WO2018006448A1 - 除湿机系统 - Google Patents

除湿机系统 Download PDF

Info

Publication number
WO2018006448A1
WO2018006448A1 PCT/CN2016/090908 CN2016090908W WO2018006448A1 WO 2018006448 A1 WO2018006448 A1 WO 2018006448A1 CN 2016090908 W CN2016090908 W CN 2016090908W WO 2018006448 A1 WO2018006448 A1 WO 2018006448A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
dehumidification
condenser
fan
evaporator
Prior art date
Application number
PCT/CN2016/090908
Other languages
English (en)
French (fr)
Inventor
陈俊宇
Original Assignee
友隆电器工业(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友隆电器工业(深圳)有限公司 filed Critical 友隆电器工业(深圳)有限公司
Priority to EP16907952.2A priority Critical patent/EP3483515B1/en
Publication of WO2018006448A1 publication Critical patent/WO2018006448A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/001Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems in which the air treatment in the central station takes place by means of a heat-pump or by means of a reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1008Rotary wheel comprising a by-pass channel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater

Definitions

  • the present invention relates to the field of air dehumidification, and more particularly to a dehumidifier system.
  • Dehumidification devices commonly used in the prior art are a rotary dehumidifier and a compression dehumidifier.
  • the main components of the compression dehumidifier are the compressor, the evaporator, the condenser, the capillary, the copper tube that links the parts, and a ventilation system.
  • the compression dehumidifier reduces the ambient air temperature to the dew point temperature by the phase change of the refrigerant. When the ambient temperature is relatively low (less than 15 ⁇ 16 degrees Celsius, the temperature on the evaporator will be lower than 0 degrees Celsius). When the air enters the evaporator, it will form a frost directly.
  • the frost on the evaporator will become thicker and thicker, causing the dehumidifier to start the defrosting operation.
  • the commonly used defrosting operation is to stop the compressor, etc. After the frost is turned into water, the compressor can be restarted.
  • the dehumidification of the compression dehumidifier there are many defrosting operations in the air, and the air is not dehumidified, and the compressed dehumidifier can remove only moisture.
  • a very small part of the standard environmental conditions (26.7°, 60%). Under 2 6.7°, 60% of the working conditions, the dehumidification of 12L is in a low temperature environment (10°, 60%). Only 1.5L remains. Therefore, the dehumidification capacity of the compression dehumidifier at a low temperature is lowered, which directly causes the working efficiency of the compression dehumidifier to be low.
  • An object of the present invention is to provide a dehumidifier system, which aims to solve the problem that the evaporator defrost of the compression dehumidifier existing in the prior art has a low work efficiency due to a decrease in evaporator frosting and a low-temperature environment dehumidification capability.
  • the technical solution of the present invention is: providing a dehumidifier system, including a main casing having an air inlet and an air outlet, and further comprising a compression type dehumidification disposed in the main casing Components, rotary dehumidification components and fans,
  • the compression type dehumidification assembly includes an evaporator, a condenser, a compressor, and a throttle element;
  • the rotary-type dehumidification assembly includes a dehumidification wheel, a regenerative fan, a heating element, and a unit that is not connected to each other. a heat exchanger of the heat exchange passage and the second heat exchange passage;
  • the first heat exchange passage, the regeneration fan, the heating element, and the dehumidification wheel are cyclically connected to form a regeneration circulation air passage;
  • the air inlet, the second heat exchange channel, the evaporator, the fan and the air outlet are connected to form a first air passage.
  • the first air duct further includes an air passage communicating with the condenser, the air inlet, the second heat exchange passage, the evaporator, the condenser, the fan, and the It is stated that the ports are connected in sequence.
  • the first air duct further includes an air passage communicating with the dehumidification wheel, the air inlet, the second heat exchange passage, the evaporator, the condenser, the dehumidification wheel, The fan and the air outlet are connected in sequence
  • the heat exchanger, the evaporator, the condenser, the dehumidification wheel are arranged side by side in the main casing, the outlet of the evaporator faces the condenser, and the outlet of the condenser Facing the dehumidification wheel.
  • the second air passage, the third air passage, and the fourth air passage are respectively provided with control valves for controlling the air volume and conduction.
  • the compression type dehumidification component and the rotary wheel type dehumidification component are combined with each other, and the heat exchanger in the rotary wheel type dehumidification component generates heat with high temperature by heat exchange, and the evaporator on the compression type dehumidification component It is easy to frost at work at a lower air temperature.
  • the first air passage to shield the air passing through the heat exchanger to the evaporator, the temperature of the air entering the evaporator is increased, and the evaporator is not easy to frost. Effectively improve the dehumidification capacity of the compression dehumidification module at low temperatures.
  • Embodiment 1 is a schematic structural view of Embodiment 1 provided by the present invention.
  • FIG. 2 is a schematic structural view of a second embodiment provided by the present invention.
  • FIG. 3 is a schematic structural view of a third embodiment provided by the present invention.
  • FIG. 4 is a schematic structural view of a fourth embodiment provided by the present invention.
  • FIG. 5 is a schematic structural view of an embodiment of adding a second air passage according to Embodiment 4 of the present invention.
  • FIG. 6 is an embodiment of adding a third air passage according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic structural view showing an embodiment of adding a second air passage, a third air passage, and a fourth air passage according to Embodiment 4 of the present invention;
  • FIG. 8 is a schematic structural view of an embodiment of an increase control valve according to Embodiment 4 of the present invention.
  • the present embodiment is a dehumidifier system including a main casing 10 having an air inlet 11 and an air outlet 12, and further comprising a compression type dehumidification disposed in the main casing 10. a component, a rotary dehumidification assembly, and a fan 40 that allows air to flow through the compression dehumidification assembly and the rotary dehumidification assembly and out of the main casing 10,
  • the compression type dehumidification assembly includes an evaporator 21, a condenser 22, a compressor 23, and a throttle element;
  • the rotary dehumidification assembly includes a dehumidification wheel 31, a regenerative fan 32, a heating element 33, and a first heat exchange channel (not shown) and a second heat exchange channel (not shown) that are not connected to each other (in the figure) Heat exchanger 3 4 not shown);
  • the first heat exchange passage, the regeneration fan 32, the heating element 33, the dehumidification wheel 31 cyclically communicate to form a regeneration cycle air passage A;
  • the air inlet 11, the second heat exchange passage, the evaporator 21, the fan 40 and the air outlet 12 are connected to form a first air passage B.
  • the ambient temperature is at a low temperature (less than 15 ° C)
  • the temperature on the working helium evaporator 21 is easily lower than or close to 0°, and the inside of the evaporator 21 is easy to frost, which is increased on the basis of the original compression type dehumidification module.
  • the air in the first air passage B is first subjected to a heat exchange reaction with the heat exchanger 34.
  • the temperature and humidity of the air entering the first heat exchange passage in the heat exchanger 34 are higher than the temperature of the air entering the second heat exchange passage, and the temperature of the first heat exchange passage is The absolute humidity is higher than the absolute humidity of the air in the second heat exchange channel.
  • the passage of air in the first duct B through the heat exchanger 34 causes the air in the first heat exchange passage to condense on the inner side surface of the first heat exchange passage due to the relationship to the dew point temperature condition.
  • the air in the first heat exchange passage also increases its temperature (exceeding the original 15 ° C) due to heat exchange with the heat exchanger 34.
  • the evaporator 21 causes The temperature of the air entering it rises without frosting, which solves the problem of frosting of the compression dehumidification component at the low temperature.
  • the compression-type dehumidification module continues to work at low temperatures, avoiding the empty conversion frost, and its dehumidification ability is improved compared with the prior art, and the dehumidification efficiency is increased.
  • the compression type dehumidification component and the rotary wheel type dehumidification component are combined with each other, and the heat exchanger 34 in the rotary wheel type dehumidification assembly generates heat of high temperature by heat exchange, and evaporation on the compression type dehumidification component 21
  • Working at a lower air temperature is easy to frost, and the air passing through the heat exchanger 34 is introduced to the evaporator 21 by setting the first air passage B, thereby increasing the temperature of the air entering the evaporator 21, and then the evaporator 21 is operated. It is not easy to frost, which effectively improves the dehumidification capacity of the compression dehumidification module at low temperatures.
  • the compression dehumidification assembly is operated separately to provide the overall dehumidification efficiency of the present invention.
  • the embodiment includes the air inlet 11, the second heat exchange channel, the evaporator 21, the fan 40, and the air outlet 12 connected.
  • the dehumidification wheel 31 is dehumidified and passes through the fan 40 and the air outlet. 12 discharge.
  • the heat exchanger 34, the evaporator 21, the condenser 22, and the dehumidification wheel 31 are juxtaposed in the main casing 10, and the outlet of the evaporator 21 faces the condenser. 22.
  • the air outlet of the condenser 22 faces the dehumidification wheel 31.
  • the air in the first air passage B goes straight from the air inlet to the evaporator 21, and directly passes through the evaporator 21 to the air outlet.
  • the second air passage C passes through the condenser and directly leads to the fan 40, the first air passage.
  • the length of B and the second air duct C are short and the bending is small.
  • the arrangement of the above four components is very advantageous for reducing the length of the first air duct B and the second air duct C, and reducing the bending of the duct, so that the main shell can be
  • the internal layout of the body 10 is neat, which is convenient for the air duct setting. Further, the blower 40 is disposed outside the dehumidification wheel 31.
  • the main casing 10 is provided with an upper cavity and a lower cavity, and the heat exchanger 34, the evaporator 21, the condenser 22, and the dehumidification wheel 31 are disposed in the main casing 10.
  • the present embodiment further includes a water collection tank 60 for collecting the condensed water of the heat exchanger 34 and the evaporator 21, the compressor 23 and the water collection tank 60 being disposed in the lower chamber, wherein the water collection tank 60 is disposed
  • the heat exchanger 34 and the evaporator 21 are directly below.
  • the air entering the second heat exchange passage of the heat exchanger 34 exchanges heat with the high temperature and high humidity air in the first heat exchange passage, and the air in the first heat exchange passage is made.
  • the first condensation condensation in this example was carried out.
  • the air of the first air passage B rises after passing through the second heat exchange passage, and then enters the steam.
  • the hair unit 21 performs the second condensation condensation in the present embodiment, and then exits the main casing 10 via the blower 40 and the air outlet 12.
  • the function of the first air passage B is to condense and dew condensation of the high temperature and high humidity air in the circulation air passage A, so that the circulation air passage A can be normally circulated, and the air of the same is condensed and dew condensation in the evaporator 21, and the heat is transferred to
  • the evaporator 21 enables the heat pump cycle of the compression type dehumidification unit to operate normally.
  • the first air passage B is an air passage for heating the evaporator 21 and the dehumidified water. Since the water is discharged once, the humidity of the air of the dehumidification wheel 31 is lowered, and the dehumidification is lowered.
  • the dehumidification efficiency of the wheel 31 is preferably directly discharged, and the dehumidification wheel 31 is filtered to filter the air having a higher humidity to improve the dehumidification efficiency.
  • the dehumidifying wheel 31 absorbs moisture passing through the air inside thereof, the dehumidifying wheel 31 continues to rotate under the driving of a rotating electric machine (not shown) and continues to absorb moisture, and the moisture-absorbing portion of the dehumidifying wheel 31 is turned to be opposite to the heating body 33. s position.
  • the regeneration fan 32 pumps the dry air into the heating element 33, and the heating element 33 heats the air, and then enters the portion of the dehumidifying wheel 31 opposed to the heating element 33, and dries the dehumidifying wheel 31 by drying the high temperature air.
  • the air of the regeneration circulation air passage A becomes high temperature and high humidity air, and then enters the first heat exchange passage of the heat exchanger 34 to exchange heat with the air in the second heat exchange passage.
  • the air in the heat exchange passage is condensed and dew condensation.
  • the air in the regeneration circulation air passage A is again changed into dry air, and enters the regeneration fan 32 again to enter a new cycle.
  • This embodiment combines two dehumidification components, in addition to the dehumidification capability of the two dehumidification components, and compensates for the defects of the compression dehumidification component at low temperatures, so that the compression dehumidification component is not easy to frost at low temperatures. Effectively improve the dehumidification capacity of the dehumidifier system at low temperatures.
  • the air passage setting is relatively simple, and the overall layout is simple.
  • the difference of the embodiment is that, as shown in FIG. 2, the air inlet 11, the condenser 22, the fan 40, and the air outlet 12 are connected.
  • the second air passage C formed includes a third air passage D formed by the air inlet 11, the dehumidification wheel 31, the fan 40, and the air outlet 12.
  • the second air passage in the first embodiment is replaced with the second air passage C and the third air passage D in the present embodiment.
  • the air of the second air passage C enters from the air inlet 11, passes through the condenser 22, and exchanges heat with the condenser 22, so that the condenser 22 is cooled and cooled, and then discharged through the fan 40 and the air outlet 12.
  • the third wind tunnel D is high
  • the humid air is pumped from the intake port 11 to the dehumidification wheel 31, and is sucked by the dehumidification wheel 31, and then discharged from the blower 40 and the air outlet 12.
  • the dehumidification wheel 31 of the present embodiment has a higher dehumidification efficiency.
  • the distinguishing feature of the embodiment is that, as shown in FIG. 3, the first air passage B is further connected to a part of the air duct including the condenser 22, as a whole,
  • the air inlet 11, the second heat exchange passage, the evaporator 21, the condenser 22, the fan 40, and the air outlet 12 are sequentially connected.
  • the air in the first air passage B sequentially passes through the air inlet 11, the second heat exchange passage, the evaporator 21, the condenser 22, the fan 40, and the air outlet 12.
  • the condenser 22 is placed in the second air passage.
  • the condenser 22 is placed in the first air passage B, and the high-temperature air generated after passing through the condenser 22 is directly discharged outside the main casing 10 to avoid entering the dehumidification wheel 31, which is advantageous for improving the dehumidification of the dehumidification wheel 31. effectiveness.
  • the embodiment further includes a second air passage C, and the air inlet 11, the dehumidification wheel 31, the fan 40, and the air outlet 12 communicate to form the second air passage.
  • the air enters the second air passage C and is directly introduced into the dehumidification wheel 3 1.
  • the air passing through the dehumidification wheel 31 is normal temperature and high humidity air, and is not heated by the condenser 22. Compared with the first embodiment, the dehumidification wheel is passed through the embodiment. Although the air of 31 has the same humidity but a low temperature, the dehumidification wheel 31 of the present embodiment has a higher dehumidification efficiency.
  • the distinguishing feature of the embodiment is that, as shown in FIG. 4, the first air passage B further includes a air passage that communicates with the condenser 22 and the dehumidification wheel 31. Specifically, the intake port 11, the second heat exchange passage, the evaporator 21, the condenser 22, the dehumidification wheel 31, the fan 40, and the air outlet 12 are sequentially connected.
  • the above solution of this embodiment is a basic solution having the simplest air passage and the simplest main casing 10 structure.
  • the air in the first air passage B sequentially passes through the heat exchanger 34, the evaporator 2 1 , the condenser 22, and the dehumidification wheel 31, because the air passes through all the components, relatively speaking The wind resistance is large.
  • the main housing 10 has an air passage for replenishing air, so that the air outside part of the main housing 10 can directly enter the evaporator 21, or directly enter the condenser 22, or directly Entering the dehumidification wheel 3 1, by adding a duct to replenish the intake air, allowing part of the external air to bypass the heat exchanger 34, directly Into the evaporator 21, or bypassing the heat exchanger 34 and the evaporator 21, directly entering the condenser 22, or bypassing the heat exchanger 34, the evaporator 21, the condenser 22, and directly entering the dehumidification wheel 31.
  • the first scheme only adds the second air passage C. Specifically, the air sequentially passes through the air inlet 11, the evaporator 21, and the condensation along the second air passage C.
  • the high-humidity air in the second air passage C directly enters the evaporator 21, and the two airs enter the evaporator 21 at the same time. Due to the second air passage C, the total humidity of the air passing through the evaporator 21 is increased.
  • the addition of the second air passage C effectively increases the total amount of condensation of the evaporator 21, though
  • the second scheme only adds the third air passage D. Specifically, the air sequentially passes through the air inlet 11, the condenser 22, and the dehumidification wheel along the third air passage D. 31.
  • the fan 40 and the air outlet 12 are. Since the air in the first air passage B passes through all the components, the relative total air resistance is relatively large, which makes it difficult for the air to reach the condenser 22, which may cause heat dissipation of the condenser 22.
  • the air of the third air passage D can directly enter the condenser 22, exchange heat with the condenser 22, increase the heat dissipation of the condenser 22, and increase the total humidity of the air passing through the dehumidification wheel 31.
  • the third scheme increases, including the second air passage C, the third air passage D, and the fourth air passage E, and the evaporator 21 is added as compared with the above two peers.
  • the air volume of the condenser 22 is larger than the air volume of the evaporator 21, and has a high heat dissipation efficiency.
  • control valve 50 for controlling the amount of the second air passage C, the third air passage D, and the fourth air passage E, and being turned on or off, respectively, may be provided, and the embodiment further includes An electronic control module (not shown) for controlling the compression dehumidification assembly, the rotary dehumidification assembly, and the respective control valves 50.
  • the electronic control module is used to control the angles of the opening, closing, and opening of any of the control valves 50, and can control the opening and closing time of each control control valve 50 according to the user input function.
  • the angle is adjusted during the day.
  • it can control the startup dehumidification component and the starter of the rotary dehumidification component to stop the daytime drinking.
  • control valves 50 corresponding to the second air passage C, the third air passage D, and the fourth air passage E, respectively, in the third embodiment, as shown in the figure.
  • three control valves 50 respectively control the second air passage C, the third air passage D, and the fourth air passage
  • the heat exchanger 34, the evaporator 21, the condenser 22, and the dehumidification wheel 31 are juxtaposed in the main casing 10, and the heat is
  • a gap between the exchanger 34 and the evaporator 21 forms a part of the second air passage C
  • a control valve 50 corresponding to the second air passage C is disposed at the entrance of the corresponding gap to control the evaporator 21 and the condenser 22 The amount of ventilation between the gaps.
  • the gap between the heat exchanger 34 and the condenser 22 forms a part of the third air passage D
  • the control valve 50 corresponding to the third air passage D is disposed at the entrance of the corresponding gap, and controls the evaporator 21 and The amount of ventilation of the gap between the condensers 22.
  • a gap between the condenser 22 and the dehumidification wheel 31 forms a part of the fourth air passage E
  • a control valve 50 corresponding to the fourth air passage E is disposed at an entrance of the corresponding gap, and the condenser 22 is controlled The amount of ventilation of the gap between the dehumidification wheels 31.
  • the electronic control module controls each of the control valves 50 to be opened or closed, and any one of the second air passage C, the third air passage D, and the fourth air passage E may be separately activated, such as a separate start and a second
  • the control valve 50 of the air passage C allows the air to directly enter the evaporator 21, or separately opens the control valve 50 corresponding to the fourth air passage E, so that the air can directly enter the dehumidification wheel 31. Either any two control valves 50 are combined or all of the control valves 50 are activated.
  • the electronic control module can also adjust the angle of the opening of the control valve 50, and realize the control of the ventilation amount of each gap, that is, the control of the ventilation amount of the second air passage C, the third air passage D and the fourth air passage E
  • the use of ⁇ can control the control valve 50 according to different working environments and user requirements, so that it can open, close or smash a certain angle of compression dehumidification components and rotary dehumidification components to achieve the highest effect.
  • the seventh solution sets the control valve 50 and the electronic control module, and controls the opening and closing of each control valve 50 through the electronic control module. Now with all the functions of the above basic scheme and the other seven schemes, the function of the utility model is further diversified after the addition of the control valve 50 and the electronic control module.
  • the utility model can use complicated working requirements, for example, when the user needs to dry clothes in the indoor clothes, the control module of the utility model can adjust the working state of the two groups of dehumidifying components and the control state of the three controls.
  • the utility model is suitable for the dry clothes mode.
  • the rotary dehumidification assembly includes a heat generating body 33, and the compression type dehumidification assembly includes a condenser 22, both of which are heat releasing components. Therefore, when the air passes through the heat exchanger 34, a warming effect is generated, and then passes through the evaporator 21 of the compressor 23 system, the temperature is lowered and part of the moisture is condensed on the evaporator 21, and then passes through the condenser 22, and again After the temperature rises, it finally passes through the dehumidification wheel 31, and the temperature rises again and part of the moisture therein is again absorbed by the dehumidification wheel 31. The air coming out of the whole system is warmer than the original ambient air, and the humidity is lowered, which is the most favorable dry air for drying clothes.
  • the system can combine the compression type dehumidification unit and the rotary dehumidification unit according to the temperature and humidity of the drying environment, and the dry clothes that the user can input.
  • Information such as quantity and drying space
  • the electronic control module can choose one of the dehumidification components in the process of drying, or both, to achieve the most efficient drying needs, such as the shortest drying time Demand or the most energy-efficient drying needs.
  • the moisture content on the clothes is the highest when the dehumidifier is not activated, and then, the highest temperature and high temperature dry hot air is blown to the clothes, and the moisture contained therein can be quickly evaporated. Out.
  • the ratio of the amount of water evaporated in the laundry to the drying efficiency of the dry hot air required by the dehumidifier system itself g/kW.h
  • the dehumidification component is turned off, reducing the energy consumed to increase the drying efficiency ratio. Since the individual drying efficiency of the two dehumidifying components will have different effects depending on the temperature and humidity of the drying environment, the electronic control will judge the system based on the results of the laboratory.
  • the electronic control module can achieve the highest level according to the comprehensive judgment of the drying process and the ambient temperature and humidity, and can simultaneously open two dehumidifying components, or turn on/off any dehumidifying component. Drying efficiency (g/kW.h).
  • the dehumidification capacity is 8L
  • the power consumption is 800W

Abstract

一种除湿机系统,包括具有进气口(11)、出气口(12)的主壳体(10),还包括设置于主壳体(10)内的压缩式除湿组件、转轮式除湿组件以及使空气排出主壳(10)体外的风机(40),压缩式除湿组件包括蒸发器(21)、冷凝器(22)、压缩机(23)、节流元件;转轮式除湿组件包括除湿轮(31)、再生风机(32)、发热体(33)以及设置有第一换热通道和第二换热通道的热交换器(34);进气口(11)、第二换热通道、蒸发器(21)、风机(40)及出气口(12)连通形成第一风道。第一风道内的空气经过第二换热通道加热后引入到蒸发器(21)上,提高了进入蒸发器(21)的空气温度,其工作时不易结霜,有效的提高了除湿机系统低温下的除湿能力。

Description

发明名称:除湿机系统
技术领域
[0001] 本实用新型涉及空气除湿领域, 更具体地说, 是涉及一种除湿机系统。
背景技术
[0002] 现有技术中常用的除湿装置为转轮式除湿机和压缩式除湿机。 压缩式除湿机的 主要部件有压缩机, 蒸发器, 冷凝器, 毛细管, 链接各部件的铜管以及一个送 风系统。 压缩式除湿机通过冷媒的相变化使环境空气的温度降低到露点温度形 成结水, 当环境温度相对低吋 (小于 15~16摄氏度, 在蒸发器上的温度会低于 0 摄氏度, 此吋环境空气进入蒸发器吋会直接结成霜, 当压缩式除湿机持续运行 , 蒸发器上的霜会越结越厚, 导致除湿机需要启动化霜操作, 常用的化霜操作 为停止压缩机, 等霜化成水以后才能够再度启动压缩机。 另外, 在低温环境下 , 由于压缩式除湿机化霜, 存在较多吋间空运转化霜, 空运转不除湿, 压缩式 除湿机所能够除去的水分只有标准环境工况 (26.7°, 60%) 下的极小部分。 在 2 6.7°, 60%的工况下, 12L的除湿量在低温的环境 (10°, 60%) 吋只剩下 1.5L, 因此, 压缩式除湿机在低温下除湿能力降低, 直接导致压缩式除湿机的工作效 率低。
技术问题
[0003] 本实用新型的目的在于提供一种除湿机系统, 旨在解决现有技术中存在的压缩 式除湿机的蒸发器结霜和低温环境除湿能力降低而导致工作效率低的问题。 问题的解决方案
技术解决方案
[0004] 为解决上述技术问题, 本实用新型的技术方案是: 提供一种除湿机系统,包括具 有进气口、 出气口的主壳体, 还包括设置于所述主壳体内的压缩式除湿组件、 转轮式除湿组件以及风机,
[0005] 所述压缩式除湿组件包括蒸发器、 冷凝器、 压缩机、 节流元件;
[0006] 所述转轮式除湿组件包括除湿轮、 再生风机、 发热体以及设置有互不连通的第 一换热通道和第二换热通道的热交换器;
[0007] 所述第一换热通道、 所述再生风机、 所述发热体、 所述除湿轮循环连通形成再 生循环风道;
[0008] 所述进气口、 所述第二换热通道、 所述蒸发器、 所述风机及所述出气口连通形 成第一风道。
[0009] 所述第一风道还包括与所述冷凝器连通的风道, 所述进气口、 所述第二换热通 道、 所述蒸发器、 所述冷凝器、 所述风机及所述出气口依次连通。
[0010] 所述第一风道还包括与所述除湿轮连通的风道, 所述进气口、 所述第二换热通 道、 所述蒸发器、 所述冷凝器、 所述除湿轮、 所述风机及所述出气口依次连通
[0011] 所述热交换器、 所述蒸发器、 所述冷凝器、 所述除湿轮并列设置于所述主壳体 内, 所述蒸发器的出口朝向所述冷凝器, 所述冷凝器的出口朝向所述除湿轮。
[0012] 还包括由所述进气口、 所述冷凝器、 所述除湿轮、 所述风机及所述出气口连通 形成的第二风道。
[0013] 还包括由所述进气口、 所述冷凝器、 所述风机及所述出气口连通形成的第二风 道, 及包括由所述进气口、 所述除湿轮、 所述风机及所述出气口连通形成的第 三风道。
[0014] 还包括由所进气口、 所述蒸发器、 所述冷凝器、 所述除湿轮、 所述风机及所述 出气口连通形成的第二风道。
[0015] 还包括由所述进气口、 所述冷凝器、 所述除湿轮、 所述风机及所述出气口连通 形成的第二风道。
[0016] 还包括由所进气口、 所述蒸发器、 所述冷凝器、 所述除湿轮、 所述风机及所述 出气口连通形成的第二风道, 由所进气口、 所述冷凝器、 所述除湿轮、 所述风 机及所述出气口连通形成的第三风道, 及由所进气口、 所述除湿轮、 所述风机 及所述出气口连通形成的第四风道。
[0017] 所述第二风道、 所述第三风道、 所述第四风道内分别设置用于控制其风量大小 及导通的控制阀。
发明的有益效果 有益效果
[0018] 本实用新型的有益效果:
[0019] 本实用新型中,把压缩式除湿组件和转轮式除湿组件相互结合, 转轮式除湿组件 中的热交换器经热交换产生温度较高的空气, 压缩式除湿组件上的蒸发器在较 低的空气温度下工作易结霜, 通过设置第一风道把经热交换器的空气弓 I至蒸发 器上, 提高了进入蒸发器的空气温度, 那么蒸发器工作吋不易结霜, 有效的提 高了压缩式除湿组件低温下的除湿能力。
对附图的简要说明
附图说明
[0020] 图 1是本实用新型提供的实施例一的结构示意图;
[0021] 图 2是本实用新型提供的实施例二的结构示意图;
[0022] 图 3是本实用新型提供的实施例三的结构示意图;
[0023] 图 4是本实用新型提供的实施例四的结构示意图;
[0024] 图 5是本实用新型提供的实施例四的增加第二风道的实施方式的结构示意图; [0025] 图 6是本实用新型提供的实施例四的增加第三风道的实施方式的结构示意图; [0026] 图 7是本实用新型提供的实施例四的增加第二风道、 第三风道和第四风道的实 施方式的结构示意图;
[0027] 图 8是本实用新型提供的实施例四的增加控制阀的实施方式的结构示意图。
本发明的实施方式
[0028] 为了使本实用新型的目的、 技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本实用新型进行进一步详细说明。 应当理解, 此处所描述的具体实施 例仅仅用以解释本实用新型, 并不用于限定本实用新型。
[0029] 需要说明的是, 当元件被称为 "固定于"或"设置于"另一个元件, 它可以直接在 另一个元件上或者间接在该另一个元件上。 当一个元件被称为是 "连接于"另一个 元件, 它可以是直接连接到另一个元件或间接连接至该另一个元件上。
[0030] 还需要说明的是, 本实施例中的左、 右、 上、 下等方位用语, 仅是互为相对概 念或是以产品的正常使用状态为参考的, 而不应该认为是具有限制性的。 [0031] 如图 1所示,本实施例为一种除湿机系统,包括具有进气口 11、 出气口 12的主壳体 10, 还包括设置于所述主壳体 10内的压缩式除湿组件、 转轮式除湿组件以及使 空气流经所述压缩式除湿组件和所述转轮式除湿组件并排出主壳体 10外的风机 4 0,
[0032] 所述压缩式除湿组件包括蒸发器 21、 冷凝器 22、 压缩机 23、 节流元件;
[0033] 所述转轮式除湿组件包括除湿轮 31、 再生风机 32、 发热体 33以及设置有互不连 通的第一换热通道 (图中未示出) 和第二换热通道 (图中未示出) 的热交换器 3 4;
[0034] 所述蒸发器 21、 所述冷凝器 22、 所述压缩机 23、 所述节流元件循环连通构成一 个热泵循环;
[0035] 所述第一换热通道、 再生风机 32、 所述发热体 33、 所述除湿轮 31循环连通形成 再生循环风道 A;
[0036] 所述进气口 11、 所述第二换热通道、 所述蒸发器 21、 所述风机 40及所述出气口 12连通形成第一风道 B。
[0037] 当环境温度处于低温 (小于 15°C) , 工作吋蒸发器 21上的温度极易低于或接近 0°, 蒸发器 21内部易结霜, 在原有压缩式除湿组件的基础上增加转轮式除湿组件 , 那么第一风道 B的空气先与热交换器 34进行热交换反应。 此吋, 由于除湿轮 31 受加热后的放湿原因, 进入热交换器 34里第一换热通道的空气温度湿度比进入 第二换热通道的空气的温度湿度高, 第一换热通道的绝对湿度高于第二换热通 道内空气的绝对湿度。 这吋, 第一风道 B内空气经过热交换器 34会让第一换热通 道内的空气因为达到露点温度条件的关系而在第一换热通道的内侧表面上凝结 水。 并且, 第一换热通道内的空气也因为与热交换器 34的热量交换而提高其温 度 (超过原本的 15°C) , 因此, 当第一风道 B内升温后, 蒸发器 21吋因进入其的 空气温度上升而不会结霜, 解决了原本低温下压缩式除湿组件结霜的问题。 压 缩式除湿组件的低温下持续工作, 避免了空转化霜, 相对于现有技术其除湿能 力提高了, 除湿效率增加。
[0038] 本实用新型中,把压缩式除湿组件和转轮式除湿组件相互结合, 转轮式除湿组件 中的热交换器 34经热交换产生温度较高的空气, 压缩式除湿组件上的蒸发器 21 在较低的空气温度下工作易结霜, 通过设置第一风道 B把经热交换器 34的空气引 至蒸发器 21上, 提高了进入蒸发器 21的空气温度, 那么蒸发器 21工作吋不易结 霜, 有效的提高了压缩式除湿组件低温下的除湿能力。
[0039] 在高温下由于转轮式除湿组件的除湿效率低, 因此可选择关闭转轮式除湿组件
, 使压缩式除湿组件单独运行, 以提供本实用新型的整体的除湿效率。
[0040] 以下结合附图对本发明实施例的具体实现进一步详述。
[0041] 实施例一
[0042] 本实施例中, 如图 1所示, 本实施例包括所述进气口 11、 所述第二换热通道、 所述蒸发器 21、 所述风机 40及所述出气口 12连通形成第一风道 B以及由所述进气 口 11、 所述冷凝器 22、 所述除湿轮 31、 所述风机 40及所述出气口 12连通形成的 第二风道^ 第二风道 C的空气进入冷凝器 22, 与冷凝器 22热交换带走冷凝器 22 的热量, 第二风道 C的空气从冷凝器 22出来则进入除湿轮 31, 除湿轮 31除湿后经 风机 40及出气口 12排出。
[0043] 所述热交换器 34、 所述蒸发器 21、 所述冷凝器 22、 所述除湿轮 31并列设置于所 述主壳体 10内, 所述蒸发器 21的出口朝向所述冷凝器 22, 所述冷凝器 22的空气 出口朝向所述除湿轮 31。 第一风道 B内的空气从进气口直行进入蒸发器 21, 经蒸 发器 21后直接从引向出气口, 第二风道 C经冷凝器后直接直行引向风机 40, 第一 风道 B和第二风道 C的长度短, 弯折少, 在上述四个部件的布置, 非常利于减少 第一风道 B和第二风道 C的长度, 减少管道的弯折, 可使主壳体 10内部布局整齐 , 便于风道设置。 另外风机 40设置于除湿轮 31的外侧。
[0044] 所述主壳体 10设置上腔体和下腔体, 所述热交换器 34、 所述蒸发器 21、 所述冷 凝器 22、 所述除湿轮 31设置于所述主壳体 10的上腔体内。 本实施例还包括用于 收集热交换器 34和蒸发器 21的冷凝水的集水箱 60, 所述压缩机 23和所述集水箱 6 0设置所述下腔体内, 其中所述集水箱 60设置所述热交换器 34和所述蒸发器 21的 正下方。
[0045] 第一风道 B中, 进入热交换器 34的第二换热通道的空气与第一换热通道内的高 温高湿的空气进行热交换, 并且使第一换热通道内的空气进行本实施例中的第 一次冷凝结露。 第一风道 B的空气经过第二换热通道后温度升高, 之后则进入蒸 发器 21, 进行本实施例中的第二次冷凝结露, 之后经风机 40和出气口 12排出主 壳体 10外。 第一风道 B的作用在于使循环风道 A内的高温高湿空气进行冷凝结露 , 使循环风道 A能够正常循环, 且自身的空气则于蒸发器 21进行冷凝结露, 传递 热量到蒸发器 21使压缩式除湿组件的热泵循环能正常运行。
[0046] 此吋, 第一风道 B为用于加热蒸发器 21和除湿结水的风道, 由于经过一次结水 , 如果经过除湿轮 31则会降低除湿轮 31的空气的湿度, 降低除湿轮 31的除湿效 率, 较优选择是直接排出, 让除湿轮 31过滤湿度更高的空气, 以提高其除湿效 率。
[0047] 除湿轮 31吸收经过其内部空气的水分, 除湿轮 31在转动电机 (图中未示出) 的 驱动下持续旋转并且持续吸湿, 除湿轮 31的已吸湿部分转至与发热体 33相对的 位置。 在再生循环风道 A内, 再生风机 32把干燥空气泵入发热体 33, 发热体 33加 热空气, 之后再进入除湿轮 31的与发热体 33相对的部分, 通过干燥高温空气干 燥除湿轮 31, 经过除湿轮 31后再生循环风道 A的空气变为高温高湿空气, 之后则 进入热交换器 34的第一换热通道, 与第二换热通道内的空气进行热交换, 此吋 第一换热通道内的空气发生冷凝结露, 经过热交换器 34后再生循环风道 A内的空 气重新变成了干燥空气, 再次进入再生风机 32进入新的一个循环。
[0048] 本实施例结合了两个除湿组件, 除了能够同吋拥有两种除湿组件的除湿能力外 , 弥补压缩式除湿组件在低温下的缺陷, 使压缩式除湿组件在低温下不易结霜 , 有效提升本除湿机系统在低温下的除湿能力。 本实施例风道设置较为简单, 整体布局简洁。
[0049] 实施例二
[0050] 与实施例一相比, 本实施例的区别特在于, 如图 2所示,包括由所述进气口 11、 所述冷凝器 22、 所述风机 40及所述出气口 12连通形成的第二风道 C, 及包括由所 述进气口 11、 所述除湿轮 31、 所述风机 40及所述出气口 12连通形成的第三风道 D 。 本实施例中把实施例一中的第二风道替换为本实施例中的第二风道 C和第三风 道 D。
[0051] 本实施例中, 第二风道 C的空气从进气口 11进入, 经冷凝器 22并且与冷凝器 22 热交换, 使冷凝器 22散热冷却, 之后经风机 40及出气口 12排出, 第三风道 D的高 湿空气从进气口 11泵入到除湿轮 31, 经除湿轮 31吸湿后从风机 40及出气口 12排 出。 相比于实施例一, 虽然增加了一个风道, 但是本实施例中把经过冷凝器 22 的高温空气直接排出, 避免高温空气加热除湿轮 31, 避免降低除湿轮 31的除湿 效率。 相比于实施例一, 本实施例的除湿轮 31具有更高的除湿效率。
[0052] 实施例三
[0053] 相比于实施例一, 本实施例的区别特征在于, 如图 3所示, 所述第一风道 B还连 通包括与所述冷凝器 22的部分风道, 从整体上来讲, 所述进气口 11、 所述第二 换热通道、 所述蒸发器 21、 所述冷凝器 22、 所述风机 40及所述出气口 12依次连 通。 第一风道 B内的空气依次经过进气口 11、 第二换热通道、 蒸发器 21、 冷凝器 22、 风机 40及出气口 12, 实施例一中把冷凝器 22置于第二风道 C, 本实施例中则 把冷凝器 22置于第一风道 B, 经冷凝器 22后产生的高温空气直接排出主壳体 10外 , 避免进入除湿轮 31, 有利于提高除湿轮 31的除湿效率。
[0054] 本实施例还包括第二风道 C, 所述进气口 11、 所述除湿轮 31、 所述风机 40及所 述出气口 12连通形成所述第二风道 。 空气进入第二风道 C, 直接引入到除湿轮 3 1, 经过除湿轮 31的空气为常温高湿的空气, 并未经过冷凝器 22加热, 相比于实 施例 1, 本实施例经过除湿轮 31的空气虽然湿度相同, 但温度低, 本实施例的除 湿轮 31具有更高的除湿效率。
[0055] 实施例四
[0056] 与实施例一相比, 本实施例的区别特征在于, 如图 4所示, 所述第一风道 B还包 括与所述冷凝器 22及所述除湿轮 31连通的风道, 具体来说, 所述进气口 11、 所 述第二换热通道、 所述蒸发器 21、 所述冷凝器 22、 所述除湿轮 31、 所述风机 40 及所述出气口 12依次连通。 本实施例的上述方案为基础方案, 具有最简单风道 和最简单的主壳体 10结构。
[0057] 本实施例的基础方案中, 第一风道 B的内的空气依次经过热交换器 34、 蒸发器 2 1、 冷凝器 22、 除湿轮 31, 因为空气经过所有部件, 相对来说总风阻较大。
[0058] 本实施例的基础方案中主壳体 10内具有用于补充空气的风道, 能够让部分主壳 体 10外的空气直接进入蒸发器 21, 或直接进入冷凝器 22, 亦或直接进入除湿轮 3 1, 通过增加补充进气的风道, 让部分的外部的空气能够绕过热交换器 34, 直接 进入蒸发器 21, 或着同吋绕过热交换器 34和蒸发器 21, 直接进入冷凝器 22, 或 者同吋绕过热交换器 34、 蒸发器 21、 冷凝器 22, 直接进入除湿轮 31。
[0059] 本实施例的基础方案中可做诸多的优化, 如增加补充空气的风道, 此类风道具 有多种实施方案, 可在基础方案的基础上设置三个用于补充空气的风道, 分别 为第二风道 C、 第三风道 D, 第四风道 所进气口 11、 所述蒸发器 21、 所述冷 凝器 22、 所述除湿轮 31、 所述风机 40及所述出气口 12连通形成所述第二风道 C; 所进气口 11、 所述冷凝器 22、 所述除湿轮 31、 所述风机 40及所述出气口 12连通 形成所述第三风道 D; 所进气口 11、 所述除湿轮 31、 所述风机 40及所述出气口 12 连通形成所述第四风道5。
[0060] 如图 5所示, 第一方案仅增加第二风道 C, 具体来说, 空气沿所述第二风道 C依 次经过所进气口 11、 所述蒸发器 21、 所述冷凝器 22、 所述除湿轮 31、 所述风机 4 0及所述出气口 12。 第二风道 C内的高湿空气直接进入蒸发器 21, 两股空气同吋 进入蒸发器 21, 由于第二风道 C的原因, 增加了过蒸发器 21的空气总湿度, 在仅 有第一风道 B的同等工况下, 增加第二风道 C有效地增加了蒸发器 21凝结水份的 总虽〇
[0061] 再如图 6所实际, 第二方案仅增加第三风道 D, 具体来说, 空气沿第三风道 D依 次经过所进气口 11、 所述冷凝器 22、 所述除湿轮 31、 所述风机 40及所述出气口 1 2。 由于第一风道 B内的空气经过所有部件, 相对来说总风阻较大, 导致空气要 到达冷凝器 22困难, 会因此导致冷凝器 22的散热困难。 第三风道 D能的空气直接 进入冷凝器 22, 与冷凝器 22热交换, 增加冷凝器 22散热, 同吋增加经过除湿轮 3 1的空气总湿度。
[0062] 如图 7所示, 第三方案增加包括第二风道 C、 第三风道 D和第四风道 E, 相比于 上述两个同吋增加了所述蒸发器 21、 所述冷凝器 22和所述除湿轮 31的风量, 其 中这个三部中所述除湿轮 31增加风量最多, 所述除湿轮 31具有高效的除湿效率 。 另外, 所述冷凝器 22的风量大于所述蒸发器 21的风量, 具有较高的散热效率 。 同吋增加三个风道, 便于针对性的设置三个风道的风量, 便于针对风量不足 的部件增加设置更大的通风量, 对风量需求少的部件可适当减小经过其的风道 的通风面积。 [0063] 上述三个方案中,均可设置分别用于控制第二风道 C、 第三风道 D、 第四风道 E 量大小及导通或者关闭的控制阀 50, 本实施例还包括用于控制压缩式除湿组件 、 转轮式除湿组件及各个控制阀 50工作的电控模块 (图中未示出) 。 具体来说 电控模块用于控制任意控制阀 50的幵启、 闭合以及幵启的角度, 同吋能够根据 用户输入功能需要控制各个控制控制阀 50的幵启吋间和闭合吋间以及幵启角度 调整吋间。 另外能控制缩式除湿组件、 转轮式除湿组件的启动吋间喝停止吋间
[0064] 本实施例中优选于第三方案设置三个与所述第二风道 C、 所述第三风道 D、 所 述第四风道 E分别一一对应的控制阀 50,如图 8所示, 三个控制阀 50分别控制第二 风道 C、 第三风道 D、 第四风道
[0065] 具体来说, 本实施例中, 所述热交换器 34、 所述蒸发器 21、 所述冷凝器 22、 所 述除湿轮 31并列设置于所述主壳体 10内, 所述热交换器 34与所述蒸发器 21之间 的间隙形成第二风道 C的一部分, 与第二风道 C对应的控制阀 50设置于对应间隙 的入口处, 控制蒸发器 21与冷凝器 22之间的间隙的通风量。 所述热交换器 34与 所述冷凝器 22之间的间隙形成第三风道 D的一部分, 与第三风道 D对应的控制阀 5 0设置于对应间隙的入口处, 控制蒸发器 21与冷凝器 22之间的间隙的通风量。 所 述冷凝器 22与所述除湿轮 31之间的间隙形成第四风道 E的一部分, 与第四风道 E 对应的控制阀 50设置于对应间隙的入口处, 控制所述冷凝器 22与所述除湿轮 31 之间的间隙的通风量。
[0066] 通过电控模块控制各个控制阀 50幵启或者闭合, 可单独幵启第二风道 C、 第三 风道 D、 第四风道 E中的任意一个, 如单独幵启与第二风道 C的控制阀 50, 可使 空气直接进入蒸发器 21, 又或者单独幵启与第四风道 E对应的控制阀 50, 可使空 气直接进入除湿轮 31。 或者任意两个控制阀 50结合, 或者同吋幵启所有的控制 阀 50。 另外, 电控模块还可调整控制阀 50的幵启的角度, 实现对各个间隙的通 风量的控制, 即对第二风道 C、 第三风道 D和第四风道 E通风量的控制, 使用吋 能够根据不同的工作环境以及用户需求控制控制阀 50, 使其幵启、 闭合或者打 幵一定的角度压缩式除湿组件和转轮式除湿组件能够发挥最高的效果。 第七方 案设置控制阀 50和电控模块, 通过电控模块控制各控制阀 50的幵启和闭合, 实 现以上述基础方案和另外的七个方案中所有功能, 因此增加控制阀 50和电控模 块后使本实用新型的功能更加多样化。
[0067] 本实用新型能够使用复杂的工作需求, 如当用户需对室内衣物有干衣需求吋, 本实用新型控制模块可通过对两组除湿组件的工作状态和三个控制的控制状态 进行调整, 使本实用新型适用于干衣模式。
[0068] 转轮式除湿组件包括一发热体 33, 而压缩式除湿组件包括一冷凝器 22, 这两个 部件均为释放热量的部件。 因此, 当空气经过热交换器 34吋会产生升温效果, 然后经过压缩机 23系统的蒸发器 21吋, 会降温并且部分水分被凝结在蒸发器 21 上, 之后经过冷凝器 22吋, 又会再次升温, 最后经过除湿轮 31吋, 再次的升温 并且其中的部分水分再一次被除湿轮 31给吸收。 从整个系统出来的空气相比原 来的环境空气为温度提升, 湿度降低, 为最有利干燥衣物的干燥热风。
[0069] 由于温度越高, 衣物上的水分蒸发速度越快, 本系统因为结合压缩式除湿组件 和转轮式除湿组件, 可以根据干衣环境的温度与湿度, 加上用户可输入的干衣 数量和干衣空间等信息, 电控模块可以在干衣的过程中, 选择幵启其一除湿组 件, 或者两者一起幵启, 来达到最有效率的干衣需求, 如干衣最短吋间需求或 者最节能干衣需求。
[0070] 在干衣的过程中, 首先衣物上面含水量在除湿机未启动吋为最高, 此吋, 用最 高温的干燥热风来吹向衣物吋, 能够快速的将其所含的水分快速蒸发出。 随着 衣物含水量降低吋, 在衣物蒸发的水量与除湿机系统本身需要的制造干燥热风 的干衣效率比值 (g/kW.h) 会越来越低, 此吋, 电控模块将其中一个除湿组件 关闭, 减少消耗的能源来提升干衣效率比值。 由于两种除湿组件的单独干衣效 率会根据当吋干衣环境的温度与湿度有不同的效果, 电控依据实验室所做出来 的结果来做幵启其中一个系统的判断。
[0071] 在干衣模式下, 电控模块能够根据干衣过程与环境温度和湿度的综合判断, 能 够同吋幵启两个除湿组件, 或者幵启 /关闭任一除湿组件, 来达到最高的干衣效 率 (g/kW.h) 。
[0072] 在实际使用吋, 在低温的环境下 (10°,60%) , 单独使用除湿轮 31吋, 除湿量 为 5L, 消耗功率为 600W, 其除湿效率 (除湿量 /消耗功率) =5U (600W*24H) =5L 4.4kW=0.347L kW。 单独使用压缩机 23除湿吋, 除湿量为 1.5L, 消耗功率 为 200W,其除湿效率 =1.5IJ (200W*24H) =1.5L/4.8kW=0.313L kW。 当两者同 吋幵启吋, 除湿量为 8L, 消耗功率为 800W,其除湿效率 =8IJ (800W*24H) =8L/1 9.2kW=0.417L kW。 从这三组数据, 本实用新型能够提升整体的除湿效率。 以上仅为本实用新型的较佳实施例而已, 并不用以限制本实用新型, 凡在本实 用新型的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本 实用新型的保护范围之内。

Claims

权利要求书
[权利要求 1] 一种除湿机系统,包括具有进气口、 出气口的主壳体, 其特征在于: 还包括设置于所述主壳体内的压缩式除湿组件、 转轮式除湿组件以及 风机,
所述压缩式除湿组件包括蒸发器、 冷凝器、 压缩机、 节流元件; 所述转轮式除湿组件包括除湿轮、 再生风机、 发热体以及设置有互不 连通的第一换热通道和第二换热通道的热交换器; 所述第一换热通道、 所述再生风机、 所述发热体、 所述除湿轮循环连 通形成再生循环风道;
所述进气口、 所述第二换热通道、 所述蒸发器、 所述风机及所述出气 口连通形成第一风道。
[权利要求 2] 如权利要求 1所述的除湿机系统, 其特征在于: 所述第一风道还包括 与所述冷凝器连通的风道, 所述进气口、 所述第二换热通道、 所述蒸 发器、 所述冷凝器、 所述风机及所述出气口依次连通。
[权利要求 3] 如权利要求 2所述的除湿机系统, 其特征在于: 所述第一风道还包括 与所述除湿轮连通的风道, 所述进气口、 所述第二换热通道、 所述蒸 发器、 所述冷凝器、 所述除湿轮、 所述风机及所述出气口依次连通。
[权利要求 4] 如权利要求 1至 3任一所述的除湿机系统, 其特征在于: 所述热交换器
、 所述蒸发器、 所述冷凝器、 所述除湿轮并列设置于所述主壳体内, 所述蒸发器的出口朝向所述冷凝器, 所述冷凝器的出口朝向所述除湿 轮。
[权利要求 5] 如权利要求 1所述的除湿机系统, 其特征在于: 还包括由所述进气口
、 所述冷凝器、 所述除湿轮、 所述风机及所述出气口连通形成的第二 风道。
[权利要求 6] 如权利要求 1所述的除湿机系统, 其特征在于: 还包括由所述进气口
、 所述冷凝器、 所述风机及所述出气口连通形成的第二风道, 及包括 由所述进气口、 所述除湿轮、 所述风机及所述出气口连通形成的第三 风道。
[权利要求 7] 如权利要求 3所述的除湿机系统, 其特征在于: 还包括由所进气口、 所述蒸发器、 所述冷凝器、 所述除湿轮、 所述风机及所述出气口连通 形成的第二风道。
[权利要求 8] 如权利要求 3所述的除湿机系统, 其特征在于: 还包括由所述进气口
、 所述冷凝器、 所述除湿轮、 所述风机及所述出气口连通形成的第二 风道。
[权利要求 9] 如权利要求 3所述的除湿机系统, 其特征在于: 还包括由所进气口、 所述蒸发器、 所述冷凝器、 所述除湿轮、 所述风机及所述出气口连通 形成的第二风道, 由所进气口、 所述冷凝器、 所述除湿轮、 所述风机 及所述出气口连通形成的第三风道, 及由所进气口、 所述除湿轮、 所 述风机及所述出气口连通形成的第四风道。
[权利要求 10] 如权利要求 9所述的除湿机系统, 其特征在于: 所述第二风道、 所述 第三风道、 所述第四风道内分别设置用于控制其风量大小及导通的控 制阀。
PCT/CN2016/090908 2016-07-08 2016-07-21 除湿机系统 WO2018006448A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16907952.2A EP3483515B1 (en) 2016-07-08 2016-07-21 Dehumidifier system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620720950.6U CN205957367U (zh) 2016-07-08 2016-07-08 除湿机系统
CN201620720950.6 2016-07-08

Publications (1)

Publication Number Publication Date
WO2018006448A1 true WO2018006448A1 (zh) 2018-01-11

Family

ID=57970368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090908 WO2018006448A1 (zh) 2016-07-08 2016-07-21 除湿机系统

Country Status (3)

Country Link
EP (1) EP3483515B1 (zh)
CN (1) CN205957367U (zh)
WO (1) WO2018006448A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006111A (zh) * 2019-04-23 2019-07-12 中国建筑科学研究院有限公司 环境控制一体机
CN112594801A (zh) * 2020-12-16 2021-04-02 广州奥斯德科技有限公司 节能热泵式转轮除湿机组

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106949572B (zh) * 2017-03-10 2022-09-23 江苏苏净集团有限公司 一种融霜除湿机及转轮式除湿机融霜方法
CN107560016B (zh) * 2017-09-27 2023-12-12 珠海格力电器股份有限公司 除湿系统及具有该除湿系统的除湿机
CN114570160A (zh) * 2022-03-03 2022-06-03 杭州瑞亚电气有限公司 一种单风机精滤转轮除湿机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3483649A (en) * 1968-10-29 1969-12-16 Us Interior Electrical trawl net system
CN202040908U (zh) * 2011-03-23 2011-11-16 广东申菱空调设备有限公司 冷凝热回收式复合型除湿机
CN102384539A (zh) * 2011-11-11 2012-03-21 江苏大学 一种空气源热泵与转轮除湿组合的复合空调系统
CN105276710A (zh) * 2014-07-25 2016-01-27 江苏豪森维尔科技有限公司 一种热回收式转轮除湿机组
CN105465914A (zh) * 2014-09-11 2016-04-06 南京五洲制冷集团有限公司 一种低温再生复合式转轮除湿机组

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5816065A (en) * 1996-01-12 1998-10-06 Ebara Corporation Desiccant assisted air conditioning system
US5732562A (en) * 1996-08-13 1998-03-31 Moratalla; Jose M. Method and apparatus for regenerating desiccants in a closed cycle
US9885486B2 (en) * 2010-08-27 2018-02-06 Nortek Air Solutions Canada, Inc. Heat pump humidifier and dehumidifier system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3483649A (en) * 1968-10-29 1969-12-16 Us Interior Electrical trawl net system
CN202040908U (zh) * 2011-03-23 2011-11-16 广东申菱空调设备有限公司 冷凝热回收式复合型除湿机
CN102384539A (zh) * 2011-11-11 2012-03-21 江苏大学 一种空气源热泵与转轮除湿组合的复合空调系统
CN105276710A (zh) * 2014-07-25 2016-01-27 江苏豪森维尔科技有限公司 一种热回收式转轮除湿机组
CN105465914A (zh) * 2014-09-11 2016-04-06 南京五洲制冷集团有限公司 一种低温再生复合式转轮除湿机组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006111A (zh) * 2019-04-23 2019-07-12 中国建筑科学研究院有限公司 环境控制一体机
CN112594801A (zh) * 2020-12-16 2021-04-02 广州奥斯德科技有限公司 节能热泵式转轮除湿机组

Also Published As

Publication number Publication date
EP3483515A4 (en) 2020-03-11
EP3483515B1 (en) 2023-09-06
EP3483515A1 (en) 2019-05-15
CN205957367U (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2018006448A1 (zh) 除湿机系统
KR101229676B1 (ko) 하이브리드 냉방 장치
CN209310455U (zh) 一种快速升温的复合开闭式热泵干燥系统
JP2014087797A (ja) 低消費電力の除湿装置
CN107490283A (zh) 可快速升温的热回收型调温热泵干燥装置及其运行方法
CN104805661B (zh) 智能空气能除湿干衣装置
US10689791B2 (en) High efficiency vented dryer having a heat pump system
CN105423457B (zh) 空调系统
CN107255411A (zh) 一种多功能热泵烘干装置
GB2507195A (en) A clothes dryer having expansion valves that are variable according to the driving mode
CN108955219A (zh) 热泵烘干系统
CN107101471A (zh) 一种空气源一体式烘干抽湿机及系统
CN109425067A (zh) 空气调节机及空气调节机的控制方法
CN207990944U (zh) 一种移动除湿烘干冷暖空调机
CN107990699B (zh) 一种整体式、正反循环空气源热泵烘干机组
CN100451467C (zh) 一种组合式空气处理方法和装置
KR102287900B1 (ko) 공기조화기
CN206638011U (zh) 一种多功能热泵型烘干机
TWI269016B (en) Movable multi-functional air-conditioner and its using method
CN108118507A (zh) 立柜式热泵节能干衣机及其工作方法
CN205803956U (zh) 热泵干衣机
CN204388551U (zh) 一种热泵除湿干燥机
KR20180078833A (ko) 공기 조화기 및 이의 제어방법
CN209147287U (zh) 空气处理设备
CN205860341U (zh) 一种多冷凝器并联的除湿新风机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE