WO2018010369A1 - 一种架空型故障指示定位终端及对地电压测量方法 - Google Patents

一种架空型故障指示定位终端及对地电压测量方法 Download PDF

Info

Publication number
WO2018010369A1
WO2018010369A1 PCT/CN2016/108790 CN2016108790W WO2018010369A1 WO 2018010369 A1 WO2018010369 A1 WO 2018010369A1 CN 2016108790 W CN2016108790 W CN 2016108790W WO 2018010369 A1 WO2018010369 A1 WO 2018010369A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
ground
positioning terminal
electric field
fault indication
Prior art date
Application number
PCT/CN2016/108790
Other languages
English (en)
French (fr)
Inventor
周华良
张红
杨志宏
童瑞婷
邓庆
唐成虹
Original Assignee
国电南瑞科技股份有限公司
国电南瑞南京控制系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国电南瑞科技股份有限公司, 国电南瑞南京控制系统有限公司 filed Critical 国电南瑞科技股份有限公司
Publication of WO2018010369A1 publication Critical patent/WO2018010369A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/16Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks

Definitions

  • the invention relates to an overhead type fault indication positioning terminal and a ground voltage measuring method, and belongs to the technical field of distribution network automation.
  • Zero-sequence current method capacitor current mutation method, first half-wave method, fifth-order harmonic method and signal injection method are commonly used.
  • Each of the above five methods has advantages and disadvantages, and the accuracy of judgment of a single method is not high. If several methods can be combined, when several conditions are satisfied at the same time, it is determined that the ground fault occurs, and the accuracy of the discrimination can be greatly improved.
  • the present invention provides an overhead type fault indication positioning terminal and a ground voltage measuring method.
  • An overhead type fault indication positioning terminal includes a capacitance sensor disposed in an electric field of an overhead line, and the capacitance sensor is connected to a CPU of the fault indication positioning terminal through a conditioning circuit.
  • the capacitive sensor includes two plates and a dielectric disposed between the plates.
  • the plates are PCB boards.
  • the capacitance sensor converts the power frequency electric field intensity into an induced voltage by an electric field coupling method, and the induced voltage is transmitted to the CPU of the fault indication positioning terminal through the conditioning circuit, and the fault indication positioning terminal
  • the CPU calculates the power frequency electric field intensity based on the sensed induced voltage, and calculates the ground line voltage to the ground according to the power frequency electric field strength.
  • the power frequency electric field strength calculates the formula of the overhead line to ground voltage
  • U 0 is the voltage of the overhead line to ground
  • r 1 and r 2 are the distances from the measurement point to the line equivalent charge and the image charge
  • E is the power frequency electric field strength
  • r 1 r e +l
  • r 2 2h-l+r e
  • r e is the cable diameter
  • l is the distance from the measuring point to the lower surface of the cable
  • h is the distance from the lower surface of the cable to the bottom surface
  • V is the induced voltage after conditioning
  • R 1 and R 2 are the voltage dividing resistance values of the conditioning circuit
  • Z C is the capacitive reactance of the capacitive sensor.
  • the invention achieves the beneficial effects: 1.
  • the invention realizes real-time measurement of the voltage of the overhead line to the ground, captures the change of the voltage of the overhead line to the ground, and provides a basis for determining the ground fault of the line; 2.
  • the fault indication positioning terminal adopts the capacitive sensor Measuring probe, small size, low cost, easy to manufacture; 3, measuring the voltage of the overhead line to the ground for non-contact induction measurement, to solve the problem of high-voltage insulation isolation; 4, using compensation to eliminate errors, accuracy is easy to control.
  • FIG. 1 is a structural block diagram of a fault indication positioning terminal.
  • FIG. 2 is a schematic structural view of a capacitive sensor.
  • Figure 3 is a schematic diagram of signal conditioning.
  • Figure 4 is a schematic diagram of a power frequency electric field strength calculation model.
  • an overhead type fault indication positioning terminal includes a capacitance sensor disposed in an electric field of an overhead line, and the capacitance sensor is used as a measurement probe, and the capacitance sensor is connected to the CPU of the fault indication positioning terminal through a conditioning circuit.
  • the capacitive sensor is a flat-panel structure consisting of a PCB with a special laminate design.
  • the capacitive sensor comprises two plates 1, a dielectric 2 disposed between the plates 1, and a protective layer 3 disposed outside the plate 1.
  • the size is small, the cost is low, and the fabrication is simple.
  • the plate 1 is made of a PCB, specifically circular spread copper layer on the PCB, using dielectric permittivity ⁇ r 2 is 4.5 PP material, the dielectric thickness d is 0.114 mm 2, the capacitance of the capacitive sensor Where S is the area of the plate 1 and k is the constant of the electrostatic force.
  • the conditioning circuit adopts passive resistance-capacitance coupling design, low cost and low power consumption.
  • the conditioning circuit adjusts the induced voltage to the input signal range of AD by low-cost resistance and capacitive coupling.
  • the capacitive sensor The induced voltage in the electric field can be equivalent to an equivalent circuit in which an AC voltage source and a capacitor are connected in series, and the induced voltage is converted into a range of 0 to 2.5 V (considering 1.4 times overload) by a RC coupling method.
  • the above-mentioned fault indicates the grounding voltage measuring method of the positioning terminal, and the specific process is as follows: the capacitive sensor converts the power frequency electric field intensity into an induced voltage through an electric field coupling manner, and the induced voltage is transmitted to the CPU of the fault indication positioning terminal through the conditioning circuit, and the fault indication positioning terminal The CPU calculates the power frequency electric field strength based on the sensed induced voltage, and calculates the ground line voltage to the ground according to the power frequency electric field strength.
  • the sensed induced voltage V is:
  • U is the induced voltage
  • V is the induced voltage after conditioning
  • R 1 and R 2 are the voltage dividing resistance values of the conditioning circuit
  • Z R1 is the impedance of R 1
  • Z R2 is the impedance of R 2
  • Z C is The capacitive reactance of the capacitive sensor.
  • U is the induced voltage
  • E is the power frequency electric field strength
  • d is the distance between the capacitive sensor plates 1 , that is, the thickness of the dielectric 2 .
  • the calculation method of the power frequency electric field intensity under the high-voltage transmission line adopts the method recommended by the 36.01 working group of the International Large Power Grid Conference. As shown in FIG. 4, the equivalent charge model of the infinitely long straight wire in the two-dimensional field is used to calculate, and the power frequency electric field intensity generated by the transmission line wire at the spatial point (ie, measurement point A) is obtained.
  • U 0 is the voltage of the overhead line to ground
  • r 1 and r 2 are the distances from the measurement point to the line equivalent charge and the image charge, respectively.
  • r 1 r e +l
  • r 2 2h-l+r e
  • r e the cable diameter
  • l the distance from the measuring point to the lower surface of the cable
  • h the distance from the lower surface to the bottom surface of the cable.
  • the measured value of the induced voltage is shown in Table 1 at the measuring point 6cm below the 35kv overhead line.
  • Voltage level (effective value) Power frequency electric field strength Induced voltage (effective value) 35kV 9.804 ⁇ 10 4 V/m 11.176V
  • h is a fixed value. Since the error caused by ⁇ d is a linear error, it can be calibrated by slope compensation; the error caused by ⁇ r e and ⁇ l is a nonlinear error, and for a specific cable diameter, ⁇ r e is a fixed value, and the zero error can be utilized.
  • the method compensates; the error of ⁇ l is fitted by a linear function to the transformation function of the card line, and then the slope compensation method is used for calibration.
  • the design of the card line structure of the fault indication positioning terminal is optimized, and the error value can be reduced. That is to say, the error caused by the thickness of the dielectric 2 and the difference of the wire diameter of the cable can be eliminated by software compensation.
  • the present invention realizes real-time measurement of the voltage of the overhead line to the ground, captures the change of the voltage of the overhead line to the ground, and provides a basis for determining the ground fault of the line; measures the voltage of the ground line to the ground for non-contact induction measurement, and solves the high voltage insulation. Isolation problem; compensation is used to eliminate errors, and accuracy is easy to control.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)

Abstract

一种架空型故障指示定位终端,包括设置在架空线路电场内的电容传感器,所述电容传感器通过调理电路连接至故障指示定位终端的CPU。同时也公开了该故障指示定位终端的对地电压测量方法。实现了架空线路对地电压的实时测量,捕捉架空线路对地电压的变化,为线路接地故障判定提供依据。

Description

一种架空型故障指示定位终端及对地电压测量方法 技术领域
本发明涉及一种架空型故障指示定位终端及对地电压测量方法,属于配电网自动化技术领域。
背景技术
为了快速定位配电线路故障点,减轻故障巡线人员劳动强度,节省人力物力,提高供电可靠性,我国从九十年代开始引进国外短路故障指示器技术,用于检测线路短路故障。二十世纪发展了具有信号远传功能的故障指示器。直到21世纪,国内主要厂商开始研究线路上的单相接地故障检测问题。随着各科研单位和厂商不断地研究和发展,目前线路短路故障检测技术已经十分成熟,判别成功率比较高,而接地故障检测的准确率一直不高。
为了解决配电线路接地故障检测难题,目前研究单相接地故障的判别方法较多,常用有零序电流法、电容电流突变法、首半波法、5次谐波法、信号注入法等。以上五种方法各有优势和劣势,单独某种方法的判断准确率均不高。如果能够结合其中几种方法,当几种条件同时满足时才判定接地故障发生,则判别的准确率可以大大提高。
当配电线路发生单相接地故障时,故障相对地电压会突然降低,由于接地性质的不同,电压不一定都降到零。线路中负荷升高时,电压也会降低。为了避免负荷升高造成的“假接地”而又不漏掉非金属接地引起的真接地,考虑了一个两全其美的数值,即电压降低百分之二十即认为发生了接地。这就要求故障指示器能够实时监测线路的对地电压值,并且能够达到一定的精度,但是目 前没有匹配的故障指示定位终端。
发明内容
为了解决上述技术问题,本发明提供了一种架空型故障指示定位终端及对地电压测量方法。
为了达到上述目的,本发明所采用的技术方案是:
一种架空型故障指示定位终端,包括设置在架空线路电场内的电容传感器,所述电容传感器通过调理电路连接至故障指示定位终端的CPU。
所述电容传感器包括两块极板以及设置在极板之间的电介质。
所述极板为PCB板。
一种架空型故障指示定位终端的对地电压测量方法,电容传感器通过电场耦合方式将工频电场强度转换成感应电压,感应电压通过调理电路传输至故障指示定位终端的CPU,故障指示定位终端的CPU根据调理后的感应电压计算出工频电场强度,根据工频电场强度计算出架空线路对地电压。
工频电场强度计算出架空线路对地电压的公式为,
Figure PCTCN2016108790-appb-000001
其中,U0为架空线路对地电压,r1、r2分别为测量点到线路等效电荷和镜像电荷的距离,E为工频电场强度;
工频电场强度的计算公式为,
U=Ed    (2)
其中,U为感应电压,d为电容传感器极板间的距离,即电介质厚度;
将公式(1)带入公式(2)可得,
Figure PCTCN2016108790-appb-000002
其中,r1=re+l,r2=2h-l+re,re为线缆线径,l为测量点到线缆下表面距离,h为线缆下表面到底面距离;
感应电压的计算公式为,
Figure PCTCN2016108790-appb-000003
其中,V为调理后的感应电压,R1、R2均为调理电路的分压电阻值,ZC为电容传感器的容抗。
在计算架空线路对地电压时,针对电介质厚度的误差和不同的线缆线径对测量产生的误差,可以通过软件补偿方式消除;
对公式3的各变量求偏导数,得到测量产生的误差为,
Figure PCTCN2016108790-appb-000004
本发明所达到的有益效果:1、本发明实现了架空线路对地电压的实时测量,捕捉架空线路对地电压的变化,为线路接地故障判定提供依据;2、故障指示定位终端采用电容传感器做测量探头,尺寸小,成本低,制作简便;3、测量架空线路对地电压为非接触感应测量,解决了高压绝缘隔离问题;4、采用补偿方式消除误差,精度容易控制。
附图说明
图1为故障指示定位终端的结构框图。
图2为电容传感器的结构示意图。
图3为信号调理原理图。
图4为工频电场强度计算模型示意图。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
如图1所示,一种架空型故障指示定位终端,包括设置在架空线路电场内的电容传感器,电容传感器作为测量探头,电容传感器通过调理电路连接至故障指示定位终端的CPU。
如图2所示,电容传感器为平板型结构,由特殊叠层设计的PCB构成。电容传感器包括两块极板1、设置在极板1之间的电介质2以及设置在极板1外部的保护层3,尺寸小,成本低,制作简便,极板1采用PCB板,具体的是PCB板上的圆形铺铜层,电介质2采用介电常数εr为4.5的PP材料,电介质2厚度d为0.114mm,电容传感器的电容
Figure PCTCN2016108790-appb-000005
其中,S为极板1面积,k为静电力常量。
调理电路采用无源阻容耦合方式设计,成本低廉,功耗极低,调理电路由低成本的电阻和电容耦合方式将感应电压调理到AD的输入信号范围以内,如图3所示,电容传感器在电场中的感应电压可以等效为一个交流电压源和一个电容器串联的等效电路,采用阻容耦合方式将感应电压变换为0~2.5V(考虑1.4倍过载)范围内。
上述故障指示定位终端的对地电压测量方法,具体过程如下:电容传感器通过电场耦合方式将工频电场强度转换成感应电压,感应电压通过调理电路传输至故障指示定位终端的CPU,故障指示定位终端的CPU根据调理后的感应电压计算出工频电场强度,根据工频电场强度计算出架空线路对地电压。
根据图3所示调理电路可知调理后的感应电压V为:
Figure PCTCN2016108790-appb-000006
Figure PCTCN2016108790-appb-000007
ZR2=R2
Figure PCTCN2016108790-appb-000008
其中,U为感应电压,V为调理后的感应电压,R1、R2均为调理电路的分压电阻值,ZR1为R1的阻抗,ZR2为R2的阻抗,ZC为电容传感器的容抗。
则调理后的感应电压:
Figure PCTCN2016108790-appb-000009
工频电场强度计算公式为,
U=Ed    (2)
其中,U为感应电压,E为工频电场强度,d为电容传感器极板1间的距离,即电介质2厚度。
高压输电线路下的工频电场强度的计算方法采用的是国际大电网会议36.01工作组推荐的方法。如图4所示,采用二维场中的无限长直导线的等效电荷模型进行计算,得到输电线路导线在空间点处(即测量点A)产生的工频电场强度为,
Figure PCTCN2016108790-appb-000010
其中,U0为架空线路对地电压,r1、r2分别为测量点到线路等效电荷和镜像电荷的距离。
将公式(1)带入公式(2)可得,感应电压与架空线路对地电压之间的公式为,
Figure PCTCN2016108790-appb-000011
其中,r1=re+l,r2=2h-l+re,re为线缆线径,l为测量点到线缆下表面距离,h为线缆下表面到底面距离。
对于线缆线径为7mm,在距离35kv架空线路正下方6cm的测量点处,其感应电压计算值如表一所示。
电压等级(有效值) 工频电场强度 感应电压(有效值)
35kV 9.804×104V/m 11.176V
在计算架空线路对地电压时,电介质2厚度的误差和不同的线缆线径对测量会产生误差,对公式3的各变量求偏导数,得到测量产生的误差为,
Figure PCTCN2016108790-appb-000012
带入参数得,
ΔU=U0*[2.796Δd-3.866×10-3(Δre+Δl)-4.287×10-6(2Δh-Δl+Δre)]
在特定的电压等级下,h为定值。由于Δd引起的误差为线性误差,可以通过斜率补偿的方式校准;Δre和Δl引起的误差为非线性误差,而对于特定的线缆线径,Δre为定值,可以利用零位误差的方式进行补偿;Δl的误差采用线性函数拟合卡线范围内l的变换函数,然后采用斜率补偿方式进行校准,同时优化故障指示定位终端的卡线结构设计,可以减小误差值。也就是说,针对电介质2厚度的误差和不同的线缆线径对测量产生的误差,均可以通过软件补偿方式消除。
综上所述本发明实现了架空线路对地电压的实时测量,捕捉架空线路对地电压的变化,为线路接地故障判定提供依据;测量架空线路对地电压为非接触感应测量,解决了高压绝缘隔离问题;采用补偿方式消除误差,精度容易控制。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (6)

  1. 一种架空型故障指示定位终端,其特征在于:包括设置在架空线路电场内的电容传感器,所述电容传感器通过调理电路连接至故障指示定位终端的CPU。
  2. 根据权利要求1所述的一种架空型故障指示定位终端,其特征在于:所述电容传感器包括两块极板以及设置在极板之间的电介质。
  3. 根据权利要求2所述的一种架空型故障指示定位终端,其特征在于:所述极板为PCB板。
  4. 基于权利要求1所述的一种架空型故障指示定位终端的对地电压测量方法,其特征在于:电容传感器通过电场耦合方式将工频电场强度转换成感应电压,感应电压通过调理电路传输至故障指示定位终端的CPU,故障指示定位终端的CPU根据调理后的感应电压计算出工频电场强度,根据工频电场强度计算出架空线路对地电压。
  5. 根据权利要求4所述的一种架空型故障指示定位终端的对地电压测量方法,其特征在于:工频电场强度计算出架空线路对地电压的公式为,
    Figure PCTCN2016108790-appb-100001
    其中,U0为架空线路对地电压,r1、r2分别为测量点到线路等效电荷和镜像电荷的距离,E为工频电场强度;
    工频电场强度的计算公式为,
    U=Ed  (2)
    其中,U为感应电压,d为电容传感器极板间的距离,即电介质厚度;
    将公式(1)带入公式(2)可得,
    Figure PCTCN2016108790-appb-100002
    其中,r1=re+l,r2=2h-l+re,re为线缆线径,l为测量点到线缆下表面距离,h为线缆下表面到底面距离;
    感应电压的计算公式为,
    Figure PCTCN2016108790-appb-100003
    其中,V为调理后的感应电压,R1、R2均为调理电路的分压电阻值,ZC为电容传感器的容抗。
  6. 根据权利要求5所述的一种架空型故障指示定位终端的对地电压测量方法,其特征在于:在计算架空线路对地电压时,针对电介质厚度的误差和不同的线缆线径对测量产生的误差,可以通过补偿方式消除;
    对公式3的各变量求偏导数,得到测量产生的误差为,
    Figure PCTCN2016108790-appb-100004
PCT/CN2016/108790 2016-07-12 2016-12-07 一种架空型故障指示定位终端及对地电压测量方法 WO2018010369A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016105460091 2016-07-12
CN201610546009.1A CN106226651B (zh) 2016-07-12 2016-07-12 一种架空型故障指示定位终端及对地电压测量方法

Publications (1)

Publication Number Publication Date
WO2018010369A1 true WO2018010369A1 (zh) 2018-01-18

Family

ID=57519859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108790 WO2018010369A1 (zh) 2016-07-12 2016-12-07 一种架空型故障指示定位终端及对地电压测量方法

Country Status (2)

Country Link
CN (1) CN106226651B (zh)
WO (1) WO2018010369A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097141A1 (en) 2020-11-03 2022-05-12 Protalix Ltd. Modified uricase and uses thereof
EP4100750A4 (en) * 2020-02-07 2024-03-27 DX Tech Pty Ltd METHOD AND SYSTEMS FOR DETECTING, LOCALIZING AND CHARACTERIZING SIGNAL SOURCES IN AN ELECTRICAL INFRASTRUCTURE WITH DISTRIBUTED SENSORS

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019075673A1 (zh) * 2017-10-18 2019-04-25 中国电力科学研究院有限公司 基于电场感应的单相接地故障检测方法、装置及存储介质
CN107861017A (zh) * 2017-11-15 2018-03-30 深圳市朗驰欣创科技股份有限公司 一种变电站巡检机器人及电力设备接地故障检测方法
CN109633376A (zh) * 2018-12-21 2019-04-16 国网北京市电力公司 处理单相接地故障的方法及装置
CN112180142B (zh) * 2020-09-08 2021-05-11 深圳圣斯尔电子技术有限公司 交流电压检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320070A (zh) * 2008-07-21 2008-12-10 福建省福州电业局 配电网线路短路与接地故障指示方法及指示装置
CN102156218A (zh) * 2011-03-17 2011-08-17 重庆大学 非接触式电荷感应式高压输电线电压测量装置及方法
CN102288802A (zh) * 2010-05-12 2011-12-21 吉歌网络有限公司 测量高压ac信号的方法以及电路
CN103018540A (zh) * 2012-11-20 2013-04-03 山西省电力公司阳泉供电公司 6-10kv线路的零序电压检测装置
CN203337722U (zh) * 2013-07-26 2013-12-11 大厂回族自治县开元电力技术有限公司 电网架空输电线路的电压和电流采集装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459334B (zh) * 2007-12-14 2011-05-11 山东科汇电力自动化有限公司 电力系统故障信息获取方法
CN201247279Y (zh) * 2008-08-21 2009-05-27 福建省福州电业局 配电网架空线路对地电压测量装置
CN102262179B (zh) * 2011-04-19 2014-12-10 重庆大学 单极式电流电压一体化传感器
US9612265B1 (en) * 2011-09-23 2017-04-04 Cypress Semiconductor Corporation Methods and apparatus to detect a conductive object
CN203249986U (zh) * 2013-06-04 2013-10-23 广东中宝联合电缆有限公司 一种高精度低噪音电线电缆断线定位仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320070A (zh) * 2008-07-21 2008-12-10 福建省福州电业局 配电网线路短路与接地故障指示方法及指示装置
CN102288802A (zh) * 2010-05-12 2011-12-21 吉歌网络有限公司 测量高压ac信号的方法以及电路
CN102156218A (zh) * 2011-03-17 2011-08-17 重庆大学 非接触式电荷感应式高压输电线电压测量装置及方法
CN103018540A (zh) * 2012-11-20 2013-04-03 山西省电力公司阳泉供电公司 6-10kv线路的零序电压检测装置
CN203337722U (zh) * 2013-07-26 2013-12-11 大厂回族自治县开元电力技术有限公司 电网架空输电线路的电压和电流采集装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"International Conference on Large High Voltage Electric System", 36.01 WORKING GROUP, SHULDIAN4 XI4TONG3 CHAN3SHENGL DE DIAN4CHANG3 HE2 CI2CHANG3, vol. 12, 28 February 1984 (1984-02-28), pages 15 - 24 , 77 and 78 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4100750A4 (en) * 2020-02-07 2024-03-27 DX Tech Pty Ltd METHOD AND SYSTEMS FOR DETECTING, LOCALIZING AND CHARACTERIZING SIGNAL SOURCES IN AN ELECTRICAL INFRASTRUCTURE WITH DISTRIBUTED SENSORS
WO2022097141A1 (en) 2020-11-03 2022-05-12 Protalix Ltd. Modified uricase and uses thereof

Also Published As

Publication number Publication date
CN106226651B (zh) 2019-08-23
CN106226651A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2018010369A1 (zh) 一种架空型故障指示定位终端及对地电压测量方法
CN101696990B (zh) 一种基于电场测量的特高压输电线验电方法及其系统
CN102156218B (zh) 非接触式电荷感应式高压输电线电压测量装置及方法
WO2015117304A1 (zh) 一种氧化锌避雷器在线监测系统及其方法
CN204256093U (zh) 一种10~35kV配电网中电缆接头的故障在线监测装置
CN105021953B (zh) 基于地表磁感应强度的变电站接地网腐蚀检测系统及方法
CN104407270A (zh) 一种10~35kV配电网中电缆接头的故障在线监测装置及其评估系统状态的方法
CN105445606B (zh) 一种基于形变测量的高压电力电缆接头故障监测方法
WO2021109634A1 (zh) 计及线路土壤电阻率差异化的雷击跳闸率试验方法
CN101576593B (zh) 阵列式劣质绝缘子局域电场检测装置及逆向诊断方法
CN104897995B (zh) 基于地表电位的变电站接地网腐蚀检测系统及方法
CN108037449A (zh) 一种高压断路器自动检测系统
CN205193212U (zh) 直流电缆绝缘检测系统
CN104297565B (zh) 基于fpga及磁平衡式霍尔传感器的电量数字化转换器
CN109116156A (zh) 一种基于互感器输出信号确定输电线路线损的方法和装置
CN103675483A (zh) 全天候工频电场测量装置
CN107462853A (zh) 一种特高频局部放电检测系统的标定方法
CN202141752U (zh) 一种金属氧化锌避雷器在线监测装置
CN108303617A (zh) 一种故障定位系统
CN105353236B (zh) 盘式绝缘子状态在线远程检测方法及装置
CN204228368U (zh) 一种变压器在线故障诊断检测装置
CN105937876B (zh) 一种变压器绕组变形的检测系统及其检测方法
CN109901096A (zh) 一种电容式电压互感器计量精度在线监测系统和方法
CN107153146A (zh) 一种匝间短路故障状态下电抗器电感计算方法
CN202869594U (zh) 一种无测量盲区的柔性多段导纳物位计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908692

Country of ref document: EP

Kind code of ref document: A1