WO2018010168A1 - 车载天线 - Google Patents

车载天线 Download PDF

Info

Publication number
WO2018010168A1
WO2018010168A1 PCT/CN2016/090169 CN2016090169W WO2018010168A1 WO 2018010168 A1 WO2018010168 A1 WO 2018010168A1 CN 2016090169 W CN2016090169 W CN 2016090169W WO 2018010168 A1 WO2018010168 A1 WO 2018010168A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
vehicle
feed point
slot
conductive portion
Prior art date
Application number
PCT/CN2016/090169
Other languages
English (en)
French (fr)
Inventor
柳青
王定杰
孙树辉
潘光胜
徐慧梁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/090169 priority Critical patent/WO2018010168A1/zh
Priority to CN201680056720.7A priority patent/CN108140955B/zh
Publication of WO2018010168A1 publication Critical patent/WO2018010168A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas

Definitions

  • the present application relates to the field of antenna technologies, and in particular, to an in-vehicle antenna.
  • Cars are moving in the direction of smart terminals, not just driving tools. Cars are integrating more and more communication and entertainment systems, which require support for multiple antennas, such as LTE multi-antenna, GPS, SDARS, AM/FM, DVB, DAB, WIFI, BT, 11.P and other antennas. With the 4.5G and 5G industry promotion applications, it can provide low-latency, high-reliability, high-speed connections that are critical for smart cars, car networking, and driverless applications, while MIMO multi-antenna technology is 4.5G, 5G. The key technology. LTE MIMO multi-antenna (4*4) is one of the major technical trends of the carmakers. With the application of functions such as ADAS (abbr. automatic data acquisition system) and driverless, there will be more antennas integrated in the car.
  • ADAS abbreviations automatic data acquisition system
  • the technical problem to be solved by the embodiments of the present application is to provide an in-vehicle antenna that realizes integration of the antenna system on the entire vehicle without affecting the appearance and wind resistance characteristics of the automobile.
  • an embodiment of the present application provides an in-vehicle antenna, which includes a conductive portion formed on a surface of a vehicle body, a slot unit, a feed point, and a transceiver module, wherein the slot unit is disposed on the conductive portion to An insulating slit is formed in the conductive portion, the feed point is disposed at the slot unit, and the feed point is electrically connected to the transceiver module, the conductive portion is a part of a vehicle body, and the transceiver module is disposed Inside the conductive portion, the transceiver module feeds the slot unit through the feed point to form an equivalent field source at the slot unit to radiate a signal.
  • the present invention forms a slot unit on the conductive portion on the surface of the vehicle body, and forms a slot antenna and a radiation signal through the arrangement of the feed point and the transceiver module. Since the radiation is transmitted through the slot unit, the vehicle antenna has no protruding structure on the surface of the vehicle body. The features make the overall appearance of the car intact and do not affect the wind resistance characteristics.
  • the slot unit is L-shaped.
  • the slit unit may also be designed in other shapes such as a straight strip shape, a V shape, an arc shape, a C shape, and the like.
  • the feed point is located at a sharp corner position of the L-shaped shape of the slit unit.
  • the slit unit has a width of 2 mm, and the slit unit has a length of 273 mm (i.e., the length of the two straight slits of the L-shaped slit).
  • the number of the slot units is four, distributed at four corners of the rectangle, and the slot units respectively form a first antenna, a second antenna, a third antenna, and a fourth antenna, where the An antenna and the second antenna are respectively located at a pair of opposite diagonals, and the first antenna is rotated by 180 degrees around a center point of the conductive portion, and is overlapped with the second antenna, the third antenna And the fourth antenna is respectively located at another pair of opposite diagonals, and the third antenna is rotated by 180 degrees around a center point of the conductive portion, and then overlaps with the fourth antenna.
  • the four antennas of the present embodiment are distributed in four corners of the rectangle, which not only makes the vehicle antenna integrate the multi-antenna system, but also improves the isolation between the four antennas and improves the performance of the vehicle antenna.
  • the slit unit has a width of 2 mm, and the slit unit has a length of 273 mm.
  • the number of the slot units is plural, and the plurality of slot units are spaced apart from each other at an edge of the conductive portion, and the number of the feed points is consistent with the number of the slot units, and multiple The feed points are respectively located at the corresponding slot units, and the feed points are all electrically connected to the transceiver module.
  • the vehicle-mounted antenna further includes a plurality of capacitors
  • the slot unit extends along a periphery of the conductive portion to form a closed shape, and the number of the feed points is plural, and is distributed in the slot unit. At different locations, at least one of the capacitors is provided between each of the feed points.
  • the closed slot unit is divided into a plurality of portions by a capacitor, and each portion forms a slot antenna together with the feed point.
  • the slit unit has a circumference of 473 mm.
  • the capacitance of each of the capacitors is 1 pF.
  • a plurality of the slit units surround a rectangular region, a circular region, a triangular region, or a polygonal region.
  • the slot unit has a rectangular shape
  • the feed point includes a first feed point, a second feed point, a third feed point, and a fourth feed point respectively distributed at four corners of the slot unit.
  • the first feed point, the second feed point, the third feed point, and the fourth feed point combine to form the LTE MIMO 4*4 antenna in combination with the slot unit and the capacitor.
  • the feed point further includes a fifth feed point, and the fifth feed point is located in the gap single On one long side of the element, the fifth feed point combines the slot unit and the capacitors located on both sides of the fifth feed point to form an AM/FM antenna and a DVB/DAB antenna.
  • the slot unit is adjacent to the first feed point, and the slot unit is disposed in an L shape between two of the capacitors disposed on opposite sides of the first feed point.
  • the vehicle antenna further includes a shark fin antenna, the shark fin antenna is disposed at a center of the conductive portion, and the slot unit surrounds the shark fin antenna.
  • the conductive portion is a metal plate at the top of the automobile, or a metal plate of a trunk of the automobile, or a metal plate of a door on both sides of the automobile.
  • the conductive portion is a conductive layer of an automobile window.
  • the gap unit is filled with an insulating medium, and the insulating medium is a sealant.
  • the transceiver module and the feed point are electrically connected by a coaxial cable, and the feed point spans both sides of the slot unit in a width direction of the slot unit.
  • An outer conductor of the coaxial cable is electrically connected to one side of the slot unit, and an inner conductor of the coaxial cable is electrically connected to the other side of the slot unit.
  • the present application directly facilitates the vehicle body to realize the vehicle antenna of the multi-antenna system, can realize the LTE MIMO 4*4 antenna (capable of covering the global LTE frequency band), and can realize the ultra-low frequency AM/FM & DVB/DAB antenna. Integrating multiple antennas into one body has good common characteristics with the whole vehicle, because there is no protrusion on the vehicle body, which will not affect the appearance and wind resistance characteristics of the vehicle body.
  • FIG. 1 is a schematic diagram of a vehicle antenna provided by a first embodiment of the present application.
  • FIG. 2 is an S11 parameter of an LTE MIMO 4*4 antenna of a vehicle-mounted antenna according to a first embodiment of the present application.
  • FIG. 3 is an isolation degree S21, S31, and S41 of the LTE antenna 1 of the vehicle-mounted antenna according to the first embodiment of the present application and other LTE antennas.
  • LTE antenna 2 of an in-vehicle antenna provided by the first embodiment of the present application and other LTEs.
  • FIG. 5 is an isolation degree S13, S23, and S43 of the LTE antenna 3 of the vehicle-mounted antenna according to the first embodiment of the present application and other LTE antennas.
  • FIG. 6 is an isolation degree S13, S23, and S43 of the LTE antenna 4 of the vehicle-mounted antenna according to the first embodiment of the present application and other LTE antennas.
  • FIG. 7 is an LTE MIMO antenna 1 efficiency of a vehicle-mounted antenna according to a first embodiment of the present application.
  • FIG. 8 is an LTE MIMO antenna 2 efficiency of a vehicle-mounted antenna according to a first embodiment of the present application.
  • FIG. 9 is an LTE MIMO antenna 3 efficiency of a vehicle-mounted antenna according to a first embodiment of the present application.
  • FIG. 10 is an efficiencies of an LTE MIMO antenna 4 of a vehicle-mounted antenna according to a first embodiment of the present application.
  • FIG. 11 is a schematic diagram of a vehicle antenna provided by a second embodiment of the present application.
  • FIG. 12 is an LTE MIMO 4*4 antenna S11 parameter of a vehicle-mounted antenna according to a second embodiment of the present application.
  • FIG. 13 is an S11 parameter of an AM/FM&DVB/DAB antenna of a vehicle-mounted antenna according to a second embodiment of the present application.
  • 16 is an isolation degree of an LTE antenna 3 of an in-vehicle antenna and other LTE antennas and an AM/FM & DVB/DAB antenna according to a second embodiment of the present application.
  • 17 is an isolation degree of an LTE antenna 4 of an in-vehicle antenna and other LTE antennas and an AM/FM&DVB/DAB antenna according to a second embodiment of the present application.
  • FIG. 18 is an isolation diagram of an AM/FM&DVB/DAB antenna and an LTE4 antenna of a vehicle-mounted antenna according to a second embodiment of the present application.
  • FIG. 19 is a system efficiency of an LTE MIMO antenna 1 of a vehicle-mounted antenna according to a second embodiment of the present application.
  • 20 is a system efficiency of an LTE MIMO antenna 2 of a vehicle-mounted antenna according to a second embodiment of the present application.
  • 21 is a system efficiency of an LTE MIMO antenna 3 of a vehicle-mounted antenna according to a second embodiment of the present application.
  • FIG. 22 is a system efficiency of an LTE MIMO antenna 4 of a vehicle-mounted antenna according to a second embodiment of the present application.
  • the present application relates to a vehicle-mounted antenna, wherein the slot antenna is disposed on the vehicle body, and the slot antenna unit formed by the insulated slot portion and the conductive body portion on both sides of the slot is radiated outwardly from the gap between the conductive body portions.
  • the signal ie the equivalent field source - the magnetic current element (or Huygens element) is formed on the gap to radiate the signal.
  • the application directly realizes the multi-antenna system of the vehicle body, and the vehicle body can be the metal part of the roof surface, the conductive layer of the window, the trunk of the vehicle or the door of the car, and the multi-antenna system can include LTE MIMO4*4 multi-antenna (covering Global LTE band), ultra-low frequency AM/FM, DVB, DAB multi-antenna integration, etc.
  • LTE MIMO4*4 multi-antenna covering Global LTE band
  • ultra-low frequency AM/FM ultra-low frequency AM/FM
  • DVB DAB multi-antenna integration
  • the multi-antenna system of the present application has good common characteristics with the whole vehicle, that is to say, the vehicle body does not need to be provided with protrusions, and does not affect the appearance and wind resistance characteristics of the vehicle body.
  • FIG. 1 is a schematic diagram of a vehicle-mounted antenna 100 according to a first embodiment of the present application.
  • the in-vehicle antenna 100 includes the conductive portion 10 formed on the surface of the vehicle body (that is, the conductive portion 10 is a part of the vehicle body), at least one slit unit 20, the feed point 30, and a transceiver module (not shown).
  • the conductive portion 10 is a vehicle body of an automobile.
  • the conductive portion 10 is a metal plate on the top surface of the automobile.
  • the size of the metal plate is 1800 mm * 1500 mm, and the metal plate is substantially rectangular.
  • the slit unit 20 is disposed on the conductive portion 10 and distributed near the edge of the conductive portion 10.
  • the number of the slit units 20 is four, and is distributed at four corners of the conductive portion 10, that is, Four slot units 20 are distributed over long Four corners of the square.
  • the number of the slot units 20 is not limited by the present application.
  • the number of the slot units 20 may be one or multiple, and the plurality of slot units 20 are spaced apart from each other at the edge of the conductive portion 10 according to actual needs.
  • the number of the feed points 30 is the same as the number of the slot units 20, and the feed points 30 are disposed in one-to-one correspondence with the slot units 20, and the feed points 30 are respectively located inside the corresponding slot units 20.
  • the slot units 20 are passed.
  • the conductive portion 10 is cut to form a groove, and the groove penetrates through the inner and outer surfaces of the conductive portion 10.
  • the groove can be filled with an insulating medium.
  • the feed point 30 is located inside the slit, that is, the feed point 30 is disposed on the insulating medium.
  • the feeding point 30 and the transceiver module are electrically connected by a coaxial cable.
  • the transceiver module is a circuit part of the vehicle antenna 100, and the transceiver module is disposed inside the vehicle body, for example, the inner side of the roof.
  • each slit unit has an L shape
  • the width W of the slit unit is 2 mm
  • the length of the slit is 273 mm (the total length of the L-shaped slit, that is, the length of the strip slit in two mutually perpendicular directions)
  • each feed point is located at the sharp corner of the corresponding L-shaped slit unit, that is, the intersection of the strip slits in two mutually perpendicular directions.
  • the vehicle antenna of this embodiment supports an LTE MIMO 4*4 antenna (supporting the global LTE frequency range: 698-960 MHz, 1400-1500 MHz, 1710-2690 MHz, 3400-3500 MHz).
  • slot units are combined with four feed points to form four antennas, and four slot units are distributed in four corners of the top metal plate of the automobile, which is beneficial to increase the spacing between the four antennas, thereby improving Isolation.
  • the structure and size of the four slot units are the same, but the directions are different at the four corners of the rectangle.
  • the four slot units 20 respectively form a first antenna 21, a second antenna 22, a third antenna 23, and a fourth antenna 24 (the four antennas constitute the LTE MIMO 4*4 antenna described above), and the first antenna 21 and the second antenna 22 are respectively located at a pair of opposite diagonals, and the first antenna 21 is rotated 180 degrees around the center point of the conductive portion 10 (ie, the metal plate) and then overlaps with the second antenna 22.
  • the third antenna 23 and the fourth antenna 24 are respectively located at opposite corners of the other pair, and the third antenna 23 is rotated by 180 degrees around the center point of the conductive portion 10 (ie, the metal plate) and then overlaps with the fourth antenna 24.
  • each of the slit units 20 may have a shape of a straight strip, a V shape, an arc shape, a C shape, or the like.
  • FIG. 2 to 10 show performance simulation results of the vehicle-mounted antenna 100 shown in Fig. 1, which are respectively described below.
  • FIG. 2 shows the S11 parameter of the LTE MIMO 4*4 antenna shown in FIG. 1
  • S11 is one of the S parameters, indicating the return loss characteristic, and the loss is generally seen by the network analyzer. Value and impedance characteristics. This parameter indicates whether the antenna's transmission efficiency is good or not. The larger the value, the larger the energy reflected by the antenna itself, so the efficiency of the antenna is worse.
  • the horizontal axis represents the frequency point (in GHz) and the vertical axis represents S11 ( Unit dB). Only the S11 parameter curves of two of the antennas are shown in Fig. 2, and the S11 parameters of the other two antennas coincide with the two curves in the figure, and thus are not shown.
  • FIG. 3 shows the isolation degree S21 of the LTE antenna 1 (ie, the first antenna 21) shown in FIG. 1 and other LTE antennas (ie, the second antenna 22, the third antenna 23, and the fourth antenna 24).
  • the horizontal axis represents the frequency point (in GHz)
  • the vertical axis represents Sx1 (unit: dB).
  • FIG. 4 shows the isolation degree S12 between the LTE antenna 2 shown in FIG. 1 (ie, the second antenna 22) and other LTE antennas (ie, the first antenna 21, the third antenna 23, and the fourth antenna 24).
  • the horizontal axis represents the frequency point (in GHz)
  • the vertical axis represents Sx2 (unit: dB).
  • FIG. 5 shows the isolation degree S13 between the LTE antenna 3 (ie, the third antenna 23) shown in FIG. 1 and other LTE antennas (ie, the first antenna 21, the second antenna 22, and the fourth antenna 24).
  • the horizontal axis represents the frequency point (in GHz)
  • the vertical axis represents Sx3 (unit: dB).
  • FIG. 6 shows the isolation degree S13 between the LTE antenna 4 (ie, the fourth antenna 24) shown in FIG. 1 and other LTE antennas (ie, the first antenna 21, the second antenna 22, and the third antenna 23).
  • the horizontal axis represents the frequency point (in GHz)
  • the vertical axis represents Sx3 (unit: dB).
  • Fig. 7 shows the efficiency of the LTE MIMO antenna 1 (i.e., the first antenna 21) shown in Fig. 1.
  • the horizontal axis represents the frequency point (in GHz) and the vertical axis represents the antenna efficiency (in dB).
  • Fig. 8 shows the efficiency of the LTE MIMO antenna 2 (i.e., the second antenna 22) shown in Fig. 1.
  • the horizontal axis represents the frequency point (in GHz) and the vertical axis represents the antenna efficiency (in dB).
  • Fig. 9 shows the efficiency of the LTE MIMO antenna 3 (i.e., the third antenna 23) shown in Fig. 1.
  • the horizontal axis represents the frequency point (in GHz) and the vertical axis represents the antenna efficiency (in dB).
  • Fig. 10 shows the efficiency of the LTE MIMO antenna 4 (i.e., the fourth antenna 24) shown in Fig. 1.
  • the horizontal axis represents the frequency point (in GHz) and the vertical axis represents the antenna efficiency (in dB).
  • FIG. 11 is a schematic diagram of a vehicle-mounted antenna 100 according to a second embodiment of the present application.
  • the in-vehicle antenna 100 includes a conductive portion 10, a slit unit 20, a feed point 30, and a transceiver module (not shown).
  • the conductive portion 10 is a vehicle body of an automobile.
  • the conductive portion 10 is a metal plate on the top surface of the automobile.
  • the size of the metal plate is 1800 mm * 1500 mm, and the metal plate is substantially rectangular.
  • the slot unit 20 extends along the periphery of the conductive portion 10 to form a closed shape, and the slot unit 20 is adjacent to the edge of the conductive portion 10.
  • the slot unit 20 shown in FIG. 11 surrounds the rectangular region.
  • the slot unit 20 can also be used.
  • the number of the feed points 30 is plural, and the plurality of feed points 30 are distributed at different positions of the slot unit 20, and at least one capacitor 40 is disposed between each feed point 30, so that the capacitor 40 and the feed point 30 are
  • the combination of the slot units 20 forms a multi-antenna system.
  • the feeding point 30 and the transceiver module are electrically connected by a coaxial cable.
  • the transceiver module is a circuit part of the vehicle antenna 100, and the transceiver module is disposed inside the vehicle body, for example, the inner side of the roof.
  • the slit unit 20 has a rectangular shape and a length of 473 mm, that is, a circumference of a rectangular shape, and the capacitance value of each capacitor 40 is 1 pF.
  • the vehicle-mounted antenna 100 includes four first feed points 31, a second feed point 32, a third feed point 33, and a fourth feed point 34 respectively distributed at four corners of the rectangular slot unit.
  • the point combining slot unit 20 and capacitor 40 form an LTE MIMO 4*4 antenna.
  • the frequency of the LTE MIMO 4*4 antenna is high, and the capacitor is in a grounded state in the LTE MIMO 4*4 antenna state.
  • the in-vehicle antenna 100 further includes a fifth feed point 35 located at a position near the center of one of the long sides of the rectangular structure formed by the slot unit 20, and the fifth feed point 35 is combined with the slot unit 20 to form an AM/FM antenna.
  • the DVB/DAB antenna specifically, the AM/FM antenna and the DVB/DAB antenna have lower frequencies
  • the AM/FM antenna and the DVB/DAB antenna state the capacitor is in an off state, and the disconnection of the capacitor causes the slot unit 20 to be Connected, the entire slot unit 20 forms an AM/FM antenna and a DVB/DAB antenna.
  • Two capacitors 40 are disposed on each side of the rectangular shape formed by the slot unit 20, and each of the feed points 30 is separated from the two capacitors 40 on the adjacent sides and the slot unit 20 between the two capacitors 40. Together, one of the LTE MIMO 4*4 antennas is formed.
  • the gap of each antenna is L-shaped, that is, between two capacitors 40 on the adjacent side of the same feed point 30.
  • the slit unit 20 has an L shape.
  • the capacitor 40 is equivalent to a metal piece, and the capacitance 40 is disposed such that the slot unit 20 forms four L-shaped slits, similar to the architecture of the first embodiment.
  • the vehicle-mounted antenna 100 of the present embodiment supports an LTE MIMO 4*4 antenna (supporting global LTE frequency range: 698-960 MHz, 1400-1500 MHz, 1710-2690 MHz, 3400-3500 MHz, respectively), AM/FM antenna (1 MHz & 88-108 MHz), DVB/DAB antenna (170-230MHz & 470-862MHz).
  • the shark fin antenna 50 may be disposed at the center of the conductive portion 10, and the shark fin antenna 50 disposed outside the top surface of the automobile.
  • the shark fin antenna 50 includes a GPS antenna, a SDARS antenna, a WIFI antenna, and a DSRC. An antenna or the like that is not included in the slot antenna unit.
  • FIG. 12 shows the LTE MIMO 4*4 antenna S11 parameters shown in FIG. 11, in which the horizontal axis represents the frequency point (in GHz) and the vertical axis represents S11 (unit: dB). It can be seen that the S11 parameter curves of the four LTE antennas are similar, and the return loss characteristics are similar.
  • FIG. 13 shows the S11 parameter of the AM/FM&DVB/DAB antenna, in which the horizontal axis represents the frequency point (in GHz) and the vertical axis represents S11 (in dB).
  • FIG. 14 shows the isolation between the LTE antenna 1 (ie, the antenna corresponding to the first feed point 31) and other LTE antennas and the AM/FM&DVB/DAB antenna (the horizontal axis represents the frequency point, the unit GHz, and the vertical axis represents the Sx1). , unit dB)
  • FIG. 15 shows the isolation between the LTE antenna 2 (ie, the antenna corresponding to the second feed point 32) and other LTE antennas and AM/FM&DVB/DAB antennas.
  • the horizontal axis represents the frequency point (in GHz), and the vertical axis represents Sx1 (in dB).
  • FIG. 16 shows the isolation between the LTE antenna 3 (ie, the antenna corresponding to the third feed point 32) and other LTE antennas and AM/FM&DVB/DAB antennas.
  • the horizontal axis represents the frequency point (in GHz), and the vertical axis represents Sx1 (in dB).
  • FIG. 17 shows the isolation between the LTE antenna 4 (ie, the antenna corresponding to the fourth feed point 34) and other LTE antennas and the AM/FM&DVB/DAB antenna, and the horizontal axis represents the frequency point (in GHz), and the vertical axis represents Sx1 (in dB).
  • FIG. 18 shows the isolation between the AM/FM&DVB/DAB antenna (ie, the antenna corresponding to the fifth feed point 35) and the LTE4 antenna, the horizontal axis represents the frequency point (in GHz), and the vertical axis represents Sx1 (in dB). .
  • FIG. 19 shows the system efficiency of the LTE MIMO antenna 1 (ie, the antenna corresponding to the first feed point 31), the horizontal axis represents the frequency point (in GHz), and the vertical axis represents the antenna efficiency (in dB).
  • FIG. 20 shows the system efficiency of the LTE MIMO antenna 2 (ie, the antenna corresponding to the second feed point 32), the horizontal axis represents the frequency point (in GHz), and the vertical axis represents the antenna efficiency (in dB).
  • FIG. 21 shows the system efficiency of the LTE MIMO antenna 3 (ie, the antenna corresponding to the third feed point 32), the horizontal axis represents the frequency point (in GHz), and the vertical axis represents the antenna efficiency (in dB).
  • FIG. 22 shows the system efficiency of the LTE MIMO antenna 4 (ie, the antenna corresponding to the fourth feed point 34), the horizontal axis represents the frequency point (in GHz), and the vertical axis represents the antenna efficiency (in dB).
  • Fig. 23 shows the system efficiency of the AM/FM&DVB/DAB antenna (i.e., the antenna corresponding to the fifth feed point 35), the horizontal axis represents the frequency point (in GHz), and the vertical axis represents the antenna efficiency (in dB).
  • the vehicle antenna of the present application is a multi-antenna system, and a multi-antenna common antenna radiator, that is, a conductive portion.
  • the conductive portion is a metal plate on the top of the automobile and has a flat shape.
  • the conductive portion is a conductive layer of an automobile window.
  • the conductive portion is a metal plate of the trunk of the vehicle.
  • the conductive portion is a metal plate of the door on both sides of the automobile.
  • a gap is provided on the conductive portion, and a feed point is disposed on the slit, and the feed point is electrically connected to the transceiver module (ie, the circuit portion of the vehicle antenna) to form a slot antenna, and the slot antenna is disposed on the plane of the conductive portion,
  • the transceiver module ie, the circuit portion of the vehicle antenna
  • the slot antenna is disposed on the plane of the conductive portion
  • the arrangement of the conductive portion of the present application may also be combined with the above several embodiments, for example, at the same time, a slit unit and a feed point are arranged on the metal plate of the top of the automobile and the conductive layer of the automobile window, so that the vehicle antenna is distributed more widely, and the vehicle is provided. The efficiency of the antenna.
  • the slot unit of the present application may be filled with an insulating medium.
  • the insulating medium may be air.
  • the insulating medium in the slot unit may be a non-conductive sealant.
  • the transceiver module of the present application includes a baseband and a radio frequency component.
  • the transceiver module and the feed points are electrically connected through a coaxial cable to feed each feed point.
  • Each feeding point spans both sides of the slot unit in the width direction of the slot unit, and the feeding mode can be directly fed, that is, the outer conductor of the coaxial cable is electrically connected to one side of the slot unit, The inner conductor of the shaft cable is electrically connected to the other side of the slot unit.
  • the feeding mode can also adopt a coupling feeding mode, that is, the outer conductor of the coaxial cable is electrically connected with one side of the antenna slot, and the inner conductor of the coaxial cable and the other side of the antenna slot are realized by capacitors or distributed capacitors. connection.
  • the present application directly facilitates the vehicle body to realize the vehicle antenna of the multi-antenna system, can realize the LTE MIMO 4*4 antenna (capable of covering the global LTE frequency band), and can realize the ultra-low frequency AM/FM & DVB/DAB antenna. Integrating multiple antennas into one body has good common characteristics with the whole vehicle, because there is no protrusion on the vehicle body, which will not affect the appearance and wind resistance characteristics of the vehicle body.

Landscapes

  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

一种车载天线,包括形成在车体表面的导电部、缝隙单元、馈点及收发模块,所述缝隙单元设于所述导电部,以在所述导电部内形成绝缘的缝隙,所述馈点设置于所述缝隙单元处,且所述馈点与所述收发模块电连接,所述导电部为车体的一部分,所述收发模块设置于所述导电部的内侧,所述收发模块通过所述馈点为所述缝隙单元馈电,以在所述缝隙单元处形成等效场源,以辐射信号。本申请提供的车载天线通过在车体的导电部上形成绝缘的缝隙,形成缝隙天线,不影响洗车外观及风阻特征。

Description

车载天线 技术领域
本申请涉及天线技术领域,尤其涉及一种车载天线。
背景技术
汽车正在朝着智能终端方向发展,而不单纯是行驶工具。汽车正在集成越来越多的通讯、娱乐系统,这就要求支持多个天线,比如LTE多天线、GPS、SDARS、AM/FM、DVB、DAB、WIFI、BT、11.P等天线。随着4.5G、5G业界推进应用,可提供对于智能汽车、车联网、无人驾驶等应用至关重要的低时延、高可靠性、高速率连接,而MIMO多天线技术为4.5G、5G的关键技术。LTE MIMO多天线(4*4)是车厂目前的主要技术趋势之一。随着ADAS(abbr.automatic data acquisition system,自动数据采集系统)、无人驾驶等功能的应用,汽车所集成天线将会更多。
如何在整车上设计集成高性能多天线系统、同时不影响汽车外观及风阻特性等正成为业界的挑战。
发明内容
本申请实施方式所要解决的技术问题在于提供一种车载天线,实现在整车上集成天线系统,同时不影响汽车的外观及风阻特征。
为了实现上述目的,本申请实施方式采用如下技术方案:
第一方面,本申请实施方式提供了一种车载天线,所述车载天线包括形成在车体表面的导电部、缝隙单元、馈点及收发模块,所述缝隙单元设于所述导电部,以在所述导电部内形成绝缘的缝隙,所述馈点设置于所述缝隙单元处,且所述馈点与所述收发模块电连接,所述导电部为车体的一部分,所述收发模块设置于所述导电部的内侧,所述收发模块通过所述馈点为所述缝隙单元馈电,以在所述缝隙单元处形成等效场源,以辐射信号。本申请通过在车体表面的导电部上设置缝隙单元,并通过馈点和收发模块的设置,形成缝隙天线,辐射信号,由于通过缝隙单元辐射,车载天线在车体的表面无任何突出的结构特征,使得整体汽车的外观保持完整,且不影响风阻特性。
一种实施方式中,所述缝隙单元呈L形。其它实施方式中,缝隙单元也可以设计为直条形、V形、弧形、C形等其它形状。
进一步而言,所述馈点位于所述缝隙单元之L形形状的尖角位置处。所述缝隙单元的宽度为2mm,所述缝隙单元的长度为273mm(即L形缝隙的两段直形缝隙的长度和)。
一种实施方式中,所述缝隙单元的数量为四个,分布在长方形的四个角落处,所述缝隙单元分别形成第一天线、第二天线、第三天线和第四天线,所述第一天线和所述第二天线分别位于一对相对的对角处,所述第一天线以所述导电部的中心点为中心旋转180度后与所述第二天线重合,所述第三天线和所述第四天线分别位于另一对相对的对角处,所述第三天线以所述导电部的中心点为中心旋转180度后与所述第四天线重合。本实施方式之四个天线分布在长方形的四个角落,不但使得车载天线集成了多天线系统,还可以提高四个天线之间的隔离度,提升车载天线的性能。
具体而言,所述缝隙单元的宽度为2mm,所述缝隙单元的长度为273mm。
一种实施方式中,所述缝隙单元的数量为多个,多个所述缝隙单元彼此相隔分布在所述导电部的边缘,所述馈点的数量与所述缝隙单元的数量一致,多个所述馈点分别位于相应的所述缝隙单元处,所述馈点均与所述收发模块电连接。
一种实施方式中,所述车载天线还包括多个电容,所述缝隙单元沿着所述导电部周边延伸形成封闭状,所述馈点的数量为多个,且分布在所述缝隙单元的不同位置处,各馈点之间设有至少一个所述电容。本实施方式通过电容将封闭式的缝隙单元分隔成多个部分,每个部分与馈点共同形成缝隙天线。所述缝隙单元的周长为473mm。每个所述电容的电容值为1pF。
具体而言,多个所述缝隙单元包围形成矩形区域、圆形区域、三角形区域或者多边形区域。
一种实施方式中,所述缝隙单元呈矩形,所述馈点包括分别分布在所述缝隙单元四个角落处的第一馈点、第二馈点、第三馈点及第四馈点,所述第一馈点、所述第二馈点、所述第三馈点及所述第四馈点结合所述缝隙单元及所述电容形成LTE MIMO 4*4天线。
进一步的设计,所述馈点还包括第五馈点,所述第五馈点位于所述缝隙单 元之一个长边上,所述第五馈点结合所述缝隙单元及位于所述第五馈点两侧的所述电容形成AM/FM天线和DVB/DAB天线。
一种实施方式中,与所述第一馈点相邻,且设置在所述第一馈点两侧的两个所述电容之间所述缝隙单元呈L形。
结合上述任意一种实施方式,所述车载天线还包括鲨鱼鳍天线,所述鲨鱼鳍天线设于所述导电部之中心位置,所述缝隙单元包围所述鲨鱼鳍天线。
结合上述任意一种实施方式,所述导电部为汽车顶部的金属板,或者汽车后备箱的金属板,或者汽车两侧车门的金属板。
结合上述任意一种实施方式,所述导电部为汽车车窗的导电层。
结合上述任意一种实施方式,所述缝隙单元中填充绝缘介质,所述绝缘介质为密封胶。
结合上述任意一种实施方式,所述收发模块和所述馈点之间通过同轴线缆电连接,所述馈点在所述缝隙单元的宽度方向上跨接所述缝隙单元的两侧,所述同轴线缆的外导体与所述缝隙单元的一侧电连接,所述同轴线缆的内导体与所述缝隙单元的另一侧电连接。
综上所述,本申请直接利于车体实现了多天线系统的车载天线,能够实现LTE MIMO 4*4天线(能够覆盖全球LTE频段),还能够实现超低频AM/FM&DVB/DAB天线,本申请将多天线集成为一体,与整车共性特性好,因为车体上没有任何突出物的设置,不会影响车体的外观及风阻特性。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以如这些附图获得其他的附图。
图1是本申请第一实施方式提供的一种车载天线的示意图。
图2是本申请第一实施方式提供的一种车载天线的LTE MIMO 4*4天线的S11参数。
图3是本申请第一实施方式提供的一种车载天线的LTE天线1与其它LTE天线的隔离度S21、S31、S41。
图4是本申请第一实施方式提供的一种车载天线的LTE天线2与其他LTE 天线的隔离度S12、S32、S42。
图5是本申请第一实施方式提供的一种车载天线的LTE天线3与其他LTE天线的隔离度S13、S23、S43。
图6是本申请第一实施方式提供的一种车载天线的LTE天线4与其他LTE天线的隔离度S13、S23、S43。
图7是本申请第一实施方式提供的一种车载天线的LTE MIMO天线1的效率。
图8是本申请第一实施方式提供的一种车载天线的LTE MIMO天线2的效率。
图9是本申请第一实施方式提供的一种车载天线的LTE MIMO天线3的效率。
图10是本申请第一实施方式提供的一种车载天线的LTE MIMO天线4的效率。
图11是本申请第二实施方式提供的一种车载天线的示意图。
图12是本申请第二实施方式提供的一种车载天线的LTE MIMO 4*4天线S11参数。
图13是本申请第二实施方式提供的一种车载天线的AM/FM&DVB/DAB天线的S11参数。
图14是本申请第二实施方式提供的一种车载天线的LTE天线1与其他LTE天线及AM/FM&DVB/DAB天线隔离度。
图15是本申请第二实施方式提供的一种车载天线的LTE天线2与其他LTE天线及AM/FM&DVB/DAB天线隔离度。
图16是本申请第二实施方式提供的一种车载天线的LTE天线3与其他LTE天线及AM/FM&DVB/DAB天线隔离度。
图17是本申请第二实施方式提供的一种车载天线的LTE天线4与其他LTE天线及AM/FM&DVB/DAB天线隔离度。
图18是本申请第二实施方式提供的一种车载天线的AM/FM&DVB/DAB天线与LTE4天线隔离度。
图19是本申请第二实施方式提供的一种车载天线的LTE MIMO天线1的系统效率。
图20是本申请第二实施方式提供的一种车载天线的LTE MIMO天线2的系统效率。
图21是本申请第二实施方式提供的一种车载天线的LTE MIMO天线3的系统效率。
图22是本申请第二实施方式提供的一种车载天线的LTE MIMO天线4的系统效率。
图23是本申请第二实施方式提供的一种车载天线的AM/FM&DVB/DAB天线的系统效率。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
本申请涉及车载天线,将缝隙天线设置在车体上,通过绝缘的缝隙部分与缝隙两侧的导电的车体部分共同形成的缝隙天线单元,得导电的车体部分之间的缝隙向外辐射信号,即缝隙上形成等效场源-磁流元(或惠更斯元),以辐射信号。本申请直接得车体实现多天线系统,车体可以为车顶面的金属部分、车窗的导电层、车后备箱或者汽车两侧车门,多天线系统可以包括LTE MIMO4*4多天线(覆盖全球LTE频段)、超低频AM/FM、DVB、DAB多天线集成等。本申请之多天线系统与整车的共性特性好,也就是说车体无需设置突出物,不会影响车体外观及风阻特征。
图1所示为本申请第一实施方式提供的车载天线100示意图。本实施方式中,车载天线100包括形成在车体表面的导电部10(即导电部10是车体的一部分)、至少一个缝隙单元20、馈点30及收发模块(未图示)。导电部10为汽车的车体,一种实施方式中,导电部10为汽车顶面的金属板,金属板的尺寸为1800mm*1500mm,金属板大致呈长方形。缝隙单元20设置在导电部10上,且靠近导电部10的边缘分布,一种实施方式中,缝隙单元20的数量为四个,且分别分布在导电部10的四个角落处,即所述四个缝隙单元20分布在长 方形的四个角落处。当然,本申请不对缝隙单元20的数量做限定,根据实际情况的需要,缝隙单元20的数量可以为一个,也可以为多个,多个缝隙单元20彼此相隔分布在导电部10的边缘。馈点30的数量与缝隙单元20的数量一致,馈点30与所述缝隙单元20一一对应设置,馈点30分别位于相应的缝隙单元20内部,一种实施方式中,缝隙单元20是通过对导电部10进行切割形成开槽,开槽贯穿导电部10的内、外表面,开槽内可以填充绝缘介质,具体而言,馈点30位于缝隙内部,即馈点30设置于绝缘介质的处。馈点30与收发模块之间通过同轴线缆实现电连接,收发模块为车载天线100的电路部分,收发模块设置在车体的内侧,例如车顶的内侧。
本实施方式中,每个缝隙单元均呈L形,缝隙单元的宽度W为2mm,缝隙的长度为273mm(L形缝隙的总长度,即两个相互垂直的方向上的条形缝隙的长度的和,即图1中的L1和L2的和),每个馈点均位于相应的L形缝隙单元的尖角处,即两个相互垂直的方向上的条形缝隙的相交位置。此实施例的车载天线支持LTE MIMO 4*4天线(支持全球LTE频段范围分别为:698-960MHz、1400-1500MHz、1710-2690MHz、3400-3500MHz)。本实施方式中,四个缝隙单元与四个馈点结合共同形成四个天线,四个缝隙单元分布在汽车顶面金属板的四个角落,有利于增大四个天线之间间距,从而提升隔离度。四个缝隙单元的结构及尺寸均相同,但在长方形的四个角落处摆放的方向不同。
进一步而言,所述四个缝隙单元20分别形成第一天线21、第二天线22、第三天线23和第四天线24(这四个天线组成上述LTE MIMO 4*4天线),第一天线21和第二天线22分别位于一对相对的对角处,第一天线21以导电部10(即金属板)的中心点为中心旋转180度后与第二天线22重合。第三天线23和第四天线24分别位于另一对相对的对角处,第三天线23以导电部10(即金属板)的中心点为中心旋转180度后与第四天线24重合。
其它实施例中,每个缝隙单元20的形状可以为直条形、V形、弧形、C形等其它形状。
图2至图10所示为图1所示的车载天线100的性能仿真结果,分别描述如下。
请参阅图2,图2表示图1所示的LTE MIMO 4*4天线的S11参数(S11是S参数中的一个,表示回波损耗特性,一般通过网络分析仪来看其损耗的dB 值和阻抗特性。此参数表示天线的发射效率好不好,值越大,表示天线本身反射回来的能量越大,这样天线的效率就越差),其中,横轴表示频率点(单位GHz),纵轴表示S11(单位dB)。图2中只显示了其中两个天线的S11参数曲线,另两个天线的S11参数与图中的两条曲线重合,因此没有表现出来。
请参阅图3,图3表示图1所示的LTE天线1(即上述第一天线21)与其它LTE天线(即上述第二天线22、第三天线23及第四天线24)的隔离度S21、S31、S41,横轴表示频率点(单位GHz),纵轴表示Sx1(单位dB)。
请参阅图4,图4表示图1所示的LTE天线2(即上述第二天线22)与其他LTE天线(即上述第一天线21、第三天线23及第四天线24)的隔离度S12、S32、S42,横轴表示频率点(单位GHz),纵轴表示Sx2(单位dB)。
请参阅图5,图5表示图1所示的LTE天线3(即上述第三天线23)与其他LTE天线(即上述第一天线21、第二天线22及第四天线24)的隔离度S13、S23、S43,横轴表示频率点(单位GHz),纵轴表示Sx3(单位dB)。
请参阅图6,图6表示图1所示的LTE天线4(即上述第四天线24)与其他LTE天线(即上述第一天线21、第二天线22及第三天线23)的隔离度S13、S23、S43,横轴表示频率点(单位GHz),纵轴表示Sx3(单位dB)。
请参阅图7,图7表示图1所示的LTE MIMO天线1(即上述第一天线21)的效率,横轴表示频率点(单位GHz),纵轴表示天线效率(单位dB)。
请参阅图8,图8表示图1所示的LTE MIMO天线2(即上述第二天线22)的效率,横轴表示频率点(单位GHz),纵轴表示天线效率(单位dB)。
请参阅图9,图9表示图1所示的LTE MIMO天线3(即上述第三天线23)的效率,横轴表示频率点(单位GHz),纵轴表示天线效率(单位dB)。
请参阅图10,图10表示图1所示的LTE MIMO天线4(即上述第四天线24)的效率,横轴表示频率点(单位GHz),纵轴表示天线效率(单位dB)。
图11所示为本申请第二实施方式提供的车载天线100示意图。本实施方式中,车载天线100包括导电部10、缝隙单元20、馈点30及收发模块(未图示)。导电部10为汽车的车体,一种实施方式中,导电部10为汽车顶面的金属板,金属板的尺寸为1800mm*1500mm,金属板大致呈长方形。缝隙单元20沿着导电部10周边延伸形成封闭状,缝隙单元20靠近导电部10边缘,图11所示的缝隙单元20包围形成矩形区域,其它实施方式中,缝隙单元20也可以 包围形成其它形状的区域,例如三角形区域、圆形区域、多边形区域。馈点30的数量为多个,多个馈点30分布在所述缝隙单元20的不同的位置处,且各馈点30之间设有至少一个电容40,这样通过电容40与馈点30及缝隙单元20的结合形成多天线系统。馈点30与收发模块之间通过同轴线缆实现电连接,收发模块为车载天线100的电路部分,收发模块设置在车体的内侧,例如车顶的内侧。本实施方式中,缝隙单元20呈矩形,且长度为473mm,即矩形形状的周长,每个电容40的电容值为1pF。
本实施方式中,车载天线100包括四个分别分布在矩形缝隙单元四个角落处的第一馈点31、第二馈点32、第三馈点33及第四馈点34,这四个馈点结合缝隙单元20及电容40形成LTE MIMO 4*4天线,具体而言,LTE MIMO 4*4天线的频率较高,LTE MIMO 4*4天线状态下,电容处于接地状态。车载天线100还包括第五馈点35,第五馈点35位于缝隙单元20形成的矩形结构的其中一个长边之靠近中央的位置处,第五馈点35结合缝隙单元20形成AM/FM天线和DVB/DAB天线,具体而言,AM/FM天线和DVB/DAB天线频率较低,AM/FM天线和DVB/DAB天线状态下,电容处于断开状态,电容的断开使得缝隙单元20被连通,整个缝隙单元20形成AM/FM天线和DVB/DAB天线。
缝隙单元20包围形成的矩形形状的每条边上均设置两个电容40,每个馈点30均与分别位于相邻边上的两个电容40及这两个电容40之间的缝隙单元20共同形成LTE MIMO 4*4天线之中的一个天线,LTE MIMO 4*4天线中,每个天线的缝隙均呈L形,即同一个馈点30之相邻边上的两个电容40之间的缝隙单元20呈L形。LTE MIMO 4*4天线中,电容40相当于金属片,电容40的设置,使得缝隙单元20形成四个L形的缝隙,与第一种实施方式的架构相似。
本实施方式之车载天线100支持LTE MIMO 4*4天线(支持全球LTE频段范围分别为:698-960MHz、1400-1500MHz、1710-2690MHz、3400-3500MHz)、AM/FM天线(1MHz&88-108MHz)、DVB/DAB天线(170-230MHz&470-862MHz)。而且,本实施方式的进一步设计中,还可以在导电部10中心设置鲨鱼鳍天线50,在汽车顶面外侧放置的鲨鱼鳍天线50,鲨鱼鳍天线50包含GPS天线、SDARS天线、WIFI天线、DSRC天线等所述缝隙天线单元不包括的部分。
图12至图23所示为图11所示的车载天线100的性能仿真结果,分别描述如下。
请参阅图12,图12表示图11所示的LTE MIMO 4*4天线S11参数,其中,横轴表示频率点(单位GHz),纵轴表示S11(单位dB)。可以看出,四个LTE天线的S11参数曲线相似,回波损耗特性相似。
请参阅图13,图12表示AM/FM&DVB/DAB天线的S11参数,其中,横轴表示频率点(单位GHz),纵轴表示S11(单位dB)。
请参阅图14,图14表示LTE天线1(即第一馈点31所对应的天线)与其他LTE天线及AM/FM&DVB/DAB天线隔离度(横轴表示频率点、单位GHz,纵轴表示Sx1、单位dB)
请参阅图15,图15表示LTE天线2(即第二馈点32所对应的天线)与其他LTE天线及AM/FM&DVB/DAB天线隔离度,横轴表示频率点(单位GHz),纵轴表示Sx1(单位dB)。
请参阅图16,图16表示LTE天线3(即第三馈点32所对应的天线)与其他LTE天线及AM/FM&DVB/DAB天线隔离度,横轴表示频率点(单位GHz),纵轴表示Sx1(单位dB)。
请参阅图17,图17表示LTE天线4(即第四馈点34所对应的天线)与其他LTE天线及AM/FM&DVB/DAB天线隔离度,横轴表示频率点(单位GHz),纵轴表示Sx1(单位dB)。
请参阅图18,图18表示AM/FM&DVB/DAB天线(即第五馈点35所对应的天线)与LTE4天线隔离度,横轴表示频率点(单位GHz),纵轴表示Sx1(单位dB)。
请参阅图19,图19表示LTE MIMO天线1(即第一馈点31所对应的天线)的系统效率,横轴表示频率点(单位GHz),纵轴表示天线效率(单位dB)。
请参阅图20,图20表示LTE MIMO天线2(即第二馈点32所对应的天线)的系统效率,横轴表示频率点(单位GHz),纵轴表示天线效率(单位dB)。
请参阅图21,图21表示LTE MIMO天线3(即第三馈点32所对应的天线)的系统效率,横轴表示频率点(单位GHz),纵轴表示天线效率(单位dB)。
请参阅图22,图22表示LTE MIMO天线4(即第四馈点34所对应的天线)的系统效率,横轴表示频率点(单位GHz),纵轴表示天线效率(单位dB)。
请参阅图23,图23表示AM/FM&DVB/DAB天线(即第五馈点35所对应的天线)的系统效率,横轴表示频率点(单位GHz),纵轴表示天线效率(单位dB)。
本申请之车载天线为多天线系统,多天线共同天线辐射体,即导电部。第一种实施方式中,导电部为汽车顶部的金属板,呈平板状。第二种实施方式中,导电部为汽车车窗的导电层。第三种实施方式中,导电部为车后备箱的金属板。第四种实施方式中,导电部为汽车两侧车门的金属板。本申请通过在导电部上设置缝隙,并且在缝隙上设置馈点,馈点与收发模块(即车载天线的电路部分)电连接,以形成缝隙天线,缝隙天线设置在导电部的平面上,无突出的特征,不影响车体的外观,且不影响车体的风阻特性。
本申请之导电部的设置也可以结合上述几种实施方式,例如,同时在汽车顶部的金属板和汽车车窗的导电层上设置缝隙单元及馈点,使得车载天线分布范围更广泛,提供车载天线的效率。
进一步而言,本申请上述缝隙单元中可以填充绝缘介质,当然绝缘介质可以为空气,为了保证车体的密封性能,缝隙单元中的绝缘介质可以为不导电的密封胶。
本申请之收发模块包括基带和射频组件。通过同轴线缆电连接收发模块和各馈点之间,以为各馈点进行馈电。各馈点在缝隙单元的宽度方向上跨接所述缝隙单元的两侧,馈电的方式可采用直接馈电方式,即同轴线缆的外导体与缝隙单元的一侧实现电连接,同轴线缆的内导体与缝隙单元的另一侧实现电连接。馈电方式还可以采用耦合馈电方式,即同轴线缆的外导体与天线缝隙的一侧实现电连接,同轴线缆的内导体与天线缝隙的另一侧通过电容或分布式电容实现连接。
综上所述,本申请直接利于车体实现了多天线系统的车载天线,能够实现LTE MIMO 4*4天线(能够覆盖全球LTE频段),还能够实现超低频AM/FM&DVB/DAB天线,本申请将多天线集成为一体,与整车共性特性好,因为车体上没有任何突出物的设置,不会影响车体的外观及风阻特性。
以上对本申请实施方式进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施方式的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想, 在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (16)

  1. 一种车载天线,其特征在于,所述车载天线包括形成在车体表面的导电部、缝隙单元、馈点及收发模块,所述缝隙单元设于所述导电部,以在所述导电部内形成绝缘的缝隙,所述馈点设置于所述缝隙单元处,且所述馈点与所述收发模块电连接,所述导电部为车体的一部分,所述收发模块设置于所述导电部的内侧,所述收发模块通过所述馈点为所述缝隙单元馈电,以在所述缝隙单元处形成等效场源,以辐射信号。
  2. 如权利要求1所述的车载天线,其特征在于,所述车载天线还包括多个电容,所述缝隙单元沿着所述导电部周边延伸形成封闭状,所述馈点的数量为多个,且分布在所述缝隙单元的不同位置处,各所述馈点之间设有至少一个所述电容,各所述馈点与各所述馈点两侧的电容共同形成一个缝隙天线。
  3. 如权利要求2所述的车载天线,其特征在于,多个所述缝隙单元包围形成矩形区域、圆形区域、三角形区域或者多边形区域。
  4. 如权利要求2所述的车载天线,其特征在于,所述缝隙单元呈矩形,所述馈点包括分别分布在所述缝隙单元四个角落处的第一馈点、第二馈点、第三馈点及第四馈点,所述第一馈点、所述第二馈点、所述第三馈点及所述第四馈点结合所述缝隙单元及所述电容形成LTE MIMO 4*4天线。
  5. 如权利要求4所述的车载天线,其特征在于,所述馈点还包括第五馈点,所述第五馈点位于所述缝隙单元之一个长边上,所述第五馈点结合所述缝隙单元形成AM/FM天线和DVB/DAB天线,且所述电容处于断开状态,以使得所述缝隙单元连通。
  6. 如权利要求4所述的车载天线,其特征在于,与所述第一馈点相邻,且设置在所述第一馈点两侧的两个所述电容之间所述缝隙单元呈L形。
  7. 如权利要求4所述的车载天线,其特征在于,所述车载天线还包括鲨鱼鳍天线,所述鲨鱼鳍天线设于所述导电部之中心位置,所述缝隙单元包围所述鲨鱼鳍天线。
  8. 如权利要求1所述的车载天线,其特征在于,所述缝隙单元呈L形。
  9. 如权利要求8所述的车载天线,其特征在于,所述馈点位于所述缝隙单元之L形形状的尖角位置处。
  10. 如权利要求9所述的车载天线,其特征在于,所述缝隙单元的数量为四个,分布在长方形的四个角落处,所述缝隙单元分别形成第一天线、第二天线、第三天线和第四天线,所述第一天线和所述第二天线分别位于一对相对的对角处,所述第一天线以所述导电部的中心点为中心旋转180度后与所述第二天线重合,所述第三天线和所述第四天线分别位于另一对相对的对角处,所述第三天线以所述导电部的中心点为中心旋转180度后与所述第四天线重合。
  11. 如权利要求8所述的车载天线,其特征在于,所述缝隙单元的宽度为2mm,所述缝隙单元的长度为273mm。
  12. 如权利要求1所述的车载天线,其特征在于,所述缝隙单元的数量为多个,多个所述缝隙单元彼此相隔分布在所述导电部的边缘,所述馈点的数量与所述缝隙单元的数量一致,多个所述馈点分别位于相应的所述缝隙单元处,所述馈点均与所述收发模块电连接。
  13. 如权利要求1-12任意一项所述的车载天线,其特征在于,所述导电部为汽车顶部的金属板,或者汽车后备箱的金属板,或者汽车两侧车门的金属板。
  14. 如权利要求1-12任意一项所述的车载天线,其特征在于,所述导电部为汽车车窗的导电层。
  15. 如权利要求1-12任意一项所述的车载天线,其特征在于,所述缝隙单元中填充绝缘介质,所述绝缘介质为密封胶。
  16. 如权利要求1-12任意一项所述的车载天线,其特征在于,所述收发模块和所述馈点之间通过同轴线缆电连接,所述馈点在所述缝隙单元的宽度方向上跨接所述缝隙单元的两侧,所述同轴线缆的外导体与所述缝隙单元的一侧电连接,所述同轴线缆的内导体与所述缝隙单元的另一侧电连接。
PCT/CN2016/090169 2016-07-15 2016-07-15 车载天线 WO2018010168A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/090169 WO2018010168A1 (zh) 2016-07-15 2016-07-15 车载天线
CN201680056720.7A CN108140955B (zh) 2016-07-15 2016-07-15 车载天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/090169 WO2018010168A1 (zh) 2016-07-15 2016-07-15 车载天线

Publications (1)

Publication Number Publication Date
WO2018010168A1 true WO2018010168A1 (zh) 2018-01-18

Family

ID=60951898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090169 WO2018010168A1 (zh) 2016-07-15 2016-07-15 车载天线

Country Status (2)

Country Link
CN (1) CN108140955B (zh)
WO (1) WO2018010168A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113555692B (zh) * 2020-04-23 2023-02-03 华为技术有限公司 一种电子设备
CN112542691B (zh) * 2020-12-15 2022-09-27 上海安费诺永亿通讯电子有限公司 高集成度车载天线组

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394376A (zh) * 2011-07-12 2012-03-28 北京理工大学 毫米波圆极化一维和差车载通信天线
CN105006655A (zh) * 2015-07-01 2015-10-28 成都众易通科技有限公司 小型化车载gps微带缝隙天线
US20160197398A1 (en) * 2015-01-07 2016-07-07 GM Global Technology Operations LLC Slot antenna built into a vehicle body panel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707700A (en) * 1986-07-25 1987-11-17 General Motors Corporation Vehicle roof mounted slot antenna with lossy conductive material for low VSWR
DE202011110175U1 (de) * 2011-05-20 2013-03-21 Antonics-Icp Gmbh Mehrbandfähige Anordnung für Funksignale
CN105591190A (zh) * 2015-12-25 2016-05-18 惠州硕贝德无线科技股份有限公司 一种全闭合金属边框天线及其mimo天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394376A (zh) * 2011-07-12 2012-03-28 北京理工大学 毫米波圆极化一维和差车载通信天线
US20160197398A1 (en) * 2015-01-07 2016-07-07 GM Global Technology Operations LLC Slot antenna built into a vehicle body panel
CN105006655A (zh) * 2015-07-01 2015-10-28 成都众易通科技有限公司 小型化车载gps微带缝隙天线

Also Published As

Publication number Publication date
CN108140955A (zh) 2018-06-08
CN108140955B (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
US9509038B2 (en) Vehicle window glass and antenna
US10381704B2 (en) Embedded broadband glass coplanar waveguide coupler
CN105453336A (zh) 天线装置
WO2014142312A1 (ja) 車両用窓ガラス
JP2019068124A (ja) パッチアンテナ及びアンテナ装置
CN106252882A (zh) 一种耦合寄生低剖面高隔离度mimo天线
JPWO2014192949A1 (ja) 窓フレーム
US9837699B2 (en) Multi-element window antenna
WO2018010168A1 (zh) 车载天线
US10490877B2 (en) CPW-fed circularly polarized applique antennas for GPS and SDARS bands
CN102655266B (zh) 多频带天线
US11569580B2 (en) Multilayer glass patch antenna
CN103236590A (zh) 天线装置
CN114008854A (zh) 车辆天线嵌装玻璃
KR20150108689A (ko) 차량용 내장형 통합 안테나 모듈
CN208637581U (zh) 天线及无人飞行器
JP2017168938A (ja) 車載用アンテナ装置
US20210184333A1 (en) Vehicle antenna glazing
WO2012105456A1 (ja) ガラスアンテナ及びそれを備える車両用窓ガラス
TWI814289B (zh) 多頻段車載天線及汽車天線裝置
CN219163694U (zh) 一种v2x天线结构
CN216354761U (zh) 一种车载天线及汽车
CN216251124U (zh) 一种小型圆极化车载天线
CN213936539U (zh) 一种采用分立结构实现多天线mimo的车载组合天线
JP6402154B2 (ja) アンテナ装置及び車載用アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908493

Country of ref document: EP

Kind code of ref document: A1