WO2018008137A1 - 電力変換装置及び風力発電システム - Google Patents

電力変換装置及び風力発電システム Download PDF

Info

Publication number
WO2018008137A1
WO2018008137A1 PCT/JP2016/070206 JP2016070206W WO2018008137A1 WO 2018008137 A1 WO2018008137 A1 WO 2018008137A1 JP 2016070206 W JP2016070206 W JP 2016070206W WO 2018008137 A1 WO2018008137 A1 WO 2018008137A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage body
insulating oil
power converter
power conversion
conversion device
Prior art date
Application number
PCT/JP2016/070206
Other languages
English (en)
French (fr)
Inventor
勉 小南
研吾 後藤
裕 森田
輝 菊池
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201680087255.3A priority Critical patent/CN109451778A/zh
Priority to PCT/JP2016/070206 priority patent/WO2018008137A1/ja
Priority to JP2018525903A priority patent/JPWO2018008137A1/ja
Publication of WO2018008137A1 publication Critical patent/WO2018008137A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the present invention relates to a power conversion device and a wind power generation system, and more particularly, to a power conversion device and a wind power generation system suitable for main circuit configuration (semiconductor elements, bus bars, coolers, capacitors, etc.) or insulation.
  • main circuit configuration semiconductor elements, bus bars, coolers, capacitors, etc.
  • the power converter when the generator output and the transmission voltage are increased, the power converter is increased in size because a gap is provided to secure an insulation distance between different potentials and a creepage distance.
  • a power converter using oil as insulation between different potentials is described in Japanese Patent Application Laid-Open No. 2012-235904.
  • An object of the present invention is to provide a power conversion device and a wind power generation system capable of improving the workability of replacing parts in an oil-insulated power conversion device while realizing downsizing of the power conversion device by using oil insulation. Is to provide.
  • a plurality of semiconductor elements and a capacitor are included, and some components of the plurality of semiconductor elements and the capacitor are stored in a predetermined storage body, and the plurality of semiconductor elements are stored.
  • the other components of the element and the capacitor are stored in another storage body, and the predetermined storage body is connected to another component through a connection wiring, and the other storage body has a connection wiring.
  • the predetermined storage body is filled with insulating oil
  • the other storage body is filled with insulating oil
  • the predetermined storage body and the other storage body are insulated with insulating oil. It is insulated with oil, and at least one of the predetermined storage body and the other storage body is configured to be detachable while being filled with the insulating oil.
  • the wind power generation facility includes a power converter for connecting a generator output to the system, and the converter Insulation between different potentials existing in the circuit is performed with insulating oil, and each component such as a semiconductor element, a capacitor, and a drive circuit for driving the semiconductor element constituting the power converter is placed in a box, and the boxes are connected to each other.
  • a wiring or a metal plate is drawn out from the box, the inside of the box is filled with insulating oil, and a power converter configured by connecting the boxes to each other is placed in a casing, and the metal The housing is filled with insulating oil.
  • the power converter can be reduced in size and weight, and maintenance workability such as component replacement can be improved.
  • FIG. 1 shows a schematic diagram in which a power converter (also referred to as a power converter) is mounted on a wind power generation facility.
  • the wind power generation equipment is mainly composed of the base (A104), tower (A102), nacelle (A101) and blade (A100).
  • the generator (A103) mounted in the nacelle (A101) by the rotation of the blade (A100) ) Generates electricity.
  • the rotating shaft of the blade (A100) and the generator (A103) are directly connected, but the same applies to the case where a speed increaser or gear is mounted on the rotating shaft.
  • the rotation of the blade (A100) depends on the wind force, and the rotation speed fluctuates. Therefore, the voltage applied to the generator (A103) or the output from the generator (A103) As for the output voltage, the frequency supplied to the system is kept constant by using the power conversion of the power converter (104a to 104b; generically referred to as 104) installed in the tower (A102) or in the nacelle (A101). Control.
  • Fig. 2 shows the configuration of the power converter (104) in the wind power generation facility.
  • the box (104) is installed between the floor surface (102) and the ceiling surface (102) (the housing box, the individual box shown below, and the element box are collectively referred to as a storage box or a storage body. ).
  • the power converter (103) is installed in a housing box (104) that houses the power converter, and the housing box is filled with insulating oil (106).
  • Wiring (105a) connected to the generator (A103), and in this example, wiring (105b) connected to the grid (wiring (105a) and wiring (105b) are collectively referred to as wiring (105).
  • the other codes are used in the same manner) and are connected to the power converter (103) in the housing box (104).
  • the wiring ends and the input / output terminals of the power converter are insulated with insulating oil, and the power converter can be reduced in size as compared with the case where insulation and creepage distance are secured with insulators and air.
  • the input / output wiring (105a / 105b) to the power converter (103) is shown as three-phase AC, but the same configuration can be used for either three-phase four-wire, single-phase or DC It is.
  • the housing box (104) is installed on the tray (107) so that the leakage of insulating oil from the housing box does not affect other equipment.
  • FIG. 3 shows a configuration example of the power converter (103).
  • the power converter is composed of a semiconductor element, a smoothing capacitor, a drive circuit for operating the semiconductor element, a wiring or metal conductor plate for connecting each component, and various sensors and protectors (not shown).
  • Each component is stored in an individual box (103a / 103b / 103c / 103d) (each functioning as A204 / A202 in terms of circuit) for each arbitrary part, and the individual box is filled with insulating oil (203) Let me. From the individual box, wiring for connecting the individual boxes or a metal conductor plate (201) (which functions as A400 in terms of circuit) is drawn out and connected in insulating oil (106).
  • the power converter By installing these parts in a box (104) filled with insulating oil (106), the power converter can be miniaturized. Note that different types of insulating oil may be used in view of the characteristics of the parts stored in the individual box and the box.
  • the electric power from the generator (A103) is supplied to the converter (103a) (A204) via the wiring (105a1, 105a2, 105a3) and converted into direct current.
  • the electric power converted into direct current is smoothed by the smoothing capacitors (103b) (A202) and the smoothing capacitors (103c) (A202) via the wiring (202) and the wiring (201).
  • the smoothed electric power is supplied to the inverter (103d) (A204) through the metal conductor plate (202) and the metal conductor plate (201), and is converted into an alternating current having an arbitrary frequency.
  • the electric power converted into alternating current is supplied to the system via wiring (105b1, 105b2, 105b3).
  • the inverter (103d) and converter (103a) can be further divided into separate boxes, or the smoothing capacitor (103b) and the smoothing capacitor (103c) can be stored in the same box. It is not necessary to divide into four as shown in. It is possible to consider a configuration in which the portion of the power converter that is equal to the casing potential is connected to the casing box via wiring or a metal conductor plate (204).
  • FIG. 4 shows a perspective view of the power converter according to the present invention.
  • the individual boxes are arranged side by side, but any arrangement is possible in view of the installation location of the power converter.
  • Fig. 5 and Fig. 6 show configuration examples of the metal conductor plate (201) drawn from the individual boxes (103a to d) (A202 / A204) containing each component constituting the power converter.
  • the metal conductor plate has a long side (301a) and a short side (301b), and is drawn out from the individual boxes (103a and 103d) so that the long side (301a) is perpendicular to the horizontal. Thereby, it is possible to prevent bubbles remaining in the insulating oil from collecting around the metal conductor plate and to prevent the insulation performance from deteriorating.
  • FIG. 5 and FIG. 6 one metal conductor plate is shown, but it is desirable to have the same configuration even when a plurality of metal conductor plates are drawn.
  • FIG. 7 shows a configuration example of the individual boxes (103a and 103d).
  • the individual boxes (103a and 103d) are constituted by element boxes (701a, 701b, and 701c) each including a semiconductor element and a drive circuit for operating the semiconductor elements.
  • Each component (or a combination of components) is unitized and stored in the element box (701a, 701b, 701c) for each arbitrary part, and the inside of the element box is filled with insulating oil (603). From the element box, wiring for connecting the boxes or the metal conductor plate (201) and the metal conductor plate (202) are drawn out and connected in insulating oil (106). By installing these parts so that they are filled with insulating oil (603), the power converter can be downsized.
  • insulating oil may be used in view of the characteristics of the parts stored in the individual box and the element box.
  • the components housed in the element box may be, for example, one phase to three phases of a three-phase power converter, or each component having a different life, and need not be divided into three as shown in FIG. It is possible to consider a configuration in which the portion of the power converter that is equal to the casing potential is connected to the casing box via wiring or a metal conductor plate (204).
  • the DC smoothing capacitor (A303) shown in FIG. 8 is placed in the individual boxes (103b and 103c) (A202).
  • the individual box (103b / 103c) as in the case of the element box (701a / 701b / 701c), the wiring for connecting the boxes to each other or the metal conductor plate (201) is drawn out and the insulating oil (106) Connected in.
  • the wiring (A400 / A401) is configured as a part of the metal conductor plate (201/202) when connecting to another element box.
  • the wiring (A205a1 to a3) (A205b1 to b3) is configured as a part of the wiring (105) when connected to the generator or the system.
  • the configuration of the metal conductor plates (201, 202) drawn from each part constituting the power converter is the same as the example shown in FIGS.
  • the metal conductor plate has a long side (301a) and a short side (301b), and is drawn out from the individual box (103d) so that the long side (301a) is perpendicular to the horizontal.
  • FIG 8 shows the power conversion circuit diagram of the element box (701a, 701b, 701c).
  • a two-level three-phase power converter is used, but other types of power converters including three levels are the same.
  • each element box (701a, 701b, 701c) contains an IGBT (A301), a diode (A300), and a gate drive circuit (A302) that constitute a phase.
  • the DC circuit portion (A400 / A401), the wiring (A205a1, A205a2, A205a3), the gate drive circuit (A302), and the semiconductor switching element (A300 / A301) serving as outputs of the respective phases have different potentials. Therefore, each individual box is insulated with insulating oil.
  • a semiconductor switching element (A300 / A301) is connected in series between the common DC voltage section (positive electrode) (A400) and DC voltage section (negative electrode) (A401). .
  • the connection points of the semiconductor switching elements (A300 and A301) connected in series are configured as wirings (A205a1, A205a2, and A205a3), respectively.
  • Multiple division methods can be considered in consideration of the applied voltage level, the replacement interval of parts, and the size of the individual box.
  • a method of storing a three-phase circuit in a common box or a method of individually storing a three-phase power converter including a DC smoothing capacitor can be considered. .
  • the element box (701a, 701b, 701c) is configured to be detachable from the individual box (103b, 103c) (A202).
  • the conductor plate (201) and the metal conductor plate (202) are separated from each other and can be separated.
  • Fig. 9 and Fig. 10 show examples related to the parts replacement method.
  • a mechanism (402) for opening is provided at the ceiling of the casing box.
  • an individual box (103a, 103b, 103c, 103d) containing each part constituting the power converter is installed in a mechanism (401) for lifting out of the box (104).
  • the parts can be easily replaced by lifting the individual box to the opening.
  • the element box (701a, 701b, 701c) may be configured similarly.
  • FIG 11 shows the power converter as seen from above.
  • a tank box (501) connected by a pipe (502) and a cooler (504) connected by pipes (503a and 503b) are installed in a housing box (104) containing a power converter.
  • the tank (501) functions as an insulating oil buffer when parts are replaced. This eliminates the need for a mechanism for lifting the individual box, or makes it possible to reduce the lifting height.
  • the cooler (504) is for cooling the heat generated inside the housing box (104), and the insulating oil is connected between the inside of the housing box (104) and the cooler (504) (503a Cycle through 504b).
  • the element box (701a, 701b, 701c) may be configured similarly. In FIG. 11, the cooler (504) is shown near the housing box (104), but it may be arranged at a far away place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

電力変換器において異電位間の絶縁距離および沿面距離確保のため,空気絶縁を用いていた従来技術では,入力電圧および出力電圧が高圧化されるにつれ電力変換器の大型化を招いていた。また,電力変換器小型化のため空気絶縁から油絶縁にした場合,部品交換が困難となるという課題があった。 電力変換器を構成する各部品(半導体素子,平滑コンデンサ,半導体素子の駆動回路および各部品を接続するための配線または金増導体板)を分割され,かつ,絶縁油が充填された複数の個別箱に納め,各個別箱を接続することで構成された電力変換器を絶縁油が充填された筺体箱に納めることで電力変換器の小型化を図る。複数の個別箱に分割することで,部品交換の作業性を向上させる。

Description

電力変換装置及び風力発電システム
 本発明は電力変換装置及び風力発電システムに関し,特に主回路構成(半導体素子・ブスバー・冷却器・コンデンサ等)あるいは絶縁に好適な電力変換装置及び風力発電システムに関する。
 近年,電動機を可変速に制御するため,あるいは,一定周波数の電力を得るために電力変換器が多く用いられるようになってきている。この電力変換器では,変換効率や送電損失低減のため,発電機出力や送電電圧を高くすることが求められる。
 例えば,再生可能エネルギーの比率向上の観点から太陽光・風力等の自然エネルギーを利用した発電に注目が集まっているところ,特に風力発電では電力変換器を風車タワー内またはナセル内に設置するため,電力変換器の小型・軽量化が求められる。一方,風車タワー設置数低減のため,風車単体の発電容量は増大傾向にあり,変換効率や送電損失低減のため,発電機出力向上や送電電圧を高くすることが求められる。
 このように,発電機出力や送電電圧を高くする場合には,異電位間の絶縁距離や沿面距離確保のため空隙を設けるため電力変換器の大型化を招いていた。電力変換器の小型化のため,異電位間の絶縁を油とする電力変換器が特開2012‐235904号公報に記載されている。
特開2012‐235904号公報
 電力変換器において異電位間の絶縁距離および沿面距離確保のために空気絶縁を用いていたのでは,入力電圧および出力電圧が高圧化されるにつれ電力変換器の大型化を招いていたので,電力変換器小型化のため空気絶縁から油絶縁にした場合,例えば,部品交換をする場合に,一度絶縁油を取り除いて,絶縁油が残っている状態で配線に係る作業を行う等が必要であり,部品交換が困難であったとの問題が生じていた。
 本発明の目的は,油絶縁を用いることによる電力変換装置の小型化を実現しつつ,油絶縁された電力変換装置における部品の交換作業性を向上させることが可能な電力変換装置及び風力発電システムを提供することにある。
 上記目的を達成するために,本発明では,複数の半導体素子と,コンデンサからなり,前記複数の半導体素子とコンデンサのうちの一部の構成部品を所定の収納体に格納し,前記複数の半導体素子とコンデンサのうちの他の一部の構成部品を他の収納体に格納し,前記所定の収納体は接続配線を介して他の構成部品と接続され,前記他の収納体は接続配線を介して他の構成部品と接続され,前記所定の収納体は絶縁油で満たされ,前記他の収納体は絶縁油で満たされ,前記所定の収納体と前記他の収納体は絶縁油で絶縁油で絶縁され,前記所定の収納体と前記他の収納体の少なくとも一方は前記絶縁油が満たされた状態で脱着可能に構成する。
 より具体的には,ブレード,ナセル,タワー,発電機および土台からなる風力発電設備において,該風力発電設備内に発電機出力を系統へ接続するための電力変換器を有し,該変換器内に存在する異電位間の絶縁を絶縁油で行い,電力変換器を構成する半導体素子,コンデンサ,半導体素子を駆動するための駆動回路などの各構成部品毎に箱へ納め,該箱同士を接続するための配線または金属板が該箱から引き出されており,該箱内部は絶縁油で満たされており,該箱同士を接続することで構成された電力変換器を筐体に納め,該金属筐体内部は絶縁油で満たされている構成とする。
 本発明によれば,電力変換器の小型,軽量化が可能となり,かつ,部品交換等のメンテナンス作業性を向上させることが可能となる。
本発明における全体システムの構成例である。 本発明における電力変換器の構成を示す図である。 本発明における電力変換器の構成例である。 本発明の実施例における電力変換器の構成である。 本発明の実施例における金属導体板の構成である。 本発明の実施例における金属導体板の構成である。 本発明における電力変換器の構成例である。 本発明の実施例における回路構成である。 本発明の実施例における動作である。 本発明の実施例における動作である。 本発明の実施例における外観である。
 本発明を実施するための形態を以下に図面を用いて説明する。
 以下に風力発電システムに応用した例を説明する。図1に風力発電設備に電力変換器(電力変換装置とも称する)を搭載した模式図を示す。風力発電設備は主に,土台(A104)・タワー(A102)・ナセル(A101)およびブレード(A100)で構成され,ブレード(A100)の回転によってナセル(A101)内に搭載された発電機(A103)が発電する。図1ではブレード(A100)の回転軸と発電機(A103)が直結されているが,回転軸に増速機やギヤが搭載される場合も同様である。発電機(A103)が発電する過程において,ブレード(A100)の回転は風力に従属して回転数が変動するので,発電機(A103)に供給する励磁にかかる電圧或いは発電機(A103)から出力する出力電圧について,タワー(A102)内部またはナセル(A101)に搭載する電力変換器(104aないし104b;104と総称する)の電力変換を利用して,系統に供給する周波数を一定に保つように制御する。
 図2に風力発電設備における電力変換器(104)の構成を示す。筺体箱(104)内は床面(102)と天井面(102)の間に設置される(筐体箱,以下に示す個別箱,素子箱を総称して収納箱或いは収納体と総称する。)。電力変換器(103)は該電力変換器を納める筺体箱(104)内に設置され,該筺体箱は絶縁油(106)が充填されている。発電機(A103)へ接続される配線(105a),およびこの例では系統へ接続される配線(105b)(配線(105a)と配線(105b)を総称して配線(105)と称する。以下に他の符号においても同様に用いる)は該筺体箱(104)内で電力変換器(103)と接続される。これにより,配線端部および電力変換器の入出力端子は絶縁油で絶縁され,碍子および空気で絶縁・沿面距離を確保する場合と比較して電力変換器を小型化することができる。図1では電力変換器(103)への入出力配線(105a・105b)は3相交流で記載しているが,3相4線,単相または直流のいずれにおいても同構成とすることが可能である。
 筺体箱(104)は,該筺体箱からの絶縁油漏れが他機器へ影響を与えることがないよう,受皿(107)の上に設置される。
 図3に,電力変換器(103)の構成例を示す。電力変換器は,半導体素子,平滑コンデンサ,半導体素子を動作させるための駆動回路,各部品を接続するための配線または金属導体板,および,図示していない各種センサや保護器等によって構成される。各構成部品を,任意の部品毎に個別箱(103a・103b・103c・103d)(各々回路的にはA204・A202として機能)へ格納し,該個別箱内部には絶縁油(203)を充填させる。該個別箱からは各個別箱同士を接続するための配線または金属導体板(201)(回路的にはA400として機能)が引き出され,絶縁油(106)の中で接続されている。これら部品を絶縁油(106)で充填された筺体箱(104)内に設置することで,電力変換器の小型化がなされる。なお絶縁油は,個別箱および筺体箱内部に納める部品の特性を鑑み,異なる種類の絶縁油を用いてもよい。
 発電機(A103)からの電力は配線(105a1・105a2・105a3)を介してコンバータ(103a)(A204)に供給され直流に変換される。直流に変換された電力は,配線(202)及び配線(201)を介して平滑コンデンサ(103b)(A202)及び平滑コンデンサ(103c)(A202)で平滑される。平滑された電力は金属導体板(202)及び金属導体板(201)を介してインバータ(103d)(A204)に供給され任意の周波数の交流に変換される。交流に変換された電力は配線(105b1・105b2・105b3)を介して系統に供給される。
 個別箱に納める部品は,インバータ(103d)及びコンバータ(103a)を更に別箱に分ける,あるいは,平滑コンデンサ(103b)と平滑コンデンサ(103c)を同じ箱に収納するなどが考えられ,必ずしも図3に示す通りの4分割とする必要はない。なお電力変換器の中で筺体電位と等しくなる箇所は,配線または金属導体板(204)を介して筺体箱へ接続する構成が考えられる。
 図4に本発明による電力変換器の斜視図を示す。本図では各個別箱を横並びで配置させたが,電力変換器の設置場所を鑑み,任意の配置が可能である。筺体箱天井部には開口する機構(402)を有している。また,筺体箱(104)外へ持ち上げる機構(401)へ設置する。
 図5および図6に,電力変換器を構成する各部品毎を納めた個別箱(103a~d)(A202・A204)から引き出された金属導体板(201)の構成例を示す。金属導体板は長辺(301a)および短辺(301b)を有する構成とし,長辺(301a)が水平に対し垂直になるように個別箱(103a・103d)から引き出す。これにより,絶縁油に残った気泡が金属導体板周辺に溜まることを防ぎ,絶縁性能が低下することを防ぐことが可能となる。なお図5および図6では金属導体板を1つ記載しているが,複数引き出されている場合においても同様な構成とすることが望ましい。
 図7に,個別箱(103a・103d)の構成例を示す。個別箱(103a・103d)は,半導体素子と半導体素子を動作させるための駆動回路からなる素子箱(701a・701b・701c)によって構成される。各構成部品を(あるいは部品を複合化して),ユニット化して,任意の部品毎に素子箱(701a・701b・701c)へ格納し,素子箱内部には絶縁油(603)を充填させる。該素子箱からは各箱同士を接続するための配線または金属導体板(201)及び金属導体板(202)が引き出され,絶縁油(106)の中で接続されている。これら部品を絶縁油(603)で充填されるよう設置することで,電力変換器の小型化がなされる。
 絶縁油は,個別箱および素子箱内部に納める部品の特性を鑑み,異なる種類の絶縁油を用いてもよい。素子箱に納める部品は,例えば3相電力変換器の1相分ないし3相分毎や,寿命の異なる部品毎,などが考えられ,必ずしも図7に示す通りの3分割とする必要はない。なお電力変換器の中で筺体電位と等しくなる箇所は,配線または金属導体板(204)を介して筺体箱へ接続する構成が考えられる。
 個別箱(103b・103c)(A202)には,図8に示す直流平滑用コンデンサ(A303)を納めている。個別箱(103b・103c)において,素子箱(701a・701b・701c)と同様に,コンデンサについて各箱同士を接続するための配線または金属導体板(201)が引き出され,絶縁油(106)の中で接続されている。
 ここで,配線(A400・A401)は,他の素子箱と接続する場合は金属導体板(201・202)の一部として構成される。配線(A205a1~a3)(A205b1~b3)は,発電機又は系統と接続される場合は配線(105)の一部として構成される。
 電力変換器を構成する各部品毎から引き出された金属導体板(201・202)の構成は,図5および図6に示す例と同様である。金属導体板は長辺(301a)および短辺(301b)を有する構成とし,長辺(301a)が水平に対し垂直になるように個別箱(103d)から引き出す。
 図8に,素子箱(701a・701b・701c)の電力変換回路図を示す。なお本実施例では2レベルの三相電力変換器としたが,3レベルを含む他方式の電力変換器も同様である。本実施例では,各素子箱(701a・701b・701c)に,相を構成するIGBT(A301)・ダイオード(A300)およびゲートドライブ回路(A302)を納めている。ここで,直流回路部(A400・A401),各相の出力となる配線(A205a1・A205a2・A205a3),ゲートドライブ回路(A302)および半導体スイッチング素子(A300・A301)はそれぞれ電位が異なる。そのため,各個別箱内は絶縁油で絶縁する。
 素子箱(701a・701b・701c)において,共通となる直流電圧部(正極)(A400)と直流電圧部(負極)(A401)の間に,半導体スイッチング素子(A300・A301)を直列に接続する。直列された半導体スイッチング素子(A300・A301)の接続点は,各々,配線(A205a1・A205a2・A205a3)として構成される。
 適用する電圧レベル,部品の交換周期,個別箱の大きさを鑑みて複数の分割方法が考えられる。すなわち,上述のように各相を個別に納めるのではなく,三相分の回路を共通的な箱に納める方式や直流平滑用コンデンサを含めた三相電力変換器を個別に納める方式が考えられる。
 素子箱(701a・701b・701c)は,個別箱(103b・103c)(A202)に対して着脱可能に構成されており,素子箱(701a・701b・701c)を例えば上方に引き上げると簡易に金属導体板(201)と金属導体板(202)の結合が外れて,分離することが可能に構成されている。
 図9及び図10に部品交換方法に関する実施例を示す。図9に筺体箱天井部には開口する機構(402)を有している。図10に電力変換器を構成する各部品毎を納めた個別箱(103a・103b・103c・103d)を筺体箱(104)外へ持ち上げる機構(401)へ設置する。該開口部へ個別箱を持ち上げることで部品を交換することが容易になる。なお個別箱を持ち上げる際,発電機または系統へ接続している配線(105a・105b)が引っ張られることを防ぐため,余裕(403)を持たせることが望ましい。素子箱(701a・701b・701c)を同様な構成にしても良い。
 図11に電力変換器を上から見た図を示す。電力変換器を納めた筺体箱(104)には,配管(502)で接続されたタンク(501)および配管(503a・503b)で接続された冷却器(504)が設置される。ここでタンク(501)は,部品交換時等に絶縁油のバッファとして機能する。これにより,個別箱を持ち上げる機構が不要となる,または持ち上げる高さを低くすることが可能となる。
 つぎに冷却器(504)は,筺体箱(104)内部で発生した熱を冷却するためのものであり,絶縁油が筺体箱(104)内部と冷却器(504)の間を配管(503a・504b)を介して循環する。素子箱(701a・701b・701c)を同様な構成にしても良い。なお図11では冷却器(504)を筺体箱(104)の近くに記載したが,遠く離れた場所へ配置しても良い。
101 風車タワー,102 風車タワー内で階層を分ける床ないし天井,103 電力変換器,103a・103b・103c・103d 電力変換器を構成する部品を納めた個別箱,104・104a・104b 個別箱を納める筺体箱,105a・105b 配線,106 絶縁油,107 受皿,201 個別箱から引き出された配線または金属導体板,202 配線または金属導体板の接続部,203 絶縁油,204 個別箱と筺体箱を接続する配線または金属導体板,301a 金属導体板の長辺,301b 金属導体板の短辺,401 個別箱を持ち上げる機構,402 筺体箱天井部の開口機構,403 配線の余剰箇所,501 タンク,502 配管,503a・503b 配管,504 冷却器,A100 ブレード,A101 ナセル,A102 タワー,A103 発電機,A104 土台, A701a・A701b・A701c 電力変換器の相を構成する要素を納めた素子箱,A202 直流平滑用コンデンサを納めた個別箱,A204 三相分の半導体スイッチング素子およびゲートドライブ回路,A205a1・A205a2・A205a3・A205b1・A205b2・A205b3 配線または金属導体板,A300 ダイオード,A301 IGBT,A302 ゲートドライバ回路,A303 直流平滑用コンデンサ,A400 直流電圧部(正極),A401 直流電圧部(負極)

Claims (8)

  1.  複数の半導体素子と,コンデンサからなる電力変換装置であって,前記複数の半導体素子とコンデンサのうちの一部の構成部品を所定の収納体に格納し,前記複数の半導体素子とコンデンサのうちの他の一部の構成部品を他の収納体に格納し,前記所定の収納体は接続配線を介して他の構成部品と接続され,前記他の収納体は接続配線を介して他の構成部品と接続され,前記所定の収納体は絶縁油で満たされ,前記他の収納体は絶縁油で満たされ,前記所定の収納体と前記他の収納体は絶縁油で絶縁油で絶縁され,前記所定の収納体と前記他の収納体の少なくとも一方は前記絶縁油が満たされた状態で脱着可能に構成されることを特徴とする電力変換装置。
  2.  請求項1において,前記収納体から引き出された金属導体板が,長片と短片を持つ四角柱で構成され,該金属導体板の長片が水平面に対して垂直になるように該個別箱内部から引き出されていることを特徴とする電力変換装置。
  3.  請求項1において,昇降する機構を有し,前記収納体の開口を介して少なくとも一部の構成部品が昇降可能なとすることを特徴とする電力変換装置。
  4.  請求項1において,前記収納体に充填された絶縁油を配管を介して接続されたタンクへ出し入れする機構を有することを特徴とする電力変換装置。
  5.  請求項1において,前記絶縁油を,前記収納体と配管を介して接続された冷却器へ循環させる機構を有することを特徴とする電力変換装置。
  6.  請求項1において,前記収納体の材質が金属であり,構成部品の内,前記収納体の電位となる箇所と前記収納体が配線または金属導体板で接続されていることを特徴とする電力変換装置。
  7.  請求項1において,前記収納体を,下部全体を覆うような受皿の上に設置することを特徴とする電力変換装置。
  8.  ブレード,ナセル,タワー,発電機および土台からなる風力発電システムにおいて,該風力発電設備内に発電機出力を系統へ接続するための電力変換装置を有し,前記電力変換装置は,複数の半導体素子と,コンデンサからなっており,前記複数の半導体素子とコンデンサのうちの一部の構成部品を所定の収納体に格納し,前記複数の半導体素子とコンデンサのうちの他の一部の構成部品を他の収納体に格納し,前記所定の収納体は接続配線を介して他の構成部品と接続され,前記他の収納体は接続配線を介して他の構成部品と接続され,前記所定の収納体は絶縁油で満たされ,前記他の収納体は絶縁油で満たされ,前記所定の収納体と前記他の収納体は絶縁油で絶縁油で絶縁され,前記所定の収納体と前記他の収納体の少なくとも一方は前記絶縁油が満たされた状態で脱着可能に構成されることを特徴とする風力発電システム。
PCT/JP2016/070206 2016-07-08 2016-07-08 電力変換装置及び風力発電システム WO2018008137A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680087255.3A CN109451778A (zh) 2016-07-08 2016-07-08 电力变换装置以及风力发电系统
PCT/JP2016/070206 WO2018008137A1 (ja) 2016-07-08 2016-07-08 電力変換装置及び風力発電システム
JP2018525903A JPWO2018008137A1 (ja) 2016-07-08 2016-07-08 電力変換装置及び風力発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070206 WO2018008137A1 (ja) 2016-07-08 2016-07-08 電力変換装置及び風力発電システム

Publications (1)

Publication Number Publication Date
WO2018008137A1 true WO2018008137A1 (ja) 2018-01-11

Family

ID=60912537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070206 WO2018008137A1 (ja) 2016-07-08 2016-07-08 電力変換装置及び風力発電システム

Country Status (3)

Country Link
JP (1) JPWO2018008137A1 (ja)
CN (1) CN109451778A (ja)
WO (1) WO2018008137A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103162A (ja) * 1973-02-05 1974-09-30
JPS56123597U (ja) * 1980-02-20 1981-09-19
JPS59217348A (ja) * 1983-05-25 1984-12-07 Kansai Electric Power Co Inc:The 電気機器
JPH04372159A (ja) * 1991-06-21 1992-12-25 Fujitsu Ltd 半導体装置の冷却装置及び冷却方法
JPH07312805A (ja) * 1994-05-17 1995-11-28 Toyota Autom Loom Works Ltd 車両搭載用充電器
JP2015532697A (ja) * 2012-08-30 2015-11-12 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh ウインドパーク

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103162A (ja) * 1973-02-05 1974-09-30
JPS56123597U (ja) * 1980-02-20 1981-09-19
JPS59217348A (ja) * 1983-05-25 1984-12-07 Kansai Electric Power Co Inc:The 電気機器
JPH04372159A (ja) * 1991-06-21 1992-12-25 Fujitsu Ltd 半導体装置の冷却装置及び冷却方法
JPH07312805A (ja) * 1994-05-17 1995-11-28 Toyota Autom Loom Works Ltd 車両搭載用充電器
JP2015532697A (ja) * 2012-08-30 2015-11-12 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh ウインドパーク

Also Published As

Publication number Publication date
JPWO2018008137A1 (ja) 2019-01-17
CN109451778A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
Blaabjerg et al. Wind energy systems
CA2775623C (en) An electrical power conversion system and method
EP2492501B1 (en) Wind turbine
Blaabjerg et al. Future on power electronics for wind turbine systems
JP5508672B2 (ja) 発電の方法および装置
US9240748B2 (en) Dynamically reconfigurable motor and generator systems
US8587141B2 (en) Frequency converter
US20120133142A1 (en) Wind turbine generator and wind turbine
US8508181B2 (en) Adjustable frequency drive and system
EP2771894B1 (en) Wind turbine transformer
WO2007003183A1 (en) A variable rotor speed wind turbine, wind park, method of transmitting electric power and method of servicing or inspecting a variable rotor speed wind turbine
CN109083816B (zh) 用于翻新风力涡轮的方法
Blaabjerg et al. Renewable energy systems with wind power
WO2018008137A1 (ja) 電力変換装置及び風力発電システム
Samoylenko et al. Semiconductor power electronics for synchronous distributed generation
CN108512440B (zh) 换流装置和双极换流系统
CN106953505A (zh) 电力转换装置和电梯
Maibach et al. Full-scale medium-voltage converters for wind power generators up to 7 MVA
Wankhede et al. Overview of Mv Drive Technologies in Mines and Future Scope
KR101748604B1 (ko) 풍력 발전 시스템의 컨버터 구동 장치 및 방법
KR101838181B1 (ko) 풍력 발전 시스템의 스위칭 소자 모듈 구동 장치 및 방법
JP2016125456A (ja) 風力発電装置
KR20130071971A (ko) 해상 석유 생산 시설용 주파수 변환장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018525903

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908181

Country of ref document: EP

Kind code of ref document: A1