exchanger 32 can be adjusted, and the balance of the heat supply by radiation and the heat supply by warm air can be controlled. For this reason, the air conditioner 200 according to Embodiment 10 can further improve the comfort of indoor residents.
 なお、第一熱交換器31及び第二熱交換器32を冷凍サイクル回路110に接続する構成の場合でも、第一熱交換器31の流路41aと第二熱交換器32の流路42aとを並列に接続してもよい。そして、第一熱交換器31及び第二熱交換器32のうちの少なくとも一方の上流側に、これら熱交換器に流れる冷媒の流量を調節する流量調節機71を備えるとよい。このように構成しても、第一熱交換器31及び第二熱交換器32の各々の熱交換量の増減を調節でき、輻射による熱供給と温風による熱供給のバランスを制御できるので、室内の居住者の快適性をより向上することが可能となる。 Even when the first heat exchanger 31 and the second heat exchanger 32 are connected to the refrigeration cycle circuit 110, the flow path 41a of the first heat exchanger 31 and the flow path 42a of the second heat exchanger 32 May be connected in parallel. And it is good to equip the upstream of at least one of the 1st heat exchanger 31 and the 2nd heat exchanger 32 with the flow regulator 71 which adjusts the flow of the refrigerant which flows into these heat exchangers. Even if comprised in this way, since the increase / decrease in each heat exchange amount of the 1st heat exchanger 31 and the 2nd heat exchanger 32 can be adjusted, since the balance of the heat supply by radiation and the heat supply by warm air can be controlled, It becomes possible to improve the comfort of the occupants in the room.
 1 室内熱交換ユニット、10 筐体、11 第一開口部、12 第二開口部、20 送風機、31 第一熱交換器、32 第二熱交換器、41 第一伝熱管、41a 流路、41b 第一規定間隔、42 第二伝熱管、42a 流路、42b 第二規定間隔、50 伝熱フィン、60 フィルタ、70 分岐管、71 流量調節機、72 バイパス配管、100 熱源ユニット、110 冷凍サイクル回路、111 圧縮機、112 水-冷媒熱交換器、113 冷媒流量制御装置、114 熱源側熱交換器、120 水回路、121 ポンプ、200 空気調和機、300 部屋。 DESCRIPTION OF SYMBOLS 1 Indoor heat exchange unit, 10 housing | casing, 11 1st opening part, 12 2nd opening part, 20 blower, 31 1st heat exchanger, 32 2nd heat exchanger, 41 1st heat exchanger tube, 41a flow path, 41b 1st specified interval, 42 2nd heat transfer tube, 42a flow path, 42b 2nd specified interval, 50 heat transfer fin, 60 filter, 70 branch pipe, 71 flow controller, 72 bypass pipe, 100 heat source unit, 110 refrigeration cycle circuit , 111 compressor, 112 water-refrigerant heat exchanger, 113 refrigerant flow control device, 114 heat source side heat exchanger, 120 water circuit, 121 pump, 200 air conditioner, 300 rooms.

Claims (13)

  1.  第一開口部及び第二開口部が形成され、室内に設置される筐体と、
     内部に熱媒体が流通する流路が形成された断面扁平形状の複数の第一伝熱管を有し、これら前記第一伝熱管の間を空気が流通するようにこれら前記第一伝熱管を第一規定間隔ずつ空けて並べて構成され、前記第一開口部から前記室内に向けて露出して配置され、前記熱媒体の熱を輻射により前記室内に伝える第一熱交換器と、
     前記第一熱交換器よりも前記筐体の内部側となる位置に配置されて空気が流通する隙間を有する第二熱交換器と、
     前記第一開口部から空気を吸い込み、前記第一熱交換器と前記第二熱交換器とを通過した空気を、前記第二開口部から吹き出す送風機と、
     を備えた室内熱交換ユニット。
    A housing in which a first opening and a second opening are formed and installed indoors;
    A plurality of first heat transfer tubes having a flat cross section formed with a flow path through which a heat medium flows are formed, and the first heat transfer tubes are arranged so that air flows between the first heat transfer tubes. A first heat exchanger that is arranged side by side at a specified interval, is arranged to be exposed toward the room from the first opening, and transmits heat of the heat medium to the room by radiation;
    A second heat exchanger having a gap through which air flows and is disposed at a position on the inner side of the housing from the first heat exchanger;
    A blower that sucks air from the first opening and blows out the air that has passed through the first heat exchanger and the second heat exchanger from the second opening;
    Indoor heat exchange unit with
  2.  前記第二熱交換器は、前記第一開口部の外から見て前記第一熱交換器の後方に位置し、
     前記送風機による空気の流れにおいて前記第二熱交換器は前記第一熱交換器の下流にある請求項1に記載の室内熱交換ユニット。
    The second heat exchanger is located behind the first heat exchanger as viewed from outside the first opening,
    The indoor heat exchange unit according to claim 1, wherein the second heat exchanger is downstream of the first heat exchanger in the flow of air by the blower.
  3.  前記第一熱交換器は、隣接する前記第一伝熱管の間に伝熱フィンを備えず、前記第一伝熱管の表面から前記熱媒体の熱を輻射により前記室内に伝える請求項1又は請求項2に記載の室内熱交換ユニット。 The first heat exchanger does not include a heat transfer fin between the adjacent first heat transfer tubes, and transfers heat of the heat medium from the surface of the first heat transfer tube to the room by radiation. Item 3. The indoor heat exchange unit according to Item 2.
  4.  前記第二熱交換器は、内部に前記熱媒体が流通する複数の第二伝熱管を有し、これら前記第二伝熱管の間を空気が流通するようにこれら前記第二伝熱管を第二規定間隔ずつ空けて並べて構成されている請求項1~請求項3のいずれか一項に記載の室内熱交換ユニット。 The second heat exchanger has a plurality of second heat transfer tubes in which the heat medium flows, and the second heat transfer tubes are secondly arranged so that air flows between the second heat transfer tubes. The indoor heat exchange unit according to any one of claims 1 to 3, wherein the indoor heat exchange units are arranged side by side at regular intervals.
  5.  前記第二熱交換器は、隣接する前記第二伝熱管の間に、これら前記第二伝熱管と接触する伝熱フィンが設けられている請求項4に記載の室内熱交換ユニット。 The indoor heat exchange unit according to claim 4, wherein the second heat exchanger is provided with heat transfer fins in contact with the second heat transfer tubes between the adjacent second heat transfer tubes.
  6.  前記第二規定間隔は前記第一規定間隔よりも小さい請求項4又は請求項5に記載の室内熱交換ユニット。 The indoor heat exchange unit according to claim 4 or 5, wherein the second specified interval is smaller than the first specified interval.
  7.  前記第一熱交換器及び前記第二熱交換器は、前記第一熱交換器を流れた前記熱媒体が前記第二熱交換器を流れるように、直列に接続されている請求項1~請求項6のいずれか一項に記載の室内熱交換ユニット。 The first heat exchanger and the second heat exchanger are connected in series so that the heat medium that has flowed through the first heat exchanger flows through the second heat exchanger. The indoor heat exchange unit according to any one of Items 6.
  8.  前記第一熱交換器と並列に接続されたバイパス配管と、
     該バイパス配管に設けられ、該バイパス配管を流れる前記熱媒体の流量を調節する流量調節機を備えた請求項7に記載の室内熱交換ユニット。
    A bypass pipe connected in parallel with the first heat exchanger;
    The indoor heat exchange unit according to claim 7, further comprising a flow rate adjuster that is provided in the bypass pipe and adjusts the flow rate of the heat medium flowing through the bypass pipe.
  9.  前記第一熱交換器における前記熱媒体が流れる流路と、前記第二熱交換器における前記熱媒体が流れる流路とが、並列に接続され、
     前記第一熱交換器及び前記第二熱交換器のうちの少なくとも一方の上流側に、前記熱媒体の流量を調節する流量調節機を備えた請求項1~請求項6のいずれか一項に記載の室内熱交換ユニット。
    The flow path through which the heat medium in the first heat exchanger flows and the flow path through which the heat medium in the second heat exchanger flow are connected in parallel.
    The flow rate controller for adjusting the flow rate of the heat medium is provided upstream of at least one of the first heat exchanger and the second heat exchanger. The indoor heat exchange unit as described.
  10.  前記第一熱交換器と前記第二熱交換器との間に、空気中の塵埃を除去するフィルタを備えた請求項1~請求項9のいずれか一項に記載の室内熱交換ユニット。 The indoor heat exchange unit according to any one of claims 1 to 9, further comprising a filter that removes dust in the air between the first heat exchanger and the second heat exchanger.
  11.  前記第一伝熱管の内部に形成された前記流路と垂直な断面において、
     前記第一伝熱管のそれぞれは、
     該第一伝熱管の断面における長辺に沿った方向の中心線が、前記第一伝熱管の並び方向と直交する直線に対して傾いている請求項1~請求項10のいずれか一項に記載の室内熱交換ユニット。
    In a cross section perpendicular to the flow path formed inside the first heat transfer tube,
    Each of the first heat transfer tubes is
    The center line in the direction along the long side in the cross section of the first heat transfer tube is inclined with respect to a straight line perpendicular to the arrangement direction of the first heat transfer tubes. The indoor heat exchange unit as described.
  12.  前記第一開口部の開口面積は、前記第二開口部の開口面積よりも大きい請求項1~請求項11のいずれか一項に記載の室内熱交換ユニット。 The indoor heat exchange unit according to any one of claims 1 to 11, wherein an opening area of the first opening is larger than an opening area of the second opening.
  13.  請求項1~請求項12のいずれか一項に記載の室内熱交換ユニットと、
     前記室内熱交換ユニットの前記第一熱交換器及び前記第二熱交換器を流れる前記熱媒体に熱を供給する熱源ユニットと、
     を備えた空気調和機。
    The indoor heat exchange unit according to any one of claims 1 to 12,
    A heat source unit for supplying heat to the heat medium flowing through the first heat exchanger and the second heat exchanger of the indoor heat exchange unit;
    Air conditioner equipped with.
PCT/JP2016/070512 2016-07-12 2016-07-12 Indoor heat exchanging unit and air conditioner WO2018011873A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018527277A JP6605144B2 (en) 2016-07-12 2016-07-12 Indoor heat exchange unit and air conditioner
PCT/JP2016/070512 WO2018011873A1 (en) 2016-07-12 2016-07-12 Indoor heat exchanging unit and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070512 WO2018011873A1 (en) 2016-07-12 2016-07-12 Indoor heat exchanging unit and air conditioner

Publications (1)

Publication Number Publication Date
WO2018011873A1 true WO2018011873A1 (en) 2018-01-18

Family

ID=60952372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070512 WO2018011873A1 (en) 2016-07-12 2016-07-12 Indoor heat exchanging unit and air conditioner

Country Status (2)

Country Link
JP (1) JP6605144B2 (en)
WO (1) WO2018011873A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109882938A (en) * 2019-01-30 2019-06-14 广东美的制冷设备有限公司 Heat exchanger assembly and air-conditioning equipment
WO2022224350A1 (en) * 2021-04-20 2022-10-27 三菱電機株式会社 Heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173830U (en) * 1984-04-25 1985-11-18 シャープ株式会社 Heat pump air conditioner
JPH0424434A (en) * 1990-05-16 1992-01-28 Toshiba Corp Air conditioner
JPH06159771A (en) * 1992-11-30 1994-06-07 Toshiba Ave Corp Air conditioner
JP2010107130A (en) * 2008-10-31 2010-05-13 Sharp Corp Heat exchanger unit and indoor unit of air conditioner using the same
JP2013040719A (en) * 2011-08-17 2013-02-28 Asahi Kasei Homes Co Radiation panel device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293571U (en) * 1985-11-28 1987-06-15
JP2003314856A (en) * 2002-04-22 2003-11-06 Daikin Ind Ltd Humidity control equipment
JP2003340235A (en) * 2002-05-22 2003-12-02 Daikin Ind Ltd Adsorption element and humidity controller
JP2012026615A (en) * 2010-07-21 2012-02-09 Mitsubishi Electric Corp Outdoor unit, and refrigeration cycle apparatus with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173830U (en) * 1984-04-25 1985-11-18 シャープ株式会社 Heat pump air conditioner
JPH0424434A (en) * 1990-05-16 1992-01-28 Toshiba Corp Air conditioner
JPH06159771A (en) * 1992-11-30 1994-06-07 Toshiba Ave Corp Air conditioner
JP2010107130A (en) * 2008-10-31 2010-05-13 Sharp Corp Heat exchanger unit and indoor unit of air conditioner using the same
JP2013040719A (en) * 2011-08-17 2013-02-28 Asahi Kasei Homes Co Radiation panel device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109882938A (en) * 2019-01-30 2019-06-14 广东美的制冷设备有限公司 Heat exchanger assembly and air-conditioning equipment
WO2022224350A1 (en) * 2021-04-20 2022-10-27 三菱電機株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP6605144B2 (en) 2019-11-13
JPWO2018011873A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
CN107504560B (en) Wall-mounted air conditioner indoor unit
WO2015011844A1 (en) Air conditioning device and method for operating air conditioning device
JP5447569B2 (en) Air conditioner heat exchanger and air conditioner
CN211781451U (en) Indoor unit of air conditioner
CN204853609U (en) Lampblack absorber
JP2016099030A (en) Heater and air conditioner
JP6605144B2 (en) Indoor heat exchange unit and air conditioner
JPWO2016063596A1 (en) Air conditioner
JP2012017967A (en) Air conditioning device
JP2007127374A (en) Integrated air conditioner
JP2004514868A (en) Refrigeration or heat pump system using heat removal at supercritical pressure
JP2016156543A (en) Indoor unit and air conditioner
CN215808848U (en) Indoor machine of air conditioner
KR20200001006A (en) Heating module, cover member of the same and heating system including those same
CN214148148U (en) Indoor unit of air conditioner
CN212179026U (en) Indoor unit of air conditioner
CN212179024U (en) Indoor unit of air conditioner
JP2018115809A (en) Air conditioner
CN204853608U (en) Lampblack absorber and air supply system adjusts temperature thereof
CN204830092U (en) Lampblack absorber and air supply system adjusts temperature thereof
CN204830093U (en) Lampblack absorber and air supply system adjusts temperature thereof
JP4581897B2 (en) Heat pump type hot air heater
JP2005156093A (en) Air conditioner
CN212362208U (en) Indoor unit of air conditioner
CN216620020U (en) Indoor air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018527277

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908777

Country of ref document: EP

Kind code of ref document: A1