WO2018010236A1 - 体感拨号的控制方法及装置、存储介质 - Google Patents

体感拨号的控制方法及装置、存储介质 Download PDF

Info

Publication number
WO2018010236A1
WO2018010236A1 PCT/CN2016/093527 CN2016093527W WO2018010236A1 WO 2018010236 A1 WO2018010236 A1 WO 2018010236A1 CN 2016093527 W CN2016093527 W CN 2016093527W WO 2018010236 A1 WO2018010236 A1 WO 2018010236A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
preset
motion data
mobile terminal
somatosensory
Prior art date
Application number
PCT/CN2016/093527
Other languages
English (en)
French (fr)
Inventor
蔡亚菲
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018010236A1 publication Critical patent/WO2018010236A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and device for controlling body tone dialing, and a storage medium.
  • the somatosensory dialing function refers to the function that when the user views the contact details, the call record, and the information details, the user can directly call the contact by picking up the mobile phone close to the face, and the advantage is that the user can dial the dial without the operation of tapping the screen. .
  • a terminal such as a smart phone detects a distance between a mobile phone and an ear through a proximity sensor, and detects a change in spatial position by using an accelerometer, or detects a change in a spatial angle using a gyroscope, thereby identifying a user's dialing action, as long as the change is made.
  • the terminal When the amplitude is within a certain range, the terminal is identified as a somatosensory dialing state.
  • This method only qualitatively analyzes the magnitude of the user's actions, and the false recognition rate is high. For example, the user moves the mobile phone close to the wall, and this action is easily misidentified as dialing. Due to the high rate of misrecognition, in certain application scenarios, such as in the contact interface, this approach undoubtedly reduces the user experience of using the somatosensory dialing.
  • the main purpose of the embodiments of the present invention is to provide a method and a device for controlling the body-sensing dialing, and a storage medium, which aims to reduce the false recognition rate of the somatosensory dialing, thereby satisfying the requirement of the user to perform the somatosensory dialing in various scenarios and improving the user experience.
  • an embodiment of the present invention provides a method for controlling a body-sensing dial, and the method includes the following steps:
  • the preset data is operational characteristic data of the somatosensory dialing
  • the somatosensory dialing function is activated.
  • the step of comparing the motion data with the preset data includes:
  • the motion data is compared with the right-hand data in the preset data.
  • the step of comparing the motion data with the left-hand data in the preset data includes:
  • the step of starting the somatosensory dialing function includes:
  • the somatosensory dialing function is activated
  • the step of comparing the motion data with the right-hand data in the preset data includes:
  • the step of starting the somatosensory dialing function further includes:
  • the somatosensory dialing function is activated.
  • the method before the step of acquiring the trend of the change of the motion data, the method further includes:
  • the spatial posture of the mobile terminal when it is at rest is a preset spatial attitude, performing the step of acquiring a change trend of the motion data.
  • the method before the step of acquiring the motion data of the mobile terminal, the method further includes:
  • the step of acquiring motion data of the mobile terminal includes:
  • the method before the step of acquiring the motion data in the data buffer, the method further includes:
  • an embodiment of the present invention further provides a body-sensing dialing control device, where the device includes:
  • a first acquiring module configured to acquire motion data of the mobile terminal
  • the comparison module is configured to compare the motion data with preset data, where the preset data is operational characteristic data of the somatosensory dialing;
  • a control module configured to activate the somatosensory dialing function if the motion data matches the preset data.
  • the comparison module includes:
  • An obtaining unit configured to acquire a trend of the motion data
  • a determining unit configured to determine, according to the change trend, whether the mobile terminal is in a left-hand operation state or a right-hand operation state, and obtain a determination result
  • a first comparison unit configured to compare the motion data with left-hand data in preset data if the mobile terminal is in a left-hand operation state
  • the second comparison unit is configured to compare the motion data with the right-hand data in the preset data if the mobile terminal is in the right-hand operation state.
  • the first comparing unit includes:
  • a first obtaining subunit configured to acquire a minimum value and a first final value of the motion data in the left-hand operating state
  • a first comparison subunit configured to compare the minimum value and the first final value with a preset negative value and a first preset range, respectively;
  • the control module includes:
  • the first control unit is configured to activate the somatosensory dialing function if the minimum value is less than a preset negative value, and the first final value is within the first preset range;
  • the second comparison unit includes:
  • a second obtaining subunit configured to acquire a maximum value and a second final value of the motion data in the right hand operation state
  • a second comparison subunit configured to compare the maximum value and the second final value with a preset positive value and a second preset range, respectively;
  • the control module further includes:
  • the second control unit is configured to activate the somatosensory dialing function if the maximum value is greater than a preset positive value and the second final value is within the second preset range.
  • the device further includes:
  • a determining module configured to determine a spatial attitude of the mobile terminal when it is stationary according to the motion data
  • the acquiring unit is further configured to acquire a change trend of the motion data if the spatial posture of the mobile terminal when the mobile terminal is at a preset spatial attitude.
  • the device further includes:
  • Establishing a module configured to establish a data buffer, where the data buffer is used to store motion data of a current preset continuous time;
  • the first obtaining module is further configured to acquire motion data in the data buffer.
  • the device further includes:
  • a second acquiring module configured to acquire distance data of the mobile terminal by using the distance sensor
  • a determining module configured to determine, according to the distance data, whether the mobile terminal is in a proximity state
  • the first obtaining module is further configured to acquire motion data in the data buffer if the mobile terminal is in a proximity state.
  • the embodiment of the present invention obtains the motion data of the mobile terminal, and compares the motion data with the preset data, where the preset data is the operating characteristic data of the somatosensory dialing; if the motion data and the preset data Matching starts the somatosensory dialing function.
  • the embodiment of the present invention has a distinct feature compared with other actions that may trigger the somatosensory dialing, and the motion data of the mobile terminal is acquired by the acceleration sensor, and then the motion data and the motion data are obtained.
  • the somatosensory dialing data is compared to identify motion data that reflects the characteristics of the somatosensory dialing action, and the somatosensory dialing function is activated to achieve effective control of the somatosensory dialing function.
  • the embodiment of the present invention can effectively reduce the false recognition rate of the somatosensory dialing, and at the same time, the embodiment of the present invention activates the somatosensory dialing function according to the motion data capable of reflecting the somatosensory dialing action feature, so that the application scenario is not needed, thereby satisfying the user in various scenarios.
  • the need for somatosensory dialing improves the user experience.
  • FIG. 1 is a schematic flow chart of a first embodiment of a method for controlling body-sensing dialing according to the present invention
  • FIG. 2 is a schematic diagram showing a refinement process of comparing the motion data with preset data in FIG. 1;
  • FIG. 3 is a schematic flow chart of a second embodiment of a method for controlling body-sensing dialing according to the present invention.
  • FIG. 4 is a schematic flow chart of a third embodiment of a method for controlling body-sensing dialing according to the present invention.
  • FIG. 5 is a schematic flowchart diagram of a fourth embodiment of a method for controlling a body-sensing dial
  • FIG. 6 is a schematic diagram of an application scenario of a method for controlling a body-sensing dialing according to a fourth embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a specific process of processing data by the data analysis system in FIG. 6;
  • FIG. 8 is a schematic diagram of functional modules of a first embodiment of a body-sensing dialing control device according to the present invention.
  • FIG. 9 is a schematic diagram of a refinement function module of the comparison module in FIG. 8;
  • FIG. 10 is a schematic diagram of a refinement function module of the first comparison unit in FIG. 9;
  • Figure 11 is a schematic diagram of the refinement function module of the second comparison unit of Figure 9;
  • FIG. 12 is a schematic diagram of a refinement function module of the control module of FIG. 8;
  • FIG. 13 is a schematic diagram of functional modules of a second embodiment of a body-sensing dialing control device according to the present invention.
  • FIG. 14 is a schematic diagram of functional modules of a third embodiment of a body-sensing dialing control device according to the present invention.
  • Embodiments of the present invention provide a method for controlling a body sense dial.
  • FIG. 1 is a schematic flow chart of a first embodiment of a method for controlling a body-sensing dial according to the present invention. The method includes the following steps:
  • Step S100 Acquire motion data of the mobile terminal.
  • the mobile terminal may include a device having a somatosensory dialing function, such as a smart phone or a tablet computer.
  • the mobile terminal has an internal acceleration sensor, and the motion data of the mobile terminal is collected in real time through the acceleration sensor.
  • the motion data mainly includes acceleration data acquired by the acceleration sensor, and may of course include other converted data.
  • the accelerometer sensor is only affected by gravity, so it can be considered that the acceleration data is the gravity component.
  • step S200 the motion data is compared with preset data, where the preset data is operational characteristic data of the somatosensory dialing.
  • the motion data of the mobile terminal is acquired, the motion data is compared with the preset data.
  • the preset data is the operation feature data for the somatosensory dialing, that is, the motion data capable of reflecting the somatosensory dialing action feature. It has been found that the motion data of the somatosensory dialing action has some obvious features compared with other actions that may trigger the somatosensory dialing. Therefore, by comparing and analyzing the acquired motion data of the mobile terminal with the preset somatosensory dialing data, The somatosensory dialing action can be identified by the motion data.
  • the mobile terminal may first compare the change trend of the motion data and the preset data, and if the change trend is the same, compare the corresponding feature values.
  • the mobile terminal can also compare the motion data and the preset data one by one, or calculate the motion data and the preset data according to a preset algorithm, thereby obtaining a comparison result, and the specific implementation can be flexibly set according to actual needs. .
  • Step S300 if the motion data matches the preset data, the somatosensory dialing function is activated.
  • the mobile terminal After comparing the motion data with the preset data, if the two match, the mobile terminal activates the somatosensory dialing function.
  • the trend and value of the change of the motion data and the preset data are compared. If the obtained trend and value of the motion data and the preset data are identical, or the trends of the two are approximately the same, and the difference between the corresponding feature values is within the specified range, the motion data and the pre-motion can be considered. Let the data match, at this time, the mobile terminal starts the somatosensory dialing function. when the specific implementation, other matching rules and matching methods may also be adopted, such as calculating the matching degree between the motion data and the preset data by using a mathematical model, and if the calculation result shows that the matching degree of the two is within a suitable range, the somatosensory dialing is started.
  • the function can be flexibly set according to actual needs.
  • the motion data of the mobile terminal is acquired; the motion data is compared with the preset data; if the motion data matches the preset data, the somatosensory dialing function is activated.
  • the embodiment has a distinct feature compared with other actions that may trigger the somatosensory dialing, and the motion data of the mobile terminal is acquired by the acceleration sensor, and the motion data and the preset are further The data of the somatosensory dialing is compared to identify the motion data that can reflect the characteristics of the somatosensory dialing action, and the somatosensory dialing function is activated to achieve effective control of the somatosensory dialing function.
  • the embodiment can effectively reduce the false recognition rate of the somatosensory dialing, and at the same time, the embodiment of the present invention activates the somatosensory dialing function according to the motion data capable of reflecting the somatosensory dialing action feature, so that the application scenario does not need to be considered, thereby satisfying the user in various scenarios.
  • the need for somatosensory dialing enhances the user experience.
  • FIG. 2 is a schematic diagram of a refinement process of comparing the motion data with preset data in FIG.
  • the first embodiment of the method for controlling the body-sensing dialing according to the present invention, the step S200 may include:
  • Step S210 Obtain a change trend of the motion data.
  • Step S220 Determine, according to the change trend, whether the mobile terminal is in a left-hand operation state or a right-hand operation state.
  • Step S230 If the mobile terminal is in the left-hand operation state, compare the motion data with the left-hand data in the preset data.
  • Step S240 If the mobile terminal is in the right-hand operation state, compare the motion data with the right-hand data in the preset data.
  • the mobile terminal acquires a change trend of the motion data, and determines, according to the change trend, whether the mobile terminal is in a left-hand operation state or a right-hand operation state.
  • the mobile terminal may first obtain a corresponding data waveform according to the motion data, and acquire a trend of the motion data according to the data waveform.
  • the acceleration data collected by the acceleration sensor exhibits an opposite change trend. For example, when the waveform of the former is at the peak, the waveform of the latter is just in the trough, and the former reaches the maximum value. When the latter reaches the minimum. Since the trend of the motion data of the left-hand operation and the right-hand operation has a significant difference, it is possible to first determine whether the user is performing a left-hand operation or a right-hand operation based on the trend of the motion data.
  • the mobile terminal may also determine whether the user is performing a left-hand operation or a right-hand operation without changing the trend of the motion data. For example, the mobile terminal may directly detect whether the motion data collected during a period of time is positive or negative. The difference between positive and negative values determines whether the user is performing a left-handed operation or a right-handed operation.
  • the mobile terminal compares the motion data with the corresponding preset data according to the judgment result of the left and right hands. If the mobile terminal is in the left-hand operation state, the corresponding preset data in the left-hand operation state is compared; otherwise, if the mobile terminal is in the right-hand operation state, the corresponding preset data in the right-hand operation state is compared, thereby obtaining a comparison result.
  • the mobile terminal may not be judged to be in the left-hand operation state or the right-hand operation state, and the motion data is directly compared with the preset data in the preset left-right hand operation state to determine the change trend of the motion data. Whether the preset data corresponding to the left or right hand has the same change trend, and the comparison result is obtained.
  • the motion data of the mobile terminal is acquired; the trend of the motion data is acquired; and the mobile terminal is determined to be in a left-hand operation state or a right-hand operation state according to the change trend; if the mobile terminal is in a left-hand operation a state, the motion data is compared with left-hand data in the preset data; if the mobile terminal is in a right-hand operation state, comparing the motion data with right-hand data in the preset data; if the motion data and the motion data When the preset data matches, the somatosensory dialing function is activated.
  • the acceleration data collected by the acceleration sensor exhibits an opposite change trend.
  • the motion data it can first determine whether the user is performing a left-hand operation or a right-hand operation, and then comparing the motion data and the preset data in the corresponding operation state, thereby effectively improving the efficiency of the comparison.
  • FIG. 3 is a schematic flowchart diagram of a second embodiment of a method for controlling a body-sensing dialing according to the present invention. Based on the embodiment shown in FIG. 2, the step S230 may include:
  • Step S231 acquiring a minimum value and a first final value of the motion data in the left-hand operation state.
  • Step S232 comparing the minimum value and the first final value with a preset negative value and a first preset range, respectively.
  • the step S300 may include:
  • Step S310 if the minimum value is less than a preset negative value, and the first final value is within the first preset range, the somatosensory dialing function is activated.
  • the step S240 may include:
  • Step S241 acquiring a maximum value and a second final value of the motion data in the right-hand operation state.
  • Step S242 comparing the maximum value and the second final value with a preset positive value and a second preset range, respectively.
  • the step S300 may further include:
  • Step S320 if the maximum value is greater than the preset positive value, and the second final value is within the second preset range, the somatosensory dialing function is activated.
  • the motion data in the corresponding operation state and the corresponding preset data are further compared and analyzed. Specifically, the mobile terminal acquires an extreme value and a final value of the motion data in the corresponding operation state, and compares the extreme value and the final value with the corresponding preset data.
  • the motion data of the mobile terminal is detected by the acceleration sensor and collected by the data acquisition system.
  • the acceleration sensor can detect the acceleration data in the x, y, and z axes.
  • the data set presents obvious features for the action of making a call, and can be combined with other interference actions.
  • the data on the x-axis of the accelerometer sensor is taken as an example here.
  • the data for other axes can be extracted in a similar way.
  • the data at the beginning is a positive value, and the change is gentle. After a short period of time, a small peak appears, and then the data quickly decays to a minimum value, which must be less than a negative value, after which the data will be slightly The upward trend, but due to the effective work of the data acquisition system, the data will be quickly cut off to a certain final value, the final value will have a certain range of values.
  • the data presented by the process is reversed from the left-handed call.
  • the data at the beginning is a negative value, and the change is gentle.
  • a small trough will appear, after which the data quickly rises to a maximum value.
  • Must be greater than a certain positive value after which the data will have a slight downward trend, but due to the effective work of the data acquisition system, the data will be quickly cut off to a certain final value, and the final value will also have a value range.
  • the phone is switched from the right hand to the left hand:
  • the beginning of the data set changes very similarly to the left-handed call, but the data does not decay to a very significant negative value, and in many cases, the data is very long-tailed, that is, at the end of the data change, the data repeatedly shows the peak And the trough.
  • the data changes are different, but they all have obvious characteristics, that is, they only change within a positive range or only within a negative value.
  • the beginning of the data set changes very similarly to the right-handed call, but the data will have a long tail after it reaches its maximum value and will not be truncated very quickly.
  • motion data features that may cause false touches are significantly different from motion data features of the somatosensory dialing action, and thus motion data can be quantitatively analyzed based on these features.
  • the minimum value of the motion data may be acquired in a fast falling phase of data, and the minimum value is also a minimum value, and is necessarily smaller than a certain negative value;
  • the data will be quickly truncated to a certain final value, which must be within the preset range. If the minimum value is less than the preset negative value, and the final value is within the preset range, the motion data and the preset data may be considered to match, and the somatosensory dialing function is activated.
  • the maximum value of the motion data may be acquired in a fast rising phase of the data, and the maximum value is also a maximum value, and must be greater than a certain positive value; At work, the data is quickly truncated to a certain final value, which must also be within the preset range. If the maximum value is greater than the preset positive value, and the final value is within the preset range, the motion data may be considered to match the preset data, and the somatosensory dialing function is activated.
  • the motion data of the mobile terminal is acquired; the trend of the motion data is obtained; and the mobile terminal is determined to be in a left-hand operation state or a right-hand operation state according to the change trend; and the left-hand operation state is obtained.
  • a minimum value of the motion data and a first final value comparing the minimum value and the first final value with a preset negative value and a first preset range; if the minimum value is less than a preset negative value, and The first final value is within the first preset range, the somatosensory dialing function is activated; the maximum value and the second final value of the motion data in the right-hand operation state are acquired; and the maximum value and the second final value are respectively
  • the preset positive value is compared with the second preset range; if the maximum value is greater than the preset positive value, and the second final value is within the second preset range, the somatosensory dialing function is activated.
  • this embodiment identifies the body sense dial by quantitatively analyzing whether the motion data matches the preset somatosensory dial data.
  • the action can effectively reduce the false recognition rate of the somatosensory dialing, satisfy the user's need for the somatosensory dialing in various scenarios, and improve the user experience.
  • FIG. 4 is a schematic flowchart of a third embodiment of a method for controlling a body-sensing dialing according to the present invention. Before the step S210, the method may further include:
  • Step S201 determining, according to the motion data, a spatial attitude of the mobile terminal when it is stationary;
  • Step S210 is replaced by: if the spatial posture of the mobile terminal when it is stationary is a preset spatial posture, performing the step of: acquiring a change trend of the motion data.
  • the motion data in order to further improve the recognition efficiency, before acquiring the change trend of the motion data, it may first determine, according to the motion data, whether the spatial posture of the mobile terminal at rest is a preset spatial gesture of the body-sensing dialing, and if so, Then, the trend of the movement data is obtained.
  • the mobile terminal when the mobile terminal is at rest, there are various different spatial postures, such as horizontal placement, vertical placement, oblique placement, and the like.
  • the mobile terminal When the call is made normally, the mobile terminal is in a static state and has a certain inclination, so the initial phase of the motion data set changes slowly and smoothly, and the change on the acceleration sensitive axis when the mobile terminal is tilted, so-called gravity sensing, can be sensed.
  • the tilt angle which should be within a preset range, allows for a quick analysis of motion data by a brief analysis of the motion data.
  • the motion data of the mobile terminal is acquired; the spatial posture of the mobile terminal when the mobile terminal is stationary is determined according to the motion data; and the spatial posture of the mobile terminal when the mobile terminal is at a preset spatial attitude is acquired.
  • a trend of the change of the motion data determining, according to the change trend, whether the mobile terminal is in a left-hand operation state or a right-hand operation state; acquiring an extreme value and a final value of the motion data in the corresponding operation state; The extreme value and the final value are respectively compared with corresponding preset data; if the motion data matches the preset data, the somatosensory dialing function is activated.
  • the data of the acceleration sensor of the mobile terminal is only affected by gravity during stationary, it can be considered that the data of the acceleration sensor indicates the gravity component at this time, so that the attitude of the mobile terminal at the moment can be obtained through a simple attitude conversion, and the posture range of the normal call is obtained. Compare and quickly filter out abnormal conditions to improve the efficiency of the algorithm.
  • FIG. 5 is a schematic flowchart diagram of a fourth embodiment of a method for controlling a body-sensing dialing according to the present invention. Based on the embodiment shown in FIG. 1 , before the step S100, the method may further include:
  • Step S10 a data buffer is created, and the data buffer is used to store motion data of a current preset continuous time.
  • step S100 can be replaced by:
  • Step S110 acquiring motion data in the data buffer.
  • the mobile terminal can establish a data buffer for storing the motion data in the current preset continuous time, reducing the storage space for storing the motion data acquired in real time, and then acquiring the motion in the data buffer. data.
  • the data buffer always stores a piece of data continuously operated by the user recently, so as to ensure that the collected motion data is still valid when the motion data is larger than the buffer size. jobs.
  • the duration of the user's somatosensory dialing action is 1 s to 2 s, and the data buffer stores acceleration data for the current period of time.
  • the data analysis system Upon detecting that the mobile terminal is in a stationary state, the data analysis system reversely copies the data of the data buffer and analyzes the data. Because the data analysis system uses the reverse order method when copying data, that is, the data saved by the data analysis system is a data set that starts moving from the ear to the far end, which can extract waveform variation features more efficiently.
  • the size of the data buffer can be flexibly set according to the dialing time.
  • the reverse order may also be used.
  • the data buffer may be copied in a positive sequence manner.
  • the motion data is analyzed in reverse order when performing data analysis. In the specific implementation, it can be flexibly set according to actual needs.
  • the method may further include:
  • Step S101 Obtain distance data of the mobile terminal by using a distance sensor.
  • Step S102 determining, according to the distance data, whether the mobile terminal is in a proximity state
  • Step S110 is replaced by: if the mobile terminal is in a close state, performing the step of: acquiring motion data in the data buffer.
  • the distance data of the mobile terminal may be acquired by the distance sensor, and then determining whether the mobile terminal is in a close state according to the distance data, and if And executing the step of: acquiring motion data in the data buffer.
  • the feature that the call is required to be close to the ear is used.
  • the data acquisition system will only retain the motion data set that best reflects the characteristics of the call.
  • the motion process of the mobile terminal may include moving proximity and moving away. In both cases, the data acquisition system collects motion data; when the mobile terminal is in a stationary state, the distance sensor acquires the distance data of the mobile terminal, thereby determining the movement. Whether the terminal is moving close or moving away.
  • the motion data just collected is directly cleared; if the mobile terminal is in the proximity state, the motion data in the data buffer is acquired, and the motion data is further analyzed.
  • FIG. 6 is a schematic diagram of an application scenario of a method for controlling a body-sensing dialing according to a fourth embodiment of the present invention.
  • the mobile terminal establishes a data buffer for storing motion data for the current preset continuous time, and then the data analysis system acquires motion data in the data buffer.
  • the specific implementation is as follows:
  • the acceleration sensor detects whether the mobile terminal is in a motion state, and only when detecting that the mobile terminal is in motion, the data collection system collects data, that is, data at time t is added to the data buffer. Then, the distance sensor re-detects whether the mobile terminal is in a close state, and if the mobile terminal is not in the proximity state, the data in the data buffer is cleared. The data analysis system is started to further analyze the data only when the mobile terminal is in a close state.
  • FIG. 7 is a schematic diagram of a specific process of processing data by the data analysis system of FIG. 6.
  • the mobile terminal is described as a mobile phone.
  • Data acquisition system when the phone is at a standstill and close to the state
  • the motion data in the buffer is copied in reverse order, and the data is smoothed.
  • the initial data is used to analyze the state of the mobile phone at rest, and it is determined whether the spatial posture of the mobile phone satisfies the requirement, and if so, whether the user is the left or right hand to make a call.
  • the data waveform is sequentially subjected to gentle interval detection, peak detection, fast decay phase detection, minimum detection, and termination value detection, wherein the minimum value detection and the termination value detection correspond to the minimum value and the first in the second embodiment.
  • the processing of the final value if the right hand dials, the data waveform is sequentially subjected to the gentle interval detection, the valley detection, the fast rising phase detection, the maximum detection and the termination value detection, wherein the maximum value detection and the termination value detection correspond to the second embodiment.
  • the embodiment of the present invention further provides a computer readable storage medium, the storage medium comprising a set of instructions, wherein the instructions are used to execute the method for controlling the body sense dialing according to any of the above embodiments.
  • the data buffer is used to store the motion data of the current preset continuous time; the distance data of the mobile terminal is acquired by the distance sensor; and the mobile terminal is determined according to the distance data. Whether it is in a close state; if so, acquiring motion data in the data buffer; comparing the motion data with preset data; if the motion data matches the preset data, starting a somatosensory dialing function.
  • the motion data in the data buffer is further analyzed only when the mobile terminal is in a stationary state and close to the state, which can effectively reduce the amount of data analyzed and reduce data interference. , greatly improved the efficiency of somatosensory dialing recognition.
  • the embodiment of the invention further provides a control device for the somatosensory dialing.
  • FIG. 8 is a schematic diagram of functional modules of a first embodiment of a body-sensing dialing control apparatus according to the present invention.
  • the device includes:
  • the first obtaining module 100 is configured to acquire motion data of the mobile terminal.
  • the mobile terminal may include a device having a somatosensory dialing function, such as a smart phone or a tablet computer.
  • the mobile terminal has an internal acceleration sensor, and the first acquisition module 100 passes The acceleration sensor collects motion data of the mobile terminal in real time.
  • the motion data mainly includes acceleration data acquired by the acceleration sensor, and may of course include other converted data.
  • the accelerometer sensor is only affected by gravity, so it can be considered that the acceleration data is the gravity component.
  • the comparison module 200 is configured to compare the motion data with preset data, wherein the preset data is operational characteristic data of the somatosensory dialing.
  • the comparison module 200 compares the motion data with the preset data.
  • the preset data is the operational characteristic data of the somatosensory dialing, that is, the motion data capable of reflecting the characteristics of the somatosensory dialing action. It has been found that the motion data of the somatosensory dialing action has some obvious features compared with other actions that may trigger the somatosensory dialing. Therefore, the comparison module 200 compares the acquired motion data of the mobile terminal with the preset somatosensory dialing data. Analysis, you can identify the physical dialing action through the motion data.
  • the comparison module 200 may first compare the change trend of the motion data and the preset data, and if the change trend is the same, compare the corresponding feature values.
  • the comparison module 200 can also compare the motion data and the preset data one by one, or calculate the motion data and the preset data according to a preset algorithm, thereby obtaining a comparison result, and the specific implementation can be flexible according to actual needs. Settings.
  • the control module 300 is configured to activate the somatosensory dialing function if the motion data matches the preset data.
  • the comparison module 200 compares the motion data with the preset data, if the two match, the mobile terminal activates the somatosensory dialing function.
  • the trend and value of the change of the motion data and the preset data are compared. If the trend and the value of the motion data acquired by the control module 300 and the preset data are exactly the same, or the trends of the two are substantially the same, and the difference between the corresponding feature values is specified. Within the scope, it can be considered that the motion data matches the preset data, and the mobile terminal starts the somatosensory dialing function. Certainly, other matching rules and matching methods may also be adopted in the specific implementation, for example, calculating a matching degree between the motion data and the preset data by using a mathematical model, and if the calculation result shows that the matching degree of the two is within a suitable range, the somatosensor dialing is started.
  • the function can be flexibly set according to actual needs.
  • the first obtaining module 100 acquires motion data of the mobile terminal; the comparison module 200 compares the motion data with preset data; if the motion data matches the preset data, the control module 300 Activate the somatosensory dialing feature. Since the motion data of the somatosensory dialing action has some obvious features compared with other actions that may trigger the somatosensory dialing, for example, the change trend of the data and the numerical value are significantly different.
  • the embodiment of the present invention obtains the mobile terminal by using the first acquiring module 100.
  • the motion data is further compared and matched by the comparison module 200 and the control module 300 to the data of the preset somatosensory dialing, thereby identifying the data that best reflects the characteristics of the somatosensory dialing action, and starting the somatosensory dialing function to achieve the Effective control of the somatosensory dialing function.
  • the embodiment can effectively reduce the false recognition rate of the somatosensory dialing, and at the same time, the embodiment of the present invention activates the somatosensory dialing function according to the motion data capable of reflecting the somatosensory dialing action feature, so that the application scenario does not need to be considered, thereby satisfying the user in various scenarios.
  • the need for somatosensory dialing enhances the user experience.
  • FIG. 9 is a schematic diagram of a refinement function module of the comparison module in FIG.
  • the comparison module 200 includes:
  • the acquiring unit 210 is configured to acquire a change trend of the motion data
  • the determining unit 220 is configured to determine, according to the change trend, whether the mobile terminal is in a left-hand operation state or a right-hand operation state;
  • the first comparison unit 230 is configured to compare the motion data with left-hand data in preset data if the mobile terminal is in a left-hand operation state;
  • the second comparison unit 240 is configured to: if the mobile terminal is in a right-hand operation state, The motion data is compared with the right-hand data in the preset data.
  • the acquiring unit 210 acquires a change trend of the motion data, and the determining unit 220 determines, according to the change trend, whether the mobile terminal is in a left-hand operation state or a right-hand operation state.
  • the obtaining unit 210 may first obtain a corresponding data waveform according to the motion data, and acquire a trend of the motion data according to the data waveform.
  • the acceleration data collected by the acceleration sensor exhibits an opposite change trend. For example, when the waveform of the former is at the peak, the waveform of the latter is just in the trough, and the former reaches the maximum value. When the latter reaches the minimum.
  • the determination unit 220 can first determine whether the user is performing a left-hand operation or a right-hand operation according to the change trend of the motion data.
  • the mobile terminal may also determine whether the user is performing a left-hand operation or a right-hand operation without changing the trend of the motion data. For example, the mobile terminal may directly detect whether the motion data collected during a period of time is positive or negative. The difference between positive and negative values determines whether the user is performing a left-handed operation or a right-handed operation.
  • the mobile terminal compares the motion data with the corresponding preset data according to the judgment result of the left and right hands. If the mobile terminal is in the left-hand operation state, the first comparison unit 230 compares the corresponding preset data in the left-hand operation state; otherwise, if the mobile terminal is in the right-hand operation state, the second comparison unit 240 compares the corresponding preset in the right-hand operation state. Data, and thus the comparison results.
  • the mobile terminal may not be judged to be in the left-hand operation state or the right-hand operation state, and the motion data is directly compared with the preset data in the preset left-right hand operation state to determine the change trend of the motion data. Whether the preset data corresponding to the left or right hand has the same change trend, and the comparison result is obtained.
  • the first obtaining module 100 acquires motion data of the mobile terminal; the acquiring unit 210 acquires a trend of the change of the motion data; and the determining unit 220 determines the trend according to the change trend. Determining whether the mobile terminal is in a left-hand operation state or a right-hand operation state; if the mobile terminal is in a left-hand operation state, the first comparison unit 230 compares the motion data with left-hand data in preset data; if the mobile terminal In the right-hand operation state, the second comparison unit 240 compares the motion data with the right-hand data in the preset data; if the motion data matches the preset data, the control module 300 activates the somatosensory dialing function.
  • the acceleration data collected by the acceleration sensor exhibits an opposite change trend when the user performs the left-hand operation and the right-hand operation, it is possible to first determine whether the user is performing a left-hand operation or a right-hand operation according to the change trend of the motion data, and then comparing Corresponding operation data and preset data in the operating state, thereby effectively improving the efficiency of the comparison.
  • FIG. 10 is a schematic diagram of a refinement function module of the first comparison unit in FIG.
  • the first comparison unit 230 includes:
  • the first obtaining sub-unit 231 is configured to acquire a minimum value and a first final value of the motion data in the left-hand operation state;
  • the first comparison sub-unit 232 is configured to compare the minimum value and the first final value with a preset negative value and a first preset range, respectively.
  • FIG. 11 is a schematic diagram of a refinement function module of the second comparison unit in FIG.
  • the second comparison unit 240 includes:
  • the second obtaining sub-unit 241 is configured to acquire a maximum value and a second final value of the motion data in the right-hand operating state
  • the second comparison subunit 242 is configured to compare the maximum value and the second final value with a preset positive value and a second preset range, respectively;
  • FIG. 12 is a schematic diagram of a refinement function module of the control module in FIG.
  • the control module 300 includes:
  • the first control unit 310 is configured to activate the somatosensory dialing function if the minimum value is less than a preset negative value, and the first final value is within the first preset range;
  • the second control unit 320 is configured to activate the somatosensory dialing function if the maximum value is greater than a preset positive value and the second final value is within the second preset range.
  • the comparison module 200 further performs further comparative analysis on the motion data in the corresponding operation state and the corresponding preset data. Specifically, the mobile terminal acquires an extreme value and a final value of the motion data in the corresponding operation state, and compares the extreme value and the final value with the corresponding preset data.
  • the motion data of the mobile terminal is detected by the acceleration sensor and collected by the data acquisition system.
  • the acceleration sensor can detect the acceleration data in the x, y, and z axes. After a large number of sample analysis, the data set exhibits obvious characteristics for the action of making a call, which can form a significant contrast with other interference actions.
  • the data on the x-axis of the accelerometer sensor is taken as an example. The data of other axes can be extracted in a similar way.
  • the data at the beginning is a positive value, and the change is gentle. After a short period of time, a small peak appears, and then the data quickly decays to a minimum value, which must be less than a negative value, after which the data will be slightly The upward trend, but due to the effective work of the data acquisition system, the data will be quickly cut off to a certain final value, the final value will have a certain range of values.
  • the data presented by the process is reversed from the left-handed call.
  • the data at the beginning is a negative value, and the change is gentle.
  • a small trough will appear, after which the data quickly rises to a maximum value.
  • Must be greater than a certain positive value after which the data will have a slight downward trend, but due to the effective work of the data acquisition system, the data will be quickly cut off to a certain final value, and the final value will also have a value range.
  • the phone is switched from the right hand to the left hand:
  • the beginning of the data set changes very similarly to the left-handed call, but the data does not decay to a very significant negative value, and in many cases, the data is very long-tailed, that is, at the end of the data change, the data repeatedly shows the peak And the trough.
  • the data changes are different, but they all have obvious characteristics, that is, they only change within a positive range or only within a negative value.
  • the beginning of the data set changes very similarly to the right-handed call, but the data will have a long tail after it reaches its maximum value and will not be truncated very quickly.
  • the first obtaining sub-unit 231 may acquire a minimum value of the motion data in a fast falling phase of data, where the minimum value is also a minimum value, and is less than a certain negative value. Value; due to the effective operation of the data acquisition system, the data will be quickly truncated to a certain final value, the final value must be within the preset range, and the first comparison sub-unit 232 separates the minimum and final values respectively. Set the negative value to the preset range for comparison.
  • the first control unit 310 may consider the motion data to match the preset data and activate the somatosensory dialing function.
  • the second acquisition sub-unit 241 may acquire the maximum value of the motion data in the fast rising phase of the data, and the maximum value is also the maximum value, and must be greater than a certain positive value; Due to the effective operation of the data acquisition system, the data is quickly truncated to a certain final value, and the final value must be within a preset range.
  • the second comparison sub-unit 242 separately sets the maximum value and the final value respectively. Positive values are compared to preset ranges. If the maximum value is greater than the preset positive value, and the final value is within the preset range, the second control unit 320 may consider the motion data to match the preset data, and Activate the somatosensory dialing feature.
  • the first obtaining module 100 acquires the motion data of the mobile terminal; the obtaining unit 210 acquires the trend of the motion data; and the determining unit 220 determines whether the mobile terminal is in the left-hand operation state or the right-hand operation according to the change trend.
  • a first acquisition sub-unit 231 acquires a minimum value and a first final value of the motion data in the left-hand operation state; the first comparison sub-unit 232 compares the minimum value and the first final value with a preset negative value, respectively The first preset range is compared; if the minimum value is less than the preset negative value, and the first final value is within the first preset range, the first control unit 310 activates the somatosensory dialing function; the second obtaining sub The unit 241 acquires the maximum value and the second final value of the motion data in the right-hand operation state; the second comparison sub-unit 242 performs the maximum value and the second final value with the preset positive value and the second preset range, respectively.
  • the second control unit 320 activates the somatosensory dialing function. Since the user has various actions when performing left and right hand operations, and the motion data corresponding to each action is different, this embodiment identifies the body sense dial by quantitatively analyzing whether the motion data matches the preset somatosensory dial data. The action can effectively reduce the false recognition rate of the somatosensory dialing, satisfy the user's need for the somatosensory dialing in various scenarios, and improve the user experience.
  • FIG. 13 is a schematic diagram of functional modules of a second embodiment of a body-sensing dialing control apparatus according to the present invention.
  • the device also includes:
  • the determining module 400 is configured to determine a spatial attitude of the mobile terminal when it is stationary according to the motion data;
  • the acquiring unit 210 is further configured to acquire a change trend of the motion data if the spatial posture of the mobile terminal when it is stationary is a preset spatial posture.
  • the determining module 400 may first determine, according to the motion data, whether the spatial posture of the mobile terminal when stationary is a preset somatosensory dialing. Space attitude, if yes, get the order The element 210 acquires a trend of the change in the motion data.
  • the mobile terminal when the mobile terminal is at rest, there are various different spatial postures, such as horizontal placement, vertical placement, oblique placement, and the like.
  • the mobile terminal When the call is made normally, the mobile terminal is in a static state and has a certain inclination, so the initial phase of the motion data set changes slowly and smoothly, and the change on the acceleration sensitive axis when the mobile terminal is tilted, so-called gravity sensing, can be sensed.
  • the tilt angle which should be within a preset range, allows for a quick analysis of motion data by a brief analysis of the motion data.
  • the first acquiring module 100 acquires motion data of the mobile terminal; the determining module 400 determines a spatial posture of the mobile terminal when it is stationary according to the motion data; and if the mobile terminal is in a static space posture,
  • the acquisition unit 210 acquires a change trend of the motion data, and the determining unit 220 determines whether the mobile terminal is in a left-hand operation state or a right-hand operation state according to the change trend;
  • the acquisition sub-unit 231 acquires the corresponding operation.
  • the extreme value and the final value of the motion data in the state; the comparison sub-unit 232 compares the extreme value and the final value with corresponding preset data respectively; if the motion data matches the preset data,
  • the control module 300 activates the somatosensory dialing function.
  • the data of the acceleration sensor of the mobile terminal is only affected by gravity during stationary, it can be considered that the data of the acceleration sensor indicates the gravity component at this time, so that the attitude of the mobile terminal at the moment can be obtained through a simple attitude conversion, and the posture range of the normal call is obtained. Compare and quickly filter out abnormal conditions to improve the efficiency of the algorithm.
  • FIG. 14 is a schematic diagram of functional modules of a third embodiment of a body-sensing dialing control apparatus according to the present invention.
  • the device also includes:
  • the establishing module 500 is configured to establish a data buffer, where the data buffer is used to store motion data of a current preset continuous time;
  • the first obtaining module 100 is further configured to acquire motion data in the data buffer.
  • the setup module 500 can establish a data buffer for storing motion data for a currently preset continuous time, and then acquiring motion data in the data buffer.
  • the setup module 500 always saves a piece of data that the user has continuously operated in the past to ensure that the collected motion data is still valid when the motion data is larger than the buffer size. jobs.
  • the duration of the user's somatosensory dialing action is 1 s to 2 s, and the setup module 500 stores the acceleration data for the current period of time.
  • the first obtaining module 100 Upon detecting that the mobile terminal is in a stationary state, the first obtaining module 100 reversely copies the data of the data buffer and analyzes the data. Since the first acquisition module 100 uses the reverse order mode when copying data, that is, the data saved by the data analysis system is a data set that starts moving from the ear to the far end, this way, the waveform change feature can be extracted more efficiently.
  • the size of the data buffer can be flexibly set according to the dialing time.
  • the reverse order may also be used.
  • the data buffer may be copied in a positive sequence manner.
  • the motion data is analyzed in reverse order when performing data analysis. In the specific implementation, it can be flexibly set according to actual needs.
  • the device further includes:
  • the second obtaining module 600 is configured to acquire distance data of the mobile terminal by using the distance sensor;
  • the determining module 700 is configured to determine, according to the distance data, whether the mobile terminal is in a proximity state
  • the first obtaining module 100 is further configured to acquire motion data in the data buffer if the mobile terminal is in a proximity state.
  • the second obtaining module 600 may obtain the distance data of the mobile terminal by using the distance sensor, and the determining module 700 according to the The distance data determines whether the mobile terminal is in a close state, and if so, performs the step of: acquiring motion data in the data buffer.
  • the feature that the call is required to be close to the ear is used.
  • the data acquisition system will only retain the motion data set that best reflects the characteristics of the call.
  • Mobile terminal The motion process may include motion approach and motion distance. In both cases, the data acquisition system collects motion data; when the mobile terminal is in a stationary state, the second acquisition module 600 obtains distance data of the mobile terminal through the distance sensor, thereby determining The module 700 can determine whether the mobile terminal is moving close to or moving away.
  • the motion data just collected is directly cleared; if the mobile terminal is in the proximity state, the first acquisition module 100 acquires motion data in the data buffer, and then the motion is performed. The data was further analyzed.
  • FIG. 6 is a schematic diagram of an application scenario of a method for controlling a body-sensing dialing according to a fourth embodiment of the present invention.
  • the mobile terminal establishes a data buffer for storing motion data for the current preset continuous time, and then the data analysis system acquires motion data in the data buffer.
  • the specific implementation is as follows:
  • the acceleration sensor detects whether the mobile terminal is in a motion state, and only when detecting that the mobile terminal is in motion, the data collection system collects data, that is, data at time t is added to the data buffer. Then, the distance sensor re-detects whether the mobile terminal is in a close state, and if the mobile terminal is not in the proximity state, the data in the data buffer is cleared. The data analysis system is started to further analyze the data only when the mobile terminal is in a close state.
  • FIG. 7 is a schematic diagram of a specific process of processing data by the data analysis system of FIG. 6.
  • the mobile terminal is described as a mobile phone.
  • the data acquisition system copies the motion data in the buffer in reverse order, and smoothes the data, and analyzes the state of the mobile phone when the mobile phone is stationary by reading the initial data, and determines whether the spatial posture of the mobile phone satisfies the requirement, if Then, determine whether the user is making a call by left or right hand.
  • the data waveform is sequentially subjected to gentle interval detection, peak detection, fast decay phase detection, minimum detection and termination value detection, wherein the peak detection, the minimum detection and the termination value detection correspond to the minimum value in the second embodiment.
  • the processing process of the first final value if the right hand dials, the data waveform is sequentially subjected to gentle interval detection, trough detection, fast rising phase detection, maximum detection and termination value detection, wherein The valley detection, the maximum value detection, and the termination value detection correspond to the processing procedures of the maximum value and the second final value in the second embodiment.
  • the establishing module 500 stores the motion data of the current preset continuous time; the second acquiring module 600 acquires the distance data of the mobile terminal by using the distance sensor; the determining module 700 determines, according to the distance data, whether the mobile terminal is in the The first acquisition module 100 acquires the motion data in the data buffer; the comparison module 200 compares the motion data with the preset data; if the motion data matches the preset data, Then, the control module 300 activates the somatosensory dialing function.
  • the motion data in the data buffer is further analyzed only when the mobile terminal is in a stationary state and close to the state, which can effectively reduce the amount of data analyzed and reduce data interference. , greatly improved the efficiency of somatosensory dialing recognition.
  • the first obtaining module 100, the comparing module 200, the control module 300, the determining module 400, the establishing module 500, the second obtaining module 600, and the determining module 700 may each be a central processing unit (CPU). Or digital signal processing (DSP, Digital Signal Processor), or Field Programmable Gate Array (FPGA), etc.; the CPU, DSP, FPGA can be built into the control device.
  • CPU central processing unit
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the embodiment of the present invention obtains the motion data of the mobile terminal, and compares the motion data with the preset data, where the preset data is the operating characteristic data of the somatosensory dialing; if the motion data and the preset data Matching starts the somatosensory dialing function.
  • the embodiment of the present invention is based on the motion data of the somatosensory dialing action and other actions that may trigger the somatosensory dialing.
  • the motion data of the mobile terminal is acquired by the acceleration sensor, and the motion data is compared with the data of the preset body sense dialing, thereby identifying the motion data that can reflect the characteristics of the somatosensory dialing action, and starting
  • the somatosensory dialing function enables effective control of the somatosensory dialing function.
  • the embodiment of the present invention can effectively reduce the false recognition rate of the somatosensory dialing, and at the same time, the embodiment of the present invention activates the somatosensory dialing function according to the motion data capable of reflecting the somatosensory dialing action feature, so that the application scenario is not needed, thereby satisfying the user in various scenarios.
  • the need for somatosensory dialing improves the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Telephone Function (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种体感拨号的控制方法、控制装置及存储介质。所述控制方法包括:获取移动终端的运动数据(S100),其中,所述预设数据为体感拨号的操作特征数据;将所述运动数据与预设数据进行对比(S200);若所述运动数据与所述预设数据匹配,则启动体感拨号功能(S300)。该方法能够降低体感拨号的误识别率,满足用户在各种场景下进行体感拨号的需求,提升用户体验。

Description

体感拨号的控制方法及装置、存储介质 技术领域
本发明涉及通信技术领域,尤其涉及一种体感拨号的控制方法及装置、存储介质。
背景技术
体感拨号功能是指当用户在查看联系人详情、通话记录和信息详情时,拿起手机贴近面部即可直接呼叫该联系人的功能,其优点是用户不必进行点按屏幕的操作就可以实现拨号。
在现有技术中,智能手机等终端通过接近传感器检测手机与耳朵的距离,并通过使用加速计检测空间位置变化,或使用陀螺仪检测空间角度的变化,从而识别用户的拨号动作,只要变化的幅度在一定范围内,就识别终端为体感拨号状态。这种方式只对用户的动作的幅度进行了定性的分析,误识别率较高,比如用户将手机靠近墙壁,这个动作很容易被误识别为拨号。由于误识别率较高,在特定的应用场景,比如在联系人界面,这种方式无疑降低了用户使用体感拨号的用户体验。
发明内容
本发明实施例的主要目的在于提出一种体感拨号的控制方法及装置、存储介质,旨在降低体感拨号的误识别率,从而满足用户在各种场景下进行体感拨号的需求,提升用户体验。
为实现上述目的,本发明实施例提供一种体感拨号的控制方法,所述方法包括如下步骤:
获取移动终端的运动数据;
将所述运动数据与预设数据进行对比,其中,所述预设数据为体感拨号的操作特征数据;
若所述运动数据与所述预设数据匹配,则启动体感拨号功能。
上述方案中,所述将所述运动数据与预设数据进行对比的步骤包括:
获取所述运动数据的变化趋势;
根据所述变化趋势判断所述移动终端处于左手操作状态还是右手操作状态;
若所述移动终端处于左手操作状态,则将所述运动数据与预设数据中左手数据进行对比;
若所述移动终端处于右手操作状态,则将所述运动数据与预设数据中右手数据进行对比。
上述方案中,所述若所述移动终端处于左手操作状态,则将所述运动数据与预设数据中左手数据进行对比的步骤包括:
获取所述左手操作状态下的运动数据的最小值和第一终值;
将所述最小值和第一终值分别与预设负值和第一预设范围进行对比;
所述若所述运动数据与所述预设数据匹配,则启动体感拨号功能的步骤包括:
若所述最小值小于预设负值,且所述第一终值在第一预设范围之内,则启动体感拨号功能;
所述若所述移动终端处于右手操作状态,则将所述运动数据与预设数据中右手数据进行对比的步骤包括:
获取所述右手操作状态下的运动数据的最大值和第二终值;
将所述最大值和第二终值分别与预设正值和第二预设范围进行对比;
所述若所述运动数据与所述预设数据匹配,则启动体感拨号功能的步骤还包括:
若所述最大值大于预设正值,且所述第二终值在第二预设范围之内,则启动体感拨号功能。
上述方案中,所述获取所述运动数据的变化趋势的步骤之前,还包括:
根据所述运动数据确定所述移动终端在静止时的空间姿态;
若所述移动终端在静止时的空间姿态为预设空间姿态,则执行步骤:获取所述运动数据的变化趋势。
上述方案中,所述获取移动终端的运动数据的步骤之前,还包括:
建立数据缓冲区,所述数据缓冲区用于存储当前预设连续时间内的运动数据;
所述获取移动终端的运动数据的步骤包括:
获取所述数据缓冲区中的运动数据。
上述方案中,所述获取所述数据缓冲区中的运动数据的步骤之前,还包括:
通过距离传感器获取移动终端的距离数据;
根据所述距离数据判断所述移动终端是否处于接近状态;
若是,则执行步骤:获取所述数据缓冲区中的运动数据。
此外,为实现上述目的,本发明实施例还提供一种体感拨号的控制装置,所述装置包括:
第一获取模块,配置为获取移动终端的运动数据;
对比模块,配置为将所述运动数据与预设数据进行对比,其中,所述预设数据为体感拨号的操作特征数据;
控制模块,配置为若所述运动数据与所述预设数据匹配,则启动体感拨号功能。
上述方案中,所述对比模块包括:
获取单元,配置为获取所述运动数据的变化趋势;
判断单元,配置为根据所述变化趋势判断所述移动终端处于左手操作状态还是右手操作状态,获得判断结果;
第一对比单元,配置为若所述移动终端处于左手操作状态,则将所述运动数据与预设数据中左手数据进行对比;
第二对比单元,配置为若所述移动终端处于右手操作状态,则将所述运动数据与预设数据中右手数据进行对比。
上述方案中,所述第一对比单元包括:
第一获取子单元,配置为获取所述左手操作状态下的运动数据的最小值和第一终值;
第一对比子单元,配置为将所述最小值和第一终值分别与预设负值和第一预设范围进行对比;
所述控制模块包括:
第一控制单元,配置为若所述最小值小于预设负值,且所述第一终值在第一预设范围之内,则启动体感拨号功能;
所述第二对比单元包括:
第二获取子单元,配置为获取所述右手操作状态下的运动数据的最大值和第二终值;
第二对比子单元,配置为将所述最大值和第二终值分别与预设正值和第二预设范围进行对比;
所述控制模块还包括:
第二控制单元,配置为若所述最大值大于预设正值,且所述第二终值在第二预设范围之内,则启动体感拨号功能。
上述方案中,所述装置还包括:
确定模块,配置为根据所述运动数据确定所述移动终端在静止时的空间姿态;
所述获取单元,还配置为若所述移动终端在静止时的空间姿态为预设空间姿态,则获取所述运动数据的变化趋势。
上述方案中,所述装置还包括:
建立模块,配置为建立数据缓冲区,所述数据缓冲区用于存储当前预设连续时间内的运动数据;
所述第一获取模块,还配置为获取所述数据缓冲区中的运动数据。
上述方案中,所述装置还包括:
第二获取模块,配置为通过距离传感器获取移动终端的距离数据;
判断模块,配置为根据所述距离数据判断所述移动终端是否处于接近状态;
所述第一获取模块,还配置为若所述移动终端处于接近状态,则获取所述数据缓冲区中的运动数据。
本发明实施例通过获取移动终端的运动数据;将所述运动数据与预设数据进行对比,其中,所述预设数据为体感拨号的操作特征数据;若所述运动数据与所述预设数据匹配,则启动体感拨号功能。通过上述方式,本发明实施例根据体感拨号动作的运动数据与其他可能触发体感拨号的动作相比,具有明显特征的现象,通过加速度传感器获取移动终端的运动数据,再将所述运动数据与预设体感拨号的数据进行对比,从而识别出能够反映体感拨号动作特征的运动数据,并启动体感拨号功能,实现对体感拨号功能的有效控制。本发明实施例能够有效地降低体感拨号的误识别率,同时由于本发明实施例根据能够反映体感拨号动作特征的运动数据启动体感拨号功能,因此无需考虑应用场景,从而能够满足用户在各种场景下进行体感拨号的需求,提升了用户体验。
附图说明
图1为本发明体感拨号的控制方法第一实施例的流程示意图;
图2为图1中将所述运动数据与预设数据进行对比的细化流程示意图;
图3为本发明体感拨号的控制方法第二实施例的流程示意图;
图4为本发明体感拨号的控制方法第三实施例的流程示意图;
图5为本发明体感拨号的控制方法第四实施例的流程示意图;
图6为本发明体感拨号的控制方法第四实施例的应用场景示意图;
图7为图6中数据分析系统处理数据的具体流程示意图;
图8为本发明体感拨号的控制装置第一实施例的功能模块示意图;
图9为图8中对比模块的细化功能模块示意图;
图10为图9中第一对比单元的细化功能模块示意图;
图11为图9中第二对比单元的细化功能模块示意图;
图12为图8中控制模块的细化功能模块示意图;
图13为本发明体感拨号的控制装置第二实施例的功能模块示意图;
图14为本发明体感拨号的控制装置第三实施例的功能模块示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种体感拨号的控制方法。
参照图1,图1为本发明体感拨号的控制方法第一实施例的流程示意图。所述方法包括如下步骤:
步骤S100,获取移动终端的运动数据。
在本实施例中,所述移动终端可以包括智能手机、平板电脑等具有体感拨号功能的设备。移动终端内置加速度传感器,通过加速度传感器实时采集移动终端的运动数据。
具体地,所述运动数据主要包括由加速度传感器获取的加速度数据,当然也还可以包括其他转化而来的数据。当移动终端静止时,加速度计传感器只受重力影响,因此可以认为此时加速度数据即为重力分量。
步骤S200,将所述运动数据与预设数据进行对比,其中,所述预设数据为体感拨号的操作特征数据。
在获取到移动终端的运动数据之后,再将所述运动数据与预设数据进行对比。
在本实施例中,预设数据即为为体感拨号的操作特征数据,也就是能够反映体感拨号动作特征的运动数据。经研究发现进行体感拨号动作的运动数据与其他可能触发体感拨号的动作相比,具有一些明显的特征,因此通过将获取到的移动终端的运动数据与预设的体感拨号数据进行对比分析,就可以通过运动数据识别出体感拨号动作。
具体地,移动终端可以先比较所述运动数据和预设数据的变化趋势,若变化趋势相同,则再比较相应的特征数值。当然,移动终端也可以将运动数据和预设数据一一进行比较,或者根据预设的算法将运动数据和预设数据进行计算,由此得到对比结果,具体实施中可以根据实际需要进行灵活设置。
步骤S300,若所述运动数据与所述预设数据匹配,则启动体感拨号功能。
在将所述运动数据与预设数据进行对比之后,若两者匹配,则移动终端启动体感拨号功能。
具体地,以比较所述运动数据和预设数据的变化趋势和数值进行说明。如果获取到的运动数据和预设数据的变化趋势和数值完全相同,或者两者变化趋势大致相同,且相应的特征数值之间的差值在规定的范围之内,就可以认为运动数据和预设数据匹配,此时移动终端启动体感拨号功能。当 然,具体实施中还可以采用其他匹配规则和匹配方法,比如通过数学模型计算所述运动数据和预设数据的匹配程度,若计算结果显示两者的匹配程度在合适范围内,则启动体感拨号功能,可根据实际需要进行灵活设置。
在本实施例中,通过获取移动终端的运动数据;将所述运动数据与预设数据进行对比;若所述运动数据与所述预设数据匹配,则启动体感拨号功能。通过上述方式,本实施例根据体感拨号动作的运动数据与其他可能触发体感拨号的动作相比,具有明显特征的现象,通过加速度传感器获取移动终端的运动数据,再将所述运动数据与预设体感拨号的数据进行对比,从而识别出能够反映体感拨号动作特征的运动数据,并启动体感拨号功能,实现对体感拨号功能的有效控制。本实施例能够有效地降低体感拨号的误识别率,同时由于本发明实施例根据能够反映体感拨号动作特征的运动数据启动体感拨号功能,因此无需考虑应用场景,从而能够满足用户在各种场景下进行体感拨号的需求,提升用户体验。
进一步地,参照图2,图2为图1中将所述运动数据与预设数据进行对比的细化流程示意图。基于本发明体感拨号的控制方法第一实施例,步骤S200可以包括:
步骤S210,获取所述运动数据的变化趋势。
步骤S220,根据所述变化趋势判断所述移动终端处于左手操作状态还是右手操作状态。
步骤S230,若所述移动终端处于左手操作状态,则将所述运动数据与预设数据中左手数据进行对比。
步骤S240,若所述移动终端处于右手操作状态,则将所述运动数据与预设数据中右手数据进行对比。
在本实施例中,首先,移动终端获取运动数据的变化趋势,根据所述变化趋势判断所述移动终端处于左手操作状态还是右手操作状态。
具体地,移动终端可以先根据运动数据得到相应的数据波形,根据数据波形来获取运动数据的变化趋势。根据加速度传感器的工作原理,用户在进行左手操作和右手操作时,加速度传感器采集到的加速度数据呈现相反的变化趋势,比如前者的波形处于波峰时,后者的波形正好处于波谷,前者达到最大值时,后者达到最小值。由于左手操作和右手操作的运动数据的变化趋势具有明显的差别,因此可以根据运动数据的变化趋势先判断出用户正在进行左手操作还是右手操作。
需要说明的是,移动终端也可以不通过运动数据的变化趋势来判断用户正在进行左手操作还是右手操作,比如,移动终端可以直接检测一段时间内采集到的运动数据是正值还是负值,通过正负值的区别来判断用户正在进行左手操作还是右手操作。
然后,移动终端根据左右手的判断结果将所述运动数据与对应的预设数据进行对比。若移动终端处于左手操作状态,则对比左手操作状态下相应的预设数据;反之,若移动终端处于右手操作状态,则对比右手操作状态下相应的预设数据,由此得到对比结果。在更多的实施中也可以不判断所述移动终端处于左手操作状态还是右手操作状态,直接将运动数据与预设的左右手操作状态下的预设数据进行对比,判断所述运动数据的变化趋势是否与左手或右手对应的预设数据的变化趋势相同,得到对比结果。
在本实施例中,通过获取移动终端的运动数据;获取所述运动数据的变化趋势;根据所述变化趋势判断所述移动终端处于左手操作状态还是右手操作状态;若所述移动终端处于左手操作状态,则将所述运动数据与预设数据中左手数据进行对比;若所述移动终端处于右手操作状态,则将所述运动数据与预设数据中右手数据进行对比;若所述运动数据与所述预设数据匹配,则启动体感拨号功能。通过上述方式,由于用户在进行左手操作和右手操作时,加速度传感器采集到的加速度数据呈现相反的变化趋势, 因此可以根据运动数据的变化趋势先判断出用户正在进行左手操作还是右手操作,再对比对应的操作状态下的运动数据和预设数据,从而有效地提高了对比的效率。
进一步地,参照图3,图3为本发明体感拨号的控制方法第二实施例的流程示意图。基于上述图2所示的实施例,所述步骤S230可以包括:
步骤S231,获取所述左手操作状态下的运动数据的最小值和第一终值。
步骤S232,将所述最小值和第一终值分别与预设负值和第一预设范围进行对比。
所述步骤S300可以包括:
步骤S310,若所述最小值小于预设负值,且所述第一终值在第一预设范围之内,则启动体感拨号功能。
所述步骤S240可以包括:
步骤S241,获取所述右手操作状态下的运动数据的最大值和第二终值。
步骤S242,将所述最大值和第二终值分别与预设正值和第二预设范围进行对比。
所述步骤S300还可以包括:
步骤S320,若所述最大值大于预设正值,且所述第二终值在第二预设范围之内,则启动体感拨号功能。
在本实施例中,在判断出移动终端处于左手操作状态还是右手操作状态之后,再将相应操作状态下的运动数据和对应的预设数据进行进一步的对比分析。具体地,移动终端获取对应的操作状态下的运动数据的极值和终值,将所述极值和终值分别与对应的预设数据进行对比。
移动终端的运动数据由加速度传感器检测,由数据采集系统采集。加速度传感器可以检测在x、y、z三轴的加速度数据,经过大量的样本分析,对于拨打电话的动作,数据集呈现出明显的特征,可以与其它干扰动作形 成明显的对比,此处仅以加速度计传感器x轴上的数据为例进行说明,对于其它轴的数据可以按照类似的方法提取,具体特征如下:
左手拨打电话:
刚开始的数据为一个正值,且变化平缓,经过短暂的时间后,会呈现一个小的波峰,之后数据快速衰减到一个最小值,该最小值一定小于某一负值,之后数据会有轻微的上升趋势,但由于数据采集系统的有效工作,数据会被很快截断到某一终值,该终值会有一定的取值范围。
右手拨打电话:
该过程呈现的数据变化与左手拨打电话的相反,刚开始的数据为一个负值,且变化平缓,经过短暂时间后,会出现一个小的波谷,之后数据快速上升到一个最大值,该最大值一定大于某一正值,之后数据会有轻微的下降趋势,但由于数据采集系统的有效工作,数据会被很快截断到某一终值,该终值也会存在一个取值范围。
对于其它可能导致误触的操作,此处仅以几例来说明其数据波形与正常拨打电话的区别:
手机从右手换到左手:
数据集刚开始的变化与左手拨打电话非常相似,但数据不会衰减到一个非常明显的负值,并且很多情况下,数据很长的拖尾,即在数据变化的末端,数据反复呈现出波峰和波谷。
将手机放到口袋中:
对于放左边口袋和右边的口袋,数据变化虽然不一样,但是都有明显的特征,即只在正值范围内变化或只在负值内变化。
右手挥舞手机靠近墙壁:
数据集刚开始的变化与右手拨打电话非常相似,但数据达到最大值后会有很长的拖尾而不会很快被截断。
根据以上描述,其他可能导致误触的动作与体感拨号动作的运动数据特征存在明显的不同,因此可以根据这些特征对运动数据进行定量分析。具体地,若移动终端处于左手操作状态,则可以在在数据的快速下降阶段获取所述运动数据的极小值,该极小值也是最小值,且一定小于某一负值;由于数据采集系统的有效工作,数据会被很快截断到某一终值,该终值一定在预设范围之内。若所述最小值小于预设负值,且所述终值在预设范围之内,则可以认为所述运动数据和预设数据匹配,并启动体感拨号功能。反之,若移动终端处于右手操作状态,则可以在数据的快速上升阶段获取所述运动数据的极大值,该极大值也是最大值,且一定大于某一正值;由于数据采集系统的有效工作,数据会被很快截断到某一终值,该终值也一定在预设范围之内。若所述最大值大于预设正值,且所述终值在预设范围之内,则可以认为所述运动数据和预设数据匹配,并启动体感拨号功能。
在本实施例中,通过获取移动终端的运动数据;获取所述运动数据的变化趋势;根据所述变化趋势判断所述移动终端处于左手操作状态还是右手操作状态;获取所述左手操作状态下的运动数据的最小值和第一终值;将所述最小值和第一终值分别与预设负值和第一预设范围进行对比;若所述最小值小于预设负值,且所述第一终值在第一预设范围之内,则启动体感拨号功能;获取所述右手操作状态下的运动数据的最大值和第二终值;将所述最大值和第二终值分别与预设正值和第二预设范围进行对比;若所述最大值大于预设正值,且所述第二终值在第二预设范围之内,则启动体感拨号功能。由于用户在进行左右手操作时会有各种不同的动作,而每种动作所对应的运动数据不同,本实施例通过定量的分析运动数据是否与预设的体感拨号数据匹配,从而识别出体感拨号动作,能够有效降低体感拨号的误识别率,满足用户在各种场景下进行体感拨号的需求,提升用户体验。
进一步地,参照图4,图4为本发明体感拨号的控制方法第三实施例的流程示意图,基于上述图2所示的实施例,在所述步骤S210之前,还可以包括:
步骤S201,根据所述运动数据确定所述移动终端在静止时的空间姿态;
步骤S210则替换为:若所述移动终端在静止时的空间姿态为预设空间姿态,则执行步骤:获取所述运动数据的变化趋势。
在本实施例中,为进一步提高识别效率,在获取所述运动数据的变化趋势之前,可以先根据运动数据判断移动终端在静止时的空间姿态是否为预设的体感拨号的空间姿态,若是,则获取所述运动数据的变化趋势。
具体地,移动终端处于静止时会有各种不同的空间姿态,比如水平放置、竖直放置、倾斜放置等等。正常拨打电话时,移动终端处于静止状态且有一定的倾斜度,因此运动数据集的初始阶段变化缓慢且平稳,利用移动终端倾斜时在加速度敏感轴上的变化,即所谓的重力感应,可以感应倾斜角,该倾斜角应该在预设的范围之内,由此,通过对运动数据的简要分析就可以快速过滤掉一些不属于体感拨号的情况。
在本实施例中,通过获取移动终端的运动数据;根据所述运动数据确定所述移动终端在静止时的空间姿态;若所述移动终端在静止时的空间姿态为预设空间姿态,则获取所述运动数据的变化趋势;根据所述变化趋势判断所述移动终端处于左手操作状态还是右手操作状态;获取对应的所述操作状态下的所述运动数据的极值和终值;将所述极值和终值分别与对应的预设数据进行对比;若所述运动数据与所述预设数据匹配,则启动体感拨号功能。由于静止时移动终端加速度传感器的数据只受重力影响,因此可以认为此时加速度传感器的数据就表示重力分量,因此经过简单的姿态转换可以得到移动终端此刻的姿态,并与正常拨打电话的姿态范围进行比较,快速过滤掉异常情况,从而提高算法的效率。
进一步地,参照图5,图5为本发明体感拨号的控制方法第四实施例的流程示意图。基于上述图1所示的实施例,所述步骤S100之前,还可以包括:
步骤S10,建立数据缓冲区,所述数据缓冲区用于存储当前预设连续时间内的运动数据。
此时步骤S100可以替换为:
步骤S110,获取所述数据缓冲区中的运动数据。
在本实施例中,移动终端可以建立一个数据缓冲区,用来存储当前预设连续时间内的运动数据,减少存储实时获取到的运动数据的存储空间,然后获取所述数据缓冲区中的运动数据。
作为一种实施方式,在加速度传感器实时获取移动终端的加速度数据的情况下,数据缓冲区始终保存的是用户最近连续操作的一段数据,以保证当采集的运动数据大于缓冲区大小时依然能有效工作。一般地,用户体感拨号动作的持续时间为1s到2s,数据缓冲区存储当前一段时间内的加速度数据。在检测到移动终端处于静止状态时,数据分析系统逆序复制所述数据缓冲区的数据,并对数据进行分析。由于数据分析系统在复制数据时采用的是逆序方式,即数据分析系统保存的数据是从耳边静止到远端开始运动的数据集,这种方式可以更高效的提取波形变化特征。
需要说明的是,数据缓冲区的大小可以根据拨号时间灵活设置,在复制数据缓冲区的运动数据时,也可以不采用逆序的方式,比如,可以采用正序的方式复制所述数据缓冲区中的运动数据,在进行数据分析时采用逆序分析,具体实施中可以根据实际需要进行灵活设置。
进一步地,所述步骤S110之前,还可以包括:
步骤S101,通过距离传感器获取移动终端的距离数据。
步骤S102,根据所述距离数据判断所述移动终端是否处于接近状态;
步骤S110则替换为:若移动终端处于接近状态,则执行步骤:获取所述数据缓冲区中的运动数据。
在本实施例中,为进一步提高识别效率,在获取数据缓冲区的运动数据之前,可以通过距离传感器获取移动终端的距离数据,再根据所述距离数据判断所述移动终端是否处于接近状态,若是,则执行步骤:获取所述数据缓冲区中的运动数据。
本实施例利用拨打电话需要靠近耳边这一特征,结合使用距离传感器,数据采集系统将只保留最能反应拨打电话的特征的运动数据集。移动终端的运动过程可以包括运动接近和运动远离,这两种情况下数据采集系统都要采集运动数据;在移动终端处于静止状态时,通过距离传感器获取移动终端的距离数据,从而可以判断出移动终端是运动接近还是运动远离。在移动终端静止时,若移动终端处于远离状态,则直接清除刚刚采集到的运动数据;若移动终端处于接近状态,则获取数据缓冲区中的运动数据,再对所述运动数据进行进一步分析。
参照图6,图6为本发明体感拨号的控制方法第四实施例的应用场景示意图。移动终端建立一个数据缓冲区,用来存储当前预设连续时间内的运动数据,然后数据分析系统获取所述数据缓冲区中的运动数据。具体实施方式如下:
首先,加速度传感器检测移动终端是否处于运动状态,只有在检测到移动终端处于运动状态时,数据采集系统才会收集数据,即将t时刻数据添加到数据缓冲区中。接着,距离传感器再检测移动终端是否处于接近状态,若移动终端不处于接近状态,则清理数据缓冲区中的数据。只有在移动终端处于接近状态时,才会启动数据分析系统对数据进行进一步分析。
参照图7,图7为图6中数据分析系统处理数据的具体流程示意图。以移动终端为手机进行说明。在手机处于静止且接近状态时,数据采集系统 逆序复制缓冲区中的运动数据,并对数据进行平滑处理,通过读取初始数据分析手机静止时的状态,判断手机的空间姿态是否满足要求,若是,则再判断用户是左手还是右手拨打电话。若是左手拨号,则对数据波形依次进行平缓区间检测、波峰检测、快速衰减阶段检测、最小值检测和终止值检测,其中,最小值检测和终止值检测对应第二实施例中最小值和第一终值的处理过程;若是右手拨号,则对数据波形依次进行平缓区间检测、波谷检测、快速上升阶段检测、最大值检测和终止值检测,其中最大值检测和终止值检测对应第二实施例中最大值和第二终值的处理过程。最后,返回识别结果。
本发明实施例还提出一种计算机可读存储介质,该存储介质包括一组指令,所述指令用于执行以上任一实施例所述的体感拨号的控制方法。
在本实施例中,通过建立数据缓冲区,所述数据缓冲区用于存储当前预设连续时间内的运动数据;通过距离传感器获取移动终端的距离数据;根据所述距离数据判断所述移动终端是否处于接近状态;若是,则获取所述数据缓冲区中的运动数据;将所述运动数据与预设数据进行对比;若所述运动数据与所述预设数据匹配,则启动体感拨号功能。本实施例通过建立数据缓冲区,配合使用距离传感器,只有在移动终端处于静止且接近状态时,才对数据缓冲区中的运动数据进行进一步分析,可以有效的减少分析的数据量,减少数据干扰,在很大程度上提升了体感拨号识别的效率。
本发明实施例还提供一种体感拨号的控制装置。
参照图8,图8为本发明体感拨号的控制装置第一实施例的功能模块示意图。所述装置包括:
第一获取模块100,配置为获取移动终端的运动数据。
在本实施例中,所述移动终端可以包括智能手机、平板电脑等具有体感拨号功能的设备。移动终端内置加速度传感器,第一获取模块100通过 加速度传感器实时采集移动终端的运动数据。
具体地,所述运动数据主要包括由加速度传感器获取的加速度数据,当然也还可以包括其他转化而来的数据。当移动终端静止时,加速度计传感器只受重力影响,因此可以认为此时加速度数据即为重力分量。
对比模块200,配置为将所述运动数据与预设数据进行对比,其中,所述预设数据为体感拨号的操作特征数据。
在第一获取模块100获取到移动终端的运动数据之后,对比模块200再将所述运动数据与预设数据进行对比。
在本实施例中,预设数据即为体感拨号的操作特征数据,也就是能够反映体感拨号动作特征的运动数据。经研究发现进行体感拨号动作的运动数据与其他可能触发体感拨号的动作相比,具有一些明显的特征,因此通过对比模块200将获取到的移动终端的运动数据与预设的体感拨号数据进行对比分析,就可以通过运动数据识别出体感拨号动作。
具体地,对比模块200可以先比较所述运动数据和预设数据的变化趋势,若变化趋势相同,则再比较相应的特征数值。当然,对比模块200也可以将运动数据和预设数据一一进行比较,或者根据预设的算法将运动数据和预设数据进行计算,由此得到对比结果,具体实施中可以根据实际需要进行灵活设置。
控制模块300,配置为若所述运动数据与所述预设数据匹配,则启动体感拨号功能。
在对比模块200将所述运动数据与预设数据进行对比之后,若两者匹配,则移动终端启动体感拨号功能。
具体地,以比较所述运动数据和预设数据的变化趋势和数值进行说明。如果控制模块300获取到的运动数据和预设数据的变化趋势和数值完全相同,或者两者变化趋势大致相同,且相应的特征数值之间的差值在规定的 范围之内,就可以认为运动数据和预设数据匹配,此时移动终端启动体感拨号功能。当然,具体实施中还可以采用其他匹配规则和匹配方法,比如通过数学模型计算所述运动数据和预设数据的匹配程度,若计算结果显示两者的匹配程度在合适范围内,则启动体感拨号功能,可根据实际需要进行灵活设置。
在本实施例中,第一获取模块100获取移动终端的运动数据;对比模块200将所述运动数据与预设数据进行对比;若所述运动数据与所述预设数据匹配,则控制模块300启动体感拨号功能。由于体感拨号动作的运动数据与其他可能触发体感拨号的动作相比,具有一些明显的特征,比如数据的变化趋势和数值存在明显的差异,本发明实施例通过第一获取模块100获取移动终端的运动数据,再通过对比模块200和控制模块300将所述运动数据与预设体感拨号的数据进行对比和匹配,从而识别出最能反映体感拨号动作特征的数据,并启动体感拨号功能,实现对体感拨号功能的有效控制。本实施例能够有效地降低体感拨号的误识别率,同时由于本发明实施例根据能够反映体感拨号动作特征的运动数据启动体感拨号功能,因此无需考虑应用场景,从而能够满足用户在各种场景下进行体感拨号的需求,提升了用户体验。
进一步地,参照图9,图9为图8中对比模块的细化功能模块示意图。所述对比模块200包括:
获取单元210,配置为获取所述运动数据的变化趋势;
判断单元220,配置为根据所述变化趋势判断所述移动终端处于左手操作状态还是右手操作状态;
第一对比单元230,配置为若所述移动终端处于左手操作状态,则将所述运动数据与预设数据中左手数据进行对比;
第二对比单元240,配置为若所述移动终端处于右手操作状态,则将所 述运动数据与预设数据中右手数据进行对比。
在本实施例中,首先,获取单元210获取运动数据的变化趋势,判断单元220根据所述变化趋势判断所述移动终端处于左手操作状态还是右手操作状态。
具体地,获取单元210可以先根据运动数据得到相应的数据波形,根据数据波形来获取运动数据的变化趋势。根据加速度传感器的工作原理,用户在进行左手操作和右手操作时,加速度传感器采集到的加速度数据呈现相反的变化趋势,比如前者的波形处于波峰时,后者的波形正好处于波谷,前者达到最大值时,后者达到最小值。由于左手操作和右手操作的运动数据的变化趋势具有明显的差别,因此判断单元220可以根据运动数据的变化趋势先判断出用户正在进行左手操作还是右手操作。
需要说明的是,移动终端也可以不通过运动数据的变化趋势来判断用户正在进行左手操作还是右手操作,比如,移动终端可以直接检测一段时间内采集到的运动数据是正值还是负值,通过正负值的区别来判断用户正在进行左手操作还是右手操作。
然后,移动终端根据左右手的判断结果将所述运动数据与对应的预设数据进行对比。若移动终端处于左手操作状态,则第一对比单元230对比左手操作状态下相应的预设数据;反之,若移动终端处于右手操作状态,则第二对比单元240对比右手操作状态下相应的预设数据,由此得到对比结果。在更多的实施中也可以不判断所述移动终端处于左手操作状态还是右手操作状态,直接将运动数据与预设的左右手操作状态下的预设数据进行对比,判断所述运动数据的变化趋势是否与左手或右手对应的预设数据的变化趋势相同,得到对比结果。
在本实施例中,第一获取模块100获取移动终端的运动数据;获取单元210获取所述运动数据的变化趋势;判断单元220根据所述变化趋势判 断所述移动终端处于左手操作状态还是右手操作状态;若所述移动终端处于左手操作状态,则第一对比单元230将所述运动数据与预设数据中左手数据进行对比;若所述移动终端处于右手操作状态,则第二对比单元240将所述运动数据与预设数据中右手数据进行对比;若所述运动数据与所述预设数据匹配,则控制模块300启动体感拨号功能。通过上述方式,由于用户在进行左手操作和右手操作时,加速度传感器采集到的加速度数据呈现相反的变化趋势,因此可以根据运动数据的变化趋势先判断出用户正在进行左手操作还是右手操作,再对比对应的操作状态下的运动数据和预设数据,从而有效地提高了对比的效率。
进一步地,参照图10,图10为图9中第一对比单元的细化功能模块示意图。所述第一对比单元230包括:
第一获取子单元231,配置为获取所述左手操作状态下的运动数据的最小值和第一终值;
第一对比子单元232,配置为将所述最小值和第一终值分别与预设负值和第一预设范围进行对比。
参照图11,图11为图9中第二对比单元的细化功能模块示意图。所述第二对比单元240包括:
第二获取子单元241,配置为获取所述右手操作状态下的运动数据的最大值和第二终值;
第二对比子单元242,配置为将所述最大值和第二终值分别与预设正值和第二预设范围进行对比;
参照图12,图12为8中控制模块的细化功能模块示意图。所述控制模块300包括:
第一控制单元310,配置为若所述最小值小于预设负值,且所述第一终值在第一预设范围之内,则启动体感拨号功能;
第二控制单元320,配置为若所述最大值大于预设正值,且所述第二终值在第二预设范围之内,则启动体感拨号功能。
在本实施例中,在判断单元220判断出移动终端处于左手操作状态还是右手操作状态之后,对比模块200再将相应操作状态下的运动数据和对应的预设数据进行进一步的对比分析。具体地,移动终端获取对应的操作状态下的运动数据的极值和终值,将所述极值和终值分别与对应的预设数据进行对比。
移动终端的运动数据由加速度传感器检测,由数据采集系统采集。加速度传感器可以检测在x、y、z三轴的加速度数据,经过大量的样本分析,对于拨打电话的动作,数据集呈现出明显的特征,可以与其它干扰动作形成明显的对比,此处仅以加速度计传感器x轴上的数据为例进行说明,对于其它轴的数据可以按照类似的方法提取,具体特征如下:
左手拨打电话:
刚开始的数据为一个正值,且变化平缓,经过短暂的时间后,会呈现一个小的波峰,之后数据快速衰减到一个最小值,该最小值一定小于某一负值,之后数据会有轻微的上升趋势,但由于数据采集系统的有效工作,数据会被很快截断到某一终值,该终值会有一定的取值范围。
右手拨打电话:
该过程呈现的数据变化与左手拨打电话的相反,刚开始的数据为一个负值,且变化平缓,经过短暂时间后,会出现一个小的波谷,之后数据快速上升到一个最大值,该最大值一定大于某一正值,之后数据会有轻微的下降趋势,但由于数据采集系统的有效工作,数据会被很快截断到某一终值,该终值也会存在一个取值范围。
对于其它可能导致误触的操作,此处仅以几例来说明其数据波形与正常拨打电话的区别:
手机从右手换到左手:
数据集刚开始的变化与左手拨打电话非常相似,但数据不会衰减到一个非常明显的负值,并且很多情况下,数据很长的拖尾,即在数据变化的末端,数据反复呈现出波峰和波谷。
将手机放到口袋中:
对于放左边口袋和右边的口袋,数据变化虽然不一样,但是都有明显的特征,即只在正值范围内变化或只在负值内变化。
右手挥舞手机靠近墙壁:
数据集刚开始的变化与右手拨打电话非常相似,但数据达到最大值后会有很长的拖尾而不会很快被截断。
根据以上描述,其他可能导致误触的动作与体感拨号动作的运动数据特征存在明显的不同,因此可以根据这些特征对运动数据进行定量分析。具体地,若移动终端处于左手操作状态,则第一获取子单元231可以在在数据的快速下降阶段获取所述运动数据的极小值,该极小值也是最小值,且一定小于某一负值;由于数据采集系统的有效工作,数据会被很快截断到某一终值,该终值一定在预设范围之内,第一对比子单元232将所述最小值和终值分别与预设负值和预设范围进行对比。若所述最小值小于预设负值,且所述终值在预设范围之内,则第一控制单元310可以认为所述运动数据和预设数据匹配,并启动体感拨号功能。反之,若移动终端处于右手操作状态,则第二获取子单元241可以在数据的快速上升阶段获取所述运动数据的极大值,该极大值也是最大值,且一定大于某一正值;由于数据采集系统的有效工作,数据会被很快截断到某一终值,该终值也一定在预设范围之内,第二对比子单元242将所述最大值和终值分别与预设正值和预设范围进行对比。若所述最大值大于预设正值,且所述终值在预设范围之内,则第二控制单元320可以认为所述运动数据和预设数据匹配,并 启动体感拨号功能。
在本实施例中,第一获取模块100获取移动终端的运动数据;获取单元210获取所述运动数据的变化趋势;判断单元220根据所述变化趋势判断所述移动终端处于左手操作状态还是右手操作状态;第一获取子单元231获取所述左手操作状态下的运动数据的最小值和第一终值;第一对比子单元232将所述最小值和第一终值分别与预设负值和第一预设范围进行对比;若所述最小值小于预设负值,且所述第一终值在第一预设范围之内,则第一控制单元310启动体感拨号功能;第二获取子单元241获取所述右手操作状态下的运动数据的最大值和第二终值;第二对比子单元242将所述最大值和第二终值分别与预设正值和第二预设范围进行对比;若所述最大值大于预设正值,且所述第二终值在第二预设范围之内,则第二控制单元320启动体感拨号功能。由于用户在进行左右手操作时会有各种不同的动作,而每种动作所对应的运动数据不同,本实施例通过定量的分析运动数据是否与预设的体感拨号数据匹配,从而识别出体感拨号动作,能够有效降低体感拨号的误识别率,满足用户在各种场景下进行体感拨号的需求,提升用户体验。
进一步地,参照图13,图13为本发明体感拨号的控制装置第二实施例的功能模块示意图。所述装置还包括:
确定模块400,配置为根据所述运动数据确定所述移动终端在静止时的空间姿态;
所述获取单元210还配置为若所述移动终端在静止时的空间姿态为预设空间姿态,则获取所述运动数据的变化趋势。
在本实施例中,为进一步提高识别效率,在获取单元210获取所述运动数据的变化趋势之前,确定模块400可以先根据运动数据判断移动终端在静止时的空间姿态是否为预设的体感拨号的空间姿态,若是,则获取单 元210获取所述运动数据的变化趋势。
具体地,移动终端处于静止时会有各种不同的空间姿态,比如水平放置、竖直放置、倾斜放置等等。正常拨打电话时,移动终端处于静止状态且有一定的倾斜度,因此运动数据集的初始阶段变化缓慢且平稳,利用移动终端倾斜时在加速度敏感轴上的变化,即所谓的重力感应,可以感应倾斜角,该倾斜角应该在预设的范围之内,由此,通过对运动数据的简要分析就可以快速过滤掉一些不属于体感拨号的情况。
在本实施例中,第一获取模块100获取移动终端的运动数据;确定模块400根据所述运动数据确定所述移动终端在静止时的空间姿态;若所述移动终端在静止时的空间姿态为预设空间姿态,则获取单元210获取所述运动数据的变化趋势;判断单元220根据所述变化趋势判断所述移动终端处于左手操作状态还是右手操作状态;获取子单元231获取对应的所述操作状态下的所述运动数据的极值和终值;对比子单元232将所述极值和终值分别与对应的预设数据进行对比;若所述运动数据与所述预设数据匹配,则控制模块300启动体感拨号功能。由于静止时移动终端加速度传感器的数据只受重力影响,因此可以认为此时加速度传感器的数据就表示重力分量,因此经过简单的姿态转换可以得到移动终端此刻的姿态,并与正常拨打电话的姿态范围进行比较,快速过滤掉异常情况,从而提高算法的效率。
进一步地,参照图14,图14为本发明体感拨号的控制装置第三实施例的功能模块示意图。所述装置还包括:
建立模块500,配置为建立数据缓冲区,所述数据缓冲区用于存储当前预设连续时间内的运动数据;
所述第一获取模块100还配置为获取所述数据缓冲区中的运动数据。
在本实施例中,建立模块500可以建立一个数据缓冲区,用来存储当前预设连续时间内的运动数据,然后获取所述数据缓冲区中的运动数据。
作为一种实施方式,在加速度传感器实时获取移动终端的加速度数据的情况下,建立模块500始终保存的是用户最近连续操作的一段数据,以保证当采集的运动数据大于缓冲区大小时依然能有效工作。一般地,用户体感拨号动作的持续时间为1s到2s,建立模块500存储当前一段时间内的加速度数据。在检测到移动终端处于静止状态时,第一获取模块100逆序复制所述数据缓冲区的数据,并对数据进行分析。由于第一获取模块100在复制数据时采用的是逆序方式,即数据分析系统保存的数据是从耳边静止到远端开始运动的数据集,这种方式可以更高效的提取波形变化特征。
需要说明的是,数据缓冲区的大小可以根据拨号时间灵活设置,在复制数据缓冲区的运动数据时,也可以不采用逆序的方式,比如,可以采用正序的方式复制所述数据缓冲区中的运动数据,在进行数据分析时采用逆序分析,具体实施中可以根据实际需要进行灵活设置。
进一步地,所述装置还包括:
第二获取模块600,配置为通过距离传感器获取移动终端的距离数据;
判断模块700,配置为根据所述距离数据判断所述移动终端是否处于接近状态;
所述第一获取模块100还配置为若所述移动终端处于接近状态,则获取所述数据缓冲区中的运动数据。
在本实施例中,为进一步提高识别效率,在第一获取模块100获取数据缓冲区的运动数据之前,第二获取模块600可以通过距离传感器获取移动终端的距离数据,判断模块700再根据所述距离数据判断所述移动终端是否处于接近状态,若是,则执行步骤:获取所述数据缓冲区中的运动数据。
本实施例利用拨打电话需要靠近耳边这一特征,结合使用距离传感器,数据采集系统将只保留最能反应拨打电话的特征的运动数据集。移动终端 的运动过程可以包括运动接近和运动远离,这两种情况下数据采集系统都要采集运动数据;在移动终端处于静止状态时,第二获取模块600通过距离传感器获取移动终端的距离数据,从而判断模块700可以判断出移动终端是运动接近还是运动远离。在移动终端静止时,若移动终端处于远离状态,则直接清除刚刚采集到的运动数据;若移动终端处于接近状态,则第一获取模块100获取数据缓冲区中的运动数据,再对所述运动数据进行进一步分析。
参照图6,图6为本发明体感拨号的控制方法第四实施例的应用场景示意图。移动终端建立一个数据缓冲区,用来存储当前预设连续时间内的运动数据,然后数据分析系统获取所述数据缓冲区中的运动数据。具体实施方式如下:
首先,加速度传感器检测移动终端是否处于运动状态,只有在检测到移动终端处于运动状态时,数据采集系统才会收集数据,即将t时刻数据添加到数据缓冲区中。接着,距离传感器再检测移动终端是否处于接近状态,若移动终端不处于接近状态,则清理数据缓冲区中的数据。只有在移动终端处于接近状态时,才会启动数据分析系统对数据进行进一步分析。
参照图7,图7为图6中数据分析系统处理数据的具体流程示意图。以移动终端为手机进行说明。在手机处于静止且接近状态时,数据采集系统逆序复制缓冲区中的运动数据,并对数据进行平滑处理,通过读取初始数据分析手机静止时的状态,判断手机的空间姿态是否满足要求,若是,则再判断用户是左手还是右手拨打电话。若是左手拨号,则对数据波形依次进行平缓区间检测、波峰检测、快速衰减阶段检测、最小值检测和终止值检测,其中,波峰检测、最小值检测和终止值检测对应第二实施例中最小值和第一终值的处理过程;若是右手拨号,则对数据波形依次进行平缓区间检测、波谷检测、快速上升阶段检测、最大值检测和终止值检测,其中 波谷检测、最大值检测和终止值检测对应第二实施例中最大值和第二终值的处理过程。最后,返回识别结果。
在本实施例中,建立模块500存储当前预设连续时间内的运动数据;第二获取模块600通过距离传感器获取移动终端的距离数据;判断模块700根据所述距离数据判断所述移动终端是否处于接近状态;若是,则第一获取模块100获取所述数据缓冲区中的运动数据;对比模块200将所述运动数据与预设数据进行对比;若所述运动数据与所述预设数据匹配,则控制模块300启动体感拨号功能。本实施例通过建立数据缓冲区,配合使用距离传感器,只有在移动终端处于静止且接近状态时,才对数据缓冲区中的运动数据进行进一步分析,可以有效的减少分析的数据量,减少数据干扰,在很大程度上提升了体感拨号识别的效率。
在实际应用中,所述第一获取模块100、对比模块200、控制模块300、确定模块400、建立模块500、第二获取模块600以及判断模块700均可由中央处理单元(CPU,Central Processing Unit)、或数字信号处理(DSP,Digital Signal Processor)、或现场可编程门阵列(FPGA,Field Programmable Gate Array)等来实现;所述CPU、DSP、FPGA均可内置于控制装置中。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
工业实用性
本发明实施例通过获取移动终端的运动数据;将所述运动数据与预设数据进行对比,其中,所述预设数据为体感拨号的操作特征数据;若所述运动数据与所述预设数据匹配,则启动体感拨号功能。通过上述方式,本发明实施例根据体感拨号动作的运动数据与其他可能触发体感拨号的动作 相比,具有明显特征的现象,通过加速度传感器获取移动终端的运动数据,再将所述运动数据与预设体感拨号的数据进行对比,从而识别出能够反映体感拨号动作特征的运动数据,并启动体感拨号功能,实现对体感拨号功能的有效控制。本发明实施例能够有效地降低体感拨号的误识别率,同时由于本发明实施例根据能够反映体感拨号动作特征的运动数据启动体感拨号功能,因此无需考虑应用场景,从而能够满足用户在各种场景下进行体感拨号的需求,提升了用户体验。

Claims (13)

  1. 一种体感拨号的控制方法,所述方法包括如下步骤:
    获取移动终端的运动数据;
    将所述运动数据与预设数据进行对比,其中,所述预设数据为体感拨号的操作特征数据;
    若所述运动数据与所述预设数据匹配,则启动体感拨号功能。
  2. 如权利要求1所述的方法,其中,所述将所述运动数据与预设数据进行对比的步骤包括:
    获取所述运动数据的变化趋势;
    根据所述变化趋势判断所述移动终端处于左手操作状态还是右手操作状态;
    若所述移动终端处于左手操作状态,则将所述运动数据与预设数据中左手数据进行对比;
    若所述移动终端处于右手操作状态,则将所述运动数据与预设数据中右手数据进行对比。
  3. 如权利要求2所述的方法,其中,所述若所述移动终端处于左手操作状态,则将所述运动数据与预设数据中左手数据进行对比的步骤包括:
    获取所述左手操作状态下的运动数据的最小值和第一终值;
    将所述最小值和第一终值分别与预设负值和第一预设范围进行对比;
    所述若所述运动数据与所述预设数据匹配,则启动体感拨号功能的步骤包括:
    若所述最小值小于预设负值,且所述第一终值在第一预设范围之内,则启动体感拨号功能;
    所述若所述移动终端处于右手操作状态,则将所述运动数据与预设数据中右手数据进行对比的步骤包括:
    获取所述右手操作状态下的运动数据的最大值和第二终值;
    将所述最大值和第二终值分别与预设正值和第二预设范围进行对比;
    所述若所述运动数据与所述预设数据匹配,则启动体感拨号功能的步骤还包括:
    若所述最大值大于预设正值,且所述第二终值在第二预设范围之内,则启动体感拨号功能。
  4. 如权利要求2所述的方法,其中,所述获取所述运动数据的变化趋势的步骤之前,还包括:
    根据所述运动数据确定所述移动终端在静止时的空间姿态;
    若所述移动终端在静止时的空间姿态为预设空间姿态,则执行步骤:获取所述运动数据的变化趋势。
  5. 如权利要求1所述的方法,其中,所述获取移动终端的运动数据的步骤之前,还包括:
    建立数据缓冲区,所述数据缓冲区用于存储当前预设连续时间内的运动数据;
    所述获取移动终端的运动数据的步骤包括:
    获取所述数据缓冲区中的运动数据。
  6. 如权利要求5所述的方法,其中,所述获取所述数据缓冲区中的运动数据的步骤之前,还包括:
    通过距离传感器获取移动终端的距离数据;
    根据所述距离数据判断所述移动终端是否处于接近状态;
    若是,则执行步骤:获取所述数据缓冲区中的运动数据。
  7. 一种体感拨号的控制装置,所述装置包括:
    第一获取模块,配置为获取移动终端的运动数据;
    对比模块,配置为将所述运动数据与预设数据进行对比,其中,所述 预设数据为体感拨号的操作特征数据;
    控制模块,配置为若所述运动数据与所述预设数据匹配,则启动体感拨号功能。
  8. 如权利要求7所述的装置,其中,所述对比模块包括:
    获取单元,配置为获取所述运动数据的变化趋势;
    判断单元,配置为根据所述变化趋势判断所述移动终端处于左手操作状态还是右手操作状态,获得判断结果;
    第一对比单元,配置为若所述移动终端处于左手操作状态,则将所述运动数据与预设数据中左手数据进行对比;
    第二对比单元,配置为若所述移动终端处于右手操作状态,则将所述运动数据与预设数据中右手数据进行对比。
  9. 如权利要求8所述的装置,其中,所述第一对比单元包括:
    第一获取子单元,配置为获取所述左手操作状态下的运动数据的最小值和第一终值;
    第一对比子单元,配置为将所述最小值和第一终值分别与预设负值和第一预设范围进行对比;
    所述控制模块包括:
    第一控制单元,配置为若所述最小值小于预设负值,且所述第一终值在第一预设范围之内,则启动体感拨号功能;
    所述第二对比单元包括:
    第二获取子单元,配置为获取所述右手操作状态下的运动数据的最大值和第二终值;
    第二对比子单元,配置为将所述最大值和第二终值分别与预设正值和第二预设范围进行对比;
    所述控制模块还包括:
    第二控制单元,配置为若所述最大值大于预设正值,且所述第二终值在第二预设范围之内,则启动体感拨号功能。
  10. 如权利要求8所述的装置,其中,所述装置还包括:
    确定模块,配置为根据所述运动数据确定所述移动终端在静止时的空间姿态;
    所述获取单元,还配置为若所述移动终端在静止时的空间姿态为预设空间姿态,则获取所述运动数据的变化趋势。
  11. 如权利要求7所述的装置,其中,所述装置还包括:
    建立模块,配置为建立数据缓冲区,所述数据缓冲区用于存储当前预设连续时间内的运动数据;
    所述第一获取模块,还配置为获取所述数据缓冲区中的运动数据。
  12. 如权利要求11所述的装置,其中,所述装置还包括:
    第二获取模块,配置为通过距离传感器获取移动终端的距离数据;
    判断模块,配置为根据所述距离数据判断所述移动终端是否处于接近状态;
    所述第一获取模块,还配置为若所述移动终端处于接近状态,则获取所述数据缓冲区中的运动数据。
  13. 一种计算机可读存储介质,该存储介质包括一组指令,所述指令用于执行权利要求1至6任一项所述的体感拨号的控制方法。
PCT/CN2016/093527 2016-07-11 2016-08-05 体感拨号的控制方法及装置、存储介质 WO2018010236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610546435.5A CN107608500A (zh) 2016-07-11 2016-07-11 体感拨号的控制方法及装置
CN201610546435.5 2016-07-11

Publications (1)

Publication Number Publication Date
WO2018010236A1 true WO2018010236A1 (zh) 2018-01-18

Family

ID=60952311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093527 WO2018010236A1 (zh) 2016-07-11 2016-08-05 体感拨号的控制方法及装置、存储介质

Country Status (2)

Country Link
CN (1) CN107608500A (zh)
WO (1) WO2018010236A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102265242A (zh) * 2008-10-29 2011-11-30 因文森斯公司 在移动设备上使用运动处理来控制和访问内容
CN102480553A (zh) * 2010-11-24 2012-05-30 上海华勤通讯技术有限公司 3g智能呼救手机及其实现呼救的方法
CN103227856A (zh) * 2013-03-22 2013-07-31 中兴通讯股份有限公司 非触屏方式拨号方法及拨号装置
CN104243656A (zh) * 2014-10-10 2014-12-24 北京大学工学院南京研究院 一种智能手机跌倒检测自动拨号求救方法
CN105120062A (zh) * 2015-07-08 2015-12-02 广东欧珀移动通信有限公司 一种通信建立方法及移动终端
CN105630174A (zh) * 2016-01-22 2016-06-01 上海斐讯数据通信技术有限公司 一种智能终端拨号的系统和方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801843B (zh) * 2012-08-14 2016-02-10 惠州Tcl移动通信有限公司 基于移动通讯设备自动拨号的方法及移动通讯设备
CN102830935B (zh) * 2012-08-22 2015-05-06 上海华勤通讯技术有限公司 触控终端及操作界面的调整方法
CN102890558B (zh) * 2012-10-26 2015-08-19 北京金和软件股份有限公司 基于传感器检测移动手持设备手持运动状态的方法
CN103841005A (zh) * 2012-11-27 2014-06-04 鸿富锦精密工业(深圳)有限公司 具有快速拨号功能的电子装置及快速拨号方法
CN103095912B (zh) * 2012-12-24 2015-04-29 广东欧珀移动通信有限公司 一种移动终端自动拨打电话的方法及系统
CN103576850A (zh) * 2012-12-26 2014-02-12 深圳市创荣发电子有限公司 一种手持设备的手持方式判断方法及系统
CN103546612B (zh) * 2013-10-09 2017-03-15 上海斐讯数据通信技术有限公司 一种应用于移动终端的自动拨号系统和方法
CN104182126B (zh) * 2014-08-27 2018-01-16 北京数字天域科技有限责任公司 一种移动终端拨号方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102265242A (zh) * 2008-10-29 2011-11-30 因文森斯公司 在移动设备上使用运动处理来控制和访问内容
CN102480553A (zh) * 2010-11-24 2012-05-30 上海华勤通讯技术有限公司 3g智能呼救手机及其实现呼救的方法
CN103227856A (zh) * 2013-03-22 2013-07-31 中兴通讯股份有限公司 非触屏方式拨号方法及拨号装置
CN104243656A (zh) * 2014-10-10 2014-12-24 北京大学工学院南京研究院 一种智能手机跌倒检测自动拨号求救方法
CN105120062A (zh) * 2015-07-08 2015-12-02 广东欧珀移动通信有限公司 一种通信建立方法及移动终端
CN105630174A (zh) * 2016-01-22 2016-06-01 上海斐讯数据通信技术有限公司 一种智能终端拨号的系统和方法

Also Published As

Publication number Publication date
CN107608500A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
US20130222287A1 (en) Apparatus and method for identifying a valid input signal in a terminal
CN108960163B (zh) 手势识别方法、装置、设备和存储介质
US9116571B2 (en) Method and system of data input for an electronic device equipped with a touch screen
TWI659331B (zh) 用於智慧終端機的截取螢幕方法和裝置
US20130222338A1 (en) Apparatus and method for processing a plurality of types of touch inputs
US9811255B2 (en) Detection of gesture data segmentation in mobile devices
CN103399632A (zh) 一种手势控制的方法和移动终端
CN105425941A (zh) 一种防止误启动移动终端中应用程序的方法及装置
WO2018133387A1 (zh) 指纹识别方法及装置
CN107831987B (zh) 防手势操作的误触控方法及装置
CN108874234B (zh) 一种触控识别方法、装置及触控显示装置
WO2015131590A1 (zh) 一种控制黑屏手势处理的方法及终端
WO2015041954A1 (en) Method and apparatus for controlling display of region in mobile device
CN105205377A (zh) 一种防止误启动相机的装置、方法及移动终端
WO2016082251A1 (zh) 触摸信号处理方法及设备
US20190087381A1 (en) Method and apparatus for controlling serial peripheral interface of fingerprint sensor, and mobile terminal
CN110275658A (zh) 显示控制方法、装置、移动终端以及存储介质
CN106462336B (zh) 一种移动屏幕界面的方法及终端
JP6060501B2 (ja) 筆跡管理プログラム及び記録表示装置
WO2017036175A1 (zh) 一种语音处理的方法及终端
CN110262767B (zh) 基于靠近嘴部检测的语音输入唤醒装置、方法和介质
WO2018010236A1 (zh) 体感拨号的控制方法及装置、存储介质
CN105912158A (zh) 一种移动终端的触屏拍照方法、装置及移动终端
US11175821B2 (en) Pressure touch method and terminal
CN111382598A (zh) 一种识别方法、装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908561

Country of ref document: EP

Kind code of ref document: A1