WO2018008786A1 - 고농도의 써모코커스 온누리누스 480t 균주 및 이를 이용한 수소생산방법 - Google Patents

고농도의 써모코커스 온누리누스 480t 균주 및 이를 이용한 수소생산방법 Download PDF

Info

Publication number
WO2018008786A1
WO2018008786A1 PCT/KR2016/007465 KR2016007465W WO2018008786A1 WO 2018008786 A1 WO2018008786 A1 WO 2018008786A1 KR 2016007465 W KR2016007465 W KR 2016007465W WO 2018008786 A1 WO2018008786 A1 WO 2018008786A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
thermococcus
hydrogen
carbon monoxide
onnurineus
Prior art date
Application number
PCT/KR2016/007465
Other languages
English (en)
French (fr)
Inventor
강성균
이현숙
이정현
김태완
이성혁
이성목
권개경
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Priority to KR1020197002764A priority Critical patent/KR102284768B1/ko
Priority to PCT/KR2016/007465 priority patent/WO2018008786A1/ko
Publication of WO2018008786A1 publication Critical patent/WO2018008786A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • the present invention relates to a Thermococcus onnurinus 480T strain growing at a high concentration of cells and a hydrogen production method using the same.
  • Hydrogen energy has been spotlighted as an energy to replace fossil energy in the future because it does not emit substances that may adversely affect the environment such as carbon dioxide, NOx, and SOx while the calorific value per weight is three times higher than that of oil.
  • Conventionally used hydrogen production methods include electrolysis of water, thermal-cracking of natural gas or naphtha, or steam reforming.
  • these methods again have a problem of making high-temperature and high-pressure conditions using fossil fuels, and generate a mixed gas containing carbon monoxide, which causes a difficult problem of removing carbon monoxide from such gases.
  • biological hydrogen production method using microorganisms does not need to create a high temperature, high pressure conditions by adding a separate energy, there is an advantage that does not include carbon monoxide in the generated gas.
  • Such biological hydrogen production methods can be broadly divided into using photosynthetic microorganisms and non-photosynthetic microorganisms (mainly anaerobic microorganisms).
  • the former has not been sufficiently developed a high concentration culture technology of photosynthetic bacteria using light as an energy source, and conventional photosynthetic bacteria have a disadvantage of severe substrate inhibition when there is a high partial pressure substrate.
  • they have a problem that hydrogen production performance can be continued only in the presence of light.
  • the inventors of the present invention disclose Thermococcus through Korean Patent Application No. 10-2010-7013071 (published: 2011.06.23). It was found that hydrogen can be produced from carbon monoxide using the genus strain, and the Korean Patent Registration (Registration No. 10-1534483) was performed as a Thermococcus onnurinus WTC156T (hereinafter referred to as '156T') strain and a hydrogen production method using the same.
  • '156T' Thermococcus onnurinus WTC156T
  • growth at low cell concentrations has made it difficult to increase hydrogen production efficiency. Therefore, it was necessary to secure a strain capable of growing to a cell concentration higher than 156T using carbon monoxide and to develop a strain with increased hydrogen productivity.
  • Korean Patent Application No. 10-2008-0087806 describes a method for producing hydrogen using a new hydrogenase found in Thermococcus onnurineus NA1, a highly thermophilic new strain.
  • Korean Patent Registration No. 10-1534483 describes a method for increasing hydrogen productivity by adapting to carbon monoxide, a toxic gas.
  • Pin-Ching Maness et al. Describe a process for inducing hydrogen production from carbon monoxide in the photosynthetic bacterium Rubrivivax gelatinosus (International Journal of Hydrogen Energy 27, 2002, 1407-1411).
  • Thermococcus Onnurinus 156T ( Thermococcus) can produce hydrogen from carbon monoxide.
  • Onnurineus 156T was applied to culture medium containing carbon monoxide as a substrate for a long time to improve the adaptability to carbon monoxide, which is known as toxic gas, and to increase the hydrogen productivity.
  • Thermococcus onnurineus 480T (hereinafter referred to as '480T'), adapted to carbon monoxide, grew at high cell concentration in carbon monoxide, showed high hydrogen productivity, growth rate and CO
  • the present invention was completed to find that the ability to convert hydrogen from ions was also increased.
  • thermococcus Onnurinus 480T ( Thermococcus) having a high concentration of biomass even in an environment where 100% carbon monoxide is supplied. onnurineus 480T) strain.
  • Still another object of the present invention is to provide a method of producing hydrogen by supplying carbon monoxide to the Thermococcus onnurineus 480T strain.
  • a first aspect of the present invention provides a Thermococcus onnurinus 480T (Accession No .: KCTC13046BP) strain.
  • Thermococcus Onnurinus 480T ( Thermococcus onnurineus 480T, Accession No .: KCTC13046BP strain, contains cell division protein, RNA polymerase, amino acid permease, amino acid permease, and transcriptional regulators involved in gene expression
  • Thermococcus onnurinus 480T accesion No .: KCTC13046BP
  • characterized in that the (transcriptional regulator) is mutated.
  • thermocaucus onnurinus ( Thermococcus onnurineus
  • a high efficiency hydrogen production method comprising the following steps.
  • Thermococcus Onnurinus ( Thermococcus onnurineus In the method for producing hydrogen by using, (a) the Thermocaucus Onnurinus 480T ( Thermococcus onnurineus 480T, Accession No .: KCTC13046BP) Supplying carbon monoxide to the strain, the cell concentration 4.7 ⁇ 5.8 unit at 600nm (1.9 ⁇ 2.3 g) liter - One Culturing in the range of; And (b) may be a high efficiency hydrogen production method comprising the step of harvesting hydrogen from the culture.
  • thermocaucus Onnurinus ( Thermococcus onnurineus
  • the thermocaucus Onnurinus 480T Thermococcus onnurineus 480T, Accession No .: KCTC13046BP) to supply carbon monoxide to the strain
  • the cell growth rate is 0.92 to 0.96 h -One Culturing in the range of
  • (b) may be a high efficiency hydrogen production method comprising the step of harvesting hydrogen from the culture.
  • thermocaucus Onnurinus Thermococcus onnurineus
  • thermocaucus Onnurinus 480T Thermococcus onnurineus 480T, Accession No .: KCTC13046BP
  • the hydrogen production rate (maximum H) 2 production rate) may be in a high efficiency hydrogen production method in the range of 358 to 430.8 mmol / l / h.
  • Thermocacus Onnurinus ( Thermococcus onnurineus In the method for producing hydrogen using), (a) supplying and culturing carbon monoxide to the strain of claim 1; And (b) harvesting hydrogen from the culture, wherein the conversion efficiency of carbon monoxide to hydrogen may be a high efficiency hydrogen production method in a range of 40 to 60%.
  • 480T strain according to the present invention is a strain adapted to 100% carbon monoxide increased 5.5% growth rate compared to the conventional 156T, biomass was increased by about 55%, accordingly increased hydrogen production capacity is about 30 % Increased, and the conversion of carbon monoxide to hydrogen is increased by 54%, which is a strain with significantly better properties than conventional strains.
  • FIG. 1 compares strain concentration and hydrogen productivity in a continuous stirred tank reactor fermentation using 156T strain and 156T strain further adapted to carbon monoxide conditions using 100% carbon monoxide as a substrate.
  • Figure 2 compares the maximum strain concentration of the 156T and 480T strain, the maximum hydrogen productivity and the hydrogen conversion rate of carbon monoxide in a continuous stirred tank reactor fermentation using 100% carbon monoxide as a substrate.
  • Figure 3 compares the genetic variation through genome analysis of the adaptation strain (480T) using a wild type strain as a reference strain.
  • (a) genetic variation in the Open reading frame (ORF);
  • (b) Gene mutations in non-coding regions.
  • Thermococcus onnurineus 156T which is a common culture condition, which contains 4 g / l yeast extract, 35 g / l sodium chloride, 0.7 g / l potassium chloride, and 3.9 under an anaerobic environment of 80.
  • modified-M1 Modified-M1; MM1
  • 'MM1-CO medium' modified-M1
  • 'MM1-CO medium' modified-M1
  • 1 ml of microelement mixture, 1 ml of iron (Fe) -EDTA, and 1 ml of Balch's vitamin solution were added to 1 L of medium.
  • the initial medium pH was set at 6.5 at atmospheric pressure.
  • An anaerobic chamber was used to supply 100% carbon monoxide.
  • Cells were maintained at 80 using MM1-CO medium.
  • the optimal strain (480T) was selected to maintain a high biomass concentration.
  • Hydrogen gas was measured on a Molesieve 5A column (Supelco, Bellefont, PA) and a Porapak N column (Supelco) using an YL6000 gas chromatograph equipped with a TCD detector. Argon was used as the gas carrier. The oven temperature was 40. 10 ⁇ l of gas sample for analysis was taken out with a gas-tight syringe through butyl rubber in the culture bottle. The measurement of the detected hydrogen gas was calculated by comparing the peak area with a calibration curve performed by rare analysis using a standard gas containing 40% hydrogen in nitrogen.
  • Genome analysis was performed to determine what genetic variation was caused by increased growth rate, cell concentration, and hydrogen productivity of the excellent strain (480T) obtained through adaptive culture.
  • PacBio SMRT Cell Sequencer was used for genome analysis, and the software used for analysis was SMRT Analysis v2.3.0 HGAP.2.
  • the total number of bases obtained through genome analysis was 668,703,802 and sufficient data were available to analyze strains with about 2 million bases.
  • Thermocoke Onnurinus 156T ( Thermococcus onnurineus 156T) and Thermococcus onnurinus 480T ( Thermococcus cell growth and hydrogen productivity of onnurineus 480T) were cultured in a CSTR fermentor using 100% carbon monoxide as a substrate in real time.
  • Thermococcus Onnurinus 480T ( Thermococcus) onnurineus 480T) showed higher growth curves (FIG. 1a) and hydrogen productivity (FIG. 1B) than the 156T strains after increasing the carbon monoxide supply from 90 ml / min to 360 ml / min.
  • the maximum cell growth rate shown was higher than 0.91. (Table 1).
  • thermococcus onnurineus 156T was further adapted under carbon monoxide conditions for a long time to use carbon monoxide as a substrate. By securing a strain capable of growing at a high concentration of the cell concentration it was possible to increase the hydrogen productivity.
  • Thermococcus Onnurinus 480T ( Thermococcus) Single nucleotide polymorphism (SNP) and INDEL (Insertion or Deletion) genome variation of onnurineus 480T were analyzed. A total of 101 genotype mutations were observed and 67 mutations were found in the Open Reading Frame (ORF) (FIG. 3A). 34 mutations were found in the non-coding region (FIG. 3B).
  • ORF Open Reading Frame
  • Variations in non-coding regions may also be around major regions such as promoter regions involved in gene expression or ribosomal binding sites (RBS), which are important for protein synthesis. Therefore, it is believed that such mutations increase the expression of certain important genes or decrease the expression of unnecessary genes, thereby increasing cell growth rate from carbon monoxide, securing strains capable of growing at high cell concentrations, and improving hydrogen production capacity.
  • Thermococcus onnurineus 480T according to the present invention obtained through continuous adaptive culture on additional carbon monoxide from 156T strain is more adapted to the environment using carbon monoxide and at the same time secures high concentration of cells by gene mutation. And hydrogen productivity is increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 써모코커스 온누리누스 480T(Thermococcus onnurineus 480T, 기탁번호: KCTC13046BP) 균주에 관한 것이다. 또한, (a) 제 1 항의 균주에 일산화탄소를 공급하여 배양하는 단계; 및 (b) 상기 배양물로부터 고농도의 세포 확보 및 수소생산방법에 관한 것이다. 본 발명에 따른 균주는 100% 일산화탄소에서 적응한 균주로서 종래의 156T에 비하여 생장속도가 5.5% 높아졌고, 생물체량(biomass)는 약 55% 증가하였고, 이에 따라서 증가된 수소생산능력은 약 30% 증가되었고, 및 일산화탄소의 수소로의 전환율은 54% 증가하여, 종래 균주 대비 상당히 우수한 성질을 가진 균주이다.

Description

고농도의 써모코커스 온누리누스 480T 균주 및 이를 이용한 수소생산방법
본 발명은 고농도의 세포 농도로 성장하는 써모코커스 온누리누스 480T 균주 및 이를 이용한 수소생산방법에 관한 것이다.
수소에너지는 중량당 발열량이 석유보다 3배 이상 높으면서도, 이산화탄소, NOx, SOx 등 환경에 악영향을 미칠 수 있는 물질들을 배출하지 않아, 장차 화석에너지를 대체할 에너지로써 각광받고 있다.
종래부터 사용된 수소 생산 방법에는 물의 전기분해, 천연가스나 나프타의 열분해(thermal-cracking) 또는 수증기 개질법(steam reforming) 등이 있다. 그러나 이러한 방법들은 다시 화석연료를 사용하여 고온, 고압 조건을 만들어야 하는 문제가 있으며, 일산화탄소를 포함한 혼합가스를 발생시키므로 그러한 가스로부터 일산화탄소를 제거하여야 하는 어려운 문제를 발생시킨다.
이러한 종래의 수소생산방법에 비하여, 미생물을 이용한 생물학적 수소 생산 방법은 별도의 에너지를 투입하여 고온, 고압 조건을 만들 필요가 없고, 생성된 가스에 일산화탄소를 포함하지 않는다는 장점이 있다. 이러한 생물학적 수소생산방법은 크게 광합성 미생물을 이용하는 것과 비-광합성 미생물(주로 혐기성 미생물)을 이용하는 것으로 나눠볼 수 있다. 그러나, 전자는 빛을 에너지원으로 사용하는 광합성 세균들의 고농도 배양기술이 아직 충분히 개발되어 있지 않으며, 종래의 광합성 세균들은 높은 분압의 기질이 있을 경우 기질저해가 심하다는 단점이 있다. 또한, 이들은 빛이 존재하는 경우에만 수소생성능이 지속 될 수 있다는 문제점이 있다. 따라서, 유기 탄소를 이용하여 수소를 생산할 수 있는 미생물들을 이용하여 수소를 생산하려는 시도가 지속적으로 이루어지고 있다. 본 발명자들은 한국 특허출원 10-2010-7013071호 (공개일: 2011.06.23)을 통하여 Thermococcus 속 균주를 이용하여 일산화탄소로부터 수소를 생산할 수 있음을 밝히고, 써모코커스 온누리누스 WTC156T (이하, '156T'로 표기) 균주 및 이를 이용한 수소생산방법으로 한국 특허 등록 (등록번호 10-1534483) 을 하였다. 그러나 낮은 세포 농도로 성장하기 때문에 수소 생산 효율을 높이는데 어려움이 있었다. 이에 일산화탄소를 이용하여 156T 보다 높은 농도의 세포 농도로 성장할 수 있는 균주 확보 및 수소생산성이 증가된 균주의 개발이 필요하였다.
한국 특허출원 제10-2008-0087806호에서는 고호열성 신균주인 Thermococcus onnurineus NA1에서 발견한 새로운 수소화효소(hydrogenase)를 이용하여 수소를 생산하는 방법 등이 기재되어 있다.
한국 특허등록 제10-1534483호에서는 독성가스인 일산화탄소에 적응시켜 수소생산성을 증가시키는 방법 등이 기재되어 있다.
Pin-Ching Maness 등은 광합성 박테리아인 루브리비백스 젤라티노누스 (Rubrivivax gelatinosus)에서 일산화탄소로부터 수소생산을 유도하는 과정을 기재하고 있다 (International Journal of Hydrogen Energy 27, 2002, 1407~1411).
Ya Zhaoa 등은 고호열성 혐기성의 그람-양성 박테리아인 카복시도써무스 히드로제노포만스(Carboxydothermus hydrogenoformans)에서 생물학적 물-가스 교환반응(water-gas shift reaction)에 의해 일산화탄소로부터 수소생산에 대하여 기재하고 있다 (International Journal of Hydrogen Energy, Volume 36, Issue 17, August 2011, Pages 10655~10665)
Lee 등은 일산화탄소에서의 장기간 적응을 통해 수소생산성이 증가된 156T 균주에 대한 연구결과 및 메커니즘에 대해 기재하고 있다(Scientific reports, 6, 1, 2896-1 ~ 11).
본 발명자들은 일산화탄소로부터 수소를 생산할 수 있는 써모코커스 온누리누스 156T (Thermococcus onnurineus 156T)를 일산화탄소가 기질로 들어 있는 배양액에서 장기간에 걸친 적응을 통해 독성가스로 알려진 일산화탄소에 대한 적응력 향상과 높은 농도의 세포 농도로 성장하는 균주를 확보하고 더불어 수소생산성을 증가시키고자 하였다. 일산화탄소에 적응이 된 써모코커스 온누리누스 480T(Thermococcus onnurineus 480T; 이하, '480T'로 표기)는 156T 균주와 비교하였을 때 일산화탄소에서 높은 세포 농도로 성장하였으며, 높은 수소 생산성을 보였으며, 생장 속도 및 CO로부터의 수소전환 능력도 증가되었음을 확인하는 것을 발견하고 본 발명을 완성하였다.
본 발명의 목적은 100% 일산화탄소가 공급되는 환경에서도 높은 농도의 생물체량을 가지는 써모코커스 온누리누스 480T(Thermococcus onnurineus 480T) 균주를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 써모코커스 온누리누스 480T(Thermococcus onnurineus 480T) 균주에 일산화탄소를 공급하여 수소를 생산하는 방법을 제공하는 것이다.
상기한 목적을 위하여 본 발명의 제 1 의 형태는 써모코커스 온누리누스 480T(Thermococcus onnurineus 480T, 수탁번호: KCTC13046BP) 균주을 제공한다. 상기 써모코커스 온누리누스 480T(Thermococcus onnurineus 480T, 수탁번호: KCTC13046BP) 균주는 균주의 성장과 관련된 세포 분열 단백질(cell division protein), RNA 중합효소, 아미노산 대사와 관련된 아미노산 퍼미아제(amino acid permease) 및 유전자 발현 조절에 관련된 전사 조절인자(transcriptional regulator)가 돌연변이화된 것을 특징으로 하는 써모코커스 온누리누스 480T(Thermococcus onnurineus 480T, 수탁번호: KCTC13046BP) 균주이다.
(수탁번호)
기탁기관명 : 한국생명공학연구원
수탁번호 : KCTC13046BP
수탁일자 : 20160617
본 발명의 제 2 의 형태는 써모코커스 온누리누스(Thermococcus onnurineus)를 이용하여 수소를 생산하는 방법에 있어서, 다음의 단계를 포함하는 고효율 수소 생산 방법이다. (a) 상기 써모코커스 온누리누스 480T(Thermococcus onnurineus 480T, 수탁번호: KCTC13046BP) 균주에 일산화탄소를 공급하여 배양하는 단계; 및 (b) 상기 배양물로부터 수소를 수확하는 단계. 바람직하게는 써모코커스 온누리누스(Thermococcus onnurineus)를 이용하여 수소를 생산하는 방법에 있어서, , (a) 상기 써모코커스 온누리누스 480T(Thermococcus onnurineus 480T, 수탁번호: KCTC13046BP) 균주에 일산화탄소를 공급하고, 세포농도가 4.7 내지 5.8 unit at 600nm (1.9~2.3 g) liter- 1 의 범위로 배양하는 단계; 및 (b) 상기 배양물로부터 수소를 수확하는 단계를 포함하는 고효율 수소 생산 방법일 수 있다. 다른 형태로는 써모코커스 온누리누스(Thermococcus onnurineus)를 이용하여 수소를 생산하는 방법에 있어서, (a) 상기 써모코커스 온누리누스 480T(Thermococcus onnurineus 480T, 수탁번호: KCTC13046BP) 균주에 일산화탄소를 공급하고, 세포성장속도가 0.92 내지 0.96 h-1의 범위내로 배양하는 단계; 및 (b) 상기 배양물로부터 수소를 수확하는 단계를 포함하는 고효율 수소 생산 방법일 수 있다. 또 다른 형태로는 써모코커스 온누리누스(Thermococcus onnurineus)를 이용하여 수소를 생산하는 방법에 있어서, (a) 상기 써모코커스 온누리누스 480T(Thermococcus onnurineus 480T, 수탁번호: KCTC13046BP)균주에 일산화탄소를 공급하고 배양하는 단계; 및 (b) 상기 배양물로부터 수소를 수확하는 단계를 포함하고, 여기에서 수소생산속도(maximum H2 production rate)는 358 내지 430.8 mmol/l/h의 범위에 있는 고효율 수소 생산 방법에 일 수 있다. 또 다른 형태로는 써모코커스 온누리누스(Thermococcus onnurineus)를 이용하여 수소를 생산하는 방법에 있어서, (a) 제 1 항의 균주에 일산화탄소를 공급하고 배양하는 단계; 및 (b) 상기 배양물로부터 수소를 수확하는 단계를 포함하고, 여기에서 일산화탄소의 수소로의 전환효율이 40 내지 60%의 범위에 있는 고효율 수소 생산 방법일 수 있다.
본 발명에 따른 480T 균주는 100% 일산화탄소에서 적응한 균주로서 종래의 156T에 비하여 생장속도가 5.5% 높아졌고, 생물체량(biomass)는 약 55% 증가하였고, 이에 따라서 증가된 수소생산능력은 약 30% 증가되었고, 및 일산화탄소의 수소로의 전환율은 54% 증가하여, 종래 균주 대비 상당히 우수한 성질을 가진 균주이다.
도 1은 156T 균주와 156T 균주를 추가로 일산화탄소 조건에서 적응시킨 480T 균주를 100% 일산화탄소를 기질로 이용한 연속교반 탱크 반응기 발효에서의 균주 농도와 수소 생산성을 비교한 것이다. (a), 생장곡선; (b), 수소생산농도.
도 2는 100% 일산화탄소를 기질로 이용한 연속교반 탱크 반응기 발효에서 156T 및 480T 균주의 최대 균주 농도와 최대수소생산성 및 일산화탄소의 수소전환율을 비교한 것이다. (a), 최대균주농도; (b), 최대수소생산농도; (c), 일산화탄소의 수소전환율.
도 3은 야생형 균주를 참조 균주로 하여 적응 균주 (480T)의 유전체 분석을 통해 유전자 변이를 비교한 것이다. (a), Open reading frame (ORF)내의 유전자 변이; (b) Non-coding 지역의 유전자 변이.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 이 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시 방법 및 물질
1) 균주 및 배지
본 연구에 사용된 균주는 써모코커스 온누리누스 156T(Thermococcus onnurineus 156T)이며, 일반적인 배양조건으로서, 80의 혐기성 환경에서 4g/l의 효모 추출물, 35g/l의 염화나트륨, 0.7g/l의 염화칼륨, 3.9g/l의 황산마그네슘, 0.4g/l의 염화칼슘일수화물, 0.3g/l의 염화암모늄, 0.15g/l의 인산나트륨, 0.03g/l의 규산나트륨(Na2SiO3), 0.5g/l의 탄산나트륨, 0.5g/l의 시스테인-염산(cysteine-HCl)으로 구성된 변형된-M1 (Modified-M1; MM1) 배지의 상부에 100% 일산화탄소를 충진시켜 이용하였다 (이하, 'MM1-CO 배지'). 멸균 후에 1L의 배지에는 1 ml의 미량원소혼합물, 1ml의 철(Fe)-EDTA, 및 1ml의 발크(Balch)의 비타민 용액이 첨가되었다. 최초의 배지 pH는 대기압에서 6.5로 맞추었다.
2) 세포 생장 및 적응 균주 제작
100% 일산화탄소를 공급하기 위하여 혐기적 챔버(Coy)를 사용하였다. 세포는 MM1-CO 배지를 사용하여 80에서 유지되었다. 최초의 써모코커스 온누리누스 156T(Thermococcus onnurineus 156T) 균주로부터 20ml의 MM1-CO 배지에 156T 균주를 접종하고, 20시간 동안 배양을 한 후 새로운 MM1-CO 배지에 주사기를 이용하여 접종량을 2%(v/v)로 하여 계대 배양을 총 294회에 걸쳐 적응시키는 과정을 수행하였다. 이 중에서 생물체량이 높은 농도로 유지되는 최적 균주 (480T)를 선별하였다.
3) 가스 분석
가스조성분석은 Molesieve 5A 컬럼(Supelco, Bellefont, PA) 및 Porapak N 컬럼(Supelco)으로 하여, 열전도성 검출기와 불꽃이온화 검출기를 갖춘 YL6000 가스 크로마토그래피(YL Instrument Co.)를 이용하여 측정하였다. 아르곤을 가스 운반체로 사용하였다. 수소가스를 정량하기 위하여 질소에 각 1%(w/w)의 성분(일산화탄소, 이산화탄소, 수소, 메탄 및 산소)이 포함된 가스교정 표준기(Supleco)를 사용하였다.
4) 야생형과 적응 균주 (155T)에서 수소 생산의 동력학적 분석
수소 생산에 대한 동력학적 분석을 위하여 80에서 혐기적 모드로 미세 스파져(sparger, 5㎕ 지름의 구멍 크기)를 가진 연속교반 탱크 반응기(continuous stirred tank reactor; CSTR)에서 수행하였다. 교반 속도는 900 rpm 이었고, pH는 3.5% 염화나트륨을 포함하는 2N 수산화나트륨을 사용하여 6.1±0.1으로 조절하였다. 시드 배양을 80에서 지수 성장기가 될 때까지 배양시켰다. 100 ml의 시드 배양액을 연속교반 탱크 반응기에 50ml 피하 주사기를 이용하여 접종하였다. 배양 볼륨 1.5L에서 10 g/l 효모가 첨가된 MM1배지를 이용하여 100% 일산화탄소 가스를 0.06에서 0.24 vvm 으로 공급하여 비교실험을 수행하였다. 수소 가스는 Molesieve 5A 컬럼(Supelco, Bellefont, PA)과 Porapak N 컬럼(Supelco)으로 TCD 검출기가 구비된 YL6000 가스 크로마토그래프 장비를 사용하여 측정하였다. 아르곤을 가스 운반체로 사용하였다. 오븐 온도는 40였다. 분석을 위한 10㎕의 가스 시료는 배양병의 부틸고무를 통해 가스-타이트 시린지로 꺼냈다. 검출된 수소 가스의 측정은 피크 면적을, 질소에 40% 수소를 포함하는 표준 가스를 사용한 희귀분석에 의해 수행된 보정 곡선과 비교함으로써 계산되었다.
5) 적응 균주(480T)의 유전적 변화 관찰
적응배양을 통해 얻어진 우수균주(480T)의 증가된 생장속도, 세포농도와 수소생산성 능력 향상이 어떤 유전자 변이에 의해 나타난 현상인지 파악하기 위해 유전체 분석을 실시하였다. 유전체 분석을 위하여 PacBio SMRT Cell sequencer를 사용하였고, 분석을 위해 사용된 소프트웨어는 SMRT Analysis v2.3.0 HGAP.2 이다. 유전체 분석을 통해 얻어진 전체 베이스(base) 수는 668,703,802 였으며, 약 2백만 베이스를 가지는 균주를 분석하기 위한 충분한 데이터를 확보하였다. SMRT Analysis v2.3 software의 RS_resequencing Protocol 을 사용하여(http://files.pacb.com/software/smrtanalysis/2.2.0/doc/smrtportal/help/!SSL!/Webhelp/CS_Prot_RS_Resequencing.htm), alignment는 BLASR v1 프로그램을 이용하였고, 변이분석은 Quiver v1 프로그램을 사용하여 써모코커스 온누리누스 엔에이원 야생형 균주를 참조균주로 하여 비교 분석을 실시하였다.
< 실시예 1> 100% 일산화탄소 공급 후 성장과 수소생산성 향상 비교
써모코크스 온누리네우스 156T(Thermococcus onnurineus 156T)와 써모코커스 온누리누스 480T (Thermococcus onnurineus 480T)의 세포 생장과 수소생산성은 실시간으로 100% 일산화탄소를 기질로 사용하여 CSTR 발효기에서 배양을 실시하였다. 적응균주인 써모코커스 온누리누스 480T(Thermococcus onnurineus 480T)는 일산화탄소의 공급량을 90 ml/min에서 360 ml/min으로 높여준 이후부터 156T 균주보다 높은 생장곡선 (도 1a)과 수소생산성 (도 1b)을 보여주었으며, 최대세포생장속도가 0.96으로 156T가 보여준 최대세포생장속도 0.91 보다 높은 수치를 보여주었다. (표 1).
Figure PCTKR2016007465-appb-T000001
또한 480T의 경우 최대세포농도가 5.82로써 156T의 4.65보다 높은 수치를 보여주었으며 (도 2a) 이는 초고온성 고세균의 일산화탄소를 기질로 이용한 조건에서의 가장 높은 세포농도를 보여준 결과이다. 이러한 결과는 일산화탄소에 의한 적응을 통해 생장이 촉진됨과 동시에 고농도의 세포가 확보 가능하다는 것을 의미한다. 또한 시간당 발생하는 최대수소생산속도(maximum H2 production rate)의 경우 156T는 357.3 mmol/l/h이었고, 480T는 430.8 mmol/l/h로 증가된 것을 확인할 수가 있었으며 (도 2b), 일산화탄소의 수소로의 전환효율이 156T는 39.2 %인 것에 비해 480T는 60.4 %를 보여줌으로써 (도 2c) 결론적으로 써모코커스 온누리누스 156T (Thermococcus onnurineus 156T)를 일산화탄소 조건에서 추가적으로 장기간에 거쳐 적응시킴으로써 일산화탄소를 기질로 이용하여 고농도의 세포 농도로 성장할 수 있는 균주를 확보함과 동시에 수소생산성을 증가시킬 수 있었다.
< 실시예 2> 야생형 균주와 적응균주(480T)의 유전체 비교
써모코커스 온누리누스 엔에이원의 야생형을 참조균주로 하여 적응 균주인 써모코커스 온누리누스 480T(Thermococcus onnurineus 480T)의 SNP(single nucleotide polymorphism)와 INDEL(Insertion or Deletion) 유전체 변이를 분석하였다. 총 101개의 유전체 변이가 관찰되었고, 67개의 변이는 ORF(Open Reading Frame)에서 발견되었고 (도 3a). Non-coding 지역에서의 변이는 34개가 발견되었다(도 3b). 특히 ORF 지역에서 발견된 유전자 변이들 중 균주의 성장과 관련된 세포 분열 단백질(cell division protein), RNA 중합효소, 아미노산 대사와 관련된 아미노산 퍼미아제(amino acid permease), 유전자 발현 조절에 관련된 전사 조절인자(transcriptional regulator)등과 같은 변이가 발생함으로써 480T 균주의 성장속도와 최대균체농도가 증가한 것으로 판단된다. 또한 156T 균주의 경우 일산화탄소 탈수소화효소 (CO dehydrogenase)에서의 변이가 발견이 되지 않았지만 480T 균주에서는 일산화탄소 탈수소화효소(CO dehydrogenase), 촉매 소단위(catalytic subunit; TON_1018)에서의 변이가 발견된 점으로 보아 보다 156T 보다 높은 수소생산성이 이 유전자의 변이에 의해 나타난 것으로 판단된다. 이는 유전자 변이에 의한 일산화탄소 탈수소화효소의 단백질 활성 측정을 통해 확인 가능 할 것으로 판단된다. 또한 비암호화(Non-coding) 지역에서의 변이는 유전자 발현과 관련된 프로모터 영역이나 단백질 합성을 위해 중요한 RBS(Ribosome Binding Site)와 같은 주요 영역 주변 일 수도 있다. 따라서 이러한 변이로 인해 특정 중요 유전자의 발현이 증가 또는 불필요 유전자의 발현 감소 등을 유발하여 일산화탄소로부터 세포생장속도 증가, 높은 세포 농도로 성장할 수 있는 균주의 확보 및 수소생산 능력이 향상된 것으로 사료된다. 결론적으로 156T 균주로부터 추가적인 일산화탄소에서의 지속적인 적응 배양을 통해 확보된 본 발명에 따른 써모코커스 온누리누스 480T(Thermococcus onnurineus 480T)는 일산화탄소를 이용하는 환경에 보다 더 적응함과 동시에 유전자 변이에 의해서 고농도의 세포 확보 및 수소생산성이 증가된 것으로 볼 수 있다.

Claims (7)

  1. 써모코커스 온누리누스 480T(Thermococcus onnurineus 480T, 수탁번호: KCTC13046BP) 균주.
  2. 제 1 항에 있어서, 상기 써모코커스 온누리누스 480T(Thermococcus onnurineus 480T, 수탁번호: KCTC13046BP) 균주는 균주의 성장과 관련된 세포 분열 단백질(cell division protein), RNA 중합효소, 아미노산 대사와 관련된 아미노산 퍼미아제(amino acid permease) 및 유전자 발현 조절에 관련된 전사 조절인자(transcriptional regulator)가 돌연변이화된 것을 특징으로 하는 써모코커스 온누리누스 480T(Thermococcus onnurineus 480T, 수탁번호: KCTC13046BP) 균주.
  3. 써모코커스 온누리누스(Thermococcus onnurineus)를 이용하여 수소를 생산하는 방법에 있어서, 다음의 단계를 포함하는 고효율 수소 생산 방법:
    (a) 제 1 항의 균주에 일산화탄소를 공급하여 배양하는 단계; 및
    (b) 상기 배양물로부터 수소를 수확하는 단계.
  4. 써모코커스 온누리누스(Thermococcus onnurineus)를 이용하여 수소를 생산하는 방법에 있어서, 다음의 단계를 포함하는 고효율 수소 생산 방법:
    (a) 제 1 항의 균주에 일산화탄소를 공급하고, 세포농도가 4.7 내지 5.8 unit at 600nm (1.9~2.3 g) liter- 1 의 범위로 배양하는 단계; 및
    (b) 상기 배양물로부터 수소를 수확하는 단계.
  5. 써모코커스 온누리누스(Thermococcus onnurineus)를 이용하여 수소를 생산하는 방법에 있어서, 다음의 단계를 포함하는 고효율 수소 생산 방법:
    (a) 제 1 항의 균주에 일산화탄소를 공급하고, 세포성장속도가 0.92 내지 0.96 h-1의 범위내로 배양하는 단계; 및
    (b) 상기 배양물로부터 수소를 수확하는 단계.
  6. 써모코커스 온누리누스(Thermococcus onnurineus)를 이용하여 수소를 생산하는 방법에 있어서, 다음의 단계를 포함하는 고효율 수소 생산 방법:
    (a) 제 1 항의 균주에 일산화탄소를 공급하고 배양하는 단계; 및
    (b) 상기 배양물로부터 수소를 수확하는 단계, 여기에서 수소생산속도(maximum H2 production rate)는 358 내지 430.8 mmol/l/h의 범위에 있다.
  7. 써모코커스 온누리누스(Thermococcus onnurineus)를 이용하여 수소를 생산하는 방법에 있어서, 다음의 단계를 포함하는 고효율 수소 생산 방법:
    (a) 제 1 항의 균주에 일산화탄소를 공급하고 배양하는 단계; 및
    (b) 상기 배양물로부터 수소를 수확하는 단계, 여기에서 일산화탄소의 수소로의 전환효율이 40 내지 60%의 범위에 있다.
PCT/KR2016/007465 2016-07-08 2016-07-08 고농도의 써모코커스 온누리누스 480t 균주 및 이를 이용한 수소생산방법 WO2018008786A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197002764A KR102284768B1 (ko) 2016-07-08 2016-07-08 고농도의 써모코커스 온누리누스 480t 균주 및 이를 이용한 수소생산방법
PCT/KR2016/007465 WO2018008786A1 (ko) 2016-07-08 2016-07-08 고농도의 써모코커스 온누리누스 480t 균주 및 이를 이용한 수소생산방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/007465 WO2018008786A1 (ko) 2016-07-08 2016-07-08 고농도의 써모코커스 온누리누스 480t 균주 및 이를 이용한 수소생산방법

Publications (1)

Publication Number Publication Date
WO2018008786A1 true WO2018008786A1 (ko) 2018-01-11

Family

ID=60912892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007465 WO2018008786A1 (ko) 2016-07-08 2016-07-08 고농도의 써모코커스 온누리누스 480t 균주 및 이를 이용한 수소생산방법

Country Status (2)

Country Link
KR (1) KR102284768B1 (ko)
WO (1) WO2018008786A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090060124A (ko) * 2007-12-08 2009-06-11 한국해양연구원 Thermococcus spp.로부터 분리된 신규한 수소화효소, 이를 암호화하는 유전자 및 그 유전자를 갖는 미생물을 이용하여 수소를 생산하는 방법
KR20150055249A (ko) * 2013-11-13 2015-05-21 한국해양과학기술원 써모코커스 온누리누스 mc02 및 이를 이용한 수소생산방법
KR101534483B1 (ko) * 2013-11-13 2015-07-07 한국해양과학기술원 써모코커스 온누리누스 wtc155t 균주 및 이를 이용한 수소생산방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101833975B1 (ko) * 2008-09-05 2018-03-06 한국해양과학기술원 Thermoccus spp.을 이용하여 수소를 생산하는 방법
KR101401603B1 (ko) * 2012-06-19 2014-06-27 한국해양과학기술원 수소생산능이 증가된 써모코코스 온누리우스 엔에이원 돌연변이 균주 및 이를 이용한 수소생산방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090060124A (ko) * 2007-12-08 2009-06-11 한국해양연구원 Thermococcus spp.로부터 분리된 신규한 수소화효소, 이를 암호화하는 유전자 및 그 유전자를 갖는 미생물을 이용하여 수소를 생산하는 방법
KR20150055249A (ko) * 2013-11-13 2015-05-21 한국해양과학기술원 써모코커스 온누리누스 mc02 및 이를 이용한 수소생산방법
KR101534483B1 (ko) * 2013-11-13 2015-07-07 한국해양과학기술원 써모코커스 온누리누스 wtc155t 균주 및 이를 이용한 수소생산방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JEONG, YESEUL: "Intrinsic kinetic parameters of Thermococcus onnurineus NA1 strains and prediction of optimum carbon monoxide level for ideal bioreactor operation", BIORESOURCE TECHNOLOGY, 19 November 2015 (2015-11-19), pages 74 - 79, XP029356460 *
LEE, SEONG HYUK: "Adaptive engineering of a hyperthermophilic archaeon on CO and discovering the underlying mechanism by multi-omics analysis", SCIENTIFIC REPORTS, no. 22896, 15 March 2016 (2016-03-15), XP055601638 *

Also Published As

Publication number Publication date
KR20190021455A (ko) 2019-03-05
KR102284768B1 (ko) 2021-07-30

Similar Documents

Publication Publication Date Title
Hur et al. Highly efficient bioconversion of methane to methanol using a novel type I Methylomonas sp. DH‐1 newly isolated from brewery waste sludge
US9267115B2 (en) Method of producing hydrogen from Thermococcus spp
BR112013003644B1 (pt) isolado biologicamente puro de uma bactéria clostridium autoethanogenum
Lackner et al. Hydrogenotrophic methanogenesis and autotrophic growth of Methanosarcina thermophila
CN110229841B (zh) 一种增加基因menA拷贝数提高MK-7的产量的方法
CN112795582A (zh) 一种适合在微生物中高效合成nad衍生物的酶基因
KR101534483B1 (ko) 써모코커스 온누리누스 wtc155t 균주 및 이를 이용한 수소생산방법
US7816109B2 (en) Microorganism having the improved gene for hydrogen-generating capability, and process for producing hydrogen using the same
Maneeruttanarungroj et al. Effect of pH on biohydrogen production in green alga Tetraspora sp. CU2551
KR20110012170A (ko) 로도박터 스페로이드의 하이드로게나제 또는 니트로게나제로 형질전환된 숙주세포 및 이들을 이용한 수소 생산방법
WO2013191349A1 (ko) 수소생산능이 증가된 써모코코스 온누리우스 엔에이원 돌연변이 균주 및 이를 이용한 수소생산방법
CN111607549A (zh) 一种厌氧解烃菌株的基因工程改造构建方法与应用
WO2018008786A1 (ko) 고농도의 써모코커스 온누리누스 480t 균주 및 이를 이용한 수소생산방법
CN112760256B (zh) 一株耐高浓度甲醇、高产丁醇食甲基丁酸杆菌及其制备方法
Kim et al. Isolation of uncultivable anaerobic thermophiles of the family Clostridiaceae requiring growth-supporting factors
CN111620322A (zh) 一种利用微生物发酵液还原氧化石墨烯的方法
CN111304105A (zh) 利用甲醇和木糖共底物产脂肪酶的基因工程菌及其应用
CN113604413B (zh) 一种重组菌株及制备方法与应用
WO2017065457A1 (ko) L-쓰레오닌 생산능을 가지는 미생물 및 그를 이용하여 l-쓰레오닌을 생산하는 방법
US9598705B2 (en) Thermococcus onnurineus MC02 and method of hydrogen production using thereof
KR20150125631A (ko) 포름산염으로부터 수소생산능이 증가된 써모코코스 돌연변이체 및 이를 이용한 수소생산방법
WO2012121462A1 (ko) 써모코쿠스 속 균주를 이용한 수소 가스 생산 방법
KR102430707B1 (ko) 써모코커스 온누리누스 wtf-350t 균주 및 이를 이용한 수소생산방법
KR101736485B1 (ko) 포름산염으로부터 수소생산능이 증가된 써모코코스 돌연변이체 및 이를 이용한 수소생산방법
Schulz et al. Functional expression of a Mo-dependent formate dehydrogenase in Escherichia coli under aerobic conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197002764

Country of ref document: KR

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16908228

Country of ref document: EP

Kind code of ref document: A1