WO2018006185A1 - 控制岩土层中超额孔隙水压装置 - Google Patents

控制岩土层中超额孔隙水压装置 Download PDF

Info

Publication number
WO2018006185A1
WO2018006185A1 PCT/CN2016/000362 CN2016000362W WO2018006185A1 WO 2018006185 A1 WO2018006185 A1 WO 2018006185A1 CN 2016000362 W CN2016000362 W CN 2016000362W WO 2018006185 A1 WO2018006185 A1 WO 2018006185A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pipe
layer
hydrostatic pressure
inlet pipe
Prior art date
Application number
PCT/CN2016/000362
Other languages
English (en)
French (fr)
Inventor
章致一
Original Assignee
章致一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 章致一 filed Critical 章致一
Priority to PCT/CN2016/000362 priority Critical patent/WO2018006185A1/zh
Publication of WO2018006185A1 publication Critical patent/WO2018006185A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D31/00Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
    • E02D31/10Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against soil pressure or hydraulic pressure
    • E02D31/12Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against soil pressure or hydraulic pressure against upward hydraulic pressure

Definitions

  • the invention relates to a device for controlling excess pore water pressure in a rock layer, in particular to a construction structure for reducing water pressure or controlling water pressure under the building structure.
  • the aforementioned deep building structure although achieving the purpose of increasing space and reducing cost, has the following disadvantages: (1)
  • the overall weight of the structure is light, and when the groundwater level is high, the weight of the structure cannot balance the soil layer.
  • the upward buoyancy of the groundwater level causes the base plate of the structure to withstand excessive buoyancy.
  • the problem of the overall floating of the structure may cause the rupture of the base plate;
  • the groundwater level slope The pore pressure and the buoyancy of the groundwater are large and small, and the buoyancy of the base plate is different. After a long time, the base plate and the structure are inclined.
  • the existing construction methods or techniques include: (1) foundation tank rockfill weighting method, (2) anti-floating pile method, (3) Anti-floating anchor method, (4) structural emphasis method.
  • the shortcomings or problems of the existing construction methods or technologies are as follows: (1) the construction efficiency is fixed, (2) it cannot be adjusted with the change of the groundwater level of the soil layer environment, (3) the construction is not easy, the construction period is long, and the cost is high. (4) It is not applicable to all soil properties, (5) it is necessary to pre-drill the soil layer and test piles, (6) the tension of the ground anchor must be adjusted, and it is impossible to prevent corrosion for a long time. (7) Additional construction, increase engineering cost, Inconvenience, (8) to reduce the space available inside the structure, etc., there is still room for improvement.
  • an object of the present invention is to provide a structural foundation that can effectively control the water pressure of the substrate and effectively control the collection of pressure-type water seepage, thereby balancing the load of the base plate. Match, to avoid the structure is slowly tilted as a whole.
  • Another object of the present invention is to provide a structural foundation having a water buoyancy control function of a foundation, which can compensate for the failure of the uplift pile or other anti-floating structure function, and can ensure the long-term performance of the unfailed uplift pile or other anti-floating structure. .
  • the present invention provides an apparatus for controlling an excess pore water pressure in a geotechnical layer, comprising: at least one filtration water collection device and at least one reduced pressure water inlet device.
  • the filtering water collecting device is disposed under the building structure, and the filtering water collecting device comprises at least one water collecting pipe and at least one hydrostatic pressure releasing pipe.
  • the water collecting pipe is horizontally disposed on the base plate.
  • the hydrostatic pressure release tube is vertically connected to the header, and the hydrostatic pressure release tube passes down through the base plate, the plain concrete layer and into the geotechnical layer.
  • the reduced pressure water inlet device is assembled in the base water tank and includes at least one inlet pipe, at least one check valve, and at least one outlet pipe.
  • the inlet pipe is in communication with a water collecting pipe of the filtering water collecting device.
  • the check valve is disposed in the passage of the water inlet pipe to define the flow direction of the seepage water in the water inlet pipe, so that the seepage water in the water inlet pipe can only be unidirectional from the water collecting pipe of the water collecting device to the water inlet pipe. flow.
  • the outlet pipe is connected to the inlet pipe.
  • the hydrostatic pressure release pipe absorbs the seepage water in the geotechnical layer and sends the seepage water into the basic water tank through the water collecting pipe, the water inlet pipe, the check valve and the outlet pipe.
  • the hydrostatic pressure release tube is composed of a laminated multi-layer structure, and the multi-layer structure includes a porous water conduit, an asymmetric flow guiding layer and an inner and outer portion. High permeability barrier filter layer.
  • the filter water collecting device comprises a plurality of parallel distributed hydrostatic pressure release tubes, and each of the two hydrostatic pressure release tubes has a spacing therebetween.
  • the water collecting device is used to collect the water with high water pressure in the soil layer under the base plate, and the water inflow into the decompression water inlet device through the water collecting pipe and the water inlet pipe
  • the outlet pipe is discharged into the basic water tank to reduce the groundwater pressure below the base plate and increase the weight of the base water tank above the base plate, thereby reducing and controlling the uplift or pore pressure of the base plate (Pore water pressure). ), to prevent the basic base plate from being unevenly tilted due to uneven load distribution.
  • Figure 1 is a cross-sectional view showing the structure of a preferred embodiment of the present invention
  • Figure 2 is a partial enlarged view of a region A in Figure 1;
  • Figure 3 is a perspective cross-sectional view of the hydrostatic pressure release tube.
  • FIG. 1 is a cross-sectional view showing the structure of a preferred embodiment of the present invention
  • FIG. 2 is a partially enlarged view of a region A of FIG.
  • the excess pore water pressure device for controlling the rock layer provided by the invention comprises: at least one filter water collecting device and at least one pressure reducing water inlet device.
  • the filtering water collecting device is disposed under the building structure, and the filtering water collecting device includes a plurality of hydrostatic pressure releasing pipes 11 and a water collecting pipe 12.
  • the water collection tube 12 is horizontally disposed on the base plate 30.
  • the hydrostatic pressure release pipe 11 is vertically connected to the water collection pipe 12, and the hydrostatic pressure is released.
  • the discharge pipe 11 passes down through the base plate 30, the plain concrete layer 35 and into the geotechnical layer 40.
  • the filter water collection device includes a plurality of parallel hydrostatic pressure relief tubes 11 with a spacing between each of the two hydrostatic pressure relief tubes 11. The number and spacing of the hydrostatic pressure release tubes 11 can be adjusted according to actual needs.
  • FIG. 3 A perspective cross-sectional view of a hydrostatic pressure release tube 11 in accordance with a preferred embodiment of the present invention is shown in FIG.
  • the hydrostatic pressure release pipe 11 is composed of a laminated multi-layer structure, and the multi-layer structure includes a porous water conduit 111 from the inside to the outside.
  • the reduced pressure water inlet device is disposed in the base water tank 31.
  • the reduced pressure water inlet device includes at least one inlet pipe 21, at least one check valve 22, and at least one outlet pipe 24.
  • the inlet pipe 21 is in communication with the water collection pipe 12 of the filtration water collecting device.
  • the check valve 22 is disposed in the passage of the inlet pipe 21 to define a flow direction of the seepage water in the inlet pipe 21, so that the seepage water in the inlet pipe 21 can only be collected from the collection of the water collecting device.
  • the water pipe 12 flows in one direction in the direction of the inlet pipe 21. In this way, the reverse flow of the seepage water and the entrained air can be prevented from entering the water collecting pipe 12, thereby preventing the carbon dioxide (CO 2 ) in the air from interacting with mineral ions such as calcium ions Ca++, silicon ions Si++, etc. in the seepage water, thereby further
  • the production of minerals such as calcium carbonate CaCO 3 , silicon carbonate SiCO 3 ... causes fouling of the water collecting pipe 12 and the inlet pipe 21 and the like.
  • the outlet pipe 24 is connected to the inlet pipe 21.
  • the water outlet of the outlet pipe 24 is lower than the water level surface 311 of the base water tank 31, and the carbon dioxide (CO 2 ) in the air interacts with mineral ions in the seepage water to generate a mineral knot when the seepage water flows out.
  • the scale blocks the water outlet of the outlet pipe 24.
  • a flow meter 241 may be disposed at the outlet pipe 24 for measuring the amount of seepage water, thereby observing and monitoring the water level and water pressure of the groundwater in the rock layer 40.
  • At least one exhaust valve 23 may be disposed at the top of the inlet pipe 21 at the reduced pressure water inlet device.
  • the position of the exhaust valve 23 is higher than the water level surface 311 of the base water tank 31.
  • the exhaust valve 23 can be used to collect and discharge air or gas entrained by the seepage water in the inlet pipe 21, thereby effectively reducing the air or gas of the seepage water and reducing the action of mineral ions in the carbon dioxide (CO 2 ) and the seepage water. And mineral fouling occurs.
  • the opening and closing valve 213 of the inlet pipe 21 of the decompression water inlet device is in an open state.
  • the hydrostatic pressure release pipe 11 of the filtration water collecting device absorbs the geotechnical layer below the base plate 30
  • the underground seepage water in 40, and the physical impurities such as earth and stone blocks, garbage, debris and the like are filtered by the high-permeability flow-removing filter layer 113, and the seepage water is sent into the water collecting pipe 12.
  • the seepage water flowing into the water collection pipe 12 is then sent to the inlet pipe 21 of the decompression water inlet device and passed through the check valve 22.
  • the air and gas in the seepage water are discharged upward through the exhaust valve 23, and the seepage water continues to flow into the outlet pipe 24, and the outlet of the outlet pipe 24 is discharged below the water level surface 311 in the base water tank 31 to reduce the groundwater pressure. And increase the total weight of the base water tank 31 to balance structural weight and groundwater buoyancy.
  • the water level surface 311 of the base water tank 31 is set by calculating the total weight of the base water tank 31, and at least one discharge pipe 312 can be disposed on the side of the base water tank 31.
  • the height of the discharge pipe 312 is the same as the set water level surface 311 by the discharge pipe. 312 discharges water above the water level surface 311 into the wastewater pool of the structure or discharges.
  • the water pressure of the underground seepage water and the buoyancy generated by it often change with the surrounding environment, so the water pressure and the buoyancy of the underground seepage water in the geotechnical layer 40 below the basic bottom plate 30 will not maintain a certain value, only When the water pressure and its buoyancy exceed the total weight threshold of the structure, it is only necessary to use the excess pore water pressure device in the controlled rock layer of the present invention to perform the water pressure reduction action.
  • the excess pore water pressure device for controlling the rock layer of the invention can effectively control the base water pressure and effectively control the structure foundation for reducing the pressure type water seepage, thereby balancing the load distribution of the foundation plate to avoid the overall structural slow inclination.
  • it can make up for the failure of uplift piles or other anti-floating structures, and can guarantee the long-term performance of unfailed uplift piles or other anti-floating structures.

Abstract

一种控制岩土层中超额孔隙水压装置,包括:至少一过滤集水装置以及至少一减压进水装置。所述的过滤集水装置设置于建筑结构体下方,且过滤集水装置包括至少一集水管(12)以及至少一静水压力释放管(11),集水管(12)水平地设置于基础底版(30)上,所述的静水压力释放管(11)垂直地与集水管(12)连通,且静水压力释放管(11)向下穿过基础底版(30)、素混凝土层(35)并延伸到岩土层(40)中;所述的减压进水装置组设于基础水箱(31)中,并且包括至少一进水管(21)、至少一逆止阀(22)以及至少一出水管(24),其中,静水压力释放管(11)吸收岩土层中的渗流水并将渗流水经由集水管(12)、进水管(21)、逆止阀(22)以及出水管(24)送进基础水箱(31)中。

Description

控制岩土层中超额孔隙水压装置 技术领域
本发明涉及一种控制岩土层中超额孔隙水压装置,特别关于一种位于建筑结构体下方用以减水压或控制水压的施工结构。
背景技术
人口集中的都会区,由于人口众多而可用的土地相对狭小,加以都市计划的建蔽率限制,可用的土地面积更加缩小,是以,各种建筑结构体只有向上增高、向下加深以增加可用的内部空间,同时利用现代建筑技术及新式建材,尽量减少柱、梁、墙、板的体积,使外部体积相同的结构体能有更多的内部空间,又有效降低了整体的建筑、施工成本。
然而,前述的深层建筑物结构体,虽然达到增加空间、降低成本的目的,却也产生缺点如下:(1)结构体整体重量轻,当地下水位较高时,结构体的重量无法平衡土壤层中地下水位的向上浮力,使结构体的基础底版承受过大的上浮力,当超过荷重临界时,有结构体整体上浮的问题,或将造成基础底版的破裂;(2)地下水位坡降,孔隙压及地下水的上浮力大、小不均,基础底版所承受的上浮力不同,长时间后造成基础底版及结构体的倾斜。
为了解决上述地下水的浮力及孔隙压对于深层建筑物结构体所造成的问题,现有施工法或技术有:(1)基础水箱填石加重法,(2)抗浮基桩法,(3)抗浮地锚法,(4)结构加重法。然而,现有施工法或技术的通体缺点或问题如下:(1)施工功效为固定,(2)无法随土层环境的地下水位变化而调整,(3)施工不易、工期长、成本高,(4)不能通体适用于所有土层特性,(5)需要预先钻探土层及试桩,(6)须调整地锚的拉力,无法长时间防腐锈,(7)额外施工,增加工程成本,造成不便,(8)减少结构体内部可用空间等问题,是以仍有改良的空间。
发明内容
基于上述理由,本发明的目的在于提供一种可以有效控制基底水压力,并且有效控制集减少压力型渗水的结构体基础,藉以平衡基础底版的荷重分 配,避免结构整体缓慢倾斜。
本发明的另一目的在于提供一种具有基底水浮力调控功能的结构体基础,其可以弥补失效抗拔桩或其他抗浮结构功能,并且可以保障未失效抗拔桩或其他抗浮结构长期效能。
为达成前述目的,本发明提供一种控制岩土层中超额孔隙水压装置,包括:至少一过滤集水装置以及至少一减压进水装置。所述的过滤集水装置设置于建筑结构体下方,且过滤集水装置包括至少一集水管以及至少一静水压力释放管。集水管水平地设置于基础底版上。所述的静水压力释放管垂直地与集水管连通,且静水压力释放管向下穿过基础底版、素混凝土层并延伸到岩土层中。所述的减压进水装置组设于基础水箱中,并且包括至少一进水管、至少一逆止阀以及至少一出水管。所述的进水管与过滤集水装置的集水管连通。所述的逆止阀设置于进水管的通道中,用以限定进水管中的渗流水的流向,使进水管中的渗流水仅能从过滤集水装置的集水管往进水管的方向单向流动。所述的出水管与进水管连接。其中,静水压力释放管吸收岩土层中的渗流水并将渗流水经由集水管、进水管、逆止阀以及出水管送进基础水箱中。
根据本发明的一实施例,所述的静水压力释放管是由层叠包覆的多层结构所组成,且多层结构由内而外包括一多孔导水管、一非对称导流层以及一高渗透阻流滤层。
根据本发明的一实施例,过滤集水装置包括多个平行分布的静水压力释放管,且每两个静水压力释放管间皆具有一间距。
透过本发明所提供的控制岩土层中超额孔隙水压装置,由过滤集水装置将基础底版下方土层中水压过高的水收集,经由集水管、进水管流入减压进水装置而由出水管排放于基础水箱中,使基础底版下方的地下水压降低、基础底版上方的基础水箱重量增加,藉以达到减低及控制基础底版所承受的上浮力(Uplift)或孔隙压力(Pore water pressure),防止基础底版因荷重分布不均匀而造成结构整体缓慢倾斜的目的。
附图说明
图1为本发明较佳实施例的结构剖视示意图;
图2为图1中区域A的局部放大图;以及
图3为静水压力释放管的立体剖视图。
其中,附图标记说明如下:
11  静水压力释放管
111 多孔导水管
112 非对称导流层
113 高渗透阻流滤层
12  集水管
21  进水管
213 开关阀门
22  逆止阀
23  排气阀
24  出水管
241 流量表
30  基础底版
31  基础水箱
311 水位面
312 排放管
35  素混凝土层
40  岩土层
A   区域
具体实施方式
以下配合图式及附图标记对本发明的实施方式做更详细的说明,使熟悉本领域的技术人员在研读本说明书后能据以实施。
图1为本发明较佳实施例的结构剖视示意图,图2为图1中区域A的局部放大图。本发明所提供的控制岩土层中超额孔隙水压装置,包括:至少一过滤集水装置以及至少一减压进水装置。
如图1与图2所示,过滤集水装置设置于建筑结构体下方,且过滤集水装置包括多条静水压力释放管11以及集水管12。集水管12水平地设置于基础底版30上。静水压力释放管11垂直地与集水管12连通,且静水压力释 放管11向下穿过基础底版30、素混凝土层35并延伸到岩土层40中。在本发明的较佳实施例中,过滤集水装置包括多个平行分布的静水压力释放管11,且每两个静水压力释放管11间皆具有一间距。静水压力释放管11的数量与间距可以因应实际需求进行调整。
图3中显示了根据本发明较佳实施例的静水压力释放管11的立体剖示图。如图3所示,在本发明的较佳实施例中,静水压力释放管11是由层叠包覆的多层结构所组成,且多层结构由内而外包括一多孔导水管111、一非对称导流层112以及一高渗透阻流滤层113。
以下,将配合图1针对减压进水装置的结构进行说明。所述的减压进水装置组设于基础水箱31内。在本发明的实施例中,减压进水装置包括:至少一进水管21、至少一逆止阀22以及至少一出水管24。
所述的进水管21与所述过滤集水装置的集水管12连通。所述的逆止阀22设置于所述进水管21的通道中,用以限定进水管21中的渗流水的流向,使所述进水管21中的渗流水仅能从过滤集水装置的集水管12往进水管21的方向单向流动。如此一来,可以防止渗流水逆向回流、夹带空气进入集水管12中,藉此避免空气中的二氧化碳(CO2)与渗流水中的钙离子Ca++、硅离子Si++...等矿物离子作用,进而产生如碳酸钙CaCO3、碳酸硅SiCO3...等矿物质,导致集水管12以及进水管21等结构结垢阻塞。
所述的出水管24与所述进水管21连接。在本发明的实施例中,出水管24的出水口低于基础水箱31的水位面311,避免渗流水流出时,空气中的二氧化碳(CO2)与渗流水中的矿物离子作用而产生矿物质结垢阻塞出水管24的出水口。此外,出水管24处可以设置一流量表241,用以量测渗流水量,藉此观测并监控岩土层40中地下水的水位、水压。
在本发明的实施例中,于减压进水装置于进水管21顶端可以设置至少一排气阀23。排气阀23的位置高于基础水箱31的水位面311。排气阀23可以用于收集进水管21中渗流水所挟带的空气或气体并将其排出,藉此有效减少渗流水的空气或气体而减少二氧化碳(CO2)与渗流水中的矿物离子作用而产生矿物质结垢现象。
本发明在具体实施时,减压进水装置的进水管21的开关阀门213为开启状态。过滤集水装置的静水压力释放管11会吸收基础底版30下方岩土层 40中的地下渗流水,并利用高渗透阻流滤层113将其中的土石粒块、垃圾、残屑等等物理性杂物过滤后,将渗流水送入集水管12中。流入集水管12中的渗流水接着被送进减压进水装置的进水管21中并通过逆止阀22。渗流水中的空气、气体会向上经由排气阀23排出,而渗流水则继续流入出水管24,由出水管24的出水口排放于基础水箱31中的水位面311下方,达到减低地下水压的目的,并增加基础水箱31的总重量,藉以平衡结构体重力及地下水浮力。
基础水箱31的水位面311经计算基础水箱31总重量而设定,可在基础水箱31侧边设至少一排放管312,该排放管312的高度与设定水位面311相同,藉由排放管312将高出水位面311的水排放入结构体的废水池或放流。
此外,地下渗流水的水压及其产生的上浮力常会随着周遭环境变化,所以基础底版30下方岩土层40中的地下渗流水的水压及其上浮力也不会保持一定值,只有在水压及其上浮力超过结构体的总重临界值时,才需要利用本发明的控制岩土层中超额孔隙水压装置进行减水压的动作。
本发明的控制岩土层中超额孔隙水压装置,可以有效控制基底水压力,并且有效控制集减少压力型渗水的结构体基础,藉以平衡基础底版的荷重分配,避免结构整体缓慢倾斜。此外,其可以弥补失效抗拔桩或其他抗浮结构功能,并且可以保障未失效抗拔桩或其他抗浮结构长期效能。
由以上实施例可知,本发明所提供的控制岩土层中超额孔隙水压装置确具产业上的利用价值,以上的叙述仅为本发明的较佳实施例说明,熟悉本领域的技术人员可依据上述的说明而作其它种种的改良,这些改变仍属于本发明的精神及以下所界定的专利范围中。

Claims (3)

  1. 一种控制岩土层中超额孔隙水压装置,其特征在于,包括:
    至少一过滤集水装置,设置于建筑结构体下方,该过滤集水装置包括至少一集水管以及至少一静水压力释放管,其中,该集水管水平地设置于基础底版上,该至少一静水压力释放管垂直地与该集水管连通,且该至少一静水压力释放管向下穿过该基础底版、素混凝土层并延伸到岩土层中;以及
    至少一减压进水装置,组设于一基础水箱中,该减压进水装置包括:
    至少一进水管,与该过滤集水装置的该集水管连通;
    至少一逆止阀,设置于该进水管的通道中,该逆止阀限定该进水管中的渗流水的流向,使该进水管中的渗流水仅能从该过滤集水装置的该集水管往该进水管的方向单向流动;以及
    至少一出水管,与该进水管连接;
    其中,该静水压力释放管吸收该岩土层中的渗流水并将渗流水经由该集水管、该进水管、该逆止阀以及该出水管送进该基础水箱中。
  2. 根据权利要求1所述的控制岩土层中超额孔隙水压装置,其特征在于,该静水压力释放管是由层叠包覆的多层结构所组成,且该多层结构由内而外包括一多孔导水管、一非对称导流层以及一高渗透阻流滤层。
  3. 根据权利要求1所述的控制岩土层中超额孔隙水压装置,其特征在于,该过滤集水装置包括多个平行分布的该静水压力释放管,且每两个该静水压力释放管间皆具有一间距。
PCT/CN2016/000362 2016-07-05 2016-07-05 控制岩土层中超额孔隙水压装置 WO2018006185A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/000362 WO2018006185A1 (zh) 2016-07-05 2016-07-05 控制岩土层中超额孔隙水压装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/000362 WO2018006185A1 (zh) 2016-07-05 2016-07-05 控制岩土层中超额孔隙水压装置

Publications (1)

Publication Number Publication Date
WO2018006185A1 true WO2018006185A1 (zh) 2018-01-11

Family

ID=60901455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000362 WO2018006185A1 (zh) 2016-07-05 2016-07-05 控制岩土层中超额孔隙水压装置

Country Status (1)

Country Link
WO (1) WO2018006185A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111501815A (zh) * 2020-04-01 2020-08-07 中国建筑第八工程局有限公司 取代抗浮锚杆的塔吊基础结构及施工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200996153Y (zh) * 2006-10-13 2007-12-26 中联工程顾问股份有限公司 基础板减水压结构
CN102296589A (zh) * 2011-06-02 2011-12-28 浙江大学 一种井点抽水控制群管虹吸的地基降排水方法
JP2013060797A (ja) * 2011-09-14 2013-04-04 Tomotake Shigemori 液状化現象によるマンホールの浮上防止装置
CN105350515A (zh) * 2015-11-27 2016-02-24 上海长凯岩土工程有限公司 一种加肋的降水井管
CN105672370A (zh) * 2016-03-21 2016-06-15 上海长凯岩土工程有限公司 一种地下工程用水压控制系统
CN205776409U (zh) * 2016-07-05 2016-12-07 中联工程顾问股份有限公司 控制岩土层中超额孔隙水压装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200996153Y (zh) * 2006-10-13 2007-12-26 中联工程顾问股份有限公司 基础板减水压结构
CN102296589A (zh) * 2011-06-02 2011-12-28 浙江大学 一种井点抽水控制群管虹吸的地基降排水方法
JP2013060797A (ja) * 2011-09-14 2013-04-04 Tomotake Shigemori 液状化現象によるマンホールの浮上防止装置
CN105350515A (zh) * 2015-11-27 2016-02-24 上海长凯岩土工程有限公司 一种加肋的降水井管
CN105672370A (zh) * 2016-03-21 2016-06-15 上海长凯岩土工程有限公司 一种地下工程用水压控制系统
CN205776409U (zh) * 2016-07-05 2016-12-07 中联工程顾问股份有限公司 控制岩土层中超额孔隙水压装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111501815A (zh) * 2020-04-01 2020-08-07 中国建筑第八工程局有限公司 取代抗浮锚杆的塔吊基础结构及施工方法

Similar Documents

Publication Publication Date Title
CN108457285B (zh) 一种超深坑中坑敞开式降水工法
CN200996153Y (zh) 基础板减水压结构
CN112144584A (zh) 自流排水限压抗浮结构及施工方法
CN105625483B (zh) 一种地下工程用水压控制方法
CN205776409U (zh) 控制岩土层中超额孔隙水压装置
WO2017193226A1 (zh) 控制基础底版下静水压装置
US5228805A (en) Water pressure reducing structure of a raft foundation bottom plate
WO2018006185A1 (zh) 控制岩土层中超额孔隙水压装置
CN206279494U (zh) 一种淤泥质海岸人工沙滩减缓泥化的抽泥管廊系统
CN105672370B (zh) 一种地下工程用水压控制系统
CN212001207U (zh) 一种基坑止水降水的结构
KR100806259B1 (ko) 우수차집장치
CN201695412U (zh) 压差式自动安全抗浮装置
CN108166516B (zh) 基于海绵城市的降水井综合利用系统及利用方法
CN211596806U (zh) 适用于高承压地下水地基的暗排水系统
TWM529718U (zh) 控制岩土層中超額孔隙水壓裝置
CN214245855U (zh) 隔水控压抗浮结构
CN211816350U (zh) 一种用于控制潜水止水降水的结构
CN205742298U (zh) 控制基础底版下静水压装置
TWM526592U (zh) 控制基礎底版下靜水壓裝置
CN106522154B (zh) 一种淤泥质海岸人工沙滩减缓泥化的抽泥管廊系统
JP3777085B2 (ja) 地下貯留構造物の構築方法および地下貯留構造物
CN107386338B (zh) 一种房屋建筑基底排水减压设计结构
CN205530389U (zh) 一种地下工程用水压控制系统
CN214245858U (zh) 用于地下结构抗浮的排水结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907694

Country of ref document: EP

Kind code of ref document: A1