WO2018008495A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2018008495A1
WO2018008495A1 PCT/JP2017/023834 JP2017023834W WO2018008495A1 WO 2018008495 A1 WO2018008495 A1 WO 2018008495A1 JP 2017023834 W JP2017023834 W JP 2017023834W WO 2018008495 A1 WO2018008495 A1 WO 2018008495A1
Authority
WO
WIPO (PCT)
Prior art keywords
wrap
scroll
height
gap
expansion coefficient
Prior art date
Application number
PCT/JP2017/023834
Other languages
French (fr)
Japanese (ja)
Inventor
亮太 中井
泰弘 村上
康夫 水嶋
匡宏 野呂
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2018008495A1 publication Critical patent/WO2018008495A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present invention relates to a scroll compressor.
  • a scroll compressor includes a fixed wrap and a swivel wrap having a tooth bottom portion that has a step formed so as to become deeper from the outer peripheral side toward the inner peripheral side (Patent Document 1 (International Publication No. WO2014 / 155646). )reference).
  • An object of the present invention is to provide a scroll compressor that suppresses contact between two scroll members.
  • a scroll compressor includes a first scroll member made of a first material and a second scroll member made of a second material.
  • the first scroll member has a spiral first wrap.
  • the second scroll member forms a compression chamber together with the first scroll member.
  • the second scroll member has a spiral second wrap.
  • the second material is different from the first material.
  • the linear expansion coefficient of the second material is larger than the linear expansion coefficient of the first material.
  • the average thickness of the entire second wrap is thinner than the average thickness of the entire first wrap.
  • the average thickness of the entire first wrap and the entire second wrap are different from each other in average thickness. Specifically, the average thickness of the entire second wrap is thinner than the average thickness of the entire first wrap. Therefore, the amount of expansion of the second wrap due to heat can be reduced.
  • the second lap is set to be thin in advance, so that contact between the two scroll members can be suppressed. In particular, wear due to contact between the first wrap and the second wrap can be suppressed.
  • a scroll compressor includes a first scroll member made of a first material and a second scroll member made of a second material.
  • the first scroll member has a spiral first wrap.
  • the second scroll member forms a compression chamber together with the first scroll member.
  • the second scroll member has a spiral second wrap.
  • the second material is different from the first material.
  • the linear expansion coefficient of the second material is larger than the linear expansion coefficient of the first material.
  • the average height of the entire second lap is lower than the average height of the entire first lap.
  • the average height of the entire first wrap and the second wrap is different from each other. Specifically, the average height of the entire second lap is lower than the average height of the entire first lap. Therefore, the amount of expansion of the second wrap due to heat can be reduced. In anticipation of the amount of expansion due to heat, the height of the second wrap is set to be low in advance, so that contact between the two scroll members can be suppressed.
  • the linear expansion coefficient of the second material is in the range of 101% to 107% with respect to the linear expansion coefficient of the first material.
  • the thickness or height of the second wrap is set in consideration of the difference in expansion amount due to the difference. is doing. Accordingly, contact between the first scroll member and the second scroll member can be suppressed.
  • the first scroll member has a first base on which a first wrap is formed. At least one of the second wrap and the first base is formed in a stepped shape from the outer peripheral side to the inner peripheral side of the second wrap. Thereby, the 1st clearance gap between the front-end
  • the rate of change of the first gap between the inner peripheral end and the outer peripheral end in the central portion of the second lap is greater than the rate of change of the first gap between the inner peripheral end and the outer peripheral end in the non-central portion of the second lap.
  • the rate of change of the first gap at the center of the second lap is locally increased.
  • the first gap in the center of the second wrap is set to be locally large in anticipation of expansion of the second lap due to heat. Contact between the two scroll members at the center can be suppressed.
  • the second scroll member has a second base on which a second wrap is formed. At least one of the first wrap and the second base is formed in a stepped shape from the outer peripheral side to the inner peripheral side of the first wrap. Thereby, the 2nd clearance gap between the front-end
  • the rate of change of the second gap between the inner peripheral end and the outer peripheral end in the central portion of the first lap is greater than the rate of change of the second gap between the inner peripheral end and the outer peripheral end in the non-central portion of the first lap.
  • the rate of change of the second gap at the center of the first lap is locally increased.
  • the second gap in the center of the first wrap is set to be locally large in anticipation of the expansion of the first lap due to heat. Contact between the two scroll members at the center can be suppressed.
  • the first scroll member and the second scroll member compress a refrigerant containing more than 50% by weight of R32 as a refrigerant.
  • the refrigerant containing more than 50% by weight of R32 and the R410A refrigerant when the refrigerant containing more than 50% by weight of R32 and the R410A refrigerant are compressed under the same conditions, the refrigerant containing more than 50% by weight of R32 is R410A. It becomes hotter than the refrigerant. That is, the first wrap and the second wrap are more easily deformed. Even in this case, since the thickness or height of the second wrap is set according to the difference in the linear expansion coefficient, the contact between the first scroll member and the second scroll member can be suppressed.
  • the second lap is set to be thin in advance in anticipation of the amount of expansion due to heat, so that the contact between the two scroll members can be suppressed.
  • the second lap is set to be low in advance in anticipation of the amount of expansion due to heat, so that the contact between the two scroll members can be suppressed.
  • contact between the first scroll member and the second scroll member can be suppressed even when the difference in linear expansion coefficient is relatively small.
  • the contact between the two scroll members at the center of the compression chamber can be suppressed.
  • the contact between the two scroll members at the center of the compression chamber can be suppressed.
  • FIG. 1 is a longitudinal sectional view of a scroll compressor 101 according to the present embodiment.
  • the scroll compressor 101 is used in a refrigeration apparatus such as an air conditioner.
  • the scroll compressor 101 compresses the refrigerant gas circulating in the refrigerant circuit of the refrigeration apparatus.
  • a refrigerant containing more than 50% by weight of R32 can be used as the refrigerant.
  • the scroll compressor 101 mainly includes a casing 10, a compression mechanism 15, a housing 23, an Oldham coupling 39, a drive motor 16, a lower bearing 60, a crankshaft 17, and a suction.
  • a tube 19 and a discharge tube 20 are provided.
  • the casing 10 includes a cylindrical body casing portion 11, a bowl-shaped upper wall section 12, and a bowl-shaped bottom wall section 13.
  • the upper wall portion 12 is welded to the upper end portion of the trunk portion casing portion 11 in an airtight manner.
  • the bottom wall portion 13 is welded to the lower end portion of the body casing portion 11 in an airtight manner.
  • the casing 10 is installed so that the cylindrical axial direction of the trunk casing 11 is along the vertical direction.
  • a compression mechanism 15, a housing 23, a drive motor 16, a crankshaft 17 and the like are accommodated inside the casing 10.
  • An oil sump space 10 a in which lubricating oil is stored is formed at the bottom of the casing 10. Lubricating oil is used to keep the lubricity of sliding parts such as the compression mechanism 15 good during the operation of the scroll compressor 101.
  • the compression mechanism 15 sucks and compresses the low-temperature and low-pressure refrigerant gas and discharges the compressed refrigerant that is the high-temperature and high-pressure refrigerant gas.
  • the compression mechanism 15 is mainly composed of a fixed scroll 24 and a turning scroll 26.
  • the fixed scroll 24 is fixed with respect to the casing 10.
  • the orbiting scroll 26 performs a revolving motion with respect to the fixed scroll 24.
  • the fixed scroll 24 includes a first end plate 24a as a first base and a first wrap 24b.
  • the first wrap 24b is formed upright on the first end plate 24a.
  • the first wrap 24b has a spiral shape.
  • a main suction hole 24c is formed in the first end plate 24a.
  • the main suction hole 24c is a space that connects the suction pipe 19 and a compression chamber 40 described later.
  • the main suction hole 24c forms a suction space.
  • the suction space is a space for introducing a low-temperature and low-pressure refrigerant gas from the suction pipe 19 into the compression chamber 40.
  • a discharge hole 41 is formed at the center of the first end plate 24a.
  • an enlarged recess 42 communicating with the discharge hole 41 is formed on the upper surface of the first end plate 24a.
  • the enlarged recess 42 is a space recessed in the upper surface of the first end plate 24a.
  • a lid 44 is fixed to the upper surface of the fixed scroll 24 with bolts 44 a so as to close the enlarged recess 42.
  • the fixed scroll 24 and the lid 44 are tightly sealed through a gasket (not shown).
  • a muffler space 45 that silences the operation sound of the compression mechanism 15 is formed by covering the enlarged recess 42 with the lid 44.
  • the fixed scroll 24 is formed with a first compressed refrigerant channel 46 that communicates with the muffler space 45 and opens on the lower surface of the fixed scroll 24.
  • An oil groove 24e is formed on the lower surface of the first end plate 24a.
  • Gray cast iron can be used as the material of the fixed scroll 24 as the first material.
  • FC250 can be used.
  • the linear expansion coefficient of FC250 is about 11.5 to 12.0 ( ⁇ 10 ⁇ 6 / ° C.).
  • the orbiting scroll 26 includes a second end plate 26a as a second base and a second wrap 26b.
  • the second end plate 26a has a disk shape.
  • An upper end bearing 26c is formed at the center of the lower surface of the second end plate 26a.
  • the second wrap 26b is formed upright on the second end plate 26a.
  • the second wrap 26b has a spiral shape.
  • the orbiting scroll 26 has an oil supply hole 63 formed therein.
  • the oil supply pore 63 communicates the outer peripheral portion of the upper surface of the second end plate 26a and the space inside the upper end bearing 26c.
  • the fixed scroll 24 and the orbiting scroll 26 form a compression chamber 40 by the engagement of the first wrap 24b and the second wrap 26b.
  • the compression chamber 40 is a space surrounded by the first end plate 24a, the first wrap 24b, the second end plate 26a, and the second wrap 26b.
  • the volume of the compression chamber 40 is gradually reduced by the revolving motion of the orbiting scroll 26.
  • the lower surfaces of the first end plate 24a and the first wrap 24b slide with the upper surfaces of the second end plate 26a and the second wrap 26b.
  • the surface of the fixed scroll 24 that slides with the orbiting scroll 26 is referred to as a sliding surface 24d.
  • the linear expansion coefficient of the orbiting scroll 26 is larger than the linear expansion coefficient of the fixed scroll 24. More specifically, the linear expansion coefficient of the orbiting scroll 26 is in the range of 101% to 107% with respect to the linear expansion coefficient of the fixed scroll 24.
  • Ductile cast iron can be used as the material of the orbiting scroll 26 as the second material.
  • FCD600 can be used.
  • the linear expansion coefficient of FCD is about 11.7 to 12.8 ( ⁇ 10 ⁇ 6 / ° C.).
  • the housing 23 is disposed below the compression mechanism 15.
  • the outer peripheral surface of the housing 23 is joined to the inner peripheral surface of the body casing portion 11 in an airtight manner. Thereby, the internal space of the casing 10 is partitioned into a high-pressure space S ⁇ b> 1 below the housing 23 and a low-pressure space S ⁇ b> 2 that is a space above the housing 23.
  • the housing 23 mounts a fixed scroll 24 and sandwiches the orbiting scroll 26 together with the fixed scroll 24.
  • a second compressed refrigerant channel 48 is formed through the outer periphery of the housing 23 in the vertical direction. The second compressed refrigerant channel 48 communicates with the first compressed refrigerant channel 46 on the upper surface of the housing 23, and communicates with the high-pressure space S ⁇ b> 1 on the lower surface of the housing 23.
  • the crank chamber S3 is recessed in the upper surface of the housing 23.
  • a housing through hole 31 is formed in the housing 23.
  • the housing through hole 31 penetrates the housing 23 in the vertical direction from the center of the bottom surface of the crank chamber S3 to the center of the lower surface of the housing 23.
  • a portion that is a part of the housing 23 and in which the housing through hole 31 is formed is referred to as an upper bearing 32.
  • the housing 23 is formed with an oil return passage 23a that connects the high-pressure space S1 near the inner surface of the casing 10 and the crank chamber S3.
  • the Oldham Joint 39 is an annular member installed between the orbiting scroll 26 and the housing 23.
  • the Oldham joint 39 is a member for preventing rotation of the orbiting scroll 26 that is revolving.
  • the drive motor 16 is a brushless DC motor disposed below the housing 23.
  • the drive motor 16 is mainly composed of a stator 51 fixed to the inner surface of the casing 10 and a rotor 52 disposed with an air gap provided inside the stator 51.
  • the outer peripheral surface of the stator 51 is provided with a plurality of core cut portions that are formed from the upper end surface to the lower end surface of the stator 51 and are notched at predetermined intervals in the circumferential direction.
  • the core cut portion forms a motor cooling passage 55 that extends in the vertical direction between the body casing portion 11 and the stator 51.
  • the rotor 52 is connected to the crankshaft 17 passing through the center of rotation in the vertical direction.
  • the rotor 52 is connected to the compression mechanism 15 via the crankshaft 17.
  • (1-6) Lower Bearing The lower bearing 60 is disposed below the drive motor 16. The outer peripheral surface of the lower bearing 60 is joined to the inner surface of the casing 10 in an airtight manner. The lower bearing 60 supports the crankshaft 17.
  • crankshaft 17 is arranged so that its axial direction is along the vertical direction.
  • the crankshaft 17 has a shape in which the axial center of the upper end portion is slightly eccentric with respect to the axial center of the portion excluding the upper end portion.
  • the crankshaft 17 has a balance weight 18.
  • the balance weight 18 is fixed in close contact with the crankshaft 17 at a height position below the housing 23 and above the drive motor 16.
  • the crankshaft 17 is connected to the rotor 52 through the rotation center of the rotor 52 in the vertical direction.
  • the crankshaft 17 is connected to the orbiting scroll 26 by fitting the upper end portion of the crankshaft 17 into the upper end bearing 26c.
  • the crankshaft 17 is supported by the upper bearing 32 and the lower bearing 60.
  • the crankshaft 17 has a main oil supply passage 61 extending in its axial direction.
  • the upper end of the main oil supply passage 61 communicates with an oil chamber 67 formed by the upper end surface of the crankshaft 17 and the lower surface of the second end plate 26a.
  • the oil chamber 67 communicates with the sliding surface 24d and the oil groove 24e through the oil supply hole 63 of the second end plate 26a, and finally communicates with the low pressure space S2 through the compression chamber 40.
  • the lower end of the main oil supply path 61 is connected to an oil supply pipe that is a pipe for supplying the lubricating oil stored in the oil reservoir space 10 a to the compression mechanism 15.
  • the crankshaft 17 has a first sub oil supply path 61a, a second sub oil supply path 61b, and a third sub oil supply path 61c branched from the main oil supply path 61.
  • the first sub oil supply path 61a, the second sub oil supply path 61b, and the third sub oil supply path 61c extend in the horizontal direction.
  • the first sub oil supply passage 61 a is open to the sliding surface between the crankshaft 17 and the upper end bearing 26 c of the orbiting scroll 26.
  • the second sub oil supply passage 61 b opens in the sliding surface between the crankshaft 17 and the upper bearing 32 of the housing 23.
  • the third sub oil supply passage 61 c is open on the sliding surface between the crankshaft 17 and the lower bearing 60.
  • the suction pipe 19 is a pipe for introducing the refrigerant of the refrigerant circuit from the outside of the casing 10 to the compression mechanism 15.
  • the suction pipe 19 is fitted into the upper wall portion 12 of the casing 10 in an airtight manner.
  • the suction pipe 19 penetrates the low pressure space S2 in the vertical direction.
  • the discharge pipe 20 is a pipe for discharging the compressed refrigerant from the high-pressure space S1 to the outside of the casing 10.
  • the discharge pipe 20 is fitted in the body casing part 11 of the casing 10 in an airtight manner.
  • the discharge pipe 20 penetrates the high-pressure space S1 in the horizontal direction.
  • FIG. 2 is a bottom view of the fixed scroll 24 viewed along the vertical direction.
  • FIG. 3 is a top view of the orbiting scroll 26 viewed along the vertical direction.
  • FIG. 4A is a diagram illustrating the configuration of the fixed scroll 24 of FIG. 4B is a diagram illustrating the configuration of the orbiting scroll 26 of FIG.
  • the load applied to the first wrap 24b increases toward the center of the first wrap 24b (that is, the start of winding of the first wrap 24b). For this reason, the thickness of the inner peripheral end of the first wrap 24b is thicker than the thickness of the outer peripheral end of the first wrap 24b. In the present embodiment, the thickness of the first wrap 24b is gradually increased from the outer peripheral side toward the inner peripheral side as a whole. The height of the first wrap 24b is constant.
  • the load applied to the second wrap 26b during the operation of the scroll compressor 101 becomes higher toward the center of the second wrap 26b (that is, the winding start of the second wrap 26b).
  • the thickness of the inner peripheral end of the second wrap 26b is thicker than the thickness of the outer peripheral end of the second wrap 26b.
  • the thickness of the second wrap 26b is gradually increased from the outer peripheral side toward the inner peripheral side as a whole. The height of the second wrap 26b is constant.
  • the height of the first wrap 24b is the same as the height of the second wrap 26b.
  • the average thickness of the second wrap 26b is thinner than the average thickness of the first wrap 24b. That is, the average thickness of the wrap having the larger linear expansion coefficient (that is, the second wrap 26b) is thinner than the average thickness of the wrap having the smaller linear expansion coefficient (that is, the first wrap 24b).
  • the thickness of the second wrap 26b is generally thinner than the thickness of the first wrap 24b. The difference between the thickness of the second wrap 26b and the thickness of the first wrap 24b is particularly largest at each inner peripheral end.
  • the fixed scroll 24 and the orbiting scroll 26 are both composed of iron-based members, the thickness of the first wrap 24b and the thickness of the second wrap 26b are different from each other as described above.
  • the low-temperature and low-pressure refrigerant before being compressed is supplied from the suction pipe 19 to the compression chamber 40 of the compression mechanism 15 via the main suction hole 24c.
  • the compression chamber 40 moves from the outer peripheral portion of the fixed scroll 24 toward the center portion while gradually reducing the volume.
  • the refrigerant in the compression chamber 40 is compressed to become a compressed refrigerant.
  • the temperature of the compression chamber 40 increases with the movement. In particular, when the refrigerant is compressed under a high load condition, the temperature rises more. As the temperature rises, the first wrap 24b and the second wrap 26b expand.
  • the average thickness of the entire second wrap 26b that is more easily affected by heat is thinner than the average thickness of the entire first wrap 24b. Therefore, the expansion amount due to heat of the second wrap 26b is suppressed. As a result, contact between the fixed scroll 24 and the orbiting scroll 26 can be suppressed.
  • the compressed refrigerant is discharged from the discharge hole 41 to the muffler space 45, and then discharged to the high-pressure space S1 via the first compressed refrigerant channel 46 and the second compressed refrigerant channel 48. Then, the compressed refrigerant descends the motor cooling passage 55 and reaches the high pressure space S ⁇ b> 1 below the drive motor 16. Then, the compressed refrigerant reverses the flow direction and raises the air gap between the other motor cooling passage 55 and the drive motor 16. Finally, the compressed refrigerant is discharged from the discharge pipe 20 to the outside of the scroll compressor 101.
  • the linear expansion coefficient of the orbiting scroll 26 is larger than the linear expansion coefficient of the fixed scroll 24. Further, in the fixed scroll 24 and the orbiting scroll 26, the average thickness of the entire first wrap 24b and the average thickness of the entire second wrap 26b are different from each other. Specifically, the average thickness of the entire second wrap 26b is thinner than the average thickness of the entire first wrap 24b.
  • the amount of thermal expansion of the first wrap 24b is calculated by the product of the amount of change in temperature, the original thickness of the first wrap 24b, and the linear expansion coefficient of the first wrap 24b.
  • the amount of expansion of the second wrap 26b due to heat is calculated by the product of the amount of change in temperature, the original thickness of the second wrap 26b, and the linear expansion coefficient of the second wrap 26b.
  • the amount of change in temperature is the difference between the temperature before operation of the scroll compressor 101 and the temperature during operation of the scroll compressor 101.
  • the second wrap 26b on the side having the larger linear expansion coefficient is formed thinner than the first wrap 24b on the side having the smaller linear expansion coefficient. Since the thickness of the second wrap 26b is formed in consideration of the difference in expansion amount due to the difference in linear expansion coefficient, the expansion amount of the second wrap 26b due to heat can be suppressed.
  • the second lap is formed thin in advance in anticipation of the amount of expansion due to heat, so that the contact between the fixed scroll 24 and the orbiting scroll 26 can be suppressed.
  • wear due to contact between the first wrap 24b and the second wrap 26b can be suppressed.
  • the linear expansion coefficient of the orbiting scroll 26 is in the range of 101% to 107% with respect to the linear expansion coefficient of the fixed scroll 24. That is, even when the difference between the linear expansion coefficient of the fixed scroll 24 and the linear expansion coefficient of the orbiting scroll 26 is relatively small, the difference is reflected in the thickness of the second wrap 26b without being ignored. Therefore, contact between the fixed scroll 24 and the orbiting scroll 26 can be suppressed.
  • the fixed scroll 24 and the orbiting scroll 26 compress a refrigerant containing more than 50% by weight of R32 as a refrigerant.
  • the refrigerant containing more than 50% by weight of R32 and the R410A refrigerant are compressed under the same conditions, the refrigerant containing more than 50% by weight of R32 has a higher temperature than the refrigerant of R410A. That is, the first wrap 24b and the second wrap 26b are more easily deformed. Even in this case, since the thickness of the second wrap 26b is set according to the difference in the linear expansion coefficient, the contact between the fixed scroll 24 and the orbiting scroll 26 can be suppressed.
  • FIG. 5A is a diagram illustrating another example of the configuration of the fixed scroll 24.
  • FIG. 5B is a diagram for explaining another example of the configuration of the orbiting scroll 26.
  • 5A and 5B the same components as those of the fixed scroll 24 shown in FIG. 4A and the orbiting scroll 26 shown in FIG. 4B are referenced for the fixed scroll 24 shown in FIG. 4A and the orbiting scroll 26 shown in FIG. 4B.
  • the same reference symbols as those used are used.
  • the magnitude relationship between the linear expansion coefficient of the fixed scroll 24 and the linear expansion coefficient of the orbiting scroll 26 is as already described.
  • the fixed scroll 24 of FIG. 5A is the same as the fixed scroll 24 of FIG. 4A.
  • the height of the inner peripheral end of the second wrap 26b is lower than the height of the outer peripheral end of the second wrap 26b.
  • the height of the second wrap 26b gradually decreases from the outer peripheral side toward the inner peripheral side.
  • the height of the second wrap 26b may be reduced stepwise from the outer peripheral side toward the inner peripheral side.
  • the average height of the second wrap 26b in FIG. 5B is lower than the average height of the first wrap 24b. That is, the average height of the wrap on the side with the larger linear expansion coefficient (that is, the second wrap 26b) is lower than the average height of the wrap on the side with the smaller linear expansion coefficient (that is, the first wrap 24b).
  • the difference between the height of the second wrap 26b and the height of the first wrap 24b is particularly largest at each inner peripheral end.
  • the average height of the entire first wrap 24b is different from the average height of the entire second wrap 26b.
  • the average height of the entire second wrap 26b is lower than the average height of the entire first wrap 24b. That is, the second wrap 26b on the side having a larger linear expansion coefficient is formed lower than the first wrap 24b on the side having a smaller linear expansion coefficient as a whole. Since the height of the second wrap 26b is formed in consideration of the difference in expansion amount due to the difference in linear expansion coefficient, the expansion amount of the second wrap 26b due to heat can be suppressed.
  • the second lap is formed in advance in anticipation of the amount of expansion due to heat, so that contact between the fixed scroll 24 and the orbiting scroll 26 can be suppressed.
  • wear due to contact between the first end plate 24a and the second wrap 26b can be suppressed.
  • FIG. 6A is a diagram for explaining another example of the configuration of the fixed scroll 24.
  • FIG. 6B is a diagram illustrating another example of the configuration of the orbiting scroll 26.
  • 6A and 6B the same components as those of the fixed scroll 24 shown in FIG. 4A and the orbiting scroll 26 shown in FIG. 4B are referenced for the fixed scroll 24 shown in FIG. 4A and the orbiting scroll 26 shown in FIG. 4B. The same reference symbols as those used are used.
  • the magnitude relationship between the linear expansion coefficient of the fixed scroll 24 and the linear expansion coefficient of the orbiting scroll 26 is as already described.
  • the fixed scroll 24 in FIG. 6A is the same as the fixed scroll 24 in FIG. 4A.
  • the thickness of the inner peripheral end of the second wrap 26b is thicker than the thickness of the outer peripheral end of the second wrap 26b.
  • the thickness of the second wrap 26b gradually increases from the outer peripheral side toward the inner peripheral side.
  • the height of the inner peripheral end of the second wrap 26b is lower than the height of the outer peripheral end of the second wrap 26b.
  • the height of the second wrap 26b gradually decreases from the outer peripheral side toward the inner peripheral side. Note that the height of the second wrap 26b may be reduced stepwise from the outer peripheral side toward the inner peripheral side.
  • the average thickness of the second wrap 26b is thinner than the average thickness of the first wrap 24b, and the average height of the second wrap 26b is lower than the average height of the first wrap 24b. That is, the average of the thickness and height of the wrap having the larger linear expansion coefficient (that is, the second wrap 26b) is the average of the thickness and height of the wrap having the smaller linear expansion coefficient (that is, the first wrap 24b). Smaller than each.
  • Each of the difference between the thickness of the second wrap 26b and the thickness of the first wrap 24b and the difference between the height of the second wrap 26b and the height of the first wrap 24b are particularly largest at the inner peripheral end.
  • the thickness and height of the second wrap 26b are formed in consideration of the difference in the expansion amount due to the difference in the linear expansion coefficient, so that the expansion amount due to heat of the second wrap 26b is suppressed. Can do. As a result, contact between the fixed scroll 24 and the orbiting scroll 26 can be suppressed.
  • the height of the first wrap 24b is constant, but the first wrap is within a range that satisfies the condition that the average height of the second wrap 26b is lower than the average height of the first wrap 24b.
  • the height of the wrap 24b may not be constant.
  • the height of the inner peripheral end of the first wrap 24b may be lower than the height of the outer peripheral end of the first wrap 24b.
  • the height of the first wrap 24b may gradually decrease from the outer peripheral side toward the inner peripheral side, or may decrease stepwise from the outer peripheral side toward the inner peripheral side.
  • the refrigerant flow path portion from the main suction hole 24c to the discharge hole 41 in the first end plate 24a may be formed in a step shape from the outer peripheral side toward the inner peripheral side.
  • the refrigerant flow path portion surrounded by the outer peripheral end from the center of the second wrap 26b of the second end plate 26a may be formed in a step shape from the outer peripheral side toward the inner peripheral side.
  • FIG. 7A is a diagram illustrating a first gap that is a gap between the first end plate 24a and the second lap 26b.
  • the horizontal axis indicates the angle from the center (that is, the start of winding) of the second wrap 26b
  • the vertical axis indicates the height of the first gap. That is, the distance between the first end plate 24a and the tip of the second wrap 26b is shown.
  • a first region 34a, a second region 34b, and a third region 34c are formed in order from the inner peripheral side in the refrigerant flow path portion 24f from the main suction hole 24c to the discharge hole 41 in the first end plate 24a. Has been.
  • the gap height h 1 indicates the distance between the tip of the second wrap 26b and the first region 34a.
  • Gap height h 2 indicates the distance between the tip and the second region 34b of the second lap 26b.
  • the clearance height h 3 indicates the distance between the tip of the second wrap 26b and the third region 34c.
  • the range from the center of the second wrap 26b to 540 ° is defined as the center of the second wrap 26b.
  • a range from 540 ° to the outer peripheral edge of the second wrap 26b is defined as a non-center portion.
  • a range from the center of the second wrap 26 b to 540 ° forms the central portion of the compression chamber 40.
  • a range from 540 ° to the outer peripheral end of the second wrap 26 b forms a non-central portion of the compression chamber 40.
  • the height of the refrigerant flow path portion 24f decreases from the outer peripheral side toward the inner peripheral side.
  • the height of the refrigerant flow path portion 24f is lowered stepwise. That is, the third region 34c, the second region 34b, and the first region 34a become lower in this order.
  • step portions are formed in the refrigerant flow path portion 24f. That is, step portions are formed at the boundary between the third region 34c and the second region 34b and at the boundary between the second region 34b and the first region 34a.
  • the height of the second lap 26b is constant.
  • the height of the first gap is increased from the outer peripheral side of the second wrap 26b toward the inner peripheral side.
  • the height of the first gap changes in a step shape.
  • the gap height h 1 is the largest and the gap height h 3 is the smallest.
  • the change rate of the height of the refrigerant flow path portion 26f can be regarded as the change rate of the first gap as it is.
  • the rate of change of the first gap between the inner peripheral end and the outer peripheral end in the center portion of the second wrap 26b is greater than the rate of change of the first gap between the inner peripheral end and the outer peripheral end in the non-center portion of the second wrap 26b. That is, while the height of the first gap is relatively large changes by the difference between the gap height h 1 and the gap height h 2 over the 540 ° from 0 °, the gap height over the 900 ° of 540 ° h 2 And only the difference between the gap height h 3 changes. In other words, the rate of change of the first gap at the center of the second lap 26b is locally increased.
  • the first gap in the central part of the second wrap 26b is set to be locally large in anticipation of the expansion of the second wrap 26b due to heat. Contact between the fixed scroll 24 and the orbiting scroll 26 at the center of the compression chamber 40 can be suppressed.
  • FIG. 7B is a diagram illustrating a second gap that is a gap between the first wrap 24b and the second end plate 26a.
  • the horizontal axis indicates the angle from the center (that is, the start of winding) of the first wrap 24b
  • the vertical axis indicates the height of the second gap. That is, the distance between the tip of the first wrap 24b and the second end plate 26a is shown.
  • the first region 36a, the second region 36b, and the third region are sequentially arranged from the inner peripheral side. 36c is formed.
  • the gap height h 4 indicates the distance between the tip of the first wrap 24b and the first region 36a.
  • the gap height h 5 indicates the distance between the tip of the first wrap 24b and the second region 36b.
  • the clearance height h 6 indicates the distance between the tip of the first wrap 24b and the third region 36c.
  • the range from the center of the first wrap 24b to 540 ° is defined as the center of the first wrap 24b.
  • a range from 540 ° to the outer peripheral edge of the first lap 24b is defined as a non-center portion.
  • a range from the center of the first wrap 24 b to 540 ° forms the center of the compression chamber 40.
  • a range from 540 ° to the outer peripheral end of the first wrap 24 b forms a non-central portion of the compression chamber 40.
  • the height of the refrigerant flow path portion 26f decreases from the outer peripheral side toward the inner peripheral side.
  • the height of the refrigerant flow path portion 26f is lowered stepwise. That is, the third region 36c, the second region 36b, and the first region 36a become lower in this order.
  • stepped portions are formed at the boundary between the third region 36c and the second region 36b and at the boundary between the second region 36b and the first region 36a.
  • the height of the first lap 24b is constant.
  • the height of the second gap is increased from the outer peripheral side of the first wrap 24b toward the inner peripheral side.
  • the height of the second gap changes in a step shape.
  • the gap height h 4 is the largest and the gap height h 6 is the smallest.
  • the change rate of the height of the refrigerant flow path portion 24f can be regarded as the change rate of the second gap as it is.
  • the rate of change of the second gap between the inner peripheral end and the outer peripheral end in the central portion of the first wrap 24b is larger than the rate of change of the second gap between the inner peripheral end and the outer peripheral end in the non-central portion of the first wrap 24b. That is, while the height of the second gap is relatively large changes by the difference between the gap height h 4 and the gap height h 5 toward 540 ° from 0 °, the gap height h 5 toward 900 ° from 540 ° And only the difference between the gap height h 6 changes. In other words, the rate of change of the second gap at the center of the first lap 24b is locally increased.
  • the second gap in the central part of the first wrap 24b is set to be locally large in anticipation of the expansion of the first wrap 24b due to heat. Contact between the fixed scroll 24 and the orbiting scroll 26 at the center of the compression chamber 40 can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a scroll compressor which suppresses contact between two scroll members. A scroll compressor (101) is equipped with a fixed scroll (24) comprising a first substance and an orbiting scroll (26) comprising a second substance. The fixed scroll (24) has a spiral-shaped first lap (24b). Together, the orbiting scroll (26) and the fixed scroll (24) form a compression chamber. The orbiting scroll (26) has a spiral-shaped second lap (26b). The second substance differs from the first substance. The linear expansion coefficient of the second substance is greater than the linear expansion coefficient of the first substance. The average thickness of the second lap (26b) overall is less than the average thickness of the first lap (24b) overall.

Description

スクロール圧縮機Scroll compressor
 本発明は、スクロール圧縮機に関する。 The present invention relates to a scroll compressor.
 外周側から内周側に向かって深くなるように段差が形成された歯底部を有する固定側ラップおよび旋回側ラップを備えるスクロール圧縮機が知られている(特許文献1(国際公開番号WO2014/155646)参照)。 A scroll compressor is known that includes a fixed wrap and a swivel wrap having a tooth bottom portion that has a step formed so as to become deeper from the outer peripheral side toward the inner peripheral side (Patent Document 1 (International Publication No. WO2014 / 155646). )reference).
 この種のスクロール圧縮機において、固定スクロールと旋回スクロールとで異なる材料が用いられる場合がある。この場合に、用いられる材料の線膨張係数の相違によって、固定スクロールと旋回スクロールとで膨張の変化量が異なる。結果として、固定スクロールと旋回スクロールが接触する恐れがある。 In this type of scroll compressor, different materials may be used for the fixed scroll and the orbiting scroll. In this case, the amount of change in expansion differs between the fixed scroll and the orbiting scroll due to the difference in the linear expansion coefficient of the material used. As a result, the fixed scroll and the orbiting scroll may come into contact with each other.
 本発明の課題は、2つのスクロール部材同士の接触を抑制するスクロール圧縮機を提供することである。 An object of the present invention is to provide a scroll compressor that suppresses contact between two scroll members.
 本発明の第1観点に係るスクロール圧縮機は、第1材質の第1スクロール部材と、第2材質の第2スクロール部材とを備える。第1スクロール部材は、渦巻状の第1ラップを有する。第2スクロール部材は、第1スクロール部材と共に圧縮室を形成する。第2スクロール部材は渦巻状の第2ラップを有する。第2材質は、第1材質とは異なる。第2材質の線膨張係数は、第1材質の線膨張係数よりも大きい。第2ラップ全体の厚みの平均は、第1ラップ全体の厚みの平均よりも薄い。 A scroll compressor according to a first aspect of the present invention includes a first scroll member made of a first material and a second scroll member made of a second material. The first scroll member has a spiral first wrap. The second scroll member forms a compression chamber together with the first scroll member. The second scroll member has a spiral second wrap. The second material is different from the first material. The linear expansion coefficient of the second material is larger than the linear expansion coefficient of the first material. The average thickness of the entire second wrap is thinner than the average thickness of the entire first wrap.
 本発明の第1観点に係るスクロール圧縮機では、第1スクロール部材と、第1スクロール部材よりも線膨張係数が大きい第2スクロール部材とにおいて、第1ラップ全体の厚みの平均と第2ラップ全体の厚みの平均とが互いに異なる。具体的には、第2ラップ全体の厚みの平均は、第1ラップ全体の厚みの平均よりも薄い。したがって、第2ラップの、熱による膨張量を低減させることができる。熱による膨張量を見越して、第2ラップが予め薄めに設定されているので、2つのスクロール部材同士の接触を抑制することができる。特に、第1ラップと第2ラップの接触による磨耗を抑制することができる。 In the scroll compressor according to the first aspect of the present invention, in the first scroll member and the second scroll member having a larger linear expansion coefficient than the first scroll member, the average thickness of the entire first wrap and the entire second wrap Are different from each other in average thickness. Specifically, the average thickness of the entire second wrap is thinner than the average thickness of the entire first wrap. Therefore, the amount of expansion of the second wrap due to heat can be reduced. In anticipation of the amount of expansion due to heat, the second lap is set to be thin in advance, so that contact between the two scroll members can be suppressed. In particular, wear due to contact between the first wrap and the second wrap can be suppressed.
 本発明の第2観点に係るスクロール圧縮機は、第1材質の第1スクロール部材と、第2材質の第2スクロール部材とを備える。第1スクロール部材は、渦巻状の第1ラップを有する。第2スクロール部材は、第1スクロール部材と共に圧縮室を形成する。第2スクロール部材は、渦巻状の第2ラップを有する。第2材質は、第1材質とは異なる。第2材質の線膨張係数は、第1材質の線膨張係数よりも大きい。第2ラップ全体の高さの平均は、第1ラップ全体の高さの平均よりも低い。 A scroll compressor according to a second aspect of the present invention includes a first scroll member made of a first material and a second scroll member made of a second material. The first scroll member has a spiral first wrap. The second scroll member forms a compression chamber together with the first scroll member. The second scroll member has a spiral second wrap. The second material is different from the first material. The linear expansion coefficient of the second material is larger than the linear expansion coefficient of the first material. The average height of the entire second lap is lower than the average height of the entire first lap.
 本発明の第2観点に係るスクロール圧縮機では、第1スクロール部材と、第1スクロール部材よりも線膨張係数が大きい第2スクロール部材とにおいて、第1ラップ全体の高さの平均と第2ラップ全体の高さの平均とが互いに異なる。具体的には、第2ラップ全体の高さの平均は、第1ラップ全体の高さの平均よりも低い。したがって、第2ラップの、熱による膨張量を低減させることができる。熱による膨張量を見越して、第2ラップの高さが予め低めに設定されているので、2つのスクロール部材同士の接触を抑制することができる。 In the scroll compressor according to the second aspect of the present invention, in the first scroll member and the second scroll member having a larger linear expansion coefficient than the first scroll member, the average height of the entire first wrap and the second wrap The overall average height is different from each other. Specifically, the average height of the entire second lap is lower than the average height of the entire first lap. Therefore, the amount of expansion of the second wrap due to heat can be reduced. In anticipation of the amount of expansion due to heat, the height of the second wrap is set to be low in advance, so that contact between the two scroll members can be suppressed.
 本発明の第3観点に係るスクロール圧縮機においては、第2材質の線膨張係数は、第1材質の線膨張係数に対して101%から107%の範囲である。 In the scroll compressor according to the third aspect of the present invention, the linear expansion coefficient of the second material is in the range of 101% to 107% with respect to the linear expansion coefficient of the first material.
 本発明の第3観点に係るスクロール圧縮機では、線膨張係数の差が比較的小さい場合であっても、その差による膨張量の差異を考慮して、第2ラップの厚みまたは高さを設定している。したがって、第1スクロール部材と第2スクロール部材との接触を抑制することができる。 In the scroll compressor according to the third aspect of the present invention, even if the difference in linear expansion coefficient is relatively small, the thickness or height of the second wrap is set in consideration of the difference in expansion amount due to the difference. is doing. Accordingly, contact between the first scroll member and the second scroll member can be suppressed.
 本発明の第4観点に係るスクロール圧縮機においては、第1スクロール部材は、第1ラップが形成された第1ベースを有する。第2ラップおよび第1ベースの少なくとも一方が、第2ラップの外周側から内周側に向かって段差状に形成されている。これにより、第2ラップの先端と第1ベースとの第1隙間が段差状に形成されている。第2ラップの中心部における内周端と外周端の第1隙間の変化率は、第2ラップの非中心部における内周端と外周端の第1隙間の変化率よりも大きい。 In the scroll compressor according to the fourth aspect of the present invention, the first scroll member has a first base on which a first wrap is formed. At least one of the second wrap and the first base is formed in a stepped shape from the outer peripheral side to the inner peripheral side of the second wrap. Thereby, the 1st clearance gap between the front-end | tip of a 2nd wrap and a 1st base is formed in the step shape. The rate of change of the first gap between the inner peripheral end and the outer peripheral end in the central portion of the second lap is greater than the rate of change of the first gap between the inner peripheral end and the outer peripheral end in the non-central portion of the second lap.
 すなわち、本発明の第4観点に係るスクロール圧縮機では、第2ラップの中心部における第1隙間の変化率は、局所的に大きくなる。特に高温となり得る、圧縮室の中心部において、熱による第2ラップの膨張を見越して、第2ラップの中心部の第1隙間が局所的に大きくなるように設定されているので、圧縮室の中心部での2つのスクロール部材同士の接触を抑制することができる。 That is, in the scroll compressor according to the fourth aspect of the present invention, the rate of change of the first gap at the center of the second lap is locally increased. Especially in the center of the compression chamber, where the temperature can be high, the first gap in the center of the second wrap is set to be locally large in anticipation of expansion of the second lap due to heat. Contact between the two scroll members at the center can be suppressed.
 本発明の第5観点に係るスクロール圧縮機においては、第2スクロール部材は、第2ラップが形成された第2ベースを有する。第1ラップおよび第2ベースの少なくとも一方が、第1ラップの外周側から内周側に向かって段差状に形成されている。これにより、第1ラップの先端と第2ベースとの第2隙間が段差状に形成されている。第1ラップの中心部における内周端と外周端の第2隙間の変化率は、第1ラップの非中心部における内周端と外周端の第2隙間の変化率よりも大きい。 In the scroll compressor according to the fifth aspect of the present invention, the second scroll member has a second base on which a second wrap is formed. At least one of the first wrap and the second base is formed in a stepped shape from the outer peripheral side to the inner peripheral side of the first wrap. Thereby, the 2nd clearance gap between the front-end | tip of a 1st wrap and a 2nd base is formed in the step shape. The rate of change of the second gap between the inner peripheral end and the outer peripheral end in the central portion of the first lap is greater than the rate of change of the second gap between the inner peripheral end and the outer peripheral end in the non-central portion of the first lap.
 すなわち、本発明の第5観点に係るスクロール圧縮機では、第1ラップの中心部における第2隙間の変化率は、局所的に大きくなる。特に高温となり得る、圧縮室の中心部において、熱による第1ラップの膨張を見越して、第1ラップの中心部の第2隙間が局所的に大きくなるように設定されているので、圧縮室の中心部での2つのスクロール部材同士の接触を抑制することができる。 That is, in the scroll compressor according to the fifth aspect of the present invention, the rate of change of the second gap at the center of the first lap is locally increased. Especially in the center of the compression chamber, where the temperature can be high, the second gap in the center of the first wrap is set to be locally large in anticipation of the expansion of the first lap due to heat. Contact between the two scroll members at the center can be suppressed.
 本発明の第6観点に係るスクロール圧縮機においては、第1スクロール部材および第2スクロール部材は、冷媒としてR32を50重量%よりも多く含む冷媒を圧縮する。 In the scroll compressor according to the sixth aspect of the present invention, the first scroll member and the second scroll member compress a refrigerant containing more than 50% by weight of R32 as a refrigerant.
 本発明の第6観点に係るスクロール圧縮機では、R32を50重量%よりも多く含む冷媒とR410A冷媒が同条件により圧縮された場合には、R32を50重量%よりも多く含む冷媒は、R410A冷媒よりも高温になる。すなわち、第1ラップおよび第2ラップが、より変形し易くなる。この場合であっても、線膨張係数の差に応じて第2ラップの厚みまたは高さが設定されているので、第1スクロール部材と第2スクロール部材との接触を抑制することができる。 In the scroll compressor according to the sixth aspect of the present invention, when the refrigerant containing more than 50% by weight of R32 and the R410A refrigerant are compressed under the same conditions, the refrigerant containing more than 50% by weight of R32 is R410A. It becomes hotter than the refrigerant. That is, the first wrap and the second wrap are more easily deformed. Even in this case, since the thickness or height of the second wrap is set according to the difference in the linear expansion coefficient, the contact between the first scroll member and the second scroll member can be suppressed.
 本発明の第1観点に係るスクロール圧縮機では、熱による膨張量を見越して、第2ラップが予め薄めに設定されているので、2つのスクロール部材同士の接触を抑制することができる。 In the scroll compressor according to the first aspect of the present invention, the second lap is set to be thin in advance in anticipation of the amount of expansion due to heat, so that the contact between the two scroll members can be suppressed.
 本発明の第2観点に係るスクロール圧縮機では、熱による膨張量を見越して、第2ラップが予め低めに設定されているので、2つのスクロール部材同士の接触を抑制することができる。 In the scroll compressor according to the second aspect of the present invention, the second lap is set to be low in advance in anticipation of the amount of expansion due to heat, so that the contact between the two scroll members can be suppressed.
 本発明の第3観点に係るスクロール圧縮機では、線膨張係数の差が比較的小さい場合であっても、第1スクロール部材と第2スクロール部材との接触を抑制することができる。 In the scroll compressor according to the third aspect of the present invention, contact between the first scroll member and the second scroll member can be suppressed even when the difference in linear expansion coefficient is relatively small.
 本発明の第4観点に係るスクロール圧縮機では、圧縮室の中心部での2つのスクロール部材同士の接触を抑制することができる。 In the scroll compressor according to the fourth aspect of the present invention, the contact between the two scroll members at the center of the compression chamber can be suppressed.
 本発明の第5観点に係るスクロール圧縮機では、圧縮室の中心部での2つのスクロール部材同士の接触を抑制することができる。 In the scroll compressor according to the fifth aspect of the present invention, the contact between the two scroll members at the center of the compression chamber can be suppressed.
 本発明の第6観点に係るスクロール圧縮機では、R32を50重量%よりも多く含む冷媒が圧縮されることにより、第1ラップおよび第2ラップがより変形し易くなる場合であっても、第1スクロール部材と第2スクロール部材との接触を抑制することができる。 In the scroll compressor according to the sixth aspect of the present invention, even if the first wrap and the second wrap are more easily deformed by compressing the refrigerant containing more than 50% by weight of R32, Contact between the first scroll member and the second scroll member can be suppressed.
本実施形態に係るスクロール圧縮機の一例の縦断面図である。It is a longitudinal section of an example of a scroll compressor concerning this embodiment. 固定スクロールの一例の下面図である。It is a bottom view of an example of a fixed scroll. 旋回スクロールの一例の上面図である。It is a top view of an example of a turning scroll. 図2の固定スクロールの構成を説明する図である。It is a figure explaining the structure of the fixed scroll of FIG. 図3の旋回スクロールの構成を説明する図である。It is a figure explaining the structure of the turning scroll of FIG. 固定スクロールの構成の他の例を説明する図である。It is a figure explaining the other example of a structure of a fixed scroll. 旋回スクロールの構成の他の例を説明する図である。It is a figure explaining the other example of a structure of a turning scroll. 固定スクロールの構成の他の例を説明する図である。It is a figure explaining the other example of a structure of a fixed scroll. 旋回スクロールの構成の他の例を説明する図である。It is a figure explaining the other example of a structure of a turning scroll. 第1鏡板と第2ラップの間の隙間である第1隙間を説明する図である。It is a figure explaining the 1st gap which is a gap between the 1st end plate and the 2nd lap. 第1ラップと第2鏡板の間の隙間である第2隙間を説明する図である。It is a figure explaining the 2nd gap which is a gap between the 1st lap and the 2nd end plate.
 本発明の実施形態を以下に示す。なお、以下の実施形態は、具体例に過ぎず、特許請求の範囲に係る発明を限定するものではない。 Embodiments of the present invention are shown below. The following embodiments are merely specific examples and do not limit the invention according to the claims.
 <第1実施形態>
 図1は、本実施形態に係るスクロール圧縮機101の縦断面図である。スクロール圧縮機101は、空気調和装置等の冷凍装置に用いられる。スクロール圧縮機101は、冷凍装置の冷媒回路を循環する冷媒ガスを圧縮する。冷媒としてR32を50重量%よりも多く含む冷媒を用いることができる。
<First Embodiment>
FIG. 1 is a longitudinal sectional view of a scroll compressor 101 according to the present embodiment. The scroll compressor 101 is used in a refrigeration apparatus such as an air conditioner. The scroll compressor 101 compresses the refrigerant gas circulating in the refrigerant circuit of the refrigeration apparatus. A refrigerant containing more than 50% by weight of R32 can be used as the refrigerant.
 (1)スクロール圧縮機の構成
 スクロール圧縮機101は、主として、ケーシング10と、圧縮機構15と、ハウジング23と、オルダム継手39と、駆動モータ16と、下部軸受60と、クランクシャフト17と、吸入管19と、吐出管20とを備える。
(1) Configuration of Scroll Compressor The scroll compressor 101 mainly includes a casing 10, a compression mechanism 15, a housing 23, an Oldham coupling 39, a drive motor 16, a lower bearing 60, a crankshaft 17, and a suction. A tube 19 and a discharge tube 20 are provided.
  (1-1)ケーシング
 ケーシング10は、円筒状の胴部ケーシング部11と、椀状の上壁部12と、椀状の底壁部13とから構成されている。上壁部12は、胴部ケーシング部11の上端部に気密状に溶接されている。底壁部13は、胴部ケーシング部11の下端部に気密状に溶接されている。胴部ケーシング部11の円筒状の軸方向が鉛直方向に沿うように、ケーシング10は設置されている。
(1-1) Casing The casing 10 includes a cylindrical body casing portion 11, a bowl-shaped upper wall section 12, and a bowl-shaped bottom wall section 13. The upper wall portion 12 is welded to the upper end portion of the trunk portion casing portion 11 in an airtight manner. The bottom wall portion 13 is welded to the lower end portion of the body casing portion 11 in an airtight manner. The casing 10 is installed so that the cylindrical axial direction of the trunk casing 11 is along the vertical direction.
 ケーシング10の内部には、圧縮機構15と、ハウジング23と、駆動モータ16と、クランクシャフト17等が収容されている。ケーシング10の底部には、潤滑油が貯留される油溜まり空間10aが形成されている。潤滑油は、スクロール圧縮機101の運転中において、圧縮機構15等の摺動部の潤滑性を良好に保つために使用される。 Inside the casing 10, a compression mechanism 15, a housing 23, a drive motor 16, a crankshaft 17 and the like are accommodated. An oil sump space 10 a in which lubricating oil is stored is formed at the bottom of the casing 10. Lubricating oil is used to keep the lubricity of sliding parts such as the compression mechanism 15 good during the operation of the scroll compressor 101.
  (1-2)圧縮機構
 圧縮機構15は、低温低圧の冷媒ガスを吸引および圧縮して、高温高圧の冷媒ガスである圧縮冷媒を吐出する。圧縮機構15は、主に、固定スクロール24と旋回スクロール26とから構成されている。固定スクロール24は、ケーシング10に対して固定されている。旋回スクロール26は、固定スクロール24に対して公転運動を行う。
(1-2) Compression Mechanism The compression mechanism 15 sucks and compresses the low-temperature and low-pressure refrigerant gas and discharges the compressed refrigerant that is the high-temperature and high-pressure refrigerant gas. The compression mechanism 15 is mainly composed of a fixed scroll 24 and a turning scroll 26. The fixed scroll 24 is fixed with respect to the casing 10. The orbiting scroll 26 performs a revolving motion with respect to the fixed scroll 24.
   (1-2-1)固定スクロール
 固定スクロール24は、第1ベースとしての第1鏡板24aと、第1ラップ24bとを有する。第1ラップ24bは、第1鏡板24aに直立して形成されている。第1ラップ24bは、渦巻き形状である。第1鏡板24aには、主吸入孔24cが形成されている。主吸入孔24cは、吸入管19と後述する圧縮室40とを接続する空間である。主吸入孔24cは、吸入空間を形成する。吸入空間は、低温低圧の冷媒ガスを吸入管19から圧縮室40に導入するための空間である。
(1-2-1) Fixed Scroll The fixed scroll 24 includes a first end plate 24a as a first base and a first wrap 24b. The first wrap 24b is formed upright on the first end plate 24a. The first wrap 24b has a spiral shape. A main suction hole 24c is formed in the first end plate 24a. The main suction hole 24c is a space that connects the suction pipe 19 and a compression chamber 40 described later. The main suction hole 24c forms a suction space. The suction space is a space for introducing a low-temperature and low-pressure refrigerant gas from the suction pipe 19 into the compression chamber 40.
 第1鏡板24aの中央部には、吐出孔41が形成されている。第1鏡板24aの上面には、吐出孔41と連通する拡大凹部42が形成されている。拡大凹部42は、第1鏡板24aの上面に凹設された空間である。固定スクロール24の上面には、拡大凹部42を塞ぐように蓋体44がボルト44aにより固定されている。固定スクロール24および蓋体44は、ガスケット(図示せず)を介して密着してシールされている。拡大凹部42に蓋体44が覆い被せられることにより、圧縮機構15の運転音を消音させるマフラー空間45が形成されている。固定スクロール24には、マフラー空間45と連通し、固定スクロール24の下面に開口する第1圧縮冷媒流路46が形成されている。第1鏡板24aの下面には、油溝24eが形成されている。 A discharge hole 41 is formed at the center of the first end plate 24a. On the upper surface of the first end plate 24a, an enlarged recess 42 communicating with the discharge hole 41 is formed. The enlarged recess 42 is a space recessed in the upper surface of the first end plate 24a. A lid 44 is fixed to the upper surface of the fixed scroll 24 with bolts 44 a so as to close the enlarged recess 42. The fixed scroll 24 and the lid 44 are tightly sealed through a gasket (not shown). A muffler space 45 that silences the operation sound of the compression mechanism 15 is formed by covering the enlarged recess 42 with the lid 44. The fixed scroll 24 is formed with a first compressed refrigerant channel 46 that communicates with the muffler space 45 and opens on the lower surface of the fixed scroll 24. An oil groove 24e is formed on the lower surface of the first end plate 24a.
 第1材料としての、固定スクロール24の材料として、ねずみ鋳鉄を用いることができる。好ましくは、FC250を用いることができる。FC250の線膨張係数は、11.5~12.0(×10-6/℃)程度である。 Gray cast iron can be used as the material of the fixed scroll 24 as the first material. Preferably, FC250 can be used. The linear expansion coefficient of FC250 is about 11.5 to 12.0 (× 10 −6 / ° C.).
   (1-2-2)旋回スクロール
 旋回スクロール26は、第2ベースとしての第2鏡板26aと、第2ラップ26bとを有する。第2鏡板26aは、円盤形状である。第2鏡板26aの下面中央部には、上端軸受26cが形成されている。第2ラップ26bは、第2鏡板26aに直立して形成されている。第2ラップ26bは、渦巻き形状である。旋回スクロール26には、給油細孔63が形成されている。給油細孔63は、第2鏡板26aの上面外周部と、上端軸受26cの内側の空間とを連通している。
(1-2-2) Orbiting Scroll The orbiting scroll 26 includes a second end plate 26a as a second base and a second wrap 26b. The second end plate 26a has a disk shape. An upper end bearing 26c is formed at the center of the lower surface of the second end plate 26a. The second wrap 26b is formed upright on the second end plate 26a. The second wrap 26b has a spiral shape. The orbiting scroll 26 has an oil supply hole 63 formed therein. The oil supply pore 63 communicates the outer peripheral portion of the upper surface of the second end plate 26a and the space inside the upper end bearing 26c.
 第1ラップ24bと第2ラップ26bとが噛み合うことにより、固定スクロール24および旋回スクロール26は圧縮室40を形成する。圧縮室40は、第1鏡板24aと、第1ラップ24bと、第2鏡板26aと、第2ラップ26bとによって囲まれる空間である。圧縮室40の容積は、旋回スクロール26の公転運動によって徐々に減少する。旋回スクロール26の公転中に、第1鏡板24aおよび第1ラップ24bの下面は、第2鏡板26aおよび第2ラップ26bの上面と摺動する。本明細書において、旋回スクロール26と摺動する固定スクロール24の面を、摺動面24dと呼ぶ。 The fixed scroll 24 and the orbiting scroll 26 form a compression chamber 40 by the engagement of the first wrap 24b and the second wrap 26b. The compression chamber 40 is a space surrounded by the first end plate 24a, the first wrap 24b, the second end plate 26a, and the second wrap 26b. The volume of the compression chamber 40 is gradually reduced by the revolving motion of the orbiting scroll 26. During the revolution of the orbiting scroll 26, the lower surfaces of the first end plate 24a and the first wrap 24b slide with the upper surfaces of the second end plate 26a and the second wrap 26b. In this specification, the surface of the fixed scroll 24 that slides with the orbiting scroll 26 is referred to as a sliding surface 24d.
 旋回スクロール26の線膨張係数は、固定スクロール24の線膨張係数よりも大きい。より詳細には、旋回スクロール26の線膨張係数は、固定スクロール24の線膨張係数に対して101%から107%の範囲である。第2材料としての、旋回スクロール26の材料として、ダクタイル鋳鉄を用いることができる。好ましくは、FCD600を用いることができる。FCDの線膨張係数は、11.7~12.8(×10-6/℃)程度である。 The linear expansion coefficient of the orbiting scroll 26 is larger than the linear expansion coefficient of the fixed scroll 24. More specifically, the linear expansion coefficient of the orbiting scroll 26 is in the range of 101% to 107% with respect to the linear expansion coefficient of the fixed scroll 24. Ductile cast iron can be used as the material of the orbiting scroll 26 as the second material. Preferably, FCD600 can be used. The linear expansion coefficient of FCD is about 11.7 to 12.8 (× 10 −6 / ° C.).
  (1-3)ハウジング
 ハウジング23は、圧縮機構15の下方に配置されている。ハウジング23の外周面は、胴部ケーシング部11の内周面に気密状に接合されている。これにより、ケーシング10の内部空間は、ハウジング23の下方の高圧空間S1と、ハウジング23の上方の空間である低圧空間S2とに区画されている。ハウジング23は、固定スクロール24を載置し、固定スクロール24と共に旋回スクロール26を挟持している。ハウジング23の外周部には、第2圧縮冷媒流路48が鉛直方向に貫通して形成されている。第2圧縮冷媒流路48は、ハウジング23の上面において第1圧縮冷媒流路46と連通し、ハウジング23の下面において高圧空間S1と連通する。
(1-3) Housing The housing 23 is disposed below the compression mechanism 15. The outer peripheral surface of the housing 23 is joined to the inner peripheral surface of the body casing portion 11 in an airtight manner. Thereby, the internal space of the casing 10 is partitioned into a high-pressure space S <b> 1 below the housing 23 and a low-pressure space S <b> 2 that is a space above the housing 23. The housing 23 mounts a fixed scroll 24 and sandwiches the orbiting scroll 26 together with the fixed scroll 24. A second compressed refrigerant channel 48 is formed through the outer periphery of the housing 23 in the vertical direction. The second compressed refrigerant channel 48 communicates with the first compressed refrigerant channel 46 on the upper surface of the housing 23, and communicates with the high-pressure space S <b> 1 on the lower surface of the housing 23.
 ハウジング23の上面には、クランク室S3が凹設されている。ハウジング23には、ハウジング貫通孔31が形成されている。ハウジング貫通孔31は、クランク室S3の底面中央部から、ハウジング23の下面中央部まで、ハウジング23を鉛直方向に貫通している。本明細書において、ハウジング23の一部であり、かつ、ハウジング貫通孔31が形成されている部分を、上部軸受32という。ハウジング23には、ケーシング10の内面近傍の高圧空間S1とクランク室S3とを連通する油戻し通路23aが形成されている。 The crank chamber S3 is recessed in the upper surface of the housing 23. A housing through hole 31 is formed in the housing 23. The housing through hole 31 penetrates the housing 23 in the vertical direction from the center of the bottom surface of the crank chamber S3 to the center of the lower surface of the housing 23. In the present specification, a portion that is a part of the housing 23 and in which the housing through hole 31 is formed is referred to as an upper bearing 32. The housing 23 is formed with an oil return passage 23a that connects the high-pressure space S1 near the inner surface of the casing 10 and the crank chamber S3.
  (1-4)オルダム継手
 オルダム継手39は、旋回スクロール26とハウジング23との間に設置される環状の部材である。オルダム継手39は、公転している旋回スクロール26の自転を防止するための部材である。
(1-4) Oldham Joint The Oldham Joint 39 is an annular member installed between the orbiting scroll 26 and the housing 23. The Oldham joint 39 is a member for preventing rotation of the orbiting scroll 26 that is revolving.
  (1-5)駆動モータ
 駆動モータ16は、ハウジング23の下方に配置されるブラシレスDCモータである。駆動モータ16は、主に、ケーシング10の内面に固定されるステータ51と、ステータ51の内側にエアギャップを設けて配置されるロータ52とから構成されている。
(1-5) Drive Motor The drive motor 16 is a brushless DC motor disposed below the housing 23. The drive motor 16 is mainly composed of a stator 51 fixed to the inner surface of the casing 10 and a rotor 52 disposed with an air gap provided inside the stator 51.
 ステータ51の外周面には、ステータ51の上端面から下端面に亘り、かつ、周方向に所定間隔をおいて切欠形成されている複数のコアカット部が設けられている。コアカット部は、胴部ケーシング部11とステータ51との間を鉛直方向に延びるモータ冷却通路55を形成する。 The outer peripheral surface of the stator 51 is provided with a plurality of core cut portions that are formed from the upper end surface to the lower end surface of the stator 51 and are notched at predetermined intervals in the circumferential direction. The core cut portion forms a motor cooling passage 55 that extends in the vertical direction between the body casing portion 11 and the stator 51.
 ロータ52は、その回転中心を鉛直方向に貫通するクランクシャフト17に連結されている。ロータ52は、クランクシャフト17を介して、圧縮機構15に接続されている。 The rotor 52 is connected to the crankshaft 17 passing through the center of rotation in the vertical direction. The rotor 52 is connected to the compression mechanism 15 via the crankshaft 17.
  (1-6)下部軸受
 下部軸受60は、駆動モータ16の下方に配置されている。下部軸受60の外周面は、ケーシング10の内面に気密状に接合されている。下部軸受60は、クランクシャフト17を支持する。
(1-6) Lower Bearing The lower bearing 60 is disposed below the drive motor 16. The outer peripheral surface of the lower bearing 60 is joined to the inner surface of the casing 10 in an airtight manner. The lower bearing 60 supports the crankshaft 17.
  (1-7)クランクシャフト
 クランクシャフト17は、その軸方向が鉛直方向に沿うように配置されている。クランクシャフト17は、その上端部の軸心が上端部を除く部分の軸心に対してわずかに偏心している形状を有している。クランクシャフト17は、バランスウェイト18を有する。バランスウェイト18は、ハウジング23の下方かつ駆動モータ16の上方の高さ位置において、クランクシャフト17に密着して固定されている。
(1-7) Crankshaft The crankshaft 17 is arranged so that its axial direction is along the vertical direction. The crankshaft 17 has a shape in which the axial center of the upper end portion is slightly eccentric with respect to the axial center of the portion excluding the upper end portion. The crankshaft 17 has a balance weight 18. The balance weight 18 is fixed in close contact with the crankshaft 17 at a height position below the housing 23 and above the drive motor 16.
 クランクシャフト17は、ロータ52の回転中心を鉛直方向に貫通してロータ52に連結されている。クランクシャフト17は、その上端部が上端軸受26cに嵌入することで、旋回スクロール26に接続されている。クランクシャフト17は、上部軸受32および下部軸受60によって支持されている。 The crankshaft 17 is connected to the rotor 52 through the rotation center of the rotor 52 in the vertical direction. The crankshaft 17 is connected to the orbiting scroll 26 by fitting the upper end portion of the crankshaft 17 into the upper end bearing 26c. The crankshaft 17 is supported by the upper bearing 32 and the lower bearing 60.
 クランクシャフト17は、その軸方向に延びている主給油路61を内部に有している。主給油路61の上端は、クランクシャフト17の上端面と第2鏡板26aの下面とによって形成される油室67と連通している。油室67は、第2鏡板26aの給油細孔63を介して、摺動面24dおよび油溝24eに連通し、圧縮室40を介して最終的に低圧空間S2に連通する。主給油路61の下端は、油溜まり空間10aに貯留される潤滑油を圧縮機構15に供給するための管である油供給管に接続されている。 The crankshaft 17 has a main oil supply passage 61 extending in its axial direction. The upper end of the main oil supply passage 61 communicates with an oil chamber 67 formed by the upper end surface of the crankshaft 17 and the lower surface of the second end plate 26a. The oil chamber 67 communicates with the sliding surface 24d and the oil groove 24e through the oil supply hole 63 of the second end plate 26a, and finally communicates with the low pressure space S2 through the compression chamber 40. The lower end of the main oil supply path 61 is connected to an oil supply pipe that is a pipe for supplying the lubricating oil stored in the oil reservoir space 10 a to the compression mechanism 15.
 クランクシャフト17は、主給油路61から分岐する第1副給油路61a、第2副給油路61bおよび第3副給油路61cを有している。第1副給油路61a、第2副給油路61bおよび第3副給油路61cは、水平方向に延びている。第1副給油路61aは、クランクシャフト17と旋回スクロール26の上端軸受26cとの摺動面に開口している。第2副給油路61bは、クランクシャフト17とハウジング23の上部軸受32との摺動面に開口している。第3副給油路61cは、クランクシャフト17と下部軸受60との摺動面に開口している。 The crankshaft 17 has a first sub oil supply path 61a, a second sub oil supply path 61b, and a third sub oil supply path 61c branched from the main oil supply path 61. The first sub oil supply path 61a, the second sub oil supply path 61b, and the third sub oil supply path 61c extend in the horizontal direction. The first sub oil supply passage 61 a is open to the sliding surface between the crankshaft 17 and the upper end bearing 26 c of the orbiting scroll 26. The second sub oil supply passage 61 b opens in the sliding surface between the crankshaft 17 and the upper bearing 32 of the housing 23. The third sub oil supply passage 61 c is open on the sliding surface between the crankshaft 17 and the lower bearing 60.
  (1-8)吸入管
 吸入管19は、ケーシング10の外部から圧縮機構15へ、冷媒回路の冷媒を導入するための管である。吸入管19は、ケーシング10の上壁部12に気密状に嵌入されている。吸入管19は、低圧空間S2を鉛直方向に貫通する。
(1-8) Suction Pipe The suction pipe 19 is a pipe for introducing the refrigerant of the refrigerant circuit from the outside of the casing 10 to the compression mechanism 15. The suction pipe 19 is fitted into the upper wall portion 12 of the casing 10 in an airtight manner. The suction pipe 19 penetrates the low pressure space S2 in the vertical direction.
  (1-9)吐出管
 吐出管20は、高圧空間S1からケーシング10の外部へ、圧縮冷媒を吐出するための管である。吐出管20は、ケーシング10の胴部ケーシング部11に気密状に嵌入されている。吐出管20は、高圧空間S1を水平方向に貫通する。
(1-9) Discharge Pipe The discharge pipe 20 is a pipe for discharging the compressed refrigerant from the high-pressure space S1 to the outside of the casing 10. The discharge pipe 20 is fitted in the body casing part 11 of the casing 10 in an airtight manner. The discharge pipe 20 penetrates the high-pressure space S1 in the horizontal direction.
 (2)固定スクロールおよび旋回スクロールの詳細
 図2は、鉛直方向に沿って視た固定スクロール24の下面図である。図3は、鉛直方向に沿って視た旋回スクロール26の上面図である。図4Aは、図2の固定スクロール24の構成を説明する図である。図4Bは、図3の旋回スクロール26の構成を説明する図である。
(2) Details of Fixed Scroll and Orbiting Scroll FIG. 2 is a bottom view of the fixed scroll 24 viewed along the vertical direction. FIG. 3 is a top view of the orbiting scroll 26 viewed along the vertical direction. FIG. 4A is a diagram illustrating the configuration of the fixed scroll 24 of FIG. 4B is a diagram illustrating the configuration of the orbiting scroll 26 of FIG.
 スクロール圧縮機101の運転中に第1ラップ24bにかかる負荷は、第1ラップ24bの中心(すなわち第1ラップ24bの巻き始め)に向かうほど高くなる。このため、第1ラップ24bの内周端の厚みは、第1ラップ24bの外周端の厚みよりも厚い。本実施形態においては、第1ラップ24bの厚みは、全体的に、外周側から内周側へ向かって徐々に厚くなる。第1ラップ24bの高さは、一定である。 During the operation of the scroll compressor 101, the load applied to the first wrap 24b increases toward the center of the first wrap 24b (that is, the start of winding of the first wrap 24b). For this reason, the thickness of the inner peripheral end of the first wrap 24b is thicker than the thickness of the outer peripheral end of the first wrap 24b. In the present embodiment, the thickness of the first wrap 24b is gradually increased from the outer peripheral side toward the inner peripheral side as a whole. The height of the first wrap 24b is constant.
 同様に、スクロール圧縮機101の運転中に第2ラップ26bにかかる負荷は、第2ラップ26bの中心(すなわち第2ラップ26bの巻き始め)に向かうほど高くなる。このため、第2ラップ26bの内周端の厚みは、第2ラップ26bの外周端の厚みよりも厚い。本実施形態においては、第2ラップ26bの厚みは、全体的に、外周側から内周側へ向かって徐々に厚くなる。第2ラップ26bの高さは、一定である。 Similarly, the load applied to the second wrap 26b during the operation of the scroll compressor 101 becomes higher toward the center of the second wrap 26b (that is, the winding start of the second wrap 26b). For this reason, the thickness of the inner peripheral end of the second wrap 26b is thicker than the thickness of the outer peripheral end of the second wrap 26b. In the present embodiment, the thickness of the second wrap 26b is gradually increased from the outer peripheral side toward the inner peripheral side as a whole. The height of the second wrap 26b is constant.
 第1ラップ24bの高さは、第2ラップ26bの高さと同一である。一方、第2ラップ26bの厚みの平均は、第1ラップ24bの厚みの平均よりも薄い。すなわち、線膨張係数が大きい側のラップ(すなわち第2ラップ26b)の厚みの平均が、線膨張係数が小さい側のラップ(すなわち第1ラップ24b)の厚みの平均よりも薄い。本実施形態においては、第2ラップ26bの厚みは、第1ラップ24bの厚みよりも全体的に薄い。第2ラップ26bの厚みと第1ラップ24bの厚みの差は、特に、それぞれの内周端において最も大きい。 The height of the first wrap 24b is the same as the height of the second wrap 26b. On the other hand, the average thickness of the second wrap 26b is thinner than the average thickness of the first wrap 24b. That is, the average thickness of the wrap having the larger linear expansion coefficient (that is, the second wrap 26b) is thinner than the average thickness of the wrap having the smaller linear expansion coefficient (that is, the first wrap 24b). In the present embodiment, the thickness of the second wrap 26b is generally thinner than the thickness of the first wrap 24b. The difference between the thickness of the second wrap 26b and the thickness of the first wrap 24b is particularly largest at each inner peripheral end.
 固定スクロール24および旋回スクロール26は、共に鉄系の部材により構成されているにも関わらず、上述のように、第1ラップ24bの厚みと第2ラップ26bの厚みは互いに異なる。 Although the fixed scroll 24 and the orbiting scroll 26 are both composed of iron-based members, the thickness of the first wrap 24b and the thickness of the second wrap 26b are different from each other as described above.
 (3)スクロール圧縮機の動作
 最初に、駆動モータ16が駆動することによって、ロータ52が回転する。これにより、ロータ52に固定されているクランクシャフト17が回転する。クランクシャフト17の回転運動は、上端軸受26cを介して旋回スクロール26に伝達される。クランクシャフト17の上端部の軸心は、クランクシャフト17の回転運動の軸に対して偏心している。旋回スクロール26は、オルダム継手39を介してハウジング23に係合されている。これにより、旋回スクロール26は、自転することなく、固定スクロール24に対して公転運動を行う。
(3) Operation of Scroll Compressor First, the drive motor 16 is driven to rotate the rotor 52. As a result, the crankshaft 17 fixed to the rotor 52 rotates. The rotational movement of the crankshaft 17 is transmitted to the orbiting scroll 26 through the upper end bearing 26c. The axis of the upper end portion of the crankshaft 17 is eccentric with respect to the axis of rotation of the crankshaft 17. The orbiting scroll 26 is engaged with the housing 23 via an Oldham joint 39. As a result, the orbiting scroll 26 performs a revolving motion with respect to the fixed scroll 24 without rotating.
 圧縮される前の低温低圧の冷媒は、吸入管19から主吸入孔24cを経由して、圧縮機構15の圧縮室40に供給される。旋回スクロール26の公転運動により、圧縮室40は容積を徐々に減少させながら固定スクロール24の外周部から中心部に向かって移動する。その結果、圧縮室40の冷媒は圧縮されて圧縮冷媒となる。圧縮室40が固定スクロール24の外周部から中心部に向かって移動する場合に、圧縮室40の温度は移動に伴い上昇する。特に、冷媒が高負荷条件で圧縮される場合には、温度がより上昇する。温度の上昇に伴い、第1ラップ24bおよび第2ラップ26bは膨張する。 The low-temperature and low-pressure refrigerant before being compressed is supplied from the suction pipe 19 to the compression chamber 40 of the compression mechanism 15 via the main suction hole 24c. By the revolving motion of the orbiting scroll 26, the compression chamber 40 moves from the outer peripheral portion of the fixed scroll 24 toward the center portion while gradually reducing the volume. As a result, the refrigerant in the compression chamber 40 is compressed to become a compressed refrigerant. When the compression chamber 40 moves from the outer peripheral portion of the fixed scroll 24 toward the center portion, the temperature of the compression chamber 40 increases with the movement. In particular, when the refrigerant is compressed under a high load condition, the temperature rises more. As the temperature rises, the first wrap 24b and the second wrap 26b expand.
 ここで、本実施形態のスクロール圧縮機101では、熱による影響をより受け易い第2ラップ26b全体の厚みの平均が、第1ラップ24b全体の厚みの平均よりも薄い。したがって、第2ラップ26bの、熱による膨張量は抑制される。結果として、固定スクロール24と旋回スクロール26の接触を抑制することができる。 Here, in the scroll compressor 101 of the present embodiment, the average thickness of the entire second wrap 26b that is more easily affected by heat is thinner than the average thickness of the entire first wrap 24b. Therefore, the expansion amount due to heat of the second wrap 26b is suppressed. As a result, contact between the fixed scroll 24 and the orbiting scroll 26 can be suppressed.
 圧縮冷媒は、吐出孔41からマフラー空間45へ吐出された後、第1圧縮冷媒流路46および第2圧縮冷媒流路48を経由して、高圧空間S1へ吐出される。そして、圧縮冷媒は、モータ冷却通路55を下降して、駆動モータ16の下方の高圧空間S1に到達する。そして、圧縮冷媒は、流れの向きを反転させて、他のモータ冷却通路55および駆動モータ16のエアギャップを上昇する。最終的に、圧縮冷媒は、吐出管20からスクロール圧縮機101の外部に吐出される。 The compressed refrigerant is discharged from the discharge hole 41 to the muffler space 45, and then discharged to the high-pressure space S1 via the first compressed refrigerant channel 46 and the second compressed refrigerant channel 48. Then, the compressed refrigerant descends the motor cooling passage 55 and reaches the high pressure space S <b> 1 below the drive motor 16. Then, the compressed refrigerant reverses the flow direction and raises the air gap between the other motor cooling passage 55 and the drive motor 16. Finally, the compressed refrigerant is discharged from the discharge pipe 20 to the outside of the scroll compressor 101.
 (4)スクロール圧縮機の特徴
 本実施形態のスクロール圧縮機101では、旋回スクロール26の線膨張係数は、固定スクロール24の線膨張係数よりも大きい。さらに、固定スクロール24と旋回スクロール26では、第1ラップ24b全体の厚みの平均と第2ラップ26b全体の厚みの平均とが互いに異なる。具体的には、第2ラップ26b全体の厚みの平均は、第1ラップ24b全体の厚みの平均よりも薄い。
(4) Features of the scroll compressor In the scroll compressor 101 of this embodiment, the linear expansion coefficient of the orbiting scroll 26 is larger than the linear expansion coefficient of the fixed scroll 24. Further, in the fixed scroll 24 and the orbiting scroll 26, the average thickness of the entire first wrap 24b and the average thickness of the entire second wrap 26b are different from each other. Specifically, the average thickness of the entire second wrap 26b is thinner than the average thickness of the entire first wrap 24b.
 ここで、第1ラップ24bの、熱による膨張量は、温度の変化量と、第1ラップ24bの本来の厚みと、第1ラップ24bの線膨張係数との積によって算出される。同様に、第2ラップ26bの、熱による膨張量は、温度の変化量と、第2ラップ26bの本来の厚みと、第2ラップ26bの線膨張係数との積によって算出される。温度の変化量は、スクロール圧縮機101の運転前の温度と、スクロール圧縮機101の運転中の温度との差である。本実施形態においては、線膨張係数が大きい側の第2ラップ26bが、全体として、線膨張係数が小さい側の第1ラップ24bよりも薄く形成されている。線膨張係数の差による膨張量の差異を考慮して第2ラップ26bの厚みが形成されているので、第2ラップ26bの、熱による膨張量を抑制することができる。 Here, the amount of thermal expansion of the first wrap 24b is calculated by the product of the amount of change in temperature, the original thickness of the first wrap 24b, and the linear expansion coefficient of the first wrap 24b. Similarly, the amount of expansion of the second wrap 26b due to heat is calculated by the product of the amount of change in temperature, the original thickness of the second wrap 26b, and the linear expansion coefficient of the second wrap 26b. The amount of change in temperature is the difference between the temperature before operation of the scroll compressor 101 and the temperature during operation of the scroll compressor 101. In the present embodiment, the second wrap 26b on the side having the larger linear expansion coefficient is formed thinner than the first wrap 24b on the side having the smaller linear expansion coefficient. Since the thickness of the second wrap 26b is formed in consideration of the difference in expansion amount due to the difference in linear expansion coefficient, the expansion amount of the second wrap 26b due to heat can be suppressed.
 以上のように、熱による膨張量を見越して、第2ラップが予め薄めに形成されているので、固定スクロール24と旋回スクロール26の接触を抑制することができる。特に、第1ラップ24bと第2ラップ26bの接触による磨耗を抑制することができる。 As described above, the second lap is formed thin in advance in anticipation of the amount of expansion due to heat, so that the contact between the fixed scroll 24 and the orbiting scroll 26 can be suppressed. In particular, wear due to contact between the first wrap 24b and the second wrap 26b can be suppressed.
 本実施形態のスクロール圧縮機101では、旋回スクロール26の線膨張係数は、固定スクロール24の線膨張係数に対して101%から107%の範囲である。すなわち、固定スクロール24の線膨張係数と旋回スクロール26の線膨張係数との差が比較的小さい場合であっても、その差を無視することなく、第2ラップ26bの厚みに反映させている。したがって、固定スクロール24と旋回スクロール26の接触を抑制することができる。 In the scroll compressor 101 of this embodiment, the linear expansion coefficient of the orbiting scroll 26 is in the range of 101% to 107% with respect to the linear expansion coefficient of the fixed scroll 24. That is, even when the difference between the linear expansion coefficient of the fixed scroll 24 and the linear expansion coefficient of the orbiting scroll 26 is relatively small, the difference is reflected in the thickness of the second wrap 26b without being ignored. Therefore, contact between the fixed scroll 24 and the orbiting scroll 26 can be suppressed.
 本実施形態のスクロール圧縮機101においては、固定スクロール24および旋回スクロール26は、冷媒としてR32を50重量%よりも多く含む冷媒を圧縮する。R32を50重量%よりも多く含む冷媒とR410A冷媒が同条件により圧縮された場合には、R32を50重量%よりも多く含む冷媒は、R410A冷媒よりも高温になる。すなわち、第1ラップ24bおよび第2ラップ26bが、より変形し易くなる。この場合であっても、線膨張係数の差に応じて第2ラップ26bの厚みが設定されているので、固定スクロール24と旋回スクロール26の接触を抑制することができる。 In the scroll compressor 101 of the present embodiment, the fixed scroll 24 and the orbiting scroll 26 compress a refrigerant containing more than 50% by weight of R32 as a refrigerant. When the refrigerant containing more than 50% by weight of R32 and the R410A refrigerant are compressed under the same conditions, the refrigerant containing more than 50% by weight of R32 has a higher temperature than the refrigerant of R410A. That is, the first wrap 24b and the second wrap 26b are more easily deformed. Even in this case, since the thickness of the second wrap 26b is set according to the difference in the linear expansion coefficient, the contact between the fixed scroll 24 and the orbiting scroll 26 can be suppressed.
 <変形例>
 本発明の実施形態に適用可能な変形例を説明する。
<Modification>
A modification applicable to the embodiment of the present invention will be described.
 (1)変形例A
 以上の説明では、第2ラップ26b全体の厚みが第1ラップ24b全体の厚みよりも薄い場合を例に挙げたが、第2ラップ26bの、熱による膨張量を抑制する構成は、これに限られない。
(1) Modification A
In the above description, the case where the thickness of the entire second wrap 26b is thinner than the thickness of the entire first wrap 24b is taken as an example, but the configuration for suppressing the amount of expansion of the second wrap 26b due to heat is limited to this. I can't.
 図5Aは、固定スクロール24の構成の他の例を説明する図である。図5Bは、旋回スクロール26の構成の他の例を説明する図である。図5Aおよび図5Bにおいて、図4Aに示す固定スクロール24および図4Bに示す旋回スクロール26と共通する構成要素には、図4Aに示す固定スクロール24および図4Bに示す旋回スクロール26で用いられた参照符号と同じ参照符号が用いられている。なお、固定スクロール24の線膨張係数と旋回スクロール26の線膨張係数の大小関係は、既に説明した通りである。図5Aの固定スクロール24は、図4Aの固定スクロール24と同一である。 FIG. 5A is a diagram illustrating another example of the configuration of the fixed scroll 24. FIG. 5B is a diagram for explaining another example of the configuration of the orbiting scroll 26. 5A and 5B, the same components as those of the fixed scroll 24 shown in FIG. 4A and the orbiting scroll 26 shown in FIG. 4B are referenced for the fixed scroll 24 shown in FIG. 4A and the orbiting scroll 26 shown in FIG. 4B. The same reference symbols as those used are used. The magnitude relationship between the linear expansion coefficient of the fixed scroll 24 and the linear expansion coefficient of the orbiting scroll 26 is as already described. The fixed scroll 24 of FIG. 5A is the same as the fixed scroll 24 of FIG. 4A.
 図5Bの旋回スクロール26では、第2ラップ26bの内周端の高さは、第2ラップ26bの外周端の高さよりも低い。ここでは、第2ラップ26bの高さは、外周側から内周側へ向かって徐々に低くなる。なお、第2ラップ26bの高さは、外周側から内周側へ向かって段階的に低くなってもよい。 5B, the height of the inner peripheral end of the second wrap 26b is lower than the height of the outer peripheral end of the second wrap 26b. Here, the height of the second wrap 26b gradually decreases from the outer peripheral side toward the inner peripheral side. Note that the height of the second wrap 26b may be reduced stepwise from the outer peripheral side toward the inner peripheral side.
 図5Bの第2ラップ26bの高さの平均は、第1ラップ24bの高さの平均よりも低い。すなわち、線膨張係数が大きい側のラップ(すなわち第2ラップ26b)の高さの平均が、線膨張係数が小さい側のラップ(すなわち第1ラップ24b)の高さの平均よりも低い。第2ラップ26bの高さと第1ラップ24bの高さの差は、特に、それぞれの内周端において最も大きい。 The average height of the second wrap 26b in FIG. 5B is lower than the average height of the first wrap 24b. That is, the average height of the wrap on the side with the larger linear expansion coefficient (that is, the second wrap 26b) is lower than the average height of the wrap on the side with the smaller linear expansion coefficient (that is, the first wrap 24b). The difference between the height of the second wrap 26b and the height of the first wrap 24b is particularly largest at each inner peripheral end.
 以上のように、固定スクロール24と旋回スクロール26では、第1ラップ24b全体の高さの平均と第2ラップ26b全体の高さの平均とが互いに異なる。具体的には、第2ラップ26b全体の高さの平均は、第1ラップ24b全体の高さの平均よりも低い。すなわち、線膨張係数が大きい側の第2ラップ26bが、全体として、線膨張係数が小さい側の第1ラップ24bよりも低く形成されている。線膨張係数の差による膨張量の差異を考慮して第2ラップ26bの高さが形成されているので、第2ラップ26bの、熱による膨張量を抑制することができる。 As described above, in the fixed scroll 24 and the orbiting scroll 26, the average height of the entire first wrap 24b is different from the average height of the entire second wrap 26b. Specifically, the average height of the entire second wrap 26b is lower than the average height of the entire first wrap 24b. That is, the second wrap 26b on the side having a larger linear expansion coefficient is formed lower than the first wrap 24b on the side having a smaller linear expansion coefficient as a whole. Since the height of the second wrap 26b is formed in consideration of the difference in expansion amount due to the difference in linear expansion coefficient, the expansion amount of the second wrap 26b due to heat can be suppressed.
 以上のように、熱による膨張量を見越して、第2ラップが予め低めに形成されているので、固定スクロール24と旋回スクロール26の接触を抑制することができる。特に、第1鏡板24aと第2ラップ26bの接触による磨耗を抑制することができる。 As described above, the second lap is formed in advance in anticipation of the amount of expansion due to heat, so that contact between the fixed scroll 24 and the orbiting scroll 26 can be suppressed. In particular, wear due to contact between the first end plate 24a and the second wrap 26b can be suppressed.
 図6Aは、固定スクロール24の構成の他の例を説明する図である。図6Bは、旋回スクロール26の構成の他の例を説明する図である。図6Aおよび図6Bにおいて、図4Aに示す固定スクロール24および図4Bに示す旋回スクロール26と共通する構成要素には、図4Aに示す固定スクロール24および図4Bに示す旋回スクロール26で用いられた参照符号と同じ参照符号が用いられている。なお、固定スクロール24の線膨張係数と旋回スクロール26の線膨張係数の大小関係は、既に説明した通りである。図6Aの固定スクロール24は、図4Aの固定スクロール24と同一である。 FIG. 6A is a diagram for explaining another example of the configuration of the fixed scroll 24. FIG. 6B is a diagram illustrating another example of the configuration of the orbiting scroll 26. 6A and 6B, the same components as those of the fixed scroll 24 shown in FIG. 4A and the orbiting scroll 26 shown in FIG. 4B are referenced for the fixed scroll 24 shown in FIG. 4A and the orbiting scroll 26 shown in FIG. 4B. The same reference symbols as those used are used. The magnitude relationship between the linear expansion coefficient of the fixed scroll 24 and the linear expansion coefficient of the orbiting scroll 26 is as already described. The fixed scroll 24 in FIG. 6A is the same as the fixed scroll 24 in FIG. 4A.
 図6Bの旋回スクロール26では、第2ラップ26bの内周端の厚みは、第2ラップ26bの外周端の厚みよりも厚い。ここでは、第2ラップ26bの厚みは、全体的に、外周側から内周側へ向かって徐々に厚くなる。また、第2ラップ26bの内周端の高さは、第2ラップ26bの外周端の高さよりも低い。ここでは、第2ラップ26bの高さは、外周側から内周側へ向かって徐々に低くなる。なお、第2ラップ26bの高さは、外周側から内周側へ向かって段階的に低くなってもよい。 6B, the thickness of the inner peripheral end of the second wrap 26b is thicker than the thickness of the outer peripheral end of the second wrap 26b. Here, as a whole, the thickness of the second wrap 26b gradually increases from the outer peripheral side toward the inner peripheral side. Moreover, the height of the inner peripheral end of the second wrap 26b is lower than the height of the outer peripheral end of the second wrap 26b. Here, the height of the second wrap 26b gradually decreases from the outer peripheral side toward the inner peripheral side. Note that the height of the second wrap 26b may be reduced stepwise from the outer peripheral side toward the inner peripheral side.
 図6Bの第2ラップ26bの厚みの平均は第1ラップ24bの厚みの平均よりも薄く、かつ、第2ラップ26bの高さの平均は第1ラップ24bの高さの平均よりも低い。すなわち、線膨張係数が大きい側のラップ(すなわち第2ラップ26b)の厚みおよび高さの平均のそれぞれが、線膨張係数が小さい側のラップ(すなわち第1ラップ24b)の厚みおよび高さの平均のそれぞれよりも小さい。第2ラップ26bの厚みと第1ラップ24bの厚みの差、および第2ラップ26bの高さと第1ラップ24bの高さの差のそれぞれは、特に、内周端において最も大きい。 6B, the average thickness of the second wrap 26b is thinner than the average thickness of the first wrap 24b, and the average height of the second wrap 26b is lower than the average height of the first wrap 24b. That is, the average of the thickness and height of the wrap having the larger linear expansion coefficient (that is, the second wrap 26b) is the average of the thickness and height of the wrap having the smaller linear expansion coefficient (that is, the first wrap 24b). Smaller than each. Each of the difference between the thickness of the second wrap 26b and the thickness of the first wrap 24b and the difference between the height of the second wrap 26b and the height of the first wrap 24b are particularly largest at the inner peripheral end.
 以上のように、線膨張係数の差による膨張量の差異を考慮して、第2ラップ26bの厚みおよび高さが形成されているので、第2ラップ26bの、熱による膨張量を抑制することができる。結果として、固定スクロール24と旋回スクロール26の接触を抑制することができる。 As described above, the thickness and height of the second wrap 26b are formed in consideration of the difference in the expansion amount due to the difference in the linear expansion coefficient, so that the expansion amount due to heat of the second wrap 26b is suppressed. Can do. As a result, contact between the fixed scroll 24 and the orbiting scroll 26 can be suppressed.
 (2)変形例B
 以上の説明では、第1ラップ24bの高さは一定であったが、第2ラップ26bの高さの平均が第1ラップ24bの高さの平均よりも低いという条件を満たす範囲において、第1ラップ24bの高さは一定でなくてもよい。第1ラップ24bの内周端の高さは、第1ラップ24bの外周端の高さよりも低くてもよい。第1ラップ24bの高さは、外周側から内周側へ向かって徐々に低くなってもよいし、外周側から内周側へ向かって段階的に低くなってもよい。
(2) Modification B
In the above description, the height of the first wrap 24b is constant, but the first wrap is within a range that satisfies the condition that the average height of the second wrap 26b is lower than the average height of the first wrap 24b. The height of the wrap 24b may not be constant. The height of the inner peripheral end of the first wrap 24b may be lower than the height of the outer peripheral end of the first wrap 24b. The height of the first wrap 24b may gradually decrease from the outer peripheral side toward the inner peripheral side, or may decrease stepwise from the outer peripheral side toward the inner peripheral side.
 (3)変形例C
 以上の説明では、第2ラップ26b全体の厚みおよび高さの少なくとも一方が第1ラップ24b全体の厚みおよび高さの少なくとも一方よりも小さい場合を例に挙げたが、固定スクロール24の線膨張係数が旋回スクロール26の線膨張係数よりも大きい場合には、第1ラップ24b全体の厚みの平均が第2ラップ26b全体の厚みの平均よりも薄くてもよい。同様に、第1ラップ24b全体の高さの平均が第2ラップ26b全体の高さの平均よりも低くてもよいし、第1ラップ24b全体の高さの平均が第2ラップ26b全体の高さの平均よりも低く、かつ、第1ラップ24b全体の厚みの平均が第2ラップ26b全体の厚みの平均よりも薄くてもよい。
(3) Modification C
In the above description, the case where at least one of the thickness and height of the entire second wrap 26b is smaller than at least one of the thickness and height of the entire first wrap 24b has been described as an example. Is larger than the linear expansion coefficient of the orbiting scroll 26, the average thickness of the entire first wrap 24b may be thinner than the average thickness of the entire second wrap 26b. Similarly, the average height of the entire first wrap 24b may be lower than the average height of the entire second wrap 26b, and the average height of the entire first wrap 24b may be the height of the entire second wrap 26b. The average thickness of the entire first wrap 24b may be lower than the average thickness of the second wrap 26b.
 (4)変形例D
 第1鏡板24aのうちの主吸入孔24cから吐出孔41までの冷媒流路部分が、外周側から内周側に向かって段差状に形成されてもよい。第2鏡板26aのうちの第2ラップ26bの中心から外周端に囲まれた冷媒流路部分が、外周側から内周側に向かって段差状に形成されてもよい。
(4) Modification D
The refrigerant flow path portion from the main suction hole 24c to the discharge hole 41 in the first end plate 24a may be formed in a step shape from the outer peripheral side toward the inner peripheral side. The refrigerant flow path portion surrounded by the outer peripheral end from the center of the second wrap 26b of the second end plate 26a may be formed in a step shape from the outer peripheral side toward the inner peripheral side.
 図7Aは、第1鏡板24aと第2ラップ26bの間の隙間である第1隙間を説明する図である。図7Aにおいては、横軸は第2ラップ26bの中心(すなわち巻き始め)からの角度を示し、縦軸は第1隙間の高さを示す。すなわち、第1鏡板24aと第2ラップ26bの先端との距離を示す。ここでは、第1鏡板24aのうちの主吸入孔24cから吐出孔41までの冷媒流路部分24fには、内周側から順に第1領域34a、第2領域34b、および第3領域34cが形成されている。 FIG. 7A is a diagram illustrating a first gap that is a gap between the first end plate 24a and the second lap 26b. In FIG. 7A, the horizontal axis indicates the angle from the center (that is, the start of winding) of the second wrap 26b, and the vertical axis indicates the height of the first gap. That is, the distance between the first end plate 24a and the tip of the second wrap 26b is shown. Here, a first region 34a, a second region 34b, and a third region 34c are formed in order from the inner peripheral side in the refrigerant flow path portion 24f from the main suction hole 24c to the discharge hole 41 in the first end plate 24a. Has been.
 隙間高さh1は、第2ラップ26bの先端と第1領域34aとの距離を示す。隙間高さh2は、第2ラップ26bの先端と第2領域34bとの距離を示す。隙間高さh3は、第2ラップ26bの先端と第3領域34cとの距離を示す。また、ここでは、第2ラップ26bの中心から540°までの範囲を第2ラップ26bの中心部と定義する。第2ラップ26bの540°から外周端までの範囲を非中心部と定義する。第2ラップ26bの中心から540°までの範囲は、圧縮室40の中心部を形成する。第2ラップ26bの540°から外周端までの範囲は、圧縮室40の非中心部を形成する。 The gap height h 1 indicates the distance between the tip of the second wrap 26b and the first region 34a. Gap height h 2 indicates the distance between the tip and the second region 34b of the second lap 26b. The clearance height h 3 indicates the distance between the tip of the second wrap 26b and the third region 34c. Here, the range from the center of the second wrap 26b to 540 ° is defined as the center of the second wrap 26b. A range from 540 ° to the outer peripheral edge of the second wrap 26b is defined as a non-center portion. A range from the center of the second wrap 26 b to 540 ° forms the central portion of the compression chamber 40. A range from 540 ° to the outer peripheral end of the second wrap 26 b forms a non-central portion of the compression chamber 40.
 図7Aに示されるように、冷媒流路部分24fの高さは、外周側から内周側に向かって低くなっている。冷媒流路部分24fの高さは、段差状に低くなっている。つまり、第3領域34c、第2領域34b、第1領域34aの順に低くなっている。 As shown in FIG. 7A, the height of the refrigerant flow path portion 24f decreases from the outer peripheral side toward the inner peripheral side. The height of the refrigerant flow path portion 24f is lowered stepwise. That is, the third region 34c, the second region 34b, and the first region 34a become lower in this order.
 冷媒流路部分24fが段差状に低くなることによって、冷媒流路部分24fには、2つの段差部が形成されている。すなわち、第3領域34cと第2領域34bの境界、および第2領域34bと第1領域34aの境界のそれぞれに、段差部が形成されている。 When the refrigerant flow path portion 24f is lowered in a stepped shape, two step portions are formed in the refrigerant flow path portion 24f. That is, step portions are formed at the boundary between the third region 34c and the second region 34b and at the boundary between the second region 34b and the first region 34a.
 一方、第2ラップの26bの高さは一定である。結果として、第1隙間の高さは、第2ラップ26bの外周側から内周側に向かって広くなっている。第1隙間の高さは、段差状に変化している。隙間高さh1が最も大きく、隙間高さh3が最も小さい。 On the other hand, the height of the second lap 26b is constant. As a result, the height of the first gap is increased from the outer peripheral side of the second wrap 26b toward the inner peripheral side. The height of the first gap changes in a step shape. The gap height h 1 is the largest and the gap height h 3 is the smallest.
 以上のように、冷媒流路部分26fの高さが変化している一方で、第2ラップの26bの高さは一定である。したがって、冷媒流路部分26fの高さの変化率をそのまま第1隙間の変化率とみなすことができる。 As described above, while the height of the refrigerant flow path portion 26f changes, the height of the second wrap 26b is constant. Therefore, the change rate of the height of the refrigerant flow path portion 26f can be regarded as the change rate of the first gap as it is.
 第2ラップ26bの中心部における内周端と外周端の第1隙間の変化率は、第2ラップ26bの非中心部における内周端と外周端の第1隙間の変化率よりも大きい。つまり、第1隙間の高さが0°から540°にかけて隙間高さh1と隙間高さh2の差だけ比較的大きく変化している一方で、540°から900°にかけて隙間高さh2と隙間高さh3の差だけしか変化していない。換言すると、第2ラップ26bの中心部における第1隙間の変化率は、局所的に大きくなる。特に高温となり得る、圧縮室40の中心部において、熱による第2ラップ26bの膨張を見越して、第2ラップ26bの中心部の第1隙間が局所的に大きくなるように設定されているので、圧縮室40の中心部での固定スクロール24と旋回スクロール26の接触を抑制することができる。 The rate of change of the first gap between the inner peripheral end and the outer peripheral end in the center portion of the second wrap 26b is greater than the rate of change of the first gap between the inner peripheral end and the outer peripheral end in the non-center portion of the second wrap 26b. That is, while the height of the first gap is relatively large changes by the difference between the gap height h 1 and the gap height h 2 over the 540 ° from 0 °, the gap height over the 900 ° of 540 ° h 2 And only the difference between the gap height h 3 changes. In other words, the rate of change of the first gap at the center of the second lap 26b is locally increased. Especially in the central part of the compression chamber 40, which can be high temperature, the first gap in the central part of the second wrap 26b is set to be locally large in anticipation of the expansion of the second wrap 26b due to heat. Contact between the fixed scroll 24 and the orbiting scroll 26 at the center of the compression chamber 40 can be suppressed.
 図7Bは、第1ラップ24bと第2鏡板26aの間の隙間である第2隙間を説明する図である。図7Bにおいては、横軸は第1ラップ24bの中心(すなわち巻き始め)からの角度を示し、縦軸は第2隙間の高さを示す。すなわち、第1ラップ24bの先端と第2鏡板26aとの距離を示す。ここでは、第2鏡板26aのうちの第2ラップ26bの中心から外周端に囲まれた冷媒流路部分26fには、内周側から順に第1領域36a、第2領域36b、および第3領域36cが形成されている。 FIG. 7B is a diagram illustrating a second gap that is a gap between the first wrap 24b and the second end plate 26a. In FIG. 7B, the horizontal axis indicates the angle from the center (that is, the start of winding) of the first wrap 24b, and the vertical axis indicates the height of the second gap. That is, the distance between the tip of the first wrap 24b and the second end plate 26a is shown. Here, in the refrigerant flow passage portion 26f surrounded by the outer peripheral end from the center of the second wrap 26b of the second end plate 26a, the first region 36a, the second region 36b, and the third region are sequentially arranged from the inner peripheral side. 36c is formed.
 隙間高さh4は、第1ラップ24bの先端と第1領域36aとの距離を示す。隙間高さh5は、第1ラップ24bの先端と第2領域36bとの距離を示す。隙間高さh6は、第1ラップ24bの先端と第3領域36cとの距離を示す。また、ここでは、第1ラップ24bの中心から540°までの範囲を第1ラップ24bの中心部と定義する。第1ラップ24bの540°から外周端までの範囲を非中心部と定義する。第1ラップ24bの中心から540°までの範囲は、圧縮室40の中心部を形成する。第1ラップ24bの540°から外周端までの範囲は、圧縮室40の非中心部を形成する。 The gap height h 4 indicates the distance between the tip of the first wrap 24b and the first region 36a. The gap height h 5 indicates the distance between the tip of the first wrap 24b and the second region 36b. The clearance height h 6 indicates the distance between the tip of the first wrap 24b and the third region 36c. Here, the range from the center of the first wrap 24b to 540 ° is defined as the center of the first wrap 24b. A range from 540 ° to the outer peripheral edge of the first lap 24b is defined as a non-center portion. A range from the center of the first wrap 24 b to 540 ° forms the center of the compression chamber 40. A range from 540 ° to the outer peripheral end of the first wrap 24 b forms a non-central portion of the compression chamber 40.
 図7Bに示されるように、冷媒流路部分26fの高さは、外周側から内周側に向かって低くなっている。冷媒流路部分26fの高さは、段差状に低くなっている。つまり、第3領域36c、第2領域36b、第1領域36aの順に低くなっている。 7B, the height of the refrigerant flow path portion 26f decreases from the outer peripheral side toward the inner peripheral side. The height of the refrigerant flow path portion 26f is lowered stepwise. That is, the third region 36c, the second region 36b, and the first region 36a become lower in this order.
 冷媒流路部分26fが段差状に低くなることによって、冷媒流路部分26fには、2つの段差部が形成されている。すなわち、第3領域36cと第2領域36bの境界、および第2領域36bと第1領域36aの境界のそれぞれに、段差部が形成されている。 When the refrigerant flow path portion 26f is lowered in a stepped shape, two step portions are formed in the refrigerant flow path portion 26f. That is, stepped portions are formed at the boundary between the third region 36c and the second region 36b and at the boundary between the second region 36b and the first region 36a.
 一方、第1ラップの24bの高さは一定である。結果として、第2隙間の高さは、第1ラップ24bの外周側から内周側に向かって広くなっている。第2隙間の高さは、段差状に変化している。隙間高さh4が最も大きく、隙間高さh6が最も小さい。 On the other hand, the height of the first lap 24b is constant. As a result, the height of the second gap is increased from the outer peripheral side of the first wrap 24b toward the inner peripheral side. The height of the second gap changes in a step shape. The gap height h 4 is the largest and the gap height h 6 is the smallest.
 以上のように、冷媒流路部分24fの高さが変化している一方で、第1ラップの24bの高さは一定である。したがって、冷媒流路部分24fの高さの変化率をそのまま第2隙間の変化率とみなすことができる。 As described above, while the height of the refrigerant flow path portion 24f changes, the height of the first wrap 24b is constant. Therefore, the change rate of the height of the refrigerant flow path portion 24f can be regarded as the change rate of the second gap as it is.
 第1ラップ24bの中心部における内周端と外周端の第2隙間の変化率は、第1ラップ24bの非中心部における内周端と外周端の第2隙間の変化率よりも大きい。つまり、第2隙間の高さが0°から540°にかけて隙間高さh4と隙間高さh5の差だけ比較的大きく変化している一方で、540°から900°にかけて隙間高さh5と隙間高さh6の差だけしか変化していない。換言すると、第1ラップ24bの中心部における第2隙間の変化率は、局所的に大きくなる。特に高温となり得る、圧縮室40の中心部において、熱による第1ラップ24bの膨張を見越して、第1ラップ24bの中心部の第2隙間が局所的に大きくなるように設定されているので、圧縮室40の中心部での固定スクロール24と旋回スクロール26の接触を抑制することができる。 The rate of change of the second gap between the inner peripheral end and the outer peripheral end in the central portion of the first wrap 24b is larger than the rate of change of the second gap between the inner peripheral end and the outer peripheral end in the non-central portion of the first wrap 24b. That is, while the height of the second gap is relatively large changes by the difference between the gap height h 4 and the gap height h 5 toward 540 ° from 0 °, the gap height h 5 toward 900 ° from 540 ° And only the difference between the gap height h 6 changes. In other words, the rate of change of the second gap at the center of the first lap 24b is locally increased. Especially in the central part of the compression chamber 40, which can be a high temperature, the second gap in the central part of the first wrap 24b is set to be locally large in anticipation of the expansion of the first wrap 24b due to heat. Contact between the fixed scroll 24 and the orbiting scroll 26 at the center of the compression chamber 40 can be suppressed.
 以上のように、本発明は実施形態を用いて説明されたが、本発明の技術的範囲は上記の実施形態に記載の範囲に限定されない。多様な変更または改良を上記の実施形態に加えることが可能であることは、当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることは、特許請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be made to the above embodiments. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
24  固定スクロール
24a 第1鏡板
24b 第1ラップ
26  旋回スクロール
26a 第2鏡板
26b 第2ラップ
40  圧縮室
101 スクロール圧縮機
24 fixed scroll 24a first end plate 24b first wrap 26 orbiting scroll 26a second end plate 26b second wrap 40 compression chamber 101 scroll compressor
国際公開番号WO2014/155646International Publication Number WO2014 / 155646

Claims (6)

  1.  渦巻状の第1ラップ(24b)を有する、第1材質の第1スクロール部材(24)と、
     前記第1スクロール部材と共に圧縮室(40)を形成し、渦巻状の第2ラップ(26b)を有する、前記第1材質とは異なる第2材質の第2スクロール部材(26)と、
     を備え、
     前記第2材質の線膨張係数は、前記第1材質の線膨張係数よりも大きく、
     前記第2ラップ全体の厚みの平均は、前記第1ラップ全体の厚みの平均よりも薄い、
     スクロール圧縮機(101)。
    A first scroll member (24) of a first material having a spiral first wrap (24b);
    A second scroll member (26) made of a second material different from the first material, forming a compression chamber (40) together with the first scroll member and having a spiral second wrap (26b);
    With
    The linear expansion coefficient of the second material is larger than the linear expansion coefficient of the first material,
    The average thickness of the entire second wrap is thinner than the average thickness of the entire first wrap,
    Scroll compressor (101).
  2.  渦巻状の第1ラップ(24b)を有する、第1材質の第1スクロール部材(24)と、
     前記第1スクロール部材と共に圧縮室(40)を形成し、渦巻状の第2ラップ(26b)を有する、前記第1材質とは異なる第2材質の第2スクロール部材(26)と、
     を備え、
     前記第2材質の線膨張係数は、前記第1材質の線膨張係数よりも大きく、
     前記第2ラップ全体の高さの平均は、前記第1ラップ全体の高さの平均よりも低い、
     スクロール圧縮機(101)。
    A first scroll member (24) of a first material having a spiral first wrap (24b);
    A second scroll member (26) made of a second material different from the first material, forming a compression chamber (40) together with the first scroll member and having a spiral second wrap (26b);
    With
    The linear expansion coefficient of the second material is larger than the linear expansion coefficient of the first material,
    The average height of the entire second lap is lower than the average height of the entire first lap.
    Scroll compressor (101).
  3.  前記第2材質の線膨張係数は、前記第1材質の線膨張係数に対して101%から107%の範囲である、
     請求項1または請求項2に記載のスクロール圧縮機。
    The linear expansion coefficient of the second material ranges from 101% to 107% with respect to the linear expansion coefficient of the first material.
    The scroll compressor according to claim 1 or 2.
  4.  前記第1スクロール部材は、前記第1ラップが形成された第1ベース(24a)を有し、
     前記第2ラップおよび前記第1ベースの少なくとも一方が、前記第2ラップの外周側から内周側に向かって段差状に形成されることにより、前記第2ラップの先端と前記第1ベースとの第1隙間が段差状に形成されており、
     前記第2ラップの中心部における内周端と外周端の前記第1隙間の変化率は、前記第2ラップの非中心部における内周端と外周端の前記第1隙間の変化率よりも大きい、
     請求項1から請求項3のいずれか1項に記載のスクロール圧縮機。
    The first scroll member has a first base (24a) on which the first wrap is formed,
    At least one of the second wrap and the first base is formed in a stepped shape from the outer peripheral side to the inner peripheral side of the second wrap, so that the tip of the second wrap and the first base The first gap is formed in a step shape,
    The rate of change of the first gap between the inner peripheral end and the outer peripheral end in the central portion of the second lap is greater than the rate of change of the first gap between the inner peripheral end and the outer peripheral end in the non-central portion of the second wrap. ,
    The scroll compressor according to any one of claims 1 to 3.
  5.  前記第2スクロール部材は、前記第2ラップが形成された第2ベース(26a)を有し、
     前記第1ラップおよび前記第2ベースの少なくとも一方が、前記第1ラップの外周側から内周側に向かって段差状に形成されることにより、前記第1ラップの先端と前記第2ベースとの第2隙間が段差状に形成されており、
     前記第1ラップの中心部における内周端と外周端の前記第2隙間の変化率は、前記第1ラップの非中心部における内周端と外周端の前記第2隙間の変化率よりも大きい、
     請求項1から請求項4のいずれか1項に記載のスクロール圧縮機。
    The second scroll member has a second base (26a) on which the second wrap is formed,
    At least one of the first wrap and the second base is formed in a stepped shape from the outer peripheral side to the inner peripheral side of the first wrap, so that the tip of the first wrap and the second base The second gap is formed in a step shape,
    The rate of change of the second gap between the inner peripheral end and the outer peripheral end in the central portion of the first lap is greater than the rate of change of the second gap between the inner peripheral end and the outer peripheral end in the non-central portion of the first lap. ,
    The scroll compressor according to any one of claims 1 to 4.
  6.  前記第1スクロール部材および前記第2スクロール部材は、冷媒としてR32を50重量%よりも多く含む冷媒を圧縮する、
     請求項1から請求項5のいずれか1項に記載のスクロール圧縮機。
    The first scroll member and the second scroll member compress a refrigerant containing more than 50% by weight of R32 as a refrigerant,
    The scroll compressor according to any one of claims 1 to 5.
PCT/JP2017/023834 2016-07-06 2017-06-29 Scroll compressor WO2018008495A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016133796A JP2018003762A (en) 2016-07-06 2016-07-06 Scroll compressor
JP2016-133796 2016-07-06

Publications (1)

Publication Number Publication Date
WO2018008495A1 true WO2018008495A1 (en) 2018-01-11

Family

ID=60912698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023834 WO2018008495A1 (en) 2016-07-06 2017-06-29 Scroll compressor

Country Status (2)

Country Link
JP (1) JP2018003762A (en)
WO (1) WO2018008495A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719187A (en) * 1993-07-01 1995-01-20 Hitachi Ltd Scroll fluid machine
JPH0821380A (en) * 1994-07-01 1996-01-23 Mitsubishi Electric Corp Scroll fluid machinery
JPH08326668A (en) * 1995-06-01 1996-12-10 Matsushita Electric Ind Co Ltd Scroll type compressor
JP2002155877A (en) * 2000-11-22 2002-05-31 Matsushita Electric Ind Co Ltd Scroll compressor
WO2014155646A1 (en) * 2013-03-29 2014-10-02 日立アプライアンス株式会社 Scroll compressor
JP2016003645A (en) * 2014-06-19 2016-01-12 日立アプライアンス株式会社 Scroll compressor, and air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719187A (en) * 1993-07-01 1995-01-20 Hitachi Ltd Scroll fluid machine
JPH0821380A (en) * 1994-07-01 1996-01-23 Mitsubishi Electric Corp Scroll fluid machinery
JPH08326668A (en) * 1995-06-01 1996-12-10 Matsushita Electric Ind Co Ltd Scroll type compressor
JP2002155877A (en) * 2000-11-22 2002-05-31 Matsushita Electric Ind Co Ltd Scroll compressor
WO2014155646A1 (en) * 2013-03-29 2014-10-02 日立アプライアンス株式会社 Scroll compressor
JP2016003645A (en) * 2014-06-19 2016-01-12 日立アプライアンス株式会社 Scroll compressor, and air conditioner

Also Published As

Publication number Publication date
JP2018003762A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP5152359B2 (en) Scroll compressor
CN101033746B (en) Scroll compressor
JP2005009332A (en) Scroll compressor
JP2012219654A (en) Rotary fluid machine
US10941661B2 (en) Scroll compressor having oldham coupling with key portions projecting from horizontal surfaces into key grooves
JP7343774B2 (en) scroll compressor
CN108496008B (en) Scroll compressor and air conditioner provided with same
JP6409910B1 (en) Scroll compressor
JP6332518B2 (en) Scroll compressor
WO2018008495A1 (en) Scroll compressor
JP2009174407A (en) Scroll compressor
JP6747109B2 (en) Scroll compressor
US10247188B2 (en) Scroll compressor
JP2010156249A (en) Scroll compressor
JP2016156297A (en) Scroll compressor
JP2021080903A (en) Scroll compressor
JP2008121490A (en) Rotary compressor
US11067078B2 (en) Scroll compressor having single discharge port open at starting end of fixed-side wrap
JP2011137523A (en) Rotary shaft and compressor
WO2020230230A1 (en) Rotary compressor
JP2015094343A (en) Scroll compressor
JP2012036841A (en) Compressor
JP2018189055A (en) Scroll compressor
WO2013084486A1 (en) Scroll compressor
JP2012052493A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824100

Country of ref document: EP

Kind code of ref document: A1