WO2013084486A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2013084486A1
WO2013084486A1 PCT/JP2012/007793 JP2012007793W WO2013084486A1 WO 2013084486 A1 WO2013084486 A1 WO 2013084486A1 JP 2012007793 W JP2012007793 W JP 2012007793W WO 2013084486 A1 WO2013084486 A1 WO 2013084486A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
compression chamber
back pressure
chamber
passage
Prior art date
Application number
PCT/JP2012/007793
Other languages
French (fr)
Japanese (ja)
Inventor
山田 定幸
阪井 学
岳史 今西
淳 作田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013084486A1 publication Critical patent/WO2013084486A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base

Definitions

  • the present invention relates to a scroll compressor used for a cooling device such as an air conditioning air conditioner or a refrigerator, or a heat pump type hot water supply device.
  • the compression chamber oil supply path includes a passage formed inside the orbiting scroll and a recess formed in the end plate of the fixed scroll.
  • the back pressure chamber and the compression chamber are intermittently communicated by the concave portions periodically overlapping with the orbiting motion of the orbiting scroll.
  • one of the passage area where one opening of this passage and the concave portion overlap, the cross-sectional area of the concave portion, and the passage area of the portion where the concave portion opens into the compression chamber is reduced to become a resistance.
  • the pressure in the back pressure chamber becomes abnormally higher than the pressure in the compression chamber communicating with the pressure chamber, and as an example, the pressure becomes unstable.
  • the present invention solves the conventional problems, and aims to improve the reliability particularly at high speed and high load operation by stabilizing the pressure in the back pressure chamber.
  • a scroll compressor comprising: a motor and a compression mechanism portion housed in a container; and the compression mechanism portion combined with the orbiting scroll in which a spiral wrap is formed upright on an end plate and the orbiting scroll.
  • a fixed scroll formed with a spiral wrap standing upright on the end plate, and a main bearing member for disposing the orbiting scroll between the fixed scroll and holding a seal member, and the orbiting scroll and the fixed scroll
  • a compression chamber is formed between the scroll and the scroll member, and the seal member is disposed on the back of the orbiting scroll.
  • the seal member divides the inside of the seal member into a high pressure region and the outside of the seal member into a back pressure chamber.
  • a back pressure chamber oil supply passage for supplying lubricating oil from the high pressure region to the back pressure chamber, and supplying the lubricating oil from the back pressure chamber to the compression chamber
  • the compression chamber oil supply path is provided, and one opening of the back pressure chamber oil supply path is moved back and forth through the seal member, whereby the high pressure region and the back pressure chamber are intermittently communicated, and the compression chamber oil supply path is It is composed of a passage formed inside the orbiting scroll and a recess formed in the end plate of the fixed scroll, and one opening of the passage periodically overlaps the recess according to the orbiting motion of the orbiting scroll.
  • the diameter of the recess is determined by the first passage area generated by the overlap of the one opening of the passage and the recess.
  • the axial cross-sectional area determined by the depth is increased, and the axial cross-sectional area is made larger than the second passage area generated when the recess opens into the compression chamber.
  • the first passage area is 0.9 to 1.1 times the second passage area at a position where the first passage area is maximized. It is characterized by that.
  • a third invention is characterized in that, in the scroll compressor according to the first or second invention, an opening diameter of the recess is smaller than a thickness of the wrap of the orbiting scroll. With this configuration, the pressure in the back pressure chamber is further stabilized.
  • the fourth invention is characterized in that, in the scroll compressor according to any one of the first to third inventions, a tip seal is not provided at the tip of the wrap of the orbiting scroll. With this configuration, both high efficiency and cost reduction can be realized.
  • the fifth invention is characterized in that in the scroll compressor according to any one of the first to fourth inventions, the recess is provided in the compression chamber after the working fluid is closed.
  • the passage area is reduced and the resistance is reduced by making the cross-sectional area of the recess larger than the passage area where the one opening of the passage overlaps with the recess and the passage area where the recess opens into the compression chamber. It will never be. Therefore, the pressure in the back pressure chamber does not become abnormally higher than the pressure in the compression chamber that communicates, the force applied to the sliding surface of the fixed scroll and the orbiting scroll does not increase, especially during high speed and high load operation Will improve.
  • Sectional drawing of the scroll compressor in Embodiment 1 of this invention (A) Main part enlarged sectional view in case one opening of back pressure chamber oil supply path in compression mechanism part of same scroll compressor is located on high pressure region side with respect to seal member (b) Compression mechanism of same scroll compressor The principal part expanded sectional view when one opening of the back pressure chamber oil supply path
  • a scroll compressor includes a back pressure chamber oil supply passage for supplying lubricant from a high pressure region to a back pressure chamber, and a compression chamber oil supply passage for supplying lubricant from the back pressure chamber to the compression chamber.
  • One opening of the chamber refueling path communicates with the seal member so that the high pressure region and the back pressure chamber are intermittently communicated
  • the compression chamber refueling path is a passage formed inside the orbiting scroll, and a fixed scroll end plate
  • the second aspect of the invention is particularly the scroll compressor of the first aspect, wherein the first passage area is 0.9 to 1.1 times the second passage area at the position where the first passage area is maximized. It is. According to this configuration, both the passage areas are approximately equal and maximized, and the passage resistance can be minimized, so that the pressure in the back pressure chamber is stabilized and the reliability is improved.
  • the opening diameter of the recess is made smaller than the thickness of the orbiting scroll wrap. According to this configuration, the number of compression chambers through which one opening of the passage communicates is limited to one, the pressure in the back pressure chamber is stabilized, and the reliability is improved under all operating conditions.
  • the fourth invention is a scroll compressor according to the first to third inventions, in which a tip seal is not provided at the tip of the orbiting scroll wrap. According to this configuration, even if the gap between the wrap tips is reduced, the passage area is reduced and does not become resistance, so that the pressure in the back pressure chamber is stabilized and high efficiency can be realized.
  • the recess is provided in the compression chamber after the working fluid is closed. According to this configuration, it is possible to prevent a so-called tilting phenomenon in which the ability is reduced when the orbiting scroll is separated from the fixed scroll.
  • FIG. 1 is a cross-sectional view of a scroll compressor according to an embodiment of the present invention
  • FIG. 2 is an enlarged cross-sectional view of a main part of the compression mechanism portion of FIG. 1
  • FIG. 3 is a combination of a turning scroll and a fixed scroll of the scroll compressor.
  • FIG. 4 is a view showing a communication state of a compression chamber oil supply path of the scroll compressor.
  • FIG. 1 shows a horizontal scroll compressor installed sideways by a mounting leg 2 around the body of the scroll compressor 1.
  • the scroll compressor 1 includes a liquid storage unit 6 in which a compression mechanism unit 4 and a motor 5 for driving the compression mechanism unit 4 and a motor 5 for driving the compression mechanism unit 4 are stored in a main body casing 3.
  • the motor 5 is driven by a motor drive circuit unit (not shown).
  • the working fluid to be handled is a gas refrigerant, and the lubricating oil 7 is used to lubricate each sliding portion and is used as a seal for the sliding portion of the compression mechanism portion 4 and is compatible with the refrigerant.
  • the present invention is not limited to these.
  • a compression mechanism part 4 that sucks, compresses and discharges the working fluid
  • a motor 5 that drives the compression mechanism part 4
  • a liquid that is used for lubrication of each sliding part including the compression mechanism part 4 is stored.
  • the liquid storage unit 6 is built in the main body casing 3, and the scroll compressor 1 that drives the motor 5 by the motor drive circuit unit may be used, and is not limited to the following description.
  • the compression mechanism unit 4 includes an orbiting scroll 12 formed by standing upright a spiral wrap 12b on an end plate 12a, and a fixed scroll 11 formed by combining the orbiting scroll 12 with an upright spiral wrap 11b on an end plate 11a,
  • the orbiting scroll 12 is disposed between the fixed scroll 11 and the main bearing member 51 that holds the seal member 24.
  • a tip seal 19 is disposed at the wrap tip of the orbiting scroll 12.
  • the fixed scroll 11 has a suction port 16 at the outer peripheral portion of the end plate 11a and a discharge port 31 at the center of the end plate 11a.
  • the orbiting scroll 12 has a cylindrical boss 12c formed on the back surface.
  • An eccentric shaft 14 a is integrally formed at one end of the drive shaft 14, and the eccentric shaft 14 a is supported by a cylindrical boss portion 12 c via an eccentric rolling bearing 43.
  • the eccentric shaft 14a is fitted with a bush 30.
  • wheel 43a of the eccentric rolling bearing 43 is fitted by the bush 30, and the outer ring
  • One end side of the drive shaft 14 is supported by a main bearing member 51 via a main rolling bearing 42.
  • the seal member 24 is disposed on the back surface of the end plate 12 a of the orbiting scroll 12.
  • the back surface of the end plate 12 a of the orbiting scroll 12 is partitioned by the seal member 24 so that the inside of the seal member 24 forms a high pressure region 21 and the outside of the seal member 24 forms a back pressure chamber 22.
  • the high-pressure region 21 includes the first high-pressure region 21a surrounded by the cylindrical boss portion 12c and the eccentric rolling bearing 43, the main bearing member 51, the cylindrical boss portion 12c, the eccentric rolling bearing 43, and the main rolling bearing 42.
  • the second high-pressure region 21b surrounded by The lower part of the second high-pressure region 21b constitutes an oil sump.
  • a back pressure chamber oil supply passage 25 for supplying the lubricating oil 7 from the high pressure region 21 to the back pressure chamber 22 is formed in the end plate 12 a of the orbiting scroll 12.
  • the back pressure chamber refueling path 25 includes a first back pressure chamber refueling path 25a that communicates with the first high pressure region 21a, and a second back pressure chamber refueling path 25b through which one opening 25c travels the seal member 24.
  • the first back pressure chamber oil supply path 25a and the second back pressure chamber oil supply path 25b are in communication with each other.
  • the compression chamber oil supply path 26 includes a passage 26 a formed inside the orbiting scroll 12 and a recess 26 b formed on the bottom surface of the end plate 11 a of the fixed scroll 11, and lubricates the compression chamber 10 from the back pressure chamber 22.
  • Supply oil 7 The compression chamber side opening 26c of the passage 26a is formed at the tip of the spiral wrap 12b of the orbiting scroll 12, and periodically overlaps the recess 26b in accordance with the orbiting motion of the orbiting scroll 12, so that the back pressure chamber 22 and The compression chamber 10 communicates intermittently.
  • the compression chamber 10 is formed by meshing the spiral wrap 11 b of the fixed scroll 11 and the spiral wrap 12 b of the orbiting scroll 12, and moves when the orbiting scroll 12 is orbited relative to the fixed scroll 11.
  • the volume is changed accordingly.
  • the refrigerant gas returning from the external cycle is sucked into the compression chamber 10 from the suction port 16, and the refrigerant gas compressed in the compression chamber 10 is discharged from the discharge port 31 to the discharge chamber 62.
  • the main casing 3 is provided with a discharge port 9 for discharging compressed refrigerant gas
  • the sub casing 80 is provided with a suction port 8 for sucking compressed refrigerant gas.
  • the main body casing 3 and the sub casing 80 constitute a container.
  • the scroll compressor 1 arranges a main bearing member 51 having a pump 13, a sub rolling bearing 41, a motor 5, and a main rolling bearing 42 in this order from the one end wall 3 a side in the axial direction in the main body casing 3. It is.
  • the pump 13 is accommodated from the outer surface of the end wall 3 a and is fitted and fixed by a lid 52.
  • a pump chamber 53 is formed inside the lid 52, and the pump chamber 53 communicates with the liquid storage unit 6 through a suction passage 54.
  • the auxiliary rolling bearing 41 is supported by the end wall 3 a and pivotally supports the side of the drive shaft 14 connected to the pump 13.
  • the motor 5 includes a stator 5a and a rotor 5b, and drives the drive shaft 14 to rotate.
  • the stator 5 a is fixed to the inner periphery of the main casing 3 by shrink fitting or the like, and the rotor 5 b is fixed to the drive shaft 14.
  • the main bearing member 51 is fixed to the inner periphery of the sub casing 80 with bolts 17 and the like, and the compression mechanism portion 4 side of the drive shaft 14 is supported by the main rolling bearing 42.
  • the fixed scroll 11 is attached to the outer surface of the main bearing member 51 with a bolt or the like (not shown), and the orbiting scroll 12 is sandwiched between the main bearing member 51 and the fixed scroll 11.
  • An Oldham ring 57 is provided between the main bearing member 51 and the orbiting scroll 12 to prevent the orbiting scroll 12 from rotating and to orbit.
  • the exposed portion of the compression mechanism 4 from the sub casing 80 is covered with the main casing 3.
  • the sub casing 80 forms an end wall 80a on the side opposite to the end wall 3a in the axial direction.
  • the main casing 3 and the sub casing 80 are fixed with bolts 18 with their openings facing each other.
  • the compression mechanism unit 4 is located between the suction port 8 of the sub casing 80 and the discharge port 9 of the main casing 3, and the suction port 16 of the fixed scroll 11 is connected to the suction port 8 of the sub casing 80.
  • the discharge port 31 is connected to the discharge chamber 62 through a reed valve 31a.
  • the discharge chamber 62 communicates with the space on the motor 5 side through a communication passage 63 formed in the fixed scroll 11 and the main bearing member 51.
  • the communication passage 63 may be formed between the fixed scroll 11 and the main bearing member 51 and the main body casing 3.
  • the motor 5 is driven by the motor drive circuit unit, and rotates the compression mechanism unit 4 via the drive shaft 14 and drives the pump 13.
  • the compression mechanism section 4 is supplied with the lubricating oil 7 of the liquid storage section 6 by the pump 13 and receives lubrication and sealing action.
  • the refrigerant gas discharged into the discharge chamber 62 passes through the motor 5 from the communication passage 63 and is discharged from the discharge port 9 of the main body casing 3 while cooling the motor 5.
  • Lubricating oil 7 contained in the refrigerant gas in the container is separated from the refrigerant gas by collision or squeezing action, and lubricates the sub rolling bearing 41.
  • the lubricating oil 7 stored in the liquid storage part 6 of the main casing 3 is supplied to the oil supply passage 15 formed in the drive shaft 14 by driving the pump 13 by the drive shaft 14.
  • the outlet of the oil supply passage 15 is formed at the end of the eccentric shaft 14a. Note that the supply of the lubricating oil 7 to the oil supply passage 15 may use the differential pressure in the main casing 3 instead of driving the pump 13.
  • the flow of the lubricating oil 7 in the compression mechanism 4 will be described with reference to FIG.
  • the lubricating oil 7 from the oil supply passage 15 is supplied to the first high pressure region 21a.
  • one opening 25 c of the back pressure chamber oil supply path 25 is located on the high pressure region 21 side with respect to the seal member 24, and the lubricating oil 7 is not supplied to the back pressure chamber 22.
  • a part of the lubricating oil 7 supplied to the first high pressure region 21 a is supplied to the second high pressure region 21 b via the eccentric rolling bearing 43.
  • another part of the lubricating oil 7 supplied to the first high-pressure region 21a has a first opening 25c of the second back pressure chamber oil supply passage 25b positioned inside the seal member 24, so that the first The high pressure region 21a is supplied to the second high pressure region 21b.
  • the lubricating oil 7 supplied to the second high pressure region 21b in this way flows out to the space on the motor 5 side through the main rolling bearing 42 and is recovered to the liquid storage unit 6.
  • one opening 25c of the back pressure chamber oil supply passage 25 is positioned outside the seal member 24, so that a part of the lubricating oil 7 supplied to the first high pressure region 21a is back. It is supplied to the pressure chamber 22 and backs up the back pressure of the orbiting scroll 12.
  • the lubricating oil 7 supplied to the back pressure chamber 22 flows from the back pressure chamber 22 to the compression chamber side opening 26 c of the compression chamber oil supply path 26 and the bottom surface of the end plate 11 a of the fixed scroll 11. Is supplied to the compression chamber 10 by communication with the recess 26 b formed in the above, and seals and lubricates between the fixed scroll 11 and the orbiting scroll 12. As shown in FIG. 2B, the lubricating oil 7 is not supplied to the compression chamber 10 when the compression chamber side opening 26c and the recess 26b are not in communication with each other.
  • FIGS. 3A, 3 ⁇ / b> B, 3 ⁇ / b> C, and 3 ⁇ / b> D show states in which the phase of the orbiting scroll 12 with respect to the fixed scroll 11 is shifted by 90 degrees.
  • the recessed part 26b is provided in the compression chamber 10a after closing the refrigerant gas which is a working fluid, and is not provided in the compression chamber 10b of the state before closing refrigerant gas.
  • the compression chamber 10 communicated with the back pressure chamber 22 via the compression chamber oil supply passage 26 is the compression chamber 10a after the working fluid is closed, so that the orbiting scroll 12 can be separated from the fixed scroll 11. This can prevent a so-called tilting phenomenon that lowers the temperature.
  • the compression chamber side opening 26 c overlaps the recess 26 b, whereby the lubricating oil 7 is supplied from the back pressure chamber 22 to the compression chamber 10 through the compression chamber oil supply path 26.
  • the compression chamber side opening 26c does not overlap the recess 26b, so that the lubricating oil 7 is supplied from the back pressure chamber 22 to the compression chamber 10. There is no.
  • the compression chamber oil supply path 26 is made into a spiral wrap by making the opening diameter of the recess 26b formed on the bottom surface of the end plate 11a of the fixed scroll 11 of the present embodiment smaller than the thickness of the spiral wrap 12b. It communicates only with the compression chamber 10aB formed inside 12b.
  • the compression chamber oil supply path 26 is formed outside the compression chamber 10aB and the spiral wrap 12b formed inside the spiral wrap 12b. It communicates with both of the compression chambers 10aA.
  • FIG. 4 shows a communication state at a position where the first passage area is maximized due to the overlap between the compression chamber side opening 26 c of the compression chamber oil supply passage 26 and the recess 26 b formed on the bottom surface of the end plate 11 a of the fixed scroll 11.
  • FIG. 4A is an axial sectional view of the compression chamber side opening 26c and the recess 26b
  • FIG. 4B is a plan view of the compression chamber side opening 26c viewed from the recess 26b
  • FIG. 4C is FIG. It is sectional drawing of the recessed part 26b when it sees in the direction of the arrow of (). As shown in FIG.
  • the lubricating oil 7 is supplied from the compression chamber side opening 26c to the compression chamber 10 through the recess 26b.
  • the first passage area generated by the overlap between the compression chamber side opening 26c and the recess 26b is A
  • the axial sectional area determined by the diameter and depth of the recess 26b is B
  • the recess The second passage area generated by opening the b into the compression chamber 10 is C. Further, B> A and B> C.
  • the communication area is reduced in the middle and resistance does not occur.
  • the lubricating oil 7 is stably supplied to the compression chamber 10. Therefore, the pressure of the back pressure chamber 22 does not become abnormally higher than the pressure of the compression chamber 10 with which the back pressure chamber 22 communicates, and the force applied to the sliding surfaces of the fixed scroll 11 and the orbiting scroll 12 does not increase. Especially, reliability at high speed and high load operation is improved.
  • the first passage area A (A / C) is 0.9 to 1.1 times the second passage area C
  • the first passage area A and the second passage area C are substantially equivalent passage areas. In particular, one area is not reduced. Accordingly, the passage resistance can be minimized, so that the pressure in the back pressure chamber 22 is stabilized and the reliability is improved.
  • the first passage area A (A / C) with respect to the second passage area C is less than 0.9, the first passage area A is reduced and becomes resistance, and the pressure in the back pressure chamber 22 becomes abnormally high. Sometimes.
  • FIG. 5 is a view showing a pressure change in the compression chamber 10. 5
  • the pressure change in the inner compression chamber 10aB of the spiral wrap 12b of the orbiting scroll 12 is indicated by a solid line
  • the pressure change in the outer compression chamber 10aA of the spiral wrap 12b is indicated by a broken line.
  • the compression chamber oil supply path 26 communicates with the compression chamber 10aB formed inside the spiral wrap 12b.
  • the pressure in the compression chamber at this time is B.
  • it communicates with the compression chamber 10aA formed outside the spiral wrap 12b, and the pressure in the compression chamber at this time is A.
  • the back pressure chamber 22 since the back pressure chamber 22 communicates with two different compression chambers 10aB and 10aA, the pressure in the back pressure chamber 22 varies between the pressure B and the pressure A in FIG. 5 and becomes unstable.
  • the compression chamber with which the compression chamber oil supply path 26 communicates is limited to one.
  • the compression chamber oil supply passage 26 is not alternately switched to and communicated with a plurality of compression chambers, the pressure in the back pressure chamber 22 is stabilized, and the reliability is improved under all operating conditions.
  • the cost can be reduced by eliminating the tip seal 19 of the present embodiment, but there is a possibility that a gap is formed at the tip of the spiral wrap 12b of the orbiting scroll 12 and the sealing performance is lowered. Accordingly, if the clearance between the ends of the spiral wrap 12b of the orbiting scroll 12 is reduced, the sealing performance is improved.
  • the axial cross-sectional area B of the recess 26b is small, the passage is constricted to become a resistance and the pressure in the back pressure chamber 22 is abnormal. There is a possibility of rising.
  • the axial cross-sectional area B of the recess 26b is larger than the first passage area A and the second passage area C, the passage is not restricted even if the tip clearance of the spiral wrap 12b is reduced. Therefore, the lubricating oil 7 is stably supplied to the compression chamber 10, and the reliability is improved without the pressure in the back pressure chamber 22 rising abnormally. Furthermore, the sealing performance of the gap between the tip of the spiral wrap 12b and the end plate 11a is improved, and high efficiency can be realized.
  • the compression chamber 10 in which the compression chamber side opening 26c of the compression chamber oil supply passage 26 of the present embodiment communicates is provided in the compression chamber 10a after the working fluid is closed as shown in FIG. 3, and the refrigerant gas is closed. It is not provided in the compression chamber 10b in a state before being inserted. That is, the compression chamber 10 communicated with the back pressure chamber 22 via the compression chamber oil supply passage 26 is the compression chamber 10a after the working fluid is closed, so that the orbiting scroll 12 can be separated from the fixed scroll 11 to This can prevent a so-called tilting phenomenon that lowers the temperature. Even if tilting occurs, it is possible to guide the pressure in the compression chamber 10 higher than the pressure before the working fluid is closed to the back pressure chamber 22. Acts to enable early return to normal operation.
  • the pressure of the back pressure chamber does not become higher than the pressure of the compression chamber communicating with the sliding surface of the fixed scroll and the orbiting scroll.
  • the scroll fluid machine such as an air scroll compressor, vacuum pump, scroll type expander and the like can be improved. It can be applied to other uses.

Abstract

The axial cross-sectional area (B) of a concave portion (26b) is greater than a first channel area (A) at a portion where one opening of the channel and the concave portion overlap, and a second channel area (C) where the concave portion (26b) opens into a compression chamber, whereby the constricting of the channel area to cause resistance is eliminated. Therefore, the pressure of a back-pressure chamber (22) is prevented from exceeding the pressure of a communicating compression chamber (10), and the force exerted on the sliding surfaces of a fixed scroll (11) and a turning scroll (12) is prevented from increasing, improving reliability, particularly during high-speed and high-load operation.

Description

スクロール圧縮機Scroll compressor
 本発明は、冷暖房空調装置や冷蔵庫等の冷却装置、あるいはヒートポンプ式の給湯装置等に用いられるスクロール圧縮機に関する。 The present invention relates to a scroll compressor used for a cooling device such as an air conditioning air conditioner or a refrigerator, or a heat pump type hot water supply device.
 従来、この種のスクロール圧縮機は、多くの製造業者等から同様の圧縮機に関するさまざまな出願がなされていると共に、家庭用ルームエアコン用や冷蔵庫用の圧縮機として種々の圧縮機が実際に利用されている。また、最近は自動車用空気調和装置の圧縮機としても利用され始めている。 Conventionally, various scroll compressors of this type have been filed by many manufacturers regarding similar compressors, and various compressors are actually used as compressors for home room air conditioners and refrigerators. Has been. Recently, it has also begun to be used as a compressor for automobile air conditioners.
 また、これら圧縮機の圧縮機構部などの潤滑を行うために、例えば特許文献1で開示されているように、固定スクロールおよび旋回スクロールに形成された背圧室給油経路および圧縮室給油経路を設置することにより常時所定の制限の基に給油を行う方法がある。 Further, in order to lubricate the compression mechanism portion of these compressors, for example, as disclosed in Patent Document 1, a back pressure chamber oil supply path and a compression chamber oil supply path formed in the fixed scroll and the orbiting scroll are installed. By doing so, there is a method of always refueling based on a predetermined restriction.
国際公開第2010/087179号International Publication No. 2010/087179
 従来の構成では、圧縮室給油経路が、旋回スクロールの内部に形成された通路と、固定スクロールの鏡板に形成された凹部とから構成される。この通路の一方の開口は、旋回スクロールの旋回運動に合わせて周期的に凹部が重なることで、背圧室と圧縮室が間欠的に連通する。ところが、この連通時に、この通路の一方の開口と凹部が重なる部分の通路面積と、凹部の断面積と、凹部が圧縮室に開口する部分の通路面積のいずれかが小さく絞られ抵抗となる部分がある。その結果、背圧室の圧力が連通する圧縮室の圧力より異常に高くなる、その一例として0.2MPa以上高くなるなど、圧力が不安定になるという課題を有していた。 In the conventional configuration, the compression chamber oil supply path includes a passage formed inside the orbiting scroll and a recess formed in the end plate of the fixed scroll. In one opening of this passage, the back pressure chamber and the compression chamber are intermittently communicated by the concave portions periodically overlapping with the orbiting motion of the orbiting scroll. However, at the time of this communication, one of the passage area where one opening of this passage and the concave portion overlap, the cross-sectional area of the concave portion, and the passage area of the portion where the concave portion opens into the compression chamber is reduced to become a resistance. There is. As a result, the pressure in the back pressure chamber becomes abnormally higher than the pressure in the compression chamber communicating with the pressure chamber, and as an example, the pressure becomes unstable.
 本発明は、従来の課題を解決するもので、背圧室の圧力を安定させることにより、特に高速および高負荷運転時における信頼性の向上を図ることを目的とする。 The present invention solves the conventional problems, and aims to improve the reliability particularly at high speed and high load operation by stabilizing the pressure in the back pressure chamber.
 第1の発明によるスクロール圧縮機は、容器内にモータと圧縮機構部とを収納し、前記圧縮機構部を、鏡板に渦巻状のラップを直立して形成した旋回スクロールと、前記旋回スクロールと組み合わされ鏡板に渦巻状のラップを直立して形成した固定スクロールと、前記固定スクロールとの間に前記旋回スクロールを配置するとともにシール部材を保持する主軸受部材とにより構成し、前記旋回スクロールと前記固定スクロールとの間に圧縮室が形成され、前記旋回スクロールの背面に前記シール部材が配置され、前記シール部材によって、前記シール部材の内側が高圧領域、前記シール部材の外側が背圧室に区画され、前記高圧領域から前記背圧室に潤滑油を供給する背圧室給油経路と、前記背圧室から前記圧縮室に前記潤滑油を供給する圧縮室給油経路を備え、前記背圧室給油経路の一方の開口が前記シール部材を往来することで、前記高圧領域と前記背圧室が間欠的に連通し、前記圧縮室給油経路が、前記旋回スクロールの内部に形成された通路と、前記固定スクロールの前記鏡板に形成された凹部とから構成され、前記通路の一方の開口が前記旋回スクロールの旋回運動にあわせて周期的に前記凹部に重なることで、前記背圧室と前記圧縮室が間欠的に連通するスクロール圧縮機であって、前記通路の一方の前記開口と前記凹部との重なりによって生じる第1通路面積より、前記凹部の直径と深さで決まる軸方向断面積を大きくし、前記凹部が前記圧縮室に開口することによって生じる第2通路面積より、前記軸方向断面積を大きくしたことを特徴とする。これにより、通路面積が小さく絞られ抵抗となることがないため、背圧室の圧力が連通する圧縮室の圧力より異常に高くなることがなく、固定スクロールと旋回スクロールの摺動面にかかる力が増大せず、特に高速および高負荷運転時の信頼性が向上する。 According to a first aspect of the present invention, there is provided a scroll compressor comprising: a motor and a compression mechanism portion housed in a container; and the compression mechanism portion combined with the orbiting scroll in which a spiral wrap is formed upright on an end plate and the orbiting scroll. And a fixed scroll formed with a spiral wrap standing upright on the end plate, and a main bearing member for disposing the orbiting scroll between the fixed scroll and holding a seal member, and the orbiting scroll and the fixed scroll A compression chamber is formed between the scroll and the scroll member, and the seal member is disposed on the back of the orbiting scroll. The seal member divides the inside of the seal member into a high pressure region and the outside of the seal member into a back pressure chamber. A back pressure chamber oil supply passage for supplying lubricating oil from the high pressure region to the back pressure chamber, and supplying the lubricating oil from the back pressure chamber to the compression chamber The compression chamber oil supply path is provided, and one opening of the back pressure chamber oil supply path is moved back and forth through the seal member, whereby the high pressure region and the back pressure chamber are intermittently communicated, and the compression chamber oil supply path is It is composed of a passage formed inside the orbiting scroll and a recess formed in the end plate of the fixed scroll, and one opening of the passage periodically overlaps the recess according to the orbiting motion of the orbiting scroll. Thus, in the scroll compressor in which the back pressure chamber and the compression chamber communicate intermittently, the diameter of the recess is determined by the first passage area generated by the overlap of the one opening of the passage and the recess. The axial cross-sectional area determined by the depth is increased, and the axial cross-sectional area is made larger than the second passage area generated when the recess opens into the compression chamber. As a result, the passage area is reduced so that there is no resistance and the pressure in the back pressure chamber does not become abnormally higher than the pressure in the compression chamber that communicates, and the force applied to the sliding surfaces of the fixed scroll and the orbiting scroll And the reliability at high speed and high load operation is improved.
 第2の発明は、第1の発明によるスクロール圧縮機において、前記第1通路面積が最大となる位置で、前記第2通路面積に対する前記第1通路面積を0.9~1.1倍としたことを特徴とする。この構成により、通路抵抗を最小限に抑えることができるため、背圧室の圧力が安定し、信頼性が向上する。 According to a second aspect of the present invention, in the scroll compressor according to the first aspect, the first passage area is 0.9 to 1.1 times the second passage area at a position where the first passage area is maximized. It is characterized by that. With this configuration, since the passage resistance can be minimized, the pressure in the back pressure chamber is stabilized and the reliability is improved.
 第3の発明は、第1の発明または第2の発明によるスクロール圧縮機において、前記凹部の開口径が前記旋回スクロールの前記ラップの厚さより小さいことを特徴とする。この構成により、さらに背圧室の圧力が安定する。 A third invention is characterized in that, in the scroll compressor according to the first or second invention, an opening diameter of the recess is smaller than a thickness of the wrap of the orbiting scroll. With this configuration, the pressure in the back pressure chamber is further stabilized.
 第4の発明は、第1から第3のいずれかの発明によるスクロール圧縮機において、前記旋回スクロールの前記ラップの先端にチップシールを設けないことを特徴とする。この構成により、高効率化とコストダウンの両方を実現できる。 The fourth invention is characterized in that, in the scroll compressor according to any one of the first to third inventions, a tip seal is not provided at the tip of the wrap of the orbiting scroll. With this configuration, both high efficiency and cost reduction can be realized.
 第5の発明は、第1から第4のいずれかの発明によるスクロール圧縮機において、前記凹部は作動流体を閉じ込んだ後の前記圧縮室に設けたことを特徴とする。 The fifth invention is characterized in that in the scroll compressor according to any one of the first to fourth inventions, the recess is provided in the compression chamber after the working fluid is closed.
 本発明のスクロール圧縮機は、通路の一方の開口と凹部が重なる部分の通路面積と凹部が圧縮室に開口する通路面積より、凹部の断面積を大きくしたことにより、通路面積が小さく絞られ抵抗となることがない。そのため、背圧室の圧力が連通する圧縮室の圧力より異常に高くなることがなく、固定スクロールと旋回スクロールの摺動面にかかる力が増大せず、特に高速および高負荷運転時の信頼性が向上する。 In the scroll compressor of the present invention, the passage area is reduced and the resistance is reduced by making the cross-sectional area of the recess larger than the passage area where the one opening of the passage overlaps with the recess and the passage area where the recess opens into the compression chamber. It will never be. Therefore, the pressure in the back pressure chamber does not become abnormally higher than the pressure in the compression chamber that communicates, the force applied to the sliding surface of the fixed scroll and the orbiting scroll does not increase, especially during high speed and high load operation Will improve.
本発明の実施の形態1におけるスクロール圧縮機の断面図Sectional drawing of the scroll compressor in Embodiment 1 of this invention (a)同スクロール圧縮機の圧縮機構部における背圧室給油経路の一方の開口がシール部材に対して高圧領域側に位置する場合の要部拡大断面図(b)同スクロール圧縮機の圧縮機構部における背圧室給油経路の一方の開口がシール部材の外側に位置する場合の要部拡大断面図(A) Main part enlarged sectional view in case one opening of back pressure chamber oil supply path in compression mechanism part of same scroll compressor is located on high pressure region side with respect to seal member (b) Compression mechanism of same scroll compressor The principal part expanded sectional view when one opening of the back pressure chamber oil supply path | route in a part is located in the outer side of a sealing member 同スクロール圧縮機の旋回スクロールと固定スクロールとを組み合わせた状態を示す要部断面図Cross-sectional view of the main part showing a state in which the orbiting scroll and the fixed scroll of the scroll compressor are combined. (a)同スクロール圧縮機の圧縮室側開口およびの軸方向を示す断面図(b)同スクロール圧縮機の凹部から圧縮室側開口を見た平面図(c)凹部を図4(b)の矢印の方向に見たときの断面図(A) Cross-sectional view showing the compression chamber side opening of the scroll compressor and the axial direction thereof (b) Plan view of the compression chamber side opening seen from the recess of the scroll compressor (c) The recess is shown in FIG. Cross section when viewed in the direction of the arrow 同スクロール圧縮機の圧縮室の圧力変化を説明する図The figure explaining the pressure change of the compression chamber of the scroll compressor
 1 スクロール圧縮機
 2 取付け脚
 3 本体ケーシング
 3a 端部壁
 4 圧縮機構部
 5 モータ
 6 貯液部
 7 潤滑油
 8 吸入口
 9 吐出口
 10 圧縮室
 11 固定スクロール
 11a 鏡板
 11b 渦巻状のラップ
 12 旋回スクロール
 12a 鏡板
 12b 渦巻状のラップ
 12c 筒型ボス部
 13 ポンプ
 14 駆動軸
 14a 偏心軸
 15 給油路
 16 吸入口
 17 ボルト
 18 ボルト
 19 チップシール
 21 高圧領域
 21a 第1の高圧領域
 21b 第2の高圧領域
 22 背圧室
 24 シール部材
 25 背圧室給油経路
 25a 第1の背圧室給油経路
 25b 第2の背圧室給油経路
 25c 開口
 26 圧縮室給油経路
 26a 通路
 26b 凹部
 26c 圧縮室側開口
 30 ブッシュ
 31 吐出口
 31a リード弁
 41 副転がり軸受
 42 主転がり軸受
 43 偏心転がり軸受
 43a 内輪
 43b 外輪
 51 主軸受部材
 52 蓋体
 53 ポンプ室
 54 吸上げ通路
 57 オルダムリング
 62 吐出室
 63 連絡通路
 80 サブケーシング
 80a 端部壁
  A 第1通路面積
  B 軸方向断面積
  C 第2通路面積
DESCRIPTION OF SYMBOLS 1 Scroll compressor 2 Mounting leg 3 Main body casing 3a End wall 4 Compression mechanism part 5 Motor 6 Liquid storage part 7 Lubricating oil 8 Suction port 9 Discharge port 10 Compression chamber 11 Fixed scroll 11a End plate 11b Spiral wrap 12 Turning scroll 12a End plate 12b Spiral wrap 12c Cylindrical boss 13 Pump 14 Drive shaft 14a Eccentric shaft 15 Oil supply path 16 Suction port 17 Bolt 18 Bolt 19 Tip seal 21 High pressure region 21a First high pressure region 21b Second high pressure region 22 Back pressure Chamber 24 Seal member 25 Back pressure chamber lubrication path 25a First back pressure chamber lubrication path 25b Second back pressure chamber lubrication path 25c Open 26 Compression chamber lubrication path 26a Path 26b Recess 26c Compression chamber side opening 30 Bush 31 Discharge port 31a Reed valve 41 Sub rolling bearing 42 Main rolling bearing 43 Eccentric rolling Ridge bearing 43a Inner ring 43b Outer ring 51 Main bearing member 52 Lid body 53 Pump chamber 54 Suction passage 57 Oldham ring 62 Discharge chamber 63 Communication passage 80 Subcasing 80a End wall A First passage area B Axial sectional area C Second passage area
 第1の発明によるスクロール圧縮機は、高圧領域から背圧室に潤滑油を供給する背圧室給油経路と、背圧室から圧縮室に潤滑油を供給する圧縮室給油経路を備え、背圧室給油経路の一方の開口がシール部材を往来することで、高圧領域と背圧室が間欠的に連通し、圧縮室給油経路が、旋回スクロールの内部に形成された通路と、固定スクロールの鏡板に形成された凹部とから構成され、通路の一方の開口が旋回スクロールの旋回運動にあわせて周期的に凹部に重なることで、背圧室と圧縮室が間欠的に連通するスクロール圧縮機であって、通路の一方の開口と凹部との重なりによって生じる第1通路面積より、凹部の直径と深さで決まる軸方向断面積を大きくし、凹部が圧縮室に開口することによって生じる第2通路面積より、軸方向断面積を大きくしたものである。この構成によれば、通路面積が小さく絞られ抵抗となることがないため、背圧室の圧力が連通する圧縮室の圧力より異常に高くなることがなく、固定スクロールと旋回スクロールの摺動面にかかる力が増大せず、特に高速および高負荷運転時の信頼性が向上する。 A scroll compressor according to a first aspect of the present invention includes a back pressure chamber oil supply passage for supplying lubricant from a high pressure region to a back pressure chamber, and a compression chamber oil supply passage for supplying lubricant from the back pressure chamber to the compression chamber. One opening of the chamber refueling path communicates with the seal member so that the high pressure region and the back pressure chamber are intermittently communicated, and the compression chamber refueling path is a passage formed inside the orbiting scroll, and a fixed scroll end plate This is a scroll compressor in which the back pressure chamber and the compression chamber are intermittently communicated by one of the passages periodically overlapping the recess in accordance with the orbiting motion of the orbiting scroll. The second passage area generated by opening the recess into the compression chamber by increasing the axial cross-sectional area determined by the diameter and depth of the recess from the first passage area caused by the overlap of one opening of the passage and the recess. More axial section It is those that were big. According to this configuration, since the passage area is small and does not become resistance, the pressure of the back pressure chamber does not become abnormally higher than the pressure of the compression chamber communicating with the sliding surface of the fixed scroll and the orbiting scroll. Therefore, the reliability at high speed and high load operation is improved.
 第2の発明は、特に、第1の発明のスクロール圧縮機において、第1通路面積が最大となる位置で、第2通路面積に対する第1通路面積を0.9~1.1倍としたものである。この構成によれば、双方の通路面積がほぼ同等かつ最大になり通路抵抗を最小限に抑えることができることから、背圧室の圧力が安定し、信頼性が向上する。 The second aspect of the invention is particularly the scroll compressor of the first aspect, wherein the first passage area is 0.9 to 1.1 times the second passage area at the position where the first passage area is maximized. It is. According to this configuration, both the passage areas are approximately equal and maximized, and the passage resistance can be minimized, so that the pressure in the back pressure chamber is stabilized and the reliability is improved.
 第3の発明は、特に、第1の発明または第2の発明のスクロール圧縮機において、凹部の開口径を旋回スクロールのラップの厚さより小さくするものである。この構成によれば、通路の一方の開口が連通する圧縮室が一つに限定され、背圧室の圧力が安定し、あらゆる運転条件において信頼性が向上する。 In the third aspect of the invention, in particular, in the scroll compressor of the first aspect or the second aspect, the opening diameter of the recess is made smaller than the thickness of the orbiting scroll wrap. According to this configuration, the number of compression chambers through which one opening of the passage communicates is limited to one, the pressure in the back pressure chamber is stabilized, and the reliability is improved under all operating conditions.
 第4の発明は、特に、第1から第3の発明によるスクロール圧縮機において、旋回スクロールのラップの先端にチップシールを設けないものである。この構成によれば、ラップ先端隙間を縮小しても、通路面積が小さく絞られ抵抗となることがないため、背圧室の圧力が安定し、かつ高効率を実現できる。 The fourth invention is a scroll compressor according to the first to third inventions, in which a tip seal is not provided at the tip of the orbiting scroll wrap. According to this configuration, even if the gap between the wrap tips is reduced, the passage area is reduced and does not become resistance, so that the pressure in the back pressure chamber is stabilized and high efficiency can be realized.
 第5の発明は、特に、第1から第4の発明によるスクロール圧縮機において、凹部は作動流体を閉じ込んだ後の圧縮室に設けたものである。この構成によれば、旋回スクロールが固定スクロールから離れることで能力が低下してしまう、いわゆるチルティング現象を防止することができる。 In the fifth aspect of the invention, in particular, in the scroll compressor according to the first to fourth aspects of the invention, the recess is provided in the compression chamber after the working fluid is closed. According to this configuration, it is possible to prevent a so-called tilting phenomenon in which the ability is reduced when the orbiting scroll is separated from the fixed scroll.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.
 (実施の形態1)
 図1は本発明の実施の形態におけるスクロール圧縮機の断面図、図2は図1の圧縮機構部の要部拡大断面図、図3は同スクロール圧縮機の旋回スクロールと固定スクロールとを組み合わせた状態を示す要部断面図、図4は同スクロール圧縮機の圧縮室給油経路の連通状態を示す図である。
(Embodiment 1)
1 is a cross-sectional view of a scroll compressor according to an embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view of a main part of the compression mechanism portion of FIG. 1, and FIG. 3 is a combination of a turning scroll and a fixed scroll of the scroll compressor. FIG. 4 is a view showing a communication state of a compression chamber oil supply path of the scroll compressor.
 図1は、スクロール圧縮機1の胴部の周りにある取付け脚2によって横向きに設置される横型のスクロール圧縮機を示している。スクロール圧縮機1は、その本体ケーシング3内に圧縮機構部4およびこれを駆動するモータ5を内蔵し、潤滑油7を貯留する貯液部6を備えている。モータ5は図示しないモータ駆動回路部によって駆動される。取り扱う作動流体はガス冷媒であり、潤滑油7は各摺動部の潤滑を行うとともに圧縮機構部4の摺動部のシールとして用いられ、冷媒に対して相溶性のあるものを用いる。しかし、本発明はこれらに限られることはない。基本的には、作動流体の吸入、圧縮および吐出を行う圧縮機構部4と、この圧縮機構部4を駆動するモータ5と、圧縮機構部4を含む各摺動部の潤滑に供する液を貯留する貯液部6を本体ケーシング3に内蔵し、モータ5をモータ駆動回路部により駆動するスクロール圧縮機1であればよく、以下の説明に限定されるものではない。 FIG. 1 shows a horizontal scroll compressor installed sideways by a mounting leg 2 around the body of the scroll compressor 1. The scroll compressor 1 includes a liquid storage unit 6 in which a compression mechanism unit 4 and a motor 5 for driving the compression mechanism unit 4 and a motor 5 for driving the compression mechanism unit 4 are stored in a main body casing 3. The motor 5 is driven by a motor drive circuit unit (not shown). The working fluid to be handled is a gas refrigerant, and the lubricating oil 7 is used to lubricate each sliding portion and is used as a seal for the sliding portion of the compression mechanism portion 4 and is compatible with the refrigerant. However, the present invention is not limited to these. Basically, a compression mechanism part 4 that sucks, compresses and discharges the working fluid, a motor 5 that drives the compression mechanism part 4, and a liquid that is used for lubrication of each sliding part including the compression mechanism part 4 is stored. The liquid storage unit 6 is built in the main body casing 3, and the scroll compressor 1 that drives the motor 5 by the motor drive circuit unit may be used, and is not limited to the following description.
 圧縮機構部4は、鏡板12aに渦巻状のラップ12bを直立して形成した旋回スクロール12と、旋回スクロール12と組み合わされ鏡板11aに渦巻状のラップ11bを直立して形成した固定スクロール11と、固定スクロール11との間に旋回スクロール12を配置するとともにシール部材24を保持する主軸受部材51とにより構成される。旋回スクロール12のラップ先端には、チップシール19を配置している。
 固定スクロール11は、鏡板11aの外周部に吸入口16を、鏡板11aの中央部に吐出口31を形成している。旋回スクロール12は、背面に筒型ボス部12cを形成している。
 駆動軸14の一端には偏心軸14aが一体に形成され、偏心軸14aは、偏心転がり軸受43を介して筒型ボス部12cで支持されている。なお、偏心軸14aはブッシュ30を装着している。そして、偏心転がり軸受43の内輪43aは、ブッシュ30に嵌合されており、偏心転がり軸受43の外輪43bは、筒型ボス部12cにわずかな隙間をもってルーズに嵌合されている。また駆動軸14の一端側は、主転がり軸受42を介して主軸受部材51で支持されている。
The compression mechanism unit 4 includes an orbiting scroll 12 formed by standing upright a spiral wrap 12b on an end plate 12a, and a fixed scroll 11 formed by combining the orbiting scroll 12 with an upright spiral wrap 11b on an end plate 11a, The orbiting scroll 12 is disposed between the fixed scroll 11 and the main bearing member 51 that holds the seal member 24. A tip seal 19 is disposed at the wrap tip of the orbiting scroll 12.
The fixed scroll 11 has a suction port 16 at the outer peripheral portion of the end plate 11a and a discharge port 31 at the center of the end plate 11a. The orbiting scroll 12 has a cylindrical boss 12c formed on the back surface.
An eccentric shaft 14 a is integrally formed at one end of the drive shaft 14, and the eccentric shaft 14 a is supported by a cylindrical boss portion 12 c via an eccentric rolling bearing 43. The eccentric shaft 14a is fitted with a bush 30. And the inner ring | wheel 43a of the eccentric rolling bearing 43 is fitted by the bush 30, and the outer ring | wheel 43b of the eccentric rolling bearing 43 is loosely fitted by the cylindrical boss | hub part 12c with a slight clearance. One end side of the drive shaft 14 is supported by a main bearing member 51 via a main rolling bearing 42.
 シール部材24は、旋回スクロール12の鏡板12aの背面に配置される。旋回スクロール12の鏡板12aの背面は、シール部材24の内側が高圧領域21、シール部材24の外側が背圧室22を形成するようにシール部材24によって区画されている。
 高圧領域21は、筒型ボス部12c内部と偏心転がり軸受43とによって囲まれる第1の高圧領域21aと、主軸受部材51、筒型ボス部12c外部、偏心転がり軸受43、及び主転がり軸受42によって囲まれる第2の高圧領域21bからなる。第2の高圧領域21bの下部は油溜まりを構成する。
 旋回スクロール12の鏡板12aには、高圧領域21から背圧室22に潤滑油7を供給する背圧室給油経路25が形成されている。背圧室給油経路25は、第1の高圧領域21aに連通する第1の背圧室給油経路25aと、一方の開口25cがシール部材24を往来する第2の背圧室給油経路25bとから構成され、第1の背圧室給油経路25aと第2の背圧室給油経路25bとは連通している。
The seal member 24 is disposed on the back surface of the end plate 12 a of the orbiting scroll 12. The back surface of the end plate 12 a of the orbiting scroll 12 is partitioned by the seal member 24 so that the inside of the seal member 24 forms a high pressure region 21 and the outside of the seal member 24 forms a back pressure chamber 22.
The high-pressure region 21 includes the first high-pressure region 21a surrounded by the cylindrical boss portion 12c and the eccentric rolling bearing 43, the main bearing member 51, the cylindrical boss portion 12c, the eccentric rolling bearing 43, and the main rolling bearing 42. The second high-pressure region 21b surrounded by The lower part of the second high-pressure region 21b constitutes an oil sump.
A back pressure chamber oil supply passage 25 for supplying the lubricating oil 7 from the high pressure region 21 to the back pressure chamber 22 is formed in the end plate 12 a of the orbiting scroll 12. The back pressure chamber refueling path 25 includes a first back pressure chamber refueling path 25a that communicates with the first high pressure region 21a, and a second back pressure chamber refueling path 25b through which one opening 25c travels the seal member 24. The first back pressure chamber oil supply path 25a and the second back pressure chamber oil supply path 25b are in communication with each other.
 圧縮室給油経路26は、旋回スクロール12の内部に形成された通路26aと、固定スクロール11の鏡板11aのラップ底面に形成された凹部26bとから構成され、背圧室22から圧縮室10に潤滑油7を供給する。通路26aの圧縮室側開口26cは旋回スクロール12の渦巻状のラップ12b歯先に形成されており、旋回スクロール12の旋回運動にあわせて周期的に凹部26bに重なることで、背圧室22と圧縮室10が間欠的に連通する。
 圧縮室10は、固定スクロール11の渦巻状のラップ11bと旋回スクロール12の渦巻状のラップ12bを噛み合わせて形成され、旋回スクロール12を固定スクロール11に対し旋回運動をさせたときに、移動を伴い容積を変化させる。外部サイクルから帰還する冷媒ガスは、吸入口16から圧縮室10に吸入され、圧縮室10で圧縮された冷媒ガスは、吐出口31から吐出室62に吐出される。
 本体ケーシング3には圧縮された冷媒ガスを吐出する吐出口9が設けられ、サブケーシング80には圧縮する冷媒ガスを吸入する吸入口8が設けられている。本体ケーシング3とサブケーシング80によって容器が構成される。
The compression chamber oil supply path 26 includes a passage 26 a formed inside the orbiting scroll 12 and a recess 26 b formed on the bottom surface of the end plate 11 a of the fixed scroll 11, and lubricates the compression chamber 10 from the back pressure chamber 22. Supply oil 7. The compression chamber side opening 26c of the passage 26a is formed at the tip of the spiral wrap 12b of the orbiting scroll 12, and periodically overlaps the recess 26b in accordance with the orbiting motion of the orbiting scroll 12, so that the back pressure chamber 22 and The compression chamber 10 communicates intermittently.
The compression chamber 10 is formed by meshing the spiral wrap 11 b of the fixed scroll 11 and the spiral wrap 12 b of the orbiting scroll 12, and moves when the orbiting scroll 12 is orbited relative to the fixed scroll 11. The volume is changed accordingly. The refrigerant gas returning from the external cycle is sucked into the compression chamber 10 from the suction port 16, and the refrigerant gas compressed in the compression chamber 10 is discharged from the discharge port 31 to the discharge chamber 62.
The main casing 3 is provided with a discharge port 9 for discharging compressed refrigerant gas, and the sub casing 80 is provided with a suction port 8 for sucking compressed refrigerant gas. The main body casing 3 and the sub casing 80 constitute a container.
 さらに、スクロール圧縮機1は、本体ケーシング3内の軸線方向の一方の端部壁3a側から順に、ポンプ13、副転がり軸受41、モータ5、主転がり軸受42を持った主軸受部材51を配置してある。ポンプ13は端部壁3aの外面から収容され、蓋体52で嵌め付け固定される。また、蓋体52の内側にはポンプ室53を形成し、ポンプ室53は吸上げ通路54を介して貯液部6に通じている。副転がり軸受41は、端部壁3aにて支持され、駆動軸14のポンプ13に連結している側を軸支してある。モータ5は、固定子5aと回転子5bから構成され、駆動軸14を回転駆動する。固定子5aは本体ケーシング3の内周に焼き嵌めなどにより固定され、回転子5bは駆動軸14に固定されている。
 主軸受部材51はサブケーシング80の内周にボルト17などにて固定され、駆動軸14の圧縮機構部4側を主転がり軸受42により軸受している。主軸受部材51の外面には、固定スクロール11を図示しないボルトなどによって取付け、旋回スクロール12は主軸受部材51と固定スクロール11との間に挟み込まれている。主軸受部材51と旋回スクロール12との間には、旋回スクロール12の自転を防止して旋回運動させるためのオルダムリング57が設けられている。
Furthermore, the scroll compressor 1 arranges a main bearing member 51 having a pump 13, a sub rolling bearing 41, a motor 5, and a main rolling bearing 42 in this order from the one end wall 3 a side in the axial direction in the main body casing 3. It is. The pump 13 is accommodated from the outer surface of the end wall 3 a and is fitted and fixed by a lid 52. In addition, a pump chamber 53 is formed inside the lid 52, and the pump chamber 53 communicates with the liquid storage unit 6 through a suction passage 54. The auxiliary rolling bearing 41 is supported by the end wall 3 a and pivotally supports the side of the drive shaft 14 connected to the pump 13. The motor 5 includes a stator 5a and a rotor 5b, and drives the drive shaft 14 to rotate. The stator 5 a is fixed to the inner periphery of the main casing 3 by shrink fitting or the like, and the rotor 5 b is fixed to the drive shaft 14.
The main bearing member 51 is fixed to the inner periphery of the sub casing 80 with bolts 17 and the like, and the compression mechanism portion 4 side of the drive shaft 14 is supported by the main rolling bearing 42. The fixed scroll 11 is attached to the outer surface of the main bearing member 51 with a bolt or the like (not shown), and the orbiting scroll 12 is sandwiched between the main bearing member 51 and the fixed scroll 11. An Oldham ring 57 is provided between the main bearing member 51 and the orbiting scroll 12 to prevent the orbiting scroll 12 from rotating and to orbit.
 圧縮機構部4のサブケーシング80からの露出部分は、本体ケーシング3により覆われる。サブケーシング80は、端部壁3aと軸線方向に反対側に端部壁80aを形成している。本体ケーシング3とサブケーシング80とはそれぞれの開口どうしを突き合わせてボルト18にて固定される。圧縮機構部4はサブケーシング80の吸入口8と本体ケーシング3の吐出口9との間に位置し、固定スクロール11の吸入口16がサブケーシング80の吸入口8と接続され、固定スクロール11の吐出口31がリード弁31aを介して吐出室62と接続されている。吐出室62は固定スクロール11および主軸受部材51に形成した連絡通路63によってモータ5側の空間に通じている。連絡通路63は、固定スクロール11および主軸受部材51と本体ケーシング3との間に形成してもよい。
 モータ5は、モータ駆動回路部によって駆動され、駆動軸14を介して圧縮機構部4を旋回運動させるとともに、ポンプ13を駆動する。このとき圧縮機構部4はポンプ13により貯液部6の潤滑油7が供給されて潤滑およびシール作用を受ける。吐出室62に吐出された冷媒ガスは、連絡通路63からモータ5を通過し、モータ5を冷却しながら本体ケーシング3の吐出口9から吐出される。容器内において冷媒ガスに含まれる潤滑油7は、衝突や絞り作用によって冷媒ガスから分離し、副転がり軸受41の潤滑を行う。
 本体ケーシング3の貯液部6に貯留されている潤滑油7は、駆動軸14にてポンプ13を駆動することで、駆動軸14内に形成した給油路15に供給される。給油路15の出口は偏心軸14aの端部に形成されている。なお、給油路15への潤滑油7の供給は、ポンプ13の駆動に代えて本体ケーシング3内の差圧を利用してもよい。
The exposed portion of the compression mechanism 4 from the sub casing 80 is covered with the main casing 3. The sub casing 80 forms an end wall 80a on the side opposite to the end wall 3a in the axial direction. The main casing 3 and the sub casing 80 are fixed with bolts 18 with their openings facing each other. The compression mechanism unit 4 is located between the suction port 8 of the sub casing 80 and the discharge port 9 of the main casing 3, and the suction port 16 of the fixed scroll 11 is connected to the suction port 8 of the sub casing 80. The discharge port 31 is connected to the discharge chamber 62 through a reed valve 31a. The discharge chamber 62 communicates with the space on the motor 5 side through a communication passage 63 formed in the fixed scroll 11 and the main bearing member 51. The communication passage 63 may be formed between the fixed scroll 11 and the main bearing member 51 and the main body casing 3.
The motor 5 is driven by the motor drive circuit unit, and rotates the compression mechanism unit 4 via the drive shaft 14 and drives the pump 13. At this time, the compression mechanism section 4 is supplied with the lubricating oil 7 of the liquid storage section 6 by the pump 13 and receives lubrication and sealing action. The refrigerant gas discharged into the discharge chamber 62 passes through the motor 5 from the communication passage 63 and is discharged from the discharge port 9 of the main body casing 3 while cooling the motor 5. Lubricating oil 7 contained in the refrigerant gas in the container is separated from the refrigerant gas by collision or squeezing action, and lubricates the sub rolling bearing 41.
The lubricating oil 7 stored in the liquid storage part 6 of the main casing 3 is supplied to the oil supply passage 15 formed in the drive shaft 14 by driving the pump 13 by the drive shaft 14. The outlet of the oil supply passage 15 is formed at the end of the eccentric shaft 14a. Note that the supply of the lubricating oil 7 to the oil supply passage 15 may use the differential pressure in the main casing 3 instead of driving the pump 13.
 ここで、図2を用いて圧縮機構部4における潤滑油7の流れを説明する。
 旋回スクロール12の旋回駆動に伴い、給油路15からの潤滑油7は第1の高圧領域21aに供給される。
 図2(a)の状態では、背圧室給油経路25の一方の開口25cがシール部材24に対して高圧領域21側に位置し、潤滑油7は背圧室22に供給されない。
 この状態では、第1の高圧領域21aに供給された潤滑油7の一部は、偏心転がり軸受43を経て第2の高圧領域21bに供給される。また、第1の高圧領域21aに供給された潤滑油7の別の一部は、第2の背圧室給油経路25bの一方の開口25cがシール部材24の内側に位置することにより、第1の高圧領域21aから第2の高圧領域21bに供給される。このようにして第2の高圧領域21bに供給された潤滑油7は、主転がり軸受42を経てモータ5側空間に流出し、貯液部6へと回収される。
 図2(b)の状態では、背圧室給油経路25の一方の開口25cがシール部材24の外側に位置することにより、第1の高圧領域21aに供給された潤滑油7の一部が背圧室22に供給され、旋回スクロール12の背圧をバックアップする。
 さらに、図2(a)の状態で、背圧室22に供給された潤滑油7は、背圧室22から圧縮室給油経路26の圧縮室側開口26cと固定スクロール11の鏡板11aのラップ底面に形成された凹部26bとの連通によって圧縮室10に供給され、固定スクロール11と旋回スクロール12との間のシールおよび潤滑を図る。なお、図2(b)に示すように、圧縮室側開口26cと凹部26bとが連通しない位置の時には圧縮室10に潤滑油7は供給されない。
Here, the flow of the lubricating oil 7 in the compression mechanism 4 will be described with reference to FIG.
With the turning driving of the turning scroll 12, the lubricating oil 7 from the oil supply passage 15 is supplied to the first high pressure region 21a.
In the state of FIG. 2A, one opening 25 c of the back pressure chamber oil supply path 25 is located on the high pressure region 21 side with respect to the seal member 24, and the lubricating oil 7 is not supplied to the back pressure chamber 22.
In this state, a part of the lubricating oil 7 supplied to the first high pressure region 21 a is supplied to the second high pressure region 21 b via the eccentric rolling bearing 43. Further, another part of the lubricating oil 7 supplied to the first high-pressure region 21a has a first opening 25c of the second back pressure chamber oil supply passage 25b positioned inside the seal member 24, so that the first The high pressure region 21a is supplied to the second high pressure region 21b. The lubricating oil 7 supplied to the second high pressure region 21b in this way flows out to the space on the motor 5 side through the main rolling bearing 42 and is recovered to the liquid storage unit 6.
In the state of FIG. 2 (b), one opening 25c of the back pressure chamber oil supply passage 25 is positioned outside the seal member 24, so that a part of the lubricating oil 7 supplied to the first high pressure region 21a is back. It is supplied to the pressure chamber 22 and backs up the back pressure of the orbiting scroll 12.
Further, in the state of FIG. 2A, the lubricating oil 7 supplied to the back pressure chamber 22 flows from the back pressure chamber 22 to the compression chamber side opening 26 c of the compression chamber oil supply path 26 and the bottom surface of the end plate 11 a of the fixed scroll 11. Is supplied to the compression chamber 10 by communication with the recess 26 b formed in the above, and seals and lubricates between the fixed scroll 11 and the orbiting scroll 12. As shown in FIG. 2B, the lubricating oil 7 is not supplied to the compression chamber 10 when the compression chamber side opening 26c and the recess 26b are not in communication with each other.
 図3(a)、(b)、(c)、(d)は、固定スクロール11に対する旋回スクロール12の位相を90度ずつずらした状態を示している。
 なお、図に示すように、凹部26bは、作動流体である冷媒ガスを閉じ込んだ後の圧縮室10aに設け、冷媒ガスを閉じ込む前の状態の圧縮室10bには設けない。すなわち、圧縮室給油経路26を介して背圧室22が連通する圧縮室10を、作動流体を閉じ込んだ後の圧縮室10aとすることで、旋回スクロール12が固定スクロール11から離れることで能力が低下してしまう、いわゆるチルティング現象を防止することができる。また仮にチルティングが発生しても、圧縮室10の圧力を背圧室22へと導くことが可能であるため、正常運転への早期復帰が可能となる。
 図3(d)の状態で、圧縮室側開口26cが凹部26bに重なることで、潤滑油7は、圧縮室給油経路26を通って、背圧室22から圧縮室10に供給される。
 これに対し図3(a)、(b)、(c)の状態では、圧縮室側開口26cが凹部26bに重ならないため、背圧室22から圧縮室10に潤滑油7が供給されることはない。
FIGS. 3A, 3 </ b> B, 3 </ b> C, and 3 </ b> D show states in which the phase of the orbiting scroll 12 with respect to the fixed scroll 11 is shifted by 90 degrees.
In addition, as shown to a figure, the recessed part 26b is provided in the compression chamber 10a after closing the refrigerant gas which is a working fluid, and is not provided in the compression chamber 10b of the state before closing refrigerant gas. In other words, the compression chamber 10 communicated with the back pressure chamber 22 via the compression chamber oil supply passage 26 is the compression chamber 10a after the working fluid is closed, so that the orbiting scroll 12 can be separated from the fixed scroll 11. This can prevent a so-called tilting phenomenon that lowers the temperature. Even if tilting occurs, the pressure in the compression chamber 10 can be guided to the back pressure chamber 22, so that early return to normal operation is possible.
In the state of FIG. 3D, the compression chamber side opening 26 c overlaps the recess 26 b, whereby the lubricating oil 7 is supplied from the back pressure chamber 22 to the compression chamber 10 through the compression chamber oil supply path 26.
On the other hand, in the states of FIGS. 3A, 3B, and 3C, the compression chamber side opening 26c does not overlap the recess 26b, so that the lubricating oil 7 is supplied from the back pressure chamber 22 to the compression chamber 10. There is no.
 また、本実施の形態の固定スクロール11の鏡板11aのラップ底面に形成された凹部26bの開口径を、渦巻き状のラップ12bの厚さより小さくすることで、圧縮室給油経路26は渦巻状のラップ12bの内側に形成される圧縮室10aBとのみ連通する。
 これに対し凹部26bの開口径が渦巻き状のラップ12bの厚さより大きい場合、圧縮室給油経路26は渦巻状のラップ12bの内側に形成される圧縮室10aBと渦巻状のラップ12bの外側に形成される圧縮室10aAの両方と連通する。
Moreover, the compression chamber oil supply path 26 is made into a spiral wrap by making the opening diameter of the recess 26b formed on the bottom surface of the end plate 11a of the fixed scroll 11 of the present embodiment smaller than the thickness of the spiral wrap 12b. It communicates only with the compression chamber 10aB formed inside 12b.
On the other hand, when the opening diameter of the recess 26b is larger than the thickness of the spiral wrap 12b, the compression chamber oil supply path 26 is formed outside the compression chamber 10aB and the spiral wrap 12b formed inside the spiral wrap 12b. It communicates with both of the compression chambers 10aA.
 図4は圧縮室給油経路26の圧縮室側開口26cと固定スクロール11の鏡板11aのラップ底面に形成された凹部26bとの重なりによって生じる第1通路面積が最大となる位置での連通状態を示している。図4(a)は圧縮室側開口26cおよび凹部26bの軸方向断面図、図4(b)は凹部26bから圧縮室側開口26cを見た平面図、図4(c)は図4(b)の矢印の方向に見たときの凹部26bの断面図である。
 図4(a)に示すように、潤滑油7は圧縮室側開口26cから凹部26bを経て圧縮室10に供給される。図4(b)および図4(c)で、圧縮室側開口26cと凹部26bとの重なりによって生じる第1通路面積をA、凹部26bの直径と深さで決まる軸方向断面積をB、凹部26bが圧縮室10に開口することによって生じる第2通路面積をCとする。更に、B>A、かつB>Cとする。
FIG. 4 shows a communication state at a position where the first passage area is maximized due to the overlap between the compression chamber side opening 26 c of the compression chamber oil supply passage 26 and the recess 26 b formed on the bottom surface of the end plate 11 a of the fixed scroll 11. ing. 4A is an axial sectional view of the compression chamber side opening 26c and the recess 26b, FIG. 4B is a plan view of the compression chamber side opening 26c viewed from the recess 26b, and FIG. 4C is FIG. It is sectional drawing of the recessed part 26b when it sees in the direction of the arrow of ().
As shown in FIG. 4A, the lubricating oil 7 is supplied from the compression chamber side opening 26c to the compression chamber 10 through the recess 26b. 4B and 4C, the first passage area generated by the overlap between the compression chamber side opening 26c and the recess 26b is A, the axial sectional area determined by the diameter and depth of the recess 26b is B, and the recess The second passage area generated by opening the b into the compression chamber 10 is C. Further, B> A and B> C.
 この構成によれば、圧縮室給油経路26の圧縮室側開口26cから凹部26bを経て圧縮室10に至る潤滑油7の給油経路において、途中で連通面積が小さく絞られ抵抗となることがないため、潤滑油7が安定して圧縮室10に供給される。このことから背圧室22の圧力が、背圧室22が連通する圧縮室10の圧力より異常に高くなることがなく、固定スクロール11と旋回スクロール12の摺動面にかかる力が増大せず、特に高速および高負荷運転時の信頼性が向上する。
 また、第2通路面積Cに対する第1通路面積A(A/C)を0.9~1.1倍としたことにより、第1通路面積Aおよび第2通路面積Cがほぼ同等の通路面積となり、特に一方の面積が小さくなることがない。このことから通路抵抗を最小限に抑えることができるため、背圧室22の圧力が安定し、信頼性が向上する。
 例えば、第2通路面積Cに対する第1通路面積A(A/C)が0.9を下回ると、第1通路面積Aが小さく絞られて抵抗となり、背圧室22の圧力が異常に高くなることがある。一方で第2通路面積Cに対する第1通路面積A(A/C)が1.1を上回ると、第2通路面積Cが小さく絞られて抵抗となり、背圧室22の圧力が異常に高くなることがある。いずれの場合も信頼性が低下する。
According to this configuration, in the oil supply path of the lubricating oil 7 from the compression chamber oil supply path 26 to the compression chamber 10 through the recess 26b from the compression chamber side opening 26c, the communication area is reduced in the middle and resistance does not occur. The lubricating oil 7 is stably supplied to the compression chamber 10. Therefore, the pressure of the back pressure chamber 22 does not become abnormally higher than the pressure of the compression chamber 10 with which the back pressure chamber 22 communicates, and the force applied to the sliding surfaces of the fixed scroll 11 and the orbiting scroll 12 does not increase. Especially, reliability at high speed and high load operation is improved.
Further, by setting the first passage area A (A / C) to 0.9 to 1.1 times the second passage area C, the first passage area A and the second passage area C are substantially equivalent passage areas. In particular, one area is not reduced. Accordingly, the passage resistance can be minimized, so that the pressure in the back pressure chamber 22 is stabilized and the reliability is improved.
For example, when the first passage area A (A / C) with respect to the second passage area C is less than 0.9, the first passage area A is reduced and becomes resistance, and the pressure in the back pressure chamber 22 becomes abnormally high. Sometimes. On the other hand, when the first passage area A (A / C) with respect to the second passage area C exceeds 1.1, the second passage area C is reduced to become resistance and the pressure in the back pressure chamber 22 becomes abnormally high. Sometimes. In either case, the reliability decreases.
 図5は圧縮室10の圧力変化を示す図である。図5において、旋回スクロール12の渦巻状のラップ12bの内側圧縮室10aBの圧力変化を実線で、渦巻き状のラップ12bの外側圧縮室10aAの圧力変化を破線でそれぞれ示している。
 前述のように、固定スクロール11の鏡板11aのラップ底面に形成された凹部26bの開口径が、渦巻き状のラップ12bの厚さより小さい場合、圧縮室給油経路26は渦巻状のラップ12bの内側に形成される圧縮室10aBとのみ連通する。このときの圧縮室内圧力はBである。よって背圧室22の圧力が安定する。
FIG. 5 is a view showing a pressure change in the compression chamber 10. 5, the pressure change in the inner compression chamber 10aB of the spiral wrap 12b of the orbiting scroll 12 is indicated by a solid line, and the pressure change in the outer compression chamber 10aA of the spiral wrap 12b is indicated by a broken line.
As described above, when the opening diameter of the concave portion 26b formed on the bottom surface of the end plate 11a of the fixed scroll 11 is smaller than the thickness of the spiral wrap 12b, the compression chamber oil supply path 26 is located inside the spiral wrap 12b. It communicates only with the compression chamber 10aB to be formed. The pressure in the compression chamber at this time is B. Therefore, the pressure in the back pressure chamber 22 is stabilized.
 これに対し凹部26bの開口径が、渦巻き状のラップ12bの厚さより大きい場合、圧縮室給油経路26は渦巻状のラップ12bの内側に形成される圧縮室10aBと連通する。このときの圧縮室内圧力はBである。また渦巻状のラップ12bの外側に形成される圧縮室10aAとも連通し、このときの圧縮室内圧力はAである。この場合、背圧室22が異なる二つの圧縮室10aBと10aAに連通するため、背圧室22の圧力が図5の圧力Bから圧力Aの間で変動し、不安定となる。
 以上のことから、凹部26bの開口径を渦巻き状のラップ12bの厚さより小さくすることで、圧縮室給油経路26が連通する圧縮室が一つに限定される。その結果、圧縮室給油経路26が複数の圧縮室に交互に切り替わり連通することがなく、背圧室22の圧力が安定し、あらゆる運転条件において信頼性が向上する。
On the other hand, when the opening diameter of the recess 26b is larger than the thickness of the spiral wrap 12b, the compression chamber oil supply path 26 communicates with the compression chamber 10aB formed inside the spiral wrap 12b. The pressure in the compression chamber at this time is B. Moreover, it communicates with the compression chamber 10aA formed outside the spiral wrap 12b, and the pressure in the compression chamber at this time is A. In this case, since the back pressure chamber 22 communicates with two different compression chambers 10aB and 10aA, the pressure in the back pressure chamber 22 varies between the pressure B and the pressure A in FIG. 5 and becomes unstable.
From the above, by making the opening diameter of the recess 26b smaller than the thickness of the spiral wrap 12b, the compression chamber with which the compression chamber oil supply path 26 communicates is limited to one. As a result, the compression chamber oil supply passage 26 is not alternately switched to and communicated with a plurality of compression chambers, the pressure in the back pressure chamber 22 is stabilized, and the reliability is improved under all operating conditions.
 また、本実施の形態のチップシール19を廃止することでコストダウンできるが、旋回スクロール12の渦巻き状のラップ12bの先端に隙間が生じ、シール性が低下する可能性がある。そこで旋回スクロール12の渦巻状のラップ12bの先端隙間を縮小すると、シール性は向上するが、凹部26bの軸方向断面積Bが小さい場合、通路が絞られ抵抗となり背圧室22の圧力が異常に上昇する可能性がある。
 本実施の形態では凹部26bの軸方向断面積Bが第1通路面積Aおよび第2通路面積Cより大きいことから、渦巻状のラップ12bの先端隙間を縮小しても通路が絞られない。よって潤滑油7が安定して圧縮室10に供給され、背圧室22の圧力が異常に上昇することなく信頼性が向上する。更に、かつ渦巻状のラップ12bの先端と鏡板11aとの隙間のシール性が向上して高効率を実現できる。
Further, the cost can be reduced by eliminating the tip seal 19 of the present embodiment, but there is a possibility that a gap is formed at the tip of the spiral wrap 12b of the orbiting scroll 12 and the sealing performance is lowered. Accordingly, if the clearance between the ends of the spiral wrap 12b of the orbiting scroll 12 is reduced, the sealing performance is improved. However, when the axial cross-sectional area B of the recess 26b is small, the passage is constricted to become a resistance and the pressure in the back pressure chamber 22 is abnormal. There is a possibility of rising.
In the present embodiment, since the axial cross-sectional area B of the recess 26b is larger than the first passage area A and the second passage area C, the passage is not restricted even if the tip clearance of the spiral wrap 12b is reduced. Therefore, the lubricating oil 7 is stably supplied to the compression chamber 10, and the reliability is improved without the pressure in the back pressure chamber 22 rising abnormally. Furthermore, the sealing performance of the gap between the tip of the spiral wrap 12b and the end plate 11a is improved, and high efficiency can be realized.
 また、本実施の形態の圧縮室給油経路26の圧縮室側開口26cが連通する圧縮室10を、図3に示すように作動流体を閉じ込んだ後の圧縮室10aに設け、冷媒ガスを閉じ込む前の状態の圧縮室10bには設けない。すなわち、圧縮室給油経路26を介して背圧室22が連通する圧縮室10を、作動流体を閉じ込んだ後の圧縮室10aとしたことにより、旋回スクロール12が固定スクロール11から離れることで能力が低下してしまう、いわゆるチルティング現象を防止することができる。また仮にチルティングが発生しても、作動流体を閉じ込む前の圧力より高い圧縮室10の圧力を背圧室22へと導くことが可能であるため、旋回スクロール12を固定スクロール11に押し付ける力が作用し、正常運転への早期復帰が可能となる。 Further, the compression chamber 10 in which the compression chamber side opening 26c of the compression chamber oil supply passage 26 of the present embodiment communicates is provided in the compression chamber 10a after the working fluid is closed as shown in FIG. 3, and the refrigerant gas is closed. It is not provided in the compression chamber 10b in a state before being inserted. That is, the compression chamber 10 communicated with the back pressure chamber 22 via the compression chamber oil supply passage 26 is the compression chamber 10a after the working fluid is closed, so that the orbiting scroll 12 can be separated from the fixed scroll 11 to This can prevent a so-called tilting phenomenon that lowers the temperature. Even if tilting occurs, it is possible to guide the pressure in the compression chamber 10 higher than the pressure before the working fluid is closed to the back pressure chamber 22. Acts to enable early return to normal operation.
 本発明の構成によれば、通路面積が小さく絞られ抵抗となることがないため、背圧室の圧力が連通する圧縮室の圧力より高くなることがなく、固定スクロールと旋回スクロールの摺動面にかかる力が増大せず、特に高速および高負荷運転時の信頼性の向上が図れるので、作動流体を冷媒と限ることなく、空気スクロール圧縮機、真空ポンプ、スクロール型膨張機等のスクロール流体機械の用途にも適用できる。 According to the configuration of the present invention, since the passage area is small and does not become resistance, the pressure of the back pressure chamber does not become higher than the pressure of the compression chamber communicating with the sliding surface of the fixed scroll and the orbiting scroll. As the working fluid is not limited to the refrigerant, the scroll fluid machine such as an air scroll compressor, vacuum pump, scroll type expander and the like can be improved. It can be applied to other uses.

Claims (5)

  1.  容器内にモータと圧縮機構部とを収納し、
    前記圧縮機構部を、
    鏡板に渦巻状のラップを直立して形成した旋回スクロールと、
    前記旋回スクロールと組み合わされ鏡板に渦巻状のラップを直立して形成した固定スクロールと、
    前記固定スクロールとの間に前記旋回スクロールを配置するとともにシール部材を保持する主軸受部材とにより構成し、
    前記旋回スクロールと前記固定スクロールとの間に圧縮室が形成され、
    前記旋回スクロールの背面に前記シール部材が配置され、
    前記シール部材によって、前記シール部材の内側が高圧領域、前記シール部材の外側が背圧室に区画され、
    前記高圧領域から前記背圧室に潤滑油を供給する背圧室給油経路と、
    前記背圧室から前記圧縮室に前記潤滑油を供給する圧縮室給油経路を備え、
    前記背圧室給油経路の一方の開口が前記シール部材を往来することで、前記高圧領域と前記背圧室が間欠的に連通し、
    前記圧縮室給油経路が、
    前記旋回スクロールの内部に形成された通路と、
    前記固定スクロールの前記鏡板に形成された凹部とから構成され、
    前記通路の一方の開口が前記旋回スクロールの旋回運動にあわせて周期的に前記凹部に重なることで、前記背圧室と前記圧縮室が間欠的に連通するスクロール圧縮機であって、
    前記通路の一方の前記開口と前記凹部との重なりによって生じる第1通路面積より、前記凹部の直径と深さで決まる軸方向断面積を大きくし、
    前記凹部が前記圧縮室に開口することによって生じる第2通路面積より、前記軸方向断面積を大きくしたことを特徴とするスクロール圧縮機。
    The motor and the compression mechanism are stored in the container,
    The compression mechanism section;
    An orbiting scroll formed with an upright spiral wrap on the end plate,
    A fixed scroll that is combined with the orbiting scroll to form a spiral wrap upright on the end plate; and
    The rotating scroll is disposed between the fixed scroll and the main bearing member that holds the seal member.
    A compression chamber is formed between the orbiting scroll and the fixed scroll,
    The seal member is disposed on the back of the orbiting scroll,
    By the seal member, the inside of the seal member is partitioned into a high pressure region, and the outside of the seal member is divided into a back pressure chamber,
    A back pressure chamber oil supply path for supplying lubricating oil from the high pressure region to the back pressure chamber;
    A compression chamber oil supply path for supplying the lubricating oil from the back pressure chamber to the compression chamber;
    One opening of the back pressure chamber refueling path goes back and forth through the seal member, so that the high pressure region and the back pressure chamber communicate intermittently,
    The compression chamber refueling path is
    A passage formed inside the orbiting scroll;
    It is comprised from the recessed part formed in the said end plate of the said fixed scroll,
    A scroll compressor in which the back pressure chamber and the compression chamber communicate intermittently with one opening of the passage periodically overlapping the recess according to the orbiting motion of the orbiting scroll,
    The axial cross-sectional area determined by the diameter and depth of the recess is larger than the first passage area generated by the overlap of the one opening of the passage and the recess,
    A scroll compressor characterized in that the axial cross-sectional area is made larger than a second passage area produced by opening the recess into the compression chamber.
  2.  前記第1通路面積が最大となる位置で、前記第2通路面積に対する前記第1通路面積を0.9~1.1倍としたことを特徴とする請求項1に記載のスクロール圧縮機。 2. The scroll compressor according to claim 1, wherein the first passage area is 0.9 to 1.1 times the second passage area at a position where the first passage area is maximized.
  3.  前記凹部の開口径が前記旋回スクロールの前記ラップの厚さより小さいことを特徴とする請求項1又は請求項2に記載のスクロール圧縮機。 The scroll compressor according to claim 1 or 2, wherein an opening diameter of the recess is smaller than a thickness of the wrap of the orbiting scroll.
  4.  前記旋回スクロールの前記ラップの先端にチップシールを設けないことを特徴とする請求項1から請求項3のいずれかに記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 3, wherein a tip seal is not provided at a tip of the wrap of the orbiting scroll.
  5.  前記凹部は作動流体を閉じ込んだ後の前記圧縮室に設けたことを特徴とする請求項1から請求項4のいずれかに記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 4, wherein the concave portion is provided in the compression chamber after the working fluid is closed.
PCT/JP2012/007793 2011-12-09 2012-12-05 Scroll compressor WO2013084486A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-269684 2011-12-09
JP2011269684A JP2015038323A (en) 2011-12-09 2011-12-09 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2013084486A1 true WO2013084486A1 (en) 2013-06-13

Family

ID=48573876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007793 WO2013084486A1 (en) 2011-12-09 2012-12-05 Scroll compressor

Country Status (2)

Country Link
JP (1) JP2015038323A (en)
WO (1) WO2013084486A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185892A (en) * 1983-04-05 1984-10-22 Toyoda Autom Loom Works Ltd Scroll type compressor
WO2010070790A1 (en) * 2008-12-15 2010-06-24 パナソニック株式会社 Scroll compressor
WO2010087179A1 (en) * 2009-01-30 2010-08-05 パナソニック株式会社 Scroll compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185892A (en) * 1983-04-05 1984-10-22 Toyoda Autom Loom Works Ltd Scroll type compressor
WO2010070790A1 (en) * 2008-12-15 2010-06-24 パナソニック株式会社 Scroll compressor
WO2010087179A1 (en) * 2009-01-30 2010-08-05 パナソニック株式会社 Scroll compressor

Also Published As

Publication number Publication date
JP2015038323A (en) 2015-02-26

Similar Documents

Publication Publication Date Title
JP5491420B2 (en) Scroll compressor
JP4892238B2 (en) Scroll compressor
EP2295805A1 (en) Scroll compressor with vapor injection
WO2007000854A1 (en) Fluid machine and refrigeration cycle device
JP2011027076A (en) Scroll compressor
WO2003104657A1 (en) Rotary compressor
JP5359997B2 (en) Scroll compressor
US8172560B2 (en) Fluid machinery having annular back pressure space communicating with oil passage
JP2007085297A (en) Scroll compressor
JP4604968B2 (en) Scroll compressor
JP5209279B2 (en) Scroll compressor
WO2013084486A1 (en) Scroll compressor
JP5168191B2 (en) Scroll compressor
JP5141432B2 (en) Scroll compressor
JP2012052494A (en) Hermetically sealed compressor
JP2011111993A (en) Hermetic rotary compressor
JP4301122B2 (en) Scroll compressor
JP2006214335A (en) Scroll compressor
JP4301120B2 (en) Scroll compressor
WO2013150714A1 (en) Scroll compressor
JP2014105692A (en) Scroll compressor
JP2014129756A (en) Scroll compressor
WO2018043328A1 (en) Scroll compressor
JP5671691B2 (en) Scroll compressor
JP2006291763A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP