WO2018010255A1 - 一种基于频域消偏结构实现光谱偏振无关测量的装置与方法 - Google Patents

一种基于频域消偏结构实现光谱偏振无关测量的装置与方法 Download PDF

Info

Publication number
WO2018010255A1
WO2018010255A1 PCT/CN2016/096154 CN2016096154W WO2018010255A1 WO 2018010255 A1 WO2018010255 A1 WO 2018010255A1 CN 2016096154 W CN2016096154 W CN 2016096154W WO 2018010255 A1 WO2018010255 A1 WO 2018010255A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
unit
laser
depolarization
polarization
Prior art date
Application number
PCT/CN2016/096154
Other languages
English (en)
French (fr)
Inventor
柯昌剑
刘德明
邢晨
张科
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US15/526,933 priority Critical patent/US10161792B2/en
Publication of WO2018010255A1 publication Critical patent/WO2018010255A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/447Polarisation spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0224Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using polarising or depolarising elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2786Reducing the polarisation degree, i.e. depolarisers, scramblers, unpolarised output
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2746Optical coupling means with polarisation selective and adjusting means comprising non-reciprocal devices, e.g. isolators, FRM, circulators, quasi-isolators

Definitions

  • the invention belongs to the technical field of spectrometry, and more particularly to an apparatus and method for realizing spectral polarization independent measurement based on a frequency domain depolarization structure.
  • Spectral measuring devices have important applications in the fields of fiber optic communication, fiber sensing, and material analysis.
  • the volumetric grating-based spectral measuring device utilizes the spatial dispersion of the signal light to be measured by the volume grating to realize the separation of different frequency components of the signal light, thereby completing the measurement of the signal light spectrum and the extraction of the spectral information. Due to the limitations of the bulk grating preparation process and device size, the resolution of this type of spectrometer can only reach the order of 1 GHz. Since the gain bandwidth of the stimulated Brillouin scattering (SBS) effect in the fiber is very narrow (on the order of 10 MHz), it can be equivalent to a narrow-band optical filter for extraction of fine spectral components. Combined with a tunable laser, it can form a spectrum measuring device with a resolution of 10MHz, which has broad application prospects in the above fields.
  • SBS stimulated Brillouin scattering
  • the narrow-band optical filter constructed based on the SBS effect has a frequency response characteristic that changes significantly with the matching of the signal light and the polarization state of the pump light.
  • the object of the present invention is to provide an apparatus and method for realizing spectral polarization independent measurement based on a frequency domain depolarization structure, aiming at solving the existing spectral sensing device based on SBS effect in the pair of arbitrary polarization states.
  • the spectral information obtained is inaccurate, and the power measurement is unstable.
  • the invention provides a depolarization module, which comprises an optical power distribution unit, a delay unit, a polarization control unit and an adjustable distribution ratio optical power coupling unit; wherein:
  • the input end of the optical power distribution unit is an input end of the depolarization module, and the two output ends are respectively connected to the input ends of the delay unit and the polarization control unit; the output ends of the delay unit and the polarization control unit are respectively
  • the adjustable distribution is connected to the two input ends of the optical power coupling unit; the output of the adjustable distribution optical power coupling unit is the output of the depolarization module.
  • the adjustable distribution ratio optical power coupling unit is composed of an attenuator and an optical coupler, and has two input ends and one output end for coupling two input lights into one output light; the attenuation The device is disposed at one of the optical coupling inputs, or one at each of the two inputs; the attenuator acts to equalize the optical power of the two lasers before entering the optical coupler.
  • the polarization control unit is arranged such that the output laser light adjusted by it is orthogonal to the polarization state of the other branch laser, specifically satisfying the matrix
  • S 10 , S 11 , S 12 , and S 13 are the four Stokes parameters corresponding to the other branch laser
  • (S 10 , S 11 , S 12 , S 13 ) T represents the other branch laser.
  • the polarization state, (S 20 , S 21 , S 22 , S 23 ) T represents the polarization state of the local laser light adjusted by the polarization control unit
  • S 20 , S 21 , S 22 , and S 23 are corresponding to the four Stokes parameters.
  • the present invention provides a device for spectral polarization independent measurement, and further includes a pumping light source module and an SBS effect generating module; wherein: an output end of the pumping light source module is connected to an input end of the depolarization module; and two input ends of the SBS effect generating module are respectively connected to an output end of the depolarization module and an external Optical signal to be measured;
  • the delay unit in the depolarization module is an optical fiber, so that the two lasers are not correlated in time, and the minimum length L is satisfied.
  • is the linewidth of the pump source
  • n is the refractive index of the fiber
  • is the operating wavelength of the pump source; the maximum length L should be satisfied.
  • denotes the scanning speed of the pump source when it is in the scanning operation state
  • denotes the resolution of the spectrum measuring device
  • c denotes the speed of light in the fiber.
  • the pumping light source module in the device for spectral polarization-independent measurement comprises a tunable laser unit and a stabilizing unit; an input end of the stabilizing unit is connected to an output end of the tunable laser unit; The output is the output of the pumping light module.
  • the apparatus for spectral polarization-independent measurement further comprises a data acquisition and spectrum reconstruction module, wherein the input end is connected to an output end of the SBS effect generation module for performing photoelectric conversion, signal acquisition, data processing, and spectral reconstruction.
  • the present invention also provides a method for realizing spectral polarization independent measurement based on a frequency domain depolarization structure, which is characterized in that it comprises the following steps:
  • the laser light in the scanning working state emitted by the tunable laser unit is stably biased and sent to the depolarization module;
  • the laser to be depolarized is divided into two paths by the optical power distribution unit, and one time passes through the delay unit, and the delay unit is used to delay the laser of the road so that it is in time with the second laser. Irrelevant; the second laser passes through the polarization control unit, and the polarization control unit is used to adjust the polarization state of the laser to be orthogonal to the polarization state of the first laser; the two lasers are coupled through the adjustable optical power coupling unit. Coupling, by adjusting the attenuator, the two lasers can be equally coupled with power to obtain depolarized light;
  • the above technical solution conceived by the present invention uses the depolarization module to depolarize the laser output from the pumping light source module, so that the frequency response of the equivalent filter of the SBS effect generation module is not Then, the matching between the signal light and the polarization state of the pump light changes.
  • the SBS-based spectral measuring device can measure an input optical signal having an arbitrary polarization state, and the spectral information is accurately acquired and the power measurement is stable.
  • FIG. 1 is a schematic diagram of an apparatus for realizing spectral polarization independent measurement based on a frequency domain depolarization structure
  • FIG. 2 is a schematic structural diagram of an embodiment of an apparatus for performing spectral polarization independent measurement based on a frequency domain depolarization structure
  • FIG. 3 is a polarization degree of depolarized pump light outputted by the depolarization module when the length of the delay fiber is different, using the specific embodiment of FIG. 2;
  • Figure 4 is a comparison of the frequency response of the SBS effect generation module when the depolarized pump light and the undepolarized pump light are used for the signals to be tested having different polarization states;
  • FIG. 5 is a comparison of measured spectra by using a specific embodiment of FIG. 2 and a polarization-dependent spectral measuring device based on SBS effect for a signal to be tested having different polarization states;
  • Figure 7 shows the same test signal.
  • the example in Figure 2 is used.
  • Embodiments measured spectral contrast.
  • 1-pump source module 2-depolarization module, 3-SBS effect generation module, 4-data acquisition and spectral reconstruction module, 5-tunable laser unit, 6-stabilized unit, 7-optical power distribution unit, 8-delay unit, 9-polarization control unit, 10-adjustable distribution ratio optical power coupling unit, 11-ring unit, 12-SBS effect generation unit, 13-photoelectric detection unit, 14-data acquisition unit, 15-spectrum Reconstruction unit, 16-tunable laser, 17-stabilizer, 18-1:1 beam splitter, 19-polarization controller, 20-delay fiber, 21-tunable optical attenuator, 22-1: 1 combiner, 23-circulator, 24-high nonlinear fiber, 25-isolator, 26-photodetector, 27-data acquisition card, 28-computer, 29-signal source.
  • the present invention provides an apparatus and method for realizing spectral polarization-independent measurement based on a frequency domain depolarization structure, which is used to solve the existing spectral sensing device based on the SBS effect in an arbitrary polarization state.
  • the spectral information obtained is inaccurate, and the power measurement is unstable.
  • an apparatus for realizing spectral polarization-independent measurement based on a frequency domain depolarization structure which specifically includes: a pumping light source module 1, a depolarization module 2, and an SBS effect generation module 3, Data acquisition and spectral reconstruction module 4.
  • the device of the present invention comprises a pumping light source module 1 composed of a tunable laser unit 5 and a stabilizing unit 6, and an optical power distribution unit 7, a delay unit 8, a polarization control unit 9, and an adjustable distribution.
  • Depolarization module 2 composed of optical power coupling unit 10;
  • SBS effect generation module 3 composed of ring unit 11 and SBS effect generation unit 12;
  • photoelectric detection unit 13 data acquisition
  • the data acquisition and spectral reconstruction module 4 is composed of a set unit 14 and a spectral reconstruction unit 15.
  • a specific implementation apparatus for implementing a spectral polarization-independent measurement based on a frequency domain depolarization structure includes a tunable laser 16, a stabilizer 17, a 1:1 beam splitter 18, a polarization controller 19, and a delay Optical fiber 20, tunable optical attenuator 21, 1:1 combiner 22, circulator 23, highly nonlinear optical fiber 24, isolator 25, photodetector 26, data acquisition card 27, computer 28, and signal source 29 .
  • the pumping source module is composed of a tunable laser 16 and a stabilizer 17; the output of the tunable laser 16 is connected to the input of the stabilizer 17, where the stabilizer can use a stabilizer or simply An analyzer is used; the output of the stabilizer 17 serves as the output of the pumping source module 1;
  • the depolarization module 2 is composed of a 1:1 beam splitter 18, a polarization controller 19, a delay fiber 20, a tunable optical attenuator 21, and a 1:1 beam combiner 22;
  • the input end is connected to the output end of the pumping light source module 1 as the input end of the depolarization module 2; the two output ends of the 1:1 beam splitter 18 are respectively connected to the input end of the delay fiber 20 and the input end of the polarization controller 19.
  • the output end of the delay fiber 20 and the output end of the polarization controller 19 are respectively connected to the input ends of the two tunable optical attenuators 21; the outputs of the two tunable optical attenuators 21 are respectively 1:1
  • the two input ends of the combiner 22 are connected; the output end of the 1:1 combiner 22 serves as the output end of the depolarization module 2;
  • the SBS effect generating module 3 is composed of a circulator 23, a highly nonlinear optical fiber 24, and an isolator 25; one port of the circulator 23 is connected as an input end of the SBS effect generating module 3 to the output end of the depolarization module 2; The input end of the device 25 is connected to the signal light source 29 as the other input end of the SBS effect generating module 3; the output end of the isolator 25 is connected to one end of the highly nonlinear optical fiber 24; the other end of the highly nonlinear optical fiber 24 is connected to the circulator 23 The two ports are connected; the three ports of the circulator 23 serve as the output of the SBS effect generating module 3;
  • the data acquisition and spectrum reconstruction module 4 is composed of a photodetector 26, a data acquisition card 27, and a computer 28; the input end of the photodetector 26 serves as an input end of the data acquisition and spectral reconstruction module 4 and an SBS effect generation module 3 The output is connected for photoelectric conversion; the data acquisition card The input of 27 is connected to the output of photodetector 26 for data acquisition; the input of computer 28 is coupled to the output of data acquisition card 27 for data processing and spectral reconstruction.
  • a method for performing spectral polarization independent measurement based on a frequency domain depolarization structure comprising:
  • the stabilizer is connected, and the polarization state of the laser is stabilized by using the stabilizer, so that the polarization state of the laser is stabilized in a certain state;
  • the laser passing through the stabilizer is divided into two paths through the 1:1 beam splitter, and one pass through the delay fiber, and the delay laser is used to delay the laser, so that it is not related to the second laser in time.
  • the second laser passes through the polarization controller, and the polarization controller is used to adjust the polarization state of the laser to be orthogonal to the polarization state of the first laser; the two lasers respectively pass the dimming attenuator of the current path.
  • the adjustment of the power makes the optical power of the two lasers equal; and then the two lasers are combined by the combiner to obtain the depolarized light;
  • the signal to be tested is amplified by the SBS effect generating module, it is converted into an electrical signal by the photodetector, and the data is collected by the data acquisition card, and the data is processed by the computer and the spectrum is reconstructed to obtain the spectrum of the signal to be tested.
  • the pump light width is too wide, it is difficult to excite the SBS effect, and if the pump light is too narrow, the delay fiber is too long, so a laser with a line width of 100 kHz is selected as the pump light, when it is in the scanning working state, The scanning speed was 5 nm/s.
  • the selection of the length of the delay fiber is determined by the line width of the pump source, the scanning speed, and the resolution requirements of the spectrum measuring device.
  • the line width of the pump light is 100 kHz and the wavelength is 1550 nm.
  • composition of the SBS effect generating unit is a mature technology, and details are not described herein again.
  • the data acquisition and the spectrum reconstruction module are configured, and the data noise reduction processing is implemented by the software programming method, and the correction and conversion from the electrical signal data to the optical signal data are completed, and the spectral reconstruction is finally completed. It will be easily implemented by those skilled in the art, and details are not described herein again.
  • the present invention further describes the present invention by a verification test with reference to the accompanying drawings and the existing polarization-dependent spectral measuring device.
  • the signal light source is polarized light
  • the line width is on the order of 100 kHz
  • the degree of polarization is 1. .
  • the polarization degree of the depolarized pump light outputted by the depolarization module is adopted in the specific embodiment of FIG. 2 .
  • Curve 1 is the change of the polarization degree of the depolarized pump light with time when the length of the delay fiber is 500m
  • curve 2 is the change of the polarization degree of the depolarized pump light with time when the length of the delay fiber is 1500m
  • curve 3 is the delay.
  • the degree of polarization of the depolarized pump light changes with time. It is verified that in the specific embodiment of FIG. 2, when the delay length is insufficient, the depolarization module cannot completely depolarize the laser.
  • the delay length is sufficient ( ⁇ 1500m)
  • the polarization of the depolarized pump light will no longer be Significantly reduced as the length of the delay fiber increases;
  • FIG. 4 is a comparison diagram of the frequency response of the SBS effect generating module when the depolarized pump light and the undepolarized pump light are used for the signals to be tested having different polarization states.
  • Curve 4 is the frequency response measured when the polarization state of the signal light to be tested matches the polarization state of the pump light by the SBS effect generation module, and the curve 6 is generated by the SBS effect without the depolarization pump light.
  • the frequency response measured by the module when the polarization state of the signal light to be tested does not match the polarization state of the pump light, curve 5
  • the frequency response obtained by the polarization state of the signal light to be tested and the polarization state of the pump light are matched and mismatched, and the two overlap each other as a curve. It is verified that the SBS effect generation module of the example embodiment of FIG. 2 achieves polarization independence;
  • Curve 9 is the spectrum of the signal to be measured measured when the polarization state of the signal light to be tested matches the polarization state of the pump light, and the measured spectrum is optimal; curve 7 is the polarization state of the signal light to be measured and the pump light.
  • curve 8 is the measurement of the signal to be measured of different polarization states in the example of the spectral measuring device of FIG.
  • the spectrum of the spectrum of the signal to be measured of different polarization states coincides and is the same as that of the polarization correlation spectrum measuring device. It is verified that the example spectral measuring device of Figure 2 can measure the spectrum of any polarization state signal;
  • Curve 11 is the measurement result of the polarization correlation spectrometer based on the SBS effect. Since the polarization state of the signal light changes and the polarization state of the pump light no longer matches during the long-term measurement, the optical power measurement is inaccurate and thus long.
  • the time measurement result fluctuates greatly, which is greater than 15 dB; curve 10 is the measurement result of the example spectral measuring device of Fig.
  • the comparative embodiment of FIG. 2 is used to measure the spectral contrast.
  • the curve 12 is a spectrum diagram measured when the length of the delay fiber is 5000 meters in the depolarization module in the specific embodiment of FIG. 2; and the curve 13 is the example embodiment of FIG. 2 when the length of the delay fiber is 1500 meters in the depolarization module.
  • the resulting spectrum is measured. It is verified that the length of the delay fiber will affect the resolution of the spectrum measuring device. The longer the delay fiber, the lower the resolution. Combined with Figure 3, it is proved that the selection of the delay fiber is affected by the pump light. Wide, the common limit of the scanning speed of the pump light when scanning and the resolution of the spectrometer.
  • the present invention can solve the problems of inaccurate spectral information acquisition and unstable power measurement when the existing SBS-based spectral measuring device measures an input optical signal with an arbitrary polarization state.
  • a polarization-independent measurement of a spectral measuring device based on the SBS effect is achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

一种基于频域消偏结构实现光谱偏振无关测量的装置,包括泵浦光源模块(1)、消偏模块(2)、SBS效应发生模块(3)以及数据采集与光谱重构模块(4)。还提供一种基于频域消偏结构实现光谱偏振无关测量的方法,包括:泵浦光源模块(1)发出偏振态固定的激光;泵浦光源模块(1)输出端的激光通过消偏模块(2)成为消偏光;将此消偏光作为泵浦光输入到SBS效应发生模块(3)与外界输入到SBS效应发生模块(3)的待测信号光发生相互作用;待测信号光经过SBS效应发生模块(3)放大后由数据采集与光谱重构模块(4)进行数据采集处理并最终得到待测信号的光谱。从而,可以消除基于SBS效应的光谱测量装置在对具有任意偏振态的输入光信号进行测量时,呈现出的光谱信息获取不准确、功率测量不稳定等问题。

Description

一种基于频域消偏结构实现光谱偏振无关测量的装置与方法 【技术领域】
本发明属于光谱测量技术领域,更具体地,涉及一种基于频域消偏结构实现光谱偏振无关测量的装置与方法。
【背景技术】
光谱测量装置在光纤通信、光纤传感、物质分析等领域都有重要的应用。基于体光栅的光谱测量装置利用体光栅对待测信号光的空间色散,实现对信号光不同频率成分的分离,从而完成对信号光光谱的测量与光谱信息的提取。受到体光栅制备工艺和器件尺寸等因素的限制,目前该类型光谱测量装置的分辨率只能达到1GHz量级。由于光纤中的受激布里渊散射(SBS)效应的增益带宽非常窄(10MHz量级),因而可以等效为窄带光学滤波器、用于精细光谱成分的提取。与可调谐激光器相结合,能构成分辨率为10MHz量级光谱测量装置,在上述领域有着广泛的应用前景。
然而基于SBS效应构建的窄带光学滤波器,其频率响应特性会随着信号光与泵浦光偏振态的匹配与否而发生明显变化。这样会导致基于该效应的光谱测量装置在对待测信号测量时呈现偏振相关性。即随着信号光偏振态的改变,采用该装置测量得到的光谱重复性差、不同频率处对应的光谱密度功率值不稳定。在文献(Preussler S,Zadok A,Wiatrek A,et al.Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling.[J].Optics Express,2012,20(13):14734-45.)中,使用了多个偏振控制器来实现泵浦光与信号光偏振态的匹配,以达到最佳光谱测量效果。但是当信号的偏振态发生改变时,只有通过再次调节偏振控制器才能得到准确的光谱测量结果。这种基于SBS效应的偏振相关光谱测量装置缺乏实用价值。
【发明内容】
针对现有技术的缺陷,本发明的目的在于提供一种基于频域消偏结构实现光谱偏振无关测量的装置与方法,旨在解决现有基于SBS效应的光谱测量装置在对具有任意偏振态的输入光信号进行测量时,呈现出的光谱信息获取不准确、功率测量不稳定等问题。
本发明提出一种消偏模块,包括光功率分配单元、延时单元、偏振控制单元以及可调分配比光功率耦合单元;其中:
所述光功率分配单元的输入端为消偏模块的输入端,其两路输出端分别与延时单元、偏振控制单元的输入端相连;所述延时单元、偏振控制单元的输出端分别与可调分配比光功率耦合单元的两个输入端相连;可调分配比光功率耦合单元的输出端为消偏模块的输出端。
进一步的,所述可调分配比光功率耦合单元由衰减器和光耦合器串接组成,其具有两个输入端,一个输出端,用于将两路输入光耦合成为一路输出光;所述衰减器设置在其中一个光耦合输入端,或者在两个输入端各设置一个;所述衰减器作用是使得两路激光在进入光耦合器前的光功率相等。
进一步的,所述偏振控制单元的设置应使得通过其调节的输出激光与另一支路激光的偏振态正交,具体满足矩阵
(S20,S21,S22,S23)T=(S10,-S11,S12,-S13)T
其中,S10、S11、S12、S13为另一支路激光对应的四个斯托克斯参量,(S10,S11,S12,S13)T表示另一支路激光的偏振态,(S20,S21,S22,S23)T表示通过偏振控制单元调节后的本支路激光的偏振态,S20、S21、S22、S23为其对应的四个斯托克斯参量。
基于该消偏模块,本发明提出一种光谱偏振无关测量的装置,还包括 泵浦光源模块和SBS效应发生模块;其中:所述泵浦光源模块的输出端接消偏模块的输入端;所述SBS效应发生模块的两个输入端分别接消偏模块的输出端和外部待测光信号;
所述消偏模块中延时单元为光纤,用于使得两路激光在时间上不相关,其长度L最小值应满足
Figure PCTCN2016096154-appb-000001
其中Δλ为泵浦光源线宽,n为光纤折射率,λ为泵浦光源的工作波长;其长度L最大值应满足
Figure PCTCN2016096154-appb-000002
其中υ表示泵浦光源处于扫描工作状态时的扫描速度,Δ表示光谱测量装置的分辨率,c表示光纤中的光速。
进一步的,所述光谱偏振无关测量的装置中的泵浦光源模块包括可调谐激光器单元和稳偏单元;所述稳偏单元的输入端与可调谐激光器单元的输出端相连;所述稳偏单元的输出端为泵浦光源模块的输出端。
进一步的,所述光谱偏振无关测量的装置还包括数据采集与光谱重构模块,其输入端接SBS效应发生模块的输出端,用于完成光电转换、信号采集、数据处理和光谱重构。
相应地,本发明还提出一种基于频域消偏结构实现光谱偏振无关测量的方法,其特征在于,包括如下步骤:
(1)将可调谐激光器单元发出的处于扫描工作状态的激光经稳偏后送入消偏模块;
(2)在消偏模块中,待消偏激光通过光功率分配单元分为两路,一路经过延时单元,使用延时单元对本路激光进行延时,使得其与第二路激光在时间上不相关;第二路激光经过偏振控制单元,使用偏振控制单元调节本路激光的偏振态,使得其与第一路激光的偏振态正交;两路激光通过可调分配比光功率耦合单元进行耦合,通过调节衰减器使得两路激光可以功率相等地耦合,得到消偏光;
(3)将消偏模块输出的消偏光作为泵浦光输入到SBS效应发生模块中,与待测信号光在SBS效应发生模块中发生相互作用,对待测信号光进行滤波放大;
(4)使用数据采集与光谱重构模块对经过SBS效应发生模块放大的待测信号光进行探测采集,实现数据从电信号到光信号的矫正、转换,完成光谱重构。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,使用消偏模块对泵浦光源模块输出的激光进行消偏,使得SBS效应发生模块等效的滤波器的频率响应不再随信号光与泵浦光偏振态的匹配与否发生变化。从而,基于SBS效应的光谱测量装置可以对具有任意偏振态的输入光信号进行测量,并且光谱信息获取准确、功率测量稳定。
【附图说明】
图1为一种基于频域消偏结构实现光谱偏振无关测量的装置示意图;
图2为一种基于频域消偏结构实现光谱偏振无关测量的装置的一个实施例的结构示意图;
图3为当延时光纤长度不同时,采用图2示例具体实施方式,经消偏模块后输出的消偏泵浦光的偏振度;
图4为对具有不同偏振态的待测信号,采用消偏泵浦光与未消偏泵浦光时,SBS效应发生模块的频率响应对比情况;
图5为对具有不同偏振态的待测信号,采用图2示例具体实施方式与基于SBS效应的偏振相关光谱测量装置,测量得到的光谱对比情况;
图6为对同一待测信号,采用图2示例具体实施方式与基于SBS效应的偏振相关光谱测量装置进行光谱测量时,得到的功率长期稳定性的对比情况;
图7为对同一待测信号,当延时光纤长度不同时,采用图2示例具体 实施方式,测量得到的光谱对比情况。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:
1-泵浦光源模块,2-消偏模块,3-SBS效应发生模块,4-数据采集与光谱重构模块,5-可调谐激光器单元,6-稳偏单元,7-光功率分配单元,8-延时单元,9-偏振控制单元,10-可调分配比光功率耦合单元,11-环形单元,12-SBS效应发生单元,13-光电探测单元,14-数据采集单元,15-光谱重构单元,16-可调谐激光器,17-稳偏器,18-1:1分束器,19-偏振控制器,20-延时光纤,21-可调光功率衰减器,22-1:1合束器,23-环形器,24-高非线性光纤,25-隔离器,26-光电探测器,27-数据采集卡,28-计算机,29-信号光源。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
针对现有技术的缺陷或改进需求,本发明提出了一种基于频域消偏结构实现光谱偏振无关测量的装置与方法,用于解决现有基于SBS效应的光谱测量装置在对具有任意偏振态的输入光信号进行测量时,呈现出的光谱信息获取不准确、功率测量不稳定等问题。
为实现上述目的,按照本发明的一个方面,提供了一种基于频域消偏结构实现光谱偏振无关测量的装置,具体包括:泵浦光源模块1,消偏模块2,SBS效应发生模块3,数据采集与光谱重构模块4。
如图1所示,本发明的装置包括由可调谐激光器单元5、稳偏单元6组成的泵浦光源模块1;由光功率分配单元7、延时单元8、偏振控制单元9、可调分配比光功率耦合单元10组成的消偏模块2;由环形单元11、SBS效应发生单元12组成的SBS效应发生模块3;由光电探测单元13、数据采 集单元14、光谱重构单元15组成的数据采集与光谱重构模块4。
如图2所示,整个基于频域消偏结构实现光谱偏振无关测量的装置的具体实施装置,包括可调谐激光器16、稳偏器17、1:1分束器18、偏振控制器19、延时光纤20、可调光功率衰减器21、1:1合束器22、环形器23、高非线性光纤24、隔离器25、光电探测器26、数据采集卡27、计算机28和信号光源29。
其中,泵浦光源模块由可调谐激光器16和稳偏器17组成;可调谐激光器16的输出端与稳偏器17的输入端相连,此处稳偏单元可以使用稳偏器,也可以简单地使用一个检偏器;稳偏器17的输出端作为泵浦光源模块1的输出端;
其中,消偏模块2由1:1分束器18、偏振控制器19、延时光纤20、可调光功率衰减器21、1:1合束器22组成;1:1分束器18的输入端作为消偏模块2的输入端与泵浦光源模块1的输出端相连;1:1分束器18的两个输出端分别与延时光纤20的输入端、偏振控制器19的输入端相连;延时光纤20的输出端与偏振控制器19的输出端分别与两个可调光功率衰减器21的输入端相连;两个可调光功率衰减器21的输出端分别与1:1合束器22的两个输入端相连;1:1合束器22的输出端作为消偏模块2的输出端;
其中,SBS效应发生模块3由环形器23、高非线性光纤24、隔离器25组成;环形器23的1端口作为SBS效应发生模块3的一个输入端与消偏模块2的输出端相连;隔离器25的输入端作为SBS效应发生模块3的另一个输入端与信号光源29相连;隔离器25的输出端与高非线性光纤24的一端相连;高非线性光纤24的另一端与环形器23的2端口相连;环形器23的3端口作为SBS效应发生模块3的输出端;
其中,数据采集与光谱重构模块4由光电探测器26、数据采集卡27、计算机28构成;光电探测器26的输入端作为数据采集与光谱重构模块4的输入端与SBS效应发生模块3的输出端相连进行光电转换;数据采集卡 27的输入端与光电探测器26的输出端相连进行数据采集;计算机28的输入端与数据采集卡27的输出端相连进行数据处理与光谱重构。
按照本发明的另一方面,还提供了一种基于频域消偏结构实现光谱偏振无关测量的方法,过程包括:
(1)在可调谐激光器之后,接入稳偏器,使用稳偏器对激光的偏振态进行稳定,使得激光的偏振态稳定在一个确定的状态;
(2)经过稳偏器的激光通过1:1分束器分为两路,一路经过延时光纤,使用延时光纤对本路激光进行延时,使得其与第二路激光在时间上不相关;第二路激光经过偏振控制器,使用偏振控制器调节本路激光的偏振态,使得其与第一路激光的偏振态正交;两路激光分别通过本路的可调光衰减器进行光功率的调节,使得两路激光光功率相等;再利用合束器将两路激光进行合成,便可以得到消偏光;
(3)将得到的消偏光作为泵浦光输入到SBS效应发生模块中,与待测信号光在SBS效应发生模块中发生相互作用,对待测信号光进行滤波放大;
(4)待测信号经过SBS效应发生模块放大后,经过光电探测器转变为电信号,由数据采集卡进行数据采集,由计算机进行数据处理以及光谱重构,得到待测信号的光谱。
本发明实施例中,由于泵浦光线宽过宽会难以激发SBS效应,过窄会使延时光纤太长,所以选用线宽为100kHz的激光作为泵浦光,当其处于扫描工作状态时,扫描速度为5nm/s。
本发明实施例中,延时光纤长度的选择依据由泵浦光源的线宽、扫描速度以及光谱测量装置的分辨率要求共同决定。一方面,为了降低泵浦光的偏振度,将泵浦光的线宽100kHz以及波长1550nm带入公式
Figure PCTCN2016096154-appb-000003
计算得到延时光纤的长度需大于1500m,且光纤长度越长消偏效果越好;另一方面,在泵浦光源扫描速度为5nm/s、光谱测量 装置的分辨率约为10MHz时,根据公式
Figure PCTCN2016096154-appb-000004
可知,选择1500m的光纤不会带来光谱测量装置分辨率的劣化,而当光纤长度过长,例如超过5000m时,便会带来光谱测量装置分辨率的明显劣化。
本发明实施例中,SBS效应发生单元的构成已是成熟的技术,在此不再赘述。
本发明实施例中,数据采集与光谱重构模块的构成、通过软件编程的方法实现数据的降噪处理,完成从电信号数据到光信号数据的矫正、转换,并最终完成光谱重构,对于本领域普通技术人员很容易实现,在此不再赘述。
本实施例结合附图并以现有偏振相关光谱测量装置作为对比,通过验证试验进一步描述本发明,本发明验证试验中,信号光源为偏振光,线宽为百kHz量级,偏振度为1。
参见图3为当延时光纤长度不同时,采用图2示例具体实施方式,经消偏模块后输出的消偏泵浦光的偏振度。曲线1为延时光纤长度为500m时消偏泵浦光的偏振度随时间的变化,曲线2为延时光纤长度为1500m时消偏泵浦光的偏振度随时间的变化,曲线3为延时光纤长度为5000m时消偏泵浦光的偏振度随时间的变化。验证了图2示例具体实施方式中,在延时长度不够时,消偏模块无法对激光进行彻底消偏,在延时长度足够时(≥1500m),消偏泵浦光的偏振度将不再随着延时光纤长度的增加而明显减小;
参见图4为对具有不同偏振态的待测信号,采用消偏泵浦光与未消偏泵浦光时,SBS效应发生模块的频率响应对比图。曲线4为采用未消偏泵浦光SBS效应发生模块在待测信号光的偏振态与泵浦光的偏振态匹配时测量得到的频率响应,曲线6为采用未消偏泵浦光SBS效应发生模块在待测信号光的偏振态与泵浦光的偏振态不匹配时测量得到的频率响应,曲线5 为采用消偏泵浦光SBS效应发生模块在待测信号光的偏振态与泵浦光的偏振态匹配与不匹配两种情况下得到的频率响应,且两者重叠为一条曲线。验证了图2示例具体实施方式SBS效应发生模块实现了偏振无关;
参见图5为对具有不同偏振态的待测信号,采用图2示例具体实施方式与基于SBS效应的偏振相关光谱测量装置,测量得到的光谱对比情况。曲线9为待测信号光的偏振态与泵浦光的偏振态匹配时测量得到的待测信号光光谱,测量得到的光谱最佳;曲线7为待测信号光的偏振态与泵浦光的偏振态不匹配时测量得到的待测信号光光谱,测量得到的光谱功率密度小于实际光谱功率密度且信号光谱细节丢失;曲线8为图2示例光谱测量装置对不同偏振态的待测信号测量得到的光谱图,不同偏振态的待测信号的光谱重合且和偏振相关光谱测量装置得到的最佳光谱效果相同。验证了图2示例光谱测量装置可以对任意偏振态信号光谱进行测量;
参见图6为对同一待测信号,采用图2示例具体实施方式与基于SBS效应的偏振相关光谱测量装置进行光谱测量时,得到的功率长期稳定性的对比情况。曲线11为基于SBS效应的偏振相关光谱测量装置测量结果,由于在长时间测量过程中,信号光的偏振态发生改变与泵浦光的偏振态不再匹配导致光功率测量的不准,进而长时间测量结果波动较大,大于15dB;曲线10为图2示例光谱测量装置测量结果,由于可以对任意偏振态信号进行测量,所以长时间测量结果波动较小,小于1dB。证明了图2示例光谱测量装置相对于偏振相关光谱测量装置测量稳定性提高。
参见图7为对同一待测信号,当延时光纤长度不同时,采用图2示例具体实施方式,测量得到的光谱对比情况。曲线12为图2示例具体实施方式在消偏模块中延时光纤长度为5000米时测量得到的光谱图;曲线13为图2示例具体实施方式在消偏模块中延时光纤长度为1500米时测量得到的光谱图。验证了延时光纤长度过长会影响光谱测量装置的分辨率,延时光纤越长,分辨率越低,与图3相结合证明了延时光纤的选取受到泵浦光线 宽、泵浦光处于扫描工作状态时的扫描速度和光谱测量装置分辨率的共同限制。
综上所述,采用本发明,可以解决现有基于SBS效应的光谱测量装置在对具有任意偏振态的输入光信号进行测量时,呈现出的光谱信息获取不准确、功率测量不稳定等问题,实现了基于SBS效应的光谱测量装置的偏振无关测量。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种消偏模块,其特征在于,包括光功率分配单元、延时单元、偏振控制单元以及可调分配比光功率耦合单元;其中:
    所述光功率分配单元的输入端为消偏模块的输入端,其两路输出端分别与延时单元、偏振控制单元的输入端相连;所述延时单元、偏振控制单元的输出端分别与可调分配比光功率耦合单元的两个输入端相连;可调分配比光功率耦合单元的输出端为消偏模块的输出端。
  2. 如权利要求1所述的模块,其特征在于,所述可调分配比光功率耦合单元由衰减器和光耦合器串接组成,其具有两个输入端,一个输出端,用于将两路输入光耦合成为一路输出光;所述衰减器设置在其中一个光耦合输入端,或者在两个输入端各设置一个;所述衰减器作用是使得两路激光在进入光耦合器前的光功率相等。
  3. 如权利要求1所述的模块,其特征在于,所述偏振控制单元的设置应使得通过其调节的输出激光与另一支路激光的偏振态正交,具体满足矩阵
    (S20,S21,S22,S23)T=(S10,-S11,S12,-S13)T
    其中,S10、S11、S12、S13为另一支路激光对应的四个斯托克斯参量,(S10,S11,S12,S13)T表示另一支路激光的偏振态,(S20,S21,S22,S23)T表示通过偏振控制单元调节后的本支路激光的偏振态,S20、S21、S22、S23为其对应的四个斯托克斯参量。
  4. 一种基于权利要求1-3所述消偏模块的光谱偏振无关测量的装置,其特征在于,还包括泵浦光源模块和SBS效应发生模块;其中:所述泵浦光源模块的输出端接消偏模块的输入端;所述SBS效应发生模块的两个输入端分别接消偏模块的输出端和外部待测光信号;
    所述消偏模块中延时单元为光纤,用于使得两路激光在时间上不相关, 其长度L最小值应满足
    Figure PCTCN2016096154-appb-100001
    其中Δλ为泵浦光源线宽,n为光纤折射率,λ为泵浦光源的工作波长;其长度L最大值应满足
    Figure PCTCN2016096154-appb-100002
    其中υ表示泵浦光源处于扫描工作状态时的扫描速度,Δ表示光谱测量装置的分辨率,c表示光纤中的光速。
  5. 如权利要求4所述的装置,其特征在于,所述泵浦光源模块包括可调谐激光器单元和稳偏单元;所述稳偏单元的输入端与可调谐激光器单元的输出端相连;所述稳偏单元的输出端为泵浦光源模块的输出端。
  6. 一种基于权利要求4或5的光谱偏振无关测量的装置,其特征在于,还包括数据采集与光谱重构模块,其输入端接SBS效应发生模块的输出端,用于完成光电转换、信号采集、数据处理和光谱重构。
  7. 一种基于频域消偏结构实现光谱偏振无关测量的方法,其特征在于,包括如下步骤:
    (1)将可调谐激光器单元发出的处于扫描工作状态的激光经稳偏后送入所述消偏模块;
    (2)在消偏模块中,待消偏激光通过光功率分配单元分为两路,一路经过延时单元,使用延时单元对本路激光进行延时,使得其与第二路激光在时间上不相关;第二路激光经过偏振控制单元,使用偏振控制单元调节本路激光的偏振态,使得其与第一路激光的偏振态正交;两路激光通过可调分配比光功率耦合单元进行耦合,通过调节衰减器使得两路激光可以功率相等地耦合,得到消偏光;
    (3)将消偏模块输出的消偏光作为泵浦光输入到SBS效应发生模块中,与待测信号光在SBS效应发生模块中发生相互作用,对待测信号光进行滤波放大;
    (4)使用数据采集与光谱重构模块对经过SBS效应发生模块放大的待 测信号光进行探测采集,实现数据从电信号到光信号的矫正、转换,完成光谱重构。
PCT/CN2016/096154 2016-07-13 2016-08-22 一种基于频域消偏结构实现光谱偏振无关测量的装置与方法 WO2018010255A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/526,933 US10161792B2 (en) 2016-07-13 2016-08-22 Device and method for realizing spectral polarization-independent measurement based on frequency domain depolarization structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610548916.XA CN106248208B (zh) 2016-07-13 2016-07-13 一种基于频域消偏结构的光谱偏振无关测量的装置与方法
CN201610548916.X 2016-07-13

Publications (1)

Publication Number Publication Date
WO2018010255A1 true WO2018010255A1 (zh) 2018-01-18

Family

ID=57612895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096154 WO2018010255A1 (zh) 2016-07-13 2016-08-22 一种基于频域消偏结构实现光谱偏振无关测量的装置与方法

Country Status (3)

Country Link
US (1) US10161792B2 (zh)
CN (1) CN106248208B (zh)
WO (1) WO2018010255A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2566314B (en) * 2017-09-08 2020-07-29 Exalos Ag Depolarisers
CN116067630B (zh) * 2023-03-22 2023-07-25 武汉中科锐择光电科技有限公司 评估低重复频率自发辐射占比装置、系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040008918A1 (en) * 2002-07-12 2004-01-15 Nawfel Azami All-fiber linear design depolarizer
CN102706451A (zh) * 2012-07-02 2012-10-03 中国计量学院 利用受激布里渊光损耗机制的高精度光谱分析仪
CN103940513A (zh) * 2014-03-27 2014-07-23 华中科技大学 一种实现光谱测量动态范围改善的方法及光谱测量系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6381500A (en) * 1999-07-27 2001-02-13 Colorado School Of Mines Parallel detecting, spectroscopic ellipsometers/polarimeters
US20030016425A1 (en) * 2001-07-19 2003-01-23 Tan Tun Sein Polarization diversity receiver with planar waveguide and polarizing beam splitter
US7221454B2 (en) * 2002-02-14 2007-05-22 Containerless Research, Inc. Photopolarimeters and spectrophotopolarimaters with multiple diffraction gratings
US7420675B2 (en) * 2003-06-25 2008-09-02 The University Of Akron Multi-wavelength imaging system
US8125641B2 (en) * 2009-03-27 2012-02-28 N&K Technology, Inc. Method and apparatus for phase-compensated sensitivity-enhanced spectroscopy (PCSES)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040008918A1 (en) * 2002-07-12 2004-01-15 Nawfel Azami All-fiber linear design depolarizer
CN102706451A (zh) * 2012-07-02 2012-10-03 中国计量学院 利用受激布里渊光损耗机制的高精度光谱分析仪
CN103940513A (zh) * 2014-03-27 2014-07-23 华中科技大学 一种实现光谱测量动态范围改善的方法及光谱测量系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DIAZ, S. ET AL.: "A High-Performance Optical Time-Domain Brillouin Distributed Fiber Sensor", IEEE SENSORS JOURNAL, vol. 8, no. 7, 31 July 2008 (2008-07-31), pages 1268 - 1270, XP011266615, ISSN: 1530-437X, DOI: doi:10.1109/JSEN.2008.926963 *
LIU, JIHONG ET AL.: "Low-DOP Depolarizer for Linearly Polarized Light Independent of Direction of Vibration", ACTA OPTICA SINICA, vol. 27, no. 3, 31 March 2007 (2007-03-31), pages 536 - 539, ISSN: 0253-2239 *

Also Published As

Publication number Publication date
CN106248208B (zh) 2017-11-17
US10161792B2 (en) 2018-12-25
CN106248208A (zh) 2016-12-21
US20180245976A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
US9863815B2 (en) Method and apparatus for multifrequency optical comb generation
Baney et al. Theory and measurement techniques for the noise figure of optical amplifiers
US9581495B2 (en) Spectral analysis device based on Brillouin dynamic grating and analysis method thereof
CN103712689B (zh) 基于光学频率梳的连续激光器光谱线宽测量装置
US7009691B2 (en) System and method for removing the relative phase uncertainty in device characterizations performed with a polarimeter
EP0586103B1 (en) Measurement of a parameter of an optical amplifier
WO2018010255A1 (zh) 一种基于频域消偏结构实现光谱偏振无关测量的装置与方法
CN104316090A (zh) 温度自补偿高分辨率高频光纤光栅解调系统及方法
CN209590271U (zh) 一种空间长度的测量装置
JP2011506993A (ja) テラヘルツ周波数帯域中に存在する摂動によって誘起される一時的な複屈折のワンショット測定方法及び装置
CN110207822A (zh) 高灵敏度光学时延估计系统、方法及介质
CN111829657B (zh) 基于光纤瑞利散射的相干光谱分析装置及方法
US8301416B2 (en) Optical noise index calculation method, optical noise index calculation apparatus, and optical sampling oscilloscope
JP2017504788A (ja) 圧縮器と組み合わせて大型且つ高エネルギーのレーザービームをサンプリングする装置
JP2004340926A (ja) 光学部品の色分散を決定するための装置および方法
CN106768871A (zh) 基于光开关激光拍频系统测量光纤色散的方法
CN107687898B (zh) 一种窄带激光脉冲光谱检测装置及检测方法
CN105953930B (zh) 皮秒级窄脉宽测试装置
CN109524874A (zh) 一种增益光纤测量装置及测量增益光纤输出功率的稳定性的方法
KR102175532B1 (ko) 테라헤르츠 시간 영역 분광을 이용한 샘플의 두께 및 굴절률 측정 방법
CN109506788A (zh) 基于傅里叶锁模激光器的光波长测量系统
RU2664692C1 (ru) Измеритель фазовых шумов узкополосных лазеров, основанный на состоящем из рм-волокна интерферометре маха-цендера
WO2024114900A1 (en) Low-snr optical detection technique using destructive interference
JP2713672B2 (ja) 光増幅器雑音指数測定装置
Bian et al. A novel Michelson interferometer of high interference degree with the application of bi‐direction erbium‐doped fiber amplifier

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15526933

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908580

Country of ref document: EP

Kind code of ref document: A1