WO2018006637A1 - 一种含有动态立体螺旋线的反光膜及机动车号牌 - Google Patents

一种含有动态立体螺旋线的反光膜及机动车号牌 Download PDF

Info

Publication number
WO2018006637A1
WO2018006637A1 PCT/CN2017/081983 CN2017081983W WO2018006637A1 WO 2018006637 A1 WO2018006637 A1 WO 2018006637A1 CN 2017081983 W CN2017081983 W CN 2017081983W WO 2018006637 A1 WO2018006637 A1 WO 2018006637A1
Authority
WO
WIPO (PCT)
Prior art keywords
curve
reflective film
spiral
dynamic
dimensional
Prior art date
Application number
PCT/CN2017/081983
Other languages
English (en)
French (fr)
Inventor
魏国军
陈林森
范广飞
卢国
周杨
魏玉宽
Original Assignee
苏州苏大维格光电科技股份有限公司
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格光电科技股份有限公司, 苏州大学 filed Critical 苏州苏大维格光电科技股份有限公司
Publication of WO2018006637A1 publication Critical patent/WO2018006637A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F3/0291Labels or tickets undergoing a change under particular conditions, e.g. heat, radiation, passage of time
    • G09F3/0294Labels or tickets undergoing a change under particular conditions, e.g. heat, radiation, passage of time where the change is not permanent, e.g. labels only readable under a special light, temperature indicating labels and the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/10Registration, licensing, or like devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions

Definitions

  • the invention relates to a reflective film, in particular to a reflective film containing a dynamic three-dimensional spiral and a motor vehicle number plate.
  • the motor vehicle number plate is a valid certificate for the system management of the vehicle by the public security traffic control department.
  • the technical characteristics of the reflective film are mainly based on the fluorescent film, and the special mark is printed inside the reflective film interlayer. Not high, it is difficult to effectively prevent problems such as decks.
  • Patent document CN499285Y proposes an intelligent anti-counterfeiting technology in which an electronic chip is embedded in a number plate substrate. A specific identification code is stored in the electronic chip, and the traffic controller can scan the chip through the handheld device to obtain the corresponding license plate. kind of data. This method requires a huge inspection network and a huge investment.
  • Patent document CN104494533A proposes a QR two-dimensional code made of invisible material in a motor vehicle number plate.
  • the invisible material is an ultraviolet fluorescent water-based invisible ink
  • each QR code gives each product a unique code
  • the road traffic police passes a special scanning device. , query the number plate information.
  • ultraviolet fluorescent materials are conventional techniques, and the implementation of technical processes is not difficult.
  • Patent document CN2363337 uses a film on the inside of the reflective film, and the film is stamped with a holographic pattern. This method increases the manufacturing cost of the reflective film, and the holographic pattern needs to be observed at a close distance, and at the same time, the production technology of the hologram is popular, so The use of ordinary holograms on the number plate is difficult to be unique and safe.
  • the present invention provides a reflective film containing a dynamic three-dimensional spiral and a motor vehicle number plate to meet the low cost and high safety requirements of the reflective film, which does not need to be reflective.
  • the film is made of additive material, and it is not necessary to print the pattern inside the reflective film.
  • the spiral can not be copied by scanners, cameras, etc., and the optical characteristics of the dynamic three-dimensional spiral of the produced reflective film are easily recognized by the human eye.
  • a reflective film comprising a dynamic three-dimensional spiral, comprising a reflective film body, wherein at least one curve is floated on opposite surfaces of the reflective film body, and at least one curve on the opposite surfaces is paired to form a spiral, and the spiral is decomposed into
  • the reciprocating motion of the x and z directions and the synthesis of the y-direction motion the xy plane is the plane in which the main body of the retroreflective film is located, the z-direction is perpendicular to the xy plane, and the spiral is closed in one cycle in the reciprocating motion in the x and z directions.
  • a composite motion trajectory of a curve or line segment that is stretched out in the y-direction during y-direction motion.
  • a and B are amplitudes in the x and z directions
  • the phase constant w 0 adjusts the xz plane synthetic motion curve trajectory
  • the v 0 motion in the y direction causes the closed curve to be stretched and expanded in the y direction.
  • the reciprocating motion in the x direction is a simple harmonic motion
  • the z value is a constant
  • the spiral line includes a periodic sinusoidal curve or a cosine curve of the floating and sinking
  • the parameter equation of the floating curve is as follows (2) :
  • the sinking curve parameter equation (3) is as follows:
  • a 1 and A 2 are the amplitudes of the sinusoidal line.
  • v0, y0, z1, and z2 are constants.
  • the spiral includes a spatially inclined sinusoid of the floating and sinking, which is inclined at an angle of 45° with the x-y plane.
  • the reciprocating motion in the x and z directions is a simple harmonic motion
  • the spiral line includes a floating three-dimensional spiral curve and a sinking three-dimensional spiral curve
  • the parameter equation (4) of the floating three-dimensional spiral curve is as follows:
  • B1 and B2 are the amplitudes of the floating curve and the sinking curve in the z direction.
  • the projection of the above-mentioned floating three-dimensional spiral curve and the sinking three-dimensional spiral curve in the x-z plane is a closed curve.
  • the above closed curve is a symmetric closed curve.
  • the closed curve is an ellipse
  • the long and short axis parameters of the ellipse are amplitudes in the x and z directions, respectively, wherein the phase constant can adjust the orientation of the long and short axes of the three-dimensional spiral curve in space.
  • the vertical forward projection curve of the above-mentioned floating three-dimensional spiral curve and the sinking three-dimensional spiral curve on the plane of the reflective film is a periodic corrugation line.
  • the motor vehicle number plate includes a number plate body, and the card body is provided with a reflective film containing a dynamic three-dimensional spiral as described above.
  • the spiral has the geometric features described by the above equation, and the double helix of the reflective film observed by the human eye has the following effects: 1) one of the double helices can be seen Suspended above the surface of the reflective film, another spiral sinks below the surface of the reflective film, which has a three-dimensional effect; moving to observe the floating curve, the spatial position change effect of the floating and sinking spiral is like the daily observation of the real space three-dimensional object; 2) The observed result is the projection curve of the floating pattern on the plane of the reflective film.
  • the shape of the projected curve satisfies the general geometric ray projection law; when moving, the two projection curves will move relative to each other on the plane of the reflective film; 3) Observed
  • the floating curve or the two-dimensional projection image is visible to the human eye within a certain angle of view, and the range of the viewable angle of view is preferably not less than ⁇ 10°, and the floating pattern is invisible beyond the angle of view.
  • the present invention produces a dynamic three-dimensional spiral on the reflective film, and the dynamic three-dimensional spiral can be recognized by the human eye under the illumination of the natural environment, and the recognized spiral has a three-dimensional effect of floating or sinking relative to the surface of the reflective film, when observed
  • the spiral has a dynamically changing characteristic when viewed while moving. Therefore, the invention can meet the low cost and high safety requirements of the reflective film, and does not need to be added on the reflective film, and does not need to print the graphic inside the reflective film, and the spiral cannot be copied by the scanner, the camera, etc.
  • the optical characteristics of the dynamic three-dimensional spiral of the reflective film are easily recognized by the human eye.
  • FIG. 1 is a schematic structural view of a three-dimensional (stereo) double helix reflective film having a floating and sinking effect and a number plate thereof according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a vertical projection curve of a dynamic stereo double helix on a surface of a reflective film according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the geometric position relationship of the double helix observed by flipping up the number plate in the embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the geometric position relationship of the double helix observed by flipping down the number plate in the embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the geometric position relationship of the double helix observed by flipping the number plate to the left in the embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing the geometric position relationship of the double helix observed by flipping the number plate to the right in the embodiment of the present invention.
  • FIG. 7 is a reflective film having a floating and sinking three-dimensional double helix in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the geometric position relationship of a three-dimensional double helix projection curve observed by flipping a number plate to the left in the embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing the geometric position relationship of a double helix projection curve observed by flipping a number plate to the right in the embodiment of the present invention.
  • FIG. 10 is a schematic structural view of a reflective film having a two-dimensional double helix of a floating and sinking and a number plate thereof according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing the geometric positional relationship of the inclined two-dimensional double helix observed by flipping up the number plate in the embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing the geometric positional relationship of the inclined two-dimensional double helix observed by flipping down the number plate in the embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing the geometric positional relationship of the inclined two-dimensional double helix observed by flipping the number plate to the right in the embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing the geometric positional relationship of the inclined two-dimensional double helix observed by flipping the number plate to the left in the embodiment of the present invention.
  • Figure 15 is a schematic view showing a closed curve having a symmetrical structure in an embodiment of the present invention.
  • 16 is a schematic structural view of a reflective film having a floating three-dimensional spiral and a sinking two-dimensional spiral and a number plate thereof according to an embodiment of the present invention.
  • FIG. 17 is a schematic structural view of a reflective film having a floating two-dimensional spiral and a sinking three-dimensional spiral and a number plate thereof according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural view of a reflective film having a suspension and sinking double helix at other positions and a number plate thereof according to an embodiment of the present invention.
  • FIG. 19 is a schematic diagram showing the relationship between the observation angle of the number plate double helix and the observation distance according to the embodiment of the present invention.
  • This embodiment mainly describes a reflective film containing a dynamic three-dimensional spiral, the double spiral visually having one floating above the surface of the reflective film and the other sinking below the surface of the reflective film.
  • the stereoscopic effects of floating and sinking are collectively referred to below as floating.
  • the moving observation floating double helix has a dynamically changing viewing angle effect, and the observed double helix structural parameters and visual characteristics are described in detail below.
  • the parametric equation of the spatial floating spiral curve has the following form:
  • the spatial helix can be decomposed into a synthesis of motions in the x, z direction and a uniform (or non-uniform) motion in the y direction.
  • the xy plane is the plane of the reflective film
  • the z direction is perpendicular to the plane of the reflective film.
  • a and B are the amplitudes in the x and z directions.
  • the reciprocating motion in the x and z directions makes the combined motion trajectory in one cycle a closed curve or a straight line segment
  • the phase constant w 0 adjusts the xz plane synthetic motion curve trajectory
  • the v 0 motion in the y direction causes the closed curve to be stretched in the y direction. , forming a spiral curve of spatial distribution.
  • the spiral has the geometric features described by the above equation, and the double helix of the reflective film observed by the human eye has the following effects: 1) one of the double helices can be seen suspended in the reflective film. Above the surface, another spiral sinks below the surface of the reflective film, which has a three-dimensional effect; moving to observe the floating curve, the spatial position change effect of the floating and sinking spiral is the same as the daily observation of the real space three-dimensional object; 2) observed The result is the projection curve of the floating pattern on the plane of the reflective film.
  • the shape of the projected curve satisfies the general geometric ray projection law; when moving, the two projection curves will move relative to each other on the plane of the reflective film; 3) the observed floating curve or
  • the two-dimensional projection image is visible to the human eye within a certain angle of view, and the range of the viewable angle of view is preferably not less than ⁇ 10°, and the floating pattern is invisible beyond the angle of view.
  • a dynamic three-dimensional spiral is formed on the reflective film, and the dynamic three-dimensional spiral can be recognized by the human eye under the illumination of the natural environment, and the recognized spiral has a three-dimensional effect of floating or sinking relative to the surface of the reflective film.
  • the spiral has a dynamic change characteristic. Therefore, the embodiment can meet the low cost and high safety requirements of the reflective film, and does not need to be added on the reflective film, and does not need to print the graphic inside the reflective film, and the spiral cannot be copied by the scanner, the camera, and the like.
  • the optical characteristics of the dynamic three-dimensional spiral of the produced reflective film are easily recognized by the human eye.
  • the reciprocating motion in the x direction is preferably a simple harmonic motion
  • the z value is constant
  • the periodic sine or cosine curve of the floating and sinking is included on the reflective film
  • the floating and The parameter equation of the sinking curve is as follows:
  • a 1 and A 2 are the amplitudes of the sinusoidal line.
  • v0, y0, z1, and z2 are constants.
  • the floating sinusoid is 20mm with respect to the surface of the reflective film
  • the sinking curve is 20mm with respect to the surface of the reflective film, in the horizontal plane of the number plate ( Or vertical plane)
  • the floating effect is as shown in Fig. 1, where 1 is the plane of the reflective film, 1a is the upward floating curve, and 1b is the sinking curve. Moving and observing the floating curve, the spatial position change relationship is the same as the daily dynamic observation of the real space three-dimensional object.
  • the floating sinusoid of the reflective film has a full parallax of 360°, and the observer can observe the floating stereoscopic vision and the dynamic change effect of the real space in any orientation plane.
  • the retroreflective film has no parallax in the horizontal direction and a parallax in the vertical direction.
  • the horizontal direction is the long side direction of the reflective film as shown in Fig. 2
  • the vertical direction is the short side direction.
  • 1a and 1b are forward projection curves of the floating sinus line in the plane of the vertical reflective film. It is easy to see that the projection curve 1a and the floating curve 1b are different visual responses of the same object.
  • the curves 1a and 1b are located in the same strip position of the plane 1 of the reflective film, and the distance between the troughs of the projection curves 1a and 1b and the long side edge of the plane 1 of the reflective film is D, and the curves 1a and 1b preferably have the same period T and amplitude A.
  • Curves 1a and 1b have a certain phase difference, and the geometrical representation is that the adjacent peaks of the curve shown in FIG. 2 have a spacing P.
  • the floating curves 1a and 1b on the reflective film are continuously and dynamically observed within an observable viewing angle, the floating curve 1a and the sinking curve 1b have dynamic visual characteristics that relatively continuously move on the surface of the reflective film. Specifically, when the number plate is turned upside down at a certain angle for dynamic observation, the two curves 1a and 1b have relatively continuous dynamic movements. Sex.
  • 3 is a positional relationship of the projection curve when the number plate is flipped up to the maximum observable viewing angle. During the upward flipping, the observer can see that the curve 1a continuously moves above the surface 1 of the reflective film, and the curve 1b continuously moves downward.
  • Figure 4 is the positional relationship of the two projection curves when the number plate is flipped down to the maximum observable viewing angle position. Contrary to Figure 3, when viewed dynamically, the curve 1a moves downward in the plane 1 of the reflective film and the curve 1b moves upward. mobile.
  • the stereoscopic principles and dynamic viewing characteristics described above are equally applicable to interpreting the visual effects of other parallax information on the retroreflective film. For example, a reflective film floating curve, when there is parallax in the horizontal direction and no parallax in the vertical direction, a floating spatial sinusoid can be observed in the horizontal direction, and no stereoscopic effect in the vertical direction, only visible The projection curve of the floating curve.
  • FIGS. 5 and 6 Similar to the dynamic observation behavior of flipping up and down the number plates, when the number plate is flipped left and right within the observable viewing angle, the relationship of the projection curve of the floating sinus line is as shown in FIGS. 5 and 6, wherein FIG. 5 is a flipping of the number plate to the left.
  • FIG. 5 is a flipping of the number plate to the left.
  • FIG. 6 is the shape and spatial positional relationship of the projection curves 1a and 1b when the reflective film is turned to the right.
  • the shape of the floating spiral is not limited to a preferred sinus line, and may be other curves or figures.
  • the waveform in the half cycle of the curve may be a similar curve such as a parabola, a Gaussian bell line, a spline curve, or the like.
  • the other shapes of spirals are observed in an orientation plane having parallax or no parallax, and the visual response characteristics satisfy the aforementioned principle.
  • the reciprocating motion in the x and z directions is preferably a simple harmonic motion, and a three-dimensional double helix curve for floating and sinking can be made on the reflective film, and the three-dimensional curve parameter equation of the floating and sinking is obtained. as follows:
  • the three-dimensional effect of the floating three-dimensional double helix is observed in the orientation plane of the reflective film having parallax, as shown in Fig. 7, in which the spiral 2a floats above the plane of the reflective film and 2b sinks below the plane.
  • the three-dimensional structure of the three-dimensional double helix itself can also be visually perceived by the observer.
  • the spatial position change relationship is the same as the daily dynamic observation of the real space three-dimensional object.
  • the produced floating and sinking spiral curves have 360° total parallax, and the observer can observe the stereoscopic and real spatial dynamic changes of the suspension and sinking in any orientation plane.
  • another preferred embodiment is that there is parallax in the vertical direction with no parallax in the horizontal direction of the retroreflective film, or vice versa.
  • the horizontal and vertical directions are the same as described in Embodiment 1.
  • a real spatial three-dimensional double helix structure can be observed on the reflective film with parallax direction, and one spiral line floats above the reflective film and the other sinks on the plane of the reflective film.
  • the positional relationship of the double helix is the same as that of the real space three-dimensional object, and the observer can understand it according to daily life experience.
  • the two-dimensional ray projection curves of the suspension and sinking spirals on the plane of the reflective film can be observed.
  • the projection curves When moving, the projection curves have the largest dynamic change effect. As described in Embodiment 1, the horizontal direction has parallax and the vertical direction has no parallax, and the typical viewing angle projection effect observed is as shown in FIG. 2, and the parameters describing the wavy line characteristics are also the same.
  • the dynamic relationship of the projection curve is similar to that described in Figures 3 and 4. The difference is that when there is parallax in the horizontal direction and no parallax information in the vertical direction, when the number plate is flipped left and right, the relationship between the waveform change and the geometric position of the projection curve is as shown in FIGS. It is easy to see that due to the three-dimensional structure of the double helix itself, the variation of the projection curve in different directions is different from the variation of the two-dimensional sinusoid in Embodiment 1.
  • the reflective film contains a three-dimensional double helix curve of floating and sinking, and the three-dimensional curve of the floating and sinking is at xz.
  • the projection of the direction is an ellipse, and the parameters of the long and short axes of the ellipse are the amplitudes of the x and z directions, respectively, wherein the phase constant can adjust the orientation of the long and short axes of the three-dimensional spiral curve of the elliptical shape in space.
  • the xz cross section of the double helix curve is elliptical.
  • the visual observation effect of the elliptical three-dimensional double helix made on the reflective film depends on the parallax information of the spiral.
  • the parallax information is the same as that of the second embodiment in the first embodiment and the second embodiment.
  • the projection curve of the three-dimensional curve on the reflective film is observed in the parallax direction, and the projection waveform in different viewing directions conforms to the geometric light projection law of the three-dimensional object on the plane.
  • the reflective film contains a spatially inclined sinusoidal curve of floating and sinking, and the floating and sinking sinusoids and the plane 1 of the reflective film are 45. ° tilt angle, the observed spatial tilt sinusoidal uplift and sinking stereoscopic effect is shown in Figure 10, where 3a is the upward curve and 3b is the sinking curve.
  • the xz cross-section projection of the double helix curve is a straight line segment.
  • the visual observation effect of the inclined double sinusoidal curve on the reflective film depends on the parallax information of the spiral, and preferably, the parallax information is similar to that of the first embodiment and the second embodiment, and the three-dimensional dynamic observation effect is similar to the foregoing.
  • the projection curve of the three-dimensional curve on the surface 1 of the reflective film without the parallax direction the projection waveform in different viewing directions conforms to the geometric light projection law of the three-dimensional object on the plane, and the typical viewing angle projection effect observed is as shown in FIG.
  • the corrugated lines depicted are the same as the characteristic parameters of the corrugated lines.
  • the positional relationship of the projection curves is shown in Figures 11, 12, 13, and 14, respectively.
  • the relationship between the waveform and the positional change of the projection curves 3a, 3b is determined by the projection law of the three-dimensional object on the plane 1 of the reflective film, similar to that in the first embodiment. For example, as shown in FIG. 11, since the spatially floating sinusoid has an oblique angle with the number plate plane 1, the floating projection curves 3a and 3b on the plane 1 of the reflective film have visual effects of stretching and compression, respectively, when the number plate is turned up.
  • the simple harmonic motions in the x and z directions in the embodiments 2, 3, and 4 use different parameters, and the projection curve on the x-z plane is a closed curve or a straight line segment, and the closed curve is a circular shape or an elliptical shape.
  • the periodic reciprocating synthetic trajectory in the x and z directions may also be other closed curves.
  • the closed curve is as shown in FIG. 15, and the closed curve has an axisymmetric characteristic, and half of the symmetrical figure is x, z half cycle.
  • the synthetic trajectory of motion, the semi-period trajectory curve is a parabola, a Gaussian bell line, a spline curve and other similar closed curves.
  • the closed curve in the x and z directions is deformed by a uniform motion in the y direction into a spatial spiral.
  • Space double helix made on reflective film One floats up on the surface of the reflective film and the other sinks below the surface.
  • a three-dimensional double helix of suspension and sinking can be observed in an orientation plane having parallax, and a three-dimensional spiral is observed in a direction without parallax, and the observation result is a two-dimensional projection image.
  • the forward projection ripple curves on the plane 1 of the vertical reflective film are sinusoidal, cosine, arc, elliptical, parabolic, Gaussian bell, spline, and other similarly similar ripple curves.
  • the stereoscopic figure on the plane of the number plate is dynamically observed, and the visual effects are the same as those described in the embodiments 1, 2, 3, and 4.
  • the observed spiral suspension and sinking effects are shown in Figures 16 and 17.
  • the observed sinking spiral is the two-dimensional sinusoidal line 1b described in Embodiment 1
  • the floating spiral is the three-dimensional spiral 2a in Embodiment 2
  • Figure 17 Figure 16 is the opposite.
  • the floating double helix of Figures 16 and 17 in this embodiment is only two of the spiral combinations in the previous embodiment.
  • the reflective film of the present invention contains suspended and sinking double helix, which will not be limited to the position described in the embodiment, and may be reflective. Any position on the film and any direction, such as the direction of the helix, can be as shown in FIG. Obviously, spirals at different locations were observed on the reflective film without additional creative labor. Embodiments in which the observed floating spiral characteristics are the same as those of the foregoing embodiment but different in position on the light reflecting film are within the scope of the present invention.
  • the motor vehicle number plate of the reflective film of the present embodiment When the motor vehicle number plate of the reflective film of the present embodiment is mounted on a motor vehicle, the floating and sinking double helix pattern can be conveniently observed by the human eye under ambient light illumination. Since the number plate contains double helix only visible in a certain angle of view, as shown in Fig.
  • the effect of the double helix pattern observed is better, especially the illumination such as flashlight and mobile phone light, and the observation effect is better.
  • the retroreflection of the reflective film against the light in the field of view of the high beam retroreflective direction, observing the number plate, will see a double spiral of strong contrast.
  • the floating double helix is preferably a two-dimensional sine or cosine curve, a three-dimensional spiral.
  • the forward vertical projection curve of the two-dimensional sine or cosine curve on the plane of the reflective film is itself, and the shape of the projection curve in other viewing directions satisfies the geometric light projection law.
  • the floating three-dimensional double helix curve has a projection pattern of the x-z plane as a symmetric closed curve, preferably a circle, an ellipse, a straight line segment, a parabola, a Gaussian bell line, a spline curve, and other closed curves.
  • the vertical forward projection curve of the floating double helix on the plane of the reflective film is a periodic corrugation line, and the half-period waveform of the wavy line is a sine, a cosine curve, an arc line, an ellipse line, a parabola, a Gaussian bell line, a spline curve. And other similar curves.
  • the characteristic parameters describing the two periodic projection curves include: period T, amplitude A, and phase difference P.
  • the parallax provided by the double helix is isotropic or anisotropic. Isotropic parallax means that floating double helix can be observed in any orientation plane within the observable viewing angle, while anisotropy is different.
  • the anisotropy preferably has a parallax in the horizontal direction and no parallax in the vertical direction, or vice versa.
  • the observation double helix is moved in an orientation plane having parallax, and the double helix has dynamic characteristics such as relative movement of a real space object.
  • the observation is moved in the plane of orientation without parallax, only the geometric ray projection curve of the spiral line at different viewing angles on the surface of the reflective film can be visually seen, and the position of the projection curve has the visual characteristics of relative motion.
  • the position of the floating helix can be made anywhere on the plane of the reflective film, and the floating helix can have any desired line width.
  • the floating spiral is visible to the human eye under ambient light, and the best observation is to use a directional light source (such as sunlight, flashlight, mobile phone light source, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种含有动态立体螺旋线的反光膜及机动车号牌。反光膜包括反光膜主体(1),反光膜主体(1)的相对两表面上分别浮动设置有至少一曲线,相对两表面上的至少一曲线配对组成螺旋线,螺旋线分解为x、z向的往复运动和y向运动的合成,x‑y平面为反光膜主体(1)所处的平面,z向垂直于x‑y平面,螺旋线在x、z向的往复运动中形成在一个周期内的闭合曲线或直线段的合成运动轨迹,闭合曲线在y向运动中沿着y向被拉伸展开。反光膜动态立体螺旋线的光学特性容易被人眼所识别,无需在反光膜上增材制作、无需在反光膜内部印刷图形,螺旋线不能被扫描仪、照相机等设备复制,满足低成本和高安全要求。

Description

一种含有动态立体螺旋线的反光膜及机动车号牌
本申请要求于2016年07月08日提交中国专利局、申请号为201610534526.7,发明名称为“一种含有动态立体螺旋线的反光膜及机动车号牌”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种反光膜,具体涉及一种含有动态立体螺旋线的反光膜及机动车号牌。
背景技术
机动车号牌是公安交管部门对车辆进行系统管理的有效凭证,对于号牌识别主要以反光膜所含有技术特征为依据,通常采用荧光图形、在反光膜夹层内部印刷专用标志等方式,技术层次不高,很难有效防范套牌等问题。
专利文献CN499285Y提出了一种在号牌基板压嵌有电子芯片的智能防伪技术,电子芯片中存贮有特定的识别码,交管人员通过手持设备对此芯片进行扫描,即可获得对应车牌的各种数据。这种方法需要建立庞大的检测网络,投入巨大。专利文献CN104494533A提出一种在机动车号牌采用隐形材料制作的QR二维码,隐形材料为紫外荧光水性隐形油墨,每个QR二维码赋予每个产品唯一的编码,路面交警通过专用扫描设备,查询号牌信息。但紫外荧光材料属于常规技术,技术工艺实施的难度不高。专利文献CN2363337用在反光膜内部制作一层薄膜,所述薄膜上烫印有全息图案,该方法增加了反光膜制作成本,且全息图案需要近距离观察,同时全息图的制作技术普及,因此在号牌上采用普通全息图很难具有独特性和安全性。
发明内容
为了解决上述技术问题,本发明提供了一种含有动态立体螺旋线的反光膜及机动车号牌,以满足反光膜的低成本和高安全要求,其无需在反光 膜上增材制作,亦不需在反光膜内部印刷图形,螺旋线不能被扫描仪、照相机等设备复制,所制作的反光膜的动态立体螺旋线的光学特性容易被人眼所识别。
为了达到上述目的,本发明的技术方案如下:
一种含有动态立体螺旋线的反光膜,其包括反光膜主体,反光膜主体的相对两表面上分别浮动设置有至少一曲线,相对两表面上的至少一曲线配对组成螺旋线,螺旋线分解为x、z向的往复运动和y向运动的合成,x-y平面为反光膜主体所处的平面,z向垂直于x-y平面,螺旋线在x、z向的往复运动中形成在一个周期内的闭合曲线或直线段的合成运动轨迹,闭合曲线在y向运动中沿着y向被拉伸展开。
进一步地,上述螺旋线具有参数方程(1):
Figure PCTCN2017081983-appb-000001
其中,A、B为x、z方向的振幅,位相常数w0调节x-z平面合成运动曲线轨迹,y方向的v0运动使得闭合曲线在y方向被拉伸展开。
进一步地,上述参数方程(1)中,x向的往复运动为简谐运动,z值为常量,螺旋线包括上浮和下沉的周期性正弦曲线或余弦曲线,上浮曲线参数方程(2)如下:
Figure PCTCN2017081983-appb-000002
下沉曲线参数方程(3)如下:
Figure PCTCN2017081983-appb-000003
上式中,A1,A2为正弦线的振幅,
Figure PCTCN2017081983-appb-000004
为初始位相,v0、y0、z1、z2均为常量。
进一步地,上述参数方程(2)和(3)中,位相常量w1=0、w2=π时,螺旋线包括上浮和下沉的空间倾斜正弦曲线,其与x-y平面呈45°倾斜角。
进一步地,上述参数方程(1)中,x、z向的往复运动为简谐运动,螺旋线包括上浮三维螺旋曲线和下沉三维螺旋曲线,上浮三维螺旋曲线的参数方程(4)如下:
Figure PCTCN2017081983-appb-000005
下沉三维螺旋曲线的参数方程(5)如下:
其中,B1与B2为上浮曲线和下沉曲线在z方向的振幅。
进一步地,上述上浮三维螺旋曲线和下沉三维螺旋曲线在x-z平面的投影为闭合曲线。
进一步地,上述闭合曲线为对称闭合曲线。
进一步地,上述闭合曲线为椭圆,椭圆的长短轴参数分别为x、z方向的振幅,其中位相常量可调节三维螺旋曲线长短轴在空间的取向。
进一步地,上述上浮三维螺旋曲线和下沉三维螺旋曲线在反光膜平面的垂直正向投影曲线为周期性波纹线。
机动车号牌,其包括号牌主体,该号牌主体上设置有如上所述的一种含有动态立体螺旋线的反光膜。
本发明的反光膜中,螺旋线具有上述方程描述的几何特征,人眼观察所观察的反光膜的双螺旋线,有如下效果:1)可看到双螺旋线的其中一条 悬浮于反光膜表面上方,另外一条螺旋线下沉在反光膜表面下方,具有立体效果;移动观察浮动曲线,上浮和下沉的螺旋线的空间位置变化效果就如同日常观察真实空间三维物体一样;2)观察到的结果为浮动图形在反光膜平面的投影曲线,投影曲线形状满足一般的几何光线投影规律;移动观察时,两条投影曲线在反光膜平面上将发生相对运动;3)观察到的浮动曲线或二维投影像在一定视场角内人眼可视,可观察视场角范围优选地不小于±10°,超出视场角范围浮动图形为不可见。
因此,本发明在反光膜上制作动态立体螺旋线,动态立体螺旋线能在自然环境光照射下被人眼识别,所识别的螺旋线相对反光膜表面具有上浮或下沉的立体效果,当观察者移动观看时,螺旋线具有动态变化的特性。从而使得本发明可以满足反光膜的低成本和高安全要求,其无需在反光膜上增材制作,亦不需在反光膜内部印刷图形,螺旋线不能被扫描仪、照相机等设备复制,所制作的反光膜的动态立体螺旋线的光学特性容易被人眼所识别。
附图说明
图1为本发明实施例中具有上浮和下沉效果的三维(立体)双螺旋线的反光膜及其号牌的结构示意图。
图2为本发明实施例中动态立体双螺旋线在反光膜表面的垂直投影曲线示意图。
图3为本发明实施例中向上翻转号牌观察到的双螺旋线几何位置关系示意图。
图4为本发明实施例中向下翻转号牌观察到的双螺旋线几何位置关系示意图。
图5为本发明实施例中向左翻转号牌观察到的双螺旋线几何位置关系示意图。
图6为本发明实施例中向右翻转号牌观察到的双螺旋线几何位置关系示意图。
图7为本发明实施例中具有上浮和下沉三维双螺旋线的反光膜及其 号牌的结构示意图。
图8为本发明实施例中向左翻转号牌观察到的三维双螺旋线投影曲线几何位置关系示意图。
图9为本发明实施例中向右翻转号牌观察到的双螺旋线投影曲线几何位置关系示意图。
图10为本发明实施例中具有上浮和下沉倾斜二维双螺旋线的反光膜及其号牌的结构示意图。
图11为本发明实施例中向上翻转号牌观察到的倾斜二维双螺旋线几何位置关系示意图。
图12为本发明实施例中向下翻转号牌观察到的倾斜二维双螺旋线几何位置关系示意图。
图13为本发明实施例中向右翻转号牌观察到的倾斜二维双螺旋线几何位置关系示意图。
图14为本发明实施例中向左翻转号牌观察到的倾斜二维双螺旋线几何位置关系示意图。
图15为本发明实施例中具有对称结构的闭合曲线示意图。
图16为本发明实施例中具有上浮三维螺旋线和下沉二维螺旋线的反光膜及其号牌的结构示意图。
图17为本发明实施例中具有上浮二维螺旋线和下沉三维螺旋线的反光膜及其号牌的结构示意图。
图18为本发明实施例中在其它位置具有悬浮和下沉双螺旋线的反光膜及其号牌的结构示意图。
图19为本发明实施例中号牌双螺旋线观察视角与观察距离关系示意图。
具体实施方式
下面结合附图详细说明本发明的优选实施方式。
本实施例主要描述了一种含有动态立体双螺旋线的反光膜,双螺旋视觉上具有一条上浮在反光膜表面上方,而另一条下沉在反光膜表面下方, 上浮和下沉的立体视觉效应下文统称为浮动。移动观察浮动双螺旋线具有动态变化的视角效果,观察到的双螺旋线结构参数及具有的视觉特性在下文将加以详细描述。
空间浮动螺旋曲线的参数方程具有如下形式:
Figure PCTCN2017081983-appb-000007
空间螺旋线可分解为以下运动的合成:x、z方向的往复运动和y方向的匀速(或非匀速)运动。x-y平面为反光膜平面,z方向垂直于反光膜平面。参数方程中A、B为x、z方向的振幅。x、z方向的往复运动使得一个周期内的合成运动轨迹为闭合曲线或直线段,位相常数w0调节x-z平面合成运动曲线轨迹,y方向的v0运动使得闭合曲线在y方向被拉伸展开,形成空间分布的螺旋曲线。
本实施例的反光膜中,螺旋线具有上述方程描述的几何特征,人眼观察所观察的反光膜的双螺旋线,有如下效果:1)可看到双螺旋线的其中一条悬浮于反光膜表面上方,另外一条螺旋线下沉在反光膜表面下方,具有立体效果;移动观察浮动曲线,上浮和下沉的螺旋线的空间位置变化效果就如同日常观察真实空间三维物体一样;2)观察到的结果为浮动图形在反光膜平面的投影曲线,投影曲线形状满足一般的几何光线投影规律;移动观察时,两条投影曲线在反光膜平面上将发生相对运动;3)观察到的浮动曲线或二维投影像在一定视场角内人眼可视,可观察视场角范围优选地不小于±10°,超出视场角范围浮动图形为不可见。
因此,本实施例在反光膜上制作动态立体螺旋线,动态立体螺旋线能在自然环境光照射下被人眼识别,所识别的螺旋线相对反光膜表面具有上浮或下沉的立体效果,当观察者移动观看时,螺旋线具有动态变化的特性。从而使得本实施例可以满足反光膜的低成本和高安全要求,其无需在反光膜上增材制作,亦不需在反光膜内部印刷图形,螺旋线不能被扫描仪、照相机等设备复制,所制作的反光膜的动态立体螺旋线的光学特性容易被人眼所识别。
下面将通过具体实施例,加以详细描述。
实施例1
在浮动双螺旋线参数方程(1)中,x方向的往复运动优选地为简谐运动,z值为常量,在反光膜上含有一种上浮和下沉的周期性正弦或余弦曲线,上浮和下沉曲线参数方程如下:
上浮曲线:
Figure PCTCN2017081983-appb-000008
下沉曲线:
Figure PCTCN2017081983-appb-000009
上式中,A1,A2为正弦线的振幅,
Figure PCTCN2017081983-appb-000010
为初始位相,v0、y0、z1、z2均为常量。举例,参量A1=B1=10mm,
Figure PCTCN2017081983-appb-000011
y0=30mm,w=1,z1=20mm,z2=20mm,则上浮正弦曲线相对于反光膜表面悬浮高度为20mm,下沉曲线相对于反光膜表面下沉高度为20mm,在号牌水平平面(或竖直平面)具有视差的取向平面内观察上浮和下沉正弦曲线,其浮动效果如附图1所示,图中1为反光膜平面,1a为上浮曲线,1b为下沉曲线。移动观察浮动曲线,空间位置变化关系如同日常动态观察真实空间三维物体一样。
优选地,反光膜的浮动正弦曲线具有360°全视差,观察者在任意取向平面都可以观察到浮动立体视觉和真实空间动态变化效果。
另一种优选方案,反光膜在水平方向上没有视差,而与其垂直方向上有视差。水平方向是如附图2所示反光膜长边方向,而垂直方向则为短边方向。如前,在长边方向上仅能观察到浮动曲线的二维投影曲线,在动态观察时,投影曲线之间具有最大的动态变化效应。附图2中1a和1b是浮动正弦线在垂直反光膜平面的正向投影曲线。易见的,投影曲线1a和浮动曲线1b为同一对象的不同视觉响应。此时曲线1a和1b位于反光膜平面1同一带状位置内,投影曲线1a与1b的波谷与反光膜平面1长边边缘距离为D,曲线1a和1b优选的具有相同的周期T、振幅A,曲线1a与1b具有一定的位相差,几何表现为附图2中所示的曲线相邻波峰具有间隔P。各参数优选D=25mm、T=27mm、A=10mm、P=7mm。在可观察视角内连续动态观察反光膜上浮动曲线1a与1b时,上浮曲线1a和下沉曲线1b具有在反光膜表面相对连续移动的动态视觉特性。具体表现为当上下翻转号牌一定角度作动态观察时,两条曲线1a和1b具有相对连续移动的动态特 性。
附图3为向上翻转号牌至最大可观察视角时的投影曲线位置关系,向上翻转过程中,观察者可见曲线1a向反光膜表面1上方连续移动,而曲线1b向下方连续移动。
附图4则为向下翻转号牌至最大可观察视角位置时两条投影曲线的位置关系,与附图3相反,动态观察时,曲线1a在反光膜平面1内向下移动而曲线1b则向上移动。上文所描述的立体视觉原理和动态观察特性同样适用于解释反光膜上具有其它视差信息的视觉效应。例如的反光膜浮动曲线,当在水平方向上具有视差,而在垂直方向上没有视差,则在水平方向上能够观察到浮动的空间正弦曲线,而在垂直方向则没有立体感,仅能看到浮动曲线的投影曲线。
与上下翻转号牌动态观察行为类似,当在可观察视角内左右翻转号牌时,浮动正弦线的投影曲线变化关系如附图5和6所示,其中附图5为向左翻转号牌至最大可观察视角时双螺旋曲线的形状和空间位置关系,附图6则为向右翻转反光膜时投影曲线1a与1b的形状和空间位置关系。
本实施例中,的浮动螺旋线形状不限于优选的正弦线,也可为其它曲线或图形,曲线半周期内的波形可以为抛物线、高斯钟形线、样条曲线等外观类似曲线。在具有视差或无视差的取向平面内观察其它形状的螺旋线,视觉响应特性满足前述原理。
实施例2
在三维双螺旋线参数方程(1)中,x、z方向的往复运动优选简谐运动,可在反光膜上制作一种上浮和下沉的三维双螺旋曲线,上浮和下沉三维曲线参数方程如下:
上浮曲线:
Figure PCTCN2017081983-appb-000012
下沉曲线:
Figure PCTCN2017081983-appb-000013
B1与B2为上浮曲线和下沉曲线在z方向的振幅,其它参量意义同实施例1中,优选地,参量w=1,A1=A2=10mm,B1=B2=10mm,
Figure PCTCN2017081983-appb-000014
v0=20mm/s,y0=30mm,w1=w2=π/2,z1=20mm,z2=15mm。由优选的参数可知,三维双螺旋曲线x-z平面投影曲线均为圆形,直径为10mm。
在具有视差的反光膜的取向平面内观察,浮动三维双螺旋线其立体效果,如附图7所示,其中螺旋线2a上浮在反光膜平面上方,2b下沉在平面下方。与实施例1中浮动二维正弦线1a和1b不同,三维双螺旋线本身的三维结构也能够被观察者视觉感知。移动观察,浮动三维双螺旋线,空间位置变化关系如同日常动态观察真实空间三维物体一样。优选的,所制作的浮动和下沉螺旋曲线具有360°全视差,观察者在任意取向平面都可以观察到悬浮和下沉的立体视觉和真实空间动态变化效果。
同实施例1,另一种优选方案为在反光膜在水平方向上,没有视差而与其垂直方向上有视差,或者相反。水平和垂直方向同实施例1中描述。如前,在具有视差方向反光膜上能观察到真实的空间三维双螺旋线结构,并且一条螺旋线上浮在反光膜上方,另一条下沉在反光膜平面。移动观察时,双螺旋线的位置关系同真实空间三维物体一样变化,观察者凭日常生活经验即可理解。而在没有视差的方向上观察,仅能观察到悬浮和下沉螺旋线的在反光膜平面的二维光线投影曲线,在移动观察时,投影曲线之间具有最大的动态变化效应。如在实施例1中描述的水平方向有视差而垂直方向无视差,观察到的典型视角投影效果如附图2所描绘的波纹,描述波纹线特征的参数也相同。上下翻转号牌时,投影曲线的动态变化关系类似与附图3、4所描述的。不同的是,当在水平方向有视差而垂直方向无视差信息时,左右翻转号牌时,投影曲线的波形变化和几何位置变化关系如附图8、9所示。易见的,由于双螺旋线本身的三维结构,导致其在不同方向上的投影曲线的变化不同于实施例1中二维正弦曲线的变化关系。
实施例3
在实施例2优选的参数方程(4)和(5)中,x、z方向的振幅不同时,在反光膜含有一种上浮和下沉的三维双螺旋曲线,上浮和下沉三维曲线在x-z方向的投影为椭圆,椭圆的长短轴参数分别为x、z方向的振幅,其中位相常量可调节截面为椭圆形的三维螺旋曲线长短轴在空间的取向。优选的参量A1=A2=10mm,B1=15mm,B2=5mm,
Figure PCTCN2017081983-appb-000015
v0=20mm/s,y0=30mm,w1=w2=π/2,w=1,z1=20mm,z2=15mm,由选择参数可知,双螺旋曲线x-z截面均为椭圆。反光膜上制作的椭圆形三维双螺旋线的视觉观察效果取决于螺旋线具有的视差信息,优选地,视差信息同实施例1 和实施例2中,其三维动态观察效果与实施例2类似,在不具备视差方向上观察三维曲线在反光膜上的投影曲线,不同视角方向上投影波形符合前述三维物体在平面上的几何光线投影规律。
实施例4
在实施例2优选的参数方程中,位相常量w1=0、w2=π时,反光膜上含有一种上浮和下沉的空间倾斜正弦曲线,上浮和下沉正弦曲线与反光膜平面1呈45°倾斜角,观察到的空间倾斜正弦曲线上浮和下沉立体效果如附图10所示,图中3a为上浮曲线,3b为下沉曲线。优选的参量A1=A2=10mm,B1=15mm,B2=5mm,
Figure PCTCN2017081983-appb-000016
v0=20mm/s,y0=30mm,w=1,z1=20mm,z2=15mm,由选择的参数可知,双螺旋曲线x-z截面投影均为直线段。反光膜上的倾斜双正弦曲线的视觉观察效果,取决于螺旋线具有的视差信息,优选地,视差信息同实施例1和实施例2中的,其三维动态观察效果与前述类似。在不具备视差方向上观察三维曲线在反光膜表面1上的投影曲线,不同视角方向上投影波形符合三维物体在平面上的几何光线投影规律,观察到的典型视角投影效果,如附图2所描绘的波纹,波纹线的特征参数相同。在反光膜平面水平或垂直方向上无视差时,上、下、左、右翻转号牌至最大可观察视角时,投影曲线的位置关系分别为附图11、12、13、14所示,在翻转号牌过程中,投影曲线3a、3b的波形和位置变化关系由三维物体在反光膜平面1上的投影规律决定,类似于实施例1中。例如附图11所示,由于空间浮动正弦线与号牌平面1具有倾斜角,在向上翻转号牌时,反光膜平面1上的浮动投影曲线3a和3b分别具有拉伸和压缩的视觉效应。
实施例5
如前,实施例2、3、4中优选的x、z方向的简谐运动,选用不同的参数,在x-z平面的投影曲线为闭合曲线或直线段,闭合曲线为圆形、椭圆形。本实施例中x、z方向的周期性往复运动合成轨迹也可为其它的闭合曲线,闭合曲线如附图15所示,闭合曲线具有轴对称的特性,对称图形的一半为x、z半周期运动的合成轨迹,半周期轨迹曲线为抛物线、高斯钟形线、样条曲线以及其它外观类似闭合曲线,x、z方向的闭合曲线被y方向的匀速运动拉伸变形为空间螺旋线,观察在反光膜上制作的空间双螺旋线,具 有一条上浮在反光膜表面,另一条下沉在表面下方。在具有视差的取向面内能够观察到悬浮和下沉的三维空间双螺旋线,在没有视差的方向上观察三维螺旋线,观察结果为其二维投影像。垂直反光膜平面1上的正向投影波纹曲线为正弦线、余弦线、圆弧线、椭圆线、抛物线、高斯钟形线、样条曲线以及其它外观类似波纹曲线。动态观察号牌平面上的立体图形,视觉效应与实施例1、2、3、4所描述的规律相同。
本实施例所属的含有三维双螺旋线的反光膜及其采用该反光膜的机动车号牌,观察到的浮动双螺旋线,由实施例1、2、3、4中所描述的螺旋线配对组成。例如,观察到的螺旋线悬浮和下沉效果如附图16、17所示。附图16所制作的反光膜,观察到的下沉螺旋线为实施例1中所描述的二维正弦线1b,而上浮螺旋线则为实施2中的三维螺旋线2a,附图17则与附图16正好相反。本实施例中附图16、17的浮动双螺旋线仅是前述实施例中螺旋线组合中的两种情况。显而易见的,由前述实施例中描绘的螺旋线或者其他图形以及其它可能的图形组合,都属于本实施例的发明范围。附图16、17描绘的以及包括其它可能的上浮和下沉的双螺旋线,其观察特性以及优选特征参数皆与前述实施例相同。
实施例6
为了使本发明反光膜适用于各种规格的机动车号牌以及其它应用场合,观察本发明的反光膜上含有悬浮和下沉双螺旋线,将不限于实施例所描述的位置,可以是反光膜上的任意位置和任意方向,例如螺旋线的走向可以是如附图18所示。显然的,在反光膜上观察到不同位置的螺旋线并未附加有其它创造性劳动。观察到的浮动螺旋线特性与前述实施例相同但在反光膜上位置不同的实施例都属于本发明的范围。
由所采用本方案的反光膜的机动车号牌,安装在机动车上时,可在环境光照射下,用人眼方便地观察到浮动和下沉的双螺旋线图形。由于号牌含有双螺旋线仅在一定视场角内可见,如附图19所示,假设向上的最大可观察视角与水平面成θ角,观察者眼睛离水平面高度为L,则与号牌平面最小可观察距离D=L/tanθ,观察者在此距离上,可向下移动观察号牌的双螺旋线图形,或者向后移动增大观察距离以减小观察视角,则观察到的双螺旋线动态视觉效应同前述实施例中向上翻转时的变化效果,观察着可根 据上、下、左、右的观察特性理解其它方向的观察效果。从观察效果上,在室外环境下,用方向性的光照射,观察到的双螺旋图形的效果更好,尤其采用手电筒、手机灯光等照明,观察效果更好。在夜晚,用机动车远光灯照射时,反光膜的对光的后向反射,在远光灯回射方向视场范围内,观察号牌,将看到强烈对比度的双螺旋线。
其中,浮动的双螺旋线优选为二维正弦或余弦曲线、三维螺旋线。二维正弦或余弦曲线在反光膜平面的正向垂直投影曲线为其本身,在其它视角方向的投影曲线形状满足几何光线投影规律。浮动的三维双螺旋曲线,其x-z平面的投影图形为对称闭合曲线,优选的为圆形、椭圆形、直线段、抛物线、高斯钟形线、样条曲线以及其它闭合曲线。浮动的双螺旋线在反光膜平面的垂直正向投影曲线为周期性波纹线,波纹线的半周期波形为正弦、余弦曲线、圆弧线、椭圆线、抛物线、高斯钟形线、样条曲线以及其它外观类似曲线。描述两条周期性投影曲线的特征参数包括:周期T、振幅A、位相差P。双螺旋线所能提供的视差具有各向同性或各向异性。各向同性视差是指在可观察视角范围内的任意取向平面内都能观察到浮动的双螺旋线,而各向异性则不同,在没有视差信息的取向平面内仅能观察到浮动双螺旋线在反光膜平面内的投影曲线,各向异性优选的为水平方向具有视差而垂直方向没有视差,或者相反。在具有视差的取向平面内移动观察双螺旋线,双螺旋线具有如真实空间物体相对移动的动态特性。而在没有视差的取向平面内移动观察,视觉上仅能看到螺旋线在反光膜表面不同视角方向的几何光线投影曲线,投影曲线的位置具有相对运动的视觉特性。浮动螺旋线的位置可以制作在反光膜平面的任何位置,浮动螺旋线可以具有任意需要的线宽。浮动螺旋线在环境光照射下人眼可见,最佳观察效果为采用方向性光源照射(例如太阳光、手电筒、手机光源等)。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

  1. 一种含有动态立体螺旋线的反光膜,其特征在于,包括反光膜主体,所述反光膜主体的相对两表面上分别浮动设置有至少一曲线,相对两表面上的至少一曲线配对组成螺旋线,所述螺旋线分解为x、z向的往复运动和y向运动的合成,x-y平面为所述反光膜主体所处的平面,z向垂直于所述x-y平面,所述螺旋线在所述x、z向的往复运动中形成在一个周期内的闭合曲线或直线段的合成运动轨迹,所述闭合曲线在所述y向运动中沿着y向被拉伸展开。
  2. 根据权利要求1所述的一种含有动态立体螺旋线的反光膜,其特征在于,所述螺旋线具有参数方程(1):
    Figure PCTCN2017081983-appb-100001
    其中,A、B为x、z方向的振幅,位相常数w0调节所述x-z平面合成运动曲线轨迹,y方向的v0运动使得所述闭合曲线在y方向被拉伸展开。
  3. 根据权利要求2所述的一种含有动态立体螺旋线的反光膜,其特征在于,所述参数方程(1)中,所述x向的往复运动为简谐运动,z值为常量,所述螺旋线包括上浮和下沉的周期性正弦曲线或余弦曲线,上浮曲线参数方程(2)如下:
    Figure PCTCN2017081983-appb-100002
    下沉曲线参数方程(3)如下:
    Figure PCTCN2017081983-appb-100003
    上式中,A1,A2为正弦线的振幅,
    Figure PCTCN2017081983-appb-100004
    为初始位相,v0、y0、z1、z2均为常量。
  4. 根据权利要求3所述的一种含有动态立体螺旋线的反光膜,其特征在于,所述参数方程(2)和(3)中,位相常量w1=0、w2=π时,所述螺旋线包括上浮和下沉的空间倾斜正弦曲线,其与所述x-y平面呈45°倾斜角。
  5. 根据权利要求2所述的一种含有动态立体螺旋线的反光膜,其特征在于,所述参数方程(1)中,所述x、z向的往复运动为简谐运动,所述螺旋线包括上浮三维螺旋曲线和下沉三维螺旋曲线,所述上浮三维螺旋曲线的参数方程(4)如下:
    Figure PCTCN2017081983-appb-100005
    所述下沉三维螺旋曲线的参数方程(5)如下:
    Figure PCTCN2017081983-appb-100006
    其中,B1与B2为上浮曲线和下沉曲线在z方向的振幅。
  6. 根据权利要求5所述的一种含有动态立体螺旋线的反光膜,其特征在于,所述上浮三维螺旋曲线和下沉三维螺旋曲线在x-z平面的投影为闭合曲线。
  7. 根据权利要求6所述的一种含有动态立体螺旋线的反光膜,其特征在于,所述闭合曲线为对称闭合曲线。
  8. 根据权利要求6或7所述的一种含有动态立体螺旋线的反光膜,其特征在于,所述闭合曲线为椭圆,所述椭圆的长短轴参数分别为x、z方向的振幅,其中位相常量可调节所述三维螺旋曲线长短轴在空间的取向。
  9. 根据权利要求5所述的一种含有动态立体螺旋线的反光膜,其特征在于,所述上浮三维螺旋曲线和下沉三维螺旋曲线在反光膜平面的垂直正向投影曲线为周期性波纹线。
  10. 机动车号牌,其包括号牌主体,其特征在于,所述号牌主体上设置有如权利要求1-9任一所述的一种含有动态立体螺旋线的反光膜。
PCT/CN2017/081983 2016-07-08 2017-04-26 一种含有动态立体螺旋线的反光膜及机动车号牌 WO2018006637A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610534526.7A CN105957446B (zh) 2016-07-08 2016-07-08 一种含有动态立体螺旋线的反光膜及机动车号牌
CN201610534526.7 2016-07-08

Publications (1)

Publication Number Publication Date
WO2018006637A1 true WO2018006637A1 (zh) 2018-01-11

Family

ID=56900543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081983 WO2018006637A1 (zh) 2016-07-08 2017-04-26 一种含有动态立体螺旋线的反光膜及机动车号牌

Country Status (2)

Country Link
CN (2) CN108615454B (zh)
WO (1) WO2018006637A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109300392A (zh) * 2018-10-22 2019-02-01 海南亚元防伪技术研究所(普通合伙) 可移除防回收标签

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108615454B (zh) * 2016-07-08 2020-03-20 公安部交通管理科学研究所 一种含有动态立体螺旋线的反光膜及机动车号牌

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201208940Y (zh) * 2008-02-03 2009-03-18 陈志龙 一种车牌级防伪反光膜
CN101505998A (zh) * 2006-08-23 2009-08-12 日本电石工业株式会社 车辆牌照及其所用的回射片
WO2011060086A1 (en) * 2009-11-12 2011-05-19 3M Innovative Properties Company Irradiation marking of retroreflective sheeting
CN102750874A (zh) * 2012-06-05 2012-10-24 王赤坤 一种反光防伪标识
CN103640530A (zh) * 2013-12-24 2014-03-19 曹庆发 带有防伪标识的反光膜及其制造方法和防伪车牌
CN105957446A (zh) * 2016-07-08 2016-09-21 苏州苏大维格光电科技股份有限公司 一种含有动态立体螺旋线的反光膜及机动车号牌

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6788640B2 (en) * 2000-08-23 2004-09-07 Salvatore Celeste Universal mass storage information card and drive assembly
CN2507711Y (zh) * 2000-11-28 2002-08-28 廖振强 具有防伪标识的透光材料标牌
DE102004017093B4 (de) * 2004-04-07 2007-09-20 Leonhard Kurz Gmbh & Co. Kg Prägefolie zur Herstellung fälschungssicherer Kraftfahrzeug-Nummernschilder und fälschungssicheres Kraftfahrzeug-Nummernschild mit einer solchen Prägefolie sowie Verwendung
CN101811481A (zh) * 2010-04-28 2010-08-25 燕山大学 一种含光学隐码的防伪车牌及其制作与识别方法
CN103314314B (zh) * 2011-01-19 2015-09-09 日本电石工业株式会社 设置有具有视觉识别方向性的图像的微小玻璃球型回射片
CN202608159U (zh) * 2012-02-29 2012-12-19 3M中国有限公司 安全防伪薄膜
CN105206194A (zh) * 2015-10-14 2015-12-30 恩希爱(杭州)化工有限公司 一种具有多个防伪图案的三维动感防伪制品
CN205827793U (zh) * 2016-07-08 2016-12-21 苏州苏大维格光电科技股份有限公司 一种含有动态立体螺旋线的反光膜及机动车号牌

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505998A (zh) * 2006-08-23 2009-08-12 日本电石工业株式会社 车辆牌照及其所用的回射片
CN201208940Y (zh) * 2008-02-03 2009-03-18 陈志龙 一种车牌级防伪反光膜
WO2011060086A1 (en) * 2009-11-12 2011-05-19 3M Innovative Properties Company Irradiation marking of retroreflective sheeting
CN102750874A (zh) * 2012-06-05 2012-10-24 王赤坤 一种反光防伪标识
CN103640530A (zh) * 2013-12-24 2014-03-19 曹庆发 带有防伪标识的反光膜及其制造方法和防伪车牌
CN105957446A (zh) * 2016-07-08 2016-09-21 苏州苏大维格光电科技股份有限公司 一种含有动态立体螺旋线的反光膜及机动车号牌

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109300392A (zh) * 2018-10-22 2019-02-01 海南亚元防伪技术研究所(普通合伙) 可移除防回收标签

Also Published As

Publication number Publication date
CN108615454A (zh) 2018-10-02
CN105957446B (zh) 2018-07-03
CN105957446A (zh) 2016-09-21
CN108615454B (zh) 2020-03-20

Similar Documents

Publication Publication Date Title
ES2814898T3 (es) Dispositivo de seguridad para proyectar una colección de imágenes sintéticas
CN107995894B (zh) 视觉可变防伪元件
US10005309B2 (en) Security Element Having Groove- or Rib-Shaped Structural Elements
US10625532B2 (en) Security element
CN101346244B (zh) 安全元件
RU2291061C2 (ru) Дифракционный элемент защиты
CN103852819B (zh) 一种增强裸眼立体显示空间连续性的光栅
US20120147474A1 (en) Lens sheet for microlens and lenticular lens
WO2018006637A1 (zh) 一种含有动态立体螺旋线的反光膜及机动车号牌
CN103430056A (zh) 微透镜阵列片以及包括所述微透镜阵列片的背光单元
KR20100052511A (ko) 마이크로-광학 보안장치
CN101030027A (zh) 一种具有全息柱面透镜结构的投影屏
KR20110100626A (ko) 합성 통합 이미지를 제공하는 이미지 호일들
US10792947B2 (en) Optical structure
CA2961411A1 (en) Secure lens layer
US11059317B2 (en) Display
CN106864161B (zh) 一种安全特征鉴别方法及反射型安全元件薄膜
KR101032191B1 (ko) 입체용 다중 복합 렌즈 시트
TW201902729A (zh) 防偽元件及防偽元件的製造方法
CN210401858U (zh) 立体成像膜
CN205827793U (zh) 一种含有动态立体螺旋线的反光膜及机动车号牌
CN201302628Y (zh) 能够形成动态立体图像的薄片
CN107993561B (zh) 立体防伪微透镜薄片
WO2021036428A1 (zh) 立体成像膜
EP3929001A1 (en) Micro-optical system for forming visual images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823449

Country of ref document: EP

Kind code of ref document: A1