KR20110100626A - 합성 통합 이미지를 제공하는 이미지 호일들 - Google Patents

합성 통합 이미지를 제공하는 이미지 호일들 Download PDF

Info

Publication number
KR20110100626A
KR20110100626A KR1020117014028A KR20117014028A KR20110100626A KR 20110100626 A KR20110100626 A KR 20110100626A KR 1020117014028 A KR1020117014028 A KR 1020117014028A KR 20117014028 A KR20117014028 A KR 20117014028A KR 20110100626 A KR20110100626 A KR 20110100626A
Authority
KR
South Korea
Prior art keywords
distances
array
image
polymer foil
focusing
Prior art date
Application number
KR1020117014028A
Other languages
English (en)
Other versions
KR101706316B1 (ko
Inventor
액슬 룬드발
Original Assignee
롤링 옵틱스 에이비
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41460998&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20110100626(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 롤링 옵틱스 에이비 filed Critical 롤링 옵틱스 에이비
Publication of KR20110100626A publication Critical patent/KR20110100626A/ko
Application granted granted Critical
Publication of KR101706316B1 publication Critical patent/KR101706316B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/305Associated digital information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/21Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose for multiple purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/003Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using security elements
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/128Viewing devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • B42D2035/20
    • B42D2035/50
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/324Reliefs

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Computer Security & Cryptography (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Credit Cards Or The Like (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Abstract

합성 통합 이미지(25)를 제공하기 위한 광학 장치는 폴리머 호일 스택을 포함한다. 상기 폴리머 호일 스택의 제1인터페이스는 제1어레이 내의 광학적으로 식별가능한 이미지 데이터 운반 구조체들(16a-c)을 포함한다. 상기 폴리머 호일 스택의 제2인터페이스는 제2어레이 내의 집속소자들(1)을 가진다. 제1방향의 상기 제2어레이 내의 집속소자들 및 상기 제1어레이 내의 이웃하는 물체들 사이의 거리들 사이의 비율은 상기 제2방향의 상기 제2어레이 내의 집속소자들 및 상기 제1어레이 내의 이웃하는 물체들 사이의 거리들 사이의 비율과 다르다. 이것은 상기 이미지 데이터 운반 구조체들에 대응하는 상기 합성 통합 이미지가 상기 폴리머 호일 스택이 소정의 굴곡으로 주어질 때 요청된 비례들로 인식가능하다. 또한 매우 가까운 거리에서 볼 때에만 합성 통합 이미지를 발생시키는 폴리머 호일 스택들이 개시된다. 상기 폴리머 호일 스택의 구부림 또는 이동 동안 상기 합성 통합 이미지의 외관은 인증을 위해 사용된다. 또는 회전 동안 외관상 이미지 깊이에 있어서의 변화가 인증을 위해 사용된다.

Description

합성 통합 이미지를 제공하는 이미지 호일들{IMAGE FOILS PROVIDING A SYNTHETIC INTEGRAL IMAGE}
본 발명은 일반적으로 광학 장치들에 관한 것으로서, 보다 상세하게는 합성 이미지를 제공하는 광학 장치들에 관한 것이다.
합성 이미지 또는 다른 각도들에서 다르게 보이는 이미지를 발생시키는 평면적 광학 배치들은 많은 응용분야에서 사용되고 있다. 순수한 심미적 사용 외에, 이러한 배치들은 예를 들어, 은행수표나 다른 귀중한 서류, 증명서류 등에 보안 라벨로서 사용되고 있다. 통상 다소 명백하게 3차원 문자를 가지는 합성 이미지들은, 예를 들어 2차원 정보 서류들의 복잡한 형상들에 대한 더 나은 기하학적인 이해를 돕기 위해 사용되기도 한다.
공개된 국제특허출원 제 WO94/27254호에는, 보안 장치가 개시되어 있다. 이러한 보안 장치는 각각에 대응하는 대체적으로 구형인 소형렌즈들(spherical microlenses)의 어레이를 통해 볼 때, 확대된 이미지를 발생시키는 소형이미지들의 어레이를 포함한다. 이러한 결과는 오랫동안 알려져 온 무아레 효과(Moire effect)에 따라 달성되고, 3차원 외관을 가지는 이미지들을 보안 라벨들에 제공하기 위해 적용되었다. 이 어레이는 또한 소형이미지들의 어레이에 결합될 수 있다.
공개된 미국특허출원 제 2005/0180020호에는, 이와 유사한 기본 개념에 기초한, 소형광학 보안 및 화상 제시 시스템(micro-optic security & image presentation system)이 개시되어 있다. 소형이미지들(micro-images) 또는 이미지 평면의 이미지 데이터 운반 구조체들(image data bearer structures)을 확대하기 위해, 필름 재료로 보통의 비원통형(non-cylindrical) 렌즈들의 2차원 어레이를 사용한다. 상기 렌즈들의 촛점 특성들을 조정함으로써, 상기 렌즈들과 이미지 평면 사이의 거리, 렌즈들의 지름, 다양한 확대들, 시야 등이 변경될 수 있다. 이미지 평면과 렌즈 평면 사이의 정렬에 차이를 줌으로써, 광학시차 운동(optoparallactic motion)이 달성된다.
이러한 종류의 이미지들은 또한 예를 들어, 포장상자(packages)를 위한 시트 재료로서 사용된다. 상기 포장상자들은 눈길을 사로잡는 외관의 방식으로 달성되는데, 이것은 전형적으로 팬시 또는 고가의 제품들을 판매할 때 요구된다. 상기 합성 이미지들이 3차원으로 만들어지면, 상기 이미지들은 예를 들어, 상기 포장상자의 내부(또는 심지어 외부)에 매달려 있는 것처럼 보이도록 구성되어질 수 있다. 하지만, 이러한 배치는 이미지 데이터 운반 구조체들 및 렌즈들의 평면적 구성을 가지고 달성되는 광학 효과를 사용하기 때문에, 이러한 이미지들은 평면적 표면들을 가지는 포장상자에 한정되어 있었다. 상기 합성 이미지는 통상 예를 들어, 구부러진병 표면 상에 적용될 때에는 품질이 떨어진다.
광학적 배치가 보안 장치로 사용될 때, 인식되는 이미지들은 간단한 방법으로는 복제되기 어렵지만, 사용자가 관찰하는 것은 용이한 방식으로 행동하는 것이 중요하다. 종래의 보안 장치들은 이러한 요구사항들을 충족시키는 것들이 거의 없었다. 감지되고 확인되기에는 용이하지만, 변경되거나 복제되기에는 어려운 독특한 구조 및 특성을 가지는 보안 장치가 필요하다.
공개된 유럽특허출원 제0216626호에는, 변경이 명확하게 드러나는 포장상자를 위한 이미지 시트가 개시되어 있다. 이러한 시트는 필름 상단에 제공되는 유리 소형구체들(glass microspheres)의 패턴을 포함하는데, 이러한 소형구체들은 소형렌즈들로서 기능한다. 고에너지 복사(high-energy radiation)에 상기 시트를 노출시키는 것에 의해, 상기 소형구체의 후면에 접촉하는 시트에 축상 마킹들(axial markings)이 생성되게 된다. 상기 필름이 구부러진 형상으로 잡혔을 때 이러한 축상 마킹이 생성됨으로써, 상기 소형구체들을 통해 보이는 상기 축상 마킹들에 의해 구성되는 통합 이미지는 상기 굴곡이 변하면 없어지게 된다. 만약 이러한 필름이 예를 들어 용기의 입구에 제공된다면, 이미지의 존재는 상기 용기 내용물이 풀리지 않았다는 것을 보장한다. 이러한 배치의 단점은 상기 필름이 최종기판에 적용된 때 이미지 생성이 수행되어야 한다는 것이다. 이것은 효율적인 대량생산을 매우 어렵게 만든다. 상기 소형구체들을 관통하는 조사(irradiation)에 의해 상기 축상 마킹들을 생성하는 접근 방법은, 또한 생성할 수 있는 이미지의 종류에 심각한 한계를 지우게 된다. 나아가, 축상 마킹들의 생성은 최종제품에 강한 조사를 하여 수행되어야 하기 때문에, 이러한 종류의 보안 장치는 빛에 민감한 상품들에는 사용될 수 없다.
본 발명의 목적은, 구부려지거나 또는 굴곡이 있는 표면을 가질 때 고품질의 합성 이미지를 제공하는 광학 장치들을 제공하는 데 있다.
본 발명의 다른 목적은, 감지되고 확인되기에는 용이하지만, 변경되거나 복제되기에는 어려운 고유의 구조 및 특성을 가지는 개선된 보안 장치들을 제공하는 데 있다.
상기 목적들은 첨부된 특허 청구항들에 따른 장치들 및 방법들에 의해 달성된다.
일반적으로 말하면, 제 1 측면에 따라, 합성 통합 이미지를 제공하는 광학 장치는 폴리머 호일 스택을 포함한다. 상기 폴리머 호일 스택은 적어도 하나의 폴리머 호일을 포함한다. 상기 폴리머 호일 스택의 제1인터페이스는 제1어레이 내의 광학적으로 식별가능한 이미지 데이터 운반 구조체들을 포함한다. 제2인터페이스는 제2어레이 내의 집속소자들을 가진다. 상기 제2인터페이스는 상기 제1인터페이스로부터 거리를 두고 제공된다. 상기 제1어레이 내의 상기 이미지 데이터 운반 구조체는 제1물체방향으로 제1물체거리들로, 제2물체방향으로 제2물체거리들로 반복되고, 상기 제1물체방향에 대하여 제1각도를 제공한다. 상기 제2어레이 내의 상기 집속소자들은 제1집속소자방향으로 제1집속소자거리들로, 제2집속소자방향으로 제2집속소자거리들로 반복되고, 상기 제1집속소자방향에 대하여 제2각도를 제공한다. 제1투영물체거리들은 상기 제1집속소자방향으로 투영된 상기 제1물체거리들이고, 제2투영물체거리들은 상기 제2집속소자방향으로 투영된 상기 제2물체거리들이다. 상기 제1투영물체거리들과 상기 제1집속소자거리들의 대응하는 쌍들 사이의 제1비율들 및 상기 제2투영물체거리들과 상기 제2집속소자거리들의 대응하는 쌍들 사이의 제2 비율들 중 적어도 하나는 1에 가깝거나 같고, 이로써 상기 이미지 데이터 운반 구조체들에 대응하는 상기 합성 통합 이미지는 매우 가까운 거리에서 봤을 때 상기 폴리머 호일 스택의 보이는 면에서 요청된 비례들로 인식될 수 있다.
제 2 측면에 따르면, 물체를 인증하는 방법이 개시된다. 상기 방법은 상기 물체의 표면에 제공되는 폴리머 호일 스택 상에서 수행된다. 상기 폴리머 호일 스택은 적어도 하나의 폴리머 호일을 포함한다. 상기 폴리머 호일 스택의 제1인터페이스는 제1어레이 내의 광학적으로 식별가능한 이미지 데이터 운반 구조체들을 포함한다. 상기 폴리머 호일 스택의 제2인터페이스는 제2어레이 내에 집속소자들을 가진다. 상기 제2인터페이스는 상기 제1인터페이스로부터 거리를 두고 제공된다. 상기 방법은 상기 폴리머 호일 스택을 관찰자로부터의 제1거리와, 관찰자로부터의 제2 거리 사이에서 어느 한 방향으로 이동하는 단계를 포함한다. 상기 제2거리는 상기 제1거리보다는 상당히 작다. 상기 방법은 또한 인증의 표시로서 상기 이동 동안 상기 이미지 데이터 운반 구조체들에 대응하는 제1합성 통합 이미지의 외관을 관찰하는 단계를 더 포함한다.
제 3 측면에 따르면, 합성 통합 이미지를 제공하는 광학 장치는 폴리머 호일 스택을 포함한다. 상기 폴리머 호일 스택은 적어도 하나의 폴리머 호일을 포함한다. 상기 폴리머 호일 스택의 제1인터페이스는 제1어레이 내의 광학적으로 식별가능한 이미지 데이터 운반 구조체들을 포함한다. 제2인터페이스는 제2어레이 내의 집속소자들을 가진다. 상기 제2인터페이스는 상기 제1인터페이스로부터 거리를 두고 제공된다. 상기 제1어레이 내의 상기 이미지 데이터 운반 구조체는 제1물체방향으로 제1물체거리들로, 제2물체방향으로 제2물체거리들로 반복되고, 상기 제1물체방향에 대하여 제1각도를 제공한다. 상기 제2어레이 내의 상기 집속소자들은 제1집속소자방향으로 제1집속소자거리들로, 제2집속소자방향으로 제2집속소자거리들로 반복되고, 상기 제1집속소자방향에 대하여 제2각도를 제공한다. 제1투영물체거리들은 상기 제1집속소자방향으로 투영된 상기 제1물체거리들로서 정의되고, 제2투영물체거리들은 상기 제2집속소자방향으로 투영된 상기 제2물체거리들로서 정의된다. 상기 제1투영물체거리들과 상기 제1집속소자거리들의 대응하는 쌍들 사이의 제1비율들은 상기 제2투영물체거리들과 상기 제2집속소자거리들의 대응하는 쌍들 사이의 제2비율들과 다르다. 이것은 상기 이미지 데이터 운반 구조체들에 대응하는 상기 합성 통합 이미지는 상기 폴리머 호일 스택에 소정의 굴곡이 주어졌을 때 상기 폴리머 호일 스택의 보이는 면에서 요청된 비례들로 인식될 수 있다.
제 4 측면에 따르면, 물체의 표면에 제공되는 폴리머 호일 스택을 가지는 물체를 인증하는 방법이 개시된다. 상기 방법은 적어도 하나의 폴리머 호일을 포함하는 폴리머 호일 스택 상에 수행된다. 상기 폴리머 호일 스택의 제1인터페이스는 제1어레이 내의 광학적으로 식별가능한 이미지 데이터 운반 구조체들을 포함한다. 상기 폴리머 호일 스택의 제2인터페이스는 제2어레이 내의 집속소자들을 가진다. 상기 제2인터페이스는 상기 제1인터페이스로부터 거리를 두고 제공된다. 상기 방법은 기설정된 제1방향으로 기설정된 제1굴곡에 따라 상기 폴리머 포일 스택을 구부리는 단계 및 인증의 표시로서 요청된 비례들을 가지는 상기 이미지 데이터 운반 구조체들에 대응하는 제1합성 통합 이미지의 외관을 관찰하는 단계를 포함한다.
제 5 측면에 따르면, 물체의 표면에 제공되는 폴리머 호일 스택을 가지는 물체를 인증하는 방법이 개시된다. 상기 방법은 적어도 하나의 폴리머 호일을 포함하는 폴리머 호일 스택 상에 수행된다. 상기 폴리머 호일 스택의 제1인터페이스는 제1어레이 내의 광학적으로 식별가능한 이미지 데이터 운반 구조체들을 포함한다. 상기 폴리머 호일 스택의 제2인터페이스는 제2어레이 내의 집속소자들을 가진다. 상기 제2인터페이스는 상기 제1인터페이스로부터 거리를 두고 제공된다. 상기 방법은 관찰방향에 평행한 요소를 가지는 축 둘레로 상기 폴리머 호일 스택을 회전시키는 단계 및 인증의 표시로서 상기 이미지 데이터 운반 구조체들에 대응하는 합성 통합 이미지의 이미지 깊이의 외관상 변화를 관찰하는 단계를 포함한다.
본 발명의 일 장점은, 품질 좋은 합성 이미지들이 평면이 아닌 다양한 표면들에 제공될 수 있다는 것이다.
본 발명의 다른 장점은, 복제되기 어렵고, 용이하게 식별가능한 특성을 가지는 보안 이미지들이 제공된다는 것이다.
본 발명의 또 다른 장점들은, 상세한 설명에 있는 다양한 실시예들과 관련하여 설명되어질 것이다.
본 발명의 다른 목적들 및 장점들은, 첨부된 도면들과 함께 이하의 상세한 설명을 참조하면 더욱 더 잘 이해될 것이다.
도 1a 내지 도 1c는 다양한 집속소자들을 도시한 것이다.
도 2a는 종래 기술에 따른 합성 통합 이미지를 제공하는 광학 장치의 개략적인 단면도이다.
도 2b는 이미지 깊이가 도시된 광학 장치의 실시예의 단면도이다.
도 3a 및 도 3b는 구부려졌을 때 종래 기술에 따른 합성 통합 이미지를 제공하는 광학 장치의 실시예가 어떻게 행동하는지를 보여주는 개략적인 단면도들이다.
도 3c 및 도 3d는 구부려졌을 때 본 발명에 따른 광학 장치의 실시예가 어떻게 행동하는지를 보여주는 개략적인 단면도들이다.
도 3e 및 도 3f는 구부려졌을 때 본 발명에 따른 광학 장치의 다른 실시예가 어떻게 행동하는지를 보여주는 개략적인 단면도들이다.
도 4a 및 도 4b는 본 발명에 따른 광학 장치의 실시예들의 개략적인 상면도들이다.
도 5a는 원형의 원통형 표면을 따라 구부려졌을 때, 본 발명에 따른 광학 장치의 실시예의 특성을 보여주는 도면이다.
도 5b는 최대 시야각(maximum angle of view)이 어떻게 정의되는지를 보여주는 도면이다.
도 6은 본 발명에 따른 방법의 실시예들의 단계들을 보여주는 흐름도이다.
도 7a 내지 도 7c는 하나 이상의 이미지를 제공하는 본 발명에 따른 광학 장치의 실시예들을 보여주는 개략적인 상면도들이다.
도 8a는 본 발명에 따른 귀중한 물체의 실시예를 보여주는 개략도이다.
도 8b는 본 발명에 따른 귀중한 서류의 실시예를 보여주는 개략도이다.
도 8c는 본 발명에 따른 포장상자의 실시예를 보여주는 개략도이다.
도 9a 및 도 9b는 서로 다른 각도들에서 폴리머 호일 스택의 초점 평면들을 도시한 개략도들이다.
도 9c는 구부러진 인터페이스에 제공되는 데이터 운반 구조체들을 갖는 광학 장치의 실시예를 보여주는 개략도이다.
도 10a는 가까운 거리에서 봤을 때 종래 기술에 따른 합성 통합 이미지를 제공하는 광학 장치의 실시예가 어떻게 행동하는지를 보여주는 개략적인 단면도이다.
도 10b 및 10c는 본 발명에 따른 광학 장치의 다른 실시예들의 개략적인 상면도들이다.
도 11은 본 발명에 따른 방법의 다른 실시예의 단계들의 흐름도이다.
전체 도면들에서, 동일한 참조부호들은 유사하거나 또는 대응하는 요소들에 사용된다.
본 발명에 따른 광학 장치는 무아레 효과로 알려진 법칙들에 따라 작동한다. 본 적용 분야에 있어서, 무아레 효과는 패턴의 확대를 제공하고, 동시에 합성 통합 이미지, 일반적으로는 3차원의 합성 통합 이미지를 제공한다. 이러한 통합 이미지는 보안 라벨로 사용되거나 또는 단순히 이목을 집중시키기 위해 사용될 수 있는 방법 중 하나이다. 이러한 무아레 확대 법칙은 학문적으로 잘 알려져 있고, 그 개요들은 예를 들어, 1994년 순수 응용 광학 제3권 133-142 페이지에 게재된 M.C. 허틀리 등의 "무아레 확대기"("The Moire magnifier" by M.C. Hutley et. al., Pure Appl. Opt. 3, 1994, pp133-142) 또는 1998년 11월 광학 공학 37(11) 3007-3014 페이지에 게재된 H.카말 등의 "무아레 확대경의 특성들"("Properties of moire magnifiers" by H.Kamal et al., Optical Engineering 37(11), Nov.1998, pp.3007-3014)에서 찾아볼 수 있다. 3D 이미지들을 획득하기 위해 무아레 효과에 따라 작동되는 배치들은 일반적으로 확대할 물체들의 어레이와 렌즈 어레이의 정렬에 있어서 높은 정확도를 필요로 한다.
본 출원서에서는 "집속소자(focusing element)"라는 용어가 사용된다. 상기 무아레 효과에 기초한 대부분의 장치들은 다양한 종류의 렌즈들 또는 구부러진 거울들(curved mirrors)을 사용한다. 하지만, 상기 용어는 본 출원서에서 작은 영역으로부터 광학적 정보를 선택하는 결과를 주는 다양한 종류의 장비를 커버한다. 도 1a 내지 도 1c는 이러한 집속소자들의 3가지 예들을 보여준다. 도 1a에서, 집속소자(1)는, 여기서는 소형렌즈(14)의 형태를 가지는데, 물체 평면(3)으로부터 거리를 두고 제공된다. 상기 거리는 상기 소형렌즈(14)의 초점길이에 가깝거나 같다. 상기 물체평면(3)의 작은 영역(4)으로부터의 광선들(5)은 상기 소형렌즈(14)에서 굴절되어, 상기 소형렌즈(14)을 떠날 때 평행한 광선들(6)의 무리가 된다. 상기 소형렌즈를 보고 있는 관찰자는, 상기 소형렌즈(14)의 전체 영역을 커버하도록 확대된, 상기 작은 영역(4)만을 보게 될 것이다.
도 1b에서, 집속소자(1)는, 여기서는 구부러진 거울(2)의 형태를 가지는데, 투명한 물체평면(3)으로부터 거리를 두고 제공된다. 상기 거리는 상기 구부러진 거울(2)의 초점길이에 가깝거나 같다. 상기 물체평면(3)의 작은 영역(4)으로부터의 광선들(5)은 상기 구부러진 거울(2)에서 반사되어, 상기 물체평면(3)을 관통할 때 평행한 광선들(6)의 무리가 된다. 상기 물체평면(3)을 보고 있는 관찰자는, 상기 구부러진 거울(2)의 전체 영역을 커버하도록 확대된, 상기 작은 영역(4)을 주로 보게 될 것이다. 상기 작은 영역의 이미지는 예를 들어 상기 물체평면(3)을 통해 통과하는 동안 상기 작은 영역(4)에 의해 다소 영향을 받게 된다. 이 실시예에 있어서, 상기 관찰자는 상기 구부러진 거울(2)을 통해 보기 때문에 상기 작은 영역(4)의 거울 이미지를 보게 될 것이다.
도 1c에서, 집속소자(1)는, 여기서는 구멍(7)의 형태를 가지는데, 물체평면(3) 위에 제공된다. 상기 물체평면(3)의 작은 영역(4)으로부터의 광선(6)은 소정의 방향으로 상기 구멍(7)의 평면을 통과할 수 있는 유일한 광선이다. 상기 구멍의 평면을 보고 있는 관찰자는, 이 실시예에 있어서는 확대되지는 않지만, 상기 작은 영역(4)만을 볼 수 있다.
본 출원서의 나머지 영역에서, 소형렌즈들은 집속소자들을 설명하기 위해 사용될 것이다. 그러나, 대응하는 개념들 또한 필요한 기하학적인 구조나 구성을 변경하는 것에 의해 다른 종류의 집속소자들에 적용가능하다.
본 발명의 장점들을 이해하기 위해, 작은 이미지 데이터 운반 구조체들의 확대 이미지들의 통합에 기초한 종래의 광학 장치를 먼저 설명한다. 도 2a는 작은 이미지 데이터 운반 구조체들의 확대 이미지들의 통합에 기초하는 광학 장치(10)의 실시예의 개략적인 단면도이다. 상기 광학 장치(10)는 폴리머 호일 스택(111)을 포함하는데, 이 실시예에서는 두께 t를 갖는 단일 폴리머 호일(11)로 구성되어 있다. 인터페이스(12), 이 경우에는 상기 폴리머 호일(11)의 외부 표면에는, 집속소자들(1)의 어레이(13), 이 경우에는 소형렌즈들(14)이 제공된다. 상기 어레이(13)는 통상 주기적인 2차원 어레이이므로, 도 1의 단면도에서는 도시된 단면에서 주기 Pl을 가지는 1차원의 어레이로 도시되어 있다. 상기 어레이(13)는 상기 인터페이스(12) 전체를 덮는 것이 바람직하다.
상기 폴리머 호일(11)에는 또한 기하학적인 구조체(16)의 다른 어레이(15)가 마련된다. 상기 기하학적인 구조체들(16)은 소형렌즈 측에서 봤을 때 광학 특성들에 있어서의 차이를 만든다. 본 실시예에 있어서, 상기 기하학적인 구조체들(16)은 상기 폴리머 호일(11)의 인터페이스(17), 본 실시예에 있어서는 상기 소형렌즈들(14)이 마련되는 표면에 반대되는 다른 표면에 제공된다. 상기 인터페이스(17)는 그러므로 물체평면(3)으로 볼 수 있다. 본 실시예에 있어서 상기 기하학적 구조체들(16)은 그러므로 상기 폴리머 호일(11)의 내부와 상기 폴리머 호일(11) 뒤의 공간(18) 사이의 인터페이스(17)가 된다. 상기 폴리머 호일(11)과 상기 공간(18) 사이의 광학적 특성들의 차이는 상기 기하학적 구조체들(16)의 형태를 식별하는 것이 가능하도록 만든다. 그러므로, 상기 기하학적 구조체들(16)은 광학적으로 식별가능한 이미지 데이터 운반 구조체들(116)로 구성되고, 이들은 전체적으로 상기 소형렌즈들(17)을 통해 보여질 때, 이미지를 구성하게 된다. 이미지 데이터 운반 구조체들(116)의 다른 예들은 예를 들어, 다양한 종류의 색, 다양한 반사율 또는 흡수율의 구조체들일 수 있는데, 이로써 광학적 특성들에 차이를 가져올 수 있게 된다.
본 실시예에 있어서의 상기 어레이(15) 또한 주기적인 2차원 어레이이고, 나아가 소형렌즈들(14)의 어레이(13)와 동일한 대칭적인 특성을 가진다. 기하학적인 구조체들(16)의 어레이(15)의 대칭축은 소형렌즈들(14)의 어레이(13)의 대칭축과 평행하다. 다시 말하면, 상기 어레이들(13,15)은 대칭축들에 의해 정렬되어 있다. 예를 들어, 상기 어레이들이 모두 육각형의 패턴(hexagonal pattern)을 보인다면, 밀집 방향들로 정렬된다. 기하학적 구조체들(16)의 어레이(15)는 도시된 단면 평면으로 주기 Po를 가진다. 상기 폴리머 호일(11)은 적어도 패턴 평면들 사이에서 투명하거나 또는 유색 투명하다.
고전적인 무아레 효과를 보여주기 위해, 상기 기하학적인 구조체들(16)의 어레이(15)의 상기 주기 Po는 상기 소형렌즈들(14)의 어레이(13)의 상기 주기 Pl와 비정수 인자(non-integer factor)만큼 다르다. 이러한 관계는 확대 인자를 결정하는데, 이것은 이하에서 더 상세하게 설명하도록 한다. 나아가, 상기 기하학적인 구조체들(16)의 어레이(15)는 상기 소형렌즈들(14)의 초점 길이(f)에 충분히 가까운 상기 폴리머 호일(11)의 상기 제1측(12)으로부터의 거리(D)에 제공되어야 한다. 본 실시예에 있어서, 상기 폴리머 호일(11)의 상기 제2측(17)에 기하학적 구조체들(16)을 가지기 때문에, 상기 폴리머 호일(11)의 평균 두께는 초점 길이(f)와 동일해야 한다는 요구조건이 들어간다. 그러나, 상기 어레이들(13, 15) 사이의 거리는 상기 초점 길이(f)와 완전히 같아야만 하는 것은 아니다.
상기 이미지의 확대는 상기 주기들(Pl,Po)의 상대적인 크기에 따라 달라진다. 도 2a에서, 상기 이미지 데이터 운반구조체들(116)의 어레이의 주기(Po)는 상기 소형렌즈들(14)의 어레이의 주기 Pl보다 약간 작다. 즉 Po〈 Pl 이다. 상기 기하학적 구조체들(16) 중 하나의 특정 지점(20)은 바로 아래에 위치하는 도시된 실시예에 나타나 있고, 나아가 상기 소형렌즈들(14) 중 하나의 소형렌즈(22)의 초점에 도시되어 있다. 이것은 상기 지점(20)으로부터 발생하는 빛은 이상적으로는 상기 폴리머 호일(11)을 관통하고 상기 소형렌즈들에서 굴절되어 광선들(21)의 평행한 빔이 된다. 상기 폴리머 호일(11)의 상기 제1측(12)을 보고 있는 관찰자는 상기 소형렌즈(22) 전체에 걸쳐 퍼지는 상기 지점(20) 주위의 상기 영역의 광학적 특성들을 경험하게 될 것이다. 즉 확대 부분 이미지(29)를 경험하게 된다. 소형렌즈(23)은 상기 기하학적 구조체들(16) 중 다른 것의 지점(24) 주위의 영역의 다른 확대 부분 이미지(29)를 동일한 방식으로 제공할 것이다. 주기에 있어서 약간의 불일치가 있기 때문에, 상기 지점(24) 주위의 영역은 상기 지점(20) 주위의 영역과 완전히 대응하지는 않고, 대신 약간 옆쪽의 영역에 대응한다. 많은 수의 소형렌즈들(14) 및 기하학적 구조체들(16)을 가짐으로써, 이미지가 형성되는 상기 영역들은 이상적으로 상기 기하학적 구조체들(16)의 각 영역으로부터 생성될 것이다. 따라서 관찰자는 각각의 소형렌즈(14)에 대응하는 작은 부분 이미지들(29)에 의해 조합된 합성 통합 이미지(25)를 경험하게 될 것이다. 상기 부분 이미지들(29)은 합쳐져서 상기 기하학적 구조체들(16)의 확대된 합성 통합 이미지(25)로서 눈에 비춰질 것이다.
간단한 기하학적 추론에 의해, 확대는 아래와 같이 될 것이다.
Figure pct00001
(1)
이 관계식은 평행 광선들, 즉 상기 호일을 무한대로 근사될 수 있는 거리에서 볼 때에는 유효하다. 상기 인자 F가 1에 가까워질수록 상기 확대는 매우 커진다는 것을 알 수 있을 것이다. 인자가 1이 되면, 상기 확대는 무한대가 되는데, 이것은 상기 기하학적 구조체들에서 단지 한 지점만 볼 수 있기 때문에 전통적인 무아레 이미지들이 별로 유용하지 않게 된다. 유용한 이미지를 얻기 위해서는, 인자 F가 1과는 다르고, 정수값과는 다른, 즉 정수가 아닌 인자를 가질 필요가 있게 된다.
하지만, 큰 확대를 달성하기 위해서는, 상기 인자가 바람직하게는 1에 근접하여야 한다. 도 2a의 실시예에서, Po〈 Pl이므로, 상기 인자는 1보다 작다. 따라서, 상기 확대는 양의 값을 가진다. 만약 Po 〉Pl이면, 상기 인자는 1보다 작아지고 상기 확대는 음의 값을 가지게 된다. 즉, 상기 이미지는 반전된 이미지(역상)로 재구성되게 된다.
상기 폴리머 호일(11)의 설계 변수들은 상기 광학적 특성들에 영향을 준다. 상기 기하학적 구조체들을 확대하는 특성 외에, 상기 폴리머 호일(11)은 또한 3차원의 합성 이미지를 제공한다.
소형렌즈의 초점거리는 아래의 식에 의해 주어진다.
Figure pct00002
(2)
여기서, Rl은 소형렌즈 반지름, n2는 소형렌즈들의 굴절지수, 및 n2는 상기 소형렌즈들(14)을 덮고 있는 매체, 즉 통상적으로는 공기의 굴절지수이다.
상기 폴리머 호일(11)의 설계 변수들은 상기 광학적 특성들에 영향을 준다. 상기 기하학적 구조체들을 확대하는 특성 외에, 상기 폴리머 호일(11)은 또한 3차원의 합성 이미지의 체험을 제공한다. 도 2b에는 체험되는 상기 이미지의 깊이가 도시되어 있다. 본 실시예에서, 상기 인자 F는 1보다 작고 구형의 소형렌즈들이라고 가정한다. 관찰자의 양안(26L, 26R)은 가상 이미지(25) 상의 한 지점(28)에 초점맞춰져 있다. 단순함을 위해, 상기 지점(28)은 상기 양안(26L, 26R) 사이의 중간에 위치시킨다. 눈들로 들어오는 축 주위의 광선들(27)은 예각으로 서로 다른 소형렌즈들(14)을 통과하지만 상기 기하학적 구조체들(16)의 대응하는 지점으로부터 발생한다. 그러나, 상기 가상 이미지는 깊이 di에서 생성된다. 상기 광선들(27)의 각도(β)는 다양한 설계 변수들에 의해 도면의 다양한 부분들에서 다양한 방법으로 용이하게 정의된다. 도면의 아래 부분에서, 다음을 볼 수 있다.
Figure pct00003
(3)
여기서, δ는 구형의 소형렌즈(14)의 중심과, 상기 광선(27)과 상기 렌즈 표면이 교차하는 동일 평면 상의 한 점 사이의 거리이고, n은 정수이다. 이와 유사하게, 도 2b의 좌측상단 부분에서 보는 바와 같이, 상기 각도(β)는 다음과 같이 정의될 수 있다.
Figure pct00004
(4)
여기서, Rl은 구형의 소형렌즈들(14)의 굴곡의 반지름이다. 마지막으로, 도 2b의 우측상단 부분에서 보는 바와 같이, 상기 각도(β)는 다음과 같이 정의될 수 있다.
Figure pct00005
(5)
수학식 (6) 내지 (8)을 조합하면, 상기 이미지 깊이(image depth) (di)는 아래와 같이 된다.
Figure pct00006
(6)
또는 상기 인자 F 용어로 다시 쓰면 아래와 같다.
Figure pct00007
(7)
여기서, 2번째 요소를 무시할 수 있다고 본다면, 1에 가까운 인자 F는 큰 깊이를 제공한다. 초점길이와 렌즈 반지름 사이의 관계는 재료의 선택에 달려 있는지만, F가 1에 근접할 때에는 그 크기에 있어서 상기 인자 F보다는 덜 중요하다. 정수 n과 상기 거리 δ는 사라졌는데, 이것은 상기 깊이 di가 관찰자까지의 거리에 독립적이고 상수라는 것을 입증한다.(그러나, 상기 도시된 통합 이미지(25)는 상기 거리에 의해 영향을 받을 것이고, 여기서는 무한대가 아닌 시야거리로 도시되어 있다)
1보다 큰 인자 F가 사용되면, 상기 길이 di는 음의 값이 되는데, 즉 관찰자가 볼 때 합성 이미지가 상기 렌즈 표면 앞에 위치하는 것처럼 보이게 된다.
상기의 관계들은 평면 폴리머 호일(11)에는 유효하다. 그러나, 폴리머 호일이 구부려질 때에는 상황이 변하게 된다. 도 3a는 평면 조건에서의 3개의 렌즈 시스템이 개략적으로 도시되어 있다. 물체평면(3)의 기하학적 구조체들(16)은 소형렌즈들(14)의 어레이(13)를 통해 보여진다. 상기에서와 같이, 합성 통합 이미지(25)는 각각의 소형렌즈(14)에 대응하는 작은 부분 이미지들(29)로 구성된다. 상기 부분 이미지들(29A 내지 29C)은 상기 기하학적 구조체들(16a-c)의 확대된 합성 통합 이미지(25)로 눈에 비춰지게 된다.
도 3b에서, 상기 폴리머 호일(11)은 구부러져 있다. 관찰자는 여전히 상기 폴리머 호일(11)을 도 3a에서와 동일한 위치에서 관찰하고 있다. 상기 굴곡은 관찰자에게 볼록하다. 상기 중앙의 소형렌즈(14b)와 이에 대응하는 기하학적 구조체(16b) 사이의 관계는 변하지 않고, 상기 중앙의 소형렌즈(14b)는 상기 기하학적 구조체(16b)의 일부의 확대된 이미지(29b)를 제공할 것이다. 그러나, 이러한 상황은 다른 소형렌즈들(14a, 14c)에는 동일하지 않다. 소형렌즈(14a)를 고려하면, 상기 소형렌즈(14a)는 소형렌즈(14b)의 중심 광선에 평행한 광선에 대하여 각을 가지고 돌아간다. 소형렌즈(14a)의 초점은, 전방에서 볼 때, 상기 이미지 평면에 더이상 생기지 않고, 나아가 상기 대응하는 기하학적 구조체(16a)에 비하여 측면 방향으로 옮겨져 있다. 다소 과장되게 도시되어 있는데, 상기 기하학적 구조체(16a)는 더이상 소형렌즈(14a)의 초점 안에 있지 않다. 유사한 상황들이 또한 소형렌즈(14c) 및 상기 기하학적 구조체(16c)에 유효하다. 이러한 최종 합성 통합 이미지는 이 경우에 있어서 상기 중앙의 기하학적 구조체(16b)의 부분 이미지들(29b)로 구성될 뿐이다. 다시 말하면, 상기 합성 통합 이미지는 파괴된다. 많은 수의 소형렌즈들을 가지는 실제 경우에 있어서, 상기 합성 통합 이미지는 품질이 떨어지는데, 처음에는 구부리는 방향의 이미지의 부분들을 변경하는 것에 의해 1차원의 압축되거나 확대된 이미지를 제공하고, 최종적으로는 상기 이미지에 줄무늬를 보여주는 동시에 3차원 외관의 예리함이 감소될 것이다.
도 3c에는, 평면 상황에서의 서로 다른 3개의 렌즈 시스템이 개략적으로 도시되어 있다. 개별적인 기하학적 구조체들(16a-c)은 이전과 동일하지만, 여기서는 본 도면의 평면 방향으로 다양한 피치가 제공된다. 다시 말하면, 2개의 이웃하는 기하학적 구조체들(16a-c) 사이의 거리가 변한다. 하지만, 도면에 수직하는 방향의 피치는 여전히 도 3a와 동일하다. 도면에 도시된 바와 같이, 상기 합성 통합 이미지는 정상적인 방식으로 상기 기하학적 구조체들(16a-c)의 형상을 재현하지 않는다. 대신 상기 도시된 방향으로 상기 합성 통합 이미지는 완전히 다른 확대 및 가상 이미지 깊이를 달성하는데, 이것은 실제로 도 3b의 경우에 획득됐던 이미지 내의 줄무늬와 유사한 것을 발생시킨다. 이 결과는 실제로는 사용할 수 없는 합성 이미지이다.
도 3d에는, 도 3c의 3개의 렌즈 시스템이 구부러져 있다. 적당히 구부러진 굴곡을 가지고, 상기 소형렌즈들(14)은 상기 기하학적 구조체들(16a-c) 각각의 적당한 부분 위에 위치될 것이고, 합성 통합 이미지(25)가 구성될 것이다. 도 3c 및 도 3d와 비교하여 도 3a 및 도 3b에는, 일 방향으로 최근접하여 이웃하는 2개의 기하학적 구조체들 사이의 거리는 서로 다른 한편, 구부리는 축에 평행한 다른 방향으로 최근접하여 이웃하는 2개의 기하학적 구조체들 사이의 거리는 같다.
도 3e에는, 평면 조건에서의 다른 3 개의 렌즈 시스템이 도시되어 있다. 개별적인 기하학적 구조체들(16a-c)은 이전과 동일하지만, 여기서는 상기 소형렌즈들과 동일한 피치가 제공된다. 다시 말하면, 2 개의 이웃하는 기하학적 구조체들(16a-c) 사이의 거리는 변하기 때문에 2 개의 이웃하는 소형렌즈들(14a-c) 사이의 거리에 일치시킬 수 있다. 하지만, 해당 도면에 수직한 방향으로의 피치는 여전히 도 3a와 동일하다. 부분 이미지들(29a-c)은 상기 기하학적 구조체들(16a-c)의 동일 부분의 동일한 복사본이고, 상기 합성 통합 이미지는 감지할 수 있는 구조를 제공하지 않는다. 도 3e에 도시된 방향으로의 합성 통합 이미지는 무한 확대 및 가상 이미지 깊이를 가지는데, 이것은 무의미한 이미지로 된다. 그러므로 이 결과는 실제로는 사용할 수 없는 합성 이미지이다.
도 3f에서, 도 3e의 3 개의 렌즈 시스템이 구부러져 있다. 도 3e에서 요구되는 것보다 작은 적당한 구부러진 굴곡을 가지고, 상기 소형렌즈들(14)은 상기 기하학적 구조체들(16a-c) 각각의 적당한 부분 위에 위치될 것이고, 합성 통합 이미지(25)가 구성될 것이다.
상기 폴리머 호일(11)이 반대 방향으로, 즉 관찰자가 볼 때 오목한 형상으로 구부러질 때 유사한 상황들이 발생한다. 상기 소형렌즈들과 상기 기하학적 구조체들의 위치들 사이의 관계들은 유사하게 영향을 받겠지만, 여기서는 반대 방향으로 영향을 받게 된다.
나아가, 상기에서 도시한 예들에 있어서, 동일한 기하학적 구조체들이 단순함을 위해 사용되었다. 그러나, 유사한 결과를 가져오는 덜 정리되거나 불규칙한 기하학적 구조체 어레이들이 또한 사용될 수 있다.
도 4a에는 호일 또는 호일 스택의 수직에 평행한 방향에서 보는, 본 발명에 따른 광학 장치의 실시예의 일부가 도시되어 있다. 본 실시예에서는 "T"를 가지는 것으로 도시된 기하학적 구조체들(16)의 어레이(15)가 그 아래에 위치하고, 집속소자들(1), 본 실시예에서는 원으로 도시된 소형렌즈들(14)의 어레이(13)를 통해 보여진다. 본 실시예에서, 상기 어레이들(13, 15)은 정방형 어레이들이자만, 다른 종류의 어레이들, 예를 들어 육각형, 평행육면체(parallelipipedical) 등도 또한 사용가능하다. 또한 본 실시예에서, 상기 어레이들(13, 15)은 2차원의 주기적인 어레이들이다. 다시 말하면, 상기 어레이(13)은 제1집속소자방향(91)과 제2집속소자방향(92) 각각에서 2 개의 소형렌즈들(14) 사이의 최근접 초점요소거리(Pl1, Pl2)를 대표하는 2 개의 촛점요소단위벡터들(νl1, νl2)에 의해 특징지어질 수 있다. 상기 어레이(15)는 이와 유사하게 제1물체와 제2물체방향 각각에서 2 개의 기하학적 구조체들(16) 사이의 최근접 물체거리(Po1, Po2)를 대표하는 2 개의 물체단위벡터들(νo1, νo2)에 의해 특징지어질 수 있다. 본 실시예에서, 상기 제1물체방향은 상기 제1집속소자방향(91)과 일치하고, 상기 제2물체방향은 상기 제2집속소자방향(92)과 일치한다. 상기 제1집속소자방향(91)에서, 상기 물체거리(Po1)는 상기 집속소자거리(Pl1)보다 약간 작은데, 이것은 상기 수학식 (1)에 따라 소정의 양의 확대를 지시한다. 하지만, 제2집속소자방향(92)에서, 상기 물체거리(Po2)는 상기 집속소자거리(Pl2)보다 약간 큰데, 이것은 상기 수학식 (1)에 따라 소정의 음의 확대를 지시한다. 또한 외관상 이미지 깊이, 양의 값 또는 음의 값은, 서로 다른 방향에서의 단위 벡터들을 비교할 때 다를 것이다. 그러므로, 다소간의 줄무늬가 있는 이미지는 상기 호일 스택(111)이 평면일 때 관찰자에 의해 인식될 것이다. 하지만, 도 3a 내지 도 3d와 연관하여 설명한 바와 같이, 상기 호일 스택(111)이 예를 들어 상기 제1집속소자방향(91)에 평행한 축 주위로 적당히 구부러진 형상으로 구부러질 때, 이미지는 출현할 것이다.
그러므로, 상기 물체거리(Po2)와 상기 집속소자거리(Pl2) 사이의 비율은 상기 물체거리(Po1)와 상기 집속소자거리(Pl1) 사이의 비율과는 다른 값을 가진다는 것, 또는 본 실시예에 있어서의 상기 어레이들은 주기적인 어레이들이므로, 상기 물체단위벡터(νo2)의 길이와 상기 집속소자단위벡터(νl2)의 길이 사이의 비율이 상기 물체단위벡터(νo1)의 길이와 상기 집속소자단위벡터(νl1)의 길이 사이의 비율과 다르다는 것을 기억할 필요가 있다. 종래 기술에서의 이와 유사한 종류의 광학 장치들에서, 이러한 비율들은 언제나 동일하다.
이러한 논증으로부터, 이미지는 또한 상기 제2집속소자방향(92)에 평행한 축 주위로, 지금은 그 반대 방향으로 적절한 구부러진 형상으로 상기 폴리머 호일 스택(111)을 구부림으로써, 생성하는 것이 가능하다는 것 또한 명백하다. 이러한 이미지의 확대는 통상 상기 제1집속소자방향(91)에 평행한 축을 따라 구부림으로써 획득되는 이미지와는 다르다.
비율에 있어서의 이러한 차이는 본 발명의 결과를 달성하는 데 있어서 중요하기 때문에, 이러한 차이는 또한 이웃하는 소형렌즈들 사이의 거리들을 변화시킴으로써 야기될 수 있다. 도 4b는 이러한 상황을 도시하고 있다. 여기서, 상기 물체단위벡터들(νo1, νo2)은 동일한 길이를 가진다. 즉, Po1와 Po2은 동일한 값을 가진다. 대신 상기 집속소자단위벡터들(νl1, νl2)은 길이가 다르다. 즉, Pl1와 Pl2은 서로 다른 값들을 가진다. 또한 이 경우에 있어서, 상기 호일 스택(111)이 평면일 때 줄무늬가 있는 또는 다른 형태의 품질이 떨어진 이미지가 나타날 것이지만, 특정한 구부림 조건에서는 품질이 좋은 이미지가 관찰자에 의해 인식될 것이다.
물론, 도 4a 및 도 4b의 상황들은 상기 제2방향의 단위벡터들 둘 다를 서로 다른 정도로 변화시킴으로써, 조합시킬 수 있다.
이러한 조건들은 보다 수학적인 접근 방법으로 설명될 수 있다. 먼저, 도 5a와 연관하여, 축(94) 주위로 일정한 반지름(Rf)으로 구부린 호일 스택(111)을 가정한다. 그러므로, 상기 호일 스택(111)은 상기 축(94) 주위로 원형의 원통형 표면을 따른다. 단순함을 위해 무한대의 거리에 있다고 가정하는 관찰자(93)는, 각도(α)에 의해 정의된 상기 호일 스택(111)의 일 지점(95)을 보고 있다. 상기 각도는 상기 시선 방향(direction of view)에 수직하는 방향(x)에 대하여 정의된다. 상기 호일 스택(111)의 정점(112)이 정의되는데, 이것은 x=0가 되는 지점을 결정한다. 상기 정점은 그러므로, 바람직한 관찰 방향을 정의한다. 시선 방향의 음의 방향은 본 도면에서 y로 지정된다.
원의 식은 다음과 같다.
Figure pct00008
(8)
또한 도 5a는 다음과 같음을 알 수 있다.
Figure pct00009
(9)
도 5a의 우측 부분에 도시된 바와 같이, 시점(spot of view) 주위로 보다 상세하게 상기 호일 스택(111)을 검사함으로써, 예각으로 상기 소형렌즈(14)를 통과하는 광선을 따라가는 것은 용이하다. 상기 소형렌즈의 반지름은 Rl로 지정되고, 상기 호일 스택(111)의 두께는 t이다. 상기 소형렌즈(14)를 예각으로 통과하는 광선은 상기 폴리머 호일 스택(111)에 수직하는 방향으로 광학축과 상기 물체평면(3) 사이의 교차점(96)으로부터 거리(d)에 있는 상기 물체평면(3)으로부터 발생한다. 다시 말하면, d는 상기 명목상의 재현지점(96)과, 상기 시야각(α)에 의해 재현되는 상기 지점(97) 사이의 상기 물체평면(3)에서의 거리이다. 이것은 다음의 식으로부터 알 수 있다.
Figure pct00010
(10)
수학식 (9)와 조합하면, 이것은 아래와 같다.
Figure pct00011
(11)
수학식 (8)과 조합하면, 아래와 같다.
Figure pct00012
(12)
그러므로, 이 공식은 이미지가 원형으로 구부려진 호일 스택(111)에서 보여질 때 어떻게 거리(d)가 변수 x에 따라 변하는지를 보여준다. 상기 거리(d)는 x에 따라 선형적으로 증가하지 않는다. 따라서, 이것은 구부려진 축에 수직한 주기적 어레이는 보이는 표면 전체에서 보여질 때 일정하지 않은 확대를 제공한다. 다시 말하면, 보다 크게 원형으로 구부러진 단면에서 일정한 확대는 2 개의 이웃하는 기하학적 구조체들 사이의 거리를 변화시킴으로써, 달성될 수 있을 뿐이다. 그러나, 상기 호일 스택(111)의 중앙 부분들에 대하여, d는 x에 대해 거의 선형이므로, 상기 확대는 일정한 간격을 가지고 거의 동일하게 만들 수 있다. 원형으로 구부려진 호일 스택에 있어서, d는 x가 Rf에 근접할 때 더 급격하게 증가하기 때문에 합성 이미지는 바깥으로 향해가면서 변할 것이다. 하지만, 원형으로 구부러진 표면으로의 근사는 많은 경우에 있어서 어려운데, 그것은 큰 각에서 가장 큰 차이의 확대가 발생하기 때문이고, 이것은 통상 상기 호일 스택의 최대 시야의 외부에 있거나, 또는 상기 이미지 구조체들이 상기 렌즈들의 초점 길이 외부에 존재하는 것으로 인해 흐릿한 이미지들을 제공한다.
상기 시야(field of view)는 주로 상기 소형렌즈들의 기하학적 치수에 의해 한정된다. 도 5b는 기저 평면 반지름이 a인 소형렌즈(14)를 보여준다. 최대 시야각 αmax는 상기 소형렌즈 표면이 수직에 도달할 수 있는 각도인 최대각에서 주어진다. 즉,
Figure pct00013
(13)
이다.
상기 최대각을 초과할 때, 상기 이미지는 급격하게 품질이 저하된다.
원형으로 굽혀질 것이 요청되면, 예를 들어 상기 호일 스택이 원형으로 대칭을 이루는 병 위에 씌워질 예정이라면, 상기 원형 몸체의 보다 넓은 영역에 대하여 요청된 확대를 달성하기 위해 집속소자들의 어레이 및/또는 기하학적 구조체들의 어레이를 변경할 가능성이 있다. 상기 물체 간격(period) 및/또는 집속소자 간격은 역동적으로 변할 수 있다. 상기 원형으로 구부러지는 것을 보상하고 고르게 확대된 이미지를 생성하는 물체들을 위치시키기 위해 상기 물체 간격만 역동적으로 변화시키는 것을 가정한다. 수학식 (12)를 다시 참조하면, 역동적 간격 Pdo2 또는 2 개의 이웃하는 기하학적 구조체들 사이의 거리는 명목상 간격 Po2과 상기 거리 d와의 합이 된다.
Figure pct00014
(14)
상기 정점 x으로부터의 거리는 n번째 대응하는 원형 세그먼트 Sn의 길이에 대하여 아래의 식에 따라 조절된다.
Figure pct00015
(15)
또한, Sn은 구부려지지 않은 상태, 즉 상기 호일 스택이 평면일 때의 상기 호일 스택의 거리이다. 그러므로, 상기 역동적인 간격은 수학식 (12), (14), 및 (15)의 조합에 의해 획득되고, 아래와 같이 표현될 수 있다.
Figure pct00016
(16)
또한, 규칙적인 간격을 가지는 호일 스택을 사용하여, 주어진 규칙적인 간격에 적합한 굴곡 프로파일을 제공하는 것이 가능함은 물론이다.
구부려진 형태의 다른 예는, 포물선이다. 상기 포물선은 아래의 관계로 설명된다.
Figure pct00017
(17)
여기서, p는 상기 포물선의 촛점까지의 거리이다. 상기 수학식의 유도 후, 상기 관계는 아래와 같이 된다.
Figure pct00018
(18)
이것의 역수, 즉
Figure pct00019
은 시선이 상기 포물선과 교차하는 지점의 상기 호일의 형상에 대응한다.
Figure pct00020
(19)
상기 수학식 (19)와 (11)은 아래의 식을 제공한다.
Figure pct00021
(20)
상기 거리 d는 x에 따라 선형적으로 증가하고, p의 차이값들은 다양한 확대에 따라 구부러진 형상을 제공한다.
이러한 개념들은 조금 더 발전되어, 호일 스택의 역동적인 간격은, 이미지가 보일 수 있는 임의의 구부림 프로파일(arbitrary bending profile)에 따라 조정될 수 있다. 일반적으로, 합성 통합 이미지를 제공하는 광학 장치는, 폴리머 호일 스택을 포함한다. 폴리머 호일 스택은, 적어도 하나의 폴리머 호일을 포함한다. 상기 폴리머 호일 스택의 제1인터페이스는 제1 어레이 내의 광학적으로 식별가능한 이미지 데이터 운반 구조체들을 포함한다. 상기 폴리머 호일 스택의 제2인터페이스는 제2어레이 내의 집속소자들을 가진다. 상기 제2인터페이스는 상기 제1인터페이스로부터 거리를 두고 제공되는데, 바람직하게는 상기 집속소자들의 초점길이에 근접한다.
가장 일반적인 경우에 있어서, 상기 어레이들은 주기적일 필요는 없고, 사각 또는 육각일 필요도 없으며, 완벽하게 정렬될 필요도 없다. 도 5c는 이러한 일반적인 경우의 실시예를 보여준다. 광학적으로 식별가능한 이미지 데이터 운반 구조체들(16)의 제1어레이(15)는, 상기 제1물체방향(91`)에 대하여 제1각(γo)에 제공되고, 제1물체방향(91`)으로 제1물체거리들(P01)로, 제2물체방향(92`)으로 제2물체거리들(Po2)로 반복되는 상기 이미지 데이터 운반구조체들(16)을 포함한다. 1차원적으로 주기적인 어레이에 있어서, 상기 제1물체거리들(P01) 또는 상기 제2물체거리들(Po2)은 상기 폴리머 호일 스택 영역에 대하여 일정하다. 2차원적으로 주기적인 어레이에 있어서, 상기 제1물체거리들(P01) 및 상기 제2물체거리들(Po2) 모두는 상기 폴리머 호일 스택 영역에 대하여 일정하다. 주기적일 때, 상기 제1어레이(15)는 제1물체단위벡터(νo1) 및 제2물체단위벡터(νo2) 각각에 의해 정의되고, 상기 제1물체거리들(P01)은 상수이고 상기 제1물체단위벡터(νo1)의 길이와 같고, 상기 제2물체거리들(Po2)은 상수이고 상기 제2물체단위벡터(νo2)의 길이와 같다.
집속소자들(1)의 제2어레이(13)는 본 실시예에서 상기 제1집속소자방향(91)에 대하여 제2각(γl)에 제공되고, 제1집속소자방향(91)으로 제1집속소자거리들(Pl1)로, 제2집속소자방향(92)으로 제2집속소자거리들(Pl2)로 반복되는 소형렌즈들(14)을 포함한다. 통상 육각 구조체를 이용하여, 상기 집속소자들이 주로 제2인터페이스 전체를 덮는 것은 일반적이고, 이때 상기 제2각(γl)은 60도와 같아지는 것은 상식이다. 1차원적으로 주기적인 어레이에 있어서, 상기 제1집속소자거리들(Pl1) 또는 상기 제2집속소자거리들(Pl2)은 상기 폴리머 호일 스택 영역에 대하여 일정하다. 2차원적으로 주기적인 어레이에 있어서, 상기 제1집속소자거리들(Pl1) 및 상기 제2집속소자거리들(Pl2) 모두는 상기 폴리머 호일 스택 영역에 대하여 일정하다. 주기적일 때, 상기 제2어레이(13)는 제1집속소자단위벡터(νl1) 및 제2집속소자단위벡터(νl2) 각각에 의해 정의되고, 상기 제1집속소자거리들(Pl1)은 상수이고 상기 제1집속소자단위벡터(νl1)의 길이와 같고, 상기 제2집속소자거리들(Pl2)은 상수이고 상기 제2집속소자단위벡터(νl2)의 길이와 같다.
대부분의 일반적인 접근 방법에 있어서, 특히 상기 제2어레이가 사각과는 다를 때, 상기 제1집속소자방향(91)은 상기 제1물체방향(91`)과는 다를 수 있고, 상기 제2집속소자방향(92)은 상기 제2물체방향(92`)과는 다를 수 있다. 제1투영물체거리들(P^o1)은 상기 제1집속소자방향(91)으로 투영된 상기 제1물체거리들(Po1)로 정의될 수 있고, 제2투영물체거리들(P^o2)는 상기 제2집속소자방향(92)으로 투영된 상기 제2물체거리들(Po2)로 정의된다. 상기 제1집속소자방향(91)이 상기 제1물체방향(91`)과 동일한 경우에 있어서, 상기 제1투영물체거리들(P^o1)은 그러므로 상기 제1물체거리들(Po1)과 동일해진다. 이와 유사하게, 상기 제2집속소자방향(92)이 상기 제2물체방향(92`)과 동일한 경우에 있어서, 상기 제2투영물체거리들(P^o2)은 그러므로 상기 제2물체거리들(Po2)과 동일해진다.
상기에서 언급한 바와 따라, 상기 제1투영물체거리들(P^o1)과 상기 제1집속소자거리들(Pl1)의 대응하는 쌍들 사이의 비율들은 상기 제2투영물체거리들(P^o2)과 상기 제2집속소자거리들(Pl2)의 대응하는 쌍들 사이의 비율들은 다르다. 상기 폴리머 호일 스택이 소정의 굴곡으로 주어질 때 상기 폴리머 호일 스택의 보이는 측으로부터 인식가능한 상기 이미지 데이터 운반구조체들에 대응하는 요청된 부분들을 가지는 합성 통합 이미지를 발생시키기 위해, 상기 2 개의 어레이들 내의 거리들 및/또는 상기 단위벡터들 사이의 관계들은 중요하다.
게다가, 상기 비율들은 상기 요청된 의도된 굴곡에 대한 소정의 지시를 제공한다. 상기 제1투영물체거리들(P^o1)과 상기 제1집속소자거리들(Pl1)의 대응하는 쌍들 사이의 상기 비율들은 상기 제2투영물체거리들(P^o2)과 상기 제2집속소자거리들(Pl2)의 대응하는 쌍들 사이의 상기 비율보다 크다. 그러므로 상기 의도된 굴곡은 상기 폴리머 호일 스택이 상기 제1집속소자방향 둘레로 구부러지면 상기 보이는 측에서 볼 때 오목한 표면이고, 또는 상기 의도된 굴곡은 상기 폴리머 호일 스택이 상기 제2집속소자방향 둘레로 구부러지면 상기 보이는 측에서 볼 때 볼록한 표면이다. 이와 유사하게, 상기 제1투영물체거리들(P^o1)과 상기 제1집속소자거리들(Pl1)의 대응하는 쌍들 사이의 비율은, 상기 제2투영물체거리들(P^o2)과 상기 제2집속소자거리들(Pl2)의 대응하는 쌍들 사이의 비율보다 작다. 그러므로, 상기 의도된 굴곡은 상기 폴리머 호일 스택이 상기 제1집속소자방향 둘레로 구부러지면 상기 보이는 측에서 볼 때 불록한 표면이고, 또는 상기 의도된 굴곡은 상기 폴리머 호일 스택이 상기 제2집속소자방향 둘레로 구부러지면 상기 보이는 측에서 볼 때 오목한 표면이다. 상기의 대표적인 실시예들 중에서, 상기 제1거리들과 상기 제2거리들의 대응하는 쌍들 사이의 비율이 상기 폴리머 호일 스택의 적어도 일부에 대해서는 동일한 예들이 있다. 일 실시예에 있어서, 근사적인 굴곡은 원형의 원통형 표면의 일부에 대응한다. 다른 실시예에 있어서, 상기 의도된 굴곡은 원형이 아닌 원통형 표면의 일부에 대응한다.
다른 실시예들에 있어서, 상기 제1거리들과 상기 제2거리들의 대응하는 쌍들 사이의 비율은 상기 폴리머 호일 스택의 적어도 일부에 대해 변할 수 있고, 해당 일부분의 의도된 굴곡은 특별한 경우에 있어서, 원형의 원통형 표면의 일부일 수 있다. 그러나, 상기 굴곡은 다양한 구부림 반지름을 가지는 부분들을 보여질 수 있다. 이러한 방법에 있어서, 굽은 형상들, 예를 들어 파형 등은 예를 들어, 상기 구부림 반지름이 원뿔 축을 따라 변하는, 원뿔의 일부로도 사용될 수 있다.
반지름에 있어서의 차이들은 관심 있는 거리들 중 하나 또는 모두에 의해 달성될 수 있다. 특정 실시예에 있어서, 상기 제2어레이는 양방향에 있어서 주기적이고, 상기 제1 및 제2집속소자거리들이 같다. 다른 특정 실시예에 있어서, 상기 제1어레이는 양방향에 있어서 주기적이고, 상기 제1 및 제2물체거리들이 같다.
다시 도 5c를 참조하면, 원본 물체어레이는 상기 소형렌즈어레이에 완벽하게 정렬될 필요가 없음에 주의할 수 있다. 다시 말하면, 상기 제1물체방향(91`)은 상기 제1집속소자방향(91)과 일치할 필요가 없고, 상기 제2물체방향(92`)는 상기 제2집속소자방향(92)과 일치할 필요가 없다. 상기 폴리머 호일 스택이 상기 제1집속소자방향(91)을 따라 향하는 축 주위로 구부려질 때, 이것은 상기 대응하는 집속소자에 비하여, 상기 방향에 수직한 거리에 대하여 분명한 변화가 생기게 한다. 상기 제1집속소자방향(91)에 수직한 방향으로 향하는 벡터는 길이 변화를 경험할 뿐이지, 방향 변화는 없다. 그러나, 상기 제2물체거리들(Po2)을 따르는 벡터는 상기 수직한 벡터보다는 작긴 하지만 길이에 있어서 변화를 경험할 뿐만 아니라, 각도에 있어서도 변화를 경험하게 될 것이다. 적절한 방향들로 구부림으로써, 물체어레이들 및 집속소자어레이들 사이의 각도의 차이들이 보상될 수 있고, 잘 행동하는 이미지들이 제공될 수 있다.
상기 폴리머 호일 스택의 굴곡에 종속하는 이미지의 출현에 있어서의 차이들은 보안 라벨링 또는 인증 증거로서의 목적으로 사용될 수 있다. 무아레 효과에 따른 평면 광학 장치에서조차 복제되는 것은 어렵다. 그러나, 미숙한 관찰자가 잘 재현된 3차원의 무아레 호일과 다른 종류의 3차원 비슷한 이미지를 구별하는 것은 어렵다. 하지만, 본 발명에 따른, 구부렸을 때의 상기 합성이미지의 특성들은 특유한 것이고, 구부리는 프로세스는 누구나 이해하기 쉬운 개념이다. 따라서, 확인하는 이미지를 생성하기 위해 구부려야 하는 보안 라벨은 직접 복제본들 외의 다른 방법에 의해 제공하는 것이 매우 어렵고, 미숙한 관찰자가 용이하게 인식할 수 있다. 어떠한 구부림이 필요한지 정확히 알기 위해, 상기 폴리머 호일 스택을 지지하기 위한 클리세 도구가 제공될 수 있다.
본 발명에 따른 광학 장치에 있어서 상기 이미지 데이터 운반구조체들의 생성은 바람직하게 상기 광학 장치가 최종 적용에 부가되기 전에 수행된다. 이러한 접근 방법은 상기 광학 장치가 연결될 품목을 훼손시킬 수 있는 위험을 제거한다. 게다가, 상기 광학 장치의 제조는 연결될 상기 품목의 제조와 결합되지 않고 최적화될 수 있기 때문에 합리적인 제조를 할 수 있도록 해준다. 이것은 대량 생산에 보다 편리한 플랫폼에서 상기 광학 장치를 제조하는 것이 가능하게 해준다. 최종 품목에 연결되기 전에, 상기 이미지 데이터 운반 구조체들을 생성하는 것이 가능하도록 하기 위해서는, 상기 이미지 데이터 운반 구조체들의 어레이와 상기 집속소자들의 어레이 사이에 잘 정의된 관계가 있어야 한다. 이러한 잘 정의된 관계는, 하나의 동일한 폴리머 호일 스택에서 양자를 실현함으로써 달성된다. 본 발명의 바람직한 실시예에 따르면, 하나의 인터페이스는 상기 집속소자들을 구성하도록 형성되고, 상기 동일한 폴리머 호일 스택의 다른 인터페이스는 상기 이미지 데이터 운반구조체들을 포함한다. 상기 소형렌즈들은 그러므로 상기 폴리머 호일 스택 그 자체의 통합된 부분으로서 기하학적 구조체들로 제공된다. 이러한 방식으로, 상기 광학 장치는 상기 어레이들의 구조체들 또는 상기 상대적 위치들을 위험에 빠뜨리지 않으면서 용이하게 조작될 수 있다. 상기 광학 장치에 부착되는, 분리된 렌즈 요소들 또는 분리된 이미지 구조체들과 같은 외부물체들을 정확한 위치에 위치시킬 필요가 없게 된다.
상기 광학 장치가 적용될 품목으로부터 분리되어 생산될 때, "이후"에, 즉 상기 소형렌즈들을 통하지 않고 상기 이미지 데이터 운반구조체들의 생성을 허용한다. 이로써, 상기 이미지 데이터 운반 구조체들은 다양한 방법들에 의해 제공될 수 있다. 엠보싱 또는 프린팅은 상기 이미지 데이터 운반 구조체들을 제공하는 가장 가능성 있는 기술들이다. 그러나, 상기 이미지 데이터 운반 구조체들의 요구되는 크기 및 정확도에 따라서, 다른 포토그래픽 또는 리쏘그래픽 방법들 또한 사용될 수 있다.
도 6a에는, 본 발명에 따른 방법의 실시예의 단계들의 흐름도가 도시되어 있다. 물체의 표면에 제공되는 폴리머 호일 스택을 가지는 상기 물체의 인증을 위한 방법은 단계 200에서 시작된다. 상기 폴리머 호일 스택은 상기에서 언급된 원리들을 따라 만들어진다. 단계 210에서, 상기 폴리머 호일 스택은 기설정된 제1방향으로 기설정된 제1굴곡을 따라 구부러진다. 이러한 구부림은 일 실시예에 있어서 상기 기설정된 제1굴곡을 보여주는 표면을 가지는 클리세 도구에 대하여 상기 폴리머 호일 스택을 지지하는 것에 의해 수행될 수 있다. 다른 실시예에 있어서, 상기 구부림은 어떠한 도움 없이 손으로 수행될 수 있다. 적당한 정도의 단단함을 가지는 폴리머 호일을 선택하고, 상기 폴리머 호일 스택의 끝을 함께 누름으로써, 상기 폴리머 호일 스택은 포물선 형상에 가까운 형상으로 구부러지는데, 이것은 상기에서 무척 유용한 형상인 것으로 판명되었다. 이것은 또한 적당한 단단함을 가지는 기판에 부착된 더 얇은 폴리머 호일 스택에 의해 달성될 수 있다. 단계 212에서, 제1합성 통합 이미지의 출현은 인증의 표시로서 관찰된다. 단계 210 및 단계 212는, 특정 실시예들에 있어서 이미지들의 추가적인 외관들을 노출시키기 위해 예를 들어 다른 굴곡 및/또는 다른 방향으로 상기 폴리머 호일 스택을 구부리는 것에 의해 반복된다. 이 방법은 단계 299에서 끝난다.
인증의 목적으로 폴리머 호일 스택을 사용할 때, 평면 폴리머 호일 스택을 가지고 제공된 이미지가 평면 조건에서 가능한 한 인식되지 않으면 유리하다. 이러한 배치를 하는 한 방법은 상기 호일이 평면일 때 제2방향으로 무한하게 확대를 만드는 것이다. 도 3e를 참조한다. 수학식 (1)에 따르면, 이것은 상기 제1거리들 또는 상기 제2거리들의 대응하는 쌍들 사이의 비율이 1과 같아질 때 발생한다. 그러므로, 평면 호일 조건에서 이미지를 파괴하기 위해서는, 상기 제1거리들 또는 상기 제2거리들의 대응하는 쌍들 사이의 비율이 적어도 1에 근접해야 한다.
1과 동일하거나 근접하는 상기 비율들을 가지는 것에 의해 다른 유용한 특성들이 생긴다. 어떤 축 주위로 관찰자에 대하여 볼록한 방법으로 상기 호일을 구부림으로써, 상기 물체평면의 상기 구조체들 사이의 외관상 거리는 상기 축에 수직한 방향으로 더 짧아지고, 결국 처음에 1인 상기 축에 수직한 비율에 대하여 상기 축 방향 만큼의 확대에 도달할 수 있다. 그후 실제 이미지가 보여질 수 있다. 그러나, 그 대신 상기 호일이 오목한 방법으로 구부려지면, 상기 물체평면의 상기 구조체들 사이의 외관상 거리가 더 길어지고, 결국 수학식 (1)에 따라 동일한 확대에 다시 도달하는 위치에 도달할 것이나, 살짝 어긋나 있다. 그러나 다른 방향에서 봤을 때 다르게 보이는 외관상 깊이를 가지고, 거울 이미지가 보여질 수 있다. 1의 비율에 근접한 평면 상황을 가짐으로써, 상기 실제 및 거울 이미지 양자는 합리적인 구부림 반지름 이내에서 도달될 수 있다. 상기 인식되는 외관상 깊이는 관찰자의 양안의 연결선에 평행한 방향으로의 상기 외관상 깊이에 의해 결정된다. 이것은 상기 폴리머 호일 스택을 회전시킴으로써, 상기 외관상 깊이가 방향에 따라 변경될 수 있음을 의미한다. 이 효과는 인증 목적으로 사용될 수 있다.
평면 또는 구부림 조건에서 물체 및 집속소자 거리들 사이의 외관상 비율이 다른 방향들에서 다를 때 폴리머 호일 스택은 수학식 (6)에 따라 다른 방향들에서 보여질 때 다른 외관상 이미지 깊이들을 생성할 것이다. 상기 인식되는 이미지 깊이는, 소정의 방향으로 향해 있는 상기 호일을 볼 때, 상기 관찰자의 좌안 및 우안의 축 설정에 평행한 방향으로의 비율에 의해 결정될 것이다. 상기 폴리머 호일 스택을 상기 관찰자 방향에 평행한 축 주위로 회전시킴으로써, 상기 외관상 이미지 깊이는 변할 것이다. 한 방향으로의 물체 및 집속소자 거리들 사이의 외관상 비율이 1보다 작고, 다른 방향으로의 비율이 1보다 큰 것에 의해, 상기 이미지는 회전으로 상기 폴리머 호일 스택 앞의 위치로부터 상기 폴리머 호일 스택 뒤의 위치까지 변화되면서 출현할 것이다. 특정 실시예에 있어서, 상기 비율들은 1과 동일한 차이에 있는 것으로 선택될 수 있는데, 반대 방향에서는, 이것에 의해 확대는 동일하지만 다른 부호를 가지는 이미지 깊이를 제공하게 된다.
도 6b에는 본 발명에 따른 방법의 실시예의 단계들의 흐름도가 도시되어 있다. 물체의 표면에 제공되는 폴리머 호일 스택을 가지는 상기 물체의 인증을 위한 방법은 단계 200에서 시작된다. 상기 폴리머 호일 스택은 다른 방향에서 물체 및 집속소자 거리들 사이의 외관상 다른 비율을 가진다. 단계 250에서, 상기 폴리머 호일 스택은 보이는 방향의 성분을 가지는 축 주위로 회전된다. 단계 252에서, 제1합성 통합 이미지의 외관상 이미지 깊이의 변화는 인증의 표시로서 관찰된다. 이 방법은 단계 299에서 끝난다.
동일한 호일 스택에 의한 2 개 집합의 이미지들을 제공하는 것에 의해, 다른 구부림 조건들에서 다른 이미지들의 사용 또한 더 잘 설명되어 사용될 수 있다. 이것은 제3어레이 내의 광학적으로 식별가능한 이미지 데이터 운반 구조체들을 더 포함하는 광학 장치의 제1인터페이스가 상기 어레이의 상기 광학적으로 식별가능한 이미지 데이터 운반 구조체들에 중첩되도록 배치하는 것에 의해 달성된다. 이러한 배치의 일 실시예는 도 7a에 대략적으로 도시되어 있다. 집속소자들의 제2어레이(13)가 제공되는데, 본 실시예에서는 소형렌즈들(14)이다. 단순함을 위해, 이 제2어레이(13)는 이 실시예에 있어서 2 개의 수직하는 방향으로 주기적이고 이것은 동일한 간격을 가진다. 해당 실시예에 있어서, 광학적으로 식별가능한 이미지 데이터 운반 구조체들(16), 이 경우에 있어서는 "A"의 제1어레이(15)가 집속소자들의 어레이(13) 아래에 제공된다. 상기 제1어레이(15)는 상기 제1집속소자방향(91)의 제1물체단위벡터(νo1) 및 상기 제2집속소자방향(92)의 제2물체단위벡터(νo2)에 의해 정의된다. 상기 제2집속소자방향(92)의 상기 간격(Po2)은 상기 제1집속소자방향(91)의 상기 간격(Po1)보다 크다. 해당 제1어레이(15) 상에 중첩되어, 광학적으로 식별가능한 이미지 데이터 운반 구조체들(86), 이 경우에 있어서는 "B"의 제3어레이(85)가 제공된다. 상기 제3어레이(85)는 본 실시예에서 제3물체단위벡터(νo3) 및 제4물체단위벡터(νo4)에 의해 정의되는 주기적 어레이이다. 상기 제3어레이(85) 내의 상기 이미지 데이터 운반 구조체들(86)은 상기 제2집속소자방향(92)으로 제4물체거리들(Po4)로 반복된다. 상기 제1집속소자방향(91)의 상기 제3물체거리(Po3)는 언급한 바와 같이 상수이지만, 상기 제1어레이(15)와 다른데, 이것은 다른 확대 및 다른 외관상 깊이를 암시한다. 상기 제2집속소자방향(92)의 상기 제3어레이(85)의 상기 물체거리들(Po4)은 상기 제1집속소자방향(91)의 상기 간격(Po3)보다 크지만, 상기 제1어레이(15)와는 다른 비율을 가진다. 이것은 이 제3어레이(85)로부터 인식가능한 이미지를 달성하기 위해서는 다른 구부림 조건이 필요함을 의미한다. 다시 말하면, 평면 상태에서는, 단지 "나쁜" 이미지들만이 나타난다. 제1구부림 조건에서, 이미지 "A"가 보여지고, 제2구부림 조건에서 이미지 "B"가 보여진다. 상기 어레이들 사이의 거리들을 변형함으로써, 서로 다른 이미지들을 획득하기 위한 상기 굴곡들의 서로 다른 반지름들 및 형상들이 획득될 수 있다. 다시 말하면, 상기 제3거리들 및 상기 제2거리들의 대응하는 쌍들 사이의 비율은, 상기 제1거리들과 상기 제2거리들의 대응하는 쌍들 사이의 비율과 다를 뿐만 아니라, 상기 제3단위벡터의 길이와 상기 제2단위벡터의 길이 사이의 비율과도 다르다. 이것에 의해, 상기 제3어레이 내의 상기 이미지 데이터 운반 구조체들에 대응하는 합성 통합 이미지는 상기 폴리머 호일 스택이 인식되는 상기 제1어레이 내의 상기 이미지 데이터 운반 구조체들에 대응하는 합성 통합 이미지를 발생시키는 방향과는 다른 상기 제1방향에 평행한 축들 주위로 소정의 굴곡으로 주어질 때 상기 폴리머 호일 스택의 보이는 측으로부터 인식가능하다.
도 7b에는, 중첩된 이미지들을 갖는 다른 실시예가 도시되어 있다. 본 실시예에 있어서, 상기 제1어레이(15)는 상기 호일이 상기 제1집속소자방향(91)으로 향하는 축 주위로 구부러질 때 이미지를 제공하고 상기 제3어레이(85)는 상기 호일이 상기 제2집속소자방향(92)으로 향하는 축 주위로 구부러질 때 이미지를 제공한다. 상기 제2어레이(13)는 또한 여기서 상기 제2집속소자방향(92)으로 주기적이고 이로써, 상기 제2거리들(Pl2)은 모두 동일하다. 상기 제3어레이(85)는 적어도 상기 제2집속소자방향(92)으로는 주기적인 어레이이다. 상기 주기성은 상기 제4물체단위벡터(νo4)에 의해 정의된다. 상기 제3어레이(85) 내의 상기 이미지 데이터 운반 구조체들(86)은 대신 상기 제1집속소자방향(91)으로 제3거리들(Po3)로 반복된다. 나아가, 상기 제3거리들(Po3)과 상기 제1물체단위벡터(νl1)의 길이의 대응하는 것들 사이의 비율은 상기 제4물체단위벡터(νo4)의 길이와 상기 언급한 제3물체거리들(Po3) 사이의 비율과는 다르다. 이것에 의해, 상기 제3어레이(85) 내의 상기 이미지 데이터 운반 구조체들(86)에 대응하는 합성 통합 이미지는 상기 폴리머 호일 스택에 상기 제2집속소자방향(92)에 평행한 축들 주위로 소정의 굴록이 주어졌을 때 상기 폴리머 호일 스택의 보이는 측으로부터 인식가능하다.
보다 일반적인 설명에 의하면, 상기 추가적인 어레이 내의 이미지 데이터 운반 구조체들은 제3물체방향으로 제3물체거리들로, 제4물체방향으로 제4물체거리들로 반복된다. 제3투영물체거리들은 상기 제1집속소자방향에 투영된 상기 제3물체거리들로 정의되고, 제4투영물체거리들은 상기 제2집속소자방향으로 투영된 상기 제4물체거리들로 정의된다. 상기 제3투영물체거리들과 상기 제1집속소자거리들의 대응하는 쌍들 사이의 제3비율들은 상기 제4투영물체거리들과 상기 제2집속소자거리들의 대응하는 쌍들 사이의 제4비율들과 다르다. 상기 제3어레이 내의 상기 이미지 데이터 운반 구조체들에 대응하는 합성 통합 이미지는 상기 폴리머 호일 스택에 요청되는 비례들을 가지고 인식되는 상기 제1어레이 내의 상기 이미지 데이터 운반구조체들에 대응하는 합성 통합 이미지를 야기시키는 굴곡과는 다른 소정의 굴곡이 주어질 때 상기 폴리머 호일 스택의 보이는 측면으로부터 요청되는 비례들을 가지고 인식가능하다.
물론, 추가적인 이미지는 평면 조건에서 보여질 수 있도록 제공될 수 있다. 이것은 도 7c의 실시예에 의해 도시되어 있다. 여기서, 상기 제4물체거리들(Po4)과 상기 제2집속소자거리들(Pl2)의 대응하는 쌍들 사이의 비율은 상기 제3물체거리들(Po3)과 상기 제1집속소자거리들(Pl1)의 대응하는 쌍들 사이의 비율과 같다. 본 실시예에 있어서, 상기 이미지 데이터 운반 구조체들의 어레이와 상기 집속소자들의 어레이는 양 방향에 있어서 주기적인 어레이들이고, 이로써 상기 제4물체단위벡터(νo4)의 길이와 상기 제2집속소자단위벡터(νl2)의 길이 사이의 비율은 상기 제3물체단위벡터(νo3)의 길이와 상기 제1집속소자단위벡터(νl1)의 길이 사이의 비율과 같은 결과를 가져온다. 상기 제3어레이(85) 내의 상기 이미지 데이터 운반구조체들(86)에 대응하는 합성 통합 이미지는 상기 폴리머 호일 스택이 평면일 때 상기 폴리머 호일 스택의 보이는 측으로부터 인식가능하다.
보다 일반적인 설명에 의하면, 상기 추가적인 어레이 내의 이미지 데이터 운반 구조체들은 제1집속소자방향으로 제3물체거리들로, 제2집속소자방향으로 제2물체거리들로 반복된다. 상기 제3물체거리들과 상기 제1집속소자거리들의 대응하는 쌍들 사이의 제3비율들은 상기 제4물체거리들과 상기 제2집속소자거리들의 대응하는 쌍들 사이의 제4비율들과 같다. 상기 제3어레이 내의 상기 이미지 데이터 운반구조체들에 대응하는 합성 통합 이미지는 상기 폴리머 호일 스택이 평면일 때 상기 폴리머 호일 스택의 보이는 측면으로부터 요청되는 비례들을 가지고 인식가능하다.
서로 다른 구부림 조건들에서 출현하는 2 개의 서로 다른 이미지들을 가지는 개념은 동일한 조건에서 하나의 이미지를 의도적으로 나쁘게 하고 다른 이미지를 인식하게 하거나 그 반대로 하는 것에 의해 발전될 수 있다. 다시 말하면, 상기 제1어레이를 위한 최상의 이미지 발현 조건에서, 상기 제3어레이로부터 발생되는 이미지는 일 방향으로 무한 확대로 나타나고, 및/또는 상기 제3어레이를 위한 최상의 이미지 발현 조건에서, 상기 제1어레이로부터 발생되는 이미지는 일 방향으로 무한 확대로 나타난다.
인증을 위한 방법은, 폴리머 호일의 구부림이 기설정된 제2굴곡을 따라 상기 폴리머 호일 스택을 구부리는 것을 포함하여, 보다 더 자세하게 생성될 수 있다. 이러한 제2굴곡은 제1굴곡과는 동일한 방향이긴 하지만 다른 굴곡일 수 있거나 또는 제2방향으로의 제2굴곡일 수 있다. 그후 제2합성 통합 이미지는 출현하여 인증받은 제품을 위한 표시가 될 수 있다.
인증 수단으로서의 본 발명에 따른 광학 장치의 사용은 상기 폴리머 호일 스택 또는 이러한 폴리머 호일 스택 위에 부착되는 시트의 두께가 너무 두껍거나 너무 얇지 않다면 이용될 수 있다. 얇은 호일은 제어할 수 있는 방식으로 구부리거나 다루기가 어렵고 힘이 없어, 소정의 운반 물질(bearer material)에 의해 지지되는 것이 바람직하다. 너무 두꺼운 호일은 대신 구부리기가 어렵다. 배타적이지 않는 예로서, 250 ㎛ 두께의 폴리카보네이트에 기초한 광학 장치는 성공적으로 검증되었다. 그러나, 다른 물질들 및 두께들 또한 사용가능하다.
본 발명에 따른 광학 장치는 그러므로 많은 응용들을 가진다. 상기 폴리머 호일 내부에 기하학적 구조체들을 제공하는 것에 의해, 예를 들어 제거불가한 추가 층으로 프린트된 호일의 뒤면을 덮는 것에 의해, 일체식 호일을 형성하여, 상기 광학 장치를 복제할 가능성은 실제적으로 거의 다 제거된다. 이것은 상기 광학 장치가 보안 라벨로서 매우 흥미롭게 만들고, 이것은 상기에서 이미 설명되었다. 도 8a에서, 고가물품(50), 이 경우에 있어서는 신용카드(51)는 상기에서 설명한 바에 따라 적어도 하나의 광학 장치(10)를 포함하는 보안 라벨(52)을 포함한다. 통상적인 경우에 있어서, 상기 광학 장치(10)는 상기 고가물품(50)에 어떠한 방식으로, 예를 들어 은행수표에 보안 선처럼, 부착되어 있다. 특징적인 이미지는 고가물품(50)이 진품임을 증명하기 위해 상기 광학 장치(10)를 구부리는 것에 의해 용이하게 제공될 수 있다. 고가물품은 경제 거래에 직접 연결된 물품일 필요는 없다. 또한 상기 고가물품은, 모조가 흔한 예를 들어 의류, 시계, 전자 제품 등일 수 있다.
본 발명에 따른 광학 장치는 합리적인 비용이라고 믿어지기 때문에, 상기에서 설명한 바에 따른 적어도 하나의 광학 장치(10)를 포함하는 보안 라벨(52)이 도 8b에 도시된 바와 같이 서류(53)의 진정성을 증명하기 위해, 흥미를 끌 수 있다. 상기 서류(53)는 그 자체로 가치를 가질 필요는 없지만, 상기 보안 라벨은 상기 서류 내의 정보가 인증받았다는 것을 보장하기 위해 제공될 수 있다.
상기 광학 장치의 대량 생산 비용이 적을 것으로 예상되기 때문에, 상기 보안 라벨의 크기는 반드시 작을 필요는 없다. 차라리 보안이 진정성을 증명하기 위해 물체의 표면 중 큰 부분을 차지할 수도 있다는 것이 실현가능성 있다. 도 8c에는 본 발명에 따른 큰 면적의 광학 장치(10)로 구성된 포장상자(54)가 도시되어 있다. 본 발명에 따른 상기 광학 장치의 특정한 특성들 때문에, 상기 포장상자는 굽은 표면을 가지거나 또는 구부러질 수 있는 것이 바람직하다. 투명하지 않는 외관을 선호한다면, 상기 광학 장치(10)는 통상 종이 제품에 기초한, 어떤 지지 물질에 고착되는 것이 바람직하다. 상기 광학 장치(10)의 광학적 외관은 보기에 매력적이도록 디자인될 수 있기 때문에, 상기 광학 장치(10)는 눈길을 사로잡는 포장 재료를 제공할 뿐만 아니라, 진정성을 보장하는 기능성도 결합될 수 있다. 포장상자 또는 구부러진 폴리머 호일이 매우 적합한 향수병 그 자체에 광학 장치(10)를 제공하는 것에 의해, 예를 들어 향수를 인증하는 것이 가능하다. 그러므로 본 발명은 다양한 종류의 병들이나 캔들에 적용되는 데 매우 적합하다.
본 발명에 따른 광학 장치의 응용은 무궁무진하다. 대부분의 응용은 시트재에 기초하는데, 여기서 상기 광학 장치는 시트 물질의 전체 또는 일부로서 제공될 수 있다. 응용 분야도 또한 화폐, 서류, 재정 도구, 제품, 및 상표 보호, 제품 표시 및 라벨링, 포장, 표, 책 커버, 전자 설비, 의류, 신발, 가방, 벽지 등에서부터 장난감까지, 매우 다양하다. 상기 광학 장치는 가상 3차원 이미지의 출현이 유용할 수 있는 환경에는 적용될 수 있다.
상기 개념들에 따라 광학 장치를 사용할 때에는, 수직이 아닌 방향에서 상기 광학 장치의 적어도 일부를 보고자 한다. 다시 말하면, 보이는 많은 데이터 운반 구조체들이 상기 광학 장치의 대체적인 표면에 수직하지 않은, 소정의 각에서 보여진다. 도 9a에는, 수직 시선이 사용될 때의 상황이 도시되어 있다. 상기 폴리머 호일 스택(111)의 수직(N)은 광선들로 도시된 시선(21) 방향에 일치한다. 상기 소형렌즈(14)의 초점길이는 상기 호일의 두께와 거의 같고, 초점(30)은 물체평면(3)의 일 점에 일치한다. 도 9b에는, 수직하지 않은 시선이 사용될 때의 상황이 도시되어 있다. 이러한 상황은 상기 폴리머 호일 스택(111)이 구부러졌을 때 흔한 일이다. 상기 폴리머 호일 스택(111)의 수직(N)은 더 이상 시선(21) 방향에 일치하지 않는다. 이 결과는 초점(30)이 상기 물체평면(3) 앞으로의 거리(δ)를 발생시키게 된다. 이것을 또한 상기 광선들에 의해 커버되는 상기 물체평면(3)의 영역이 거울 방식으로 추측되는 것을 의미한다. 그러므로, 보다 깨끗한 이미지들을 생성하기 위해, 의도적으로 역상을 제공하는 이러한 이미지 구조체들의 어레이들을 사용하는 것은 유리하다.
다른 가능성은 도 9c에 도시되어 있다. 편평한 관계에서 제공되는 이미지 데이터 운반 구조체들을 가지는 대신, 상기 이미지 데이터 운반 구조체들(116)은 구부러진 인터페이스 부분들(117)의 어레이(115)에 의해 정의되는 일반적인 형상을 가지는 인터페이스 상에 중첩된다. 구부러진 인터페이스 부분들(117)의 어레이(115)는 소형렌즈들(14)의 상기 어레이(13)를 가지는 레지스트리에 등록된다. 나아가, 상기 소형렌즈들(14)의 상기 인터페이스와 상기 구부러진 인터페이스 부분들(117)의 인터페이스(17) 사이의 거리는 상기 소형렌즈들(14)의 초점 길이에 근접한다. 인터페이스들은 모두 굴곡을 가지므로, 이러한 거리는 본 출원서에서 주요표면에 수직한 방향(N)으로 상기 인터페이스들의 부분들 사이에서 최대 거리로 정의된다. 바람직하게, 상기 굴곡이 있는 인터페이스 부분들(117) 각각은 각각의 소형렌즈(14)의 이미지 총합 최적 출현 평면(31)에 대응한다. 상기 이미지 총합 최적 출현 평면(31)은 기설정된 기준에 따라 정의된, 최적화된 방식으로 이미지 데이터 운반구조체들(116)이 상기 소형렌즈들(14)을 통해 묘사되는 평면이다. 이러한 배치에 있어서, 상기 이미지 출현은 항상 교정된 초점거리를 가지고 수행된다. 그러나, 감지할 수 있는 이미지가 인식될 수 있는 최대 각은 대신 한계가 있을 것이다.
도 9c의 굴곡이 있는 인터페이스 실시예의 대안은 보다 큰 각으로 보여지도록 하기 위해 상기 소형렌즈들의 초점 길이를 변형시킬 수 있다. 상기 폴리머 호일 스택의 중간 지점을 정의함으로써, 각 측면의 소형렌즈들에는 연속적으로 긴 초점 길이들이 제공될 수 있어, 상기 호일 스택을 관통하는 더 긴 광로에 대응하게 된다.
도 3e를 다시 참조하면, 도시된 상황은 합성 통합 이미지 장치가 상기 합성 통합 이미지 장치의 표면으로부터 떨어진 거리에서 보여진다면, 관찰자가 인식하게 될 것에 대응한다. 상기 도시된 광선들은 평행광선들로서 상기 합성 통합 이미지 장치를 떠난다. 이것은 시야 거리가 무한일 때의 실제 상황이다. 그러나, 합성 통합 이미지 장치가 정상 거리로부터 보여지는 대부분의 경우에는 근사된다. 정상 시야 거리는 통상 15 ㎝보다 크고 30-40 ㎝ 정도이다. 이러한 거리에서, 서로 다른 집속소자들을 관통하는 광선들의 각도 차이(angle divergence)는 무시할 수 있을 정도이고, 평행광선들은 근사치로 사용될 수 있다. 상기에서 언급한 바와 같이, 도 3e에 도시된 방향으로 상기 합성 통합 이미지는 무한 확대 및 가상 이미지 깊이를 가지는데, 실제로 이것은 비현실적인 이미지를 제공한다. 그러므로 이 결과는 즉시 사용할 수 없는 합성 이미지이다. 그러나, 만약 관찰자가 합성 통합 이미지 장치를 눈에 매우 가까이 움직이면, 각의 벗어남은 의미가 생기고, 상황은 변하게 된다.
도 10a에는 도 3e의 장치가 다시 도시되어 있다. 그러나, 이 도면에는 가까운 시야 거리에 대응하는 광선들이 도시되어 있다. 상기 중간 집속소자로부터의 광선들이 수직하는 방식으로 상기 합성 통합 이미지 장치의 주요 표면을 떠나는 것이 도시되어 있다. 상기 좌 및 우측의 포커싱 요소들로부터의 광선들은 상기 수직 방향에 대하여 작은 각도(γ)를 가지고 상기 합성 통합 이미지 장치의 주요 표면을 떠나는 것으로 도시되어 있다. 이로써, 서로 다른 광선은 관찰자의 눈이 존재하는, 거리(A)에서 만나게 될 것이다. 상기 좌 및 우측의 집속소자들로부터의 광선들은 상기 중간 집속소자를 떠나는 상기 광선들과 비교했을 때 기하학적 구조체들(16a-c)의 서로 다른 부분들로부터 발생한다. 그러므로, 통합 이미지는 관찰자에 의해 구성될 수 있다. 이미지가 인식될 수 있는 통상의 거리는 수 ㎝, 예를 들어 1-3 ㎝에 있고, 바람직하게는 상기 관찰자의 양안 사이의 거리의 2 배보다 적어도 작다. 일 실시예에 있어서, 상기 합성 통합 이미지 장치는 얼굴에 대하여 고정되고, 이로써, 대략 1 ㎝의 시야 거리를 제공하게 된다.
작은 시야 거리들에서의 이러한 이미지 출현의 특성은 이러한 종류의 배치들에 있어서는 특유한 것이고, 다른 기술에 의해 용이하게 복제될 수 없다. 이러한 종류의 배치들은 복제되기도 매우 어려운데, 이것은 이러한 특성이 인증받은 배치와 연결될 수 있어, 보안 라벨로서 사용될 수 있음을 의미한다. 적절한 배치는 "정상" 거리에서 봤을 때 비현실적인 이미지를 제공하는 것이 바람직하다. 이것은 상기 집속소자 어레이 및 물체어레이의 단위벡터들을 도 3e에 도시된 것과 같이, 적어도 한 방향에서는 같게 놓음으로써, 용이하게 달성된다. 호일 또는 호일 스택의 수직에 평행한 방향에서 보여질 때 본 발명의 현 측면에 따른 광학 장치의 실시예의 일 예가 도 10b에 도시되어 있다. 보다 일반적인 설명에 의하면, 상기 추가적인 어레이 내의 이미지 데이터 운반구조체들은 제3물체방향으로 제3물체거리들로, 제4물체방향으로 제4물체거리들로 반복된다. 제3투영물체거리들은 상기 제1집속소자방향에 투영된 상기 제3물체거리들로 정의되고, 제4투영물체거리들은 상기 제2집속소자방향으로 투영된 상기 제4물체거리들로 정의된다. 상기 제3투영물체거리들과 상기 제1집속소자거리들의 대응하는 쌍들 사이의 제3비율들은 상기 제4투영물체거리들과 상기 제2집속소자거리들의 대응하는 쌍들 사이의 제4비율들과 다르다. 상기 제3어레이 내의 상기 이미지 데이터 운반 구조체들에 대응하는 합성 통합 이미지는 상기 폴리머 호일 스택에 요청되는 비례들을 가지고 인식되는 상기 제1어레이 내의 상기 이미지 데이터 운반 구조체들에 대응하는 합성 통합 이미지를 야기시키는 굴곡과는 다른 소정의 굴곡이 주어질 때 상기 폴리머 호일 스택의 보이는 측면으로부터 요청되는 비례들로 인식가능하다. 도 4a에서와 유사하게, 본 실시예에서는 "T"를 가지는 것으로 도시된, 기하학적 구조체들(16)의 어레이(15)는 그 아래에 배치되어 본 실시예에서는 원들로 도시되어 있는 소형렌즈들(14)인 집속소자들(1)의 어레이(13)를 관통하여 보여진다. 이 실시예에 있어서, 최근접한 집속소자거리(Pl1)는 최근접한 물체거리(Po1)와 같다. 본 실시예는 주기적 어레이들을 포함하기 때문에, 상기 집속소자단위벡터(νl1)는 상기 물체단위벡터(νo1)와 같다. 이 실시예에 있어서, 상기 다른 방향으로의 단위벡터들은 일치하지 않는다.
도 10c에 도시된 다른 실시예에 있어서, 최근접한 집속소자거리(Pl2)는 최근접한 물체거리(Po2)와 같고, 이것은 주기적 배치이므로, 상기 집속소자단위벡터(νl2)는 상기 물체단위벡터(νo2)와 같다. 다시 말하면, 대부분의 일반적인 경우에 있어서, 제1투영물체거리들(P^o1)(이전의 정의와 유사함)과 제1집속소자거리들(Pl1)의 대응하는 쌍들 사이의 제1비율들 및, 제2투영물체거리들(P^o2)(이전의 정의와 유사함)과 제2집속소자거리들(Pl2)의 대응하는 쌍들 사이의 제2비율들 중 적어도 하나는 1에 매우 근접하거나 같다. 이로써, 상기 이미지 데이터 운반 구조체들에 대응하는 합성 통합 이미지는 매우 가까운 거리에서 봤을 때에만 상기 폴리머 호일 스택의 보이는 측으로부터 인식가능하다.
이러한 접근 방법은 도 7a-c와 연결하여 표시되는 개념들과 유사하게, 큰 시야 거리들로부터 보이는 중첩된 이미지와 유리하게 결합될 수 있다.
도 10a의 설명으로부터 알 수 있듯이, 매우 가까운 거리에서의 합성 통합 이미지 장치는 상기 합성 통합 이미지 장치의 가공의 간격 거리에 영향을 미친다. 이것은 상기 합성 통합 이미지 장치의 표면으로부터 발산되고, 상기 합성 통합 이미지 장치에 매우 가까이 놓여 있는 눈에 들어오는 광선들이 각도에 있어서 매우 다르다는 사실의 결과이다. 상기 물체들의 이러한 가공의 간격은 실제 렌즈 간격과 비교되지 않고 서로 다른 각도의 방향으로 투영되는 소형렌즈들의 간격에 비교된다. 실제 소형렌즈 간격과 동일한 실제물체간격을 갖는 물체어레이는 서로 다른 가공의 간격을 획득하고, 이미지가 생성될 수 있다. 가공의 물체 간격을 변화시키는 이러한 효과는 2차원으로 발생하는데, 이것은 동일한 간격이 항상 수평 및 수직 방향 모두에 있어서 경험되기 때문에, 도 10c에 따른 합성 통합 이미지 장치가 가장 바람직한 이유이다. 도 10b의 경우에 있어서, (도면에 따른) 수직 방향의 간격은 항상 수평 방향보다 작다. 그러나, 적은 거리에서, 주기성에 있어서의 이러한 차이는 완전히 선명하거나 정확히 의도하는 부분들을 가지지는 못하더라도, 인식가능한 이미지를 발생시킬 수 있을 만큼 충분히 작아진다. 다시 말하면, 소형렌즈들 패턴과 동일한 주기성을 가지는 물체 패턴의 무한 확대는 유한 확대를 가지는 물체 패턴에 비하여,시야 거리에 있어서의 변화에 의해 많이 변한다.
나아가, 이러한 종류의 응용물을 위해서는 큰 외관상 깊이를 가지는 이미지들을 사용하는 것이 바람직하다. 그 이유는 눈은 최근접한 초점 거리를 가지고, 만약 눈과 상기 합성 통합 이미지 장치 사이의 거리가 이러한 최소 초점거리보다 작다면, 상기 이미지 깊이는 초점이 된 이미지를 인식할 수 있는 능력에 기여하기 때문이다.
상기 시야 거리를 변화시킬 때 이미지의 출현 및 사라짐이 제공되는 광학 장치의 특성은 물체의 인증을 위한 방법에 사용될 수 있다. 도 11에는, 본 발명에 따른 방법의 실시예의 단계들의 흐름도가 도시되어 있다. 물체의 인증을 위한 방법은 단계 200에서 시작된다. 상기 물체는 그 표면에 제공되는 폴리머 호일 스택을 가진다. 상기 폴리머 호일 스택은 적어도 하나의 폴리머 호일을 포함한다. 상기 폴리머 호일 스택의 제1인터페이스는 제1어레이 내의 광학적으로 식별가능한 이미지 데이터 운반 구조체들을 포함한다. 상기 폴리머 호일 스택의 제2인터페이스는 제2어레이 내의 집속소자들을 가진다. 상기 제2인터페이스는 상기 제1인터페이스로부터 거리를 두고 제공된다. 단계 270에서, 상기 폴리머 호일 스택은 관찰자로부터의 제1거리 및 관찰자로부터의 제2거리 사이의 어느 한 방향으로 이동된다. 상기 제2거리는 상기 제1거리보다 훨씬 작다. 단계 272에서, 제1합성 통합 이미지의 출현이 인증의 표시로서 이동 중에 관찰된다. 상기 제1합성 통합 이미지는 상기 이미지 데이터 운반 구조체들에 대응한다. 이 절차는 단계 299에서 끝난다.
작은 거리에서 상기 합성 통합 이미지 장치를 보는 측면은 2차원의 가공의 물체 간격에 있어서의 변화라는 결과를 가져온다. 상기 합성 통합 이미지 장치의 구부림 측면은 1차원의 가공의 물체 간격에 있어서의 변화라는 결과를 가져온다. 그러므로, 이러한 측면들에 있어서, 상기 관찰자의 눈과 상기 합성 통합 이미지 장치 사이의 시야 조건들에 있어서의 변화는 1 또는 2차원의 가공의 물체 간격에 있어서의 변화라는 결과를 가져온다. 시야 조건들에 있어서의 이러한 변화가 의도된 이미지를 발생시키는 방식으로 의도적으로 물체어레이를 배치함으로써, 상기에서 설명한 바와 같이, 예를 들어 보안 장치로서 사용될 가능성을 열게 된다.
동시에 이러한 측면들 모두로부터 시야 조건들에 있어서의 변화를 사용하는 것이 물론 가능하다. 다시 말하면, 상기 물체 어레이들은 상기 합성 통합 이미지 장치가 구부러지고 가까운 거리에서 보여질 때 의도된 이미지를 발생시키기 위해 조정될 수 있다. 이러한 변화들과 조합들의 가능한 수는 실제적으로 무궁무진하고, 설계자의 상상에 의해 한계지워질 뿐이다.
상기에서 설명한 실시예들은 본 발명의 설명적인 예들로서 이해되어야 한다. 다양한 변형물들, 조합물들 및 변경물들은 본 발명의 범위를 벗어나지 않는 실시예들로부터 생성될 수 있음이 당업자에 의해 이해될 것이다. 특히, 서로 다른 실시예들에 있어서의 다른 부분 해결책들은 기술적으로 가능하다면, 다른 구성들에 조합될 수 있다. 그러나, 본 발명의 범위는 첨부된 청구항들에 의해 정의된다.

Claims (39)

  1. 적어도 하나의 폴리머 호일(11)을 포함하는 폴리머 호일 스택(111);
    제1어레이(15) 내의 광학적으로 식별가능한 이미지 데이터 운반 구조체(16;16a-c)를 포함하는 상기 폴리머 호일 스택(111)의 제1인터페이스(17);
    제2어레이(13) 내의 집속소자들(1)을 가지는 상기 폴리머 호일 스택(111)의 제2인터페이스(12);
    상기 제2인터페이스(12)는 상기 제1인터페이스(17)로부터 거리를 두고 제공되고;
    상기 제1어레이(15) 내의 상기 이미지 데이터 운반 구조체(16;16a-c)는 제1물체방향(91`)으로 제1물체거리들(Po1)로, 제2물체방향(92`)으로 제2물체거리들(Po2)로 반복되고, 상기 제1물체방향(91`)에 대하여 제1각도(γo)를 제공하고;
    상기 제2어레이(13) 내에 상기 포커싱 요소들(1)은 제1집속소자방향(91)으로 제1집속소자거리들(Pl1)로, 제2집속소자방향(92)으로 제2집속소자거리들(Pl2)로 반복되고, 상기 제1집속소자방향(91)에 대하여 제2각도(γl)를 제공하고;
    제1투영물체거리들(P^o1)은 상기 제1집속소자방향(91)으로 투영된 상기 제1물체거리들(Po1)이고, 제2투영물체거리들(P^o2)은 상기 제2집속소자방향(92)으로 투영된 상기 제2물체거리들(Po2)을 포함하는 합성 통합 이미지를 제공하는 광학 장치(10)에 있어서,
    상기 제1투영물체거리들(P^o1) 및 상기 제1집속소자거리들(Pl1)의 대응하는 쌍들 사이의 제1비율들 및 상기 제2투영물체거리들(P^o2) 및 상기 제2집속소자거리들(Pl2)의 대응하는 쌍들 사이의 제2비율들 중 적어도 하나는 1에 가깝거나 같고;
    이로써 상기 이미지 데이터 운반 구조체(16;16a-c)에 대응하는 상기 합성 통합 이미지(25)는 가까운 거리에서 봤을 때 상기 폴리머 호일 스택(111)의 보이는 면에서 요청된 비례들로 인식될 수 있는 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  2. 제 1 항에 있어서,
    상기 제1어레이(15)는 상기 제1물체방향(91`)으로 주기적이고, 이로써 상기 제1물체거리들(Po1)은 제1물체단위벡터(νo1)의 길이와 동일한 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 제2어레이(13)는 상기 제1집속소자방향(91)으로 주기적이고, 이로써 상기 제1집속소자거리들(Pl1)은 제1집속소자단위벡터(νl1)의 길이와 동일한 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 제1집속소자방향(91)은 상기 제1물체방향(91`)에 평행하고, 이로써 상기 제1투영물체거리(P^o1)는 상기 제1물체거리(Po1)와 동일한 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 제2집속소자방향(92)은 상기 제2물체방향(92`)에 평행하고, 이로써 상기 제2투영물체거리(P^o2)는 상기 제2물체거리(Po2)와 동일한 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 제1어레이(15)는 상기 제2물체방향(92`)으로 주기적이고, 이로써 상기 제2물체거리들(Po2)은 제2물체단위벡터(νo2)의 길이와 동일한 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 제2어레이(13)는 상기 제2집속소자방향(92)으로 주기적이고, 이로써 상기 제2집속소자거리들(Pl2)은 제2집속소자단위벡터(νl2)의 길이와 동일한 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 제1비율들 및 상기 제2비율들 모두는 1에 가깝거나 같은 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 제1인터페이스(17)는 상기 제1어레이(15) 내의 상기 식별가능한 이미지 데이터 운반 구조체(16; 16a-c)에 중첩하여, 제3어레이(85) 내의 광학적으로 식별가능한 이미지 데이터 운반 구조체(86)를 더 포함하는 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  10. 제 9 항에 있어서,
    상기 제3어레이(85) 내의 상기 이미지 데이터 운반 구조체들은 상기 제1집속소자방향(91)으로 제3물체거리들(Po3)로, 상기 제2집속소자방향(92)으로 제4물체거리들(Po4)로 반복되고;
    상기 제3물체거리들(Po3) 및 상기 제1집속소자거리들(Pl1)의 대응하는 쌍들 사이의 제3비율들은 상기 제4물체거리들(Po4) 및 상기 제2집속소자거리들(Pl2)의 대응하는 쌍들 사이의 제4비율들과 동일하고;
    이로써 상기 제3어레이(85) 내의 상기 이미지 데이터 운반 구조체(86)에 대응하는 합성 통합 이미지는 먼 거리에서 봤을 때 상기 폴리머 호일 스택(111)의 보이는 면에서 요청된 비례들로부터 인식될 수 있는 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  11. 적어도 하나의 폴리머 호일(11)을 포함하고 물체(50)의 표면에 제공된 폴리머 호일 스택(111), 제1어레이(15) 내의 광학적으로 식별가능한 이미지 데이터 운반 구조체(16; 16a-c)을 포함하는 상기 폴리머 호일 스택(111)의 제1인터페이스(17), 제2어레이(13) 내의 집속소자들(1)을 가지는 상기 폴리머 호일 스택(111)의 제2인터페이스(12)를 가지고, 상기 제2인터페이스(12)는 상기 제1인터페이스(17)로부터 거리를 두고 제공되는 물체(50)를 인증하는 방법에 있어서,
    상기 폴리머 호일 스택(111)을 관찰자로부터의 제1거리와, 상기 제1거리보다는 상당히 작은, 관찰자로부터의 제2 거리 사이에서 어느 한 방향으로 이동하는 단계(270); 및
    인증의 표시로서 상기 이동 동안 상기 이미지 데이터 운반 구조체(16; 16a-c)에 대응하는 제1합성 통합 이미지(25)의 출현을 관찰하는 단계(272)를 포함하는 물체를 인증하는 방법.
  12. 제 11 항에 있어서,
    상기 제2거리는 상기 관찰자의 양안 사이의 2 배 거리보다 작은 것을 특징으로 하는 물체를 인증하는 방법.
  13. 제 11 항 또는 제 12 항에 있어서,
    상기 제1거리는 15 cm보다 큰 것을 특징으로 하는 물체를 인증하는 방법.
  14. 적어도 하나의 폴리머 호일(11)을 포함하는 폴리머 호일 스택(111);
    제1어레이(15) 내의 광학적으로 식별가능한 이미지 데이터 운반 구조체(16;16a-c)를 포함하는 상기 폴리머 호일 스택(111)의 제1인터페이스(17);
    제2어레이(13) 내의 집속소자들(1)을 가지는 상기 폴리머 호일 스택(111)의 제2인터페이스(12);
    상기 제2인터페이스(12)는 상기 제1인터페이스(17)로부터 거리를 두고 제공되고;
    상기 제1어레이(15) 내의 상기 이미지 데이터 운반 구조체(16;16a-c)는 제1물체방향(91`)으로 제1물체거리들(Po1)로, 제2물체방향(92`)으로 제2물체거리들(Po2)로 반복되고, 상기 제1물체방향(91`)에 대하여 제1각(γo)을 제공하고;
    상기 제2어레이(13) 내의 상기 포커싱 요소들(1)은 제1집속소자방향(91)으로 제1집속소자거리들(Pl1)로, 제2집속소자방향(92)으로 제2집속소자거리들(Pl2)로 반복되고, 상기 제1집속소자방향(91)에 대하여 제2각도(γl)를 제공하고;
    제1투영물체거리들(P^o1)은 상기 제1집속소자방향(91)으로 투영된 상기 제1물체거리들(Po1)이고, 제2투영물체거리들(P^o2)은 상기 제2집속소자방향(92)으로 투영된 상기 제2물체거리들(Po2)을 포함하는 합성 통합 이미지를 제공하는 광학 장치(10)에 있어서,
    상기 제1투영물체거리들(P^o1) 및 상기 제1집속소자거리들(Pl1)의 대응하는 쌍들 사이의 제1비율들은 상기 제2투영물체거리들(P^o2) 및 상기 제2집속소자거리들(Pl2)의 대응하는 쌍들 사이의 제2비율들과 다르고;
    이로써 상기 이미지 데이터 운반 구조체(16;16a-c)에 대응하는 상기 합성 통합 이미지(25)는 상기 폴리머 호일 스택(111)에 소정의 굴곡이 주어졌을 때 상기 폴리머 호일 스택(111)의 보이는 면에서 요청된 비례들로 인식될 수 있는 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  15. 제 14 항에 있어서,
    상기 제1어레이(15)는 상기 제1물체방향(91`)으로 주기적이고, 이로써 상기 제1물체거리들(Po1)은 제1물체단위벡터(νo1)의 길이와 동일한 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  16. 제 14 항 또는 제 15 항에 있어서,
    상기 제2어레이(13)는 상기 제1집속소자방향(91)으로 주기적이고, 이로써 상기 제1집속소자거리들(Pl1)은 제1집속소자단위벡터(νl1)의 길이와 동일한 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  17. 제 14 항 내지 제 16 항 중 어느 한 항에 있어서,
    상기 제1집속소자방향(91)은 상기 제1물체방향(91`)에 평행하고, 이로써 상기 제1투영물체거리(P^o1)는 상기 제1물체거리(Po1)와 동일한 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  18. 제 14 항 내지 제 17 항 중 어느 한 항에 있어서,
    상기 제2집속소자방향(92)은 상기 제2물체방향(92`)에 평행하고, 이로써 상기 제2투영물체거리(P^o2)는 상기 제2물체거리(Po2)와 동일한 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  19. 제 14 항 내지 제 18 항 중 어느 한 항에 있어서,
    상기 제1어레이(15)는 상기 제2물체방향(92`)으로 주기적이고, 이로써 상기 제2물체거리들(Po2)은 제2물체단위벡터(νo2)의 길이와 동일한 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  20. 제 14 항 내지 제 19 항 중 어느 한 항에 있어서,
    상기 제2어레이(13)는 상기 제2집속소자방향(92)으로 주기적이고, 이로써 상기 제2집속소자거리들(Pl2)은 제2집속소자단위벡터(νl2)의 길이와 동일한 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  21. 제 14 항 내지 제 20 항 중 어느 한 항에 있어서,
    상기 제1비율들은 상수이고, 상기 제2비율들도 상수인 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  22. 제 14 항 내지 제 20 항 중 어느 한 항에 있어서,
    상기 제1비율들 및 상기 제2비율들 중 적어도 하나는 상기 폴리머 호일 스택(111)에 따라 변하는 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  23. 제 14 항 내지 제 22 항 중 어느 한 항에 있어서,
    상기 제1비율들은 상기 제2비율들보다 크고, 이로써 상기 소정의 굴곡은 상기 제1집속소자방향(91) 둘레로 굽어져 상기 보이는 면에서 봤을 때 오목면이거나, 또는 상기 제2집속소자방향(92) 둘레로 굽어져 상기 보이는 면에서 봤을 때 볼록면인 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  24. 제 14 항 내지 제 22 항 중 어느 한 항에 있어서,
    상기 제1비율들은 상기 제2비율들보다 작고, 이로써 상기 소정의 굴곡은 상기 제1집속소자방향(91) 둘레로 굽어져 상기 보이는 면에서 봤을 때 불록면이거나, 또는 상기 제2집속소자방향(92) 둘레로 굽어져 상기 보이는 면에서 봤을 때 오목면인 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  25. 제 14 항 내지 제 24 항 중 어느 한 항에 있어서,
    상기 소정의 굴곡은 원형의 원통형 표면의 일부인 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  26. 제 21 항에 있어서,
    상기 소정의 굴곡은 비원형의 원통형 표면의 일부인 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  27. 제 26 항에 있어서,
    상기 소정의 굴곡은 포물선 형태인 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  28. 제 22 항에 있어서,
    상기 소정의 굴곡은 서로 다른 구부림 반지름들을 보이는 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  29. 제 14 항 내지 제 28 항 중 어느 한 항에 있어서,
    상기 제1비율들 및 상기 제2비율들 중 적어도 하나는 1에 가깝거나 같은 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  30. 제 14 항 내지 제 29 항 중 어느 한 항에 있어서,
    상기 제1인터페이스(17)는 상기 제1어레이(15) 내의 상기 식별가능한 이미지 데이터 운반 구조체(16; 16a-c)에 중첩하여, 제3어레이(85) 내의 광학적으로 식별가능한 이미지 데이터 운반 구조체(86)를 더 포함하는 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  31. 제 30 항에 있어서,
    상기 제3어레이(85) 내의 상기 이미지 데이터 운반 구조체들은 상기 제1집속소자방향(91)으로 제3물체거리들(Po3)로, 상기 제2집속소자방향(92)으로 제4물체거리들(Po4)로 반복되고;
    상기 제3물체거리들(Po3) 및 상기 제1집속소자거리들(Pl1)의 대응하는 쌍들 사이의 제3비율들은 상기 제4물체거리들(Po4) 및 상기 제2집속소자거리들(Pl2)의 대응하는 쌍들 사이의 제4비율들과 동일하고;
    이로써 상기 제3어레이(85) 내의 상기 이미지 데이터 운반 구조체(86)에 대응하는 합성 통합 이미지는 상기 폴리머 호일 스택(111)이 평면일 때 상기 폴리머 호일 스택(111)의 보이는 면에서 요청된 비례들로 인식될 수 있는 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  32. 제 30 항에 있어서,
    상기 제3어레이(85) 내의 상기 이미지 데이터 운반 구조체들은 상기 제1집속소자방향(91)으로 제3물체거리들(Po3)로, 상기 제2집속소자방향(92)으로 제4물체거리들(Po4)로 반복되고;
    제3투영물체거리들은 상기 제1집속소자방향(91)으로 투영된 상기 제3물체거리들(Po3)이고 제4투영물체거리들은 상기 제2집속소자방향(92)으로 투영된 상기 제4물체거리들(Po4)이고;
    상기 제3투영물체거리들 및 상기 제1집속소자거리들(Pl1)의 대응하는 쌍들 사이의 제3비율들은 상기 제4투영물체거리들 및 상기 제2집속소자거리들(Pl2)의 대응하는 쌍들 사이의 제4비율들과 다르고;
    이로써 상기 제3어레이(85) 내의 상기 이미지 데이터 운반 구조체(86)에 대응하는 합성 통합 이미지는 상기 제1어레이(15) 내의 상기 이미지 데이터 운반 구조체(16;16a-c)에 대응하는 상기 합성 통합 이미지(25)가 요청된 비례들로 인식되도록 하는 굴곡과는 다른 소정의 굴곡이 상기 폴리머 호일 스택(111)에 주어졌을 때 상기 폴리머 호일 스택(111)의 보이는 면에서 요청된 비례들로 인식될 수 있는 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  33. 제 31 항 또는 제 32 항에 있어서,
    상기 제1어레이(15)를 위한 최적 이미지 형성 조건들에서, 상기 제3어레이(85)로부터 발생하는 이미지가 일 방향으로 무한 확대되는 것을 보여주거나,
    상기 제3어레이(85)를 위한 최적 이미지 형성 조건들에서, 상기 제1어레이(15)로부터 발생하는 이미지가 일 방향으로 무한 확대되는 것을 보여주는 상기 조건들 중 적어도 하나가 충족되는 것을 특징으로 하는 합성 통합 이미지를 제공하는 광학 장치.
  34. 적어도 하나의 폴리머 호일(11)을 포함하고 물체(50)의 표면에 제공된 폴리머 호일 스택(111), 제1어레이(15) 내의 광학적으로 식별가능한 이미지 데이터 운반 구조체(16; 16a-c)을 포함하는 상기 폴리머 호일 스택(111)의 제1인터페이스(17), 제2어레이(13) 내의 집속소자들(1)을 가지는 상기 폴리머 호일 스택(111)의 제2인터페이스(12)를 가지고, 상기 제2인터페이스(12)는 상기 제1인터페이스(17)로부터 거리를 두고 제공되는 물체(50)를 인증하는 방법에 있어서,
    기설정된 제1방향으로 기설정된 제1굴곡에 따라 상기 폴리머 포일 스택(111)을 구부리는 단계(210); 및
    인증의 표시로서 요청된 비례들로 상기 이미지 데이터 운반 구조체(16; 16a-c)에 대응하는 제1합성 통합 이미지(25)의 출현을 관찰하는 단계(272)를 포함하는 물체를 인증하는 방법.
  35. 제 34 항에 있어서,
    상기 기설정된 제1방향으로 상기 기설정된 제1굴곡과는 다른 기설정된 제2굴곡에 따라 상기 폴리머 호일 스택(111)을 구부리는 단계; 및
    인증의 표시로서 제2합성 통합 이미지의 출현을 관찰하는 단계를 더 포함하는 것을 특징으로 하는 물체를 인증하는 방법.
  36. 제 34 항에 있어서,
    상기 기설정된 제1방향과는 다른 기설정된 제2방향으로 기설정된 제2굴곡에 따라 상기 폴리머 호일 스택(111)을 구부리는 단계; 및
    인증의 표시로서 제2합성 통합 이미지의 출현을 관찰하는 단계를 더 포함하는 것을 특징으로 하는 물체를 인증하는 방법.
  37. 제 34 항에 있어서,
    상기 구부리는 단계는, 상기 기설정된 제1굴곡을 보여주는 표면을 갖는 클리세 도구에 대하여 상기 폴리머 호일 스택(111)을 지지하는 단계를 포함하는 것을 특징으로 하는 물체를 인증하는 방법.
  38. 제 37 항에 있어서,
    상기 기설정된 제1굴곡은 서로 다른 반지름들을 가지는 부분들을 포함하는 복합적인 굴곡인 것을 특징으로 하는 물체를 인증하는 방법.
  39. 적어도 하나의 폴리머 호일(11)을 포함하고 물체(50)의 표면에 제공된 폴리머 호일 스택(111), 제1어레이(15) 내의 광학적으로 식별가능한 이미지 데이터 운반 구조체(16; 16a-c)을 포함하는 상기 폴리머 호일 스택(111)의 제1인터페이스(17), 제2어레이(13) 내의 집속소자들(1)을 가지는 상기 폴리머 호일 스택(111)의 제2인터페이스(12)를 가지고, 상기 제2인터페이스(12)는 상기 제1인터페이스(17)로부터 거리를 두고 제공되는 물체(50)를 인증하는 방법에 있어서,
    관찰방향에 평행한 요소를 가지는 축 둘레로 상기 폴리머 호일 스택(111)을 회전시키는 단계(210); 및
    인증의 표시로서 상기 이미지 데이터 운반 구조체(16; 16a-c)에 대응하는 합성 통합 이미지(25)의 외관상 이미지 깊이의 변화를 관찰하는 단계(272)를 포함하는 물체를 인증하는 방법.
KR1020117014028A 2008-11-18 2009-11-13 합성 통합 이미지를 제공하는 이미지 호일들 KR101706316B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
SE0850081-1 2008-11-18
SE0850081 2008-11-18
SE0950483 2009-06-23
SE0950483-8 2009-06-23
PCT/EP2009/065103 WO2010057831A1 (en) 2008-11-18 2009-11-13 Image foils providing a synthetic integral image

Publications (2)

Publication Number Publication Date
KR20110100626A true KR20110100626A (ko) 2011-09-14
KR101706316B1 KR101706316B1 (ko) 2017-02-13

Family

ID=41460998

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117014028A KR101706316B1 (ko) 2008-11-18 2009-11-13 합성 통합 이미지를 제공하는 이미지 호일들

Country Status (6)

Country Link
US (1) US9104033B2 (ko)
EP (1) EP2358543B1 (ko)
JP (1) JP5788801B2 (ko)
KR (1) KR101706316B1 (ko)
CN (1) CN102282025B (ko)
WO (1) WO2010057831A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2227712A4 (en) * 2007-12-27 2014-01-15 Rolling Optics Ab SYNTHETIC ONE-PIECE IMAGE DEVICE
GB201008955D0 (en) * 2010-05-28 2010-07-14 Optaglio Sro Holographic matrix, system of holographic personalization of ID cards and synthesis of holograms of desired visual properties and method of production thereof
SE535491C2 (sv) * 2010-06-21 2012-08-28 Rolling Optics Ab Metod och anordning för att läsa optiska anordningar
WO2012136902A1 (fr) * 2011-04-05 2012-10-11 Franck Guigan Code-barres de sécurité
JP6066032B2 (ja) * 2011-12-16 2017-01-25 大日本印刷株式会社 セキュリティ媒体及びそれを用いた真贋判定方法
JP6277191B2 (ja) * 2012-09-05 2018-02-07 ルメンコ エルエルシーLumenco,Llc フル・ボリューム3dおよび多方向運動を達成する円形および四角形ベースのマイクロ・レンズ・アレイのためのピクセル・マッピング、配置、および画像化
JP5983667B2 (ja) * 2013-04-11 2016-09-06 株式会社デンソー 車両用表示装置
US10222626B2 (en) 2014-04-11 2019-03-05 Rolling Optics Innovation Ab Thin integral image devices
US10281626B2 (en) * 2015-07-25 2019-05-07 NanoMedia Solutions Inc. Color image display devices comprising structural color pixels that are selectively activated and/or deactivated by material deposition
AU2017285888B2 (en) * 2016-06-14 2022-08-11 Rolling Optics Innovation Ab Synthetic image and method for manufacturing thereof
JP6256727B2 (ja) * 2016-12-27 2018-01-10 大日本印刷株式会社 セキュリティ媒体が配されたカード、セキュリティ媒体が配された紙
CN108454264B (zh) 2017-02-20 2020-09-29 中钞特种防伪科技有限公司 光学防伪元件及使用该光学防伪元件的光学防伪产品
JP6478076B2 (ja) * 2017-12-05 2019-03-06 大日本印刷株式会社 セキュリティ媒体及びそれを用いた真贋判定方法、セキュリティ媒体が配されたカード、セキュリティ媒体が配された紙

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514188A (ja) * 2003-11-21 2007-05-31 ナノヴェンションズ インコーポレイテッド マイクロ光学セキュリティ及び画像表示システム
US20080116276A1 (en) * 2006-11-01 2008-05-22 Lo Allen K Counterfeit-proof labels having an optically concealed, invisible universal product code and an online verification system using a mobile phone

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1267173A (en) 1985-09-23 1990-03-27 Thomas I. Bradshaw Sheet containing contour-dependent directional image and method for forming the same
DE4243987C2 (de) 1992-12-23 2003-10-09 Gao Ges Automation Org Ausweiskarten mit visuell sichtbarem Echtheitsmerkmal
GB9309673D0 (en) 1993-05-11 1993-06-23 De La Rue Holographics Ltd Security device
DK111293D0 (da) * 1993-10-04 1993-10-04 Franke Kell Erik Retroreflektivt foliemateriale
DE19804858A1 (de) 1998-01-30 1999-08-05 Ralf Dr Paugstadt Verfahren und Vorrichtungen zur Herstellung von Linsenraster-Wechselbildern
AU762603B2 (en) * 1999-06-01 2003-06-26 De La Rue International Limited Security device
KR200217035Y1 (ko) 2000-10-09 2001-03-15 주식회사테크노.티 보는 각도에 따라 다양한 색상을 연출하는 인쇄물
US7221512B2 (en) 2002-01-24 2007-05-22 Nanoventions, Inc. Light control material for displaying color information, and images
KR200311905Y1 (ko) 2003-01-24 2003-05-09 정현인 방사형 볼록렌즈 입체인쇄시트
DE10328759B4 (de) 2003-06-25 2006-11-30 Ovd Kinegram Ag Optisches Sicherheitselement und System zur Visualisierung von versteckten Informationen
JP4498698B2 (ja) 2003-07-14 2010-07-07 大日本印刷株式会社 真偽判定体の判別方法
KR100544300B1 (ko) 2003-10-02 2006-01-23 주식회사 제이디씨텍 입체 플라스틱 카드 및 그 제조방법
KR100561321B1 (ko) 2003-11-19 2006-03-16 주식회사 미래코코리아 투명창이 있는 입체 플라스틱 시트 및 그 제조방법
JP2005165175A (ja) * 2003-12-05 2005-06-23 Konica Minolta Photo Imaging Inc 立体画像表示方法、立体画像表示材料とそれを用いた偽変造防止積層体、偽変造防止カード及び偽変造防止印刷物
US7830627B2 (en) 2004-04-30 2010-11-09 De La Rue International Limited Optically variable devices
ATE418458T1 (de) * 2004-06-30 2009-01-15 Kxo Ag Fälschungssicheres sicherheitsobjekt und verfahren zu seiner herstellung und verifikation
US20060023197A1 (en) 2004-07-27 2006-02-02 Joel Andrew H Method and system for automated production of autostereoscopic and animated prints and transparencies from digital and non-digital media
JP2007003760A (ja) 2005-06-23 2007-01-11 Toppan Printing Co Ltd 偽造防止媒体及び偽造防止シール
KR20080059382A (ko) * 2005-10-26 2008-06-27 닛폰 이타가라스 가부시키가이샤 차량 탑재 입체화상 표시장치
DE102005062132A1 (de) * 2005-12-23 2007-07-05 Giesecke & Devrient Gmbh Sicherheitselement
DE102006029536B4 (de) * 2006-06-26 2011-05-05 Ovd Kinegram Ag Mehrschichtkörper mit Mikrolinsen sowie Verfahren zu seiner Herstellung
WO2008008635A2 (en) 2006-06-28 2008-01-17 Visual Physics, Llc Micro-optic security and image presentation system
US8739711B2 (en) * 2007-08-01 2014-06-03 Crane Security Technology, Inc. Micro-optic security device
US20090102179A1 (en) * 2007-10-23 2009-04-23 Lo Allen K Counterfeit proof labels having an optically concealed progressive shifting security safety symbol for quick visual identification utilizing a mobile phone for online verification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514188A (ja) * 2003-11-21 2007-05-31 ナノヴェンションズ インコーポレイテッド マイクロ光学セキュリティ及び画像表示システム
US20080116276A1 (en) * 2006-11-01 2008-05-22 Lo Allen K Counterfeit-proof labels having an optically concealed, invisible universal product code and an online verification system using a mobile phone

Also Published As

Publication number Publication date
KR101706316B1 (ko) 2017-02-13
JP2012509499A (ja) 2012-04-19
WO2010057831A1 (en) 2010-05-27
CN102282025A (zh) 2011-12-14
EP2358543B1 (en) 2017-01-11
JP5788801B2 (ja) 2015-10-07
US9104033B2 (en) 2015-08-11
US20110222152A1 (en) 2011-09-15
EP2358543A1 (en) 2011-08-24
CN102282025B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
KR20110100626A (ko) 합성 통합 이미지를 제공하는 이미지 호일들
CA2546930C (en) Micro-optic security and image presentation system
US7738175B2 (en) Micro-optic security and image presentation system providing modulated appearance of an in-plane image
US20110233918A1 (en) Time integrated integral image device
GB2562775A (en) Holographic security device and method of manufacture thereof
CA2812971C (en) Micro-optic security and image presentation system
JP2022152459A (ja) ドットモアレ形成体
CN114728535A (zh) 用于光斑图像的显示元件
AU2013204903A1 (en) Micro-optic security and image presentation system
AU2013204884A1 (en) Micro-optic security and image presentation system

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200131

Year of fee payment: 4