WO2014155646A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2014155646A1
WO2014155646A1 PCT/JP2013/059444 JP2013059444W WO2014155646A1 WO 2014155646 A1 WO2014155646 A1 WO 2014155646A1 JP 2013059444 W JP2013059444 W JP 2013059444W WO 2014155646 A1 WO2014155646 A1 WO 2014155646A1
Authority
WO
WIPO (PCT)
Prior art keywords
tooth bottom
fixed
wrap
scroll
scroll compressor
Prior art date
Application number
PCT/JP2013/059444
Other languages
French (fr)
Japanese (ja)
Inventor
彰士 松村
啓 武田
太田原 優
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to JP2015507853A priority Critical patent/JP6081577B2/en
Priority to EP13880382.0A priority patent/EP2980408A4/en
Priority to PCT/JP2013/059444 priority patent/WO2014155646A1/en
Priority to CN201380073432.9A priority patent/CN105074218B/en
Priority to US14/768,958 priority patent/US20160003247A1/en
Publication of WO2014155646A1 publication Critical patent/WO2014155646A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0276Different wall heights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/602Gap; Clearance

Definitions

  • the present invention relates to a scroll compressor.
  • Patent Document 1 Japanese Patent No. 2009-281509
  • the spiral wrap is engaged with the fixed scroll lap to form a plurality of compression chambers.
  • an inclined surface whose thickness decreases from the outer peripheral side to the inner peripheral side is formed, thereby reducing the friction loss caused by the deformation of the fixed scroll and the orbiting scroll. It can improve the efficiency of the compressor "(see summary).
  • a lap tooth is formed on a facing surface of each of the end plates of the orbiting scroll and the fixed scroll by allowing for the deformation of the scroll and forming in advance a tooth bottom having a step difference from the outer peripheral side to the inner peripheral side. It is described that the friction loss due to the contact between the tip portion and the tooth bottom portion facing the tip portion is reduced.
  • the bottom step that is, by providing the bottom step, the contact between the lap tooth tip and the bottom portion can be suppressed, but if this bottom step is made too large, a gap is formed on the contrary, Gas leaks into the compression chamber through the gap, and the loss increases.
  • the present invention aims to suppress contact between the lap tooth tip portion and the tooth bottom portion by providing a tooth bottom step and to reduce loss due to a gap formed by increasing the tooth bottom step.
  • the present application includes a plurality of means for solving the above problems.
  • a fixed scroll having a fixed side plate portion and a fixed side wrap that is erected while maintaining a spiral shape on one surface of the fixed side plate portion;
  • Orbiting scroll that forms a compression chamber by revolving
  • An electric motor that drives the orbiting scroll via a crankshaft
  • Steps are formed in the tooth bottom portions of the fixed side wrap and the turning side wrap so as to become deeper from the outer peripheral side toward the inner peripheral side, It is characterized in that the step on the inner peripheral side in the tooth bottom part of the fixed wrap is formed deeper than the step on the inner peripheral side in the tooth bottom part of the turning side wrap ".
  • FIG. 1 is a longitudinal sectional view of a scroll compressor illustrating Example 1.
  • FIG. 3 is a top view of the tooth bottom portion of the orbiting scroll according to the first embodiment.
  • FIG. 3 is a top view of the bottom portion of the fixed scroll according to the first embodiment.
  • FIG. 6 is a diagram illustrating the first embodiment and corresponding to FIG. 5.
  • FIG. 6 is a diagram illustrating the second embodiment and corresponding to FIG. 5.
  • FIG. 7 is a diagram illustrating Example 3 and corresponding to FIG. 6.
  • FIG. 1 is an example of a configuration diagram of a scroll compressor according to the present embodiment.
  • the scroll compressor 1 includes a compression mechanism unit 2, an electric motor 3 that drives the compression mechanism unit 2, and a sealed container 4 that houses the compression mechanism unit 2, the electric motor 3, and the like.
  • This embodiment is a vertical scroll compressor in which the compression mechanism unit 2 is disposed in the upper part of the sealed container 2, the electric motor 3 is disposed in the middle part, and the oil reservoir 15 is disposed in the lower part of the sealed container 4.
  • the sealed container 4 is configured by welding a lid cap 4b and a bottom cap 4c vertically to a cylindrical chamber 4a.
  • a suction pipe 4d is disposed on the lid cap 4b, and a discharge pipe 4e is disposed on the side surface of the cylindrical chamber 4a.
  • a discharge pressure space 4 f serving as a discharge pressure is accommodated in the sealed container 4.
  • the compression mechanism 2 and the electric motor 3 are accommodated in the discharge pressure space 4f.
  • the compression mechanism unit 2 includes a fixed scroll 5, a turning scroll 6, a frame 7, and the like as basic elements. The fixed scroll 5 and the frame 7 are fastened with bolts, and the orbiting scroll 6 is supported by the frame 7.
  • FIG. 2 shows a cross-sectional view of the basic configuration of the fixed scroll 5 and the orbiting scroll 6 of the scroll compressor 1 of this embodiment.
  • the fixed scroll 5 includes a disk-shaped top plate portion (fixed side plate portion 5b), a spiral fixed side wrap 5a erected on the inner peripheral portion of the lower portion of the fixed side plate portion 5b, and a wrapping on the outer peripheral portion of the fixed side plate portion 5b.
  • a cylindrical fixed side end plate portion 5g provided so as to surround 5a, a suction port 5c and a discharge port 5d provided on the upper side of the fixed side plate portion 5b, and the like, are fixed to the frame 7 with bolts. Yes.
  • the orbiting scroll 6 includes a disk-like orbiting side plate portion 6b on the side where the fixed side wrap 5a of the fixed scroll 5 is erected, and a spiral orbiting orbiting side wrap 6a that is erected on the inner peripheral side of the orbiting side plate portion 6b. It is comprised.
  • the orbiting scroll 6 is disposed so as to be freely rotatable so that the fixed scroll 5 and the lap of each other mesh with each other and a compression chamber 16 is formed.
  • An eccentric pin portion 9b of the crankshaft 9 is connected to the back side of the orbiting scroll 6 (lower side in FIGS. 1 and 2). As the orbiting scroll 6 orbits with respect to the fixed scroll 5, a compression operation is performed in which the volume thereof is reduced.
  • Each scroll wrap (fixed side wrap 5a, turning side wrap 6a) is formed with a circular involute curve or the like as a basic curve, and is formed outside the wrap on the winding end side of the turning scroll 6 by engaging both scrolls with each other.
  • the outer-line-side compression chamber and the inner-line-side compression chamber formed on the inner side thereof are different in size and have an asymmetric scroll shape formed with a phase shifted by about 180 ° with respect to the rotation of the shaft.
  • the outer peripheral side of the frame 7 is fixed to the inner wall surface of the sealed container 4 by welding or the like, and includes a main bearing 8 that rotatably supports the crankshaft 9.
  • An Oldham ring 10 is disposed between the rear side of the orbiting scroll 6 and the frame 7.
  • the Oldham ring 10 is mounted in a groove formed on the back side of the orbiting scroll 6 and a groove formed on the frame 7 and receives the eccentric rotation of the eccentric pin portion 9b of the crankshaft 9 without the orbiting scroll 6 rotating. Arranged to revolve.
  • the electric motor 3 includes a stator 3a and a rotor 3b.
  • the stator 3a is fixed to the sealed container 4 by press-fitting, shrink fitting or the like.
  • the rotor 3b is rotatably arranged inside the stator 3a.
  • the rotor 3b is fixed to the crankshaft 9, and the orbiting scroll 6 is caused to orbit through the crankshaft 9 as the rotor 3b rotates.
  • the crankshaft 9 is composed of a main shaft 9a and an eccentric pin portion 9b, and is supported by a main bearing 8 and a sub bearing 11 provided on the frame 7.
  • the eccentric pin portion 9b is eccentrically formed integrally with the crankshaft 9a, and is inserted into the orbiting bearing 6d formed on the back surface of the orbiting scroll 6.
  • the crankshaft 9 is driven by the electric motor 3, and the eccentric pin portion 9b rotates eccentrically with respect to the main shaft 9a, thereby driving the orbiting scroll 6.
  • crankshaft 9 is provided with an oil supply passage 9c for introducing lubricating oil to the main bearing 8, the sub bearing 11, and the slewing bearing 6d, and pumps up the lubricating oil to the lower end on the oil reservoir 15 side and guides it to the oil supply passage 9c.
  • a pump unit 14 is attached.
  • the auxiliary bearing 11 is fixed to the sealed container 4 via the housing 12 and the lower frame 13.
  • the auxiliary bearing 11 rotatably holds one end of the crankshaft main shaft portion 9a on the oil reservoir side using a slide bearing, a rolling bearing, a spherical bearing member, or the like.
  • the compressed refrigerant gas is discharged from the discharge port 5d provided at the upper center of the fixed side plate portion 5b of the fixed scroll 5 to the discharge pressure space 4f in the sealed container 4 and circulates around the compression mechanism portion 2 and the electric motor 3. Then, it flows out from the discharge pipe 4e to the outside. Therefore, the space in the sealed container 4 is a so-called high pressure chamber compressor in which the discharge pressure is maintained.
  • a back pressure chamber 17 is formed between the back side of the orbiting scroll 6 and the frame 7, which is a pressure state that is intermediate between the pressure in the suction pipe 4 d and the pressure in the discharge pressure space 4 f.
  • the back pressure chamber 17 is provided in a path through which the lubricating oil passes from the oil reservoir 15 through the oil supply passage 9 c and lubricates the slewing bearing 6 d and then is supplied to the sliding portion of the compression mechanism portion 2.
  • the flat plate portion 6b of the orbiting scroll 6 is provided with a back pressure hole 6c for intermittently communicating the compression chamber 16 and the back pressure chamber 17 formed on the back of the orbiting scroll 6 so that the pressure in the back pressure chamber 17 is sucked into the suction pressure.
  • the discharge pressure is maintained at an intermediate pressure (this intermediate pressure is called back pressure).
  • the orbiting scroll 6 is pressed against the fixed scroll 5 from the back by the resultant force of the back pressure and the discharge pressure acting on the central space on the inner peripheral side of the seal member 18.
  • FIG. 3 is a diagram schematically showing the pressure deformation of the compression mechanism unit 2 of the scroll compressor.
  • the discharge pressure acts on the upper surface of the fixed scroll 5.
  • the back surface of the orbiting scroll 6 faces the back pressure chamber 17, back pressure acts on the back surface of the orbiting scroll 6 and pushes the orbiting scroll 6 upward (fixed scroll 5 side).
  • the fixed scroll 5 is deformed so as to protrude downward (orbiting scroll side) as a whole because the outer edge portion of the fixed side plate portion 5b is fixed to the sealed container 4. Since the orbiting scroll 6 is pressed against the fixed scroll 5 that is deformed downward and convex, the wrap tooth tip portion (fixed wrap tooth tip portion 5e, orbiting side wrap tooth tip portion 6e) and the lap tooth bottom portion of both scrolls are centered. The fixed side wrap tooth bottom 5f and the turning side lap tooth bottom 6f come into contact with each other. Then, each of the fixed scroll 5 and the orbiting scroll 6 is deformed so that the central portion thereof protrudes downward as a whole so as to follow the deformation of the fixed scroll 5.
  • each tooth base fixed side wrap tooth bottom part 5f, turning side wrap tooth bottom part 6f
  • the distance from the opposing tooth tip fixed side wrap tooth tip part 5e, turning side wrap tooth tip part 6e
  • I will call it the deep root difference.
  • FIG. 4 is a top view of the orbiting scroll 6 and the fixed scroll 5 of the scroll compressor 1.
  • FIG. 5 is a diagram schematically showing the relationship between the wrap tooth tip and the tooth bottom from the wrap circumferential side surface direction.
  • the level difference of the orbiting side wrap tooth bottom portion 6f of the orbiting scroll 6 is the (b) portion along the inner peripheral side with reference to the outermost tooth bottom (c) portion, and further (a ) Is set so that the depth changes in the order of parts. That is, the step is provided so that the innermost (a) portion is deepest and the outermost (c) portion is shallowest.
  • the step of the fixed side wrap tooth bottom portion 5f of the fixed scroll 5 is similar to the turning side wrap tooth bottom portion 6f of FIG.
  • the depth changes in the order of the part (b) and the part (a) along the side, and the amount of change is set equally in the orbiting scroll 6 and the fixed scroll 5. That is, the step is provided so that the innermost (a) portion is deepest and the outermost (c) portion is shallowest.
  • the steps described above are in the order of (b) part and (a) part along the inner peripheral side with reference to the outermost peripheral tooth bottom (c) part in the turning side wrap tooth bottom part 6 f.
  • the depth is set to change.
  • the part (a) is formed deeper than the part (c) so as to have a step of 0.02% to 0.04% of the turning wrap tooth height 6h
  • the part (b) is (c). 2 is formed with a depth that is a step of 0.005% to 0.02% of the turning wrap tooth height 6h
  • part (c) is the turning side with respect to the turning end plate surface 6g shown in FIG.
  • the turning side wrap tooth height 6h here shows the length from the turning side end plate surface 6g to the turning side wrap tooth tip portion 6e of the turning side wrap 6a as shown in FIG.
  • the fixed side wrap tooth bottom part 5f is also set so that the depth changes in the order of the part (b) and further the part (a) along the inner peripheral side with reference to the outermost tooth bottom (c) part.
  • the depth of the step is the same, and the part (a) is deeply formed to be a step of 0.02% to 0.04% of the fixed side wrap tooth height 5h with respect to the part (c), and the part (b) (C) is formed with a depth of 0.005% to 0.02% of the fixed-side wrap tooth height 5h with respect to the portion (c), and the portion (c) with respect to the fixed-side end plate surface 5g shown in FIG.
  • the fixed side wrap tooth height 5h indicates the length from the fixed side end plate surface 5g to the fixed side wrap tooth tip portion 5e of the fixed side wrap 5a.
  • the wrap forming surface of the orbiting side plate portion 6 b of the orbiting scroll 6 and the wrap forming surface of the fixed side plate portion 5 b of the fixed scroll 5 have a stepped side so that the step becomes deeper from the outer peripheral side toward the inner peripheral side.
  • a lap tooth bottom portion 6f and a fixed side wrap tooth bottom portion 5f are formed.
  • FIG. 6 is a view showing the depths of the turning side wrap tooth bottom portion 6f and the fixed side wrap tooth bottom portion 5f of the present embodiment.
  • the level difference of the part (a) with respect to (c) in the turning side wrap tooth bottom part 6 f and the level difference of the part (a) with respect to (c) in the fixed side wrap tooth bottom part 5 f It was formed to be 0.02% to 0.04% of each lap tooth height and was the same.
  • the step of the portion (b) with respect to (c) in the turning side wrap tooth bottom portion 6f and the step of the portion (b) with respect to (c) in the fixed side wrap tooth bottom portion 5f are 0.005% of the respective lap tooth heights. It was formed to be 0.02% and was the same.
  • the step of (a) portion with respect to (c) in the turning side wrap tooth bottom portion 6f is different from that of (a) portion with respect to (c) in the fixed side wrap tooth bottom portion 5f. It is characterized by being made smaller than the step. Specifically, the step of the portion (a) with respect to (c) in the turning side wrap tooth bottom portion 6f is formed to be 0.005% to 0.02% of the turning side wrap tooth height 6h, thereby fixing the fixed side wrap. The tooth bottom portion 5f is formed to be smaller than the step of the portion (a) with respect to (c) (0.02% to 0.04% of the fixed side wrap tooth height 5h).
  • the step amount Ds on the inner peripheral side of the orbiting side wrap tooth bottom portion 6f. ′ (Depth) is made smaller than the step amount Dk (depth) on the inner peripheral side of the fixed side lap tooth bottom part 5f, thereby filling an extra gap and improving the sealing performance. From the gap between the lap tooth tip and the tooth bottom The loss due to the leakage of the refrigerant is suppressed.
  • the refrigerant density is smaller than that of the R410A refrigerant, so that the refrigerant is likely to leak between adjacent compression chambers. It is done. Furthermore, in the case of a high-temperature refrigerant such as R32 refrigerant, the temperature during operation becomes high, and expansion of the gap between the lap tooth tip and the lap tooth bottom due to thermal expansion can be considered.
  • the present embodiment it is possible to suppress loss due to refrigerant leakage from the gap between the wrap tooth tip and the tooth bottom due to the provision of the tooth bottom step, so the R32 refrigerant can be used alone or in a refrigeration cycle.
  • a high-performance scroll compressor can be provided even when the ratio of sealing is 70% or more.
  • FIG. 7 is an example of a configuration diagram schematically showing the relationship between the wrap tooth tip and the tooth bottom from the wrap circumferential side surface direction.
  • the second embodiment is the same as the first embodiment except for the surface shape formed on the lap-facing surfaces of the orbiting scroll 6 and the fixed scroll 5, and the description of the portions having the same functions is omitted.
  • the (b) portion and (a) portion in the turning side wrap tooth bottom portion 6f have the same depth as shown in FIG.
  • the gap with the fixed side wrap tooth tip portion 5e at the deepest portion of the turning side wrap tooth bottom portion 6f on the winding start side is reduced. That is, two steps are formed on the fixed wrap tooth bottom 5f, one step is formed on the turning wrap tooth bottom 6f, and fixed by the inner circumferential side step Ds' of the turning lap tooth bottom 6f. It is characterized in that the innermost step Dk in the side wrap tooth bottom portion 5f is formed deeper.
  • the depth Ds ′ of the inner circumferential side step in the turning side wrap tooth bottom portion 6f and the depth of the second deepest step in the fixed side wrap tooth bottom portion 5f are substantially the same. It was confirmed that the loss could be reduced if.
  • the same effect as in the first embodiment can be obtained. Further, since the number of processing steps is reduced by the amount of the step difference with respect to the first embodiment, the manufacturing cost and time can be reduced. Further, the surface from (b) to (c) that faces the fixed wrap tooth tip 5e in FIG. 7 is not perpendicular to the fixed wrap tooth tip 5e as shown in FIG. The slope may be inclined in a slope shape so as to be inclined smoothly. Thereby, the leakage amount of the refrigerant
  • FIG. 8 is an example of a configuration diagram schematically showing the relationship between the wrap tooth tip and the tooth bottom from the wrap circumferential side surface direction.
  • the present embodiment is the same as the first embodiment except for the surface shape formed on the lap-facing surfaces of the orbiting scroll 6 and the fixed scroll 5, and the description of the parts having the same functions is omitted.
  • the swivel wrap tooth bottom portion 6 f of the swivel wrap tooth bottom portion 6 f is set shallow, with the bottom step height of the swivel wrap tooth bottom portion 6 f being two steps.
  • the depth of the bottom of the orbiting scroll is set to half the depth of the bottom of the fixed scroll, which reduces the amount of cutting during machining, shortens the machining time, and extends the tool life. There is an effect said.
  • the present embodiment is the same as the first to third embodiments except that the ferrite magnet motor is embedded in the rotor of the electric motor 3 of the scroll compressor, and the description of the portions having the same functions is omitted. To do.
  • the ferrite magnet motor Since ferrite magnet motors are less expensive than neodymium magnet motors, compressors that employ ferrite magnet motors can be expected to significantly reduce costs. However, the ferrite magnet motor has a problem that the efficiency particularly in the low speed region is lower than that of the neodymium magnet motor. Therefore, if the first to fourth embodiments are applied, the level difference (depth) of the bottom 6f of the orbiting scroll 6 is set smaller than the level difference (depth) of the bottom 5f of the fixed scroll 5, thereby improving the sealing performance. Since the loss due to refrigerant leakage from the gap between the lap tooth tip and the tooth bottom can be reduced, a highly efficient and low cost scroll compressor can be provided even in a low speed region.
  • the present embodiment is the same as the first to fourth embodiments except that the refrigerant used for the scroll compressor is a single R32 refrigerant, and the description of the portions having the same functions is omitted.
  • the R32 refrigerant has a global warming potential (GWP) of 675 and about 1/3 of R410A, and is a refrigerant with less environmental load.
  • GWP global warming potential
  • the density is small and the refrigerant leaks easily from the sealed space.
  • the operating temperature becomes high. There is a problem that the gap between the two becomes large.
  • the refrigerant sealed in the refrigeration cycle is set to a ratio of about 70% or more of the R32 refrigerant alone or the refrigerant sealed in the refrigeration cycle.
  • the level difference (depth) of the tooth bottom 6f of the orbiting scroll 6 is set to be smaller than the level difference (depth) of the tooth bottom 5f of the fixed scroll 5, so that an extra gap is filled and the sealing performance is improved. Since loss due to refrigerant leakage from the gap between the tooth tip and the tooth bottom can be reduced, a highly efficient scroll compressor can be provided while using a refrigerant with a small environmental load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

The purpose of the present invention is to suppress contact between a lap tooth-tip part and a tooth bottom part by enlarging a tooth bottom step, and to reduce the loss caused by a gap formed by enlarging the tooth bottom step. A revolving scroll has: a stationary scroll having a stationary scroll-side flat plate part, and a stationary-side lap that rises while maintaining a swirling shape on a surface of a stationary-side plate part; a revolving-side plate part; and a revolving-side lap that rises while maintaining a swirling shape on a surface of the revolving-side plate part, a compression chamber being formed by the revolving-side lap and the stationary-side lap revolving relative to the stationary scroll while meshing with each other, wherein the tooth bottom step nearer the inner periphery than the outer periphery is formed so as to be larger in either the stationary-side plate part or the revolving-side plate part, and the tooth bottom step is formed so as to be smaller in the revolving-side plate part than the stationary-side plate part on either the outer periphery or the inner periphery.

Description

スクロール圧縮機Scroll compressor
 本発明は、スクロール圧縮機に関する。 The present invention relates to a scroll compressor.
 本技術分野の背景技術として、特許2009-281509号公報(特許文献1)がある。この公報には、「平板部の内周部に渦巻状のラップが立設されるとともに外周部にラップを囲むように筒状の鏡板が設けられてなる固定スクロールと、固定スクロールのラップ立設側に対向した鏡板に固定スクロールのラップと噛み合って複数の圧縮室を形成する渦巻状のラップが立設されてなる旋回スクロールの鏡板の固定スクロールの鏡板との対向面には、スクロールの変形を見越して、予め外周側から内周側にかけて板厚が小さくなる傾斜面を形成する。」と記載されており、これにより「固定スクロールと旋回スクロールの変形に起因して生じる摩擦損失を低減して圧縮機の効率を向上させること」ができると記載されている(要約参照)。 As a background art in this technical field, there is Japanese Patent No. 2009-281509 (Patent Document 1). In this publication, “a fixed scroll in which a spiral wrap is erected on the inner peripheral portion of the flat plate portion and a cylindrical end plate is provided on the outer peripheral portion so as to surround the wrap; On the opposite surface of the orbiting scroll end plate to the fixed scroll end plate, which is engaged with the end plate facing to the side, the spiral wrap is engaged with the fixed scroll lap to form a plurality of compression chambers. In anticipation of this, it is described in advance that an inclined surface whose thickness decreases from the outer peripheral side to the inner peripheral side is formed, thereby reducing the friction loss caused by the deformation of the fixed scroll and the orbiting scroll. It can improve the efficiency of the compressor "(see summary).
特開2009-281209号公報JP 2009-281209 A
 前記特許文献1には、旋回スクロールと固定スクロールのそれぞれの鏡板の対向面に、スクロールの変形を見越して、予め外周側から内周側にかけて段差が大きくなる歯底を形成することで、ラップ歯先部と対向する歯底部とが接触することに起因する摩擦損失の低減を図ることが記載されている。このように歯底段差を形成する、つまり歯底段差を設けることでラップ歯先部と歯底部との接触を抑制できるが、この歯底段差を大きくし過ぎると、逆に隙間が形成され、その隙間を介して圧縮室内部にガスが漏れることになり、損失が増大することになる。 In Patent Document 1, a lap tooth is formed on a facing surface of each of the end plates of the orbiting scroll and the fixed scroll by allowing for the deformation of the scroll and forming in advance a tooth bottom having a step difference from the outer peripheral side to the inner peripheral side. It is described that the friction loss due to the contact between the tip portion and the tooth bottom portion facing the tip portion is reduced. In this way, by forming the bottom step, that is, by providing the bottom step, the contact between the lap tooth tip and the bottom portion can be suppressed, but if this bottom step is made too large, a gap is formed on the contrary, Gas leaks into the compression chamber through the gap, and the loss increases.
 そこで本発明は、歯底段差を設けることでラップ歯先部と歯底部との接触を抑制し、且つ、その歯底段差を大きくすることで形成される隙間による損失の低減を図ることを目的とする。 Therefore, the present invention aims to suppress contact between the lap tooth tip portion and the tooth bottom portion by providing a tooth bottom step and to reduce loss due to a gap formed by increasing the tooth bottom step. And
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。 
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、 
「固定側板部と、固定側板部の一面に渦巻き形状を保持して立設される固定側ラップと、を有する固定スクロールと、 
 旋回側板部と、前記旋回側板部の一面に渦巻き形状を保持して立設される旋回側ラップと、を有し、前記旋回側ラップと前記固定側ラップとが噛み合いながら、前記固定スクロールに対して旋回することにより圧縮室を形成する旋回スクロールと、 
 前記旋回スクロールをクランク軸を介して駆動する電動機とを備え、 
 前記固定側ラップと前記旋回側ラップとの歯底部にはそれぞれ外周側から内周側に向かって深くなるように段差が形成され、 
 前記旋回側ラップの歯底部における内周側の段差より、前記固定側ラップの歯底部における内周側の段差の方が深くなるように形成されること」を特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present application includes a plurality of means for solving the above problems.
A fixed scroll having a fixed side plate portion and a fixed side wrap that is erected while maintaining a spiral shape on one surface of the fixed side plate portion;
A revolving side plate portion, and a revolving side wrap that is erected while maintaining a spiral shape on one surface of the revolving side plate portion, and the revolving side wrap and the fixed side wrap are engaged with each other with respect to the fixed scroll. Orbiting scroll that forms a compression chamber by revolving,
An electric motor that drives the orbiting scroll via a crankshaft,
Steps are formed in the tooth bottom portions of the fixed side wrap and the turning side wrap so as to become deeper from the outer peripheral side toward the inner peripheral side,
It is characterized in that the step on the inner peripheral side in the tooth bottom part of the fixed wrap is formed deeper than the step on the inner peripheral side in the tooth bottom part of the turning side wrap ".
 本発明によれば、歯底段差を設けることでラップ歯先部と歯底部との接触を抑制しつつ、その歯底段差を大きくすることで形成される隙間による損失の低減を図ることが可能となる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to reduce the loss due to the gap formed by increasing the tooth bottom step while suppressing the contact between the lap tooth tip portion and the tooth bottom portion by providing the tooth bottom step. It becomes. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
実施例1を示すスクロール圧縮機の縦断面図。1 is a longitudinal sectional view of a scroll compressor illustrating Example 1. FIG. 固定スクロールと旋回スクロールの構成図。The block diagram of a fixed scroll and a turning scroll. 実施例1のスクロール圧縮機の圧縮機後部の圧力変形を模式的に示した図。The figure which showed typically the pressure deformation of the compressor rear part of the scroll compressor of Example 1. FIG. 実施例1の旋回スクロールの歯底部の上視図。FIG. 3 is a top view of the tooth bottom portion of the orbiting scroll according to the first embodiment. 実施例1の固定スクロールの歯底部の上視図。FIG. 3 is a top view of the bottom portion of the fixed scroll according to the first embodiment. 旋回スクロールと固定スクロールのラップ構成を説明する図。The figure explaining the lap structure of a turning scroll and a fixed scroll. 実施例1を示す図で、図5に対応する図。FIG. 6 is a diagram illustrating the first embodiment and corresponding to FIG. 5. 実施例2を示す図で、図5に対応する図。FIG. 6 is a diagram illustrating the second embodiment and corresponding to FIG. 5. 実施例3を示す図で、図6に対応する図。FIG. 7 is a diagram illustrating Example 3 and corresponding to FIG. 6.
 以下、本発明の実施例について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本実施例では、ラップ隙間を適正化し、ラップ負荷の抑制と圧縮室内漏れ損失の低減を実現するスクロール圧縮機の例を説明する。 
 図1は、本実施例のスクロール圧縮機構成図の例である。 
 スクロール圧縮機1は、圧縮機構部2と圧縮機構部2を駆動する電動機3と、圧縮機構部2と電動機3などを収納する密閉容器4を備えて構成される。本実施例では、密閉容器2内の上部に圧縮機構部2を、中部に電動機3を、密閉容器4下部に油溜まり15が配設された縦型スクロール圧縮機である。密閉容器4は、円筒状チャンバ4aに蓋キャップ4bと底キャップ4cが上下に溶接されて構成されている。蓋キャップ4bには吸込パイプ4dが配設され、円筒状チャンバ4aの側面には吐出パイプ4eが配設されている。密閉容器4の内部には吐出圧力となる吐出圧空間4fが収納されている。また、吐出圧空間4fには圧縮機構部2と電動機3が収納されている。圧縮機構部2は、固定スクロール5と旋回スクロール6とフレーム7などを基本要素として構成されている。固定スクロール5とフレーム7はボルトで締結されており、旋回スクロール6はフレーム7に支持されている。
In the present embodiment, an example of a scroll compressor that optimizes the lap gap and realizes suppression of the lap load and reduction of leakage loss in the compression chamber will be described.
FIG. 1 is an example of a configuration diagram of a scroll compressor according to the present embodiment.
The scroll compressor 1 includes a compression mechanism unit 2, an electric motor 3 that drives the compression mechanism unit 2, and a sealed container 4 that houses the compression mechanism unit 2, the electric motor 3, and the like. This embodiment is a vertical scroll compressor in which the compression mechanism unit 2 is disposed in the upper part of the sealed container 2, the electric motor 3 is disposed in the middle part, and the oil reservoir 15 is disposed in the lower part of the sealed container 4. The sealed container 4 is configured by welding a lid cap 4b and a bottom cap 4c vertically to a cylindrical chamber 4a. A suction pipe 4d is disposed on the lid cap 4b, and a discharge pipe 4e is disposed on the side surface of the cylindrical chamber 4a. A discharge pressure space 4 f serving as a discharge pressure is accommodated in the sealed container 4. In addition, the compression mechanism 2 and the electric motor 3 are accommodated in the discharge pressure space 4f. The compression mechanism unit 2 includes a fixed scroll 5, a turning scroll 6, a frame 7, and the like as basic elements. The fixed scroll 5 and the frame 7 are fastened with bolts, and the orbiting scroll 6 is supported by the frame 7.
 図2は本実施例のスクロール圧縮機1の固定スクロール5と旋回スクロール6の基本構成の断面図を示している。なお、図2では固定スクロール5と旋回スクロール6の相対的な寸法比は必ずしも一致していない。固定スクロール5は円盤状の天板部(固定側板部5b)と固定側板部5bの下部の内周部に立設された渦巻状の固定側ラップ5aと、固定側板部5bの外周部にラップ5aを囲むように設けられた筒状の固定側鏡板部5gと、固定側板部5b上部に備えられた吸入口5cと吐出口5dなどを有して構成され、フレーム7にボルトで固定されている。 FIG. 2 shows a cross-sectional view of the basic configuration of the fixed scroll 5 and the orbiting scroll 6 of the scroll compressor 1 of this embodiment. In FIG. 2, the relative dimensional ratios of the fixed scroll 5 and the orbiting scroll 6 do not always match. The fixed scroll 5 includes a disk-shaped top plate portion (fixed side plate portion 5b), a spiral fixed side wrap 5a erected on the inner peripheral portion of the lower portion of the fixed side plate portion 5b, and a wrapping on the outer peripheral portion of the fixed side plate portion 5b. A cylindrical fixed side end plate portion 5g provided so as to surround 5a, a suction port 5c and a discharge port 5d provided on the upper side of the fixed side plate portion 5b, and the like, are fixed to the frame 7 with bolts. Yes.
 旋回スクロール6は、固定スクロール5の固定側ラップ5aが立設される側に円盤状の旋回側板部6bと、旋回側板部6bの内周側に立設された渦巻状の旋回側ラップ6aなどを有して構成される。旋回スクロール6は、固定スクロール5と互いのラップが噛み合い、圧縮室16が形成されるように旋回自在に配置されている。旋回スクロール6の背面側(図1、2の下側)にはクランク軸9の偏芯ピン部9bが連結されている。旋回スクロール6が固定スクロール5に対して旋回運動することにより、その容積が減少する圧縮動作が行われる。 The orbiting scroll 6 includes a disk-like orbiting side plate portion 6b on the side where the fixed side wrap 5a of the fixed scroll 5 is erected, and a spiral orbiting orbiting side wrap 6a that is erected on the inner peripheral side of the orbiting side plate portion 6b. It is comprised. The orbiting scroll 6 is disposed so as to be freely rotatable so that the fixed scroll 5 and the lap of each other mesh with each other and a compression chamber 16 is formed. An eccentric pin portion 9b of the crankshaft 9 is connected to the back side of the orbiting scroll 6 (lower side in FIGS. 1 and 2). As the orbiting scroll 6 orbits with respect to the fixed scroll 5, a compression operation is performed in which the volume thereof is reduced.
 それぞれのスクロールラップ(固定側ラップ5a、旋回側ラップ6a)は円のインボリュート曲線などを基本曲線として形成されており、両スクロールを互いに噛み合わせて旋回スクロール6の巻き終わり側のラップの外側で形成される外線側圧縮室と、その内側で形成される内線側圧縮室との大きさが異なり、軸の回転に対して位相が約180°ずれて形成される非対称スクロール形状である。フレーム7は、外周側が溶接などによって密閉容器4の内壁面に固定されており、クランク軸9を回転自在に支持する主軸受8を備えている。 Each scroll wrap (fixed side wrap 5a, turning side wrap 6a) is formed with a circular involute curve or the like as a basic curve, and is formed outside the wrap on the winding end side of the turning scroll 6 by engaging both scrolls with each other. The outer-line-side compression chamber and the inner-line-side compression chamber formed on the inner side thereof are different in size and have an asymmetric scroll shape formed with a phase shifted by about 180 ° with respect to the rotation of the shaft. The outer peripheral side of the frame 7 is fixed to the inner wall surface of the sealed container 4 by welding or the like, and includes a main bearing 8 that rotatably supports the crankshaft 9.
 旋回スクロール6の背面側とフレーム7の間には、オルダムリング10が配設されている。オルダムリング10は旋回スクロール6の背面側に形成された溝とフレーム7に形成された溝に装着され、旋回スクロール6が自転することなくクランク軸9の偏芯ピン部9bの偏芯回転を受けて公転運動するよう配設される。 An Oldham ring 10 is disposed between the rear side of the orbiting scroll 6 and the frame 7. The Oldham ring 10 is mounted in a groove formed on the back side of the orbiting scroll 6 and a groove formed on the frame 7 and receives the eccentric rotation of the eccentric pin portion 9b of the crankshaft 9 without the orbiting scroll 6 rotating. Arranged to revolve.
 電動機3は、ステータ3aとロータ3bから構成される。ステータ3aは密閉容器4に圧入および焼嵌などにより固定されている。ロータ3bはステータ3a内側に回転可能に配置されている。ロータ3bはクランク軸9に固定されており、ロータ3bが回転することにより、クランク軸9を介して旋回スクロール6を旋回運動させる。 The electric motor 3 includes a stator 3a and a rotor 3b. The stator 3a is fixed to the sealed container 4 by press-fitting, shrink fitting or the like. The rotor 3b is rotatably arranged inside the stator 3a. The rotor 3b is fixed to the crankshaft 9, and the orbiting scroll 6 is caused to orbit through the crankshaft 9 as the rotor 3b rotates.
 クランク軸9は、主軸9aと偏芯ピン部9bとから構成され、フレーム7に設けられた主軸受8と副軸受11とで支持されている。偏芯ピン部9bはクランク軸9aに対して偏芯して一体に形成されており、旋回スクロール6の背面に形成された旋回軸受6dに挿入されている。クランク軸9は電動機3により駆動され、偏芯ピン部9bは主軸9aに対して偏芯回転運動することで、旋回スクロール6を駆動させる。また、クランク軸9には、主軸受8および副軸受11、旋回軸受6dへ潤滑油を導く給油通路9cが内部に設けられ、油溜り15側下端には潤滑油を汲み上げて給油通路9cに導くポンプ部14が装着されている。副軸受11はハウジング12及び下フレーム13を介して密閉容器4に固定されている。副軸受11は、すべり軸受や転がり軸受、球面軸受部材などを使用してクランク軸主軸部9aの油溜まり側の一端を回転自在に保持する。 The crankshaft 9 is composed of a main shaft 9a and an eccentric pin portion 9b, and is supported by a main bearing 8 and a sub bearing 11 provided on the frame 7. The eccentric pin portion 9b is eccentrically formed integrally with the crankshaft 9a, and is inserted into the orbiting bearing 6d formed on the back surface of the orbiting scroll 6. The crankshaft 9 is driven by the electric motor 3, and the eccentric pin portion 9b rotates eccentrically with respect to the main shaft 9a, thereby driving the orbiting scroll 6. Further, the crankshaft 9 is provided with an oil supply passage 9c for introducing lubricating oil to the main bearing 8, the sub bearing 11, and the slewing bearing 6d, and pumps up the lubricating oil to the lower end on the oil reservoir 15 side and guides it to the oil supply passage 9c. A pump unit 14 is attached. The auxiliary bearing 11 is fixed to the sealed container 4 via the housing 12 and the lower frame 13. The auxiliary bearing 11 rotatably holds one end of the crankshaft main shaft portion 9a on the oil reservoir side using a slide bearing, a rolling bearing, a spherical bearing member, or the like.
 旋回スクロール6が電動機3により駆動されるクランク軸9を介して旋回運動されると、旋回スクロール6、固定スクロール5の両ラップが噛み合い、大きさの異なる2つの圧縮室(内線側圧縮室、外線側圧縮室)が180°の位相差を持って交互に形成される。すると、冷媒ガスなどの作動流体は、吸入パイプ4dから旋回スクロール6および固定スクロール5により形成される圧縮室16に導かれ、冷媒ガスはスクロールの中心方向に移動するに従い容積が縮小され圧縮が行われる。圧縮された冷媒ガスは固定スクロール5の固定側板部5bの上部中央に設けられた吐出口5dから密閉容器4内の吐出圧空間4fへ吐出され、圧縮機構部2および電動機3の周囲を循環した後、吐出パイプ4eから外部へと流出する。従って、密閉容器4内の空間は吐出圧力に保たれるいわゆる高圧チャンバ圧縮機である。 When the orbiting scroll 6 is orbitally moved via the crankshaft 9 driven by the electric motor 3, the wraps of the orbiting scroll 6 and the fixed scroll 5 are engaged with each other, and two compression chambers having different sizes (inner side compression chamber, outer line) Side compression chambers) are alternately formed with a phase difference of 180 °. Then, the working fluid such as the refrigerant gas is guided from the suction pipe 4d to the compression chamber 16 formed by the orbiting scroll 6 and the fixed scroll 5, and the volume of the refrigerant gas is reduced and compressed as it moves toward the center of the scroll. Is called. The compressed refrigerant gas is discharged from the discharge port 5d provided at the upper center of the fixed side plate portion 5b of the fixed scroll 5 to the discharge pressure space 4f in the sealed container 4 and circulates around the compression mechanism portion 2 and the electric motor 3. Then, it flows out from the discharge pipe 4e to the outside. Therefore, the space in the sealed container 4 is a so-called high pressure chamber compressor in which the discharge pressure is maintained.
 続いて潤滑油の給油経路について説明する。旋回スクロール6の背面側とフレーム7との間には吸入パイプ4d内での圧力と吐出圧空間4fの圧力の中間となる圧力状態である背圧室17が形成されている。この背圧室17は、油溜り15から潤滑油が給油通路9cを通り、旋回軸受6dを潤滑した後、圧縮機構部2の摺動部に供給する経路中に設けられている。旋回スクロール6の平板部6bには圧縮室16と旋回スクロール6背面に形成される背圧室17を間欠的に連通させる背圧孔6cが設けられており、背圧室17の圧力を吸入圧と吐出圧の中間的な圧力(この中間の圧力を背圧と呼ぶ)に保っている。この背圧とシール部材18の内周側の中央側空間に作用する吐出圧力の合力で、旋回スクロール6は背面から固定スクロール5に押し付けている。 Next, the lubricating oil supply route will be described. A back pressure chamber 17 is formed between the back side of the orbiting scroll 6 and the frame 7, which is a pressure state that is intermediate between the pressure in the suction pipe 4 d and the pressure in the discharge pressure space 4 f. The back pressure chamber 17 is provided in a path through which the lubricating oil passes from the oil reservoir 15 through the oil supply passage 9 c and lubricates the slewing bearing 6 d and then is supplied to the sliding portion of the compression mechanism portion 2. The flat plate portion 6b of the orbiting scroll 6 is provided with a back pressure hole 6c for intermittently communicating the compression chamber 16 and the back pressure chamber 17 formed on the back of the orbiting scroll 6 so that the pressure in the back pressure chamber 17 is sucked into the suction pressure. The discharge pressure is maintained at an intermediate pressure (this intermediate pressure is called back pressure). The orbiting scroll 6 is pressed against the fixed scroll 5 from the back by the resultant force of the back pressure and the discharge pressure acting on the central space on the inner peripheral side of the seal member 18.
 次に、圧縮機運転時の圧縮機構部2の圧力変形について説明する。 
図3は、スクロール圧縮機の圧縮機構部2の圧力変形を模式的に示した図である。図に示すように、固定スクロール5の上部は吐出圧空間4fに面しているため、固定スクロール5の上面には吐出圧力が作用する。また、旋回スクロール6の背面は背圧室17に面しているため、旋回スクロール6の背面には背圧が作用し、旋回スクロール6を上方側(固定スクロール5側)に押し上げる。
Next, pressure deformation of the compression mechanism unit 2 during operation of the compressor will be described.
FIG. 3 is a diagram schematically showing the pressure deformation of the compression mechanism unit 2 of the scroll compressor. As shown in the drawing, since the upper part of the fixed scroll 5 faces the discharge pressure space 4 f, the discharge pressure acts on the upper surface of the fixed scroll 5. Further, since the back surface of the orbiting scroll 6 faces the back pressure chamber 17, back pressure acts on the back surface of the orbiting scroll 6 and pushes the orbiting scroll 6 upward (fixed scroll 5 side).
 図3のスクロール圧縮機の場合、固定スクロール5は固定側板部5bの外縁部が密閉容器4に固定されているので、全体的に下方向(旋回スクロール側)に凸になるように変形する。旋回スクロール6は下方向に凸に変形した固定スクロール5に押し付けられるため、両スクロールの中央部のラップ歯先部(固定側ラップ歯先部5e、旋回側ラップ歯先部6e)とラップ歯底部(固定側ラップ歯底部5f、旋回側ラップ歯底部6f)とが互いに接触する。そして固定スクロール5、旋回スクロール6のそれぞれは固定スクロール5の変形にならうように全体的に中央部が下方向に凸になるように変形する。特に、高圧力比条件においては、ラップ中央部の最大変位も大きくなるため、固定側ラップ歯先部5eの中央部と旋回側ラップ歯底部6fの中央部、また固定側ラップ歯底部5fの中央部と旋回側歯先部6eの中央部との接触が過剰に強くなる。そこで、摩擦損失およびラップ破損に至るのを抑制するため、旋回スクロール6および固定スクロール5の歯底(固定側ラップ歯底部5f、旋回側ラップ歯底部6f)にはそれぞれ、外側から中央に向かうに従い深くなる歯底段差を設けている。なお、それぞれの歯底(固定側ラップ歯底部5f、旋回側ラップ歯底部6f)において、対抗する歯先(固定側ラップ歯先部5e、旋回側ラップ歯先部6e)との間隔が離れるほど、歯底段差が深いと呼ぶことにする。 In the case of the scroll compressor shown in FIG. 3, the fixed scroll 5 is deformed so as to protrude downward (orbiting scroll side) as a whole because the outer edge portion of the fixed side plate portion 5b is fixed to the sealed container 4. Since the orbiting scroll 6 is pressed against the fixed scroll 5 that is deformed downward and convex, the wrap tooth tip portion (fixed wrap tooth tip portion 5e, orbiting side wrap tooth tip portion 6e) and the lap tooth bottom portion of both scrolls are centered. The fixed side wrap tooth bottom 5f and the turning side lap tooth bottom 6f come into contact with each other. Then, each of the fixed scroll 5 and the orbiting scroll 6 is deformed so that the central portion thereof protrudes downward as a whole so as to follow the deformation of the fixed scroll 5. In particular, under the high pressure ratio condition, since the maximum displacement of the lap center portion also increases, the center portion of the fixed wrap tooth tip portion 5e and the center portion of the turning side wrap tooth bottom portion 6f, and the center of the fixed side wrap tooth bottom portion 5f The contact between the portion and the central portion of the turning-side tooth tip portion 6e becomes excessively strong. Therefore, in order to suppress the friction loss and the lap breakage, the bottoms of the orbiting scroll 6 and the fixed scroll 5 (fixed side wrap tooth bottom portion 5f, or orbiting side wrap tooth bottom portion 6f) are respectively moved from the outside toward the center. There is a deeper tooth bottom step. In addition, in each tooth base (fixed side wrap tooth bottom part 5f, turning side wrap tooth bottom part 6f), the distance from the opposing tooth tip (fixed side wrap tooth tip part 5e, turning side wrap tooth tip part 6e) increases. , I will call it the deep root difference.
 このラップ歯底部(固定側ラップ歯底部5f、旋回側ラップ歯底部6f)の段差構成の特徴について説明する。 The characteristics of the step configuration of the lap tooth bottom portion (fixed side wrap tooth bottom portion 5f, turning side wrap tooth bottom portion 6f) will be described.
 図4はスクロール圧縮機1の旋回スクロール6、固定スクロール5の上視図である。また、図5はラップ歯先と歯底の関係をラップ円周側面方向から模式的に示した図である。ここで図4(1)においては旋回スクロール6の旋回側ラップ歯底部6fの段差は、最も外周側の歯底(c)部を基準に内周側に沿って(b)部、さらに(a)部の順に深さが変化するように設定されている。つまり、最も内周側の(a)部が最も深く、最も外周側の(c)部が最も浅くなるように段差が設けられる。 FIG. 4 is a top view of the orbiting scroll 6 and the fixed scroll 5 of the scroll compressor 1. FIG. 5 is a diagram schematically showing the relationship between the wrap tooth tip and the tooth bottom from the wrap circumferential side surface direction. Here, in FIG. 4 (1), the level difference of the orbiting side wrap tooth bottom portion 6f of the orbiting scroll 6 is the (b) portion along the inner peripheral side with reference to the outermost tooth bottom (c) portion, and further (a ) Is set so that the depth changes in the order of parts. That is, the step is provided so that the innermost (a) portion is deepest and the outermost (c) portion is shallowest.
 また図4(2)に示すように、固定スクロール5の固定側ラップ歯底部5fの段差は図4(1)の旋回側ラップ歯底部6fと同様、歯底(c)部を基準に内周側に沿って(b)部、さらに(a)部の順で深さが変化し、その変化量は旋回スクロール6および固定スクロール5において同等に設定している。つまり、最も内周側の(a)部が最も深く、最も外周側の(c)部が最も浅くなるように段差が設けられる。 Further, as shown in FIG. 4 (2), the step of the fixed side wrap tooth bottom portion 5f of the fixed scroll 5 is similar to the turning side wrap tooth bottom portion 6f of FIG. The depth changes in the order of the part (b) and the part (a) along the side, and the amount of change is set equally in the orbiting scroll 6 and the fixed scroll 5. That is, the step is provided so that the innermost (a) portion is deepest and the outermost (c) portion is shallowest.
 図5に示すように上記した段差は、旋回側ラップ歯底部6fにおいては最も外周側の歯底(c)部を基準に内周側に沿って(b)部、さらに(a)部の順に深さが変化するように設定されている。具体的には(a)部は(c)部に対して旋回側ラップ歯丈6hの0.02%~0.04%の段差となるように深く形成され、(b)部は(c)部に対して旋回側ラップ歯丈6hの0.005%~0.02%の段差となる深さで形成され、さらに(c)部は図2に示す旋回側鏡板面6gに対して旋回側ラップ歯丈6hの0.00%~0.03%の段差となる深さで形成されている。なお、ここでいう旋回側ラップ歯丈6hとは図2に示すように、旋回側鏡板面6gから旋回側ラップ6aの旋回側ラップ歯先部6eまでの長さを示している。 As shown in FIG. 5, the steps described above are in the order of (b) part and (a) part along the inner peripheral side with reference to the outermost peripheral tooth bottom (c) part in the turning side wrap tooth bottom part 6 f. The depth is set to change. Specifically, the part (a) is formed deeper than the part (c) so as to have a step of 0.02% to 0.04% of the turning wrap tooth height 6h, and the part (b) is (c). 2 is formed with a depth that is a step of 0.005% to 0.02% of the turning wrap tooth height 6h, and further, part (c) is the turning side with respect to the turning end plate surface 6g shown in FIG. It is formed with a depth that provides a step of 0.00% to 0.03% of the lap tooth height 6h. In addition, the turning side wrap tooth height 6h here shows the length from the turning side end plate surface 6g to the turning side wrap tooth tip portion 6e of the turning side wrap 6a as shown in FIG.
 一方で、固定側ラップ歯底部5fにおいても最も外周側の歯底(c)部を基準に内周側に沿って(b)部、さらに(a)部の順に深さが変化するように設定されている。段差の深さも同様であり(a)部は(c)部に対して固定側ラップ歯丈5hの0.02%~0.04%の段差となるように深く形成され、(b)部は(c)部に対して固定側ラップ歯丈5hの0.005%~0.02%の段差となる深さで形成され、さらに(c)部は図2に示す固定側鏡板面5gに対して固定側ラップ歯丈5hの段差となる深さで形成されている。なお、ここでいう固定側ラップ歯丈5hとは図2に示すように、固定側鏡板面5gから固定側ラップ5aの固定側ラップ歯先部5eまでの長さを示している。 On the other hand, the fixed side wrap tooth bottom part 5f is also set so that the depth changes in the order of the part (b) and further the part (a) along the inner peripheral side with reference to the outermost tooth bottom (c) part. Has been. The depth of the step is the same, and the part (a) is deeply formed to be a step of 0.02% to 0.04% of the fixed side wrap tooth height 5h with respect to the part (c), and the part (b) (C) is formed with a depth of 0.005% to 0.02% of the fixed-side wrap tooth height 5h with respect to the portion (c), and the portion (c) with respect to the fixed-side end plate surface 5g shown in FIG. Thus, it is formed with a depth that is a step of the fixed wrap tooth height 5h. As shown in FIG. 2, the fixed side wrap tooth height 5h indicates the length from the fixed side end plate surface 5g to the fixed side wrap tooth tip portion 5e of the fixed side wrap 5a.
 この図4、5に示す構造により、スクロール圧縮機1が駆動して圧縮機構部2に作動流体による圧力と熱が作用したときに、固定側ラップ歯底部5fと旋回側ラップ歯先部6e、又は旋回側ラップ歯底部6fと固定側ラップ歯先部5eとが過度に接触することを防止し、摩擦による入力増加を抑制することやラップ強度に対する信頼性向上の効果がある。 4 and 5, when the scroll compressor 1 is driven and pressure and heat are applied to the compression mechanism 2 by the working fluid, the fixed wrap tooth bottom portion 5f and the turning wrap tooth tip portion 6e, Alternatively, the turning side wrap tooth bottom portion 6f and the fixed side wrap tooth tip portion 5e are prevented from excessively contacting each other, and there is an effect of suppressing an increase in input due to friction and improving the reliability of the lap strength.
 しかしながら、この図4、5の構造のスクロール圧縮機では、固定側ラップ歯底部5fと旋回側ラップ歯底部6fに設けた歯底段差の段差量が同等であった為に、ラップが最大に変形する条件においても余分な隙間が生まれる虞がある。そして本発明者等による検討の結果、これが原因として、ラップの変形が小さい運転条件(低速・低圧力比条件)では、なおさら歯底に設けた段差は隙間となり、圧縮室間で冷媒が漏れて損失となるという課題があることが判明した。 However, in the scroll compressor having the structure shown in FIGS. 4 and 5, the amount of step difference between the bottom of the fixed wrap tooth bottom portion 5f and the turning side wrap tooth bottom portion 6f is the same, so that the wrap is deformed to the maximum. Even under such conditions, there is a risk that an extra gap will be created. As a result of the study by the present inventors, this is caused by the fact that the step provided in the tooth bottom becomes a gap under operating conditions where the deformation of the lap is small (low speed / low pressure ratio condition), and the refrigerant leaks between the compression chambers. It turns out that there is a problem of loss.
 このようなラップ歯先とラップ歯底の隙間からの冷媒の漏れ損失増加を防ぐための実施例であるスクロール圧縮機の特徴を図4、図6を用いて説明する。 The characteristics of the scroll compressor which is an embodiment for preventing an increase in the leakage loss of the refrigerant from the gap between the wrap tooth tip and the lap tooth bottom will be described with reference to FIGS.
 図4に示すように旋回スクロール6の旋回側板部6bのラップ形成面および固定スクロール5の固定側板部5bのラップ形成面には、外周側より内周側に向かうに従い段差が深くなるよう旋回側ラップ歯底部6fおよび固定側ラップ歯底部5fが形成されている。 As shown in FIG. 4, the wrap forming surface of the orbiting side plate portion 6 b of the orbiting scroll 6 and the wrap forming surface of the fixed side plate portion 5 b of the fixed scroll 5 have a stepped side so that the step becomes deeper from the outer peripheral side toward the inner peripheral side. A lap tooth bottom portion 6f and a fixed side wrap tooth bottom portion 5f are formed.
 図6は本実施例の旋回側ラップ歯底部6fおよび固定側ラップ歯底部5fの深さを示す図である。ここで、図5で説明した上記構造では、旋回側ラップ歯底部6fにおける(c)に対する(a)部の段差と、固定側ラップ歯底部5fにおける(c)に対する(a)部の段差とはそれぞれのラップ歯丈の0.02%~0.04%となるように形成されており同一となっていた。また、旋回側ラップ歯底部6fにおける(c)に対する(b)部の段差と、固定側ラップ歯底部5fにおける(c)に対する(b)部の段差とはそれぞれのラップ歯丈の0.005%~0.02%となるように形成されており同一となっていた。 FIG. 6 is a view showing the depths of the turning side wrap tooth bottom portion 6f and the fixed side wrap tooth bottom portion 5f of the present embodiment. Here, in the above-described structure described with reference to FIG. 5, the level difference of the part (a) with respect to (c) in the turning side wrap tooth bottom part 6 f and the level difference of the part (a) with respect to (c) in the fixed side wrap tooth bottom part 5 f It was formed to be 0.02% to 0.04% of each lap tooth height and was the same. Further, the step of the portion (b) with respect to (c) in the turning side wrap tooth bottom portion 6f and the step of the portion (b) with respect to (c) in the fixed side wrap tooth bottom portion 5f are 0.005% of the respective lap tooth heights. It was formed to be 0.02% and was the same.
 これに対して図6に示す本実施例の構造では、旋回側ラップ歯底部6fにおける(c)に対する(a)部の段差を、固定側ラップ歯底部5fにおける(c)に対する(a)部の段差よりも小さくすることを特徴とするものである。具体的には旋回側ラップ歯底部6fにおける(c)に対する(a)部の段差を旋回側ラップ歯丈6hの0.005%~0.02%となるように形成することで、固定側ラップ歯底部5fにおける(c)に対する(a)部の段差(固定側ラップ歯丈5hの0.02%~0.04%)よりも小さくなるように形成している。 On the other hand, in the structure of the present embodiment shown in FIG. 6, the step of (a) portion with respect to (c) in the turning side wrap tooth bottom portion 6f is different from that of (a) portion with respect to (c) in the fixed side wrap tooth bottom portion 5f. It is characterized by being made smaller than the step. Specifically, the step of the portion (a) with respect to (c) in the turning side wrap tooth bottom portion 6f is formed to be 0.005% to 0.02% of the turning side wrap tooth height 6h, thereby fixing the fixed side wrap. The tooth bottom portion 5f is formed to be smaller than the step of the portion (a) with respect to (c) (0.02% to 0.04% of the fixed side wrap tooth height 5h).
 図5における固定側ラップ歯先部5eと旋回側ラップ歯底部6fとの隙間をhs、固定側ラップ歯底部5fと旋回側ラップ歯先部6eとの隙間をhkとすると、図5においてはhs=hkの関係となっている。また、旋回側ラップ歯底部6fにおける(c)に対する(a)部の段差をDsとし、固定側ラップ歯底部5fにおける(c)に対する(a)部の段差をDkとすると、上記したように図5ではDs=Dkの関係となっている。 In FIG. 5, if the clearance between the fixed wrap tooth tip 5e and the turning lap tooth bottom 6f in FIG. 5 is hs, and the clearance between the fixed wrap tooth bottom 5f and the turning wrap tooth tip 6e is hk, hs in FIG. = Hk relationship. Further, when the step of the portion (a) with respect to (c) in the turning side wrap tooth bottom portion 6f is Ds and the step of the portion (a) with respect to (c) in the fixed side wrap tooth bottom portion 5f is Dk, as shown above, 5, the relationship is Ds = Dk.
 これに対して図6における固定側ラップ歯先部5eと旋回側ラップ歯底部6fとの隙間をhs´、固定側ラップ歯底部5fと旋回側ラップ歯先部6eとの隙間をhkとすると、図6においてはhk>hsの関係となっている。また、旋回側ラップ歯底部6fにおける(c)に対する(a)部の段差をDs´とし、固定側ラップ歯底部5fにおける(c)に対する(a)部の段差をDkとすると上記したようにDk>Ds´の関係となっている。 On the other hand, if the gap between the fixed side wrap tooth tip portion 5e and the turning side wrap tooth bottom portion 6f in FIG. 6 is hs', and the gap between the fixed side wrap tooth bottom portion 5f and the turning side wrap tooth tip portion 6e is hk, In FIG. 6, the relationship is hk> hs. Further, when the step difference of the (a) portion with respect to (c) in the turning side wrap tooth bottom portion 6f is Ds' and the step difference of the (a) portion with respect to (c) in the fixed side wrap tooth bottom portion 5f is Dk, Dk as described above. > Ds ′.
 これは、旋回スクロールおよび固定スクロールの圧力、熱変形を考慮し、旋回スクロール6および固定スクロール5の歯底段差量を個別に設定した結果、旋回側ラップ歯底部6fの内周側の段差量Ds´(深さ)が固定側ラップ歯底部5fの内周側の段差量Dk(深さ)より小さくすることで余分な隙間を詰めてシール性を向上させ、ラップ歯先と歯底の隙間からの冷媒の漏れによる損失を抑制するものである。 This is because, as a result of individually setting the tooth bottom step amount of the orbiting scroll 6 and the fixed scroll 5 in consideration of the pressure and thermal deformation of the orbiting scroll and the fixed scroll, the step amount Ds on the inner peripheral side of the orbiting side wrap tooth bottom portion 6f. ′ (Depth) is made smaller than the step amount Dk (depth) on the inner peripheral side of the fixed side lap tooth bottom part 5f, thereby filling an extra gap and improving the sealing performance. From the gap between the lap tooth tip and the tooth bottom The loss due to the leakage of the refrigerant is suppressed.
 また、特に密度の小さい冷媒を作動流体として使用したスクロール圧縮機、例えばR32冷媒などでは、冷媒の密度がR410A冷媒などに比べて小さいために隣接する圧縮室間において冷媒が漏れ易くなることが考えられる。さらに、R32冷媒のような高温冷媒では、運転中の温度が高くなり、熱膨張によるラップ歯先とラップ歯底の隙間の拡大が考えられる。本実施例によれば、歯底段差を設けたことによるラップ歯先と歯底の隙間からの冷媒の漏れによる損失を抑制することが可能となるため、R32冷媒を単一であるいは冷凍サイクルに封入される割合が70%以上の場合においても高性能なスクロール圧縮機を提供することが出来る。 In particular, in a scroll compressor using a refrigerant having a low density as a working fluid, for example, an R32 refrigerant, the refrigerant density is smaller than that of the R410A refrigerant, so that the refrigerant is likely to leak between adjacent compression chambers. It is done. Furthermore, in the case of a high-temperature refrigerant such as R32 refrigerant, the temperature during operation becomes high, and expansion of the gap between the lap tooth tip and the lap tooth bottom due to thermal expansion can be considered. According to the present embodiment, it is possible to suppress loss due to refrigerant leakage from the gap between the wrap tooth tip and the tooth bottom due to the provision of the tooth bottom step, so the R32 refrigerant can be used alone or in a refrigeration cycle. A high-performance scroll compressor can be provided even when the ratio of sealing is 70% or more.
 次に、本発明のスクロール圧縮機の実施例2について説明する。 
 図7はラップ歯先と歯底の関係をラップ円周側面方向から模式的に示した構成図の例である。本実施例2は、旋回スクロール6および固定スクロール5のラップ対向面に形成する面形状以外は実施例1と同じであり、同一の機能を有する部分については、説明を省略する。
Next, a second embodiment of the scroll compressor of the present invention will be described.
FIG. 7 is an example of a configuration diagram schematically showing the relationship between the wrap tooth tip and the tooth bottom from the wrap circumferential side surface direction. The second embodiment is the same as the first embodiment except for the surface shape formed on the lap-facing surfaces of the orbiting scroll 6 and the fixed scroll 5, and the description of the portions having the same functions is omitted.
 本実施例では、歯底段差を図7に示すように、図5に示すスクロール圧縮機において、旋回側ラップ歯底部6fにおける(b)部と(a)部とを同じ深さとし、旋回側ラップ歯底部6fの段差を2段とすることで、巻き始め側の旋回側ラップ歯底部6fの最深部での固定側ラップ歯先部5eとの隙間を詰めることを特徴とする。つまり固定側ラップ歯底部5fには2段の段差が形成され、旋回側ラップ歯底部6fには1段の段差が形成され、旋回側ラップ歯底部6fにおける内周側の段差Ds´より、固定側ラップ歯底部5fにおける最も内周側の段差Dkの方が深くなるように形成されることを特徴とする。なお、旋回側ラップ歯底部6fにおける内周側の段差の深さDs´と、固定側ラップ歯底部5fにおける2番目に深くなる段差の深さ((b)部における深さ)とが略同一であると損失低減が図れることが確認できた。 In the present embodiment, as shown in FIG. 7, in the scroll compressor shown in FIG. 5, the (b) portion and (a) portion in the turning side wrap tooth bottom portion 6f have the same depth as shown in FIG. By making the level difference of the tooth bottom portion 6f into two steps, the gap with the fixed side wrap tooth tip portion 5e at the deepest portion of the turning side wrap tooth bottom portion 6f on the winding start side is reduced. That is, two steps are formed on the fixed wrap tooth bottom 5f, one step is formed on the turning wrap tooth bottom 6f, and fixed by the inner circumferential side step Ds' of the turning lap tooth bottom 6f. It is characterized in that the innermost step Dk in the side wrap tooth bottom portion 5f is formed deeper. In addition, the depth Ds ′ of the inner circumferential side step in the turning side wrap tooth bottom portion 6f and the depth of the second deepest step in the fixed side wrap tooth bottom portion 5f (depth in the (b) portion) are substantially the same. It was confirmed that the loss could be reduced if.
 本実施例においても実施例1と同様の効果が得られる。また、実施例1に対して段差が減る分だけ加工工数が減るため製造コスト、時間の低減を図ることが可能となる。更に、(b)部から(c)部にかけて図7上で固定側ラップ歯先部5eと向かう面を図7に示すように固定側ラップ歯先部5eと垂直ではなく、(c)部側に傾斜するようにスロープ状に傾斜をつけて滑らかに変化させてもよい。これにより、段差部である(c)部で生じる隙間からの冷媒の漏れ量を小さくすることができる。また、旋回側ラップ歯底部6fを円周状の段差とすることで、エンドミルで加工する場合には高精度の加工が施しやすいといった効果もある。本実施例のこれらの構成はその他の実施例にも適用が可能である。 In the present embodiment, the same effect as in the first embodiment can be obtained. Further, since the number of processing steps is reduced by the amount of the step difference with respect to the first embodiment, the manufacturing cost and time can be reduced. Further, the surface from (b) to (c) that faces the fixed wrap tooth tip 5e in FIG. 7 is not perpendicular to the fixed wrap tooth tip 5e as shown in FIG. The slope may be inclined in a slope shape so as to be inclined smoothly. Thereby, the leakage amount of the refrigerant | coolant from the clearance gap which arises in the (c) part which is a level | step difference part can be made small. Further, by making the turning side lap tooth bottom portion 6f into a circumferential step, there is an effect that high-precision machining is easily performed when machining with an end mill. These configurations of the present embodiment can be applied to other embodiments.
 次に、本発明のスクロール圧縮機の実施例3について説明する。 
 図8はラップ歯先と歯底の関係をラップ円周側面方向から模式的に示した構成図の例である。本実施例は、旋回スクロール6および固定スクロール5のラップ対向面に形成する面形状以外は実施例1と同じであり、同一の機能を有する部分については、説明を省略する。
Next, a third embodiment of the scroll compressor of the present invention will be described.
FIG. 8 is an example of a configuration diagram schematically showing the relationship between the wrap tooth tip and the tooth bottom from the wrap circumferential side surface direction. The present embodiment is the same as the first embodiment except for the surface shape formed on the lap-facing surfaces of the orbiting scroll 6 and the fixed scroll 5, and the description of the parts having the same functions is omitted.
 本実施例は、歯底段差を図8に示すように、図7に示す実施例2において、旋回側ラップ歯底部6fの歯底段差を2段とし、浅く設定した旋回側ラップ歯底部6fの(a)部と固定側ラップ歯底部5fの(a)部の深さに対して、Ds=1/2Dkとなるような旋回側ラップ歯底部6fとすることを特徴とする。つまり図8において、旋回側ラップ歯底部6fにおける最も内周側の段差の深さDs´が、固定側ラップ歯底部5fにおける最も深くなる段差Dkの深さの約半分とするものである。 In this embodiment, as shown in FIG. 8, in the second embodiment shown in FIG. 7, the swivel wrap tooth bottom portion 6 f of the swivel wrap tooth bottom portion 6 f is set shallow, with the bottom step height of the swivel wrap tooth bottom portion 6 f being two steps. With respect to the depth of the (a) part of the (a) part and the (a) part of the fixed-side wrap tooth bottom part 5f, the turning-side wrap tooth bottom part 6f is such that Ds = 1 / 2Dk. That is, in FIG. 8, the depth Ds ′ of the innermost circumferential step in the turning-side lap tooth bottom portion 6f is about half of the depth of the deepest step Dk in the fixed-side lap tooth bottom portion 5f.
 これによりラップ歯先が接触することなく、かつ損失低減が図れることが確認できた。なお、本実施例においても実施例1、2と同様の効果が得られる。また、旋回スクロール側の歯底の深さを固定スクロール側の歯底深さに対して半分に設定していることから、加工の際に切削量が減り、加工時間短縮、工具寿命の延長と言った効果がある。 It has been confirmed that this makes it possible to reduce the loss without contacting the wrap tooth tip. In this embodiment, the same effects as those of Embodiments 1 and 2 can be obtained. In addition, the depth of the bottom of the orbiting scroll is set to half the depth of the bottom of the fixed scroll, which reduces the amount of cutting during machining, shortens the machining time, and extends the tool life. There is an effect said.
 次に、本発明のスクロール圧縮機の実施例4について説明する。 
 本実施例は、スクロール圧縮機の電動機3のロータにフェライト磁石が埋設されたフェライト磁石電動機であること以外は実施例1~3と同じであり、同一の機能を有する部分については、説明を省略する。
Next, a fourth embodiment of the scroll compressor of the present invention will be described.
The present embodiment is the same as the first to third embodiments except that the ferrite magnet motor is embedded in the rotor of the electric motor 3 of the scroll compressor, and the description of the portions having the same functions is omitted. To do.
 フェライト磁石モータは、ネオジウム磁石モータに比べ低価格であることから、フェライト磁石モータを採用した圧縮機は大幅なコストダウンが見込める。しかし、フェライト磁石モータは、特に低速域での効率がネオジウム磁石モータに比べ、低下するという課題がある。そこで、実施例1~4を適用すれば、旋回スクロール6の歯底6fの段差量(深さ)を固定スクロール5の歯底5fの段差量(深さ)より小さく設定することでシール性を向上させ、ラップ歯先と歯底の隙間からの冷媒の漏れによる損失を低減できるため、低速域においても高効率で低価格なスクロール圧縮機を提供することができる。 Since ferrite magnet motors are less expensive than neodymium magnet motors, compressors that employ ferrite magnet motors can be expected to significantly reduce costs. However, the ferrite magnet motor has a problem that the efficiency particularly in the low speed region is lower than that of the neodymium magnet motor. Therefore, if the first to fourth embodiments are applied, the level difference (depth) of the bottom 6f of the orbiting scroll 6 is set smaller than the level difference (depth) of the bottom 5f of the fixed scroll 5, thereby improving the sealing performance. Since the loss due to refrigerant leakage from the gap between the lap tooth tip and the tooth bottom can be reduced, a highly efficient and low cost scroll compressor can be provided even in a low speed region.
 次に、本発明のスクロール圧縮機の実施例6について説明する。 
 本実施例は、スクロール圧縮機に使用する冷媒をR32単体冷媒とすること以外は実施例1~4と同じであり、同一の機能を有する部分については、説明を省略する。 
 R32冷媒は地球温暖化係数(GWP)が675とR410Aの1/3程度であり、より環境に負荷の少ない冷媒である。しかし、R410Aなどの冷媒に比べ密度が小さく密閉空間から漏れ易い冷媒であり、またR32冷媒を使用すると運転温度が高くなるために、ラップが熱の影響で変形しやすくなり、歯先・歯底の隙間が大きくなるという課題がある。
Next, a sixth embodiment of the scroll compressor of the present invention will be described.
The present embodiment is the same as the first to fourth embodiments except that the refrigerant used for the scroll compressor is a single R32 refrigerant, and the description of the portions having the same functions is omitted.
The R32 refrigerant has a global warming potential (GWP) of 675 and about 1/3 of R410A, and is a refrigerant with less environmental load. However, compared to refrigerants such as R410A, the density is small and the refrigerant leaks easily from the sealed space. When the R32 refrigerant is used, the operating temperature becomes high. There is a problem that the gap between the two becomes large.
 そこで、実施例1~4を適用したうえで、冷凍サイクルに封入される冷媒は、R32冷媒単体、又は冷凍サイクルに封入される冷媒の約70%以上の割合であるようにする。これにより旋回スクロール6の歯底6fの段差量(深さ)を固定スクロール5の歯底5fの段差量(深さ)より小さく設定することで余分な隙間を詰めてシール性を向上させ、ラップ歯先と歯底の隙間からの冷媒の漏れによる損失を低減できるため、環境負荷が小さい冷媒を使用しながら、高効率なスクロール圧縮機を提供することができる。 Therefore, after applying Examples 1 to 4, the refrigerant sealed in the refrigeration cycle is set to a ratio of about 70% or more of the R32 refrigerant alone or the refrigerant sealed in the refrigeration cycle. As a result, the level difference (depth) of the tooth bottom 6f of the orbiting scroll 6 is set to be smaller than the level difference (depth) of the tooth bottom 5f of the fixed scroll 5, so that an extra gap is filled and the sealing performance is improved. Since loss due to refrigerant leakage from the gap between the tooth tip and the tooth bottom can be reduced, a highly efficient scroll compressor can be provided while using a refrigerant with a small environmental load.
1 スクロール圧縮機
2 圧縮機構部
3 電動機(3a:ロータ、3b:ステータ)
4 密閉容器(4a:円筒状チャンバ、4b:蓋キャップ、4c:底キャップ、4d:吸入パイプ、4e:吐出パイプ、4f:吐出空間)
5 固定スクロール(5a:固定側ラップ、5b:固定側板部、5c:吸入口、5d:吐出口、5e:固定側ラップ歯先部、5f:固定側ラップ歯底部、5g:固定側鏡板面、5h:固定側ラップ歯丈)
6 旋回スクロール(6a:旋回側ラップ、6b:旋回側板部、6c:背圧孔、6d:旋回軸受、6e:旋回側ラップ歯先部、6f:旋回側ラップ歯底部、6g:旋回側鏡板面6h:旋回側ラップ歯丈)
7 フレーム
8 主軸受
9 クランク軸(9a:主軸、9b:偏心ピン部、9c:給油通路)
10 オルダムリング
11 副軸受
12 ハウジング
13 下フレーム
14 ポンプ部
15 油溜り
16 圧縮室
17 背圧室
DESCRIPTION OF SYMBOLS 1 Scroll compressor 2 Compression mechanism part 3 Electric motor (3a: Rotor, 3b: Stator)
4 Sealed container (4a: cylindrical chamber, 4b: lid cap, 4c: bottom cap, 4d: suction pipe, 4e: discharge pipe, 4f: discharge space)
5 fixed scroll (5a: fixed side wrap, 5b: fixed side plate portion, 5c: suction port, 5d: discharge port, 5e: fixed side wrap tooth tip portion, 5f: fixed side lap tooth bottom portion, 5g: fixed side end plate surface, 5h: Fixed side wrap tooth length)
6 orbiting scroll (6a: orbiting side lap, 6b: orbiting side plate portion, 6c: back pressure hole, 6d: orbiting bearing, 6e: orbiting side lap tooth tip, 6f: orbiting side lap tooth bottom, 6g: orbiting side end plate surface 6h: Turning wrap tooth height)
7 Frame 8 Main bearing 9 Crankshaft (9a: Main shaft, 9b: Eccentric pin part, 9c: Oil supply passage)
DESCRIPTION OF SYMBOLS 10 Oldham ring 11 Sub bearing 12 Housing 13 Lower frame 14 Pump part 15 Oil reservoir 16 Compression chamber 17 Back pressure chamber

Claims (7)

  1.  固定側板部と、固定側板部の一面に渦巻き形状を保持して立設される固定側ラップと、を有する固定スクロールと、
     旋回側板部と、前記旋回側板部の一面に渦巻き形状を保持して立設される旋回側ラップと、を有し、前記旋回側ラップと前記固定側ラップとが噛み合いながら、前記固定スクロールに対して旋回することにより圧縮室を形成する旋回スクロールと、
     前記旋回スクロールをクランク軸を介して駆動する電動機とを備え、
     前記固定側ラップと前記旋回側ラップとの歯底部にはそれぞれ外周側から内周側に向かって深くなるように段差が形成され、
     前記旋回側ラップの歯底部における内周側の段差より、前記固定側ラップの歯底部における内周側の段差の方が深くなるように形成されることを特徴とするスクロール圧縮機。
    A fixed scroll having a fixed side plate portion, and a fixed side wrap that is erected while holding a spiral shape on one surface of the fixed side plate portion;
    A revolving side plate portion, and a revolving side wrap that is erected while maintaining a spiral shape on one surface of the revolving side plate portion, and the revolving side wrap and the fixed side wrap are engaged with each other with respect to the fixed scroll. Orbiting scroll that forms a compression chamber by revolving,
    An electric motor that drives the orbiting scroll via a crankshaft,
    Steps are formed in the tooth bottom portions of the fixed side wrap and the turning side wrap so as to become deeper from the outer peripheral side toward the inner peripheral side,
    A scroll compressor, wherein a step on an inner peripheral side in a tooth bottom portion of the fixed wrap is deeper than a step on an inner peripheral side in a tooth bottom portion of the turning side wrap.
  2.  請求項1に記載のスクロール圧縮機において、
     前記固定側ラップの歯底部には2段の段差が形成され、
     前記旋回側ラップの歯底部には1段の段差が形成され、
     前記旋回側ラップの歯底部における内周側の段差より、前記固定側ラップの歯底部における最も内周側の段差の方が深くなるように形成されることを特徴とするスクロール圧縮機。
    The scroll compressor according to claim 1, wherein
    Two steps are formed at the tooth bottom of the fixed side wrap,
    A step of one step is formed at the tooth bottom of the turning side wrap,
    A scroll compressor characterized in that the innermost circumferential step at the bottom of the fixed wrap is deeper than the inner circumferential step at the bottom of the turning wrap.
  3.  請求項2に記載のスクロール圧縮機において、
     前記旋回側ラップの歯底部における内周側の段差の深さと、前記固定側ラップの歯底部における2番目に深くなる段差の深さとが略同一であることを特徴とするスクロール圧縮機。
    The scroll compressor according to claim 2,
    A scroll compressor characterized in that a depth of a step on an inner peripheral side in a tooth bottom portion of the turning side wrap and a depth of a second deepest step in a tooth bottom portion of the fixed side wrap are substantially the same.
  4.  請求項1に記載のスクロール圧縮機において、
     前記旋回側ラップの歯底部における最も内周側の段差の深さが、前記固定側ラップの歯底部における最も深くなる段差の深さの約半分であることを特徴とするスクロール圧縮機。
    The scroll compressor according to claim 1, wherein
    The scroll compressor characterized in that the depth of the innermost circumferential step at the tooth bottom portion of the turning side wrap is about half of the depth of the deepest step at the tooth bottom portion of the fixed side wrap.
  5.  請求項1に記載のスクロール圧縮機において、
     前記旋回側ラップの歯底部における最も内周側の段差の深さが旋回側ラップ歯丈6hの0.005%~0.02%の範囲であることを特徴とするスクロール圧縮機。
    The scroll compressor according to claim 1, wherein
    A scroll compressor characterized in that the depth of the innermost circumferential step at the tooth bottom of the turning side wrap is in the range of 0.005% to 0.02% of the turning side wrap tooth height 6h.
  6.  請求項1~5の何れかに記載のスクロール圧縮機において、
     前記電動機は、ステータ及びロータを備えて構成され、該ロータにフェライト磁石が埋設されたフェライト磁石電動機であることを特徴とするスクロール圧縮機。
    The scroll compressor according to any one of claims 1 to 5,
    The scroll compressor according to claim 1, wherein the electric motor is a ferrite magnet electric motor including a stator and a rotor, and a ferrite magnet is embedded in the rotor.
  7.  請求項1~5の何れかに記載のスクロール圧縮機において、
     冷凍サイクルに封入される冷媒は、R32冷媒単体、又は冷凍サイクルに封入される冷媒の約70%以上の割合であることを特徴とするスクロール圧縮機。
    The scroll compressor according to any one of claims 1 to 5,
    The scroll compressor characterized by the refrigerant | coolant enclosed with a refrigerating cycle being the ratio of about 70% or more of R32 refrigerant | coolant single-piece | unit or the refrigerant | coolant enclosed with a refrigerating cycle.
PCT/JP2013/059444 2013-03-29 2013-03-29 Scroll compressor WO2014155646A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015507853A JP6081577B2 (en) 2013-03-29 2013-03-29 Scroll compressor
EP13880382.0A EP2980408A4 (en) 2013-03-29 2013-03-29 Scroll compressor
PCT/JP2013/059444 WO2014155646A1 (en) 2013-03-29 2013-03-29 Scroll compressor
CN201380073432.9A CN105074218B (en) 2013-03-29 2013-03-29 Screw compressor
US14/768,958 US20160003247A1 (en) 2013-03-29 2013-03-29 Scroll Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059444 WO2014155646A1 (en) 2013-03-29 2013-03-29 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2014155646A1 true WO2014155646A1 (en) 2014-10-02

Family

ID=51622711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059444 WO2014155646A1 (en) 2013-03-29 2013-03-29 Scroll compressor

Country Status (5)

Country Link
US (1) US20160003247A1 (en)
EP (1) EP2980408A4 (en)
JP (1) JP6081577B2 (en)
CN (1) CN105074218B (en)
WO (1) WO2014155646A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130971A1 (en) 2016-01-26 2017-08-03 ダイキン工業株式会社 Scroll compressor and air conditioning device equipped with same
WO2018008550A1 (en) 2016-07-06 2018-01-11 ダイキン工業株式会社 Scroll compressor
WO2018008495A1 (en) * 2016-07-06 2018-01-11 ダイキン工業株式会社 Scroll compressor
WO2021074947A1 (en) * 2019-10-15 2021-04-22 三菱電機株式会社 Scroll compressor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6200819B2 (en) * 2014-01-22 2017-09-20 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Scroll compressor
GB2562643B (en) * 2016-02-10 2021-07-07 Mitsubishi Electric Corp Scroll compressor
CN108425845B (en) * 2018-05-16 2024-07-09 上海加冷松芝汽车空调股份有限公司 Scroll compressor
JP7304432B2 (en) * 2019-12-24 2023-07-06 日立ジョンソンコントロールズ空調株式会社 Scroll compressor and refrigeration cycle device using the scroll compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365187A (en) * 1986-09-05 1988-03-23 Hitachi Ltd Enclosed scroll compressor
JPH01159482A (en) * 1987-12-16 1989-06-22 Hitachi Ltd Scroll compressor
JPH06317269A (en) * 1993-05-10 1994-11-15 Hitachi Ltd Closed type scroll compressor
JP2009281209A (en) 2008-05-20 2009-12-03 Hitachi Appliances Inc Scroll compressor
JP2009281509A (en) 2008-05-22 2009-12-03 Mitsubishi Electric Corp Automatic transmission

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539785A (en) * 1991-08-02 1993-02-19 Hitachi Ltd Scroll compressor
JPH0719187A (en) * 1993-07-01 1995-01-20 Hitachi Ltd Scroll fluid machine
JP2956509B2 (en) * 1995-01-17 1999-10-04 松下電器産業株式会社 Scroll gas compressor
US5741120A (en) * 1995-06-07 1998-04-21 Copeland Corporation Capacity modulated scroll machine
JP3555549B2 (en) * 2000-03-31 2004-08-18 ダイキン工業株式会社 High pressure dome type compressor
JP4505196B2 (en) * 2003-06-17 2010-07-21 パナソニック株式会社 Scroll compressor
US7905715B2 (en) * 2003-06-17 2011-03-15 Panasonic Corporation Scroll compressor having a fixed scroll part and an orbiting scroll part
JP5030581B2 (en) * 2006-12-28 2012-09-19 三菱重工業株式会社 Scroll compressor
JP4775494B2 (en) * 2010-02-15 2011-09-21 ダイキン工業株式会社 Scroll compressor
WO2012104890A1 (en) * 2011-01-31 2012-08-09 三菱電機株式会社 Air-conditioning device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365187A (en) * 1986-09-05 1988-03-23 Hitachi Ltd Enclosed scroll compressor
JPH01159482A (en) * 1987-12-16 1989-06-22 Hitachi Ltd Scroll compressor
JPH06317269A (en) * 1993-05-10 1994-11-15 Hitachi Ltd Closed type scroll compressor
JP2009281209A (en) 2008-05-20 2009-12-03 Hitachi Appliances Inc Scroll compressor
JP2009281509A (en) 2008-05-22 2009-12-03 Mitsubishi Electric Corp Automatic transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2980408A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130971A1 (en) 2016-01-26 2017-08-03 ダイキン工業株式会社 Scroll compressor and air conditioning device equipped with same
US10502209B2 (en) 2016-01-26 2019-12-10 Daikin Industries, Ltd. Scroll compressor and air conditioning apparatus including the same
WO2018008550A1 (en) 2016-07-06 2018-01-11 ダイキン工業株式会社 Scroll compressor
WO2018008495A1 (en) * 2016-07-06 2018-01-11 ダイキン工業株式会社 Scroll compressor
US11047384B2 (en) 2016-07-06 2021-06-29 Daikin Industries, Ltd. Scroll compressor with non-uniform gap
WO2021074947A1 (en) * 2019-10-15 2021-04-22 三菱電機株式会社 Scroll compressor
JPWO2021074947A1 (en) * 2019-10-15 2021-04-22
JP7138807B2 (en) 2019-10-15 2022-09-16 三菱電機株式会社 scroll compressor

Also Published As

Publication number Publication date
EP2980408A1 (en) 2016-02-03
US20160003247A1 (en) 2016-01-07
JP6081577B2 (en) 2017-02-15
JPWO2014155646A1 (en) 2017-02-16
CN105074218B (en) 2017-10-13
CN105074218A (en) 2015-11-18
EP2980408A4 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP6081577B2 (en) Scroll compressor
US9127669B2 (en) Scroll compressor with reduced upsetting moment
EP2689137B1 (en) Scroll compressor
JP4966951B2 (en) Hermetic scroll compressor
RU2592153C1 (en) Scroll compressor
JP6022375B2 (en) Scroll compressor
US9074600B2 (en) Rotary compressor
WO2016052503A1 (en) Scroll compressor and refrigeration cycle device using same
EP3438456B1 (en) Scroll compressor and refrigeration cycle device
JP2012057515A (en) Scroll compressor
JP6042530B2 (en) Scroll compressor
JP6906887B2 (en) Scroll fluid machine
JPWO2021001923A1 (en) Scroll compressor and air conditioner using it
JP6137876B2 (en) Scroll compressor for refrigerator
JP2016156297A (en) Scroll compressor
JP2012219791A (en) Hermetic scroll compressor
JP5279324B2 (en) Helium hermetic scroll compressor
JP5270993B2 (en) Scroll type fluid machinery
JP2015078665A (en) Scroll compressor
JP2008267140A (en) Scroll compressor
JP2008121482A (en) Scroll compressor
JP2024144782A (en) Scroll Compressor
JP3924982B2 (en) Scroll compressor
JP2012036841A (en) Compressor
JP2024091916A (en) Scroll Compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380073432.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507853

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013880382

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14768958

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE