WO2018010863A1 - Verfahren zum bestimmen des innenwiderstands von batteriezellen, batteriemodul und vorrichtung - Google Patents

Verfahren zum bestimmen des innenwiderstands von batteriezellen, batteriemodul und vorrichtung Download PDF

Info

Publication number
WO2018010863A1
WO2018010863A1 PCT/EP2017/060080 EP2017060080W WO2018010863A1 WO 2018010863 A1 WO2018010863 A1 WO 2018010863A1 EP 2017060080 W EP2017060080 W EP 2017060080W WO 2018010863 A1 WO2018010863 A1 WO 2018010863A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
battery
battery cells
measuring resistor
current
Prior art date
Application number
PCT/EP2017/060080
Other languages
English (en)
French (fr)
Inventor
Jan Philipp Schmidt
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to CN201780043050.XA priority Critical patent/CN109416391B/zh
Publication of WO2018010863A1 publication Critical patent/WO2018010863A1/de
Priority to US16/245,525 priority patent/US20190146039A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/364Battery terminal connectors with integrated measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for determining the
  • the present invention relates to a method for determining the internal resistance of battery cells of a battery module, a battery module for a device, a vehicle or the like, and a vehicle.
  • a disadvantage of conventional operating methods and battery modules is the time gap between a voltage measurement in the individual battery cells and the required current measurement and the necessary apparatus required, which is used to reduce this temporal discrepancy.
  • the invention is based on the object to provide a method for determining the internal resistance of battery cells, a battery module and a device in which a particularly simple means an accurate
  • the object underlying the invention is in a method for determining the internal resistance of battery cells according to the invention with the features of independent claim 1, in a battery module according to the invention with the features of independent claim 1 1 and in a device according to the invention with the features of
  • a method for determining the internal resistance of battery cells of a battery module for which purpose (i) a cell voltage of a battery cell is determined as the voltage of the respective electrochemical unit of the battery cell, (ii) a cell current of a battery cell consists of one Voltage drop is determined on a cell measuring resistance of the battery cell and (iii) as
  • the conduction path also becomes a strand of the battery cell and the underlying battery module
  • a cell-internal component as a cell measuring resistor eliminates the need for modification of a battery cell to be measured. In particular, there is no need to provide an additional measuring resistor, in particular a precision measuring resistor.
  • the internal electrical resistance Rzeiie of the cell can be calculated from the measured quantities - ie from the measured electrical cell voltage Uzeiie and from the measured electrical cell current I Ze iie by quotient formation according to the relationship (1)
  • Components for use as a cell resistance provided that they are in
  • Conduction path of the battery cell are included and transmit the current flow to the outside.
  • a cell connection, a supply or discharge to a cell connection and / or a cell connector for connecting adjacent battery cells in a battery module are used as a component in the line path of the battery cell.
  • the cell voltage Uzeiie and the cell current I Ze iie a respective battery cell are measured simultaneously.
  • the components of a respective battery cell that can be laid down as cell measuring resistance are not designed as standardized structures and / or subject to changes over time.
  • the cell measuring resistance of a respective battery cell is calibrated using a cell-external precision measuring resistor, in particular by a comparison measurement of an electric current flow.
  • the calibration can be done once or several times, possibly also regularly, e.g. during a charge.
  • the calibration of the Zellmesswider ranges the respective battery cells using the same and to all battery cells Cell external precision resistance.
  • all internal resistances of the individual battery cells to be determined make reference to the same reference quantity.
  • Calibration proves to be particularly meaningful if, according to another embodiment of the method according to the invention, the calibration of a cell measuring resistor of a respective battery cell during a period of constant current flow, which is in particular at least 10 ms.
  • the constant current flow for calibrating cell measuring resistors is set by explicitly selecting operating conditions of a battery module on which the battery cells are based.
  • a particularly flexible embodiment of the method according to the invention results when a measured current value of a respective battery cell detected for calibration from comparison measurement of an electrical current flow is communicated, in particular all battery cells of an underlying battery module and / or a cell monitoring device formed in a respective battery cell.
  • the temporal changes in the properties of the individual battery cells can be taken into account by carrying and / or updating a result of calibrating a cell measuring resistor in a look-up table, in particular in the respective battery cell and / or in one respective cell cell formed cell monitoring device.
  • a cell measuring resistor in a look-up table, in particular in the respective battery cell and / or in one respective cell cell formed cell monitoring device.
  • Battery module for a device and in particular for a vehicle created which is formed with a plurality of battery cells.
  • the battery cells are connected to each other via a conduction path.
  • the battery module is designed to be used in a method according to one of claims 1 to 10.
  • the battery module according to the invention has in particular a
  • an apparatus is provided using the battery module of the invention.
  • This device may in particular be a vehicle, for example a
  • a motor vehicle a hybrid vehicle or the like.
  • the proposed device is designed with a battery module according to the invention and has a consumer which is connectable or connected to the battery module for supplying energy.
  • the consumer may be an engine for moving a vehicle, any other engine, or any other engine.
  • FIG. 1 is a schematic block diagram of an embodiment of the energy module according to the invention.
  • FIG. 2 is a schematic block diagram of one embodiment of a
  • FIG. 3 is a flowchart showing an embodiment of a calibration method.
  • FIG. 1 is a schematic block diagram showing an embodiment of a battery module 1 according to the invention using a plurality of battery cells 10.
  • the battery cells 10 are connected in series in the embodiment shown in Figure 1 with each other via a line path 60, which is also referred to as a strand.
  • the outermost ends of the strand 60 are followed by module connections, which are not shown in FIG.
  • Measuring lines 31 and 32 for a precise current measurement with respect to the voltage drop occurring there by means of a current monitoring device 30 is tapped.
  • the individual battery cells 10 are communicatively connected to one another via a bus 70 or a daisy chain 70.
  • the current monitoring device 30 and further a higher-level monitoring device 20 are connected.
  • each individual battery cell 10 of the battery module 1 is provided with an actual electrochemical unit 11 in FIG Series connection in the strand 60 and formed in parallel with a cell monitoring device 12.
  • the cell monitoring device 12 can access operating parameters of the electrochemical unit 11 and of the conduction path 60 via measurement lines 13 to 17.
  • FIG. 2 shows in more detail an embodiment of a battery cell 10 used in a battery module 1 according to FIG.
  • the cell voltage can be tapped, for example via the measuring lines 14 and 15, as the voltage generated by the electrochemical unit 11.
  • the voltage drop at the cell-internal measuring resistor 50 can be determined via the measuring lines 16 and 17.
  • the cell-internal measuring resistor 50 is formed by an inherent or cell-internal component 51 of the battery cell 10, for example by a cell connection, also called terminal, a cell connector or the like.
  • Measuring method is the calibration of the current measurement and / or the respective cell-internal measuring resistors 50 in the individual battery cells 10,
  • step S2 After a start phase S1, reference is made in a step S2 to an electric current which is constant over a defined time. These are in particular the module current flowing through all the battery cells.
  • Current monitoring device 30 was recorded via the measuring lines 31 and 32, via a higher-level monitoring device 20, namely to the individual cell monitoring devices 12 of the individual battery cells 10. This is e.g. over a bus 70.
  • step S4 an adjustment of the current measurement of the individual battery cells 10 takes place in conjunction with their
  • Cell measuring resistor 50 for example, in a read-table of the individual battery cells 10 in the respective cell monitoring device 12 done.
  • a correction of the measured current value measured in the respective battery cell 10, which was carried out from the measurement of the voltage drop across the cell measuring resistor 50, is optionally carried out.
  • the starting phase S1 and the final phase S7 embed the calibration method in a higher-level operating method.
  • a memory 1 of electrical energy which may also be referred to as battery module 1, or the memory cells 10 of such a battery module 1, which are also referred to as battery cells 10, the individual cell voltages of the battery cells are measured.
  • the necessary current measurement is made on a precision measuring resistor 40 or shunt in string 60, e.g. performed in conjunction with a higher-level monitoring device 20.
  • the internal resistance of each individual battery cell can be calculated.
  • the knowledge of the internal resistance is necessary for determining the state of aging of the individual battery cells 10 and enables the delivery of a performance prognosis. This can be indispensable for the management.
  • the resistance can not be determined with sufficient accuracy.
  • the aim of the invention is a reduction of this effort.
  • a smart cell can be understood as an energy storage cell, which in addition to the energy supply function also one or more
  • Such a cell next to power and / or power terminals also have a data interface.
  • an improved synchronization of current and voltage measurement can thus be ensured due to the spatial proximity of the measuring locations.
  • This process can be done during loading, for example.
  • the individual battery cells 10 and in particular their
  • Cell monitoring devices 12, ie the Smart Cells, in strand 60 can then correct the detected current value and track the new value of cell internal sense resistor 50 or shunt in a look-up table or look-up table.
  • This application is also conceivable without configuration as a smart cell, i. without a configuration of a cell monitoring device 12.
  • a current measurement can take place at the level of the battery module 1, e.g. at the module connectors. This would be the use of the previously existing ones
  • the improved determination of the internal resistance may lead to a more precise power forecast and aging information.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Bestimmen des Innenwiderstands von Batteriezellen (10) eines Batteriemoduls (1), bei welchem dazu eine Zellspannung einer Batteriezelle (10) als Spannung der jeweiligen elektrochemischen Einheit (11) der Batteriezelle (10) bestimmt wird, ein Zellstrom einer Batteriezelle (10) aus einem Spannungsabfall an einem Zellmesswiderstand (50) der Batteriezelle (10) bestimmt wird, als Zellmesswiderstand (50) der Ohmsche Widerstand einer Komponente (51) der Batteriezelle (10) im Leitungspfad (60) verwendet wird.

Description

Verfahren zum Bestimmen des Innenwiderstands von Batteriezellen, Batteriemodul und Vorrichtung
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zum Bestimmen des
Innenwiderstands von Batteriezellen, ein Batteriemodul und eine Vorrichtung. Die vorliegende Erfindung betrifft insbesondere ein Verfahren zum Bestimmen des Innenwiderstands von Batteriezellen eines Batteriemoduls, ein Batteriemodul für eine Vorrichtung, ein Fahrzeug oder dergleichen und ein Fahrzeug.
Für die Energieversorgung von Betriebsvorrichtungen im Allgemeinen, von Fahrzeugen, zum Beispiel Kraftfahrzeugen, Hybridfahrzeugen und dergleichen, werden vermehrt Batteriemodule aus einer Mehrzahl von Batteriezellen eingesetzt. Um den Betrieb derartiger Vorrichtungen und insbesondere der dort verwendeten Batteriemodule planen und bewerten zu können, ist häufig die Bestimmung des Innenwiderstands der einzelnen Batteriezellen eines Moduls wesentlich.
Nachteilig bei herkömmlichen Betriebsverfahren und Batteriemodulen sind die zeitliche Diskrepanz zwischen einer Spannungsmessung in den einzelnen Batteriezellen und der benötigten Strommessung und der notwendige apparative Aufwand, welcher zur Verringerung dieser zeitlichen Diskrepanz eingesetzt wird.
Der Erfindung liegt die Aufgabe zu Grunde, ein Verfahren zum Bestimmen des Innenwiderstands von Batteriezellen, ein Batteriemodul sowie eine Vorrichtung anzugeben, bei welchen mit besonders einfachen Mitteln eine genaue
Bestimmung des Innenwiderstands einzelner Batteriezellen eines zu Grunde liegenden Batteriemoduls möglich ist. Die der Erfindung zu Grunde liegende Aufgabe wird bei einem Verfahren zum Bestimmen des Innenwiderstands von Batteriezellen erfindungsgemäß mit den Merkmalen des unabhängigen Patentanspruchs 1 , bei einem Batteriemodul erfindungsgemäß mit den Merkmalen des unabhängigen Patentanspruchs 1 1 und bei einer Vorrichtung erfindungsgemäß mit den Merkmalen des
unabhängigen Patentanspruchs 12 gelöst. Vorteilhafte Weiterbildungen sind jeweils Gegenstand der abhängigen Ansprüche.
Gemäß einem ersten Aspekt der vorliegenden Erfindung wird ein Verfahren zum Bestimmen des Innenwiderstands von Batteriezellen eines Batteriemoduls geschaffen, bei welchem dazu (i) eine Zellspannung einer Batteriezelle als Spannung der jeweiligen elektrochemischen Einheit der Batteriezelle bestimmt wird, (ii) ein Zellstrom einer Batteriezelle aus einem Spannungsabfall an einem Zellmesswiderstand der Batteriezelle bestimmt wird und (iii) als
Zellmesswiderstand der Ohmsche Widerstand einer zellinternen Komponente der Batteriezelle im Leitungspfad verwendet wird. Der Leitungspfad wird auch als Strang der Batteriezelle und des zu Grunde liegenden Batteriemoduls
bezeichnet.
Durch die Verwendung einer zellinternen Komponente als Zellmesswiderstand entfällt die Notwendigkeit der Modifikation einer zu vermessenden Batteriezelle. Insbesondere entfällt die Notwendigkeit des Vorsehens eines zusätzlichen Messwiderstands, insbesondere eines Präzisionsmesswiderstands.
Der elektrische Innenwiderstand Rzeiie der Zelle kann aus den gemessenen Größen - also aus der gemessenen elektrischen Zellspannung Uzeiie und aus dem gemessenen elektrischen Zellstrom lZeiie durch Quotientenbildung gemäß der Beziehung (1 )
R^e = ^ (1 )
' Zelle zu einem gegebenen Zeitpunkt oder in einer Zeitspanne konstanter Bedingungen - bestimmt werden. Grundsätzlich bieten sich sämtliche Komponenten der Batteriezelle als
Bestandteile zur Verwendung als Zellmesswiderstand an, sofern diese im
Leitungspfad der Batteriezelle enthalten sind und den Stromfluss nach außen hin übertragen.
Bei einer bevorzugten Ausgestaltungsform des erfindungsgemäßen Verfahrens werden als Komponente im Leitungspfad der Batteriezelle ein Zellanschluss, eine Zu- oder Ableitung zu einem Zellanschluss und/oder ein Zellverbinder zum Verbinden benachbarter Batteriezellen in einem Batteriemodul verwendet.
Da im Betrieb eines zu Grunde liegenden Batteriemoduls Zellspannung und Zellstrom einer jeweiligen Batteriezelle des Batteriemoduls zeitlichen
Schwankungen unterworfen sein können, ist es gemäß einer anderen
Weiterbildung des erfindungsgemäßen Verfahrens von besonderem Vorteil, wenn Zellspannung Uzeiie und Zellstrom lZeiie einer jeweiligen Batteriezelle innerhalb einer Latenzzeitspanne von 10 με gemessen werden.
Vorzugsweise werden die Zellspannung Uzeiie und der Zellstrom lZeiie einer jeweiligen Batteriezelle gleichzeitig gemessen.
Häufig sind die als Zellmesswiderstand zu Grunde legbaren Komponenten einer jeweiligen Batteriezelle als interne Strukturen nicht in normierter Weise ausgelegt und/oder zeitlichen Veränderungen unterworfen. Um dennoch den Zellwiderstand einer jeweiligen Batteriezelle genau ermitteln zu können, ist es gemäß einer vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens vorgesehen, dass der Zellmesswiderstand einer jeweiligen Batteriezelle unter Verwendung eines zellexternen Präzisionsmesswiderstands kalibriert wird, insbesondere durch eine Vergleichsmessung eines elektrischen Stromflusses.
Das Kalibrieren kann einmalig erfolgen oder mehrmals, gegebenenfalls auch turnusmäßig, z.B. während eines Ladevorgangs.
Mit dem Kalibrieren ist auch eine Temperaturkompensation möglich.
In vorteilhafter Weise erfolgt das Kalibrieren der Zellmesswiderstände der jeweiligen Batteriezellen unter Verwendung desselben und zu allen Batteriezellen zellexternen Präzisionswiderstands. Auf diese Weise nehmen sämtliche zu bestimmenden Innenwiderstände der einzelnen Batteriezellen auf dieselbe Referenzgröße Bezug.
Das Kalibrieren erweist sich dann als besonders aussagekräftig, wenn gemäß einer anderen Ausgestaltungsform des erfindungsgemäßen Verfahrens das Kalibrieren eines Zellmesswiderstands einer jeweiligen Batteriezelle während einer Zeitspanne konstanten Stromflusses erfolgt, welche insbesondere mindestens 10 ms beträgt.
Zur Bestimmung einer Situation mit konstantem Stromfluss zum Kalibrieren der Zellmesswiderstände bieten sich verschiedene Vorgehensweise an.
Gemäß einer ersten Alternative wird der konstante Stromfluss zum Kalibrieren von Zellmesswiderständen durch explizite Wahl von Betriebsbedingungen eines den Batteriezellen zu Grunde liegenden Batteriemoduls eingestellt.
Alternativ oder zusätzlich kann es vorgesehen sein, dass in einem Betrieb, bei welchem der Stromfluss ohnehin überwacht wird, im Nachhinein eine Zeitspanne konstanten Stromflusses ermittelt und dem Kalibrieren zu Grunde gelegt wird.
Eine besonders flexible Ausgestaltungsform des erfindungsgemäßen Verfahrens ergibt sich dann, wenn ein zum Kalibrieren aus Vergleichsmessung eines elektrischen Stromflusses erfasster Strommesswert einer jeweiligen Batteriezelle mitgeteilt wird, insbesondere sämtlichen Batteriezellen eines zu Grunde liegenden Batteriemoduls und/oder einer in einer jeweiligen Batteriezelle ausgebildeten Zellüberwachungseinrichtung.
Bei einer anderen Ausgestaltungsform des erfindungsgemäßen Verfahrens kann den zeitlichen Änderungen der Eigenschaften der einzelnen Batteriezellen dadurch Rechnung getragen werden, dass ein Ergebnis des Kalibrierens eines Zellmesswiderstands in einer Nachschlagetabelle mitgeführt und/oder aktualisiert wird, insbesondere in der jeweiligen Batteriezelle und/oder in einer in einer jeweiligen Batteriezelle ausgebildeten Zellüberwachungseinrichtung. Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird ein
Batteriemodul für eine Vorrichtung und insbesondere für ein Fahrzeug geschaffen, welches mit einer Mehrzahl von Batteriezellen ausgebildet ist. Die Batteriezellen sind über einen Leitungspfad miteinander verbunden.
Erfindungsgemäß ist das Batteriemodul dazu ausgebildet, in einem Verfahren nach einem der Ansprüche 1 bis 10 verwendet zu werden.
Dazu weist das erfindungsgemäße Batteriemodul insbesondere eine
Überwachungsvorrichtung, einen zellexternen Präzisionswiderstand im
Leitungspfad und/oder eine Zellüberwachungseinrichtung in jeder der
Batteriezellen auf.
Gemäß einem anderen Aspekt der vorliegenden Erfindung wird eine Vorrichtung unter Verwendung des erfindungsgemäßen Batteriemoduls geschaffen. Diese Vorrichtung kann insbesondere ein Fahrzeug sein, zum Beispiel ein
Kraftfahrzeug, ein Hybridfahrzeug oder dergleichen.
Die vorgeschlagene Vorrichtung ist mit einem erfindungsgemäßen Batteriemodul ausgebildet und weist einen Verbraucher auf, welcher mit dem Batteriemodul zur Versorgung mit Energie verbindbar oder verbunden ist.
Bei dem Verbraucher kann es sich um einen Motor zur Fortbewegung eines Fahrzeugs, um einen beliebigen anderen Motor oder ein beliebiges anderes Aggregat handeln.
Kurzbeschreibung der Figuren
Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung und den Figuren.
Figur 1 ist ein schematisches Blockdiagramm einer Ausführungsform des erfindungsgemäßen Energiemoduls.
Figur 2 ist ein schematisches Blockdiagramm einer Ausführungsform einer
Batteriezelle, die bei einer Ausführungsform des
erfindungsgemäßen Batteriemoduls verwendet werden kann. Figur 3 ist ein Flussdiagramm, welches eine Ausführungsform eines Kalibrierungsverfahrens zeigt.
Nachfolgend werden unter Bezugnahme auf die Figuren 1 bis 3
Ausführungsbeispiele der Erfindung im Detail beschrieben. Gleiche und äquivalente sowie gleich oder äquivalent wirkende Elemente und Komponenten werden mit denselben Bezugszeichen bezeichnet. Nicht in jedem Fall ihres Auftretens wird die Detailbeschreibung der bezeichneten Elemente und
Komponenten wiedergegeben.
Die dargestellten Merkmale und weiteren Eigenschaften können in beliebiger Form voneinander isoliert und beliebig miteinander kombiniert werden, ohne den Kern der Erfindung zu verlassen.
Figur 1 ist ein schematisches Blockdiagramm, welches eine Ausführungsform eines erfindungsgemäßen Batteriemoduls 1 unter Verwendung einer Mehrzahl von Batteriezellen 10 zeigt.
Die Batteriezellen 10 sind in der in Figur 1 dargestellten Ausführungsform miteinander über einen Leitungspfad 60, der auch als Strang bezeichnet wird, in Reihe geschaltet. An den äußersten Enden des Stranges 60 schließen sich Modulanschlüsse an, die in Figur 1 nicht dargestellt sind.
Der Mehrzahl der Batteriezellen 10 vorgeschaltet ist im Strang 60 ein
Präzisionsmesswiderstand 40, welcher mittels parallel angeschlossener
Messleitungen 31 und 32 für eine präzise Strommessung hinsichtlich des dort auftretenden Spannungsabfalls mittels einer Stromüberwachungseinrichtung 30 abgegriffen wird.
Die einzelnen Batteriezellen 10 sind bei der Ausführungsform gemäß Figur 1 über einen Bus 70 oder eine Daisy-Chain 70 miteinander kommunikativ verbunden. Am Bus 70 sind auch die Stromüberwachungseinrichtung 30 und des Weiteren eine übergeordnete Überwachungseinrichtung 20 angeschlossen.
Bei der Ausführungsform gemäß Figur 1 ist jede einzelne Batteriezelle 10 des Batteriemoduls 1 mit einer eigentlichen elektrochemischen Einheit 1 1 in Reihenschaltung im Strang 60 und mit einer Zellenüberwachungseinrichtung 12 parallel geschaltet ausgebildet. Die Zellenüberwachungseinrichtung 12 kann über Messleitungen 13 bis 17 auf Betriebsparameter der elektrochemischen Einheit 1 1 und des Leitungspfads 60 zugreifen.
Figur 2 zeigt in diesem Zusammenhang detaillierter eine Ausführungsform einer in einem Batteriemodul 1 gemäß Figur 1 verwendeten Batteriezelle 10.
Gemäß der Anordnung, die in Figur 2 dargestellt ist, kann zum Beispiel über die Messleitungen 14 und 15 die Zellspannung als von der elektrochemischen Einheit 1 1 generierte Spannung abgegriffen werden.
Gleichzeitig oder in unmittelbarer zeitlicher Nachbarschaft, zum Beispiel im Rahmen von wenigen Mikrosekunden, kann über die Messleitungen 16 und 17 der Spannungsabfall am zellinternen Messwiderstand 50 bestimmt werden.
Erfindungsgemäß wird dabei der zellinterne Messwiderstand 50 von einer inhärenten oder zellinternen Komponente 51 der Batteriezelle 10 gebildet, zum Beispiel von einem Zellanschluss, auch Terminal genannt, einem Zellverbinder oder dergleichen.
Durch dieses Vorgehen wird die Notwendigkeit des Vorsehens eines
zusätzlichen Messwiderstands obsolet, es wird nur auf bei der Zelle 10 ohnehin bestehende Komponenten zurückgegriffen. Dies vereinfacht den Aufbau, die Herstellung und die Handhabung der Batteriezelle 10 und des Batteriemoduls 1 insgesamt, insbesondere im Zusammenhang mit einer zellindividuellen Strom- Spannungsmessung.
Wesentlich bei bestimmten Ausführungsformen des erfindungsgemäßen
Messverfahrens ist die Kalibrierung der Strommessung und/oder der jeweiligen zellinternen Messwiderstände 50 in den einzelnen Batteriezellen 10,
insbesondere unter Verwendung eines zu den einzelnen Batteriezellen 10 zellexternen Präzisionsmesswiderstands 40, dessen Spannungsabfall über Messleitungen 31 und 32 mittels der Stromüberwachungseinrichtung 30 abgegriffen wird. Ein entsprechendes Kalibrierungsverfahren, um welches ein erfindungsgemäßes Messverfahren ergänzt werden kann, ist in Form eines Flussdiagramms in Figur 3 dargestellt.
Nach einer Startphase S1 wird in einem Schritt S2 auf einen elektrischen Strom Bezug genommen, der über eine definierte Zeit konstant ist. Es handelt sich dabei insbesondere um den durch alle Batteriezellen fließenden Modulstrom.
Dies kann entweder über das Einstellen eines konstanten Stroms erfolgen oder aber durch Feststellen und Bezugnehmen auf eine Phase konstanten Stroms im Nachhinein. So kann zum Beispiel im Nachhinein festgestellt werden, dass in einem zeitlich veränderlichen Verlauf des elektrischen Stroms eine Zeitspanne - von zum Beispiel 10 ms - mit konstantem elektrischen Strom auftritt. Auf diese Zeitspanne konstanten Stroms wird dann für die Kalibrierung Bezug genommen.
In einem nachfolgenden Schritt S3 erfolgt dann die Kommunikation des
Strommesswerts, der am Präzisionsmesswiderstand 40 durch die
Stromüberwachungseinrichtung 30 über die Messleitungen 31 und 32 aufgenommen wurde, über eine übergeordnete Überwachungseinrichtung 20, und zwar an die einzelnen Zellüberwachungseinrichtungen 12 der einzelnen Batteriezellen 10. Dies geschieht z.B. über einen Bus 70.
Im nachfolgenden Schritt S4 erfolgt ein Abgleich der Strommessung der einzelnen Batteriezellen 10 im Zusammenhang mit deren
Zellüberwachungseinrichtungen 12 mit dem mitgeteilten übergeordneten und präzise gemessenen Strommesswert im Zusammenhang mit dem
Präzisionsmesswiderstand 40.
In einem nachfolgenden Schritt S5 kann das Nachführen des
Zellmesswiderstandes 50 zum Beispiel in einer Ablesetabelle der einzelnen Batteriezellen 10 in der jeweiligen Zellüberwachungseinrichtung 12 erfolgen.
Dann erfolgt in einem weiteren Schritt S6 gegebenenfalls eine Korrektur des in der jeweiligen Batteriezelle 10 gemessenen Strommesswerts, welcher aus der Messung des Spannungsabfalls über den Zellmesswiderstand 50 durchgeführt wurde. Die Startphase S1 und die Endphase S7 betten das Kalibrierungsverfahren in ein übergeordnetes Betriebsverfahren ein.
Diese und weitere Merkmale und Eigenschaften der vorliegenden Erfindung werden an Hand der folgenden Darlegungen weiter erläutert:
Zur Bestimmung des Innenwiderstands eines Speichers 1 elektrischer Energie, der auch als Batteriemodul 1 bezeichnet werden kann, oder der Speicherzellen 10 eines derartigen Batteriemoduls 1 , die auch Batteriezellen 10 bezeichnet werden, werden die einzelnen Zellspannungen der Batteriezellen gemessen.
Die notwendige Strommessung wird an einem Präzisionsmesswiderstand 40 oder -shunt im Strang 60 z.B. im Zusammenhang mit einer übergeordneten Überwachungseinrichtung 20 durchgeführt.
Mittels Division der individuellen Zellspannungen durch den Strom kann der Innenwiderstand jeder einzelnen Batteriezelle berechnet werden. Die Kenntnis des Innenwiderstands ist notwendig zur Bestimmung des Alterungszustands der einzelnen Batteriezellen 10 und ermöglicht die Abgabe einer Leistungsprognose. Dies kann für die Betriebsführung unverzichtbar sein.
Da sich der Strom im Betrieb schnell ändern kann, ist eine geringe Latenzzeit - z.B. von 1 bis 10 με - zwischen Zellspannungsmessung und der Strommessung notwendig. Ansonsten kann der Widerstand nicht hinreichend genau bestimmt werden.
Diese Anforderung an die Latenzzeit ist herkömmlicherweise schwer einzuhalten und erhöht den Umsetzungsaufwand. Ziel der Erfindung ist eine Verringerung dieses Aufwandes.
Dazu erfolgt erfindungsgemäß neben der Spannungsmessung auch die
Strommessung direkt in der Batteriezelle, insbesondere durch den Aufbau einer so genannten Smart-Cell.
Eine Smart-Cell kann aufgefasst werden als eine Energiespeicherzelle, welche neben der Energiebereitstellungsfunktion auch noch eine oder mehrere
Funktionen zur Überwachung und/oder Diagnose bereitstellt. Entsprechend kann eine solche Zelle neben Leistungs- und/oder Energieanschlüssen auch eine Datenschnittstelle aufweisen.
Erfindungsgemäß kann somit auf Grund der räumlichen Nähe der Messorte eine verbesserte Synchronisation von Strom- und Spannungsmessung gewährleistet werden.
Auf Grund der hohen Kosten für Präzisionsmesswiderstände 40 oder -Shunts, wird dabei in den einzelnen Batteriezellen 10 auf dort bereits bestehende Leitungskomponenten und -pfade - z.B. auf Anschlüsse, Terminals, Zellverbinder - in der Batteriezelle 10 zurückgegriffen, welche dann als Zellmesswiderstand 50 fungieren.
Dieser wird vorteilhafterweise in der übergeordneten Vorrichtung, z.B. in einem Fahrzeug dann über einen Präzisionsmesswiderstand 40 oder -shunt im Strang 60 kalibriert.
Dabei wird ein Strom über eine Zeit konstant gestellt und anschließend an die einzelnen Batteriezellen 10 und insbesondere deren
Zellüberwachungseinrichtungen 12, also den Smart-Cells, im Strang 60 kommuniziert.
Dieser Vorgang kann zum Beispiel während des Ladens erfolgen.
Die einzelnen Batteriezellen 10 und insbesondere deren
Zellüberwachungseinrichtungen 12, also die Smart-Cells, im Strang 60 können daraufhin den ermittelten Stromwert korrigieren und den neuen Wert des zellinternen Messwiderstands 50 oder -Shunts in einer Nachschlagetabelle oder Look-up-Table nachführen.
Diese Anwendung ist auch denkbar ohne Konfiguration als Smart-Cell, d.h. ohne Ausgestaltung einer Zellüberwachungseinrichtung 12. In diesem Fall kann eine Strommessung auf der Ebene des Batteriemoduls 1 erfolgen, z.B. an den Modulverbindern. Dies würde die Verwendung der bisher bestehenden
Architektur ermöglichen und die Vorteile geringer Latenzzeiten erhalten.
Es stellen sich erfindungsgemäß folgende Vorteile ein: - Die Bestimmung des internen Zellwiderstands wird stark verbessert.
- Die Anforderungen an die Latenzzeit zwischen Strommessung im Strang 60 und Spannungsmessung in den Batteriezellen 10 können reduziert werden.
- Aus der verbesserten Bestimmung des Innenwiderstands können eine präzisere Leistungsprognose und Angaben zum Alterungszustand erfolgen.
- Es ergäben sich Kosteneinsparungen durch Reduktion der apparativen Anforderungen, z.B. hinsichtlich des Vorsehens einer Mehrzahl von
Präzisionsmesswiderständen und/oder eine Verringerung der Anforderungen an die Latenzzeit und damit an die Kommunikation.
- Die Funktionalität von Batteriemodulen wird verbessert durch präzisere
Leistungsprädiktion und Alterungsbestimmung.
Bezugszeichenliste:
I Batteriemodul
10 Batteriezelle
I I elektrochemische Einheit
12 Zellüberwachungseinrichtung
13 Messleitung
14 Messleitung
15 Messleitung
16 Messleitung
17 Messleitung
20 Überwachungseinrichtung
30 Stromüberwachungseinrichtung
31 Messleitung
32 Messleitung
40 Präzisionsmesswiderstand
50 Zellmesswiderstand
51 zellinterne Komponente
60 Strang
70 Bus

Claims

Patentansprüche:
1 . Verfahren zum Bestimmen des Innenwiderstands von Batteriezellen (10) eines Batteriemoduls (1 ), bei welchem dazu
- eine Zellspannung einer Batteriezelle (10) als Spannung der jeweiligen elektrochemischen Einheit (1 1 ) der Batteriezelle (10) bestimmt wird,
- ein Zellstrom einer Batteriezelle (10) aus einem Spannungsabfall an einem Zellmesswiderstand (50) der Batteriezelle (10) bestimmt wird,
- als Zellmesswiderstand (50) der Ohmsche Widerstand einer
Komponente (51 ) der Batteriezelle (10) im Leitungspfad (60) verwendet wird.
2. Verfahren nach Anspruch 1 ,
bei welchem als Komponente (51 ) im Leitungspfad (60) der Batteriezelle (10) ein Zellanschluss, eine Zu- oder Ableitung zu einem Zellanschluss und/oder ein Zellverbinder zum Verbinden benachbarter Batteriezellen (10) in einem Batteriemodul (1 ) verwendet werden.
3. Verfahren nach Anspruch 1 oder 2,
bei welchem Zellspannung und Zellstrom einer jeweiligen Batteriezelle (10) innerhalb einer Latenzzeitspanne von 10 με gemessen werden.
4. Verfahren nach einem der vorangehenden Ansprüche,
bei welchem Zellspannung und Zellstrom einer jeweiligen Batteriezelle (10) gleichzeitig gemessen werden.
5. Verfahren nach einem der vorangehenden Ansprüche,
bei welchem der Zellmesswiderstand (50) einer jeweiligen Batteriezelle (10) unter Verwendung eines zellexternen Präzisionsmesswiderstands (40) kalibriert wird, insbesondere durch eine Vergleichsmessung eines elektrischen Stromflusses.
6. Verfahren nach einem Anspruch 5,
bei welchem das Kalibrieren der Zellmesswiderstände (50) der jeweiligen Batteriezellen (10) unter Verwendung desselben und zu allen
Batteriezellen (10) zellexternen Präzisionsmesswiderstands (40) erfolgt.
7. Verfahren nach einem Anspruch 5 oder 6,
bei welchem das Kalibrieren eines Zellmesswiderstands (50) einer jeweiligen Batteriezelle (10) während einer Zeitspanne konstanten Stromflusses erfolgt, welche insbesondere mindestens 10 ms beträgt.
8. Verfahren nach einem Anspruch 7,
bei welchem der konstante Stromfluss zum Kalibrieren von
Zellmesswiderständen (50)
(i) durch explizite Wahl von Betriebsbedingungen eines den
Batteriezellen (10) zu Grunde liegenden Batteriemoduls (1 ) eingestellt und/oder
(ii) im Betrieb durch Überwachen des Stromflusses und im Nachhinein festgestellt wird.
9. Verfahren nach einem der Ansprüche 5 bis 8,
bei welchem ein zum Kalibrieren aus Vergleichsmessung eines elektrischen Stromflusses erfasster Strommesswert einer jeweiligen Batteriezelle (10) mitgeteilt wird, insbesondere sämtlichen Batteriezellen (10) eines zu Grunde liegenden Batteriemoduls (1 ) und/oder einer in einer jeweiligen Batteriezelle (10) ausgebildeten Zellüberwachungseinrichtung (12).
10. Verfahren nach einem der Ansprüche 5 bis 9,
bei welchem ein Ergebnis des Kalibrierens eines Zellmesswiderstands (50) in einer Nachschlagetabelle mitgeführt und/oder aktualisiert wird, insbesondere in der jeweiligen Batteriezelle (10) und/oder in einer in einer jeweiligen Batteriezelle (10) ausgebildeten Zellüberwachungseinrichtung (12). Batteriemodul (10) für eine Vorrichtung und insbesondere für ein
Fahrzeug, mit einer Mehrzahl von Batteriezellen (10), welche über einen Leitungspfad (60) miteinander verbunden sind, welches
- ausgebildet ist, in einem Verfahren nach einem der Ansprüche 1 bis 10 verwendet zu werden und dazu
- insbesondere eine Überwachungseinrichtung (20), einen zellexternen Präzisionswiderstand (40) im Leitungspfand (60) und/oder eine Zellüberwachungseinrichtung (12) in jeder der Batteriezellen (10) aufweist.
Vorrichtung und insbesondere Fahrzeug, mit:
- einem Batteriemodul (1 ) nach Anspruch 1 1 und
- einem Verbraucher, welcher mit dem Batteriemodul (1 ) zur Versorgung mit Energie verbindbar oder verbunden ist.
PCT/EP2017/060080 2016-07-12 2017-04-27 Verfahren zum bestimmen des innenwiderstands von batteriezellen, batteriemodul und vorrichtung WO2018010863A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780043050.XA CN109416391B (zh) 2016-07-12 2017-04-27 用于确定电池单体的内阻的方法、电池模块和装置
US16/245,525 US20190146039A1 (en) 2016-07-12 2019-01-11 Method for Determining the Internal Resistance of Battery Cells, Battery Module, and Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016212633.4 2016-07-12
DE102016212633.4A DE102016212633A1 (de) 2016-07-12 2016-07-12 Verfahren zum Bestimmen des Innenwiderstands von Batteriezellen, Batteriemodul und Vorrichtung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/245,525 Continuation US20190146039A1 (en) 2016-07-12 2019-01-11 Method for Determining the Internal Resistance of Battery Cells, Battery Module, and Device

Publications (1)

Publication Number Publication Date
WO2018010863A1 true WO2018010863A1 (de) 2018-01-18

Family

ID=58668869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/060080 WO2018010863A1 (de) 2016-07-12 2017-04-27 Verfahren zum bestimmen des innenwiderstands von batteriezellen, batteriemodul und vorrichtung

Country Status (4)

Country Link
US (1) US20190146039A1 (de)
CN (1) CN109416391B (de)
DE (1) DE102016212633A1 (de)
WO (1) WO2018010863A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975716A (zh) * 2019-03-07 2019-07-05 天津力神电池股份有限公司 一种锂离子电池内阻波动的检测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020016799A1 (en) * 2018-07-17 2020-01-23 Stra, S.A. Method and device for measuring the health of a multicell automotive battery
DE102020127262A1 (de) 2020-10-15 2022-04-21 Audi Aktiengesellschaft Erfassungseinrichtung, Erfassungsanordnung, Kraftfahrzeug und Verfahren zum Erfassen zumindest eines Zellparameters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10205120A1 (de) * 2001-02-13 2003-07-10 Akkumulatorenfabrik Moll Gmbh Verfahren und Vorrichtung zur Ermittlung des Innenwiderstandes einer Batterie, insbesondere einer Starterbatterie für ein Kraftfahrzeug
DE102010028066A1 (de) * 2010-04-22 2011-10-27 Robert Bosch Gmbh Kalibrierverfahren und Kalibrierschaltung für ein Strommesssystem zum Messen des Batteriestromes in einem Kraftfahrzeug
US20120119745A1 (en) * 2010-05-14 2012-05-17 Liebert Corporation Battery monitor with correction for internal ohmic measurements of battery cells in parallel connected battery strings

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670861A (en) * 1995-01-17 1997-09-23 Norvik Tractions Inc. Battery energy monitoring circuits
US5744962A (en) * 1995-03-14 1998-04-28 Alber; Glenn Automated data storing battery tester and multimeter
DE19952693A1 (de) * 1999-10-14 2001-05-23 Akkumulatorenfabrik Moll Gmbh Verfahren und Vorrichtung zum Ermitteln, Anzeigen und/oder Auslesen des Zustandes einer Batterie, insbesondere einer Starterbatterie für ein Kraftfahrzeug
GB0624858D0 (en) * 2006-12-13 2007-01-24 Ami Semiconductor Belgium Bvba Battery Monitoring
US8063643B2 (en) * 2008-03-05 2011-11-22 Liebert Corporation System and method for measuring battery internal resistance
DE102009002468A1 (de) * 2009-04-17 2010-10-21 Robert Bosch Gmbh Ermittlung des Innenwiderstands einer Batteriezelle einer Traktionsbatterie bei Einsatz von induktivem Zellbalancing
JP5381664B2 (ja) * 2009-12-02 2014-01-08 トヨタ自動車株式会社 組電池の異常検出装置
DE102011013394B4 (de) * 2011-03-09 2012-10-04 Audi Ag Batterie für ein Fahrzeug und Verfahren zum Betreiben einer solchen Batterie
DE102011075361A1 (de) * 2011-05-05 2012-11-08 Sb Limotive Company Ltd. Verfahren zur Überwachung der Temperatur einer Batteriezelle
DE102012209660A1 (de) * 2012-06-08 2013-12-12 Robert Bosch Gmbh Batteriesystem und zugehöriges Verfahren zur Ermittlung des Innenwiderstandes von Batteriezellen oder Batteriemodulen des Batteriesystems
DE102012209648B4 (de) * 2012-06-08 2024-02-01 Robert Bosch Gmbh Verfahren zur Bestimmung eines Abnutzungszustandes eines Batteriemoduls, Batteriemanagementsystem, Spannungsstufenbatteriesystem und Kraftfahrzeug
US10901019B2 (en) * 2013-03-15 2021-01-26 Atieva, Inc. Method of connecting cell voltage sensors
KR101574969B1 (ko) * 2013-09-24 2015-12-21 주식회사 엘지화학 충방전기의 충전 전류 정밀도 검출 장치
JP6312508B2 (ja) * 2014-04-11 2018-04-18 日立オートモティブシステムズ株式会社 電池監視装置、電池システムおよび電動車両駆動装置
DE102014007304A1 (de) * 2014-05-17 2015-01-15 Daimler Ag Kraftfahrzeug-Batteriemanagement mit Einzelzellenüberwachung
WO2015179629A1 (en) * 2014-05-22 2015-11-26 Navitas Solutions, Inc. Battery sensing method and apparatus
WO2016042109A1 (de) * 2014-09-17 2016-03-24 Continental Teves Ag & Co. Ohg Verfahren zum kontinuierlichen kalibrieren von strommesssystemen in kraftfahrzeugen
DE102014220098A1 (de) * 2014-10-02 2016-04-07 Robert Bosch Gmbh Verfahren zum Schalten von mehreren unterschiedlich ausgebildeten Batteriezellen einer Batterie und Batteriesystem mit einer Batterie mit mehreren unterschiedlich ausgebildeten Batteriezellen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10205120A1 (de) * 2001-02-13 2003-07-10 Akkumulatorenfabrik Moll Gmbh Verfahren und Vorrichtung zur Ermittlung des Innenwiderstandes einer Batterie, insbesondere einer Starterbatterie für ein Kraftfahrzeug
DE102010028066A1 (de) * 2010-04-22 2011-10-27 Robert Bosch Gmbh Kalibrierverfahren und Kalibrierschaltung für ein Strommesssystem zum Messen des Batteriestromes in einem Kraftfahrzeug
US20120119745A1 (en) * 2010-05-14 2012-05-17 Liebert Corporation Battery monitor with correction for internal ohmic measurements of battery cells in parallel connected battery strings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975716A (zh) * 2019-03-07 2019-07-05 天津力神电池股份有限公司 一种锂离子电池内阻波动的检测方法

Also Published As

Publication number Publication date
CN109416391B (zh) 2024-05-10
CN109416391A (zh) 2019-03-01
US20190146039A1 (en) 2019-05-16
DE102016212633A1 (de) 2018-01-18

Similar Documents

Publication Publication Date Title
DE102006018208B4 (de) Verfahren und Vorrichtung zum Detektieren eines geladenen Zustandes einer sekundären Batterie basierend auf einer Berechnung eines neuronalen Netzwerks
EP2531869B1 (de) Vorrichtung und verfahren zur bestimmung eines bereichs einer batteriekennlinie
EP1952169B1 (de) Verfahren zum ermittlen des betriebszustands eines akkumulators
DE112012004706T5 (de) Batteriepack-Testvorrichtung
DE10301823A1 (de) Verfahren und Vorrichtung zum Ermitteln der aus einem Energiespeicher entnehmbaren Ladung
DE10246383A1 (de) Verfahren und Einrichtung zum Berechnen des Ladewirkungsgrads und der elektrischen Ladungsmenge einer Batterie
WO2013159979A1 (de) Verfahren und vorrichtung zum bestimmen eines ladezustands einer batterie und batterie
WO2018010863A1 (de) Verfahren zum bestimmen des innenwiderstands von batteriezellen, batteriemodul und vorrichtung
WO2019020303A1 (de) Vorrichtung und verfahren zur symmetrierung eines energiespeichermoduls
DE102005025616B4 (de) Verfahren zur Überwachung und/oder Steuerung oder Regelung der Spannung einzelner Zellen in einem Zellstapel
EP3698158B1 (de) Spannungsmessverfahren, betriebsverfahren und steuereinrichtung für ein bordnetz sowie bordnetz und fahrzeug
WO2019072488A1 (de) Energiespeichereinrichtung sowie vorrichtung und verfahren zur bestimmung einer kapazität einer energiespeichereinrichtung
DE102013220691A1 (de) Verfahren und Vorrichtung zum Bestimmen eines Batteriestatus einer Fahrzeugbatterie in einem Fahrzeug
DE102019211051A1 (de) Verfahren und Vorrichtung zur Ermittlung der Restkapazität einer Batterie
DE102013013471A1 (de) Verfahren zur Bestimmung der Zuleitungsimpedanz in mehrzelligen Batteriepacks zur Leitungsfehlererkennung
DE102014007304A1 (de) Kraftfahrzeug-Batteriemanagement mit Einzelzellenüberwachung
DE102015208207A1 (de) Verfahren zum Detektieren einer ordnungsgemäßen Verbindung zumindest eines Energiespeichers mit einem Bordnetz
WO2017133813A1 (de) Verfahren zur bestimmung der alterung eines elektrochemischen speichers
DE102014220008A1 (de) Verfahren zum Ausgleichen der Ladezustände einer Mehrzahl von Batteriezellen und Batteriesystem zum Durchführen eines derartigen Verfahrens
EP2884294A1 (de) Verfahren zur Ermittlung der Versorgungsspannungen eines Verbrauchers sowie Verbraucher
DE102016222320A1 (de) Batterieeinheit, Batteriesystem und Verfahren zum Betrieb einer Batterieeinheit und/oder eines Batteriesystems
DE102011003699A1 (de) Verfahren zur Stromstärkemessung einer Kraftfahrzeugbatterie
EP3196664B1 (de) Verfahren und vorrichtung zur ermittlung einer verminderten kapazität eines zellenmoduls einer batterie
DE102017212966A1 (de) Kalibrierverfahren für ein Strommesssystem
DE102016225988A1 (de) Verfahren und System zur Erkennung von Fehlströmen bei Speicherzellen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17721097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17721097

Country of ref document: EP

Kind code of ref document: A1