WO2019075673A1 - 基于电场感应的单相接地故障检测方法、装置及存储介质 - Google Patents

基于电场感应的单相接地故障检测方法、装置及存储介质 Download PDF

Info

Publication number
WO2019075673A1
WO2019075673A1 PCT/CN2017/106745 CN2017106745W WO2019075673A1 WO 2019075673 A1 WO2019075673 A1 WO 2019075673A1 CN 2017106745 W CN2017106745 W CN 2017106745W WO 2019075673 A1 WO2019075673 A1 WO 2019075673A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
ground fault
electric field
field strength
phase ground
Prior art date
Application number
PCT/CN2017/106745
Other languages
English (en)
French (fr)
Inventor
盛万兴
宋晓辉
李雅洁
孟晓丽
高菲
李建芳
张瑜
赵珊珊
Original Assignee
中国电力科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院有限公司 filed Critical 中国电力科学研究院有限公司
Priority to PCT/CN2017/106745 priority Critical patent/WO2019075673A1/zh
Priority to EP17868512.9A priority patent/EP3499252B1/en
Publication of WO2019075673A1 publication Critical patent/WO2019075673A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Definitions

  • the invention relates to a fault detection technology in a distribution network, in particular to a single-phase ground fault detection method, device and storage medium based on electric field induction.
  • the small current grounding method is one of the main grounding methods adopted by distribution networks in many countries.
  • single-phase grounding fault is one of the most frequent faults. Since the neutral point of the small current grounding system is not directly grounded, the fault path formed by the single-phase ground fault has a large impedance value, and the fault characterized is not obvious.
  • due to noise interference and distribution network operation conditions (such as asymmetry) The impact of the problem, the detection of single-phase ground faults in small current grounding systems, although long-term extensive research, but still lacks in reliability and accuracy.
  • embodiments of the present invention are directed to provide a single-phase ground fault detection method, apparatus, and storage medium based on electric field induction, which can quickly, accurately, and reliably implement fault detection of a distribution network.
  • Embodiments of the present invention provide a single-phase ground fault detection method based on electric field induction, including:
  • determining that a single-phase ground fault occurs in the distribution network includes:
  • the first field strength threshold is less than the second field strength threshold.
  • the method further includes:
  • a fault location of the single phase ground fault is performed based on a waveform parameter of the phase current component signal waveform.
  • the fault location of the single-phase ground fault based on the waveform parameter of the phase current component signal waveform includes:
  • the fault location of the single-phase ground fault based on the waveform parameter of the phase current component signal waveform includes:
  • the method further includes:
  • the single-phase ground fault persists during the period of time, determining that the single-phase ground fault is a permanent single-phase ground fault
  • the single-phase ground fault is an intermittent single-phase ground fault if the number of times the single-phase ground fault cancellation occurs again during the period of time exceeds a preset number of times threshold;
  • the duration of the single-phase ground fault is less than a preset time threshold, determining that the single-phase ground fault is a transient single-phase ground fault.
  • the method further includes:
  • the single-phase ground fault occurs downstream of a monitoring point of current electric field strength, the monitoring point of the current electric field strength is located on a branch line of the wiring network, and the single-phase ground fault is a permanent single-phase grounding Fault or intermittent single-phase ground fault, controlling the local switch to be in the off state;
  • the single-phase ground fault occurs downstream of a monitoring point of current electric field strength, the monitoring point of the current electric field strength is located on a branch line of the wiring network, and the single-phase ground fault is instantaneous single-phase grounding Fault, an alert is issued.
  • the method further includes:
  • the single phase ground fault is a permanent single phase ground fault or an intermittent single phase ground fault Controlling the local switch and the downstream adjacent electric field strength monitoring point The switch is off.
  • the method further includes:
  • the embodiment of the invention further provides a single-phase ground fault detecting device based on electric field induction, comprising:
  • a detecting unit configured to monitor a change in electric field strength of the three-phase feeder in the distribution network
  • a determining unit configured to determine that a single-phase ground fault occurs in the distribution network when a change in electric field strength of the three-phase feeder meets a preset electric field strength change condition.
  • the determining unit is further configured to identify that the electric field strength of the first phase feed line is lower than the first field strength threshold, the second phase feed line, and the electric field of the third phase feed line.
  • the intensity is higher than the second field strength threshold, determining that a single phase ground fault occurs in the distribution network;
  • the first field strength threshold is less than the second field strength threshold.
  • a positioning unit configured to acquire a phase current component signal waveform of the three-phase feeder within a specific time period
  • a fault location of the single phase ground fault is performed based on a waveform parameter of the phase current component signal waveform.
  • the positioning unit is further configured to acquire a phase of the fault phase in the three-phase feeder a phase difference corresponding to a waveform of the current component signal and a phase current component signal waveform of the non-fault phase, and determining that the single phase ground fault occurs at a monitoring point of the current electric field strength when the acquired phase difference meets a preset phase difference condition Downstream
  • the positioning unit is further configured to acquire a current difference between the phase current component of the fault phase and the phase current component of the non-fault phase in the three-phase feeder;
  • the positioning unit is further configured to monitor a fault cancellation situation after a single phase ground fault occurs for a period of time;
  • the single-phase ground fault persists during the period of time, determining that the single-phase ground fault is a permanent single-phase ground fault
  • the single-phase ground fault is an intermittent single-phase ground fault if the number of times the single-phase ground fault cancellation occurs again during the period of time exceeds a preset number of times threshold;
  • the duration of the single-phase ground fault is less than a preset time threshold, determining that the single-phase ground fault is a transient single-phase ground fault.
  • the positioning unit is further configured to determine that the single-phase ground fault occurs downstream of a monitoring point of the current electric field strength, and the monitoring point of the current electric field strength is located on a branch line of the wiring network, and
  • the single-phase ground fault is a permanent single-phase ground fault or an intermittent single-phase ground fault, and the local switch is controlled to be in an open state;
  • the single-phase ground fault occurs downstream of a monitoring point of current electric field strength, the monitoring point of the current electric field strength is located on a branch line of the wiring network, and the single-phase ground fault is Instantaneous single-phase ground fault, an alarm is issued.
  • the positioning unit is further configured to determine that the single-phase ground fault occurs downstream of a monitoring point of the current electric field strength, and the monitoring point of the current electric field strength is located on a trunk line of the distribution network. Acquiring a fault location result of the adjacent electric field strength monitoring point of the monitoring point of the current electric field strength;
  • the single phase ground fault is a permanent single phase ground fault or an intermittent single phase ground fault
  • the switch at the local switch and the downstream adjacent electric field strength monitoring point is controlled to be in an open state.
  • An indicating unit configured to indicate that the single-phase ground fault occurs between a monitoring point of a current electric field strength and an electric field strength monitoring point adjacent to the downstream;
  • a communication unit configured to report a positioning result of the single-phase ground fault to a primary station of the distribution network; a positioning result of the single-phase ground fault, indicating that the single-phase ground fault occurs at a current electric field strength monitoring point Between the electric field strength monitoring points adjacent to the downstream.
  • the embodiment of the invention further provides a single-phase ground fault detecting device based on electric field induction, comprising:
  • a memory configured to store an executable program
  • the processor configured to perform an executable program stored in the memory, implements the above-described single phase ground fault detection method based on electric field induction.
  • the embodiment of the invention further provides a storage medium storing an executable program, and when the executable program is executed by the processor, implementing the single-phase ground fault detection method based on the electric field induction.
  • FIG. 1 is a schematic flowchart 1 of a method for detecting single-phase ground fault based on electric field induction according to an embodiment of the present invention
  • FIG. 2 is a second schematic flowchart of a single-phase ground fault detection method based on electric field induction according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an application scenario of a single-phase ground fault detection method based on electric field induction according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a single-phase ground fault detecting apparatus based on electric field induction according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a single-phase ground fault detecting apparatus based on electric field induction as a hardware entity according to an embodiment of the present invention.
  • the three-phase unbalance phenomenon is common in the distribution network, which also causes the persistent zero-sequence voltage to be easily confused with the single-phase ground fault, and the accuracy is not high enough;
  • the acquisition of zero-sequence voltage in the distribution network is mostly an electromagnetic voltage transformer. After a single-phase ground fault occurs, it is easy to cause ferromagnetic resonance and endanger the safety of the power grid.
  • single-phase ground fault location is based on the different feature quantities, and the methods can be divided into three categories: signal injection method, steady-state quantity localization method and transient quantity localization method.
  • the signal injection method requires additional signal devices, and the engineering implementation is complicated.
  • the steady state quantity localization method has weak characteristic signals.
  • Transient quantity positioning method is based on the transient characteristics several times or even several times higher than the steady state value, and is not affected by the arc suppression coil, so it has higher application value.
  • the transient quantity is more due to its existence time. Short, capture and signal extraction are difficult.
  • the comparison of transient quantities at different locations is required for fault location, which is highly dependent on communication technology. Therefore, in the implementation, the existing methods still have low reliability.
  • the change of the electric field strength of the three-phase feeder in the distribution network is monitored; when the change of the electric field strength of the three-phase feeder meets the preset electric field strength change condition, determining that the distribution network occurs Single phase ground fault.
  • the terms "including”, “comprising”, or any other variations thereof are intended to encompass non-exclusive inclusions, such that a method or apparatus comprising a plurality of elements includes not only the Elements, but also other elements not explicitly listed, or elements that are inherent to the implementation of the method or device.
  • an element defined by the phrase “comprising a " does not exclude the presence of additional related elements in the method or device including the element (eg, a step in the method or a unit in the device)
  • the unit here may be part of a circuit, part of a processor, part of a program or software, etc.; of course, it may be a module).
  • first ⁇ second ⁇ third according to the embodiment of the present invention is merely a similar object, and does not represent a specific ordering for an object. It can be understood that “first ⁇ second ⁇ ” The third "can be interchanged in a specific order or order, where permitted.” It should be understood that the objects of the "first ⁇ second ⁇ third” distinction may be interchanged where appropriate to enable the implementation of the invention described herein. Examples can be implemented in an order other than those illustrated or described herein.
  • Embodiments of the present invention provide a single-phase ground fault detection method based on electric field induction.
  • a plurality of single-phase ground fault detection devices based on electric field induction are disposed on a three-phase feeder in a distribution network, based on The electric field-sensing single-phase ground fault detecting device can implement the distribution network fault detecting method according to the embodiment of the present invention.
  • a layout mode of the single-phase ground fault detecting device based on the electric field sensing is distributed at the head end and the line along the line.
  • a single-phase ground fault detection method based on electric field induction in an embodiment of the present invention includes:
  • Step 101 monitoring changes in electric field strength of the three-phase feeder in the distribution network
  • Step 102 When a change in the electric field strength of the three-phase feeder meets a preset electric field strength change condition, determining that a single-phase ground fault occurs in the distribution network.
  • the phase electric field signal can be picked up by the electric field sensor
  • the phase current signal can be picked up by the current transformer, and the like.
  • the electric field strength of the three-phase feeder in the distribution network is collected and monitored in real time, and the electric field strength of the first phase feed line is locally monitored to be lower than the first field strength threshold (the first field strength threshold may be According to the actual situation, for example, 50% of the normal electric field strength of the feeder, the electric field strength of the second phase feed line and the third phase feed line is higher than the second field strength threshold (the second field strength threshold is greater than the first field strength threshold,
  • the setting is made according to the actual situation, for example, 1.5 times of the normal electric field strength of the feeder, it is determined that a single-phase ground fault has occurred in the distribution network. That is, when it is recognized that the electric field of one phase in the three-phase feeder is significantly reduced, and the other two phases are significantly increased, a single-phase ground fault occurs in the distribution network.
  • the phase with the electric field strength lower than the first field strength threshold is the fault phase
  • the electric field strength of the first phase feed line is lower than the first field strength threshold
  • the electric field strength of the second phase feed line and the third phase feed line is higher than the second
  • the moment of the field strength threshold is the time at which the fault occurs, that is, the moment when the ground electric field changes significantly is the fault occurrence time.
  • the location of the single-phase ground fault can be located next.
  • the single-phase ground fault can be located as follows:
  • the fault location of the single-phase ground fault is based on the waveform parameters of the phase current component signal waveform.
  • the setting of the specific time period may be a time period corresponding to a period of time before and after the fault occurrence time, for example, a time period corresponding to three cycles before and after the fault occurrence time; correspondingly, acquiring the three-phase feeder in a specific time period
  • the phase current component signal waveform is a waveform of a phase current component signal waveform of a fault phase in a specific time period and a phase current component signal waveform of a non-fault phase;
  • the component of the power frequency load current can be removed according to the periodic characteristic and the frequency characteristic of the normal current (for example, the values collected by the three collection points after the fault occurrence time are synchronously subtracted.
  • the value of the phase current component of the fault phase caused by the single-phase ground fault is obtained by the value collected by the first three waves corresponding to the acquisition point or by the bandpass filter to obtain the phase current component waveform caused by the single-phase ground fault.
  • Phase current component signal waveform of the fault phase is obtained according to the periodic characteristic and the frequency characteristic of the normal current (for example, the values collected by the three collection points after the fault occurrence time are synchronously subtracted.
  • the value of the phase current component of the fault phase caused by the single-phase ground fault is obtained by the value collected by the first three waves corresponding to the acquisition point or by the bandpass filter to obtain the phase current component waveform caused by the single-phase ground fault.
  • Phase current component signal waveform of the fault phase is obtained by the value collected by the first three waves corresponding to the acquisition point or by
  • the waveform signal maximum value, average value, differential value, integral value, and combination thereof may be extracted, or the similarity coefficient between the phase current component waveforms may be calculated and analyzed, and then obtained.
  • the phase difference between the phase current component signal waveform of the fault phase and the phase current component signal waveform of the non-fault phase when the acquired phase difference meets a preset phase difference condition (eg, 180 degrees out of phase, or the phase difference is at When 135 degrees and 225 degrees XX), it is determined that the single-phase ground fault occurs downstream of the monitoring point of the current electric field strength;
  • the method further includes: acquiring, in the three-phase feeder, a current difference between a phase current component of the fault phase and a phase current component of the non-fault phase;
  • the phase current component of the fault phase is smaller than the phase current component of the non-fault phase at the corresponding time, and the difference reaches a preset threshold, such as: non-fault phase current When 25% of the sum of the components), it is determined that the single-phase ground fault does not occur downstream of the monitoring point of the current electric field strength.
  • the distribution network fault detecting device determines that the single-phase ground fault occurs downstream of the current monitoring point, and the device of the downstream adjacent monitoring point determines that the single-phase ground fault does not occur downstream of the current monitoring point, it is known that the fault occurs in Between two monitoring points (ie two distribution network fault detection devices).
  • the duration of the local "phase electric field imbalance" condition can be monitored synchronously, that is, after a single phase ground fault occurs for a period of time (can be set according to actual needs, such as 30 seconds, 3 minutes) The fault is removed to determine the specific type of single-phase ground fault;
  • the single-phase ground fault persists during the period of time, determining that the single-phase ground fault is a permanent single-phase ground fault
  • the threshold value can be set according to actual needs, such as: 3 times
  • the single-phase ground fault is determined to be a transient single-phase ground fault.
  • the single-phase ground fault occurs downstream of the monitoring point of the current electric field strength
  • the current electric field strength monitoring point is located on the branch line of the distribution network
  • the single-phase ground fault is a permanent single-phase ground fault or
  • the control local switch is in the off state
  • the single-phase ground fault occurs downstream of the monitoring point of the current electric field strength, the current electric field intensity monitoring point is located on the branch line of the distribution network, and the single-phase ground fault is a transient single-phase ground fault, and an alarm prompt is issued, such as Beep, alarm text display, alarm information report, etc.
  • the fault location result of the electric field strength monitoring point (the fault location result includes whether the single phase ground fault is downstream of the downstream adjacent electric field strength monitoring point);
  • the local switch and the downstream phase are controlled.
  • the switch at the adjacent electric field strength monitoring point is in the off state.
  • the fault location result of the adjacent electric field strength monitoring point of the downstream of the monitoring point of the current electric field strength may be obtained through the distribution network fault detecting device adjacent to the downstream electric field strength monitoring point, or between the main stations
  • the communication acquisition such as sending a fault location result acquisition request to a downstream adjacent distribution network fault detection device, or transmitting the request to the primary station to obtain a returned fault location result.
  • the downstream adjacent distribution network fault detection device may be sent by transmitting an indication or command corresponding to the disconnection of the switch to control the switch at the downstream adjacent electric field strength monitoring point to be in an off state.
  • the single-phase ground fault when it is determined that the single-phase ground fault occurs downstream of the monitoring point of the current electric field strength and does not occur downstream of the adjacent adjacent electric field strength monitoring point, it is determined that the single-phase ground fault occurs in the two monitoring Between the points, the single-phase ground fault can be indicated between the current electric field intensity monitoring point and the downstream adjacent electric field strength monitoring point, as shown by the display screen.
  • the single-phase ground fault location result indicating that the single-phase ground fault occurs at the current electric field strength monitoring point and the downstream adjacent electric field strength monitoring point between.
  • obtaining a single phase ground fault location result (whether it occurs downstream of the current electric field strength monitoring point), and/or obtaining a specific type of single phase ground fault (permanent single phase ground fault, intermittent)
  • the main station of the distribution network can be reported to obtain the switch action command returned by the master station.
  • the single-phase ground fault detection is performed by the phase electric field
  • the single-phase ground fault location is performed by extracting the phase fault current
  • the electromagnetic voltage sensor and the capacitive voltage sensor are not relied on, thereby avoiding the ferromagnetic resonance phenomenon and not It affects the safe and stable operation of the primary side of the power grid; relies on local acquisition signals as much as possible for fault detection and location, avoids a large amount of information communication, and effectively improves reliability; rationally utilizes electric field signals and current frequency division to extract signals, using The fault features are prominent, and accurate, reliable, and fast detection and positioning of single-phase ground faults are realized.
  • FIG. 2 is an optional flow diagram of a single-phase ground fault detection method based on electric field induction according to an embodiment of the present invention.
  • An alternative application scenario of the single-phase ground fault detection method based on the electric field induction is provided in the embodiment of the present invention.
  • a plurality of monitoring points are disposed on the three-phase feeder in the distribution network.
  • M 1 , M 2 , and M 3 each monitoring point is provided with a single-phase ground fault detecting device based on electric field induction, which is used to implement the single-phase ground fault detecting method based on electric field induction in the embodiment of the present invention.
  • the single-phase ground fault detecting method based on electric field induction in the embodiment of the present invention includes:
  • Step 201 Monitor the change of the electric field strength of the three-phase feeder in the distribution network, and determine whether the change of the electric field strength meets the preset change condition. If yes, determine that a single-phase ground fault has occurred in the distribution network and perform step 202. Otherwise, step 201 is performed.
  • the A, B, and C relative ground electric field signals can be picked up by the electric field sensor.
  • the first field strength threshold when the electric field intensity of the first phase feed line is locally monitored, the first field strength threshold is lower than the first field strength threshold.
  • a strong threshold can be set according to actual conditions, for example, 50% of the normal electric field strength of the feeder, and the electric field strength of the second phase feed line and the third phase feed line is higher than the second field strength threshold (the second field strength threshold is greater than the first
  • the field strength threshold can be set according to the actual situation, and the single-phase ground fault occurs in the distribution network when the normal electric field strength of the feeder is 1.5 times.
  • phase C a phase in which the ground electric field is significantly reduced
  • Step 202 Acquire a waveform of a three-phase current component signal in a specific time period, and extract a waveform parameter.
  • the waveforms of the three-phase current component signals of A, B, and C can be acquired for a period of time before and after the occurrence of the fault, and the three-phase current signal can be picked up by the current transformer.
  • An embodiment includes: removing a component of a power frequency load current according to a periodic characteristic and a frequency characteristic of a normal current (such as a value collected at each collection point of three cycles after a fault occurrence time, and simultaneously subtracting three previous waves before the fault occurrence time) Corresponding to the value collected at the collection point, or using the bandpass filter to filter the power frequency current signal), the three-phase current component signal waveform caused by the single-phase ground fault is obtained.
  • the extracted waveform parameters include phase and amplitude, and the maximum value, average value, differential value, integral value, and combination of the signal in the phase current component signal waveform can be extracted, or the waveform between the three-phase fault current component waveforms can be calculated. Similarity coefficients and analysis.
  • Step 203 Perform fault location on the single-phase ground fault based on the extracted waveform parameters.
  • the phase of the C-phase fault current component at M 2 is 180° out of phase with the other two phases, or the amplitude of the C phase is significantly larger than the other two phases (eg, for the other two phases) 1.5 times), if yes, it is determined that a single phase ground fault occurs downstream of the M 2 monitoring point.
  • the method further includes: acquiring a current difference between a phase current component of the C phase and a phase current component of the A and B phases in the three-phase feeder;
  • the phase current component of the fault phase is smaller than the phase current component of the non-fault phase at the corresponding time, and the difference reaches a preset threshold, such as: phase current of the fault phase
  • a preset threshold such as: phase current of the fault phase
  • the distribution network fault detection device of the M 1 and M 3 monitoring points determines that no single-phase ground fault has occurred downstream.
  • Step 204 Monitor the fault cancellation situation after a single-phase ground fault occurs for a period of time, and determine the specific type of the single-phase ground fault.
  • the number of times the single-phase ground fault is removed within a certain period of time exceeds the preset number of times threshold (the number of thresholds can be set according to actual needs, such as: 3 times), that is, the single-phase ground fault interval during the period of time
  • the occurrence of sex is automatically eliminated, and the single-phase ground fault is determined to be an intermittent single-phase ground fault
  • the time threshold can be set according to the actual situation, such as: 10 seconds
  • the single-phase ground fault persists within 5 minutes, and the single-phase ground fault is a permanent single-phase ground fault.
  • Step 205 Determine whether the local monitoring point is located on the trunk line or the branch line of the distribution network. If it is located on the branch line, step 206 is performed; if it is located on the main line, step 207 is performed.
  • Step 206 Control the local switch to be in an off state, and issue a fault alarm, and perform step 209.
  • Step 207 Acquire a fault location result at the M 3 monitoring point.
  • the fault location result includes a downstream fault has occurred in the monitoring point M 3.
  • the fault does not occur downstream of the M 3 monitoring point, so it is known that the fault occurs between the M 2 monitoring point and the M 3 monitoring point.
  • Step 208 Control switch disconnection at the local and M 3 monitoring points based on the fault location result.
  • the downstream adjacent electric field-sensing-based single-phase ground fault detecting device may be sent to the downstream adjacent electric field intensity monitoring point by sending an indication or command corresponding to the switch disconnection to control the switch at the downstream adjacent electric field strength monitoring point to be in an open state.
  • a notification of a fault between the M 2 monitoring point and the M 3 monitoring point may also be issued.
  • Step 209 End this process flow.
  • the embodiment of the present invention further provides a single-phase ground fault detecting device based on electric field induction.
  • the electric field sensing based single-phase ground fault detecting device of the embodiment of the present invention includes:
  • the detecting unit 41 is configured to monitor a change in electric field strength of the three-phase feeder in the distribution network;
  • the determining unit 42 is configured to determine that a single-phase ground fault occurs in the distribution network when a change in electric field strength of the three-phase feeder meets a preset electric field strength change condition.
  • the determining unit 42 is further configured to identify, in the electric field strength of the three-phase feeder, that the electric field strength of the first phase feed line is lower than the first field strength threshold, the second phase feed line, and the third phase When the electric field strength of the feeder is higher than the second field strength threshold, it is determined that a single-phase ground fault occurs in the distribution network;
  • the first field strength threshold is less than the second field strength threshold.
  • the method further includes:
  • the positioning unit 43 is configured to acquire a phase current component signal waveform of the three-phase feeder in a specific time period
  • a fault location of the single phase ground fault is performed based on a waveform parameter of the phase current component signal waveform.
  • the positioning unit 43 is further configured to acquire, in the three-phase feeder, a phase difference corresponding to a phase current component signal waveform of the fault phase and a phase current component signal waveform of the non-fault phase, when the phase is acquired.
  • the difference meets the preset phase difference condition, it is determined that the single-phase ground fault occurs downstream of the monitoring point of the current electric field strength;
  • the positioning unit 43 is further configured to acquire a current difference between the phase current component of the fault phase and the phase current component of the non-fault phase in the three-phase feeder;
  • the positioning unit 43 is further configured to monitor a fault cancellation situation after a single phase ground fault occurs for a period of time;
  • the single-phase ground fault persists during the period of time, determining that the single-phase ground fault is a permanent single-phase ground fault
  • the single-phase ground fault is an intermittent single-phase ground fault if the number of times the single-phase ground fault cancellation occurs again during the period of time exceeds a preset number of times threshold;
  • the duration of the single-phase ground fault is less than a preset time threshold, determining that the single-phase ground fault is a transient single-phase ground fault.
  • the positioning unit 43 is further configured to determine that the single-phase ground fault occurs downstream of a monitoring point of the current electric field strength, and the monitoring point of the current electric field strength is located at a branch line of the wiring network.
  • the single-phase ground fault is a permanent single-phase ground fault or an intermittent single-phase ground fault, and the local switch is controlled to be in an open state;
  • the single-phase ground fault occurs downstream of a monitoring point of current electric field strength, the monitoring point of the current electric field strength is located on a branch line of the wiring network, and the single-phase ground fault is instantaneous single-phase grounding Fault, an alert is issued.
  • the positioning unit 43 is further configured to determine that the single-phase ground fault occurs downstream of a monitoring point of a current electric field strength, and the monitoring point of the current electric field strength is located at a main part of the wiring network. Obtaining a fault location result of a downstream adjacent electric field strength monitoring point of the monitoring point of the current electric field strength on the trunk line;
  • the single phase ground fault is a permanent single phase ground fault or an intermittent single phase ground fault
  • the switch at the local switch and the downstream adjacent electric field strength monitoring point is controlled to be in an open state.
  • the method further includes:
  • the indicating unit 44 is configured to indicate that the single-phase ground fault occurs between a monitoring point of the current electric field strength and an electric field strength monitoring point adjacent to the downstream;
  • the communication unit 45 is configured to report the positioning result of the single-phase ground fault to the primary station of the distribution network; the positioning result of the single-phase ground fault, and characterize the monitoring of the current electric field strength caused by the single-phase ground fault The point is between the electric field strength monitoring point adjacent to the downstream.
  • the embodiment of the invention further provides a single-phase ground fault detecting device based on electric field induction, comprising:
  • a memory configured to store an executable program
  • the processor configured to perform an executable program stored in the memory, implements the above-described single phase ground fault detection method based on electric field induction.
  • FIG. 5 an example of a single-phase ground fault detecting device based on electric field induction as a hardware entity is shown in FIG. 5.
  • the electronic device includes a processor 51, a storage medium 52, and at least one external communication interface 53; the processor 51, the storage medium 52, and the external communication interface 53 are all connected by a bus 54.
  • the embodiment of the single-phase ground fault detection device based on the electric field induction provided by the above embodiment is the same as the embodiment of the single-phase ground fault detection method based on electric field induction, and the implementation process thereof is described in the method embodiment, and details are not described herein again. .
  • the embodiment of the distribution network fault detecting apparatus of the present invention please refer to the description of the method embodiment of the present invention.
  • the embodiment of the invention further provides a storage medium storing an executable program, and when the executable program is executed by the processor, implementing the single-phase ground fault detection method based on the electric field induction.
  • embodiments of the present invention can be provided as a method, apparatus, or executable program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the present invention can take the form of an executable program product embodied on one or more computer usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • computer usable storage media including but not limited to disk storage and optical storage, etc.
  • the present invention has been described with reference to flowchart illustrations and/or block diagrams of a method, a device (system), and an executable program product in accordance with an embodiment of the present invention. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • the executable program instructions can be provided to a general purpose computer, a special purpose computer, an embedded processor, or a processor of a reference programmable data processing device to produce a machine such that instructions are executed by a computer or by a processor executing a reference to a programmable data processing device Means configured to implement the functions specified in one or more flows of the flowchart or in a block or blocks of the flowchart.
  • the executable program instructions can also be stored in a computer readable memory that can boot a computer or reference a programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the instruction device implements the functions specified in one or more blocks of the flowchart or in a flow or block of the flowchart.
  • the executable program instructions can also be loaded onto a computer or reference programmable data processing device such that a series of operational steps are performed on the computer or reference programmable device to produce computer-implemented processing for execution on a computer or reference programmable device
  • the instructions provide steps configured to implement the functions specified in a block or blocks of a flow or a flow and/or block diagram of the flowchart.
  • the embodiment of the invention monitors the change of the electric field strength of the three-phase feeder in the distribution network; when the change of the electric field strength of the three-phase feeder meets the preset electric field strength change condition, it is determined that a single phase occurs in the distribution network Ground Fault. In this way, the single-phase ground fault detection of the distribution network can be realized quickly, accurately and reliably.

Abstract

一种基于电场感应的单相接地故障检测方法、装置以及存储介质,该方法包括:监测配电网中三相馈线的电场强度的变化(101);当三相馈线的电场强度的变化符合预设的电场强度变化条件时,确定配电网中发生了单相接地故障(102)。

Description

基于电场感应的单相接地故障检测方法、装置及存储介质 技术领域
本发明涉及配电网中的故障检测技术,尤其涉及一种基于电场感应的单相接地故障检测方法、装置及存储介质。
背景技术
小电流接地方式是很多国家配电网采用的主要接地方式之一,而在小电流接地配电网发生的诸多故障当中,单相接地故障是发生频率最高的故障之一。由于小电流接地系统的中性点不直接接地,单相接地故障形成的故障通路阻抗值较大,引发的故障表征不明显,同时由于噪声的干扰以及配电网运行状况(如不对称性)的影响等问题,对小电流接地系统单相接地故障的检测,虽然经过了长期广泛的研究,但在可靠性与准确度方面仍存在不足。
发明内容
有鉴于此,本发明实施例期望提供一种基于电场感应的单相接地故障检测方法、装置及存储介质,能够快速、准确、可靠的实现对配电网的故障检测。
为达到上述目的,本发明实施例的技术方案是这样实现的:
本发明实施例提供了一种基于电场感应的单相接地故障检测方法,包括:
监测配电网中三相馈线的电场强度的变化;
当所述三相馈线的电场强度的变化符合预设的电场强度变化条件时,确定所述配电网中发生了单相接地故障。
上述方案中,当所述三相馈线的电场强度的变化符合预设的电场强度变化条件时,确定所述配电网中发生了单相接地故障,包括:
识别到所述三相馈线的电场强度中,第一相馈线的电场强度低于第一场强阈值、第二相馈线及第三相馈线的电场强度高于第二场强阈值时,确定所述配电网中发生了单相接地故障;
其中,所述第一场强阈值小于所述第二场强阈值。
上述方案中,所述确定所述配电网中发生了单相接地故障之后,所述方法还包括:
获取特定时间段内所述三相馈线的相电流分量信号波形;
提取所述三相馈线的相电流分量信号波形的波形参数;所述波形参数包括以下至少之一:相位、幅值;
基于所述相电流分量信号波形的波形参数,对所述单相接地故障进行故障定位。
上述方案中,所述基于所述相电流分量信号波形的波形参数,对所述单相接地故障进行故障定位,包括:
获取所述三相馈线中,故障相的相电流分量信号波形与非故障相的相电流分量信号波形对应的相位差,当获取的所述相位差符合预设的相位差条件时,确定所述单相接地故障发生于当前电场强度的监测点的下游;
和/或,获取所述三相馈线中,故障相的相电流分量信号波形及非故障相的相电流分量信号波形的幅值之差,当获取的所述幅值之差符合预设的幅值差条件时,确定所述单相接地故障发生于当前电场强度的监测点的下游。
上述方案中,所述基于所述相电流分量信号波形的波形参数,对所述单相接地故障进行故障定位,包括:
获取所述三相馈线中,故障相的相电流分量与非故障相的相电流分量 对应的电流差值;
当所述电流差值满足预设的电流差条件时,确定所述单相接地故障未发生于当前电场强度的监测点的下游。
上述方案中,所述方法还包括:
监测所述单相接地故障发生后一段时间内的故障解除情况;
若在所述一段时间内所述单相接地故障持续存在,确定所述单相接地故障为永久性单相接地故障;
若在所述一段时间内所述单相接地故障解除又发生的次数超过预设的次数阈值,确定所述单相接地故障为间歇性单相接地故障;
若所述单相接地故障的持续时间小于预设的时间阈值,确定所述单相接地故障为瞬时性单相接地故障。
上述方案中,所述方法还包括:
确定所述单相接地故障发生于当前电场强度的监测点的下游、所述当前电场强度的监测点位于所述配线网的分支线上、且所述单相接地故障为永久性单相接地故障或间歇性单相接地故障,控制本地开关处于断开状态;
确定所述单相接地故障发生于当前电场强度的监测点的下游、所述当前电场强度的监测点位于所述配线网的分支线上、且所述单相接地故障为瞬时性单相接地故障,发出告警提示。
上述方案中,所述方法还包括:
确定所述单相接地故障发生于当前电场强度的监测点的下游、且所述当前电场强度的监测点位于所述配线网的主干线上,获取所述当前电场强度的监测点的下游相邻的电场强度监测点的故障定位结果;
当所述故障定位结果表征所述单相接地故障未发生于所述下游相邻的电场强度监测点的下游、且所述单相接地故障为永久性单相接地故障或间歇性单相接地故障时,控制本地开关及所述下游相邻的电场强度监测点处 的开关处于断开状态。
上述方案中,所述方法还包括:
指示所述单相接地故障发生在当前电场强度的监测点与所述下游相邻的电场强度监测点之间;
和/或,上报所述单相接地故障的定位结果给所述配电网的主站;所述单相接地故障的定位结果,表征所述单相接地故障发生在当前电场强度的监测点与所述下游相邻的电场强度监测点之间。
本发明实施例还提供了一种基于电场感应的单相接地故障检测装置,包括:
检测单元,配置为监测配电网中三相馈线的电场强度的变化;
确定单元,配置为当所述三相馈线的电场强度的变化符合预设的电场强度变化条件时,确定所述配电网中发生了单相接地故障。
上述方案中,所述确定单元,还配置为识别到所述三相馈线的电场强度中,第一相馈线的电场强度低于第一场强阈值、第二相馈线及第三相馈线的电场强度高于第二场强阈值时,确定所述配电网中发生了单相接地故障;
其中,所述第一场强阈值小于所述第二场强阈值。
上述方案中,还包括:
定位单元,配置为获取特定时间段内所述三相馈线的相电流分量信号波形;
提取所述三相馈线的相电流分量信号波形的波形参数;所述波形参数包括以下至少之一:相位、幅值;
基于所述相电流分量信号波形的波形参数,对所述单相接地故障进行故障定位。
上述方案中,定位单元,还配置为获取所述三相馈线中,故障相的相 电流分量信号波形与非故障相的相电流分量信号波形对应的相位差,当获取的所述相位差符合预设的相位差条件时,确定所述单相接地故障发生于当前电场强度的监测点的下游;
和/或,获取所述三相馈线中,故障相的相电流分量信号波形及非故障相的相电流分量信号波形的幅值之差,当获取的所述幅值之差符合预设的幅值差条件时,确定所述单相接地故障发生于当前电场强度的监测点的下游。
上述方案中,所述定位单元,还配置为获取所述三相馈线中,故障相的相电流分量与非故障相的相电流分量对应的电流差值;
当所述电流差值满足预设的电流差条件时,确定所述单相接地故障未发生于当前电场强度的监测点的下游。
上述方案中,所述定位单元,还配置为监测所述单相接地故障发生后一段时间内的故障解除情况;
若在所述一段时间内所述单相接地故障持续存在,确定所述单相接地故障为永久性单相接地故障;
若在所述一段时间内所述单相接地故障解除又发生的次数超过预设的次数阈值,确定所述单相接地故障为间歇性单相接地故障;
若所述单相接地故障的持续时间小于预设的时间阈值,确定所述单相接地故障为瞬时性单相接地故障。
上述方案中,所述定位单元,还配置为确定所述单相接地故障发生于当前电场强度的监测点的下游、所述当前电场强度的监测点位于所述配线网的分支线上、且所述单相接地故障为永久性单相接地故障或间歇性单相接地故障,控制本地开关处于断开状态;
确定所述单相接地故障发生于当前电场强度的监测点的下游、所述当前电场强度的监测点位于所述配线网的分支线上、且所述单相接地故障为 瞬时性单相接地故障,发出告警提示。
上述方案中,所述定位单元,还配置为确定所述单相接地故障发生于当前电场强度的监测点的下游、且所述当前电场强度的监测点位于所述配线网的主干线上,获取所述当前电场强度的监测点的下游相邻的电场强度监测点的故障定位结果;
当所述故障定位结果表征所述单相接地故障未发生于所述下游相邻的电场强度监测点的下游、且所述单相接地故障为永久性单相接地故障或间歇性单相接地故障时,控制本地开关及所述下游相邻的电场强度监测点处的开关处于断开状态。
上述方案中,还包括:
指示单元,配置为指示所述单相接地故障发生在当前电场强度的监测点与所述下游相邻的电场强度监测点之间;
通信单元,配置为上报所述单相接地故障的定位结果给所述配电网的主站;所述单相接地故障的定位结果,表征所述单相接地故障发生在当前电场强度的监测点与所述下游相邻的电场强度监测点之间。
本发明实施例还提供了一种基于电场感应的单相接地故障检测装置,包括:
存储器,配置为存储可执行程序;
处理器,配置为执行所述存储器中存储的可执行程序时,实现上述基于电场感应的单相接地故障检测方法。
本发明实施例还提供了一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述基于电场感应的单相接地故障检测方法。
应用本发明实施例提供的基于电场感应的单相接地故障检测方法、装置及存储介质,监测配电网中三相馈线的电场强度的变化;当所述三相馈线的电场强度的变化符合预设的电场强度变化条件时,确定所述配电网中 发生了单相接地故障。如此,可以快速、准确、可靠的实现对配电网的单相接地故障检测。
附图说明
图1为本发明实施例提供的基于电场感应的单相接地故障检测方法的流程示意图一;
图2为本发明实施例提供的基于电场感应的单相接地故障检测方法的流程示意图二;
图3为本发明实施例提供的基于电场感应的单相接地故障检测方法的应用场景示意图;
图4为本发明实施例提供的基于电场感应的单相接地故障检测装置的组成结构示意图;
图5为本发明实施例提供的基于电场感应的单相接地故障检测装置作为硬件实体的组成结构示意图。
具体实施方式
发明人在研究中发现,目前,进行单相接地故障检测,通常依据零序电压,当配电网中存在明显且持续时间较长的零序电压时,判定网络中出现永久性单相接地故障。然而这种方式存在两方面问题:一方面,配电网中普遍存在三相不平衡现象,同样会引发持续性存在的零序电压,易与单相接地故障相混淆,准确度不够高;另一方面,配电网中零序电压的采集多为电磁式电压互感器,在发生单相接地故障后,易引发铁磁谐振,危害电网安全。
目前,进行单相接地故障定位,基于所依据的特征量的不同,方法可分为三类:信号注入法、稳态量定位法和暂态量定位法。其中,信号注入法需要附加信号装置,工程实现复杂,稳态量定位法存在特征信号微弱, 定位结果不可靠的问题。暂态量定位法所依据的暂态特征比稳态值大几倍甚至几十倍,且不受消弧线圈的影响,因此具有更高的应用价值,然而,暂态量由于其存在时间较短,捕捉与信号提取困难,此外,需要不同地点暂态量的比较进行故障定位,高度依赖通信技术,因此,在实现方式上,现有方法仍存在可靠性低的问题。
在本发明实施例中,监测配电网中三相馈线的电场强度的变化;当所述三相馈线的电场强度的变化符合预设的电场强度变化条件时,确定所述配电网中发生了单相接地故障。
以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所提供的实施例仅仅用以解释本发明,并不用于限定本发明。另外,以下所提供的实施例是用于实施本发明的部分实施例,而非提供实施本发明的全部实施例,在不冲突的情况下,本发明实施例记载的技术方案可以任意组合的方式实施。
需要说明的是,在本发明实施例中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的方法或者装置不仅包括所明确记载的要素,而且还包括没有明确列出的其他要素,或者是还包括为实施方法或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的方法或者装置中还存在另外的相关要素(例如方法中的步骤或者装置中的单元,这里的单元可以是部分电路、部分处理器、部分程序或软件等等;当然也可以是模块)。
需要说明的是,本发明实施例所涉及的术语“第一\第二\第三”仅仅是是区别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序。应该理解“第一\第二\第三”区分的对象在适当情况下可以互换,以使这里描述的本发明的实施 例能够以除了在这里图示或描述的那些以外的顺序实施。
实施例一
本发明实施例提供了一种基于电场感应的单相接地故障检测方法,在实际应用中,配电网中的三相馈线上分布设置有多个基于电场感应的单相接地故障检测装置,基于电场感应的单相接地故障检测装置可实现本发明实施例的配电网故障检测方法,基于电场感应的单相接地故障检测装置的一种布局方式为在线路首端及线路沿线分布设置。参见图1,本发明实施例中基于电场感应的单相接地故障检测方法包括:
步骤101:监测配电网中三相馈线的电场强度的变化;
步骤102:当所述三相馈线的电场强度的变化符合预设的电场强度变化条件时,确定所述配电网中发生了单相接地故障。
这里,在实际实施时,可通过电场感应器实现相电场信号的拾取、通过电流互感器拾取相电流信号等。
在一实施例中,实时采集并监测配电网中三相馈线的电场强度的变化情况,当在本地监测到第一相馈线的电场强度低于第一场强阈值(第一场强阈值可依据实际情况进行设定,例如馈线正常电场强度的50%)、第二相馈线及第三相馈线的电场强度高于第二场强阈值(第二场强阈值大于第一场强阈值,可依据实际情况进行设定,例如馈线正常电场强度的1.5倍)时,确定所述配电网中发生了单相接地故障。也即,当识别出三相馈线中某一相电场发生明显降低,同时另外两相明显升高,则配电网中出现单相接地故障。
相应的,电场强度低于第一场强阈值的相为故障相,确定第一相馈线的电场强度低于第一场强阈值、第二相馈线及第三相馈线的电场强度高于第二场强阈值的时刻为故障发生时刻,也即对地电场发生明显变化的时刻为故障发生时刻。
在实际实施时,确定配电网中发生了单相接地故障之后,接下来可对单相接地故障的发生地进行定位,在一实施例中,可通过如下方式进行单相接地故障的定位:
获取特定时间段内三相馈线的相电流分量信号波形;
提取三相馈线的相电流分量信号波形的波形参数;波形参数包括以下至少之一:相位、幅值;
基于相电流分量信号波形的波形参数,对单相接地故障进行故障定位。
在一实施方式中,特定时间段的设定可以为故障发生时刻前后一段时间对应的时间段,例如故障发生时刻前后三个周波对应的时间段;相应的,获取特定时间段内三相馈线的相电流分量信号波形,即为获取特定时间段内故障相的相电流分量信号波形与非故障相的相电流分量信号波形;
基于本发明上述实施例,在实际应用中,可依据正常电流的周期特性和频率特性,去除工频负荷电流的分量(如故障发生时刻后三个周波各个采集点采集到的数值,同步减去故障发生时刻前三个周波对应采集点采集到的数值,或者利用带通滤波器滤除工频电流信号),获得单相接地故障引发的故障相的相电流分量波形,并根据此方法得到非故障相的相电流分量信号波形。
基于本发明上述实施例,在实际实施时,可提取波形信号最大值、平均值、微分值、积分值及其组合,或计算相电流分量波形之间的相似系数,并进行分析,进而可获取三相馈线中,故障相的相电流分量信号波形与非故障相的相电流分量信号波形对应的相位差,当获取的相位差符合预设的相位差条件(例如相差180度,或相位差处于135度与225度XX之间)时,确定单相接地故障发生于当前电场强度的监测点的下游;
和/或,获取三相馈线中,故障相的相电流分量信号波形及非故障相的相电流分量信号波形的幅值之差,当获取的幅值之差符合预设的幅值差条 件(如故障相的相电流分量信号波形的幅值高于非故障相的相电流分量信号波形的幅值,且差值超过预设阈值,如超过另外两相电流分量之和的两倍:)时,确定单相接地故障发生于当前电场强度的监测点的下游。在实际应用中,还包括:获取所述三相馈线中,故障相的相电流分量与非故障相的相电流分量对应的电流差值;
当电流差值满足预设的电流差条件(如对应同一时刻,故障相的相电流分量小于对应时刻的非故障相的相电流分量,且差值达到预设阈值,如:非故障相相电流分量之和的25%)时,确定单相接地故障未发生于当前电场强度的监测点的下游。
如此,若配电网故障检测装置确定单相接地故障发生于当前监测点的下游,而下游相邻的监测点的装置确定单相接地故障未发生于当前监测点的下游,则可知故障发生在两个监测点(即两个配电网故障检测装置)之间。
在一实施例中,可同步监测本地“相电场不平衡”状况的持续时间,也即监测单相接地故障发生后一段时间(可依据实际需要进行设定,如30秒、3分钟)内的故障解除情况,以判定单相接地故障的具体类型;
若在所述一段时间内所述单相接地故障持续存在,确定所述单相接地故障为永久性单相接地故障;
若在所述一段时间内所述单相接地故障解除又发生的次数超过预设的次数阈值(次数阈值可依据实际需要进行设定,如:3次),也即在所述一段时间内所述单相接地故障间歇性的发生又自动消除,确定所述单相接地故障为间歇性单相接地故障;
若所述单相接地故障的持续时间小于预设的时间阈值(时间阈值可依据实际情况进行设定,如:0.2s),确定所述单相接地故障为瞬时性单相接地故障。
在一实施例中,确定单相接地故障发生于当前电场强度的监测点的下游、当前电场强度的监测点位于配线网的分支线上、且单相接地故障为永久性单相接地故障或间歇性单相接地故障时,控制本地开关处于断开状态;
确定单相接地故障发生于当前电场强度的监测点的下游、当前电场强度的监测点位于配线网的分支线上、且单相接地故障为瞬时性单相接地故障时,发出告警提示,如蜂鸣、告警文字显示、告警信息上报等。
在一实施例中,确定单相接地故障发生于当前电场强度的监测点的下游、且当前电场强度的监测点位于配线网的主干线上,获取当前电场强度的监测点的下游相邻的电场强度监测点的故障定位结果(该故障定位结果包括单相接地故障是否处于所述下游相邻的电场强度监测点的下游);
当故障定位结果表征单相接地故障未发生于下游相邻的电场强度监测点的下游、且单相接地故障为永久性单相接地故障或间歇性单相接地故障时,控制本地开关及下游相邻的电场强度监测点处的开关处于断开状态。
在实际应用中,获取当前电场强度的监测点的下游相邻的电场强度监测点的故障定位结果,可以通过与下游相邻的电场强度监测点的配电网故障检测装置,或主站之间的通信获取,如发送故障定位结果获取请求给下游相邻的配电网故障检测装置,或者发送该请求给主站,以获得返回的故障定位结果。
在实际实施时,可通过发送对应开关断开的指示或指令给下游相邻的配电网故障检测装置,以控制下游相邻的电场强度监测点处的开关处于断开状态。
在一实施例中,当确定单相接地故障发生于当前电场强度的监测点的下游、且未发生于下游相邻的电场强度监测点的下游时,确定单相接地故障发生于该两个监测点之间,则可指示单相接地故障发生在当前电场强度的监测点与下游相邻的电场强度监测点之间,如通过显示屏显示该定位结 果信息;
和/或,上报单相接地故障的定位结果给配电网的主站;单相接地故障的定位结果,表征单相接地故障发生在当前电场强度的监测点与下游相邻的电场强度监测点之间。
在不同实施例中,在获得单相接地故障的定位结果(是否发生在当前电场强度的监测点的下游),和/或获得单相接地故障的具体类型(永久性单相接地故障、间歇性单相接地故障、瞬时性单相接地故障)后,可上报给所述配电网的主站,以获得所述主站返回的开关动作指令。
应用本发明上述实施例,依靠相电场进行单相接地故障检测,通过提取相故障电流进行单相接地故障定位,不依赖电磁式电压传感器与电容式电压传感器,避免了铁磁谐振现象,不会对电网一次侧的安全稳定运行造成影响;尽可能多的依赖本地采集信号进行故障检测与定位,避免了大量的信息通信,有效提升可靠性;合理利用电场信号与电流分频提取信号,采用的故障特征突出明显,实现了单相接地故障的准确、可靠、快速检测与定位。
实施例二
本发明实施例提供了一种基于电场感应的单相接地故障检测方法,图2所示为本发明实施例提供的基于电场感应的单相接地故障检测方法的一个可选的流程示意图,图3所示为本发明实施例提供的基于电场感应的单相接地故障检测方法的一个可选的应用场景示意图,如图3所示,配电网中三相馈线上分布设置有多个监测点,如M1、M2、M3所示,每个监测点设置有一个基于电场感应的单相接地故障检测装置,分别用于实现本发明实施例的基于电场感应的单相接地故障检测方法。以M2监测点为本地监测点为例,结合图2、图3,本发明实施例中基于电场感应的单相接地故障检测方法包括:
步骤201:监测配电网中三相馈线的电场强度的变化情况,并判断电场强度的变化是否符合预设的变化条件,如果符合,确定配电网中发生了单相接地故障并执行步骤202;否则执行步骤201。
这里,在实际应用中可通过电场感应器拾取A、B、C三相对地电场信号,在一实施方式中,当在本地监测到第一相馈线的电场强度低于第一场强阈值(第一场强阈值可依据实际情况进行设定,例如馈线正常电场强度的50%)、第二相馈线及第三相馈线的电场强度高于第二场强阈值(第二场强阈值大于第一场强阈值,可依据实际情况进行设定,馈线正常电场强度的1.5倍)时,确定配电网中发生了单相接地故障。也即,当识别出三相馈线中某一相电场发生明显降低,同时另外两相明显升高,则配电网中出现单相接地故障。例如识别出图3中C相对地电场发生明显降低,同时A、B两相对地电场明显升高,则判定电网中出现单相接地故障,而发生对地电场明显降低的相(即C相)为故障相,对地电场发生明显变化的时刻为故障发生时刻。
步骤202:获取特定时间段内三相电流分量信号波形,提取波形参数。
这里,在实际实施时可获取故障发生时刻前后一段时间内A、B、C三相电流分量信号波形,可通过电流互感器拾取三相电流信号。一种实施方式包括:依据正常电流的周期特性和频率特性,去除工频负荷电流的分量(如故障发生时刻后三个周波各个采集点采集到的数值,同步减去故障发生时刻前三个周波对应采集点采集到的数值,或者利用带通滤波器滤除工频电流信号),获得单相接地故障引发的三相电流分量信号波形。
在实际应用中,提取的波形参数包括相位及幅值,可提取相电流分量信号波形中信号最大值、平均值、微分值、积分值及其组合,或计算三相故障电流分量波形之间的相似系数,并进行分析。
步骤203:基于提取的波形参数对单相接地故障进行故障定位。
这里,通过上述对波形参数的分析,判断M2处的C相故障电流分量相位与另外两相相位是否相差180°,或者C相的幅值明显大于另外两相(如:为另外两相的1.5倍),如果是,确定单相接地故障发生于M2监测点的下游。
在实际应用中,还包括:获取所述三相馈线中,C相的相电流分量与A、B相的相电流分量对应的电流差值;
当电流差值满足预设的电流差条件(如对应同一时刻,故障相的相电流分量小于对应时刻的非故障相的相电流分量,且差值达到预设阈值,如:故障相的相电流分量为非故障相的相电流分量的50%)时,确定单相接地故障未发生于M2监测点的下游。
在本实施例中确定故障发生于M2监测点的下游。而采用相同的判定方式,M1、M3监测点的配电网故障检测装置判定其下游未发生单相接地故障。
步骤204:监测单相接地故障发生后一段时间内的故障解除情况,判定单相接地故障的具体类型。
这里,在实际实施时,若在一段时间内(在本实施例中为5分钟)单相接地故障持续存在,确定单相接地故障为永久性单相接地故障;
若在一段时间内单相接地故障解除又发生的次数超过预设的次数阈值(次数阈值可依据实际需要进行设定,如:3次),也即在所述一段时间内单相接地故障间歇性的发生又自动消除,确定单相接地故障为间歇性单相接地故障;
若单相接地故障的持续时间小于预设的时间阈值(时间阈值可依据实际情况进行设定,如:10秒),确定单相接地故障为瞬时性单相接地故障。
在本实施例中确定5分钟内单相接地故障持续存在,单相接地故障为永久性单相接地故障。
步骤205:判断本地监测点位于配线网的主干线上还是分支线上,如果位于分支线上,执行步骤206;如果位于主干线上,执行步骤207。
步骤206:控制本地开关处于断开状态,并发出故障告警,执行步骤209。
步骤207:获取M3监测点处的故障定位结果。
在实际实施时,可通过与M3监测点的配电网故障检测装置,或主站之间的通信获取,如发送故障定位结果获取请求给M3处的配电网故障检测装置,或者发送该请求给主站,以获得返回的故障定位结果,该故障定位结果包括故障是否发生于M3监测点的下游。在本实施例中,故障未发生于M3监测点的下游,因此可知,故障发生在M2监测点与M3监测点之间。
步骤208:基于所述故障定位结果控制本地及M3监测点处的开关断开。
在实际实施时,可通过发送对应开关断开的指示或指令给下游相邻的基于电场感应的单相接地故障检测装置,以控制下游相邻的电场强度监测点处的开关处于断开状态。
在一实施例中,还可发出故障在M2监测点与M3监测点之间的通知。
步骤209:结束本次处理流程。
实施例三
本发明实施例还提供了一种基于电场感应的单相接地故障检测装置,如图4所示,本发明实施例的基于电场感应的单相接地故障检测装置包括:
检测单元41,配置为监测配电网中三相馈线的电场强度的变化;
确定单元42,配置为当所述三相馈线的电场强度的变化符合预设的电场强度变化条件时,确定所述配电网中发生了单相接地故障。
在一实施例中,所述确定单元42,还配置为识别到所述三相馈线的电场强度中,第一相馈线的电场强度低于第一场强阈值、第二相馈线及第三相馈线的电场强度高于第二场强阈值时,确定所述配电网中发生了单相接地故障;
其中,所述第一场强阈值小于所述第二场强阈值。
在一实施例中,还包括:
定位单元43,配置为获取特定时间段内所述三相馈线的相电流分量信号波形;
提取所述三相馈线的相电流分量信号波形的波形参数;所述波形参数包括以下至少之一:相位、幅值;
基于所述相电流分量信号波形的波形参数,对所述单相接地故障进行故障定位。
在一实施例中,定位单元43,还配置为获取所述三相馈线中,故障相的相电流分量信号波形与非故障相的相电流分量信号波形对应的相位差,当获取的所述相位差符合预设的相位差条件时,确定所述单相接地故障发生于当前电场强度的监测点的下游;
和/或,获取所述三相馈线中,故障相的相电流分量信号波形及非故障相的相电流分量信号波形的幅值之差,当获取的所述幅值之差符合预设的幅值差条件时,确定所述单相接地故障发生于当前电场强度的监测点的下游。
在一实施例中,定位单元43,还配置为获取所述三相馈线中,故障相的相电流分量与非故障相的相电流分量对应的电流差值;
当所述电流差值满足预设的电流差条件时,确定所述单相接地故障未发生于当前电场强度的监测点的下游。
在一实施例中,所述定位单元43,还配置为监测所述单相接地故障发生后一段时间内的故障解除情况;
若在所述一段时间内所述单相接地故障持续存在,确定所述单相接地故障为永久性单相接地故障;
若在所述一段时间内所述单相接地故障解除又发生的次数超过预设的次数阈值,确定所述单相接地故障为间歇性单相接地故障;
若所述单相接地故障的持续时间小于预设的时间阈值,确定所述单相接地故障为瞬时性单相接地故障。
在一实施例中,所述定位单元43,还配置为确定所述单相接地故障发生于当前电场强度的监测点的下游、所述当前电场强度的监测点位于所述配线网的分支线上、且所述单相接地故障为永久性单相接地故障或间歇性单相接地故障,控制本地开关处于断开状态;
确定所述单相接地故障发生于当前电场强度的监测点的下游、所述当前电场强度的监测点位于所述配线网的分支线上、且所述单相接地故障为瞬时性单相接地故障,发出告警提示。
在一实施例中,所述定位单元43,还配置为确定所述单相接地故障发生于当前电场强度的监测点的下游、且所述当前电场强度的监测点位于所述配线网的主干线上,获取所述当前电场强度的监测点的下游相邻的电场强度监测点的故障定位结果;
当所述故障定位结果表征所述单相接地故障未发生于所述下游相邻的电场强度监测点的下游、且所述单相接地故障为永久性单相接地故障或间歇性单相接地故障时,控制本地开关及所述下游相邻的电场强度监测点处的开关处于断开状态。
在一实施例中,还包括:
指示单元44,配置为指示所述单相接地故障发生在当前电场强度的监测点与所述下游相邻的电场强度监测点之间;
通信单元45,配置为上报所述单相接地故障的定位结果给所述配电网的主站;所述单相接地故障的定位结果,表征所述单相接地故障发生在当前电场强度的监测点与所述下游相邻的电场强度监测点之间。
本发明实施例还提供了一种基于电场感应的单相接地故障检测装置,包括:
存储器,配置为存储可执行程序;
处理器,配置为执行所述存储器中存储的可执行程序时,实现上述基于电场感应的单相接地故障检测方法。本实施例中,基于电场感应的单相接地故障检测装置作为硬件实体的一个示例如图5所示。所述电子设备包括处理器51、存储介质52以及至少一个外部通信接口53;所述处理器51、存储介质52以及外部通信接口53均通过总线54连接。
需要说明的是:上述实施例提供的基于电场感应的单相接地故障检测装置与基于电场感应的单相接地故障检测方法实施例属于同一构思,其实现过程详见方法实施例,这里不再赘述。对于本发明所述配电网故障检测装置实施例中未披露的技术细节,请参照本发明方法实施例的描述。
本发明实施例还提供了一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述基于电场感应的单相接地故障检测方法。
本领域内的技术人员应明白,本发明的实施例可提供为方法、装置、或可执行程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的可执行程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和可执行程序产品的流程图和/或方框图来描述的。应理解可由可执行程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些可执行程序指令到通用计算机、专用计算机、嵌入式处理机或参考可编程数据处理设备的处理器以产生一个机器,使得通过计算机或参考可编程数据处理设备的处理器执行的指令产生配置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些可执行程序指令也可存储在能引导计算机或参考可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些可执行程序指令也可装载到计算机或参考可编程数据处理设备上,使得在计算机或参考可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或参考可编程设备上执行的指令提供配置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
工业实用性
本发明实施例监测配电网中三相馈线的电场强度的变化;当所述三相馈线的电场强度的变化符合预设的电场强度变化条件时,确定所述配电网中发生了单相接地故障。如此,可实现快速、准确、可靠的实现对配电网的单相接地故障检测。

Claims (20)

  1. 一种基于电场感应的单相接地故障检测方法,包括:
    监测配电网中三相馈线的电场强度的变化;
    当所述三相馈线的电场强度的变化符合预设的电场强度变化条件时,确定所述配电网中发生了单相接地故障。
  2. 如权利要求1所述的方法,其中,当所述三相馈线的电场强度的变化符合预设的电场强度变化条件时,确定所述配电网中发生了单相接地故障,包括:
    识别到所述三相馈线的电场强度中,第一相馈线的电场强度低于第一场强阈值、第二相馈线及第三相馈线的电场强度高于第二场强阈值时,确定所述配电网中发生了单相接地故障;
    其中,所述第一场强阈值小于所述第二场强阈值。
  3. 如权利要求2所述的方法,其中,所述确定所述配电网中发生了单相接地故障之后,所述方法还包括:
    获取特定时间段内所述三相馈线的相电流分量信号波形;
    提取所述三相馈线的相电流分量信号波形的波形参数;所述波形参数包括以下至少之一:相位、幅值;
    基于所述相电流分量信号波形的波形参数,对所述单相接地故障进行故障定位。
  4. 如权利要求3所述的方法,其中,所述基于所述相电流分量信号波形的波形参数,对所述单相接地故障进行故障定位,包括:
    获取所述三相馈线中,故障相的相电流分量信号波形与非故障相的相电流分量信号波形对应的相位差,当获取的所述相位差符合预设的相位差条件时,确定所述单相接地故障发生于当前电场强度的监测点的下游;
    和/或,获取所述三相馈线中,故障相的相电流分量信号波形及非故障 相的相电流分量信号波形的幅值之差,当获取的所述幅值之差符合预设的幅值差条件时,确定所述单相接地故障发生于当前电场强度的监测点的下游。
  5. 如权利要求3所述的方法,其中,所述基于所述相电流分量信号波形的波形参数,对所述单相接地故障进行故障定位,包括:
    获取所述三相馈线中,故障相的相电流分量与非故障相的相电流分量对应的电流差值;
    当所述电流差值满足预设的电流差条件时,确定所述单相接地故障未发生于当前电场强度的监测点的下游。
  6. 如权利要求4所述的方法,其中,所述方法还包括:
    监测所述单相接地故障发生后一段时间内的故障解除情况;
    若在所述一段时间内所述单相接地故障持续存在,确定所述单相接地故障为永久性单相接地故障;
    若在所述一段时间内所述单相接地故障解除又发生的次数超过预设的次数阈值,确定所述单相接地故障为间歇性单相接地故障;
    若所述单相接地故障的持续时间小于预设的时间阈值,确定所述单相接地故障为瞬时性单相接地故障。
  7. 如权利要求6所述的方法,其中,所述方法还包括:
    确定所述单相接地故障发生于当前电场强度的监测点的下游、所述当前电场强度的监测点位于所述配线网的分支线上、且所述单相接地故障为永久性单相接地故障或间歇性单相接地故障,控制本地开关处于断开状态;
    确定所述单相接地故障发生于当前电场强度的监测点的下游、所述当前电场强度的监测点位于所述配线网的分支线上、且所述单相接地故障为瞬时性单相接地故障,发出告警提示。
  8. 如权利要求6所述的方法,其中,所述方法还包括:
    确定所述单相接地故障发生于当前电场强度的监测点的下游、且所述当前电场强度的监测点位于所述配线网的主干线上,获取所述当前电场强度的监测点的下游相邻的电场强度监测点的故障定位结果;
    当所述故障定位结果表征所述单相接地故障未发生于所述下游相邻的电场强度监测点的下游、且所述单相接地故障为永久性单相接地故障或间歇性单相接地故障时,控制本地开关及所述下游相邻的电场强度监测点处的开关处于断开状态。
  9. 如权利要求8所述的方法,其中,所述方法还包括:
    指示所述单相接地故障发生在当前电场强度的监测点与所述下游相邻的电场强度监测点之间;
    和/或,上报所述单相接地故障的定位结果给所述配电网的主站;所述单相接地故障的定位结果,表征所述单相接地故障发生在当前电场强度的监测点与所述下游相邻的电场强度监测点之间。
  10. 一种基于电场感应的单相接地故障检测装置,包括:
    检测单元,配置为监测配电网中三相馈线的电场强度的变化;
    确定单元,配置为当所述三相馈线的电场强度的变化符合预设的电场强度变化条件时,确定所述配电网中发生了单相接地故障。
  11. 如权利要求10所述的装置,其中,
    所述确定单元,还配置为识别到所述三相馈线的电场强度中,第一相馈线的电场强度低于第一场强阈值、第二相馈线及第三相馈线的电场强度高于第二场强阈值时,确定所述配电网中发生了单相接地故障;
    其中,所述第一场强阈值小于所述第二场强阈值。
  12. 如权利要求11所述的装置,其中,还包括:
    定位单元,配置为获取特定时间段内所述三相馈线的相电流分量信号波形;
    提取所述三相馈线的相电流分量信号波形的波形参数;所述波形参数包括以下至少之一:相位、幅值;
    基于所述相电流分量信号波形的波形参数,对所述单相接地故障进行故障定位。
  13. 如权利要求12所述的装置,其中,
    定位单元,还配置为获取所述三相馈线中,故障相的相电流分量信号波形与非故障相的相电流分量信号波形对应的相位差,当获取的所述相位差符合预设的相位差条件时,确定所述单相接地故障发生于当前电场强度的监测点的下游;
    和/或,获取所述三相馈线中,故障相的相电流分量信号波形及非故障相的相电流分量信号波形的幅值之差,当获取的所述幅值之差符合预设的幅值差条件时,确定所述单相接地故障发生于当前电场强度的监测点的下游。
  14. 如权利要求12所述的装置,其中,
    所述定位单元,还配置为获取所述三相馈线中,故障相的相电流分量与非故障相的相电流分量对应的电流差值;
    当所述电流差值满足预设的电流差条件时,确定所述单相接地故障未发生于当前电场强度的监测点的下游。
  15. 如权利要求13所述的装置,其中,
    所述定位单元,还配置为监测所述单相接地故障发生后一段时间内的故障解除情况;
    若在所述一段时间内所述单相接地故障持续存在,确定所述单相接地故障为永久性单相接地故障;
    若在所述一段时间内所述单相接地故障解除又发生的次数超过预设的次数阈值,确定所述单相接地故障为间歇性单相接地故障;
    若所述单相接地故障的持续时间小于预设的时间阈值,确定所述单相接地故障为瞬时性单相接地故障。
  16. 如权利要求15所述的装置,其中,
    所述定位单元,还配置为确定所述单相接地故障发生于当前电场强度的监测点的下游、所述当前电场强度的监测点位于所述配线网的分支线上、且所述单相接地故障为永久性单相接地故障或间歇性单相接地故障,控制本地开关处于断开状态;
    确定所述单相接地故障发生于当前电场强度的监测点的下游、所述当前电场强度的监测点位于所述配线网的分支线上、且所述单相接地故障为瞬时性单相接地故障,发出告警提示。
  17. 如权利要求15所述的装置,其中,
    所述定位单元,还配置为确定所述单相接地故障发生于当前电场强度的监测点的下游、且所述当前电场强度的监测点位于所述配线网的主干线上,获取所述当前电场强度的监测点的下游相邻的电场强度监测点的故障定位结果;
    当所述故障定位结果表征所述单相接地故障未发生于所述下游相邻的电场强度监测点的下游、且所述单相接地故障为永久性单相接地故障或间歇性单相接地故障时,控制本地开关及所述下游相邻的电场强度监测点处的开关处于断开状态。
  18. 如权利要求17所述的装置,其中,还包括:
    指示单元,配置为指示所述单相接地故障发生在当前电场强度的监测点与所述下游相邻的电场强度监测点之间;
    通信单元,配置为上报所述单相接地故障的定位结果给所述配电网的主站;所述单相接地故障的定位结果,表征所述单相接地故障发生在当前电场强度的监测点与所述下游相邻的电场强度监测点之间。
  19. 一种基于电场感应的单相接地故障检测装置,包括:
    存储器,配置为存储可执行程序;
    处理器,配置为执行所述存储器中存储的可执行程序时,实现如权利要求1至9任一项所述的基于电场感应的单相接地故障检测方法。
  20. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现如权利要求1至9任一项所述的基于电场感应的单相接地故障检测方法。
PCT/CN2017/106745 2017-10-18 2017-10-18 基于电场感应的单相接地故障检测方法、装置及存储介质 WO2019075673A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/106745 WO2019075673A1 (zh) 2017-10-18 2017-10-18 基于电场感应的单相接地故障检测方法、装置及存储介质
EP17868512.9A EP3499252B1 (en) 2017-10-18 2017-10-18 Single-phase-to-ground fault detection method and device based on monitoring of changes of electric field intensities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/106745 WO2019075673A1 (zh) 2017-10-18 2017-10-18 基于电场感应的单相接地故障检测方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2019075673A1 true WO2019075673A1 (zh) 2019-04-25

Family

ID=66173101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106745 WO2019075673A1 (zh) 2017-10-18 2017-10-18 基于电场感应的单相接地故障检测方法、装置及存储介质

Country Status (2)

Country Link
EP (1) EP3499252B1 (zh)
WO (1) WO2019075673A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112255574A (zh) * 2020-11-26 2021-01-22 国家电网有限公司 暂态量与中电阻融合的小电流接地选线跳闸方法及系统
CN113655343A (zh) * 2021-09-23 2021-11-16 广东电网有限责任公司惠州供电局 配电网单相接地故障定位方法、装置、设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110601157B (zh) * 2019-09-30 2021-07-30 南京国电南自电网自动化有限公司 一种间歇性单相接地故障保护方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110227581A1 (en) * 2004-07-15 2011-09-22 Cooper Technologies Company Traveling wave based relay protection
CN102221660A (zh) * 2011-03-18 2011-10-19 华北电力大学 小电流接地故障在线定位装置
CN102520312A (zh) * 2011-11-02 2012-06-27 河南省电力公司信阳供电公司 小电流单相接地故障选线及定位装置
CN102540012A (zh) * 2011-12-16 2012-07-04 广东电网公司佛山供电局 小电流接地系统单相接地故障的判定方法及其装置
CN106370975A (zh) * 2016-08-18 2017-02-01 国家电网公司 一种配电自动化系统单相接地区段精确定位的方法
CN106556766A (zh) * 2016-10-11 2017-04-05 国网上海市电力公司 一种基于配电线路动态信息的配电网故障监测系统
CN106707084A (zh) * 2016-12-30 2017-05-24 武汉中原电子信息有限公司 一种小电流接地系统单相接地故障判定方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0203174D0 (sv) * 2002-10-29 2002-10-29 Alstom Switzerland Ltd Earth fault protection for synchronous machines
SE536143C2 (sv) * 2011-06-14 2013-05-28 Dlaboratory Sweden Ab Metod för att detektera jordfel i trefas elkraftdistributionsnät
CN103809070B (zh) * 2012-11-15 2017-11-17 施耐德电器工业公司 基于三相电流变化进行的方向接地故障检测方法和装置
CN104155582B (zh) * 2014-08-29 2016-10-19 上海交通大学 基于全波形信息的配网线路故障区段定位方法
US9915686B2 (en) * 2014-12-29 2018-03-13 Eaton Corporation Voltage sensor housing and assembly including the same
CN106226651B (zh) * 2016-07-12 2019-08-23 国电南瑞科技股份有限公司 一种架空型故障指示定位终端及对地电压测量方法
CN106771870A (zh) * 2016-12-26 2017-05-31 北京国电通网络技术有限公司 一种配电网接地故障定位方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110227581A1 (en) * 2004-07-15 2011-09-22 Cooper Technologies Company Traveling wave based relay protection
CN102221660A (zh) * 2011-03-18 2011-10-19 华北电力大学 小电流接地故障在线定位装置
CN102520312A (zh) * 2011-11-02 2012-06-27 河南省电力公司信阳供电公司 小电流单相接地故障选线及定位装置
CN102540012A (zh) * 2011-12-16 2012-07-04 广东电网公司佛山供电局 小电流接地系统单相接地故障的判定方法及其装置
CN106370975A (zh) * 2016-08-18 2017-02-01 国家电网公司 一种配电自动化系统单相接地区段精确定位的方法
CN106556766A (zh) * 2016-10-11 2017-04-05 国网上海市电力公司 一种基于配电线路动态信息的配电网故障监测系统
CN106707084A (zh) * 2016-12-30 2017-05-24 武汉中原电子信息有限公司 一种小电流接地系统单相接地故障判定方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112255574A (zh) * 2020-11-26 2021-01-22 国家电网有限公司 暂态量与中电阻融合的小电流接地选线跳闸方法及系统
CN112255574B (zh) * 2020-11-26 2023-07-25 国家电网有限公司 暂态量与中电阻融合的小电流接地选线跳闸方法及系统
CN113655343A (zh) * 2021-09-23 2021-11-16 广东电网有限责任公司惠州供电局 配电网单相接地故障定位方法、装置、设备及存储介质
CN113655343B (zh) * 2021-09-23 2023-09-12 广东电网有限责任公司惠州供电局 配电网单相接地故障定位方法、装置、设备及存储介质

Also Published As

Publication number Publication date
EP3499252B1 (en) 2020-09-09
EP3499252A4 (en) 2019-06-26
EP3499252A1 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
EP3137914B1 (en) Smart sensor network for power grid health monitoring
CN102077433B (zh) 具有改进的重闭合功能的断路器
RU2358273C2 (ru) Способ и устройство для определения неустойчивого замыкания на землю
JP6383428B2 (ja) 変圧器の欠相状態を検出する方法
EP3266086B1 (en) Method for protection in a mixed power transmission line
JP5714943B2 (ja) 波形記録装置、及び故障点標定システム
US20150346266A1 (en) System and method for pulsed ground fault detection and localization
CN101858948A (zh) 用于在三相中压配电系统中进行暂态和间歇性接地故障检测和方向确定的方法和系统
WO2019075673A1 (zh) 基于电场感应的单相接地故障检测方法、装置及存储介质
CN102420420A (zh) 单相接地保护方法和系统
CN101699306A (zh) 电力二次系统电流采集回路监测方法
CN109782108A (zh) 一种小电流接地系统单相接地故障定位方法和装置
Ying et al. Travelling wave‐based pilot direction comparison protection for HVDC line
CN104991160A (zh) 基于电压电流特性的变压器绕组故障检测诊断方法
CN104090211B (zh) 一种配电线路高阻接地故障的在线检测方法
CN104062555B (zh) 配电线路高阻接地故障特征谐波的辨识方法
CN101614780A (zh) 方向性故障电流指示器
McDonagh et al. Use of faulted phase earthing using a custom built earth fault controller
JP2019007812A (ja) 配電線故障点標定システム
CN106019063A (zh) 故障指示器和故障检测方法
CN111398730A (zh) 基于无源注入直流信号的配电网及其故障识别方法
CN109038485B (zh) 一种漏电流故障的检测方法、装置和系统
CN203858323U (zh) 小电流接地选线定位装置
CN109038517B (zh) 一种单相绝缘式电气火灾在线防控装置及方法
CN204154826U (zh) 新型变压器铁芯接地在线监测装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017868512

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017868512

Country of ref document: EP

Effective date: 20180719

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE