WO2018008938A1 - Optical sheet, back light unit, and display device including same - Google Patents

Optical sheet, back light unit, and display device including same Download PDF

Info

Publication number
WO2018008938A1
WO2018008938A1 PCT/KR2017/007071 KR2017007071W WO2018008938A1 WO 2018008938 A1 WO2018008938 A1 WO 2018008938A1 KR 2017007071 W KR2017007071 W KR 2017007071W WO 2018008938 A1 WO2018008938 A1 WO 2018008938A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion layer
light
optical sheet
layer
surface roughness
Prior art date
Application number
PCT/KR2017/007071
Other languages
French (fr)
Korean (ko)
Inventor
이기욱
이병훈
임채리
이민수
Original Assignee
주식회사 엘엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘엠에스 filed Critical 주식회사 엘엠에스
Publication of WO2018008938A1 publication Critical patent/WO2018008938A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/462Computing operations in or between colour spaces; Colour management systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/52Measurement of colour; Colour measuring devices, e.g. colorimeters using colour charts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/52Measurement of colour; Colour measuring devices, e.g. colorimeters using colour charts
    • G01J3/526Measurement of colour; Colour measuring devices, e.g. colorimeters using colour charts for choosing a combination of different colours, e.g. to produce a pleasing effect for an observer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to an optical sheet for converting color coordinates of incident light.
  • Liquid crystal displays are display devices used in notebooks, personal computers, mobile terminals, TVs, and the like, and their characteristics are improved year by year as demand for liquid crystal displays increases.
  • a liquid crystal display device which is a non-light emitting element, includes a back light unit as a light source.
  • the backlight includes a light source and a plurality of optical sheets.
  • the optical sheet collects or diffuses incident light to supply uniform light to the liquid crystal panel.
  • the light provided by the backlight unit provides a relatively yellowish white light.
  • the white light has a low color temperature, the light efficiency is lowered, so there is a problem that an LED having a high color temperature must be used to compensate for the white light.
  • An object of the present invention is to provide an optical sheet capable of increasing the color temperature by converting the color coordinates of incident light.
  • the base layer A first diffusion layer disposed on one surface of the base layer; And a second diffusion layer disposed on the other surface of the base layer, wherein the first diffusion layer or the second diffusion layer includes a light absorbing agent that absorbs light of a predetermined wavelength band.
  • the optical sheet may convert color coordinates of incident light.
  • the y coordinate change amount ⁇ y of the converted color coordinates may be -0.010 to -0.0030.
  • Luminance of the light emitted from the optical sheet may satisfy 96% to 100% based on 100% of the luminance of the light incident on the optical sheet.
  • the light absorbing agent may have an absorption peak in the wavelength range of 580nm to 650nm.
  • the light absorbing agent may be included in 0.0005wt% to 0.006wt%.
  • the light absorbing agent may be included in 0.0005wt% to 0.0015wt%.
  • a display device having any one of the above-described optical sheet; And a display panel for generating an image using the light whose color coordinate is converted by the optical sheet.
  • the color temperature can be increased by converting the color coordinates of the light provided by the backlight unit. Therefore, it is possible to use an LED grade with low brightness, thereby reducing the manufacturing cost.
  • FIG. 1 is a conceptual diagram of a diffusion sheet according to an embodiment of the present invention
  • FIG. 2 is a view for explaining a state in which the color coordinates change by the diffusion sheet according to an embodiment of the present invention
  • Figure 3 is a graph measuring the change in transmittance according to the content of the light absorber
  • Figure 4 is a graph measuring the change in brightness and color coordinates according to the content of the light absorber
  • FIG. 5 is a conceptual diagram of a diffusion sheet according to another embodiment
  • FIG. 9 is a conceptual diagram of a display apparatus according to an exemplary embodiment.
  • ordinal numbers such as second and first
  • first and second components may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component.
  • FIG. 1 is a conceptual diagram of a diffusion sheet according to an embodiment of the present invention
  • Figure 2 is a view for explaining a state in which the color coordinates change by the diffusion sheet according to an embodiment of the present invention.
  • the optical sheet 12 includes a base layer 121, a first diffusion layer 122 disposed on one surface of the base layer 121, and a base layer 121. It includes a second diffusion layer 123 disposed on the other side of the.
  • the optical sheet 12 described in this embodiment may be a diffusion sheet.
  • the base layer 121 may be various kinds of polymer films.
  • the base layer 121 is a light transmissive polyethylene terephthalate film, a polycarbonate film, a polypropylene film. It may be any one of polyethylene films.
  • the thickness of the base layer 121 may be 10 ⁇ m to 100 ⁇ m, but is not limited thereto.
  • the first diffusion layer 122 may be disposed on one surface of the base layer 121.
  • the first diffusion layer 122 includes a first resin layer 122a and a light absorbing agent P dispersed in the first resin layer 122a. If necessary, it may further include particles for inducing diffusion (bead particles, etc.).
  • the thickness of the first diffusion layer 122 may be about 5 ⁇ m to 10 ⁇ m, but is not limited thereto.
  • the first resin layer 122a may be prepared by applying a polymer resin to the base layer 121 and then curing it.
  • the polymer resin is any one selected from acrylic resin, urethane resin, polyethylene resin, polypropylene resin, polystyrene resin, polyamide resin, and the like. The above may be, but is not limited thereto.
  • the first diffusion layer 122 may have a diffusion pattern having a shape for diffusing incident light, such as a lens pattern and a semi-circular pillar pattern.
  • This diffusion pattern may be formed regularly or irregularly. There is no restriction on the shape of the diffusion pattern.
  • the diffusion function may be provided using bead particles or the like without such a diffusion pattern.
  • the second diffusion layer 123 is disposed on the other surface of the base layer 121.
  • the second diffusion layer 122 may include a second resin layer 123a and a light absorbing agent P.
  • the structure of the second diffusion layer 123 may be the same as that of the first diffusion layer 122.
  • the first diffusion layer 122 or the second diffusion layer 123 includes a light absorbing agent (P).
  • the light absorbing agent P absorbs light of a predetermined wavelength band.
  • Light absorbing agent (P) may have an absorption peak in the wavelength range of 580nm to 650nm.
  • the light absorbing agent P may be dispersed in any one or more layers of the first diffusion layer 122 or the second diffusion layer 123.
  • the light absorption rate may be increased as compared with the case where the light absorbing agent P is dispersed in only one layer.
  • the light absorbing agent P may be a die or a particle that absorbs light of a predetermined wavelength band.
  • the color coordinates of light emitted from the optical sheet 12 according to the present invention may be different from the color coordinates of light incident to the optical sheet 12 (hereinafter referred to as light L1). have.
  • the color temperature of the outgoing light L2 may be higher than the incident light L1.
  • the color temperature may be relatively low.
  • light is absorbed in the wavelength range of 580nm to 650nm may change the color coordinates and increase the color temperature. That is, the emitted light L2 may be converted into relatively blue white light, thereby increasing the color temperature.
  • Figure 3 is a graph measuring the change in transmittance according to the content of the light absorber
  • Figure 4 is a graph measuring the change in luminance and color coordinates according to the content of the light absorber.
  • the optical sheet does not have a light absorbing agent (Base polymer)
  • the transmittance of the entire visible light wavelength band exceeds 90%.
  • the transmittance of the emitted light is relatively yellow because the transmittance of the wavelength range of 580nm to 650nm is relatively high.
  • the emitted light becomes blue and the light efficiency may be increased. Therefore, a low rank LED can be used as a light source.
  • the y color coordinate change amount? y is preferably -0.010 to -0.003 based on the y color coordinate of the incident light.
  • white light having a yellow color may be converted into white light having a blue color.
  • the transmittance of the wavelength band of about 580 nm decreases as the content (wt%) of the light absorber increases.
  • the content (wt%) of the light absorbing agent is 0.0007 wt% or less, as shown in FIG. 4, the y-coordinate change amount ( ⁇ y) is -0.
  • ⁇ y y-coordinate change amount
  • the half peak width (FWHM) of the absorption peak is preferably 60 nm or less. If the full width at half maximum exceeds 60 nm, the transmittance of adjacent wavelengths decreases, resulting in a large loss of color coordinates and luminance. That is, in order to effectively remove only the wavelength band corresponding to yellow, the half width of the absorption curve of the light absorbing agent P may be adjusted to 60 nm or less.
  • the luminance of the emitted light is preferably controlled to 95% to 100% based on 100% of the incident light. Therefore, the light absorbing agent (P) is preferably 0.0007 wt% to 0.002 wt%.
  • the content of the light absorbing agent (P) is preferably 0.0007 wt% to 0.002 wt% with respect to the weight of the polymer resin constituting the absorbing layer.
  • FIG. 5 is a conceptual diagram of a diffusion sheet according to another embodiment
  • FIG. 6 is a graph of luminance measured by varying the surface roughness of the upper diffusion layer and the lower diffusion layer of the diffusion sheet
  • FIG. 7 is an absorbent of the upper diffusion layer and the lower diffusion layer of the diffusion sheet.
  • the luminance is measured by controlling the concentration differently
  • FIG. 8 is a graph measuring luminance by controlling the thicknesses of the upper diffusion layer and the lower diffusion layer of the diffusion sheet differently.
  • surface roughnesses of the first diffusion layer 122 and the second diffusion layer 123 may be different from each other.
  • the surface roughness may be defined as an average value of mountains and valleys formed on the surfaces of the first and second diffusion layers 122 and 123.
  • the concentrations of the light absorbers dispersed in the first and second diffusion layers 122 and 123 may be different from each other, and the thicknesses of the first and second diffusion layers 122 and 123 may also be different from each other. Can be.
  • the second diffusion layer 123 into which the light L1 emitted from the light source is incident is defined as a lower layer and the first diffusion layer 122 is defined as an upper layer.
  • Experimental Example 1 controlled the surface roughness of the diffusion layers on both sides to 1.2 ⁇ m and measured luminance.
  • Experimental Example 2 controlled the surface roughness in the same manner as Experimental Example 1 and added a light absorber.
  • Experimental Example 2 can be seen that the luminance is reduced by about 5% compared to Experimental Example 1. That is, it can be seen that the brightness decreases when the light absorber is added under the same conditions.
  • Experimental Example 5 in which the surface roughness of the upper layer was set to 1.2 ⁇ m and the surface roughness of the lower layer was controlled to 0.9 ⁇ m increased in brightness than that of Experimental Example 2.
  • Experimental Example 6 in which the surface roughness of the upper layer was set to 0.9 ⁇ m and the surface roughness of the lower layer was controlled to 1.2 ⁇ m, it can be seen that the luminance rise is relatively small.
  • Experimental Example 8 based on 100% of the brightness of Experimental Example 7 without adding the light absorbing agent, Experimental Example 8 having 0.002pt of light absorbing agent dispersed in each of the upper and lower layers measured 96.8% of brightness.
  • Experimental Example 10 in which a light absorber of 0.004 pt was dispersed only in the upper layer had a luminance of 96.6%.
  • FIG. 9 is a conceptual diagram of a display apparatus according to an exemplary embodiment.
  • a display apparatus includes a backlight unit 10 and a display panel 20.
  • the display panel 20 implements an image by adjusting the amount of light transmitted from the backlight unit 10.
  • the display panel 20 may be a liquid crystal panel.
  • the display panel 20 includes a TFT substrate 22, a color filter 14, and a liquid crystal 23 filled between the TFT substrate 22 and the color filter 24.
  • polarizers may be further disposed on the upper and lower surfaces of the display panel 20. Therefore, the amount of light can be adjusted by modifying the arrangement direction of the liquid crystal by adjusting the voltage applied to the liquid crystal 23.
  • the backlight unit 10 reflects the plurality of light sources 16 and the light guide plate 11 that converts the light emitted from the light source 16 into the surface light source, and the light emitted from the light guide plate 11 toward the display panel 20.
  • the plurality of optical sheets may be a diffusion sheet 12 and a pair of prism sheets 13 and 14.
  • the above-described configuration of the diffusion sheet 12 and the reflection sheet 15 may be applied as it is. Accordingly, the light emitted from the light source 16 may be converted into color coordinates by the diffusion sheet 12 and the reflection sheet 15 and provided to the liquid crystal panel. Thus, the light source 16 can be replaced with a relatively low LED rating.

Abstract

Disclosed are an optical sheet and a display device including the same, the optical sheet comprising a base layer, a first diffusion layer disposed on one side of the base layer, and a second diffusion layer disposed on the other side of the base layer, wherein the first diffusion layer or the second diffusion layer includes a light absorbent that absorbs light of a predetermined wavelength band.

Description

광학시트, 백라이트 유닛, 및 이를 포함하는 디스플레이 장치Optical sheet, backlight unit, and display device including the same
본 발명은 입사된 광의 색좌표를 변환하는 광학시트에 관한 것이다.The present invention relates to an optical sheet for converting color coordinates of incident light.
액정표시장치는 노트북(notebook), 퍼스널 컴퓨터(personal computer), 이동단말, 또는 TV 등에 사용되는 디스플레이 장치로서 액정표시장치의 수요 확대에 따라 그 특성도 해마다 개선되고 있다.Liquid crystal displays are display devices used in notebooks, personal computers, mobile terminals, TVs, and the like, and their characteristics are improved year by year as demand for liquid crystal displays increases.
비발광소자인 액정표시장치는 광원으로써 백라이트 유닛(back light unit)을 구비한다. 백라이트는 광원과 복수의 광학시트를 포함한다. 이러한 광학시트는 입사되는 광을 집광하거나 확산시켜 액정패널에 균일한 광을 공급한다.A liquid crystal display device, which is a non-light emitting element, includes a back light unit as a light source. The backlight includes a light source and a plurality of optical sheets. The optical sheet collects or diffuses incident light to supply uniform light to the liquid crystal panel.
일반적으로 백라이트 유닛에서 제공되는 광은 상대적으로 노란색을 띄는(yellowish) 백색광을 제공한다. 그러나, 이러한 백색광은 색온도가 낮아 광효율이 저하되므로 이를 보상하기 위해 색온도가 높은 LED를 사용하여야 하는 문제가 있다.In general, the light provided by the backlight unit provides a relatively yellowish white light. However, since the white light has a low color temperature, the light efficiency is lowered, so there is a problem that an LED having a high color temperature must be used to compensate for the white light.
본 발명의 기술적 과제는 입사한 광의 색좌표를 변환하여 색온도를 높일 수 있는 광학시트를 제공하는데 있다.An object of the present invention is to provide an optical sheet capable of increasing the color temperature by converting the color coordinates of incident light.
본 발명의 기술적 과제는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.The technical problem of the present invention is not limited to the above description, and will be more readily understood in the course of describing specific embodiments of the present invention.
본 발명의 일 실시 예에 따른 광학시트는, 베이스층; 상기 베이스층의 일면에 배치된 제1확산층; 및 상기 베이스층의 타면에 배치된 제2확산층을 포함하고, 상기 제1확산층 또는 제2확산층은 소정 파장대의 광을 흡수하는 광흡수제를 포함한다.Optical sheet according to an embodiment of the present invention, the base layer; A first diffusion layer disposed on one surface of the base layer; And a second diffusion layer disposed on the other surface of the base layer, wherein the first diffusion layer or the second diffusion layer includes a light absorbing agent that absorbs light of a predetermined wavelength band.
상기 광학시트는 입사한 광의 색좌표를 변환할 수 있다.The optical sheet may convert color coordinates of incident light.
상기 변환된 색좌표의 y좌표 변화량(△y)은 -0.010 내지 -0.0030일 수 있다.The y coordinate change amount Δy of the converted color coordinates may be -0.010 to -0.0030.
상기 광학시트를 출사한 광의 휘도는 상기 광학시트에 입사한 광의 휘도 100%를 기준으로 96% 내지 100%를 만족할 수 있다.Luminance of the light emitted from the optical sheet may satisfy 96% to 100% based on 100% of the luminance of the light incident on the optical sheet.
상기 광흡수제는 580nm 내지 650nm의 파장대에서 흡수피크를 가질 수 있다.The light absorbing agent may have an absorption peak in the wavelength range of 580nm to 650nm.
상기 광흡수제는 0.0005wt% 내지 0.006wt%로 포함될 수 있다.The light absorbing agent may be included in 0.0005wt% to 0.006wt%.
상기 광흡수제는 0.0005wt% 내지 0.0015wt%로 포함될 수 있다.The light absorbing agent may be included in 0.0005wt% to 0.0015wt%.
본 발명의 일 실시 예에 따른 디스플레이 장치는, 전술한 광학시트 중 어느 하나를 구비한 백라이트 유닛; 및 상기 광학시트에 의해 색좌표가 변환된 광을 이용하여 영상을 생성하는 디스플레이 패널을 포함한다.A display device according to an embodiment of the present invention, the backlight unit having any one of the above-described optical sheet; And a display panel for generating an image using the light whose color coordinate is converted by the optical sheet.
본 발명에 따르면, 백라이트 유닛에서 제공하는 광의 색좌표를 변환하여 색온도를 높일 수 있다. 따라서, 휘도가 낮은 LED 등급을 사용할 수 있으므로 제조 원가를 절감할 수 있다.According to the present invention, the color temperature can be increased by converting the color coordinates of the light provided by the backlight unit. Therefore, it is possible to use an LED grade with low brightness, thereby reducing the manufacturing cost.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.Various and advantageous advantages and effects of the present invention are not limited to the above description, and will be more readily understood in the course of describing specific embodiments of the present invention.
도 1은 본 발명의 일 실시 예에 따른 확산시트의 개념도이고,1 is a conceptual diagram of a diffusion sheet according to an embodiment of the present invention,
도 2는 본 발명의 일 실시 예에 따른 확산시트에 의해 색좌표가 변화하는 상태를 설명하기 위한 도면이고,2 is a view for explaining a state in which the color coordinates change by the diffusion sheet according to an embodiment of the present invention,
도 3은 광흡수제의 함량에 따른 투과도 변화를 측정한 그래프이고,Figure 3 is a graph measuring the change in transmittance according to the content of the light absorber,
도 4는 광흡수제의 함량에 따른 휘도 및 색좌표 변화를 측정한 그래프이고,Figure 4 is a graph measuring the change in brightness and color coordinates according to the content of the light absorber,
도 5는 다른 실시 예에 따른 확산시트의 개념도이고,5 is a conceptual diagram of a diffusion sheet according to another embodiment;
도 6은 확산시트의 상부 확산층와 하부 확산층의 표면 거칠기를 달리하여 휘도를 측정한 그래프이고,6 is a graph measuring luminance by varying the surface roughness of the upper diffusion layer and the lower diffusion layer of the diffusion sheet,
도 7은 확산시트의 상부 확산층과 하부 확산층의 다이 농도를 다르게 제어하여 휘도를 측정한 그래프이고,7 is a graph measuring luminance by controlling die concentrations of an upper diffusion layer and a lower diffusion layer of a diffusion sheet differently;
도 8은 확산시트의 상부 확산층과 하부 확산층의 두께를 다르게 제어하여 휘도를 측정한 그래프이고,8 is a graph measuring luminance by controlling thicknesses of an upper diffusion layer and a lower diffusion layer of a diffusion sheet differently;
도 9는 본 발명의 일 실시 예에 따른 디스플레이 장치의 개념도이다.9 is a conceptual diagram of a display apparatus according to an exemplary embodiment.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는바, 특정 실시 예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated and described in the drawings. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.Terms including ordinal numbers, such as second and first, may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component. The term and / or includes a combination of a plurality of related items or any item of a plurality of related items.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and are not construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
이하, 첨부된 도면을 참조하여 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, exemplary embodiments will be described in detail with reference to the accompanying drawings, and the same or corresponding components will be given the same reference numerals regardless of the reference numerals, and redundant description thereof will be omitted.
도 1은 본 발명의 일 실시 예에 따른 확산시트의 개념도이고, 도 2는 본 발명의 일 실시 예에 따른 확산시트에 의해 색좌표가 변화하는 상태를 설명하기 위한 도면이다.1 is a conceptual diagram of a diffusion sheet according to an embodiment of the present invention, Figure 2 is a view for explaining a state in which the color coordinates change by the diffusion sheet according to an embodiment of the present invention.
도 1을 참고하면, 본 발명의 일 실시 예에 따른 광학시트(12)는, 베이스층(121), 베이스층(121)의 일면에 배치된 제1확산층(122), 및 베이스층(121)의 타면에 배치된 제2확산층(123)을 포함한다. 본 실시 예에서 설명하는 광학시트(12)는 확산시트일 수 있다.Referring to FIG. 1, the optical sheet 12 according to an embodiment of the present invention includes a base layer 121, a first diffusion layer 122 disposed on one surface of the base layer 121, and a base layer 121. It includes a second diffusion layer 123 disposed on the other side of the. The optical sheet 12 described in this embodiment may be a diffusion sheet.
베이스층(121)은 다양한 종류의 고분자 필름일 수 있다. 일 예로, 베이스층(121)은 광투과성 폴리에틸렌테레프탈레이트 필름, 폴리카보네이트 필름, 폴리프로필렌 필름. 폴리에틸렌 필름 중 어느 하나일 수 있다. 베이스층(121)의 두께는 10㎛ 내지 100㎛일 수 있으나 반드시 이에 한정하지 않는다.The base layer 121 may be various kinds of polymer films. For example, the base layer 121 is a light transmissive polyethylene terephthalate film, a polycarbonate film, a polypropylene film. It may be any one of polyethylene films. The thickness of the base layer 121 may be 10 μm to 100 μm, but is not limited thereto.
제1확산층(122)은 베이스층(121)의 일면에 배치될 수 있다. 제1확산층(122)은 제1수지층(122a)과 제1수지층(122a)에 분산된 광흡수제(P)를 포함한다. 필요에따라 확산을 유도하는 입자(비드입자 등)를 더 포함할 수 있다. 제1확산층(122)의 두께는 약 5㎛ 내지 10㎛일 수 있으나 이에 한정하지 않는다.The first diffusion layer 122 may be disposed on one surface of the base layer 121. The first diffusion layer 122 includes a first resin layer 122a and a light absorbing agent P dispersed in the first resin layer 122a. If necessary, it may further include particles for inducing diffusion (bead particles, etc.). The thickness of the first diffusion layer 122 may be about 5 μm to 10 μm, but is not limited thereto.
제1수지층(122a)은 고분자 수지를 베이스층(121)에 도포한 후 경화시켜 제작할 수 있다. 고분자 수지는 아크릴 수지(Acrylic resin), 우레탄 수지(Urethane resin), 폴리에틸렌 수지(Polyethylene resin), 폴리프로필렌 수지(Polypropylene resin), 폴리스티렌 수지(Polystyrene resin), 폴리아미드 수지(Polyamide resin) 등에서 선택된 어느 하나 이상일 수 있으나 반드시 이에 한정하지 않는다.The first resin layer 122a may be prepared by applying a polymer resin to the base layer 121 and then curing it. The polymer resin is any one selected from acrylic resin, urethane resin, polyethylene resin, polypropylene resin, polystyrene resin, polyamide resin, and the like. The above may be, but is not limited thereto.
제1확산층(122)은 렌즈 패턴, 반원 기둥 패턴과 같이 입사된 광을 확산시키는 형상의 확산패턴을 가질 수 있다. 이러한 확산패턴은 규칙 또는 불규칙하게 형성될 수 있다. 확산패턴의 형상에 대해서는 제한이 없다. 또는 이러한 확산패턴 없이 비드입자 등을 이용하여 확산 기능을 부여할 수도 있다.The first diffusion layer 122 may have a diffusion pattern having a shape for diffusing incident light, such as a lens pattern and a semi-circular pillar pattern. This diffusion pattern may be formed regularly or irregularly. There is no restriction on the shape of the diffusion pattern. Alternatively, the diffusion function may be provided using bead particles or the like without such a diffusion pattern.
제2확산층(123)은 베이스층(121)의 타면에 배치된다. 제2확산층(122)은 제2수지층(123a) 및 광흡수제(P)를 포함할 수 있다. 제2확산층(123)의 구성은 제1확산층(122)과 동일할 수 있다.The second diffusion layer 123 is disposed on the other surface of the base layer 121. The second diffusion layer 122 may include a second resin layer 123a and a light absorbing agent P. The structure of the second diffusion layer 123 may be the same as that of the first diffusion layer 122.
제1확산층(122) 또는 제2확산층(123)은 광흡수제(P)를 포함한다. 광흡수제(P)는 소정의 파장대의 광을 흡수한다. 광흡수제(P)는 580nm 내지 650nm의 파장대에서 흡수피크를 가질 수 있다. 광흡수제(P)는 제1확산층(122) 또는 제2확산층(123) 중 어느 하나 이상의 층에 분산될 수도 있다.The first diffusion layer 122 or the second diffusion layer 123 includes a light absorbing agent (P). The light absorbing agent P absorbs light of a predetermined wavelength band. Light absorbing agent (P) may have an absorption peak in the wavelength range of 580nm to 650nm. The light absorbing agent P may be dispersed in any one or more layers of the first diffusion layer 122 or the second diffusion layer 123.
광흡수제(P)가 제1확산층(122)과 제2확산층(123)에 각각 분산된 경우에는 어느 하나의 층에만 광흡수제(P)가 분산된 경우에 비해 광흡수율이 증가할 수 있다. 광흡수제(P)는 소정의 파장대의 광을 흡수하는 다이(Dye) 또는 입자(Pigment)일 수 있다.When the light absorbing agent P is dispersed in the first diffusion layer 122 and the second diffusion layer 123, the light absorption rate may be increased as compared with the case where the light absorbing agent P is dispersed in only one layer. The light absorbing agent P may be a die or a particle that absorbs light of a predetermined wavelength band.
도 2를 참고하면, 본 발명에 따른 광학시트(12)로부터 출사되는 광(이하 출사광, L2)의 색좌표는 광학시트(12)로 입사되는 광(이하 입사광, L1)의 색좌표와 상이할 수 있다. 색좌표의 변환에 의해 출사광(L2)의 색온도는 입사광(L1)보다 높아질 수 있다.Referring to FIG. 2, the color coordinates of light emitted from the optical sheet 12 according to the present invention (hereinafter referred to as light emitted by L2) may be different from the color coordinates of light incident to the optical sheet 12 (hereinafter referred to as light L1). have. By the conversion of the color coordinates, the color temperature of the outgoing light L2 may be higher than the incident light L1.
입사광(L1)이 상대적으로 노란색을 띄는(Yellowish) 백색광인 경우 상대적으로 색온도가 낮을 수 있다. 그러나, 본 발명의 일 실시 예에 따른 광학시트(12)를 통과하면서 580nm 내지 650nm의 파장대의 광이 흡수되어 색좌표가 변화하고 색온도가 높아질 수 있다. 즉 출사광(L2)은 상대적으로 청색을 띄는(Bluish) 백색광으로 변환되어 색온도가 높아질 수 있다.When the incident light L1 is a yellow light having a relatively yellow color, the color temperature may be relatively low. However, while passing through the optical sheet 12 according to an embodiment of the present invention light is absorbed in the wavelength range of 580nm to 650nm may change the color coordinates and increase the color temperature. That is, the emitted light L2 may be converted into relatively blue white light, thereby increasing the color temperature.
도 3은 광흡수제의 함량에 따른 투과도 변화를 측정한 그래프이고, 도 4는 광흡수제의 함량에 따른 휘도 및 색좌표 변화를 측정한 그래프이다.Figure 3 is a graph measuring the change in transmittance according to the content of the light absorber, Figure 4 is a graph measuring the change in luminance and color coordinates according to the content of the light absorber.
도 3을 참고하면, 광학시트에 광흡수제가 없는 경우(Base polymer), 가시광 파장대 전영역은 투과율이 90%를 초과함을 알 수 있다. 그러나, 580nm 내지 650nm 파장대의 투과도가 상대적으로 높아 출사광은 상대적으로 노란색을 띄게 된다. 그러나, 광흡수제에 의해 580nm 내지 650nm 파장대의 광이 흡수되어 투과율이 감소하면 출사광은 상대적으로 청색을 띄게 되어 광효율이 높아질 수 있다. 따라서, 랭크가 낮은 LED를 광원으로 사용할 수 있다.Referring to FIG. 3, when the optical sheet does not have a light absorbing agent (Base polymer), it can be seen that the transmittance of the entire visible light wavelength band exceeds 90%. However, the transmittance of the emitted light is relatively yellow because the transmittance of the wavelength range of 580nm to 650nm is relatively high. However, when light is absorbed by the light absorbing agent in the wavelength range of 580 nm to 650 nm and the transmittance decreases, the emitted light becomes blue and the light efficiency may be increased. Therefore, a low rank LED can be used as a light source.
약 580nm 내지 600nm 파장대의 광 투과율을 억제하는 경우 효과적으로 CIE 색좌표상 y좌표를 시프트시킬 수 있어 원하는 색온도로 조절할 수 있다. y색좌표 변화량(△y)은 입사광의 y색좌표를 기준으로 -0.010 내지 -0.003이 바람직하다. 이경우 노란색을 띄는 백색광을 청색을 띄는 백색광으로 변환할 수 있다.In the case of suppressing light transmittance in the wavelength range of about 580nm to 600nm, it is possible to effectively shift the y-coordinate on the CIE color coordinates can be adjusted to the desired color temperature. The y color coordinate change amount? y is preferably -0.010 to -0.003 based on the y color coordinate of the incident light. In this case, white light having a yellow color may be converted into white light having a blue color.
도 3을 참고하면, 광흡수제의 함량(wt%)이 높아질수록 약 580nm 파장대의 투과도가 감소하는 것을 알 수 있다. 또한, 도 4에서와 같이 광흡수제의 함량(wt%)이 0.0007wt%이하인 경우에는 약 580nm 파장대의 흡수율이 작기 때문에 y색좌표 변화량(△y)이 -0. 003 내지 -0.010을 만족하지 못하는 문제가 있다.Referring to FIG. 3, it can be seen that the transmittance of the wavelength band of about 580 nm decreases as the content (wt%) of the light absorber increases. In addition, when the content (wt%) of the light absorbing agent is 0.0007 wt% or less, as shown in FIG. 4, the y-coordinate change amount (Δy) is -0. There is a problem that does not satisfy 003 to -0.010.
흡수피크의 반치폭(FWHM)은 60nm이하인 것이 바람직하다. 반치폭이 60nm를 초과하는 경우 인접한 파장대의 투과도가 같이 감소하여 전체적인 색좌표와 휘도의 손실이 커지는 문제가 있다. 즉, 노란색에 해당하는 파장대만을 효과적으로 제거하기 위하여 광흡수제(P)의 흡수곡선 반치폭은 60nm이하로 조절할 수 있다.The half peak width (FWHM) of the absorption peak is preferably 60 nm or less. If the full width at half maximum exceeds 60 nm, the transmittance of adjacent wavelengths decreases, resulting in a large loss of color coordinates and luminance. That is, in order to effectively remove only the wavelength band corresponding to yellow, the half width of the absorption curve of the light absorbing agent P may be adjusted to 60 nm or less.
도 4를 참고하면, 광흡수제의 함량이 높아질수록 출사광의 휘도는 낮아짐을 알 수 있다. 출사광의 휘도는 입사광의 휘도 100%를 기준으로 95% 내지 100%로 제어되는 것이 바람직하다. 따라서, 광흡수제(P)는 0.0007 wt%내지 0.002 wt%인 것이 바람직하다. 색좌표의 변환 및 휘도를 모두 고려하면 광흡수제(P)의 함량은 흡수층을 구성하는 고분자 수지의 중량 대비 0.0007 wt% 내지 0.002 wt%가 바람직하다.Referring to Figure 4, it can be seen that the higher the content of the light absorbing agent is lower the brightness of the emitted light. The luminance of the emitted light is preferably controlled to 95% to 100% based on 100% of the incident light. Therefore, the light absorbing agent (P) is preferably 0.0007 wt% to 0.002 wt%. In consideration of both color coordinate conversion and brightness, the content of the light absorbing agent (P) is preferably 0.0007 wt% to 0.002 wt% with respect to the weight of the polymer resin constituting the absorbing layer.
도 5는 다른 실시 예에 따른 확산시트의 개념도이고, 도 6은 확산시트의 상부 확산층와 하부 확산층의 표면 거칠기를 달리하여 휘도를 측정한 그래프이고, 도 7은 확산시트의 상부 확산층과 하부 확산층의 흡수제 농도를 다르게 제어하여 휘도를 측정한 그래프이고, 도 8은 확산시트의 상부 확산층과 하부 확산층의 두께를 다르게 제어하여 휘도를 측정한 그래프이다.5 is a conceptual diagram of a diffusion sheet according to another embodiment, and FIG. 6 is a graph of luminance measured by varying the surface roughness of the upper diffusion layer and the lower diffusion layer of the diffusion sheet, and FIG. 7 is an absorbent of the upper diffusion layer and the lower diffusion layer of the diffusion sheet. The luminance is measured by controlling the concentration differently, and FIG. 8 is a graph measuring luminance by controlling the thicknesses of the upper diffusion layer and the lower diffusion layer of the diffusion sheet differently.
도 5를 참고하면, 실시 예에 따른 확산시트는 제1확산층(122)과 제2확산층(123)의 표면 거칠기가 서로 상이할 수 있다. 여기서 표면 거칠기는 제1확산층(122)과 제2확산층(123)의 표면에 형성된 산과 골의 평균값으로 정의할 수 있다.Referring to FIG. 5, in the diffusion sheet according to the embodiment, surface roughnesses of the first diffusion layer 122 and the second diffusion layer 123 may be different from each other. In this case, the surface roughness may be defined as an average value of mountains and valleys formed on the surfaces of the first and second diffusion layers 122 and 123.
또한, 제1확산층(122)과 제2확산층(123)에 분산된 광흡수제의 농도는 서로 상이할 수 있으며, 제1확산층(122)의 두께와 제2확산층(123)의 두께도 서로 상이할 수 있다. 이하에서는 도면을 기준으로 광원에서 출사된 광(L1)이 입사하는 제2확산층(123)을 하부층으로 정의하고 제1확산층(122)을 상부층으로 정의한다.In addition, the concentrations of the light absorbers dispersed in the first and second diffusion layers 122 and 123 may be different from each other, and the thicknesses of the first and second diffusion layers 122 and 123 may also be different from each other. Can be. Hereinafter, based on the drawings, the second diffusion layer 123 into which the light L1 emitted from the light source is incident is defined as a lower layer and the first diffusion layer 122 is defined as an upper layer.
도 6을 참고하면, 실험예 1은 양면의 확산층의 표면 거칠기를 1.2㎛로 제어하고 휘도를 측정하였다. 실험예 2는 실험예 1과 표면 거칠기를 동일하게 제어하고 광흡수제를 첨가하였다. 실험예 2는 실험예 1에 비해 휘도가 약 5% 감소함을 알 수 있다. 즉, 동일한 조건에서 광흡수제를 첨가하면 휘도가 감소함을 알 수 있다.Referring to FIG. 6, Experimental Example 1 controlled the surface roughness of the diffusion layers on both sides to 1.2 μm and measured luminance. Experimental Example 2 controlled the surface roughness in the same manner as Experimental Example 1 and added a light absorber. Experimental Example 2 can be seen that the luminance is reduced by about 5% compared to Experimental Example 1. That is, it can be seen that the brightness decreases when the light absorber is added under the same conditions.
그러나, 상부층의 표면 거칠기를 2.1㎛으로 하고 하부층의 표면 거칠기를 0.9㎛로 제어한 실험예3의 경우 휘도가 99.2%로 측정되었다. 즉, 광흡수제를 첨가하였음에도 실험예 2에 비해 휘도가 상승한 것을 알 수 있다.However, in Experimental Example 3 in which the surface roughness of the upper layer was set to 2.1 µm and the surface roughness of the lower layer was controlled to 0.9 µm, the luminance was measured to be 99.2%. In other words, it can be seen that the brightness is increased compared to Experimental Example 2 even though the light absorbing agent is added.
이에 비해 하부층의 표면 거칠기를 2.1㎛로 하고 상부층의 표면 거칠기를 0.9㎛로 제어한 실험예 4의 경우에는 휘도 상승이 관찰되지 않았다.In contrast, in the case of Experimental Example 4 in which the surface roughness of the lower layer was set to 2.1 µm and the surface roughness of the upper layer was controlled to 0.9 µm, no increase in luminance was observed.
또한, 상부층의 표면 거칠기를 1.2㎛으로 하고 하부층의 표면 거칠기를 0.9 ㎛로 제어한 실험예 5는 실험예 2보다 휘도가 상승한 것을 알 수 있다. 이에 반해, 상부층의 표면 거칠기를 0.9 ㎛으로 하고 하부층의 표면 거칠기를 1.2㎛로 제어한 실험예 6의 경우 휘도 상승폭이 상대적으로 작아짐을 알 수 있다.In addition, it can be seen that Experimental Example 5 in which the surface roughness of the upper layer was set to 1.2 µm and the surface roughness of the lower layer was controlled to 0.9 µm increased in brightness than that of Experimental Example 2. On the contrary, in Experimental Example 6 in which the surface roughness of the upper layer was set to 0.9 μm and the surface roughness of the lower layer was controlled to 1.2 μm, it can be seen that the luminance rise is relatively small.
이를 종합한 결과, 상부층의 표면 거칠기가 하부 표면 거칠기보다 더 거친 경우, 즉, 하부층의 표면이 상부층의 표면보다 매끄러운 경우에는 상대적으로 휘도가 우수한 것을 알 수 있다. 실험 결과, 제1확산층의 표면 거칠기(Ra)는 2.1 내지 2.7이고, 상기 제2확산층의 표면 거칠기(Ra)는 1.8 내지 2.3를 만족하는 경우 휘도상승이 관찰되었다.As a result of the synthesis, it can be seen that when the surface roughness of the upper layer is rougher than the lower surface roughness, that is, when the surface of the lower layer is smoother than the surface of the upper layer, the luminance is relatively excellent. As a result of the experiment, when the surface roughness Ra of the first diffusion layer is 2.1 to 2.7 and the surface roughness Ra of the second diffusion layer satisfies 1.8 to 2.3, a brightness increase was observed.
도 7을 참고하면, 광흡수제를 첨가하지 않은 실험예 7의 휘도 100%를 기준으로, 상부층과 하부층에 각각 0.002pt의 광흡수제가 분산된 실험예 8은 휘도가 96.8%로 측정되었다. 또한, 상부층에만 0.004pt의 광흡수제가 분산된 실험예 10은 휘도가 96.6%로 측정되었다.Referring to FIG. 7, based on 100% of the brightness of Experimental Example 7 without adding the light absorbing agent, Experimental Example 8 having 0.002pt of light absorbing agent dispersed in each of the upper and lower layers measured 96.8% of brightness. In addition, Experimental Example 10 in which a light absorber of 0.004 pt was dispersed only in the upper layer had a luminance of 96.6%.
실험예 8과 실험예 10은 휘도가 유사함을 알 수 있다. 이에 비해 하부층에만 광흡수제가 분산된 실험예 9의 경우 실험예 8 및 실험예 10에 비해 휘도가 높게 측정되었다.Experimental Example 8 and Experimental Example 10 can be seen that the brightness is similar. On the contrary, in case of Experiment 9 in which the light absorbent was dispersed only in the lower layer, the luminance was measured higher than in Experiment 8 and Example 10.
또한, 실험예 8과 10에 비해 실험예 9의 경우 색좌표 변화 작음을 알 수 있다. 즉, 하부층에 광흡수제 첨가시 색좌표 개선 효과가 작음을 유추할 수 있다.In addition, it can be seen that the color coordinate change is smaller in Experimental Example 9 than in Experimental Examples 8 and 10. That is, it can be inferred that the color coordinate improvement effect is small when the light absorber is added to the lower layer.
도 8을 참고하면, 두께가 56㎛로 제작된 실험예 12의 경우 실험예 11보다 휘도가 1.1% 감소하였고, 실험예 13의 경우 실험예 11에 비해 휘도가 1.8% 감소하였고, 실험예 14의 경우 실험예 11에 비해 휘도가 3.3%감소하였다. 따라서, 확산층의 두께가 커질수록 휘도가 점차 감소하는 것을 알 수 있다.Referring to FIG. 8, in Experimental Example 12 having a thickness of 56 μm, the brightness was decreased by 1.1% compared to Experimental Example 11, and in Experimental Example 13, the brightness was decreased by 1.8% compared to Experimental Example 11, and in Experimental Example 14 When the brightness is reduced by 3.3% compared to Experimental Example 11. Therefore, it can be seen that the luminance gradually decreases as the thickness of the diffusion layer increases.
도 9는 본 발명의 일 실시 예에 따른 디스플레이 장치의 개념도이다.9 is a conceptual diagram of a display apparatus according to an exemplary embodiment.
도 9를 참고하면, 본 발명의 실시 예에 따른 디스플레이 장치는, 백라이트 유닛(10)과, 디스플레이 패널(20)을 포함한다. 디스플레이 패널(20)은 백라이트 유닛(10)에서 제공되는 광의 투과량을 조절하여 화상을 구현한다. 디스플레이 패널(20)은 액정패널일 수 있다. 구체적으로 디스플레이 패널(20)은 TFT 기판(22)과, 컬러필터(14), 및 TFT 기판(22)과 컬러필터(24) 사이에 충진되는 액정(23)을 포함한다.Referring to FIG. 9, a display apparatus according to an exemplary embodiment of the present invention includes a backlight unit 10 and a display panel 20. The display panel 20 implements an image by adjusting the amount of light transmitted from the backlight unit 10. The display panel 20 may be a liquid crystal panel. Specifically, the display panel 20 includes a TFT substrate 22, a color filter 14, and a liquid crystal 23 filled between the TFT substrate 22 and the color filter 24.
도시되지는 않았으나 디스플레이 패널(20)의 상, 하면에는 편광판이 더 배치될 수 있다. 따라서, 액정(23)에 인가되는 전압을 조절하여 액정의 배열 방향을 변형시킴으로써 광량을 조절할 수 있다.Although not shown, polarizers may be further disposed on the upper and lower surfaces of the display panel 20. Therefore, the amount of light can be adjusted by modifying the arrangement direction of the liquid crystal by adjusting the voltage applied to the liquid crystal 23.
백라이트 유닛(10)은 복수 개의 광원(16)과 광원(16)에서 출사된 광을 면광원으로 변환하는 도광판(11), 도광판(11)에서 출사된 광을 디스플레이 패널(20) 방향으로 반사하는 반사시트(15), 및 복수의 광학시트(12, 13, 14)를 포함한다. 복수의 광학시트는 확산시트(12)와 한 쌍의 프리즘 시트(13, 14)일 수 있다.The backlight unit 10 reflects the plurality of light sources 16 and the light guide plate 11 that converts the light emitted from the light source 16 into the surface light source, and the light emitted from the light guide plate 11 toward the display panel 20. Reflective sheet 15 and a plurality of optical sheets 12, 13, 14. The plurality of optical sheets may be a diffusion sheet 12 and a pair of prism sheets 13 and 14.
이때, 확산시트(12)와 반사시트(15)는 전술한 구성이 그대로 적용될 수 있다. 따라서, 광원(16)에서 출사된 광은 확산시트(12)와 반사시트(15)에 의해 색좌표가 변환되어 액정 패널에 제공될 수 있다. 따라서, 광원(16)을 상대적으로 낮은 LED 등급으로 대체할 수 있다.In this case, the above-described configuration of the diffusion sheet 12 and the reflection sheet 15 may be applied as it is. Accordingly, the light emitted from the light source 16 may be converted into color coordinates by the diffusion sheet 12 and the reflection sheet 15 and provided to the liquid crystal panel. Thus, the light source 16 can be replaced with a relatively low LED rating.

Claims (16)

  1. 베이스층;Base layer;
    상기 베이스층의 일면에 배치된 제1확산층; 및A first diffusion layer disposed on one surface of the base layer; And
    상기 베이스층의 타면에 배치된 제2확산층을 포함하고,A second diffusion layer disposed on the other surface of the base layer,
    상기 제1확산층 및 제2확산층 중 적어도 하나는 소정 파장대의 광을 흡수하는 광흡수제를 포함하는 광학시트.At least one of the first diffusion layer and the second diffusion layer is an optical sheet including a light absorber for absorbing light of a predetermined wavelength band.
  2. 제1항에 있어서,The method of claim 1,
    상기 광학시트는 입사한 광의 색좌표를 변환하는 광학시트.The optical sheet is an optical sheet for converting the color coordinates of the incident light.
  3. 제2항에 있어서,The method of claim 2,
    상기 변환된 색좌표의 y좌표 변화량(△y)은 -0.010 내지 -0.003인 광학시트.The y-coordinate change amount Δy of the converted color coordinates is -0.010 to -0.003.
  4. 제1항에 있어서,The method of claim 1,
    상기 광학시트를 출사한 광의 휘도는 입사광의 휘도 100%를 기준으로 96% 내지 100%인 광학시트.The brightness of the light emitted from the optical sheet is an optical sheet of 96% to 100% based on 100% of the incident light.
  5. 제1항에 있어서,The method of claim 1,
    상기 광흡수제는 580nm 내지 650nm의 파장대에서 흡수피크를 갖는 광학시트.The light absorbing agent has an absorption peak in the wavelength band of 580nm to 650nm.
  6. 제1항에 있어서,The method of claim 1,
    상기 광흡수제는 0.0007wt% 내지 0.002wt%인 광학시트.The light absorbing agent is an optical sheet is 0.0007wt% to 0.002wt%.
  7. 제1항에 있어서,The method of claim 1,
    상기 제1확산층의 표면 거칠기(Ra)는 상기 제2확산층의 표면 거칠기(Ra)와 상이한 광학시트.The surface roughness Ra of the first diffusion layer is different from the surface roughness Ra of the second diffusion layer.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 제1확산층의 표면 거칠기(Ra)는 2.1 내지 2.7이고, 상기 제2확산층의 표면 거칠기(Ra)는 1.8 내지 2.3인 광학시트.The surface roughness Ra of the first diffusion layer is 2.1 to 2.7, and the surface roughness Ra of the second diffusion layer is 1.8 to 2.3.
  9. 제1항에 있어서,The method of claim 1,
    상기 제1확산층에 포함된 광흡수제의 함량은 상기 제2확산층에 포함된 광흡수제의 함량보다 높은 광학시트.An optical sheet having a content of the light absorbing agent included in the first diffusion layer is higher than that of the light absorbing agent included in the second diffusion layer.
  10. 제1항에 있어서,The method of claim 1,
    상기 제1확산층 및 제2확산층의 두께는 4 ~ 10㎛ 인 광학시트.An optical sheet having a thickness of the first diffusion layer and the second diffusion layer is 4 ~ 10㎛.
  11. 광원; 및Light source; And
    상기 광원에서 출사된 제1광을 확산시키는 광학시트를 포함하고,An optical sheet for diffusing the first light emitted from the light source,
    상기 광학시트는,The optical sheet,
    베이스층;Base layer;
    상기 베이스층의 일면에 배치되어 상기 제1광이 입사되는 제1확산층; 및A first diffusion layer disposed on one surface of the base layer to receive the first light; And
    상기 베이스층의 타면에 배치되어 상기 제1광이 출사되는 제2확산층을 포함하고,A second diffusion layer disposed on the other surface of the base layer to emit the first light,
    상기 제1확산층 및 제2확산층 중 적어도 하나는 소정 파장대의 광을 흡수하는 광흡수제를 포함하는 백라이트 유닛.At least one of the first diffusion layer and the second diffusion layer includes a light absorber for absorbing light of a predetermined wavelength band.
  12. 제11항에 있어서,The method of claim 11,
    상기 제1확산층의 표면 거칠기(Ra)는 상기 제2확산층의 표면 거칠기(Ra)와 상이한 백라이트 유닛.The surface roughness Ra of the first diffusion layer is different from the surface roughness Ra of the second diffusion layer.
  13. 제12항에 있어서,The method of claim 12,
    상기 제1확산층의 표면 거칠기(Ra)는 2.1 내지 2.7이고, 상기 제2확산층의 표면 거칠기(Ra)는 1.8 내지 2.3인 백라이트 유닛.The surface roughness Ra of the first diffusion layer is 2.1 to 2.7, and the surface roughness Ra of the second diffusion layer is 1.8 to 2.3.
  14. 제11항에 있어서,The method of claim 11,
    상기 제1확산층에 포함된 광흡수제의 함량은 상기 제2확산층에 포함된 광흡수제의 함량보다 높은 백라이트 유닛.The backlight unit of which the content of the light absorber included in the first diffusion layer is higher than the content of the light absorber included in the second diffusion layer.
  15. 제11항에 있어서,The method of claim 11,
    상기 제1확산층 및 상기 제2확산층의 두께는 4~10㎛ 인 백라이트 유닛.And a thickness of the first diffusion layer and the second diffusion layer is 4 to 10 μm.
  16. 제11항 내지 제15항 중 한 항에 따른 백라이트 유닛; 및A backlight unit according to any one of claims 11 to 15; And
    상기 광학시트에 의해 색좌표가 변환된 광을 이용하여 영상을 생성하는 디스플레이 패널을 포함하는 디스플레이 장치.And a display panel configured to generate an image using light whose color coordinates are converted by the optical sheet.
PCT/KR2017/007071 2016-07-08 2017-07-04 Optical sheet, back light unit, and display device including same WO2018008938A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160086825A KR101933141B1 (en) 2016-07-08 2016-07-08 Optical sheet, backlight unit and display device including the same
KR10-2016-0086825 2016-07-08

Publications (1)

Publication Number Publication Date
WO2018008938A1 true WO2018008938A1 (en) 2018-01-11

Family

ID=60912975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007071 WO2018008938A1 (en) 2016-07-08 2017-07-04 Optical sheet, back light unit, and display device including same

Country Status (2)

Country Link
KR (1) KR101933141B1 (en)
WO (1) WO2018008938A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102339785B1 (en) * 2020-12-07 2021-12-15 에스케이씨하이테크앤마케팅(주) Optical sheet and display apparatus comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080103693A (en) * 2007-05-25 2008-11-28 엘지디스플레이 주식회사 Backlight unit
KR20080110357A (en) * 2007-06-15 2008-12-18 미래나노텍(주) Color correcting optical sheet
KR20100070469A (en) * 2008-12-18 2010-06-28 에스에스씨피 주식회사 Uv curable multi film composition and film using the same
KR20110119036A (en) * 2010-04-26 2011-11-02 엘지디스플레이 주식회사 Diffuser sheet and back light unit for liquid crystal display device having the same
JP2015072381A (en) * 2013-10-03 2015-04-16 恵和株式会社 Light diffusion sheet and liquid crystal display backlight unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080103693A (en) * 2007-05-25 2008-11-28 엘지디스플레이 주식회사 Backlight unit
KR20080110357A (en) * 2007-06-15 2008-12-18 미래나노텍(주) Color correcting optical sheet
KR20100070469A (en) * 2008-12-18 2010-06-28 에스에스씨피 주식회사 Uv curable multi film composition and film using the same
KR20110119036A (en) * 2010-04-26 2011-11-02 엘지디스플레이 주식회사 Diffuser sheet and back light unit for liquid crystal display device having the same
JP2015072381A (en) * 2013-10-03 2015-04-16 恵和株式会社 Light diffusion sheet and liquid crystal display backlight unit

Also Published As

Publication number Publication date
KR20180006121A (en) 2018-01-17
KR101933141B1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
WO2013019025A2 (en) Lighting device and liquid crystal display using the same
KR20070109134A (en) Prism sheet, back light unit and liquid crystal display having the same
EP3382449B1 (en) Display device
WO2021108107A1 (en) Light emission modification
WO2017193416A1 (en) Liquid crystal display panel and liquid crystal display
JP2023512767A (en) Backlight with pattern reflector
KR100909427B1 (en) Light control film
US10921507B2 (en) Optical sheet, backlight unit, liquid crystal display device, and information equipment
JP2019008906A (en) Wavelength conversion film and backlight unit
WO2018008938A1 (en) Optical sheet, back light unit, and display device including same
KR101087026B1 (en) Multi-functional optic film
WO2015156632A1 (en) Optical member and backlight unit including same
KR102084394B1 (en) Polarizer and liquid crystal display device including the same
WO2009151217A2 (en) Optical sheet, and a backlight assembly and liquid-crystal display device comprising the same
KR20020028045A (en) A light guidance sheet for back light unit
EP2618047A1 (en) Double-sided planar light apparatus
WO2014017778A1 (en) Optical sheet and display device comprising same
Kuksenkov et al. 46‐2: Ultra‐Slim Direct‐Lit LCD Backlight Using Glass Light‐Guide Plate
WO2022097993A1 (en) Optical film for improving contrast ratio
KR101370167B1 (en) Backlight unit assembly
WO2019203442A1 (en) White-light-emitting device package
WO2013125816A1 (en) Optical member
WO2013133535A1 (en) Liquid crystal display device
CN115762327A (en) Diffusion plate, backlight module and display device
KR100902156B1 (en) Light control film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824494

Country of ref document: EP

Kind code of ref document: A1