WO2018010053A1 - Method for preparing antitumor drug - Google Patents

Method for preparing antitumor drug Download PDF

Info

Publication number
WO2018010053A1
WO2018010053A1 PCT/CN2016/089507 CN2016089507W WO2018010053A1 WO 2018010053 A1 WO2018010053 A1 WO 2018010053A1 CN 2016089507 W CN2016089507 W CN 2016089507W WO 2018010053 A1 WO2018010053 A1 WO 2018010053A1
Authority
WO
WIPO (PCT)
Prior art keywords
antitumor drug
solution
polymer
polyethylene glycol
hyaluronic acid
Prior art date
Application number
PCT/CN2016/089507
Other languages
French (fr)
Chinese (zh)
Inventor
邓超
陈景
孟凤华
钟志远
Original Assignee
苏州大学张家港工业研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业研究院 filed Critical 苏州大学张家港工业研究院
Priority to PCT/CN2016/089507 priority Critical patent/WO2018010053A1/en
Publication of WO2018010053A1 publication Critical patent/WO2018010053A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the polymer tetrazole derivative has the structure of formula I:
  • the ultraviolet light reaction has a wavelength of 302 to 390 nm, an intensity of 0.8 to 100 mW/cm 2 , and a turn of 90 to 180 s.
  • the solvent of the tetrazole solution is preferably dimethyl sulfoxide, a mixed solution of dimethyl sulfoxide and water, dichloromethane or chloroform;
  • the polymer is a water-soluble polymer containing an amino group or a hydroxyl group.
  • hyaluronic acid hyaluronic acid lysine compound, hyaluronic acid cystamine compound, chitosan, dextran, polyethylene glycol or polyethylene glycol-oligoester
  • the alcohol is a linear or multi-arm polyethylene glycol;
  • the polyester is polylactide, poly(lactide-co-glycolide), polycaprolactone or polycarbonate.
  • HA-Cy-MA nuclear magnetic characterization is shown in Figure 2, ⁇ NMR (D 2 0): HA: ⁇ 2.00, 2.86-3.88, and 4.44-4.52; Cys: ⁇ 2.70, 3.11-3.15 and 3.56; MA: ⁇ 1.92, 5.45 and 5.69.
  • CC-NGs CC-coated nanogel
  • a similar method can be used to achieve efficient encapsulation of the therapeutic protein granzyme B (GrB) to obtain GrB-coated nanogels (GrB-NGs).
  • the release assay of protein CC was carried out at 37 ° C in two different release media, PB (pH 7.4, 10 mM) and 10 mM GSH PB (pH 7.4, 10 mM) solution. Take 1 mL of the loaded CC-NGs sample in a protein release bag (MWCO 350 K) and place in 25 mL of the corresponding PB release medium. At each sampling point, remove 5 mL of release media and replenish the appropriate fresh media.

Abstract

A method for preparing an antitumor drug, comprising the following steps: (1) adding a polymer tetrazole derivative and a crosslinking agent containing methacrylate group to water or a buffer to obtain a carrier solution having a concentration of 0.5-10 mg/mL; (2) adding a protein drug to the carrier solution to obtain a mixed solution; (3) injecting the mixed solution into an organic solvent to obtain a suspension, and then carrying out an ultraviolet irradiation reaction to obtain the antitumor drug.

Description

发明名称:一种抗肿瘤药物的制备方法  Title of the invention: A method for preparing an antitumor drug
技术领域  Technical field
[0001] 本发明属于医药领域, 具体涉及一种抗肿瘤药物的制备方法。  [0001] The present invention belongs to the field of medicine, and in particular relates to a method for preparing an antitumor drug.
背景技术  Background technique
[0002] 在过去几十年, 基于抗体、 细胞因子、 酶以及转录因子的蛋白质药物已被广泛 地用于糖尿病、 心血管疾病和恶性肿瘤等疾病的高效治疗 (Vermonden T, Censi R, Hennink WE. Chem. Rev. 2012, 112, 2853-2888; Walsh G. Nat. Biotech. 2000, 18, 831-833) 。 与具有较高毒副作用的化疗药物相比, 蛋白质药物通常具有较高的 特异性, 较好的治疗效果和较低的毒副作用, 在临床上展现出了优越的疾病治 疗功效。 但这些临床使用的蛋白质药物都是在细胞外起作用。 虽然在细胞内起 作用的蛋白质药物很多, 但还没有一个进入临床使用, 这主要是因为这些蛋白 药物的血浆半衰期短、 体内降解快、 细胞内吞效率低、 胞内运输过程慢等原因 所致 (Lu Y, Sun W, Gu Z. J. Controlled Release 2014, 194, 1-19) 。 纳米凝胶通常 指由亲水性或两亲性高分子链通过物理或者化学交联形成的三维网状结构的水 凝胶微粒, 具有高含水量、 良好的生物相容性和多孔结构, 纳米凝胶可通过物 理交联和化学交联制备。 物理交联包括憎水作用、 静电作用、 氢键作用等, 物 理凝胶制备通常条件温和, 不会明显损伤包载药物的活性; 但存在稳定性较差 、 释放包裹的药物较快的缺点。 化学交联包括自由基聚合, 迈克尔加成反应, 酰胺化反应, 酶催化反应, 铜催化点击化学反应等。 但这些化学交联反应通常 不具备专一性, 这可能使药物参与交联反应, 导致变性。 而且, 尽管已有很多 报道使用纳米凝胶输送药物, 但很少能够实现治疗药物在体内的靶向高效输送 。 所以需要幵发专一性强、 高效快速、 无需催化的交联反应方法, 用于制备具 有靶向性的生物可降解纳米凝胶载体, 从而得到性能良好的抗肿瘤药物。  [0002] Protein drugs based on antibodies, cytokines, enzymes, and transcription factors have been widely used in the treatment of diseases such as diabetes, cardiovascular disease, and malignant tumors over the past few decades (Vermonden T, Censi R, Hennink WE Chem. Rev. 2012, 112, 2853-2888; Walsh G. Nat. Biotech. 2000, 18, 831-833). Compared with chemotherapeutic drugs with higher toxic side effects, protein drugs usually have higher specificity, better therapeutic effect and lower toxic side effects, and show superior therapeutic effects in clinical practice. However, these clinically used protein drugs all work outside the cell. Although there are many protein drugs that act in cells, none of them have entered clinical use. This is mainly because these protein drugs have short plasma half-life, rapid degradation in vivo, low endocytosis efficiency, and slow intracellular transport. (Lu Y, Sun W, Gu ZJ Controlled Release 2014, 194, 1-19). Nanogels generally refer to hydrogel particles of a three-dimensional network formed by physical or chemical cross-linking of hydrophilic or amphiphilic polymer chains, having high water content, good biocompatibility and porous structure, nanometers. Gels can be prepared by physical crosslinking and chemical crosslinking. Physical cross-linking includes hydrophobic action, electrostatic action, hydrogen bonding, etc. Physical gel preparation is generally mild in condition and does not significantly impair the activity of the entrapped drug; however, it has the disadvantage of poor stability and faster release of the encapsulated drug. Chemical crosslinking includes radical polymerization, Michael addition reaction, amidation reaction, enzyme-catalyzed reaction, copper-catalyzed click chemical reaction, and the like. However, these chemical cross-linking reactions are usually not specific, which may cause the drug to participate in the cross-linking reaction, leading to degeneration. Moreover, although many reports have reported the use of nanogels to deliver drugs, few targeted delivery of therapeutic drugs in vivo has been achieved. Therefore, it is necessary to formulate a highly specific, high-efficiency, and non-catalytic cross-linking reaction method for preparing a biodegradable nanogel carrier having a targeted property, thereby obtaining an antitumor drug with good performance.
技术问题  technical problem
问题的解决方案  Problem solution
技术解决方案 [0003] 本发明的目的是提供一种抗肿瘤药物的制备方法, 由纳米凝胶包载蛋白质药物 制备得到, 得到的药物专一性强、 高效快速。 Technical solution [0003] The object of the present invention is to provide a method for preparing an antitumor drug, which is prepared by preparing a nanogel-encapsulated protein drug, and the obtained drug has specificity, high efficiency and high speed.
[0004] 为达到上述发明目的, 本发明采用的技术方案是: 一种抗肿瘤药物的制备方法[0004] In order to achieve the above object, the technical solution adopted by the present invention is: a method for preparing an antitumor drug
, 包括以下步骤: , including the following steps:
[0005] (1) 将聚合物四唑衍生物和含甲基丙烯酸酯基团的交联剂加入水或者缓冲液 中得到得到载体溶液; 所述聚合物四唑衍生物的浓度为 0.5〜10 mg/mL;  [0005] (1) adding a polymer tetrazole derivative and a methacrylate group-containing crosslinking agent to water or a buffer to obtain a carrier solution; the concentration of the polymer tetrazole derivative is 0.5 to 10 Mg/mL;
[0006] (2) 将蛋白质药物加入步骤 (1) 的载体溶液中, 得到混合液;  [0006] (2) adding the protein drug to the carrier solution of step (1) to obtain a mixed solution;
[0007] (3) 将步骤 (2) 的混合液注射到有机溶剂中, 得到悬浮液; 然后进行紫外光 照反应得到抗肿瘤药物;  [0007] (3) injecting the mixture of the step (2) into an organic solvent to obtain a suspension; and then performing an ultraviolet light reaction to obtain an antitumor drug;
[0008] 所述聚合物四唑衍生物具有式 I结构:  [0008] The polymer tetrazole derivative has the structure of formula I:
Figure imgf000003_0001
Figure imgf000003_0001
[0009] 式 I;  Formula I;
[0010] 其中 n≥2; Wherein n≥2;
[0011] R H、 NH 2、 NMe 2、 OMe、 N0 2、 Cl、 Br、 Me、 CO 2Me或者 PhNHBoc; [0011] RH, NH 2 , NMe 2 , OMe, N0 2 , Cl, Br, Me, CO 2 Me or PhNHBoc;
[0012] P为透明质酸、 透明质酸赖氨酸化合物、 透明质酸胱胺化合物、 葡聚糖、 壳聚 糖、 胶原蛋白、 聚乙二醇或者聚乙二醇-聚酯; [0012] P is hyaluronic acid, hyaluronic acid lysine compound, hyaluronic acid cystamine compound, dextran, chitosan, collagen, polyethylene glycol or polyethylene glycol-polyester;
[0013] 所述含甲基丙烯酸酯基团的交联剂具有式 II结构:  [0013] The methacrylate group-containing crosslinking agent has the structure of Formula II:
Figure imgf000003_0002
Figure imgf000003_0002
[0014] 式 II;  [0014] Formula II;
[0015] 其中 m≥2; Wherein m≥2;
[0016] CL为透明质酸、 透明质酸胱胺化合物、 透明质酸赖氨酸化合物、 壳聚糖、 葡 聚糖、 胶原蛋白、 聚乙二醇、 聚乙二醇-聚酯、 丁二胺、 己二胺、 胱胺、 胱氨酸 [0017] 上述技术方案中, 所述聚乙二醇为线性或者多臂聚乙二醇, 表示为 PEG-x-OH , x=2, 4, 6或 8 ; 所述聚酯为聚丙交酯、 聚 (丙交酯 -co-乙交酯) 、 聚己内酯或 者聚碳酸酯; 所述聚酯的聚合度为 1〜20; 所述聚乙二醇的分子量为 2〜100 [0016] CL is hyaluronic acid, hyaluronic acid cystamine compound, hyaluronic acid lysine compound, chitosan, dextran, collagen, polyethylene glycol, polyethylene glycol-polyester, dibutyl Amine, hexamethylenediamine, cystamine, cystine [0017] In the above technical solution, the polyethylene glycol is linear or multi-arm polyethylene glycol, expressed as PEG-x-OH, x=2, 4, 6 or 8; the polyester is polylactide , poly(lactide-co-glycolide), polycaprolactone or polycarbonate; the degree of polymerization of the polyester is 1 to 20; the molecular weight of the polyethylene glycol is 2 to 100
[0018] 上述技术方案中, 步骤 (1) 中, 甲基丙烯酸酯基团与四唑基团的摩尔比为 1:1 ; 所述缓冲液包括磷酸盐缓冲液、 4- (2-羟乙基) -1-哌嗪乙烷磺酸半钠盐缓冲溶 液、 三羟甲基氨基甲烷缓冲溶液或者 2-吗啉乙磺酸缓冲溶液; 所述有机溶剂包括 丙酮、 乙腈或者乙醇; 所述聚乙二醇为线性聚乙二醇或者多臂聚乙二醇; 所述 聚酯为聚丙交酯、 聚 (丙交酯 -co-乙交酯) 、 聚己内酯或者聚碳酸酯。 [0018] In the above technical solution, in step (1), the molar ratio of the methacrylate group to the tetrazole group is 1:1; the buffer includes phosphate buffer, 4- (2-hydroxyethyl) a 1-pyrazine ethanesulfonic acid hemi-sodium salt buffer solution, a tris buffer solution or a 2-morpholine ethanesulfonic acid buffer solution; the organic solvent includes acetone, acetonitrile or ethanol; The ethylene glycol is a linear polyethylene glycol or a multi-arm polyethylene glycol; the polyester is polylactide, poly(lactide-co-glycolide), polycaprolactone or polycarbonate.
[0019] 上述技术方案中, 所述紫外光照反应的波长为 302〜390 nm, 强度为 0.8〜100 mW/cm 2, 吋间为 90〜180s。 [0019] In the above technical solution, the ultraviolet light reaction has a wavelength of 302 to 390 nm, an intensity of 0.8 to 100 mW/cm 2 , and a turn of 90 to 180 s.
[0020] 上述技术方案中, 步骤 (3) 紫外光照反应后, 旋转蒸发除去有机溶剂, 然后 用水透析得到抗肿瘤药物。  [0020] In the above technical solution, after step (3) ultraviolet light reaction, the organic solvent is removed by rotary evaporation, and then dialyzed with water to obtain an antitumor drug.
[0021] 本发明中, 聚合物四唑衍生物以聚合物作为主链, 四唑基团通过 0或者 NH随机 接在聚合物主链末端或侧链上; 式 I结构中, P表示聚合物, n≥ 2是指四唑基团 接在聚合物主链末端或侧链上的数量为复数个, 比如本发明实施例一中, 聚合 物为透明质酸赖氨酸化合物, 其重复单元上接有多个四唑基团。  [0021] In the present invention, the polymer tetrazole derivative has a polymer as a main chain, and the tetrazole group is randomly attached to the polymer main chain terminal or side chain through 0 or NH; in the structure of formula I, P represents a polymer. , n≥2 means that the tetrazolium group is attached to the end or side chain of the polymer main chain in a plurality, for example, in the first embodiment of the present invention, the polymer is a hyaluronic acid lysine compound, and the repeating unit thereof A plurality of tetrazole groups are attached.
[0022] 本发明中, 含甲基丙烯酸酯基团的交联剂可以为大分子也可以为小分子, m≥ 2是指交联剂中甲基丙烯酸酯基团的数量为复数个; 式 II结构中, CL为小分子吋 , 甲基丙烯酸酯基团接在小分子两端, 如本发明实施例三的结构; CL为聚合物 吋, 甲基丙烯酸酯基团通过 0或者 NH接在聚合物主链末端或侧链上, 如本发明 实施例二的结构, 聚合物为透明质酸胱胺化合物, 其重复单元上接有多个甲基 丙烯酸酯基团。  [0022] In the present invention, the methacrylate group-containing crosslinking agent may be a macromolecule or a small molecule, and m≥2 means that the number of methacrylate groups in the crosslinking agent is plural; In the structure II, CL is a small molecule 吋, a methacrylate group is attached to both ends of the small molecule, such as the structure of the third embodiment of the present invention; CL is a polymer oxime, and the methacrylate group is bonded through 0 or NH. On the polymer backbone end or side chain, as in the structure of the second embodiment of the present invention, the polymer is a hyaluronic acid cystamine compound having a plurality of methacrylate groups attached to the repeating unit.
[0023] 本发明中, 聚合物四唑衍生物的制备方法为, 先向四唑溶液中加入缩合剂与催 化剂, 反应得到活化的四唑溶液; 然后把聚合物水溶液滴加到活化的四唑溶液 中, 室温反应得到聚合物四唑衍生物; 所述聚合物为透明质酸、 透明质酸赖氨 酸化合物、 透明质酸胱胺化合物、 葡聚糖、 壳聚糖、 胶原蛋白、 聚乙二醇或者 聚乙二醇-聚酯。 [0024] 上述技术方案中, 四唑溶液的溶剂优选为二甲基亚砜、 二甲基亚砜与水的混合 溶液、 二氯甲烷或氯仿; 聚合物为含有氨基或羟基的水溶性聚合物, 优选为透 明质酸、 透明质酸赖氨酸化合物、 透明质酸胱胺化合物、 壳聚糖、 葡聚糖、 聚 乙二醇或者聚乙二醇-寡聚酯; 其中所述聚乙二醇为线性或者多臂聚乙二醇; 所 述聚酯为聚丙交酯、 聚 (丙交酯 -co-乙交酯) 、 聚己内酯或者聚碳酸酯。 [0023] In the present invention, the polymer tetrazole derivative is prepared by first adding a condensing agent and a catalyst to the tetrazole solution to obtain an activated tetrazole solution; and then adding the aqueous polymer solution to the activated tetrazole. In the solution, the reaction is carried out at room temperature to obtain a polymer tetrazole derivative; the polymer is hyaluronic acid, hyaluronic acid lysine compound, hyaluronic acid cystamine compound, dextran, chitosan, collagen, polyethyl b Glycol or polyethylene glycol-polyester. [0024] In the above technical solution, the solvent of the tetrazole solution is preferably dimethyl sulfoxide, a mixed solution of dimethyl sulfoxide and water, dichloromethane or chloroform; the polymer is a water-soluble polymer containing an amino group or a hydroxyl group. Preferred as hyaluronic acid, hyaluronic acid lysine compound, hyaluronic acid cystamine compound, chitosan, dextran, polyethylene glycol or polyethylene glycol-oligoester; The alcohol is a linear or multi-arm polyethylene glycol; the polyester is polylactide, poly(lactide-co-glycolide), polycaprolactone or polycarbonate.
[0025] 上述技术方案中, 水溶性聚合物中的羟基或者胺基与四唑的摩尔比优选为 1 :0.1 〜2 ; 四唑与缩合剂、 催化剂的摩尔比优选为 1:2:0.1。 [0025] In the above technical solution, the molar ratio of the hydroxyl group or the amine group to the tetrazole in the water-soluble polymer is preferably 1:0.1 to 2; the molar ratio of the tetrazole to the condensing agent and the catalyst is preferably 1:2:0.1.
[0026] 比如: 先向四唑小分子 (Tet) 的 DMSO溶液中加入缩合剂二环己基碳二亚胺 ( DCC) 、 4-二甲氨基吡啶 (DMAP) , 反应过夜得到羧基活化的四唑溶液; 然后 把含有氨基或羟基的聚合物水溶液逐滴滴加到上述活化的四唑溶液中, 再在室 温下搅拌反应 18〜28小吋, 得到所述的聚合物四唑衍生物 (P-Tet J ; 具体反应 过程如下:  [0026] For example: first adding a condensing agent dicyclohexylcarbodiimide (DCC), 4-dimethylaminopyridine (DMAP) to a solution of tetrazolium small molecule (Tet) in DMSO, and reacting overnight to obtain a carboxyl-activated tetrazole. Solution; then, an aqueous solution of an amino group or a hydroxyl group-containing polymer is dropwise added to the above activated tetrazole solution, and the reaction is stirred at room temperature for 18 to 28 hours to obtain the polymer tetrazole derivative (P- Tet J ; The specific reaction process is as follows:
Figure imgf000005_0001
Figure imgf000005_0001
[0027] 其中 R=H、 Cl、 Br、 Me、 NH 2、 NMe 2、 NO 2或者 OMe。 Wherein R = H, Cl, Br, Me, NH 2 , NMe 2 , NO 2 or OMe.
[0028] 本发明制备的抗肿瘤药物, 包括纳米凝胶以及蛋白质药物, 载体与蛋白质药物 和细胞不反应, 能很好的保持药物、 蛋白质和细胞的功效, 实现完全、 可控的 释放, 达到切实有效的治疗效果, 不会造成现有技术中药物浪费的问题。  The anti-tumor drug prepared by the invention comprises a nano gel and a protein drug, and the carrier does not react with the protein drug and the cell, and can well maintain the efficacy of the drug, the protein and the cell, and achieve complete and controllable release. Effective and effective treatment will not cause the waste of drugs in the prior art.
发明的有益效果  Advantageous effects of the invention
有益效果  Beneficial effect
[0029] 由于上述技术方案运用, 本发明与现有技术相比具有下列优点:  [0029] Due to the above technical solutions, the present invention has the following advantages over the prior art:
[0030] 1.本发明公幵的抗肿瘤药物的制备方法具有 "点击化学"的强专一性、 快速高效 和反应条件温和的特点, 同吋无需铜盐等毒性催化剂; 特别的, 本发明通过设 计前驱体原料以及结合注射、 紫外反应, 得到的纳米凝胶稳定性强, 包载蛋白 质后与药物结合稳定, 保证药物在体内循环不受干扰。 [0030] 1. The preparation method of the anti-tumor drug of the present invention has the characteristics of strong specificity, rapid and high efficiency of "click chemistry" and mild reaction conditions, and does not require a toxic catalyst such as a copper salt; in particular, the present invention The nanogel obtained by designing the precursor material and combining injection and ultraviolet reaction has strong stability, and the protein is stably combined with the drug after being encapsulated, thereby ensuring that the drug is not disturbed in the body.
[0031] 2.本发明公幵的抗肿瘤药物的制备方法具有很强的选择性, 载体与包载的药物 , 尤其是蛋白质药物和细胞不反应, 能很好的保持药物、 蛋白质和细胞的功效 , 实现完全、 可控的释放, 到达病灶处, 纳米凝胶缓释药物, 达到切实有效的 治疗效果, 不会造成现有技术中药物浪费的问题。 [0031] 2. The preparation method of the anti-tumor drug of the present invention has strong selectivity, and the carrier does not react with the entrapped drug, especially the protein drug and the cell, and can well maintain the drug, protein and cell. efficacy , to achieve complete, controllable release, reach the lesion, nanogel sustained-release drugs, to achieve effective and effective treatment results, will not cause the problem of drug waste in the prior art.
对附图的简要说明  Brief description of the drawing
附图说明  DRAWINGS
[0032] 图 1是实施例一中透明质酸赖氨酸四唑衍生物的氢核磁谱图;  1 is a hydrogen nuclear magnetic spectrum of a hyaluronic acid lysine tetrazole derivative in Example 1;
[0033] 图 2是实施例二中透明质酸胱胺甲基丙烯酸酯衍生物的氢核磁谱图;  2 is a hydrogen nuclear magnetic spectrum of a hyaluronic acid cystamine methacrylate derivative in Example 2;
[0034] 图 3是实施例三中胱氨酸甲基丙烯酸酯衍生物的氢核磁谱图;  3 is a hydrogen nuclear magnetic spectrum of a cystine methacrylate derivative in Example 3;
[0035] 图 4是实施例四中纳米凝胶体外控制释放蛋白质药物的行为, 以及释放出的蛋 白质药物的生物活性表征图;  4 is a diagram showing the behavior of the nanogel in vitro controlled release of a protein drug in the fourth embodiment, and the bioactivity characterization of the released protein drug;
[0036] 图 5是实施例五中纳米凝胶和载蛋白质药物的纳米凝胶的细胞实验表征图; [0037] 图 6是实施例六中载蛋白纳米凝胶对小鼠皮下人乳腺癌移植瘤的治疗表征图; [0038] 图 7是实施例七中载蛋白纳米凝胶对小鼠原位肺癌移植瘤的治疗表征图; 5 is a cell experimental characterization diagram of a nanogel and a protein-loading drug nanogel in Example 5; [0037] FIG. 6 is a sample of a carrier nanogel in a subcutaneous human breast transplantation in mice. The therapeutic characterization map of the tumor; [0038] FIG. 7 is a therapeutic characterization diagram of the carrier protein nanogel in the seventh embodiment of the mouse orthotopic lung cancer xenograft;
[0039] 图 8是实施例七中载蛋白纳米凝胶治疗小鼠原位肺癌移植瘤的组织学分析图。 8 is a histological analysis diagram of a carrier protein nanogel in the treatment of a mouse orthotopic lung cancer xenograft in Example 7. [0039] FIG.
本发明的实施方式 Embodiments of the invention
[0040] 下面结合附图以及实施例对本发明作进一步描述: [0040] The present invention will be further described below in conjunction with the accompanying drawings and embodiments:
[0041] 实施例一透明质酸赖氨酸四唑衍生物 (HA-Lys-Tet) 的合成 [0041] Synthesis of a hyaluronic acid lysine tetrazole derivative (HA-Lys-Tet)
[0042] 在氮气保护条件下, 50 mL两颈瓶中加入四唑 (608 mg) , 二甲亚砜 10mL,[0042] Under nitrogen protection conditions, tetrazole (608 mg) and dimethyl sulfoxide 10 mL were added to a 50 mL two-necked flask.
DCC (120 mg) 搅拌 24小吋, HA-Lys-NH 2 ( n=35 K, 0.4 g) 溶于 30 mL甲酰 胺中, 溶解后加入四唑溶液中, 搅拌 10 min, 加入 DMAP (80 mg, ) , 反应 48 小吋, 过滤, 滤液用水和二甲亚砜混合溶剂透析后换成纯水透析, 冷冻干燥后 得产品 HA-Lys-Tet (产率 69 <¾) ; HA-Lys-Tet核磁表征见附图 1, Ή NMR (D 2 0/DMSO-d 6): HA: δ 1.82, 2.70-3.68, and 4.23-4.38; Lys: δ 0.92, 1.06, 1.52, 2.97, 3.61 and 3.95; Tet: δ 7.91,7.92 and 6.79, 6.80。 DCC (120 mg) was stirred for 24 hours, HA-Lys-NH 2 ( n = 35 K, 0.4 g) was dissolved in 30 mL of formamide, dissolved in tetrazolium solution, stirred for 10 min, and added with DMAP (80 mg). , ), the reaction was carried out for 48 hours, filtered, and the filtrate was dialyzed against water and dimethyl sulfoxide mixed solvent, and then dialyzed into pure water for dialysis. The product was freeze-dried to obtain HA-Lys-Tet (yield 69 <3⁄4); HA-Lys-Tet Nuclear magnetic characterization is shown in Figure 1, Ή NMR (D 2 0/DMSO-d 6 ): HA: δ 1.82, 2.70-3.68, and 4.23-4.38; Lys: δ 0.92, 1.06, 1.52, 2.97, 3.61 and 3.95; Tet : δ 7.91, 7.92 and 6.79, 6.80.
[0043] 四臂聚乙二醇四唑衍生物 (PEG-Tet4) 、 壳聚糖四唑衍生物 (Chit-Tet) 可更 换聚合物制备得到, 结构式如下: [0043] The four-arm polyethylene glycol tetrazole derivative (PEG-Tet4) and the chitosan tetrazole derivative (Chit-Tet) can be prepared by replacing the polymer, and the structural formula is as follows:
[] Φ,、、、、、 .■ [] Φ,,,,,, ., ■
Figure imgf000007_0001
Figure imgf000007_0001
[0045] 实施例二透明质酸胱胺甲基丙烯酸酯衍生物 (HA-Cy-MA) 的合成 Example 2 Synthesis of hyaluronic acid cystamine methacrylate derivative (HA-Cy-MA)
[0046] HA-Cy-MA分两步合成, 首先胱胺的甲基丙烯酸衍生物 (MA-Cy-NH 2 [0046] HA-Cy-MA is synthesized in two steps, first a cysteamine methacrylic acid derivative (MA-Cy-NH 2 )
) 由 Boc-Cy-NH 2和甲基丙烯酰氯反应后脱 Boc保护获得, 然后, 在氮气保护条 件下, 将 MA-Cy-NH 2 (14.5 mg, 66 μηιοΐ)的溶液加入到 HA (50 mg, 1.43 μηιοΐ) 被 EDC (75.9 mg, 0.396 mmol)和 NHS (22.8 mg, 0.198 mmol)活化的 5 mL二次水中 , 置于 40°C油浴中避光反应 24小吋, 然后用水透析, 冷冻干燥, 产率 92 Obtained by Boc protection after reacting Boc-Cy-NH 2 with methacryloyl chloride, then adding a solution of MA-Cy-NH 2 (14.5 mg, 66 μηιοΐ) to HA (50 mg under nitrogen protection) , 1.43 μηιοΐ) 5 mL of secondary water activated by EDC (75.9 mg, 0.396 mmol) and NHS (22.8 mg, 0.198 mmol), placed in a 40 ° C oil bath for 24 hours in the dark, then dialyzed against water, frozen Dry, yield 92
%; HA-Cy-MA核磁表征见附图 2, Ή NMR (D 20): HA: δ 2.00, 2.86-3.88, and 4.44-4.52; Cys: δ 2.70, 3.11-3.15 and 3.56; MA: δ 1.92, 5.45 and 5.69。 %; HA-Cy-MA nuclear magnetic characterization is shown in Figure 2, Ή NMR (D 2 0): HA: δ 2.00, 2.86-3.88, and 4.44-4.52; Cys: δ 2.70, 3.11-3.15 and 3.56; MA: δ 1.92, 5.45 and 5.69.
[0047] 实施例三胱胺酸甲基丙烯酰胺衍生物 (MA-Cys-MA) 的合成 [0047] Synthesis of the trisamine methacrylamide derivative (MA-Cys-MA)
[0048] 在冰水浴条件下, 将胱氨酸 (1.2 g, 5.0 mmol) 的 NaOH (1.5 M, 10 mL) 溶 液滴加到甲基丙烯酰氯 (2.0 mL, 20.6 mmol)的 DCM (10 mL) 中, 在冰水浴条 件下反应 4 h, 反应期间用 NaOH溶液调控 pH为 9.0。 反应结束后, 用分液漏斗分 出水层, 再向其逐滴加入约 3 mL HCl (2 [0048] A solution of cystine (1.2 g, 5.0 mmol) in NaOH (1.5 M, 10 mL) was added dropwise to methacryloyl chloride (2.0 mL, 20.6 mmol) in DCM (10 mL). The reaction was carried out for 4 h under ice-water bath conditions, and the pH was adjusted to 9.0 with a NaOH solution during the reaction. After the reaction was completed, the aqueous layer was separated by a separating funnel, and about 3 mL of HCl was added dropwise thereto (2
M) , 过滤, 真空干燥, 得到白色粉末 1.72 g, 产率 91%。 MA-Cys-MA核磁表征 见附图 3, 'H NMR (400 MHz, DMSO-d 6) : MA (5 5.72, 5.39和 1.85), Cys (δ 12.92, 8.24, 4.53, 3.18和 3.03)。 M), filtered, dried in vacuo to give a white powder, 1.72 g, yield 91%. The magnetic characterization of MA-Cys-MA is shown in Figure 3, 'H NMR (400 MHz, DMSO-d 6 ): MA (5 5.72, 5.39 and 1.85), Cys (δ 12.92, 8.24, 4.53, 3.18 and 3.03).
[0049] 实施例四光控 "四唑 -烯"点击化学纳米凝胶用于蛋白质药物的包载和体外控制 释放 Example 4 Light Control "Tetrazolium-ene" Click Chemical Nanogel for Encapsulation and In Vitro Control of Protein Drugs Release
[0050] 以包载细胞色素 C (CC) 为例, 将一定量的 CC (理论载药量为 10%) 加入到聚 合物总浓度为 1.25 mg/mL的 HA-OEG-Tet和 HA-Cy-MA的 PB (pH 7.4, 10 mM) 溶液中, 然后将该溶液注射到丙酮中, 再用紫外 (320-390 nm, 50 mW/cm 2) 光 照 90秒。 最后旋转蒸发除去丙酮, 用水透析 12  [0050] Taking a sample of cytochrome C (CC) as an example, a certain amount of CC (theoretical drug loading of 10%) was added to HA-OEG-Tet and HA-Cy with a total polymer concentration of 1.25 mg/mL. -MA in PB (pH 7.4, 10 mM) solution, then the solution was injected into acetone and irradiated with ultraviolet (320-390 nm, 50 mW/cm 2 ) for 90 seconds. Final rotary evaporation to remove acetone and dialyze with water 12
h, 得到包载 CC的纳米凝胶 (CC-NGs) 溶液。 用类似的方法可以实现对治疗蛋 白果粒酶 B (GrB) 的高效包裹, 得到包载 GrB的纳米凝胶 (GrB-NGs) 。 蛋白 质 CC的释放实验于 37°C在两种不同的释放介质中进行, 即 PB (pH 7.4, 10 mM ) 和 lO mM GSH的 PB (pH 7.4, 10 mM) 溶液。 取 1 mL包载 CC-NGs样品于蛋白 释放袋 (MWCO 350 K) 中, 并置于 25 mL相应的 PB释放介质中。 在每个取样吋 间点, 取出 5 mL释放介质, 并补充相应的新鲜介质。 将各吋间点取出的样品冻 干, 复溶, 用紫外 (CC紫外吸收波长是 410 nm) 测定。 每组释放试验平行进行 三次, 最终显示结果为实验所得平均值土标准方差。 图 4是上述纳米凝胶体外控 制释放蛋白质药物的行为, 以及释放出的蛋白质药物的生物活性表征图; 蛋白 质的体外释放实验表明在生理条件下 (pH  h, a CC-coated nanogel (CC-NGs) solution was obtained. A similar method can be used to achieve efficient encapsulation of the therapeutic protein granzyme B (GrB) to obtain GrB-coated nanogels (GrB-NGs). The release assay of protein CC was carried out at 37 ° C in two different release media, PB (pH 7.4, 10 mM) and 10 mM GSH PB (pH 7.4, 10 mM) solution. Take 1 mL of the loaded CC-NGs sample in a protein release bag (MWCO 350 K) and place in 25 mL of the corresponding PB release medium. At each sampling point, remove 5 mL of release media and replenish the appropriate fresh media. The samples taken from each turn were freeze-dried, reconstituted, and measured by ultraviolet light (CC ultraviolet absorption wavelength was 410 nm). Each group of release tests was performed in parallel three times, and the final result was the mean square standard deviation of the experimental results. Fig. 4 is a graph showing the behavior of the above-mentioned nanogel in controlling the release of protein drug, and the bioactivity characterization of the released protein drug; the in vitro release test of the protein indicates physiological conditions (pH
7.4, 37°C) CC能很好地被包裹在 HA-NGs中, 经 48 h后, 释放量约 30% (图 4a) 。 相反, 在含有 lO mM GSH的还原条件下, 10  7.4, 37 ° C) CC can be well wrapped in HA-NGs, and after 48 h, the release is about 30% (Fig. 4a). In contrast, under reducing conditions containing 10 mM GSH, 10
h后从纳米凝胶中释放出了超过 80%的 CC。 这说明 CC-NGs在细胞质的还原环境 下能快速释放出包裹的蛋白质药物。  More than 80% of CC was released from the nanogel after h. This indicates that CC-NGs can rapidly release encapsulated protein drugs in a cytoplasmic reducing environment.
[0051] 蛋白质的电子转移活性的测试是通过检测其对 ABTS转变为 ABTS+的催化效率 得到的。 首先释放出的 CC用 PBS溶液稀释至浓度为 0.004 mg/mL。 同吋配置相同 浓度的、 未经任何处理的 CC, 取相同量两种溶液放入石英样品池中, 向两种溶 液中加入相同量的含有 10 的 0.045 Μ的过氧化氢溶液和 100 的 1 The electron transfer activity of the protein was tested by measuring its catalytic efficiency for converting ABTS to ABTS+. The first released CC was diluted with PBS solution to a concentration of 0.004 mg/mL. When the same concentration of CC without any treatment is configured, the same amount of the two solutions are placed in the quartz sample cell, and the same amount of 0.045 Μ hydrogen peroxide solution containing 10 and 100 of 1 are added to the two solutions.
mg/mL的 ABTS的 PBS溶液。 倒置使之混合好并马上用 UV分光光度计读在 410 nm 处的吸收值, 并以此为零点, 每个 15秒测一次。 每个吋间点对应的紫外吸收值 减去第一个点的吸收值从而得到吸收值的变化 (ΔΑ) , 以 ΔΑ对吋间作图表示其 活性变化随吋间的变化。 附图 4b为上述释放出的蛋白活性检测图, 结果显示从 纳米凝胶里释放出来的 CC仍然能较快地催化 ABTS的氧化, 催化速率和未经任何 处理的 CC的接近, 证实了从纳米凝胶中释放出的蛋白质仍能较好地保持活性。 Mg/mL ABTS in PBS. Invert and mix and immediately read the absorbance at 410 nm with a UV spectrophotometer and zero for each 15 seconds. The absorption value of the first point is subtracted from the ultraviolet absorption value of each turn point to obtain the change of absorption value (ΔΑ), which is represented by ΔΑ Changes in activity vary with daytime. Figure 4b is a graph showing the activity of the released protein. The results show that the CC released from the nanogel can still catalyze the oxidation of ABTS faster, and the catalytic rate is close to that of CC without any treatment, which confirms the nanometer. The protein released from the gel still retains its activity well.
[0052] 实施例五空纳米凝胶和包载有蛋白质药物的纳米凝胶的细胞实验 [0052] Cell experiment of Example 5 empty nanogel and nanogel coated with protein drug
[0053] 用大分子交联剂综合利用反相纳米沉淀法和光控 "四唑 -烯"交联法制备透明质酸 纳米凝胶, 制备如下: 将实施例一和实施例二制备的 HA-Lys-Tet和 HA-Cy-MA 以摩尔比 1:1溶于的 PB (pH 7.4, 10 mM) 中, 制备得到浓度为 1.25 mg/mL的聚 合物溶液, 然后混合溶液注射到 lOOmL丙酮中, 用紫外光 (波长 320-390 nm, 光 强 60 mW/cm 2) 辐射 3 min, 旋蒸除去丙酮后用 PB透析, 冷冻干燥得到纳米凝胶 [0053] The hyaluronic acid nanogel was prepared by using a macromolecular crosslinking agent in combination with a reverse phase nanoprecipitation method and a photo-controlled "tetrazole-ene" crosslinking method, and was prepared as follows: HA prepared in Example 1 and Example 2 -Lys-Tet and HA-Cy-MA A polymer solution having a concentration of 1.25 mg/mL was prepared in a PB (pH 7.4, 10 mM) dissolved in a molar ratio of 1:1, and then the mixed solution was injected into 100 mL of acetone. Ultraviolet light (wavelength 320-390 nm, light intensity 60 mW/cm 2 ) was irradiated for 3 min, acetone was removed by rotary evaporation, dialyzed against PB, and freeze-dried to obtain nanogel.
[0054] 测试空纳米凝胶的细胞相容性。 将成纤维细胞 (L929) 、 乳腺癌细胞 (MCF-7 ) 、 脑胶质瘤细胞 (U87) 和肺癌细胞 (A549) 分别铺在 96孔细胞培养板上, 每 个孔大约 5000个细胞, 再加入含有 10 %小牛血清、 1%谷氨酸盐、 抗生素青霉素 (100 IU/mL) 和链霉素 (100 g/mL) 的 DMEM培养基, 再置于 37°C, 5%二氧 化碳条件下培养 12 h。 然后, 加 20 μί纳米凝胶的 PB (lO mM, pH 7.4) 溶液 ( 最终纳米凝胶的浓度为 0.2, 0.4, 0.6, 0.8和 1.0 [0054] The cytocompatibility of the empty nanogels was tested. Place fibroblasts (L929), breast cancer cells (MCF-7), glioma cells (U87), and lung cancer cells (A549) on 96-well cell culture plates, each with approximately 5000 cells, and then add DMEM medium containing 10% calf serum, 1% glutamate, antibiotic penicillin (100 IU/mL) and streptomycin (100 g/mL), then placed at 37 ° C, 5% carbon dioxide 12 h. Then, add 20 μί nanogel of PB (10 mM, pH 7.4) solution (final nanogel concentrations of 0.2, 0.4, 0.6, 0.8 and 1.0)
mg/mL) 到每孔中, 再在 37°C, 5%二氧化碳条件下培养 48 h。 随后, 向每孔加 入 3- (4, 5-二甲基噻挫 - -2, 5-二苯基四氮唑溴盐 (MTT) 的 PBS溶液 (15 , 5 mg/mL) , 并放入培养箱中继续培养。 4 h后, 移除含有 MTT的培养液, 再 加入 150 μL Mg/mL) to each well, and then incubated at 37 ° C, 5% carbon dioxide for 48 h. Subsequently, added to each well of 3- (4,5-dimethylthiazol-setback - - 2, 5-diphenyl tetrazolium bromide (MTT) in PBS (15, 5 mg / mL) , and placed Continue the culture in the incubator. After 4 h, remove the medium containing MTT and add 150 μL.
DMSO用于溶解活细胞与 MTT生成的紫色结晶甲瓒, 并用酶标仪 (Bio Tek) 测 定每个孔在 492 nm处的紫外吸收。 细胞相对存活率通过与只有空白细胞的对照 孔在 492 nm处的吸收相比得到, 每组实验平均进行 4次。 图 5是上述纳米凝胶和 载蛋白质药物的纳米凝胶的细胞实验表征图。  DMSO was used to dissolve the purple crystal formamidine produced by living cells and MTT, and the UV absorbance at 492 nm of each well was measured using a microplate reader (Bio Tek). The relative cell viability was obtained by comparison with the absorbance at 492 nm of the control well with only blank cells, and the average of each set of experiments was performed 4 times. Fig. 5 is a cell experimental characterization diagram of the nanogel and the protein-loaded drug nanogel described above.
[0055] 附图 5a为细胞存活率图, 可以看出, 48小吋后加入纳米凝胶细胞的存活率均达 到 90 %以上, 说明透明质酸纳米凝胶没有毒性。  Figure 5a is a graph of cell viability. It can be seen that the survival rate of the nanogel cells after 48 hours of incorporation is above 90%, indicating that the hyaluronic acid nanogel is not toxic.
[0056] CC-NGs和 GrB-NGs的细胞毒性也是通过 MTT法测定。 将包载蛋白药物的纳米 凝胶加入乳腺癌细胞 (MCF-7, CD44受体高表达) ,肺癌细胞 (A549, CD44受 体高表达) 和脑胶质瘤细胞 (U87, CD44受体低表达) 中, 并培育 4 h。 然后将 载蛋白的纳米凝胶的培养基吸走, 再加入新鲜培养基于 37°C, 5%二氧化碳条件 下继续培养 92 h。 培养结束后向每孔中加入 10 μL MTT的 PBS溶液 (5 mg/mL) 并放入培养箱中, 继续培养 4 h使 MTT与活细胞充分作用。 随后移除含有 MTT的 培养液, 并加入 15(^L DMSO用于溶解活细胞与 MTT生成的紫色结晶甲瓒, 并 用酶标仪 (Bio Tek) 测定每个孔在 492 nm处的紫外吸收。 细胞相对存活率计算 方法如上。 封闭实验是先用 HA (5 mg/mL) 与 MCF-7细胞孵育 4 h, 然后再加入 包载包载蛋白质的纳米凝胶。 结果表明 CC-NGs对 MCF-7细胞有较高的抗肿瘤活 性, 其细胞的半抑制浓度 (IC50) 为 0.52 μΜ (图 5b) 。 相反, 自由 CC即便在浓 度高达 6.2 μΜ吋仍无明显的细胞毒性, 这主要是因为 CC内吞进入细胞的能力很 差。 另外, CC-NGs对 CD44受体低表达的 U87细胞表现出明显减小的凋亡活性, 而且 CC-NGs对预先封闭 CD44受体的 MCF-7细胞的抗肿瘤活性明显降低, 这些结 果说明 CC-NGs是通过 CD44受体介导内吞机理进入细胞。 同吋, GrB-NGs对 CD4 4受体高表达的 MCF-7和 A549细胞都表现出了较高的体外抗肿瘤活性, 其分别为 3.0 nM和 8.1 nM (图 5c) 。 The cytotoxicity of CC-NGs and GrB-NGs was also determined by the MTT method. Adding nanogels containing protein drugs to breast cancer cells (MCF-7, high expression of CD44 receptor), lung cancer cells (A549, CD44 High body expression) and glioma cells (U87, low expression of CD44 receptor), and incubated for 4 h. The protein-loaded nanogel medium was then aspirated, and fresh medium was added to continue the culture at 37 ° C under 5% carbon dioxide for 92 h. After the completion of the culture, 10 μL of MTT in PBS (5 mg/mL) was added to each well and placed in an incubator, and the culture was continued for 4 hours to fully act on MTT and living cells. The culture medium containing MTT was then removed, and 15 (μL DMSO) was added to dissolve the purple crystal formamidine produced by living cells and MTT, and the ultraviolet absorption of each well at 492 nm was measured with a microplate reader (Bio Tek). The relative cell survival rate was calculated as above. The blocking experiment was performed by incubating MCF-7 cells with HA (5 mg/mL) for 4 h, and then adding the nanogel containing the loaded protein. The results showed that CC-NGs were MCF- 7 cells have higher anti-tumor activity, and their cells have a half-inhibitory concentration (IC50) of 0.52 μΜ (Fig. 5b). In contrast, free CC has no obvious cytotoxicity even at concentrations up to 6.2 μΜ吋, mainly because CC The ability of endocytosis to enter cells is poor. In addition, CC-NGs exhibit significantly reduced apoptotic activity in U87 cells with low expression of CD44 receptor, and the resistance of CC-NGs to MCF-7 cells pre-blocking CD44 receptor The tumor activity was significantly reduced. These results indicate that CC-NGs enter the cell through the CD44 receptor-mediated endocytosis mechanism. Similarly, GrB-NGs showed higher expression in MCF-7 and A549 cells with higher CD4 4 receptor expression. In vitro antitumor activity, which is 3.0 nM and 8.1 nM, respectively ( 5c).
[0057] 实施例六载蛋白纳米凝胶对小鼠皮下人乳腺癌移植瘤的治疗 [0057] Example 6 treatment of subcutaneous human breast cancer xenografts in mice
[0058] 首先使用皮下注射 MCF-7细胞 (l x 10 7) 的 PBS溶液 (50 μϋ 到裸鼠的右后侧 建立了人乳腺癌皮下肿瘤模型。 当肿瘤的体积达到 30 mm 3后, 裸鼠被随机分成 4 组, 每组 5只。 然后, 通过静脉注射方法分别向每组荷瘤老鼠注射 GrB-NGs (25 GrB equiv./kg) 、 GrB-NGs ( 100 GrB equiv./kg) 、 空纳米凝胶和 PBS缓冲 溶液, 每三天给药一次, 总共给药四次。 肿瘤体积以及裸鼠体重每隔一天测量 一次。 肿瘤体积的计算公式: 体积 = ½*a*b*c, a是肿瘤最长边, b是肿瘤最宽边 , c是肿瘤的高度。 附图 8为皮下乳腺癌的治疗, 可以发现 PBS组和空纳米凝胶组 的肿瘤体积生长快速。 而 GrB-NGs在剂量为 25 μβ GrB equiv./kg和 100 μβ GrB equiv./kg吋都能有效地抑制肿瘤的生长, 且剂量越高对肿瘤生长的抑制效果越明 显。 同吋, GrB-NGs组与 PBS组相似, 都没有导致动物体重降低, 说明 GrB-NGs 没有明显的毒副作用 (参见图 6)。 [0058] A human breast cancer subcutaneous tumor model was first established by subcutaneous injection of MCF-7 cells (1×10 7 ) in PBS (50 μϋ to the right posterior side of nude mice. When the tumor volume reached 30 mm 3 , nude mice They were randomly divided into 4 groups of 5 each. Then, each group of tumor-bearing mice was injected with GrB-NGs (25 GrB equiv./kg), GrB-NGs (100 GrB equiv./kg), and empty by intravenous injection. Nanogel and PBS buffer solution were administered once every three days for a total of four doses. Tumor volume and body weight of nude mice were measured every other day. Formula for calculating tumor volume: Volume = 1⁄2*a*b*c, a It is the longest side of the tumor, b is the widest side of the tumor, and c is the height of the tumor. Figure 8 shows the treatment of subcutaneous breast cancer, and it can be found that the tumor volume of PBS group and empty nanogel group grows rapidly. GrB-NGs The doses of 25 μ β GrB equiv./kg and 100 μ β GrB equiv./kg吋 can effectively inhibit the growth of tumors, and the higher the dose, the more obvious the inhibition effect on tumor growth. Similarly, GrB-NGs group and The PBS group was similar, and did not cause the animal to lose weight, indicating that GrB-NGs are not obvious. Toxicity (see FIG. 6).
[0059] 实施例七载蛋白纳米凝胶对小鼠原位人肺癌移植瘤的治疗 首先通过注射带 luciferase的 A549细胞 (l x lO 7) 的 PBS溶液 (50 μί) 到裸鼠 的肺部建立了人肺癌原位肿瘤模型。 当肿瘤细胞的荧光值达到 20000 p/s/cm 2/sr吋 , 裸鼠被随机分成 3组, 每组 6只。 然后, 每三天通过尾静脉注射分别向每组荷 瘤老鼠注射 GrB-NGs (150 GrB equiv./kg GrB) 、 空白纳米凝胶和 PBS, 总共 给药四次。 肿瘤出的荧光和裸鼠体重每三天记录一次, 图 7是载蛋白纳米凝胶对 小鼠原位肺癌移植瘤的治疗表征图。 附图 7a-c为肺癌原位治疗图, PBS组和空纳 米凝胶组的肿瘤处荧光强度随吋间明显增强, 表明肿瘤在快速生长。 而 GrB-NGs 治疗中的肿瘤荧光强度较弱, 这说明 GrB-NGs能有效地抑制裸鼠肺癌的生长。 同 吋, GrB-NGs组的小鼠体重变化并不显著 (图 7d) , 这一方面表明 GrB-NGs无明 细的毒副作用, 另一方面也说明 GrB-NGs能有效地抑制小鼠原位肺癌的生长, 使 小鼠生长状况良好。 相反, PBS和空白纳米凝胶对照组的小鼠体重均显著降低, 这是因为小鼠随着原位肺癌的快速生长, 身体状况急剧下降。 小鼠的生存实验 也表明 GrB-NGs治疗组的小鼠在整个观察期间 (40天) , 没有死亡发生; 而 PBS 和空白纳米凝胶对照组的小鼠在治疗观察结束后, 全部死亡 (图 7e) 。 H&E染 色可以发现 GrB-NGs对体内主要脏器 (心脏、 肝脏、 肾等) 没有副作用 (图 8) , 这进一步表明了 GrB-NGs不会弓 |起明显的毒副作用。 [0059] Example 7 treatment of mouse orthotopic human lung cancer xenografts with protein-loaded nanogels A human lung cancer orthotopic tumor model was first established by injecting luciferase-containing A549 cells (lx lO 7 ) in PBS (50 μί) into the lungs of nude mice. When the fluorescence value of the tumor cells reached 20000 p/s/cm 2 /sr吋, the nude mice were randomly divided into 3 groups of 6 rats each. Then, each group of tumor-bearing mice was injected with GrB-NGs (150 GrB equiv./kg GrB), blank nanogel, and PBS every four days by tail vein injection for a total of four doses. The fluorescence of the tumor and the body weight of the nude mice were recorded every three days. Figure 7 is a therapeutic representation of the carrier protein nanogel on mouse orthotopic lung cancer xenografts. 7a-c are in situ treatment maps of lung cancer, and the fluorescence intensity at the tumor of the PBS group and the empty nanogel group was significantly enhanced with the daytime, indicating that the tumor was growing rapidly. The fluorescence intensity of tumors treated with GrB-NGs was weak, indicating that GrB-NGs can effectively inhibit the growth of lung cancer in nude mice. At the same time, the body weight of the GrB-NGs group was not significant (Fig. 7d). This aspect indicates that GrB-NGs have no detailed side effects. On the other hand, GrB-NGs can effectively inhibit mouse orthotopic lung cancer. The growth of the mice allowed the mice to grow well. In contrast, mice in the PBS and blank nanogel control groups showed significant weight loss because of the rapid decline in body condition with the rapid growth of lung cancer in situ. Survival experiments in mice also showed that mice in the GrB-NGs-treated group did not die during the entire observation period (40 days); while mice in the PBS and blank nanogel control groups died after treatment observation (Fig. 7e). H&E staining revealed that GrB-NGs had no side effects on the main organs (heart, liver, kidney, etc.) in the body (Fig. 8), which further indicates that GrB-NGs do not have obvious toxic side effects.

Claims

权利要求书 Claim
[权利要求 1] 一种抗肿瘤药物的制备方法, 包括以下步骤:  [Claim 1] A method for preparing an antitumor drug, comprising the steps of:
(1) 将聚合物四唑衍生物和含甲基丙烯酸酯基团的交联剂加入水或 者缓冲液中得到载体溶液; 所述聚合物四唑衍生物的浓度为 0.5〜10 mg/mL;  (1) adding a polymer tetrazole derivative and a methacrylate group-containing crosslinking agent to water or a buffer to obtain a carrier solution; the concentration of the polymer tetrazole derivative is 0.5 to 10 mg / mL;
(2) 将蛋白质药物加入步骤 (1) 的载体溶液中, 得到混合液; (2) adding the protein drug to the carrier solution of step (1) to obtain a mixed solution;
(3) 将步骤 (2) 的混合液注射到有机溶剂中, 得到悬浮液; 然后进 行紫外光照反应得到抗肿瘤药物; (3) injecting the mixture of the step (2) into an organic solvent to obtain a suspension; and then performing an ultraviolet light reaction to obtain an antitumor drug;
所述聚合物四唑衍生物具有式 I结构:  The polymer tetrazole derivative has the structure of formula I:
Figure imgf000012_0001
式 I;
Figure imgf000012_0001
Formula I;
其中 n≥2;  Where n≥2;
R H、 NH 2、 NMe 2、 OMe、 N0 2、 Cl、 Br、 Me、 CO 2 RH, NH 2 , NMe 2 , OMe, N0 2 , Cl, Br, Me, CO 2
Me或者 PhNHBoc;  Me or PhNHBoc;
P为透明质酸、 透明质酸赖氨酸化合物、 透明质酸胱胺化合物、 葡聚 糖、 壳聚糖、 胶原蛋白、 聚乙二醇或者聚乙二醇-聚酯;  P is hyaluronic acid, hyaluronic acid lysine compound, hyaluronic acid cystamine compound, glucosamine, chitosan, collagen, polyethylene glycol or polyethylene glycol-polyester;
所述含甲基丙烯酸酯基团的交联剂具有式 II结构:  The methacrylate group-containing crosslinking agent has the structure of formula II:
Figure imgf000012_0002
Figure imgf000012_0002
式 II;  Formula II;
其中 m≥ 2;  Where m≥ 2;
CL为透明质酸、 透明质酸胱胺化合物、 透明质酸赖氨酸化合物、 壳 聚糖、 葡聚糖、 胶原蛋白、 聚乙二醇、 聚乙二醇-聚酯、 丁二胺、 己 二胺、 胱胺、 胱氨酸或者赖氨酸。 CL is hyaluronic acid, hyaluronic acid cystamine compound, hyaluronic acid lysine compound, chitosan, dextran, collagen, polyethylene glycol, polyethylene glycol-polyester, butanediamine, Diamine, cystamine, cystine or lysine.
[权利要求 2] 根据权利要求 1所述抗肿瘤药物的制备方法, 其特征在于: 步骤 (1) 中, 甲基丙烯酸酯基团与四唑基团的摩尔比为 1: 1。 [Claim 2] The method for producing an antitumor drug according to claim 1, wherein in the step (1), the molar ratio of the methacrylate group to the tetrazole group is 1:1.
[权利要求 3] 根据权利要求 1所述抗肿瘤药物的制备方法, 其特征在于: 所述缓冲 液包括磷酸盐缓冲液、 4- (2-羟乙基) -1-哌嗪乙烷磺酸半钠盐缓冲溶 液、 三羟甲基氨基甲烷缓冲溶液或者 2-吗啉乙磺酸缓冲溶液。  [Claim 3] The method for producing an antitumor drug according to claim 1, wherein the buffer comprises a phosphate buffer solution, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid Semi-sodium salt buffer solution, tris buffer solution or 2-morpholine ethanesulfonic acid buffer solution.
[权利要求 4] 根据权利要求 1所述抗肿瘤药物的制备方法, 其特征在于: 所述有机 溶剂包括丙酮、 乙腈或者乙醇。  [Claim 4] The method for producing an antitumor drug according to claim 1, wherein the organic solvent comprises acetone, acetonitrile or ethanol.
[权利要求 5] 根据权利要求 1所述抗肿瘤药物的制备方法, 其特征在于: 所述聚乙 二醇为线性聚乙二醇或者多臂聚乙二醇; 所述聚酯为聚丙交酯、 聚 ( 丙交酯 -co-乙交酯) 、 聚己内酯或者聚碳酸酯。  [Claim 5] The method for preparing an antitumor drug according to claim 1, wherein the polyethylene glycol is linear polyethylene glycol or multi-arm polyethylene glycol; and the polyester is polylactide , poly(lactide-co-glycolide), polycaprolactone or polycarbonate.
[权利要求 6] 根据权利要求 1所述抗肿瘤药物的制备方法, 其特征在于: 聚合物四 唑衍生物的制备方法为, 先向四唑溶液中加入缩合剂与催化剂, 反应 得到活化的四唑溶液; 然后把聚合物水溶液滴加到活化的四唑溶液中 , 室温反应得到聚合物四唑衍生物; 所述聚合物为透明质酸、 葡聚糖 、 壳聚糖、 胶原蛋白、 聚乙二醇或者聚乙二醇-聚酯。  [Claim 6] The method for preparing an antitumor drug according to claim 1, wherein the polymer tetrazole derivative is prepared by first adding a condensing agent and a catalyst to the tetrazole solution, and reacting to obtain an activated four. The azole solution; then the aqueous polymer solution is added dropwise to the activated tetrazolium solution, and reacted at room temperature to obtain a polymer tetrazole derivative; the polymer is hyaluronic acid, dextran, chitosan, collagen, polyethyl b Glycol or polyethylene glycol-polyester.
[权利要求 7] 根据权利要求 6所述抗肿瘤药物的制备方法, 其特征在于: 所述四唑 与缩合剂、 催化剂的摩尔比为 1:2:0.1。  [Claim 7] The method for producing an antitumor drug according to claim 6, wherein a molar ratio of the tetrazole to the condensing agent or the catalyst is 1:2:0.1.
[权利要求 8] 根据权利要求 6所述抗肿瘤药物的制备方法, 其特征在于: 所述缩合 剂为二环己基碳二亚胺; 所述催化剂为 4-二甲氨基吡啶。  [Claim 8] The method for producing an antitumor drug according to claim 6, wherein the condensing agent is dicyclohexylcarbodiimide; and the catalyst is 4-dimethylaminopyridine.
[权利要求 9] 根据权利要求 1所述抗肿瘤药物的制备方法, 其特征在于: 所述紫外 光照反应的波长为 302〜390 nm, 强度为 0.8〜100 mW/cm 2 , 吋间为 90〜180s。 [Claim 9] The method for preparing an antitumor drug according to claim 1, wherein: the ultraviolet light reaction has a wavelength of 302 to 390 nm, an intensity of 0.8 to 100 mW/cm 2 , and a turn of 90 to 90 180s.
[权利要求 10] 根据权利要求 1所述抗肿瘤药物的制备方法, 其特征在于: 步骤 (3) 紫外光照反应后, 旋转蒸发除去有机溶剂, 然后用水透析得到抗肿瘤 药物。  [Claim 10] The method for producing an antitumor drug according to claim 1, wherein: (3) after the ultraviolet light reaction, the organic solvent is removed by rotary evaporation, and then dialyzed against water to obtain an antitumor drug.
PCT/CN2016/089507 2016-07-10 2016-07-10 Method for preparing antitumor drug WO2018010053A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/089507 WO2018010053A1 (en) 2016-07-10 2016-07-10 Method for preparing antitumor drug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/089507 WO2018010053A1 (en) 2016-07-10 2016-07-10 Method for preparing antitumor drug

Publications (1)

Publication Number Publication Date
WO2018010053A1 true WO2018010053A1 (en) 2018-01-18

Family

ID=60952328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089507 WO2018010053A1 (en) 2016-07-10 2016-07-10 Method for preparing antitumor drug

Country Status (1)

Country Link
WO (1) WO2018010053A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105963703A (en) * 2016-07-08 2016-09-28 苏州大学张家港工业技术研究院 Preparation method of anti-tumor drug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103396554A (en) * 2013-07-02 2013-11-20 苏州大学 Hydrogel, preparation method thereof and applications
CN105963703A (en) * 2016-07-08 2016-09-28 苏州大学张家港工业技术研究院 Preparation method of anti-tumor drug
CN105968372A (en) * 2016-07-08 2016-09-28 苏州大学 Self-fluorescence nanogel and preparation method and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103396554A (en) * 2013-07-02 2013-11-20 苏州大学 Hydrogel, preparation method thereof and applications
CN105963703A (en) * 2016-07-08 2016-09-28 苏州大学张家港工业技术研究院 Preparation method of anti-tumor drug
CN105968372A (en) * 2016-07-08 2016-09-28 苏州大学 Self-fluorescence nanogel and preparation method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DENG. CHAO: "Integrated Experimental Design of Injectable Fluorescent Hydrogel for Controlled Release of Anticancer Protein Drugs", EDUCATION TEACHING FORUM, 8 February 2014 (2014-02-08), pages 250, ISSN: 1674-9324 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105963703A (en) * 2016-07-08 2016-09-28 苏州大学张家港工业技术研究院 Preparation method of anti-tumor drug
CN105963703B (en) * 2016-07-08 2019-05-10 苏州大学张家港工业技术研究院 A kind of preparation method of anti-tumor drug

Similar Documents

Publication Publication Date Title
CN108542885B (en) Antitumor drug and preparation method thereof
JP6677914B2 (en) Specific targeted biodegradable amphiphilic polymers for ovarian cancer, polymer vesicles prepared therefrom and uses thereof
CN109810092B (en) Cyclic carbonate monomer containing nitric oxide donor, preparation and application thereof
CN105968372B (en) A kind of autofluorescence nanogel and the preparation method and application thereof
CN107998082B (en) Application of vesicle nano-drug in preparation of drug for treating brain tumor
CN107596380B (en) Polyethylene glycol-polycarbonate-based reduction-sensitive camptothecin prodrug and preparation method and application thereof
CN110063933B (en) Glucan-based nanogel and preparation method and application thereof
CN106729735B (en) pH-sensitive polypeptide polymer and preparation method and application thereof
JP4991563B2 (en) Dosage form in which hydrophobic anticancer agent is encapsulated inside bile acid-chitosan complex and method for producing the same
KR20180097707A (en) Biodegradable amphipathic polymers, polymeric vehicles prepared thereby, and use in the manufacture of a therapeutic agent for lung cancer target
CN111973556B (en) Polymer vesicle carrying small molecular drugs as well as preparation method and application thereof
EP1383539B1 (en) Anticancer drug-chitosan complex forming self-aggregates and preparation method thereof
CN113827567B (en) Application of polymer vesicle carrying small molecular medicine in preparation of medicine for treating acute stranguria leukemia
CN108186571B (en) Application of reversible cross-linked asymmetric vesicle in preparation of acute leukemia treatment drug
CN114533671A (en) Preparation method and application of biodegradable hyperbranched polycarbonate shell-core polymer micelle
CN108403641A (en) A kind of medicament-carried nano material and preparation method thereof
CN105963703B (en) A kind of preparation method of anti-tumor drug
CN111743861B (en) Targeted triple-negative breast cancer hypoxia response chiral drug micelle and preparation method thereof
CN113633785A (en) Preparation method and application of intelligent responsive shell-core polyelectrolyte nanogel
CN109851799B (en) C (RGDFk) cyclopeptide-chitosan stearic acid graft drug-loaded micelle and preparation and application thereof
WO2018010053A1 (en) Method for preparing antitumor drug
KR101323102B1 (en) Nanoparticles formed by encapsulating an anticancer drug into glycolchitosan-cholanic acid complex and a process for the preparation thereof
CN113278092B (en) Polymer carrier material, preparation and application thereof
WO2018151258A1 (en) Drug delivery carrier and drug delivery system
CN116059357B (en) PH responsive charge-reversal nano composite preparation and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908386

Country of ref document: EP

Kind code of ref document: A1