WO2018010435A1 - 背光模组以及包括这样的背光模组的透明显示装置 - Google Patents

背光模组以及包括这样的背光模组的透明显示装置 Download PDF

Info

Publication number
WO2018010435A1
WO2018010435A1 PCT/CN2017/074543 CN2017074543W WO2018010435A1 WO 2018010435 A1 WO2018010435 A1 WO 2018010435A1 CN 2017074543 W CN2017074543 W CN 2017074543W WO 2018010435 A1 WO2018010435 A1 WO 2018010435A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
backlight module
display device
transparent
light source
Prior art date
Application number
PCT/CN2017/074543
Other languages
English (en)
French (fr)
Inventor
王鑫
倪攀
杨凡
陆岩
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/556,498 priority Critical patent/US10394035B2/en
Publication of WO2018010435A1 publication Critical patent/WO2018010435A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/106Beam splitting or combining systems for splitting or combining a plurality of identical beams or images, e.g. image replication
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0063Means for improving the coupling-out of light from the light guide for extracting light out both the major surfaces of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Definitions

  • the present disclosure relates to the technical field of transparent display, and in particular to a backlight module, and a transparent display device including such a backlight module.
  • Some exemplary solutions include a combination of a conventional liquid crystal display panel and a light guide plate, or a combination of a conventional liquid crystal display panel and a cabinet.
  • problems such as poor transparency display, inability to realize thinning and portability of the display device, and the like, so that the current requirements for the display device are not well satisfied.
  • the thinness and portability of display devices it is the direction of the development of today's electronic devices.
  • embodiments of the present disclosure provide a backlight module, and a transparent display device including such a backlight module, in an attempt to at least partially alleviate or eliminate one or more of the above noted disadvantages. .
  • a backlight module configured to be used in a transparent display device, and includes: a light splitting device; and a light source disposed at a side of the light splitting device and emitting light toward the light splitting device.
  • the light splitting device is configured to split the light emitted by the light source into two light beams, the first light beam configured to provide a backlight, and the second light beam Configure the background behind the light splitting device.
  • the light beam emitted by the light source is split into two beams by a light splitting device, wherein the first light beam is used to provide backlight illumination, and the second light beam is used to backlight the light splitting device.
  • a display device including such a backlight module can obtain necessary backlighting so as to be able to achieve normal display upon power-on; and on the other hand, with the second beam pair behind the beam splitting device
  • the illumination of the background illuminates the surrounding background behind the display device including the backlight module, thereby facilitating the improvement of the transparent display effect of the display device.
  • the light source is disposed on the side of the light splitting device, which eliminates the occlusion problem that may occur in the light source, and further improves the transparent display effect.
  • the light splitting device comprises a transflective film.
  • the first light beam includes a reflected light of the light emitted by the light source by the semi-transparent film
  • the second light beam includes the light transmitted by the light transmissive film to the light emitted by the light source; or, the first light beam
  • the transflective film includes transmitted light of light emitted by the light source
  • the second light beam includes reflected light of the light emitted by the light source by the transflective film.
  • the splitting of the light emitted by the light source is achieved using a transflective film, wherein the reflected light is used to provide backlight illumination and the transmitted light is used to illuminate the background environment behind the light splitting device.
  • the transflective film is well known to those skilled in the art, and thus its specific structure, composition and the like are not explained in further detail.
  • the spectroscopic device is not limited only to the transflective film exemplified above as an example. Rather, those skilled in the art will appreciate that the spectroscopic functions of the above-described spectroscopic devices can be implemented using any commercially available optics that will be developed in the future, with the benefit of the teachings of the present disclosure.
  • the backlight module further includes a transparent substrate, wherein the transflective film is disposed on the front or rear surface of the transparent substrate.
  • a transparent substrate With such a transparent substrate, a stable arrangement of the transflective film can be achieved, thereby facilitating the reliability and stability in the mechanical and optical aspects of the backlight module provided by the present disclosure, and further the transparent display device. That is to say, one of the main functions of the transparent substrate here is mechanical support. Moreover, such a support substrate is also transparent and thus does not adversely affect the transparent display effect of the display device.
  • the shape of the transparent substrate is a wedge shape, wherein The transflective film is disposed on the inclined surface of the wedge-shaped transparent substrate.
  • the transparent substrate includes two sub-substrates stacked together, and the transflective film is disposed between the two sub-substrates.
  • the number of transparent substrates may not be limited to a single one.
  • the transparent substrate comprises two stacked sub-substrates, its stabilization of the transflective film can be further enhanced.
  • the shapes of the two sub-substrates are both wedge-shaped.
  • the two wedge-shaped sub-substrates are stacked together with the inclined surfaces facing each other, and the transflective film is disposed between the inclined surfaces of the two wedge-shaped sub-substrates.
  • the propagation path of the light emitted by the light source is further extended by means of the two wedge-shaped sub-substrates, thereby promoting an improvement in display quality.
  • the transparent substrate is made of a transparent material.
  • the transparent material includes glass or indium tin oxide (ITO).
  • ITO indium tin oxide
  • any other suitable transparent material can be readily envisioned by those skilled in the art in the context of the teachings of the present disclosure, and the disclosure is not limited to only those particular materials listed.
  • the light source includes a plurality of light sources respectively disposed on both sides of the light splitting device.
  • the light source is disposed on the short side of the spectroscopic device.
  • the light source comprises a laser diode, an organic light emitting diode or a laser source.
  • the light source can respectively emit light from the both sides to the spectroscopic device, thereby promoting uniform distribution of the incident position of the light on the spectroscopic device. In this way, not only the brightness and uniformity of the backlight illumination are improved, but also the uniform illumination of the background environment behind the display device is facilitated. Further, such a uniform illumination effect can be further enhanced when the light source is disposed on the short side of the spectroscopic device.
  • a transparent display device comprising: the backlight module according to the first aspect of the present disclosure; and an array disposed in front of the backlight module Column substrate and color film substrate.
  • the color filter substrate is disposed between the array substrate and the light splitting device of the backlight module. Since the reflectivity of the gate metal material of the array substrate is low, by reversing the positions of the array substrate and the color filter substrate, the color filter substrate is brought closer to the light splitting device, and the light reflected by the color filter substrate is reused, and the light is improved. The utilization of light emitted by the light source.
  • a metal reflective film is coated on a surface of the color filter substrate facing the light splitting device, wherein the metal reflective film at least partially covers the black matrix pattern.
  • the metal reflective film completely covers the black matrix pattern.
  • the metal reflective film is made of aluminum or silver. Further, the metal reflective film has a thickness of 100 to 300 nm. In the case where the metal reflective film is made of silver, the reflectance is 99% or more when the thickness is 100 nm, the reflectance is 98% or more when the thickness is 200 nm, and the reflectance is 97% when the thickness is 300 nm. the above.
  • the specific material composition of the metal reflective film as well as the range of possible thicknesses, those skilled in the art, with the benefit of the teachings of the present disclosure, can readily obtain other possible equivalents.
  • FIG. 1 illustrates a cross-sectional view of a backlight module in accordance with an embodiment of the present disclosure
  • FIG. 2 illustrates a cross-sectional view of a backlight module in accordance with another embodiment of the present disclosure
  • FIG. 3 illustrates a cross-sectional view of a backlight module in accordance with yet another embodiment of the present disclosure
  • FIG. 4 illustrates a cross-sectional view of a transparent display device including the backlight module described above, in accordance with an embodiment of the present disclosure
  • FIG. 5 illustrates a cross-sectional view of a color filter substrate in a transparent display device in accordance with an embodiment of the present disclosure.
  • Such a backlight module 1 may be configured to be used in a transparent display device, and may include: a light splitting device 2; and a light source 3 disposed at a side of the light splitting device 2 and emitting light toward the light splitting device 2.
  • incident light emitted by the light source toward the spectroscopic device 2 is schematically illustrated by a black solid arrow C.
  • the spectroscopic device 2 can be configured to split the light emitted by the light source 3 into two beams A, B, wherein the first beam A is used to provide a backlight and the second beam B is used to illuminate the background behind the beam splitting device 2.
  • the spectroscopic device 2 may include a transflective film.
  • the first light beam A may be the reflected light of the light emitted by the light source 3 by the semi-transparent film
  • the second light beam B may be the transmitted light of the light emitted by the light source 3 by the half-transparent film.
  • Figure 1 As shown in Figure 1.
  • the first beam A is a transmitted light of the light emitted by the light source 3 by the transflective film
  • the second light beam B is a reflected light of the light emitted by the light source 3 by the transflective film.
  • the necessary backlighting can be provided for the display device including the backlight module described above, thereby enabling normal display; and at the same time, by means of the second light beam (ie, half-transparent
  • the transmission/reflection beam of the anti-membrane illuminates the background environment behind the spectroscopic device, illuminating the background behind the display device, thereby facilitating the transparent display of the display device.
  • the backlight module 1 may further include a transparent substrate 4 .
  • the spectroscopic device 2, specifically the transflective film may be disposed on the front or rear surface of the transparent substrate 4.
  • a transflective film is disposed on the front surface of the transparent substrate 4.
  • the transparent substrate 4 in the backlight module 1 can be designed in a wedge shape, and at this time, the transflective film can be provided on the inclined surface of the wedge-shaped transparent substrate 4.
  • the transflective film when the transflective film is disposed on the wedge-shaped transparent substrate 4, the light beam C emitted by the light source 3 toward the spectroscopic device 2 (here, the transflective film) and the transflective half-reverse The film exhibits a certain angle between the films, thereby promoting the reflection and refraction of the incident beam C through the transflective film, that is, the splitting of the spectroscopic device 2.
  • the wedge angle of the wedge-shaped transparent substrate shown in FIG. 1 is merely a schematic representation and is not meant to limit the disclosure.
  • the incident beam is more uniformly incident on the transflective film, thereby making the first beam for backlight illumination and for background illumination
  • the second beam is more evenly distributed throughout the display device. In this way, uniform display of the display device including the backlight module described above is ensured, and thus display quality is improved.
  • the backlight module 1 ′ has the same general configuration as the backlight module 1 described above with respect to FIG. 1 , except that the backlight module is in addition to the wedge-shaped transparent substrate 4 described above. 1' also has another wedge-shaped transparent substrate 4'. As shown in Fig. 2, such two wedge-shaped transparent substrates 4, 4' are opposed to each other, that is, their respective inclined surfaces are opposed to each other. At this time, the transflective film is sandwiched between the inclined surfaces of the two transparent substrates 4, 4'.
  • the use of such two wedge-shaped transparent substrates 4, 4' not only enhances the mechanical stability of the transflective film, but also promotes an improvement in display quality.
  • FIG. 3 a cross-sectional view of a backlight module in accordance with yet another embodiment of the present disclosure is illustrated.
  • the backlight module 1 ′′ according to this embodiment is substantially the same as the backlight module 1 ′ described above with respect to FIG. 2 , wherein the difference is only that, in addition to the light source 3 described above, the backlight module 1 is at this time.
  • "Alternative light source 3' may also be included. Specifically, the light sources 3, 3' are respectively disposed at opposite sides of the spectroscopic device 2.
  • the light beam C' emitted toward the spectroscopic device 2 (specifically, the transflective film) is after being split, and the reflected beam is used to illuminate the background environment, and The transmitted beam is used to provide backlighting, which is different from the light source 3 disposed on the left side.
  • the light beams C, C' provided by the two light sources 3, 3' are both emitted toward the spectroscopic device 2, and After splitting of the optical splitting device 2, the first portion of the outgoing beam provides backlighting and the second portion of the outgoing beam provides background illumination.
  • both of the light sources 3, 3' are disposed on the short side of the spectroscopic device 2 (here, the transflective film).
  • the light source can respectively emit light from the both sides to the spectroscopic device 2, so that uniform distribution of the incident position of the light on the spectroscopic device 2 can be promoted.
  • the uniform illumination of the background environment behind the display device is facilitated.
  • FIG. 4 shows a cross-sectional view of an exemplary embodiment of such a transparent display device.
  • the transparent display device may include: a backlight module 1 described in connection with the above embodiments; and an array substrate 51, a color filter substrate 53, and an optional liquid crystal panel 52 disposed in front of the backlight module 1.
  • the transparent display effect is remarkably improved.
  • the configuration of the transparent display device according to the embodiment of the present disclosure is simpler since it has only a single light splitting device instead of the two layers of coating applied on the upper and lower sides of the glass substrate.
  • the color filter substrate 53 is disposed closer to the light splitting device 2 of the backlight module 1 than the array substrate 51.
  • the reflectivity of the gate metal material on the array substrate 51 is low. Therefore, according to the embodiment of the present disclosure, by replacing the positions of the array substrate 51 and the color filter substrate 53, the color filter substrate 53 is placed on the array substrate 51 and The light-receiving devices of the backlight module 1 realize reuse of light reflected by the color filter substrate 53, and provide utilization of light emitted by the light sources 3, 3'.
  • a cross-sectional view of a color filter substrate in a transparent display device is illustrated.
  • a metal reflective film 6 may be coated on the surface of the color filter substrate 53 facing the light splitting device 2, wherein the metal reflective film may at least partially cover the black matrix pattern BM.
  • the metal reflective film 6 can completely cover the black matrix pattern BM.
  • the red region (R), the green region (G), and the blue region (B) on the color filter substrate are respectively shown by right oblique lines, left oblique lines, and diamond patterns, and the black matrix pattern BM ( It is shown in Figure 5 with a black solid square) and is placed at the junction between these three zones.
  • the black matrix pattern BM is completely covered with a metal reflective film as shown by the hollow square 6 in FIG.
  • the portion of the light originally incident on the black matrix pattern BM and thus will be lost will be reflected by the covered metal reflective film 6, and thereafter incident on the spectroscopic device 2 of the backlight module 1 again.
  • Figures 4 and 5 As can be easily seen in connection with Figures 4 and 5. In this way, this part of the light that might have been wasted will be improved.
  • One-step utilization thereby improving the utilization of light emitted by the light source.
  • the metal reflective film 6 described above may be made of any suitable metal material such as aluminum, silver, or the like.
  • the thickness of the metal reflective film 6 described above may be selected in an optimal manner according to a specific implementation in order to increase the utilization of the light source as much as possible.
  • the thickness of such a metal reflective film 6 can be selected to be 100 to 300 nm.
  • the present disclosure is not limited to only such an example.
  • first”, “second”, and the like are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features involved. Thus, features defined by “first”, “second”, etc., may be explicitly or implicitly indicated to include one or more of such features. In the description of the present disclosure, the meaning of "a plurality" is two or more unless otherwise stated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

一种背光模组(1),配置成使用在透明显示装置中,包括:分光器件(2);以及设置在分光器件(2)的侧部并且朝向分光器件(2)发射光的光源(3)。分光器件(2)配置成将由光源(3)发射的光分成两个光束(A,B),第一光束(A)配置用于提供背光,并且第二光束(B)配置用于光照分光器件(2)后方的背景。透明显示装置包括:背光模组(1);以及设置在背光模组(1)前方的阵列基板(51)和彩膜基板(53)。

Description

背光模组以及包括这样的背光模组的透明显示装置
优先权声明
本申请要求2016年7月15日提交的中国专利申请201610557703.3的优先权,该中国专利申请以其整体通过引用并入本文。
技术领域
本公开涉及透明显示的技术领域,并且具体地涉及一种背光模组,以及一种包括这样的背光模组的透明显示装置。
背景技术
随着科学技术的快速发展,人们已经提出将现有液晶显示与透明显示结合起来,以便为用户提供更好的体验。利用这样的透明液晶显示技术,用户既可以看到屏幕上所显示的信息,也可以透过显示装置看到其后方的背景环境。至少凭借这样的透明显示特性,透明液晶显示装置现在正获得人们越来越多的关注。
在透明液晶显示技术领域中,目前已经提出了若干种不同的实现方案。一些示例性的解决方案包括普通液晶显示面板与导光板的结合,或者普通液晶显示面板与箱体的结合。然而,对于这样的技术方案而言,目前尚存在诸如问题,比如透明显示效果不佳、无法实现显示装置的轻薄化及便携性等等,从而使其不能很好地满足当前对显示装置的要求。而对于这些要求,尤其是显示装置的轻薄化和便携性而言,正是当今电子设备所逐步发展的方向。
发明内容
基于以上所述,本公开的实施例提供了一种背光模组,以及一种包括这样的背光模组的透明显示装置,以试图至少部分地缓解或消除以上指出的缺点中的一个或多个。
根据本公开的第一方面,提供了一种背光模组。该背光模组配置成使用在透明显示装置中,并且包括:分光器件;以及设置在分光器件的侧部并且朝向分光器件发射光的光源。分光器件配置成将由光源发射的光分成两个光束,第一光束配置用于提供背光,并且第二光束 配置用于光照分光器件后方的背景。
在本公开的第一方面所提供的上述背光模组中,通过分光器件将光源所发射的光束分成两束,其中,第一光束用于提供背光照明,而第二光束用于光照分光器件后方的背景对象。以这样的方式,一方面,包括这样的背光模组的显示装置可以获得必要的背光照明,从而能够在加电的情况下实现正常显示;同时另一方面,借助于第二光束对分光器件后方背景的照射,点亮了包括这样的背光模组的显示装置后方的周围背景,从而有利于显示装置的透明显示效果的提高。此外,根据本公开的第一方面所提供的上述背光模组,光源设置于分光器件的侧方,这消除了光源可能出现的遮挡问题,并且进一步提高了透明显示效果。
根据本公开的第一方面的实施例,分光器件包括半透半反膜。在这样的情况下,第一光束包括半透半反膜对光源所发射的光的反射光,并且第二光束包括半透半反膜对光源所发射的光的透射光;或者,第一光束包括半透半反膜对光源所发射的光的透射光,并且第二光束包括半透半反膜对光源所发射的光的反射光。在这一具体实施例中,利用半透半反膜实现了对光源所发射的光的分束,其中反射光用于提供背光照明,而透射光用于点亮分光器件后方的背景环境。此处,半透半反膜是本领域技术人员所公知的,因而对其具体结构、组成等不作进一步详细解释。当然,如本领域技术人员所容易领会到的,在根据本公开所提供的上述背光模组中,分光器件不仅仅限于以上作为示例而列举的半透半反膜。相反,在获益于本公开的教导的情况下,本领域技术人员能够理解到,可以使用任何商业上可获得的或者未来将研发出的可行光学器件来实现以上所指分光器件的分光功能。
根据本公开的第一方面的实施例,背光模组还包括透明基板,其中,半透半反膜设置在透明基板的前表面或后表面上。借助于这样的透明基板,可以实现半透半反膜的稳固设置,从而有利于本公开所提供的背光模组,以及进一步地透明显示装置,在机械和光学方面的可靠性和稳定性。也就是说,透明基板在此处的一个主要作用在于机械支撑。此外,这样的支撑基板还是透明的,因而不会对显示装置的透明显示效果带来任何不利影响。
根据本公开的第一方面的实施例,透明基板的形状为楔形,其中, 半透半反膜设置在楔形透明基板的倾斜表面上。作为一个具体的有利方案,通过将透明基板设计成楔形形状并且将半透半反膜设置在其倾斜表面上,确保了光源所发射的光与半透半反膜之间的一定夹角,从而有利于光源所发射的光的透射和反射,即促进了分光器件的分光功能的实现。当然,对于楔形透明基板的楔角,本领域技术人员可以根据本公开的教导结合具体实现进行选择,在此不作限定。另外,在楔形透明基板的情况下,光源所发射的光的传播路径较长,因此显示装置中将不会出现局部暗淡的情况,从而保证了显示,尤其是透明显示的质量。
根据本公开的第一方面的实施例,透明基板包括两个叠置在一起的子基板,并且半透半反膜设置在两个子基板之间。作为进一步的具体实现,透明基板的数目可以不仅仅限于单个。当透明基板包括两个叠置的子基板时,其对半透半反膜的稳固作用可以得到进一步加强。
根据本公开的第一方面的实施例,这两个子基板的形状均为楔形。这两个楔形子基板在倾斜表面彼此相对的情况下叠置在一起,并且半透半反膜设置在这两个楔形子基板的倾斜表面之间。如以上关于楔形透明基板所陈述的,借助于两个楔形子基板,光源所发射的光的传播路径得到进一步延长,从而促进了显示质量的提升。
根据本公开的第一方面的实施例,透明基板由透明材料制成。具体地,透明材料包括玻璃或者氧化铟锡(ITO)。当然,在本公开的教导的情况下,本领域技术人员可以容易预想到任何其它适当的透明材料,并且本公开不仅仅限于所列出的那些具体材料。
根据本公开的第一方面的实施例,光源包括分别设置在分光器件的两侧的多个光源。可选地,光源设置在分光器件的短边侧。可选地,光源包括激光二极管、有机发光二极管或者激光源。根据这样的具体实施例,光源可以从两侧分别向分光器件发射光,由此促进了光在分光器件上的入射位置的均匀分布。这样,不仅提高了背光照明的亮度和均匀性,而且还有利于显示装置后方的背景环境的均匀点亮。此外,当光源设置于分光器件的短边侧时,这样的均匀光照效果可以得到进一步加强。
根据本公开的第二方面,提供了一种透明显示装置,其包括:根据本公开的第一方面所述的背光模组;以及设置在背光模组前方的阵 列基板和彩膜基板。利用这样的透明显示装置,改进了透明显示效果。而且,相比于现有技术中使用多个涂层、导光板等的技术方案而言,本公开的技术方案仅需要一个分光器件,因而构造更为简单。
根据本公开的第一方面的实施例,彩膜基板设置在阵列基板与背光模组的分光器件之间。由于阵列基板的栅金属材料的反射率较低,所以通过颠倒阵列基板和彩膜基板的位置,使彩膜基板更靠近分光器件,实现了被彩膜基板反射的光的再次利用,并且提高了光源所发射的光的利用率。
根据本公开的第一方面的实施例,在彩膜基板面向分光器件的表面上涂敷有金属反射膜,其中,金属反射膜至少部分地覆盖黑矩阵图案。特别地,金属反射膜完全覆盖黑矩阵图案。在具有覆盖黑矩阵图案的金属反射膜的情况下,原本会入射到黑矩阵图案上并且因而将损失掉的光可以经过所覆盖的金属反射膜而再次朝向分光器件反射,从而得到进一步利用,由此进一步提高了光源所发射的光的利用率。
根据本公开的第一方面的实施例,金属反射膜由铝或银制成。进一步地,金属反射膜的厚度为100-300nm。在金属反射膜由银制成的情况下,当厚度为100nm时,反射率为99%以上;当厚度为200nm时,反射率为98%以上;并且当厚度为300nm时,反射率为97%以上。当然,对于金属反射膜的具体材料组成,以及可能的厚度范围,本领域技术人员在获益于本公开的教导的情况下,可以容易地获得其它可行的等同替换。
附图说明
图1示出了根据本公开的实施例的背光模组的截面视图;
图2示出了根据本公开的另一实施例的背光模组的截面视图;
图3示出了根据本公开的又一实施例的背光模组的截面视图;
图4示出了根据本公开的实施例的包括上述背光模组的透明显示装置的截面视图;以及
图5示出了根据本公开的实施例的透明显示装置中的彩膜基板的截面视图。
具体实施方式
在下文中连同图示了本公开的原理的附图一起来提供对本公开的一个或多个实施例的详细描述。结合这样的实施例描述本公开,但是本公开不限于任何实施例。本公开的范围仅由权利要求限制并且本公开涵盖众多可替换方案、修改和等同方案。在以下描述中阐述众多具体细节以便提供对本公开的透彻理解。仅出于示例的目的而提供这些细节并且本公开可以在没有这些具体细节中的一些或全部的情况下根据权利要求而实践。出于清楚性目的,尚未详细描述在涉及本公开的技术领域中已知的技术素材使得不会以非必要的细节使本公开模糊。
下面结合附图对本公开的实施例所提供的背光模组进行详细描述。
参照图1,其示出了根据本公开的实施例的背光模组的截面视图。这样的背光模组1可以配置成使用在透明显示装置中,并且可以包括:分光器件2;以及设置在分光器件2的侧部并且朝向分光器件2发射光的光源3。具体地,在图1中,利用黑色实心箭头C示意性地示出由光源朝向分光器件2所发射的入射光。分光器件2可以配置成将由光源3所发射的光分成两个光束A、B,其中,第一光束A用于提供背光,并且第二光束B用于光照分光器件2后方的背景。具体地,分光器件2可以包括半透半反膜。在这样的情况下,第一光束A可以是半透半反膜对光源3所发射的光的反射光,并且第二光束B可以是半透半反膜对光源3所发射的光的透射光,如图1中所示。当然,如本领域技术人员所容易理解的,当分光器件2包括半透半反膜时,还可能的是,第一光束A为半透半反膜对光源3所发射的光的透射光,而第二光束B为半透半反膜对光源3所发射的光的反射光。对于这一不同实现方式,我们可以通过将图1中所示的光源3从分光器件2的左侧移动到分光器件2的右侧而获得,在此没有具体示出。根据这些具体实施例,一方面,可以为包括以上所述背光模组的显示装置提供必要的背光照明,从而能够实现正常显示;而同时另一方面,借助于第二光束(即,半透半反膜的透射/反射光束)对分光器件后方的背景环境的光照,点亮了显示装置后方的背景,从而有利于显示装置的透明显示。
参照图1,其进一步图示了,背光模组1还可以包括透明基板4。在这样的情况下,分光器件2,具体地半透半反膜,可以设置在透明基板4的前表面或后表面上。特别地,如图1中所示,半透半反膜设置在透明基板4的前表面上。借助于透明基板4的机械支撑作用,实现 了背光模组1,以及进一步地包括这样的背光模组1的显示装置,在机械和光学方面的可靠性和稳定性。
同样参照图1,其还进一步图示了,背光模组1中的透明基板4可以设计成楔形形状,并且此时,半透半反膜可以提供在楔形透明基板4的倾斜表面上。如可以从图1清楚可见的,当半透半反膜设置在楔形透明基板4上时,由光源3朝向分光器件2(此处为半透半反膜)发射的光束C与半透半反膜之间呈现一定夹角,由此促进了入射光束C经过半透半反膜的反射和折射,即,经过分光器件2的分束。当然,如本领域技术人员所容易理解的,在图1中所示的楔形透明基板的楔角仅仅是一种示意性表示,并不意味着对本公开的任何限制。另外,利用楔形透明基板以及由此获得的半透半反膜的倾斜布置,入射光束更均匀地入射到半透半反膜上,从而使得用于背光照明的第一光束和用于背景照明的第二光束更加均匀地遍及整个显示装置进行分布。这样,保证了包括以上所述背光模组的显示装置的均匀显示,并且因而改进了显示质量。
参照图2,其示出了根据本公开的另一实施例的背光模组的截面视图。根据这一具体实施例的背光模组1’与以上关于图1所述的背光模组1的大体构造相同,其中区别仅在于,除以上所述楔形透明基板4之外,此时背光模组1’还具有另一楔形透明基板4’。如图2中所示,这样的两个楔形透明基板4,4’相对而置,即它们各自的倾斜表面彼此相对。而此时,半透半反膜夹在这两个透明基板4,4’的倾斜表面之间。利用这样的两个楔形透明基板4,4’,不仅提升了半透半反膜的机械稳固性能,而且还促进了显示质量的提高。
进一步参照图3,其示出了根据本公开的又一实施例的背光模组的截面视图。根据这一具体实施例的背光模组1”与以上关于图2所述的背光模组1’的大体构造相同,其中区别仅在于,除以上所述光源3之外,此时背光模组1”还可以包括另外的光源3’。具体地,光源3,3’分别设置在分光器件2的两个相对侧部。此时,对于设置于右侧的光源3’而言,朝向分光器件2(具体地,半透半反膜)所发射的光束C’在经过分束之后,反射光束用于光照背景环境,而透射光束用于提供背光照明,这与设置在左侧的光源3不同。但是,不管怎样,这两个光源3,3’所提供的光束C,C’均朝向分光器件2发射,并且在经 过分光器件2的分束之后,第一部分的出射光束提供了背光照明,而第二部分的出射光束提供了背景的光照。进一步可选地,这两个光源3,3’均设置在分光器件2(此处,半透半反膜)的短边侧。以这样的方式,光源可以从两侧分别向分光器件2发射光,从而可以促进光在分光器件2上的入射位置的均匀分布。这样,不仅提高了背光照明的亮度和均匀性,而且还有利于显示装置后方的背景环境的均匀点亮。
根据本公开的第二方面,提供了一种包括上述背光模组的透明显示装置。图4示出了这样的透明显示装置的示例性实施例的截面视图。如图4中所示,透明显示装置可以包括:结合以上实施例描述的背光模组1;以及设置在背光模组1前方的阵列基板51、彩膜基板53、以及可选的液晶面板52。在具有根据本公开的实施例的背光模组1的上述透明显示装置中,透明显示效果得到了显著改进。另外,由于仅具有单个分光器件,而不是涂敷在玻璃基板的上侧及下侧上的两层涂层,根据本公开的实施例的透明显示装置的构造更为简单。
具体地,如图4中所示,相比于阵列基板51而言,彩膜基板53设置成更靠近背光模组1的分光器件2。一般而言,阵列基板51上的栅金属材料的反射率较低,因此根据本公开的实施例,通过互换阵列基板51和彩膜基板53的位置,使彩膜基板53处于阵列基板51与背光模组1的分光器件之间,实现了被彩膜基板53反射的光的再次利用,并且提供了光源3,3’所发射的光的利用率。
参照图5,其示出了根据本公开的实施例的透明显示装置中的彩膜基板的截面视图。具体地,在彩膜基板53面向分光器件2的表面上可以涂敷有金属反射膜6,其中,金属反射膜可以至少部分地覆盖黑矩阵图案BM。特别地,金属反射膜6可以完全覆盖黑矩阵图案BM。如图5中所示,分别利用右斜线、左斜线、菱形图案示出彩膜基板上的红色区(R)、绿色区(G)和蓝色区(B),而黑矩阵图案BM(在图5中利用黑色实心方框示出)则设置于这三个区之间的交界处。根据本公开的实施例,在黑矩阵图案BM上完全覆盖有金属反射膜,如图5中的空心方框6所示。在这样的情况下,原本入射到黑矩阵图案BM上并且因此将会损失掉的那部分光将被所覆盖的金属反射膜6反射,在此之后再次入射到背光模组1的分光器件2上,如结合图4和5可以容易地看到。此次方式,这一部分原本可能浪费掉的光将得到了进 一步的利用,从而提高了光源所发射的光的利用率。
具体地,如本领域技术人员所容易领会到的,以上所述金属反射膜6可以由任何适当的金属材料制成,诸如铝、银等。另外,还可以根据具体实现方案以最佳方式选择以上所述金属反射膜6的厚度,以便尽可能地提高光源光的利用率。作为示例,可以将这样的金属反射膜6的厚度选择为100-300nm。当然,本公开不仅仅限于这样的示例。
需要指出的是,在本公开的描述中,通过术语“中心”、“上方”、“下方”、“前方”、“后方”、“左侧”、“右侧”、“竖直”、“水平”、“顶部”、“底部”、“内部”、“外部”等指示的方位或位置关系为基于附图而示出的方位或位置关系,其仅是为了便于描述本公开,而不用于指示或暗示所指装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不应理解为对本公开的限制。
术语“第一”、“第二”等仅用于描述目的,而不应理解为指示或暗示相对重要性或者隐含指明所涉及的技术特征的数目。因此,由“第一”、“第二”等限定的特征可以明确地或者隐含地指示包括一个或多个这样的特征。在本公开的描述中,除非另有说明,否则“多个”的含义是两个或两个以上。
在本说明书的描述中,所公开的具体特征、结构、材料或特点可以在任何一个或多个实施例或示例中以任何合适的方式组合。
尽管已经示出和描述了本公开的特定实施例,但是本领域技术人员将显而易见的是,可以做出修改和改变而不脱离以其较宽方面的本公开,并且因此,随附权利要求要在其范围内涵盖如落在本公开的真实精神或范围内的所有这样的修改和改变。

Claims (15)

  1. 一种背光模组,其中,所述背光模组配置成使用在透明显示装置中,并且包括:
    分光器件;以及
    设置在所述分光器件的侧部并且朝向所述分光器件发射光的光源,
    其中,所述分光器件配置成将由所述光源发射的光分成两个光束,第一光束配置用于提供背光,并且第二光束配置用于光照所述分光器件后方的背景。
  2. 根据权利要求1所述的背光模组,其中,
    所述分光器件包括半透半反膜,其中,所述第一光束包括所述半透半反膜对所述光源所发射的光的反射光,并且所述第二光束包括所述半透半反膜对所述光源所发射的光的透射光;或者,所述第一光束包括所述半透半反膜对所述光源所发射的光的透射光,并且所述第二光束包括所述半透半反膜对所述光源所发射的光的反射光。
  3. 根据权利要求2所述的背光模组,其中,
    所述背光模组还包括透明基板,其中,所述半透半反膜设置在所述透明基板的前表面或后表面上。
  4. 根据权利要求3所述的背光模组,其中,
    所述透明基板的形状为楔形,其中,所述半透半反膜设置在所述楔形透明基板的倾斜表面上。
  5. 根据权利要求3所述的背光模组,其中,
    所述透明基板包括两个叠置在一起的子基板,并且所述半透半反膜设置在所述两个子基板之间。
  6. 根据权利要求5所述的背光模组,其中,
    所述两个子基板的形状均为楔形,其中,所述两个楔形子基板在倾斜表面彼此相对的情况下叠置在一起,并且所述半透半反膜设置在所述两个楔形子基板的倾斜表面之间。
  7. 根据权利要求3所述的背光模组,其中,
    所述透明基板由透明材料制成。
  8. 根据权利要求7所述的背光模组,其中,
    所述透明材料为玻璃或者氧化铟锡(ITO)。
  9. 根据权利要求1所述的背光模组,其中,
    所述光源包括分别设置在所述分光器件的两侧的多个光源。
  10. 根据权利要求1所述的背光模组,其中,
    所述光源设置在所述分光器件的短边侧。
  11. 一种透明显示装置,其中,所述透明显示装置包括:
    根据权利要求1所述的背光模组;以及
    设置在所述背光模组前方的阵列基板和彩膜基板。
  12. 根据权利要求11所述的透明显示装置,其中,
    所述彩膜基板设置在所述阵列基板与所述背光模组的分光器件之间。
  13. 根据权利要求12所述的透明显示装置,其中,
    在所述彩膜基板面向所述分光器件的表面上涂敷有金属反射膜,其中,所述金属反射膜至少部分地覆盖黑矩阵图案。
  14. 根据权利要求13所述的透明显示装置,其中,
    所述金属反射膜完全覆盖所述黑矩阵图案。
  15. 根据权利要求13所述的透明显示装置,其中,
    所述金属反射膜的厚度为100-300nm。
PCT/CN2017/074543 2016-07-15 2017-02-23 背光模组以及包括这样的背光模组的透明显示装置 WO2018010435A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/556,498 US10394035B2 (en) 2016-07-15 2017-02-23 Backlight module and transparent display device comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610557703.3 2016-07-15
CN201610557703.3A CN106019708A (zh) 2016-07-15 2016-07-15 背光模组以及包括这样的背光模组的透明显示装置

Publications (1)

Publication Number Publication Date
WO2018010435A1 true WO2018010435A1 (zh) 2018-01-18

Family

ID=57118932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074543 WO2018010435A1 (zh) 2016-07-15 2017-02-23 背光模组以及包括这样的背光模组的透明显示装置

Country Status (3)

Country Link
US (1) US10394035B2 (zh)
CN (1) CN106019708A (zh)
WO (1) WO2018010435A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807483B (zh) * 2016-05-27 2019-01-22 京东方科技集团股份有限公司 显示面板及其制作方法、以及显示装置
CN106019708A (zh) * 2016-07-15 2016-10-12 京东方科技集团股份有限公司 背光模组以及包括这样的背光模组的透明显示装置
CN111279123B (zh) * 2017-10-27 2022-07-15 镭亚股份有限公司 背光式透明显示器、透明显示系统和方法
KR20210014813A (ko) 2019-07-30 2021-02-10 삼성디스플레이 주식회사 표시장치
CN112305811A (zh) * 2019-07-31 2021-02-02 京东方科技集团股份有限公司 透明显示装置和背光模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1499250A (zh) * 2002-10-24 2004-05-26 ������������ʽ���� 两面发光式液晶显示模块
KR20110073725A (ko) * 2009-12-24 2011-06-30 엘지디스플레이 주식회사 액정표시장치
CN104865731A (zh) * 2015-05-27 2015-08-26 合肥京东方光电科技有限公司 一种显示面板及其制作方法、显示装置
WO2016080385A1 (ja) * 2014-11-19 2016-05-26 シャープ株式会社 液晶表示装置
CN105627676A (zh) * 2016-03-01 2016-06-01 上海九山电子科技有限公司 自带半透明液晶发光结构的冷柜门及其制造方法
CN106019708A (zh) * 2016-07-15 2016-10-12 京东方科技集团股份有限公司 背光模组以及包括这样的背光模组的透明显示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528720A (en) * 1992-03-23 1996-06-18 Minnesota Mining And Manufacturing Co. Tapered multilayer luminaire devices
JP3760900B2 (ja) * 2001-09-06 2006-03-29 セイコーエプソン株式会社 導光装置、電気光学装置及び電子機器
KR101157976B1 (ko) * 2005-04-22 2012-06-25 엘지디스플레이 주식회사 액정표시모듈
KR20080090961A (ko) * 2006-01-27 2008-10-09 가부시키가이샤 엔프라스 면광원 장치 및 표시 장치
JP2007225788A (ja) * 2006-02-22 2007-09-06 Citizen Electronics Co Ltd 導光板及び該導光板を用いた表裏一体型バックライト及び該バックライトを用いた液晶表示装置。
CN101609230B (zh) * 2008-06-18 2011-12-14 鸿富锦精密工业(深圳)有限公司 背光模组
WO2011004306A1 (en) * 2009-07-10 2011-01-13 Koninklijke Philips Electronics N.V. Free form lighting module
TWI425278B (zh) * 2010-05-05 2014-02-01 揚昇照明股份有限公司 背光模組
KR101833969B1 (ko) * 2011-01-03 2018-04-16 엘지디스플레이 주식회사 양방향 액정표시장치
CN102707484B (zh) * 2012-04-24 2014-07-09 京东方科技集团股份有限公司 半透射半反射彩膜基板及其制作方法,以及液晶显示装置
KR102482531B1 (ko) * 2014-11-28 2022-12-30 서울바이오시스 주식회사 Led를 이용한 양면 면광원 장치
CN205910466U (zh) * 2016-07-15 2017-01-25 京东方科技集团股份有限公司 背光模组以及包括这样的背光模组的透明显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1499250A (zh) * 2002-10-24 2004-05-26 ������������ʽ���� 两面发光式液晶显示模块
KR20110073725A (ko) * 2009-12-24 2011-06-30 엘지디스플레이 주식회사 액정표시장치
WO2016080385A1 (ja) * 2014-11-19 2016-05-26 シャープ株式会社 液晶表示装置
CN104865731A (zh) * 2015-05-27 2015-08-26 合肥京东方光电科技有限公司 一种显示面板及其制作方法、显示装置
CN105627676A (zh) * 2016-03-01 2016-06-01 上海九山电子科技有限公司 自带半透明液晶发光结构的冷柜门及其制造方法
CN106019708A (zh) * 2016-07-15 2016-10-12 京东方科技集团股份有限公司 背光模组以及包括这样的背光模组的透明显示装置

Also Published As

Publication number Publication date
US10394035B2 (en) 2019-08-27
CN106019708A (zh) 2016-10-12
US20180239155A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
WO2018010435A1 (zh) 背光模组以及包括这样的背光模组的透明显示装置
JP3923867B2 (ja) 面状光源装置及びそれを用いた液晶表示装置
TWI228196B (en) Liquid crystal display device and electronic apparatus
WO2016107084A1 (zh) 光学模组和反射型显示装置
US20160216435A1 (en) Curved display device
JP2011100051A (ja) 液晶表示装置
JP2006259115A (ja) 両面表示装置及び面光源装置
TWI646511B (zh) 拼接顯示裝置
JP2006253139A (ja) バックライトモジュール
TWM437994U (en) Display device
US9606283B2 (en) Surface light source, backlight module and display device
JP2006236771A (ja) バックライト装置及び液晶表示装置
US20220113591A1 (en) Diffusion plate and backlight module
JP2015090959A (ja) 発光装置および表示装置
TW201531768A (zh) 光源模組及顯示裝置
WO2016169173A1 (zh) 导光板、背光源和显示装置
KR20140072635A (ko) 액정표시장치
US10795072B2 (en) Optical chamber, optical system and display device
JP2022023207A (ja) 表示装置
TW201636708A (zh) 背光模組
TWI437327B (zh) 背光模組
KR102504465B1 (ko) 광원 모듈 및 이를 포함하는 백라이트 유닛과 액정 표시 장치
WO2013089172A1 (ja) 光源装置、面光源装置、表示装置および照明装置
JP2007047409A (ja) 液晶表示装置およびそれを備えた携帯型電子機器
JP2006215290A (ja) 液晶表示用バックライト装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15556498

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17826774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17826774

Country of ref document: EP

Kind code of ref document: A1