WO2018010238A1 - 一种信道智能冗余备份方法和系统 - Google Patents

一种信道智能冗余备份方法和系统 Download PDF

Info

Publication number
WO2018010238A1
WO2018010238A1 PCT/CN2016/093938 CN2016093938W WO2018010238A1 WO 2018010238 A1 WO2018010238 A1 WO 2018010238A1 CN 2016093938 W CN2016093938 W CN 2016093938W WO 2018010238 A1 WO2018010238 A1 WO 2018010238A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
parameter
preferred
channels
characteristic
Prior art date
Application number
PCT/CN2016/093938
Other languages
English (en)
French (fr)
Inventor
吴球
Original Assignee
邦彦技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邦彦技术股份有限公司 filed Critical 邦彦技术股份有限公司
Publication of WO2018010238A1 publication Critical patent/WO2018010238A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0668Management of faults, events, alarms or notifications using network fault recovery by dynamic selection of recovery network elements, e.g. replacement by the most appropriate element after failure

Definitions

  • the present invention relates to the field of communications, and in particular, to a channel intelligent redundancy backup method and system.
  • multiple communication channels are usually used for redundant backup, such as satellite channel, short wave channel, microwave channel, and wired channel (such as E1/optical transmission).
  • the channel switching is determined by detecting the value of a certain transmission parameter (such as bit error rate and delay) of the channel. When the value of the transmission parameter reaches a certain threshold, manual or automatic switching is performed.
  • the communication channel redundancy backup method cannot effectively synthesize the characteristics and states of each channel for optimal selection.
  • the manual backup mode is traditionally used, that is, after the detected active channel is faulty, manually switching to the normal channel manually, which causes the backup switching time to be long.
  • the problem of interrupting the transmission service during the handover process requires personnel to operate, and automatic handover cannot be realized.
  • the transmission quality of each channel cannot be quantified, and the most preferred way is performed.
  • the route on/off state can be used. Triggering is triggered, but the route on/off detection is generally in the second level, and the handover detection time is long, which will affect the transmission service system. Therefore, the practical application requires the implementation of multi-channel redundancy fast automatic switching function.
  • an object of the present invention is to provide a channel intelligent redundancy backup method and system that can implement automatic switching channels.
  • the technical solution adopted by the present invention is: a channel intelligent redundancy backup method, including the steps:
  • the most preferred parameter is determined according to the target selection criterion.
  • the channel corresponding to the most preferred parameter is selected as the primary channel.
  • the characteristic parameters of the transmission channel include a bit error rate, a delay, a throughput, a stability, and an overhead.
  • the feature parameters are arranged in order to form a feature parameter queue.
  • the preferred parameter of the channel is the sum of the product of the characteristic parameter values of the channel and its corresponding weighting factor.
  • the values of the feature parameter error rate, delay, and throughput are obtained by real-time monitoring.
  • channel switching is performed.
  • the preset stabilization time is determined by a parameter collection period and a channel characteristic parameter variation characteristic.
  • the present invention also provides a channel intelligent redundancy backup system, including:
  • a feature parameter module configured to perform determining a feature parameter queue of each transport channel
  • a weighting factor module configured to perform weighting of each parameter of each of the transmission channels to determine a weighting factor queue corresponding to the channel characteristic parameter
  • a parameter module for performing a real-time monitoring of a characteristic parameter value of the channel, calculating a preferred parameter of each channel by using a preferred parameter algorithm of the channel, and forming a preferred parameter queue;
  • the primary channel module is configured to perform determining the most preferred parameter according to the target selection criterion. When the most preferred parameter is stable and continues to reach the preset stabilization time, the channel corresponding to the most preferred parameter is selected as the primary channel.
  • the invention has the beneficial effects that the channel intelligent redundancy backup method and system provided by the invention obtains the optimal parameters of the channel according to the characteristic parameters of the channel and the weight thereof, thereby determining the optimal channel; and automatically optimizing the channel and automatically
  • the problem of handover and solves the problem of fast redundancy switching of the channel, realizes comprehensive and dynamic quality detection of multiple communication channels, and quickly optimizes the backup function to ensure that the transmission system is always in optimal operation; at the same time, the channel is comprehensively and dynamically evaluated. Fast and automatic preferred switching.
  • FIG. 1 is a schematic flow chart of a channel optimization algorithm according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a channel redundancy backup according to an embodiment of the present invention.
  • a channel intelligent redundancy backup method comprising the steps of:
  • the most preferred parameter is determined according to the target selection criterion.
  • the channel corresponding to the most preferred parameter is selected as the primary channel.
  • the characteristic parameters of the transmission channel include a bit error rate, a delay, a throughput, a stability, and an overhead.
  • the feature parameters are arranged in order to form a feature parameter queue.
  • the preferred parameter of the channel is the sum of the product of the characteristic parameter values of the channel and its corresponding weighting factor.
  • the values of the feature parameter error rate, delay, and throughput are obtained by real-time monitoring.
  • channel switching is performed.
  • the preset stabilization time is determined by a parameter collection period and a channel characteristic parameter variation characteristic.
  • the value indicates the degree of stability of the channel in a certain period.
  • the cost is a cost to characterize the normal operation of the channel, and can be measured by the value of the device loss, power consumption, and labor maintenance cost of the corresponding channel. It can be determined by estimating the cost of normal operation of the channel.
  • the weight of each parameter of each channel is measured, and the weighting factor queue of the channel is determined. [a1, a2, a3, a4, a5], the weighting factor of each parameter of each channel is determined by the characteristics of the channel, such as a satellite communication channel, and the delay parameter of such a channel is larger than that of other channels, therefore, When the weighting factor is selected, the influence of the parameter needs to be measured. The weighting factor also needs to consider the actual application requirements to ensure that the subsequent evaluation is optimal. After determining the characteristic parameter weighting factor queue of each channel, the algorithm is calculated by calculating the channel characteristic parameters.
  • a preferred queue P [p1, p2 , p3, ...
  • the channel preference parameter threshold is first determined.
  • the preferred parameter value in the preferred parameter queue is better than the preferred parameter threshold, and can be selected as a redundant hot backup or load balancing backup, or channel preference.
  • the first few channels whose parameters reach the selected threshold are used for redundant hot backup or load balancing backup.
  • the first three characteristic parameters in the channel characteristic parameter queue are real-time monitoring acquisition, so the preferred parameters of each channel dynamically change according to the state of the channel, and the arrangement of the channel preference queue also changes in real time.
  • the method increases the preference parameter continuous stabilization time judgment when switching, and performs channel switching when the preferred parameter continues to stabilize to a preset stabilization time. Avoid switching due to channel short-term interference.
  • each communication system is provided with a channel backup control module, and there are n channels between the two control modules; wherein the priority parameter queue is obtained by the channel optimization algorithm flow, according to the target
  • the selection criterion determines the most preferred parameter. When the most preferred parameter is stable and continues to reach the preset stabilization time, the channel corresponding to the most preferred parameter is selected as the primary channel for channel switching.
  • the invention also provides a channel intelligent redundancy backup system, comprising:
  • a feature parameter module configured to perform determining a feature parameter queue of each transport channel
  • a weighting factor module configured to perform weighting of each parameter of each of the transmission channels to determine a weighting factor queue corresponding to the channel characteristic parameter
  • a parameter module for performing a real-time monitoring of a characteristic parameter value of the channel, calculating a preferred parameter of each channel by using a preferred parameter algorithm of the channel, and forming a preferred parameter queue;
  • the primary channel module is configured to perform determining the most preferred parameter according to the target selection criterion. When the most preferred parameter is stable and continues to reach the preset stabilization time, the channel corresponding to the most preferred parameter is selected as the primary channel.
  • the invention can comprehensively calculate and evaluate the real-time performance parameters of the channel, and the software developed by the algorithm can intelligently analyze the current performance state of the channel in real time, and provide a switching basis for the intelligent redundant backup of the channel.
  • the invention greatly improves the reliability and stability of the transmission system, improves the use efficiency of the transmission system, and has excellent application effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种信道智能冗余备份方法,包括步骤:确定每条传输信道的特征参数队列;对所述每条传输信道的每个参数的权重进行衡量,以确定信道特征参数对应的权重因子队列;实时监测信道的特征参数值,通过信道的优选参数算法计算各信道的优选参数,并形成优选参数队列;根据目标选择标准确定最优选参数,当所述最优选参数稳定持续达到预设的稳定时间时,选用所述最优选参数对应的信道为主用信道。本发明还提供一种信道智能冗余备份系统。其解决了自动优选信道、自动切换的问题,实现多个通信信道的全面、动态的质量检测、快速优选备份功能,确保传输系统始终处于最优工作。广泛应用于通信领域。

Description

一种信道智能冗余备份方法和系统
技术领域
本发明涉及通信领域,具体为一种信道智能冗余备份方法和系统。
背景技术
为提高数据通信的可靠性,通常采用多种通信信道进行冗余备份,如卫星信道、短波信道、微波信道、有线信道(如E1/光传输)。一般通过检测信道的某个传输参数(如误码率、时延)的值决定是否进行信道切换,当传输参数的值到达某个预设定的门限值时,进行手动或自动切换,传统通信信道冗余备份方法不能有效综合各个信道的特性和状态,进行最优选择。
在实现多物理信道进行冗余备份用途中,传统上更多采用手动备份方式,即检测的当前在用信道有故障后,通过人工手动切换到正常的信道上,这造成备份切换时间长、在切换过程中中断传输业务的问题,且需要人员进行操作,不能实现自动切换,同时不能量化各个通道的传输质量,进行最优选路;对于以IP业务为传输的信道,可采用路由通断状态来触发切换,但路由通断检测一般在秒级上,切换检测时间较长,会影响传输业务系统。因此实际应用切迫需要实现多信道冗余快速自动切换功能。
发明内容
为了解决上述技术问题,本发明的目的是提供一种可实现自动切换信道的信道智能冗余备份方法和系统。
本发明所采用的技术方案是:一种信道智能冗余备份方法,包括步骤:
确定每条传输信道的特征参数队列;
对所述每条传输信道的每个参数的权重进行衡量,以确定信道特征参数对应的权重因子队列;
实时监测信道的特征参数值,通过信道的优选参数算法计算各信道的优选参数,并形成优选参数队列;
根据目标选择标准确定最优选参数,当所述最优选参数稳定持续达到预设的稳定时间时,选用所述最优选参数对应的信道为主用信道。
作为该技术方案的改进,所述传输信道的特征参数,其包括误码率、时延、吞吐量、稳定度和开销。
作为该技术方案的改进,将所述特征参数按顺序排列形成特征参数队列。
作为该技术方案的改进,所述信道的优选参数为该信道的各个特征参数值与其对应权重因子的乘积的总和。
进一步地,所述特征参数误码率、时延和吞吐量的值是通过实时监测获取的。
进一步地,当优选参数持续稳定到预设的稳定时间时,再进行信道切换。
进一步地,所述预设的稳定时间,其由参数采集周期及信道特性参数变化特性决定。
另一方面,本发明还提供一种信道智能冗余备份系统,包括:
特征参数模块,用于执行确定每条传输信道的特征参数队列;
权重因子模块,用于执行对所述每条传输信道的每个参数的权重进行衡量,以确定信道特征参数对应的权重因子队列;
优选参数模块,用于执行实时监测信道的特征参数值,通过信道的优选参数算法计算各信道的优选参数,并形成优选参数队列;
主用信道模块,用于执行根据目标选择标准确定最优选参数,当所述最优选参数稳定持续达到预设的稳定时间时,选用所述最优选参数对应的信道为主用信道。
本发明的有益效果是:本发明提供的信道智能冗余备份方法和系统,通过根据信道的特征参数及其权重,求得信道的优选参数,进而确定最优信道;解决了自动优选信道、自动切换的问题,且解决了信道快速冗余切换问题,实现多个通信信道的全面、动态的质量检测、快速优选备份功能,确保传输系统始终处于最优工作;同时实现了信道全面、动态评估、快速自动优选切换。
附图说明
下面结合附图对本发明的具体实施方式作进一步说明:
图1是本发明一实施例的信道优选算法流程示意图;
图2是本发明一实施例的信道冗余备份框图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
一种信道智能冗余备份方法,包括步骤:
确定每条传输信道的特征参数队列;
对所述每条传输信道的每个参数的权重进行衡量,以确定信道特征参数对应的权重因子队列;
实时监测信道的特征参数值,通过信道的优选参数算法计算各信道的优选参数,并形成优选参数队列;
根据目标选择标准确定最优选参数,当所述最优选参数稳定持续达到预设的稳定时间时,选用所述最优选参数对应的信道为主用信道。
作为该技术方案的改进,所述传输信道的特征参数,其包括误码率、时延、吞吐量、稳定度和开销。
作为该技术方案的改进,将所述特征参数按顺序排列形成特征参数队列。
作为该技术方案的改进,所述信道的优选参数为该信道的各个特征参数值与其对应权重因子的乘积的总和。
进一步地,所述特征参数误码率、时延和吞吐量的值是通过实时监测获取的。
进一步地,当优选参数持续稳定到预设的稳定时间时,再进行信道切换。
进一步地,所述预设的稳定时间,其由参数采集周期及信道特性参数变化特性决定。
参照图1,是本发明一实施例的信道优选算法流程示意图。本发明提供一种智能信道优选备份算法,首先确定每种(条)传输信道的特征参数,其中对每条通信信道确定其特征参数有:误码率、时延、吞吐量、稳定度、开销,将该特征参数按顺序排列形成特征参数队列C = [c1、c2、c3、c4、c5],其中前3个参数是对信道实时检测获得的参数,稳定度参数是在前三个参数检测、评估基础上对信道稳定性在一定周期内的评估值,该值表征信道在一定周期内的稳定程度,开销是表征该信道保持正常工作所要付出的代价,可与对应信道实现付出的设备损耗价值、功耗、人力维护成本等进行衡量,该参数可通过对信道正常工作的花费估算确定。
在定义和获取各个通信信道的特征参数后,对每个信道的每个参数的权重进行衡量,并确定该信道的权重因子队列A= [a1、a2、a3、a4、a5],每种信道的每个参数的权重因子由该信道的特性确定,如卫星通信信道,该类信道的时延参数相对其它信道的较大,因此,该权重因子选取时需要衡量该参数的影响,权重因子也需要考虑实际应用要求,以确保后续评估最优。在确定每个信道的特征参数权重因子队列后,通过对信道特征参数计算算法p = a1*c1 + a2*c2 +a3*c3+a4*c4+a5*c5,计算信道的优选参数,其中c1、c2、c3、c4、c5分别为信道对应的各个特征参数值,共有5个特征参数,a1、a2、a3、a4、a5分别对应各个特征参数的权重因子,p为该信道对应的最终优选参数。在综合计算获取n个信道的优选参数p后(n为信道的总条数),形成优选队列P = [p1、p2 、p3、…pn],其中p1为最优信道,p2为次优信道,依次类推,pn为质量最差信道,信道冗余切换实现p1始终为主用信道,其它信道为备用信道。在支持多信道热备下,首先确定信道优选参数门限值,优选参数队列中优选参数值优于优选参数门限值的都可选作冗余热备份或负载均衡备份,也可选择信道优选参数达到选择门限的前若干个信道作冗余热备份或负载均衡备份。
信道特征参数队列中前3个特征参数是实时监测获取,因此各信道的优选参数根据信道的状态动态变化,信道优选队列的排列也在实时变化。为避免因信道参数短时间的变化而导致不必要的信道频繁切换,本方法在切换时增加优选参数持续稳定时间判断,当优选参数持续稳定到预设的稳定时间时,再进行信道切换,从而避免因信道短时间被干扰而引起的切换。
参照图2,是本发明一实施例的信道冗余备份框图。为实现两个通信系统之间的通信,各通信系统均设有信道备份控制模块,在两个控制模块之间存在n条信道;其中通过所述的信道优选算法流程得到优先参数队列,根据目标选择标准确定最优选参数,当所述最优选参数稳定持续达到预设的稳定时间时,选用所述最优选参数对应的信道为主用信道,进行信道切换。
本发明还提供一种信道智能冗余备份系统,包括:
特征参数模块,用于执行确定每条传输信道的特征参数队列;
权重因子模块,用于执行对所述每条传输信道的每个参数的权重进行衡量,以确定信道特征参数对应的权重因子队列;
优选参数模块,用于执行实时监测信道的特征参数值,通过信道的优选参数算法计算各信道的优选参数,并形成优选参数队列;
主用信道模块,用于执行根据目标选择标准确定最优选参数,当所述最优选参数稳定持续达到预设的稳定时间时,选用所述最优选参数对应的信道为主用信道。
该发明能全面计算、评估信道的实时性能参数,通过该算法开发的软件,能实时智能分析信道的当前性能状态,为信道的智能冗余备份提供切换依据。本发明极大地提高了传输系统的可靠性和稳定性,提升了传输系统的使用效能,具有极好的应用效果。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (8)

  1. 一种信道智能冗余备份方法,其特征在于,包括步骤:
    确定每条传输信道的特征参数队列;
    对所述每条传输信道的每个参数的权重进行衡量,以确定信道特征参数对应的权重因子队列;
    实时监测信道的特征参数值,通过信道的优选参数算法计算各信道的优选参数,并形成优选参数队列;
    根据目标选择标准确定最优选参数,当所述最优选参数稳定持续达到预设的稳定时间时,选用所述最优选参数对应的信道为主用信道。
  2. 根据权利要求1所述的信道智能冗余备份方法,其特征在于:所述传输信道的特征参数,其包括误码率、时延、吞吐量、稳定度和开销。
  3. 根据权利要求2所述的信道智能冗余备份方法,其特征在于:将所述特征参数按顺序排列形成特征参数队列。
  4. 根据权利要求3所述的信道智能冗余备份方法,其特征在于:所述信道的优选参数为该信道的各个特征参数值与其对应权重因子的乘积的总和。
  5. 根据权利要求4所述的信道智能冗余备份方法,其特征在于:所述特征参数误码率、时延和吞吐量的值是通过实时监测获取的。
  6. 根据权利要求5所述的信道智能冗余备份方法,其特征在于:当优选参数持续稳定到预设的稳定时间时,再进行信道切换。
  7. 根据权利要求6所述的信道智能冗余备份方法,其特征在于:所述预设的稳定时间,其由参数采集周期及信道特性参数变化特性决定。
  8. 一种信道智能冗余备份系统,其特征在于,包括:
    特征参数模块,用于执行确定每条传输信道的特征参数队列;
    权重因子模块,用于执行对所述每条传输信道的每个参数的权重进行衡量,以确定信道特征参数对应的权重因子队列;
    优选参数模块,用于执行实时监测信道的特征参数值,通过信道的优选参数算法计算各信道的优选参数,并形成优选参数队列;
    主用信道模块,用于执行根据目标选择标准确定最优选参数,当所述最优选参数稳定持续达到预设的稳定时间时,选用所述最优选参数对应的信道为主用信道。
PCT/CN2016/093938 2016-07-12 2016-08-08 一种信道智能冗余备份方法和系统 WO2018010238A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610548215.6A CN106209328B (zh) 2016-07-12 2016-07-12 一种信道智能冗余备份方法和系统
CN201610548215.6 2016-07-12

Publications (1)

Publication Number Publication Date
WO2018010238A1 true WO2018010238A1 (zh) 2018-01-18

Family

ID=57477854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093938 WO2018010238A1 (zh) 2016-07-12 2016-08-08 一种信道智能冗余备份方法和系统

Country Status (2)

Country Link
CN (1) CN106209328B (zh)
WO (1) WO2018010238A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109067511B (zh) * 2018-09-27 2021-04-02 深圳友讯达科技股份有限公司 双模通信网络的通信方法及装置
CN108924045B (zh) * 2018-09-27 2021-11-23 深圳友讯达科技股份有限公司 双模通信网络信道衡量方法及系统
CN115038136B (zh) * 2022-05-25 2024-04-09 中国科学院国家空间科学中心 一种多通道自适应带宽切换方法及系统
CN116781156B (zh) * 2023-08-24 2023-11-10 济南安迅科技有限公司 一种用于光通信网络的信道编码方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215121A (zh) * 2010-04-07 2011-10-12 苹果公司 用于建立和利用备份通信信道的装置和方法
CN103228045A (zh) * 2013-04-10 2013-07-31 华为技术有限公司 一种信道选择方法及装置
US8711724B2 (en) * 2010-12-01 2014-04-29 Electronics And Telecommunications Research Institute Method and apparatus for managing backup channel in multi-channel environment
CN105515684A (zh) * 2015-11-26 2016-04-20 西安空间无线电技术研究所 基于自主干扰检测和实时信道分配的数据链抗干扰方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100411978B1 (ko) * 2001-01-22 2003-12-24 (주) 로커스네트웍스 내 고장성 시스템 및 이중화 방법
CN101483893B (zh) * 2008-12-23 2011-03-09 同济大学 基于动态接入路径选择机制的快速接入点切换方法
CN101790185B (zh) * 2009-01-23 2012-08-29 华为技术有限公司 上报测量报告的方法、小区载频的切换方法、设备及系统
CN103067997B (zh) * 2011-10-19 2015-11-25 中国电信股份有限公司 判定终端是否在两种无线网络之间切换的方法和设备
CN105592504B (zh) * 2014-10-23 2019-03-08 东莞宇龙通信科技有限公司 多wifi模块的传输方法、传输装置和终端
CN105188099B (zh) * 2015-08-21 2019-01-11 北京邮电大学 基于d2d通信的中继设备重选方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215121A (zh) * 2010-04-07 2011-10-12 苹果公司 用于建立和利用备份通信信道的装置和方法
US8711724B2 (en) * 2010-12-01 2014-04-29 Electronics And Telecommunications Research Institute Method and apparatus for managing backup channel in multi-channel environment
CN103228045A (zh) * 2013-04-10 2013-07-31 华为技术有限公司 一种信道选择方法及装置
CN105515684A (zh) * 2015-11-26 2016-04-20 西安空间无线电技术研究所 基于自主干扰检测和实时信道分配的数据链抗干扰方法

Also Published As

Publication number Publication date
CN106209328B (zh) 2019-09-06
CN106209328A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2018010238A1 (zh) 一种信道智能冗余备份方法和系统
CN107959633B (zh) 一种工业实时网络中基于价格机制的多路径负载均衡方法
US8989010B2 (en) Delayed based traffic rate control in networks with central controllers
US10809288B2 (en) Distributed smart grid processing
WO2019061615A1 (zh) 基于云监控的负载均衡优化方法及装置
TWI474666B (zh) 電源管理方法及電源管理裝置
US20070070919A1 (en) Device and method for network configuration and computer product
CN101494611B (zh) 一种负载分担调整方法和装置
CN111130928B (zh) 广域网中基于带内探测的网络测量方法
Gore et al. Analysis of wide area monitoring system architectures
WO2012149749A1 (zh) 负荷预测方法、装置及节能控制通信系统
Bi et al. On precision and scalability of elephant flow detection in data center with SDN
WO2014023245A1 (zh) 一种流量预测方法、系统及流量监测方法、系统
US20210281502A1 (en) System and method for continuous in-line monitoring of data-center traffic
CN103023815B (zh) 聚合链路负载分担方法及装置
TW201729564A (zh) 乙太網路供電系統的供電設備及供電方法(一)
CN107359978A (zh) 一种基于数据转发延时测量的hsr/prp网络采样同步方法
WO2022065623A1 (en) Method of implementing self-organizing network for plurality of access network devices and electronic device for performing the same
KR101738182B1 (ko) 프로세스 모듈 레벨에서 제어되지 않은 이벤트들을 식별하는 장치 및 그 방법
US11212172B2 (en) Techniques for dynamically modifying operational behavior of network devices in a wireless network
US11916770B2 (en) Pinpointing sources of jitter in network flows
CN108011838B (zh) 基于响应时间的sdn多控制器负载均衡方法
JP5923914B2 (ja) 網状態推定装置及び網状態推定プログラム
TWI524693B (zh) Feedback dynamic quality control service installation method
CN106330743B (zh) 一种流量均衡度度量的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908563

Country of ref document: EP

Kind code of ref document: A1