WO2017193226A1 - 控制基础底版下静水压装置 - Google Patents

控制基础底版下静水压装置 Download PDF

Info

Publication number
WO2017193226A1
WO2017193226A1 PCT/CN2016/000250 CN2016000250W WO2017193226A1 WO 2017193226 A1 WO2017193226 A1 WO 2017193226A1 CN 2016000250 W CN2016000250 W CN 2016000250W WO 2017193226 A1 WO2017193226 A1 WO 2017193226A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
layer
drainage
base plate
water collecting
Prior art date
Application number
PCT/CN2016/000250
Other languages
English (en)
French (fr)
Inventor
章致一
Original Assignee
章致一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 章致一 filed Critical 章致一
Priority to PCT/CN2016/000250 priority Critical patent/WO2017193226A1/zh
Publication of WO2017193226A1 publication Critical patent/WO2017193226A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D31/00Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
    • E02D31/10Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against soil pressure or hydraulic pressure
    • E02D31/12Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against soil pressure or hydraulic pressure against upward hydraulic pressure

Definitions

  • the invention relates to a hydrostatic device for controlling a base plate, in particular to a construction structure for reducing water pressure or controlling water pressure under the base plate of the structure.
  • the aforementioned deep building structure although achieving the purpose of increasing space and reducing cost, has the following disadvantages: (1)
  • the overall weight of the structure is light, and when the groundwater level is high, the weight of the structure cannot balance the soil layer.
  • the upward buoyancy of the groundwater level causes the base plate of the structure to withstand excessive buoyancy.
  • the problem of the overall floating of the structure may cause the rupture of the base plate;
  • the groundwater level slope The pore pressure and the buoyancy of the groundwater are large and small, and the buoyancy of the base plate is different. After a long time, the base plate and the structure are inclined.
  • the existing construction methods or techniques include: (1) foundation tank rockfill weighting method, (2) anti-floating pile method, (3) Anti-floating anchor method, (4) structural emphasis method.
  • the shortcomings or problems of the existing construction methods or technologies are as follows: (1) the construction efficiency is fixed, (2) it cannot be adjusted with the change of the groundwater level of the soil layer environment, (3) the construction is not easy, the construction period is long, and the cost is high. (4) It is not applicable to all soil properties, (5) it is necessary to pre-drill the soil layer and test piles, (6) the tension of the ground anchor must be adjusted, and it is impossible to prevent corrosion for a long time. (7) Additional construction, increase engineering cost, Inconvenience, (8) to reduce the space available inside the structure, etc., there is still room for improvement.
  • an object of the present invention is to provide a structural foundation suitable for continuous wall penetration into a water-impermeable layer for reducing and controlling the buoyancy of the base plate in deep foundation engineering. (Uplift) or Pore water pressure, in order to balance the load distribution of the base plate, to avoid the overall structural slow tilt.
  • the present invention provides a hydrostatic pressure device for controlling a base plate, comprising: at least one filter water collecting device and at least one pressure reducing water inlet device.
  • the filter water collecting device is disposed between the bottom of the base plate and the soil layer, and the filter water collecting device comprises at least one engineering filter layer, at least one filter water collecting pipe, at least one drainage layer and at least one waterproof layer.
  • the above layers are sequentially placed from below to below the base plate and the soil layer.
  • the decompression water inlet device is disposed in a basic water tank above the base plate, and the decompression water inlet device comprises: at least one inlet pipe connected to the filter collecting pipe of the filtering water collecting device; at least one check valve Provided in the passage of the water inlet pipe to define the flow direction of the seepage water in the water inlet pipe, so that the seepage water in the water inlet pipe can only be from the filter water collecting pipe of the water collecting device to the water inlet pipe And flowing; and at least one outlet pipe is connected to the inlet pipe.
  • the drainage layer in the filtering water collecting device is a drainage grid.
  • the drainage grid is composed of a plurality of wire meshes arranged in parallel and a plurality of connecting ribs arranged in parallel, the connecting ribs having an angle with respect to the wire mesh, the connecting ribs being disposed on the wire mesh for connecting and fixing Said network cable. Furthermore, one side of the connecting rib of the drainage grid is placed in the direction of the base plate.
  • each of the connecting ribs has a trapezoidal cross-sectional shape that is narrower and lower.
  • At least one second drainage layer is further disposed between the filtration water collection tube and the engineering filtration layer, and the second drainage layer has the same structure as the drainage layer.
  • the engineered filter layer is a hot melt type nonwoven fabric.
  • the outer portion of the filter water collecting tube is covered with a non-woven fabric.
  • the waterproof layer is a PE cloth.
  • the drainage grid has a thickness of 6.2 mm, the spacing between the connecting ribs of the drainage grid is 11.0 mm, and the spacing between the meshes of the drainage grid is 6.0 mm. .
  • the water collecting device is used to collect the water with high water pressure in the soil layer under the base plate, and the water collecting pipe and the water inlet pipe are flowed into the decompressing water inlet device. Discharged from the outlet pipe in the base tank, the groundwater pressure below the base plate is reduced, and the weight of the base tank above the base plate is increased, thereby reducing and controlling the uplift or Pore water pressure of the base plate. To prevent uneven distribution of the base plate due to load Uniformity causes the structure to tilt slowly as a whole.
  • FIG. 1 is a cross-sectional view showing the structure of an embodiment of the present invention.
  • Figure 2 is a partial cross-sectional view showing an embodiment of the present invention
  • Figure 3 is a cross-sectional view taken along line A-A of Figure 1;
  • FIG. 4A is a perspective view showing a drainage grid according to an embodiment of the present invention.
  • 4B is a cross-sectional view showing a drainage grid according to an embodiment of the present invention.
  • Figure 4C is a plan view showing a drainage grid in accordance with an embodiment of the present invention.
  • FIGS. 2 and 3 are respectively a partial cross-sectional view and a cross-sectional view taken along line A-A of the present invention, showing the arrangement state of each layer of the filter water collecting device and the connection relationship with the water inlet pipe.
  • the hydrostatic pressure device under the control base plate provided by the invention comprises: at least one filter water collecting device 10 and at least one decompression water inlet device 20.
  • the filter water collecting device 10 is disposed between the base plate 30 and the soil layer 40, and the filter water collecting device 10 includes at least one engineering filter layer 11, at least one filter water collecting pipe 12, at least one drainage layer 13 and At least one waterproof layer 14.
  • the above layers are sequentially placed from below to below the base plate 30 and the soil layer 40 from bottom to top.
  • each layer of the filtration and water device 10 will be further described in detail.
  • the engineering filter layer 11 is disposed above the soil layer 40; the engineering filter layer 11 is used to filter physical debris such as earth and stone particles, residues, and the like, and has high water permeability to prevent physical blockage of the filter water collecting device 10. situation.
  • the engineered filter layer 11 is a hot melt type nonwoven fabric for engineering use.
  • the hot-melt type non-woven fabric is formed by hot-melt high-polyethylene fiber press molding, which has acid and alkali resistance, non-corrosion, high water permeability and effectively prevents the passage of soil particles larger than #200 sieve.
  • the filter water collection pipe 12 is disposed in a pipeline between the engineering filtration layer 11 and the drainage layer 13 for filtering and collecting underground seepage water.
  • the outer portion of the filter header 12 is covered with a nonwoven fabric.
  • the drainage layer 13 is disposed between the filtration water collection tube 12 and the waterproof layer 14 as a flow passage for seepage water.
  • the drainage layer 13 is made of a material having high corrosion resistance and high compressive strength, such as high density polyethylene (HDPE), high density PVC (HPVC), high density PE, etc., to form a highly water-permeable grid structure.
  • the drainage layer 13 is a drainage grid as shown in Figs. 4A to 4C.
  • the drainage grid is composed of a plurality of mesh wires 131 arranged in parallel and a plurality of connecting ribs 132 arranged in parallel.
  • the connecting rib 132 has an angle with respect to the wire 131, and the connecting rib 132 is disposed on the wire 131 to connect and fix the wire.
  • each of the connecting ribs 132 has a trapezoidal cross-sectional shape of a narrow upper and a lower width, and the thickness t of the drainage grid is 6.2 mm.
  • the drainage grid The pitch P1 between each adjacent mesh line is 6.0 mm
  • the pitch P2 between each adjacent connecting rib 132 of the drainage grid is 11.0 mm.
  • connection rib 132 of the drainage grid is placed in the direction of the base plate 30, in other words, one side of the connection rib of the drainage grid. Place it up.
  • the adjacent drainage grids are combined by means of overlapping or docking, and the joints can be bundled by the belts.
  • the waterproof layer 14 is disposed between the unreinforced concrete and the drainage layer 13 under the base plate 30 to prevent the leakage of the seepage water by the leakage of earth and stone and debris in the drainage layer 13 when the unreinforced concrete is poured. aisle.
  • the waterproof layer 14 is a completely water-impermeable layer made of a water-impermeable, non-corrosive material such as a PVC or the like. In the embodiment of the present invention, high-strength impervious PE is not used as the waterproof layer 14.
  • the decompression water inlet device 10 is disposed in a base water tank 31 above the base plate 30.
  • the reduced pressure water inlet device 10 includes at least one inlet pipe 21, at least one check valve 22, and at least one outlet pipe 24.
  • the inlet pipe 21 is in communication with the filtration header 12 of the filtration water collecting device 10.
  • the check valve 22 is disposed in the passage of the inlet pipe 21 to define a flow direction of the seepage water in the inlet pipe 21, so that the seepage water in the inlet pipe 21 can only be filtered from the water collecting device 10.
  • the filter header pipe 12 flows in one direction in the direction of the inlet pipe 21. In this way, the reverse flow of the seepage water and the entrained air can be prevented from entering the filter water collecting pipe 12 and the drainage layer 13, thereby avoiding carbon dioxide (CO 2 ) in the air and calcium ions Ca++, silicon ions, Si++, etc. in the seepage water.
  • the action of mineral ions which in turn produces minerals such as calcium carbonate CaCO 3 , silicon carbonate SiCO 3 ..., causes fouling of the structure of the filter water collecting pipe 12, the drainage layer 13 and the inlet pipe 21 and the like.
  • the outlet pipe 24 is connected to the inlet pipe 21.
  • the water outlet of the outlet pipe 24 is lower than the water level surface 311 of the base water tank 31, and the carbon dioxide (CO 2 ) in the air interacts with mineral ions in the seepage water to generate a mineral knot when the seepage water flows out.
  • the scale blocks the water outlet of the outlet pipe 24.
  • a flow meter 241 may be disposed at the outlet pipe 24 for measuring the amount of seepage water, thereby observing and monitoring the water level and water pressure of the groundwater in the soil layer 40.
  • At least one exhaust valve 23 may be disposed at the top of the inlet pipe 21 at the reduced pressure water inlet device 20, and the position of the exhaust valve 23 is higher than the water level surface 311 of the base water tank 31.
  • the exhaust valve 23 can be used to collect and discharge air or gas entrained by the seepage water in the inlet pipe 21, thereby effectively reducing the air or gas of the seepage water and reducing the action of mineral ions in the carbon dioxide (CO 2 ) and the seepage water. And mineral fouling occurs.
  • the opening and closing valve 213 of the inlet pipe 21 of the decompression water inlet device 20 is in an open state.
  • the underground seepage water in the soil layer 40 below the base plate 30 is collected by the filter water collecting device 10, and the physical impurities such as earth and stone blocks, garbage, debris, and the like are filtered through the engineering filter layer 11, and then flowed in the drainage layer 13. .
  • the seepage water is collected by the filtration header pipe 12, flows into the inlet pipe 21 of the decompression water inlet device 20, and passes through the check valve 22.
  • the air and gas in the seepage water are discharged upward through the exhaust valve 23, and the seepage water continues to flow into the outlet pipe 24, and the outlet of the outlet pipe 24 is discharged below the water level surface 311 in the base water tank 31 to reduce the groundwater pressure. And increase the total weight of the base water tank 31 to balance structural weight and groundwater buoyancy.
  • the water level surface 311 of the base water tank 31 is set by calculating the total weight of the base water tank 31, and at least one discharge pipe 312 can be disposed on the side of the base water tank 31.
  • the height of the discharge pipe 312 is the same as the set water level surface 311 by the discharge pipe. 312 discharges water above the water level surface 311 into the wastewater pool of the structure or discharges.
  • the water pressure of the underground seepage water and the buoyancy generated by it often change with the surrounding environment, so the water pressure and buoyancy of the underground seepage water in the soil layer 40 below the basic bottom plate 30 will not maintain a certain value, only in When the water pressure and the buoyancy thereof exceed the total weight critical value of the structure, it is only necessary to perform the water pressure reduction operation by the decompression water inlet device 20 of the present invention.
  • At least one second drainage layer may be further disposed between the filtration header 12 and the engineered filtration layer 11.
  • the second drainage layer may have the same structure of the drainage grid as the drainage layer 13, thereby further enhancing the hydrophobic performance of the filtration water collection device.
  • the hydrostatic pressure device under the control basic plate of the invention has the advantages of shorter construction period than the traditional anti-floating pile technology, and the heavy-duty mechanical construction and transportation can be omitted because the anti-floating pile is omitted.
  • Abandoning earthwork and concrete thereby indirectly reducing water consumption, waste pollution and CO 2 emissions in the whole society, and reducing environmental pollution caused by construction; in addition, the hydrostatic device under the control basic plate of the present invention can improve the overall structure.
  • the base is not broken due to external water level changes, thus solving the problem and cost of the annual leakage repair of the existing anti-floating pile technology.
  • the hydrostatic pressure device under the control basic plate provided by the present invention has industrial utilization value, but the above description is only for explaining the preferred embodiment of the present invention, and is familiar with the field. Other modifications may be made by the skilled artisan in light of the above description, but such modifications are still within the spirit of the invention and the scope of the invention as defined below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Sewage (AREA)

Abstract

一种控制基础底版下静水压装置,包含:至少一过滤集水装置(10)以及至少一减压进水装置(20)。所述的过滤集水装置(10)设置于基础底版(30)下方与土层(40)之间,且所述过滤集水装置(10)包括至少一工程过滤层(11)、至少一过滤集水管(12)、至少一排水层(13)以及至少一防水层(14)。所述的减压进水装置(20)组设于基础底版上方的一基础水箱(31)内。减压进水装置(20)包括:至少一进水管(21)、至少一逆止阀(22)以及至少一出水管(24)。其中,所述过滤集水装置(10)中的排水层(13)为由平行排列的多条网线(131)以及平行排列的多条连接肋条(132)所组成的一排水格网。

Description

控制基础底版下静水压装置 技术领域
本发明涉及一种控制基础底版下静水压装置,特别关于一种位于结构体的基础底版下方用以减水压或控制水压的施工结构。
背景技术
人口集中的都会区,由于人口众多而可用的土地相对狭小,加以都市计划的建蔽率限制,可用的土地面积更加缩小,是以,各种建筑结构体只有向上增高、向下加深以增加可用的内部空间,同时利用现代建筑技术及新式建材,尽量减少柱、梁、墙、板的体积,使外部体积相同的结构体能有更多的内部空间,又有效降低了整体的建筑、施工成本。
然而,前述的深层建筑物结构体,虽然达到增加空间、降低成本的目的,却也产生缺点如下:(1)结构体整体重量轻,当地下水位较高时,结构体的重量无法平衡土壤层中地下水位的向上浮力,使结构体的基础底版承受过大的上浮力,当超过荷重临界时,有结构体整体上浮的问题,或将造成基础底版的破裂;(2)地下水位坡降,孔隙压及地下水的上浮力大、小不均,基础底版所承受的上浮力不同,长时间后造成基础底版及结构体的倾斜。
为了解决上述地下水的浮力及孔隙压对于深层建筑物结构体所造成的问题,现有施工法或技术有:(1)基础水箱填石加重法,(2)抗浮基桩法,(3)抗浮地锚法,(4)结构加重法。然而,现有施工法或技术的通体缺点或问题如下:(1)施工功效为固定,(2)无法随土层环境的地下水位变化而调整,(3)施工不易、工期长、成本高,(4)不能通体适用于所有土层特性,(5)需要预先钻探土层及试桩,(6)须调整地锚的拉力,无法长时间防腐锈,(7)额外施工,增加工程成本,造成不便,(8)减少结构体内部可用空间等问题,是以仍有改良的空间。
发明内容
基于上述理由,本发明的目的在于提供一种适用于连续壁贯入至不透水层中的结构体基础,用以减低及控制深基础工程中筏基底版所承受的上浮力 (Uplift)或孔隙压力(Pore water pressure),藉以平衡基础底版的荷重分配,避免结构整体缓慢倾斜。
为达成前述目的,本发明提供一种控制基础底版下静水压装置,其包括:至少一过滤集水装置以及至少一减压进水装置。所述的过滤集水装置设置于基础底版下方与土层之间,且所述过滤集水装置包括至少一工程过滤层、至少一过滤集水管、至少一排水层以及至少一防水层。上述各层分别依序由下而上排置于基础底版下方与土层之间。所述的减压进水装置组设于基础底版上方的一基础水箱,且减压进水装置包括:至少一进水管,与所述过滤集水装置的过滤集水管连通;至少一逆止阀,设置于所述进水管的通道中,用以限定该进水管中的渗流水的流向,使所述进水管中的渗流水仅能从过滤集水装置的过滤集水管往进水管的方向单向流动;以及,至少一出水管,与所述进水管连接。其中,所述过滤集水装置中的排水层为一排水格网。排水格网是由平行排列的多条网线以及平行排列的多条连接肋条所组成,所述连接肋条相对于所述网线具有一角度,所述连接肋条设置于所述网线上以连接并固定所述网线。此外,排水格网的所述连接肋条的一面朝向该基础底版的方向摆放。
根据本发明的一实施例,所述连接肋条中的每一个具有上窄下宽的梯形的剖面形状。
根据本发明的一实施例,所述过滤集水管以及工程过滤层之间进一步设置有至少一第二排水层,且第二排水层具有与排水层相同的结构。
根据本发明的一实施例,工程过滤层为一热熔型不织布。过滤集水管外部部分包覆有一不织布。此外,所述防水层为一PE布。
根据本发明的一实施例,所述排水格网的厚度为6.2mm,排水格网的所述连接肋条之间的间距为11.0mm,且排水格网的所述网线之间的间距为6.0mm。
透过本发明所提供的控制基础底版下静水压装置,由过滤集水装置将基础底版下方土层中水压过高的水收集,经由过滤集水管、进水管流入减压进水装置而由出水管排放于基础水箱中,使基础底版下方的地下水压降低、基础底版上方的基础水箱重量增加,藉以达到减低及控制基础底版所承受的上浮力(Uplift)或孔隙压力(Pore water pressure),防止基础底版因荷重分布不均 匀而造成结构整体缓慢倾斜的目的。
附图说明
图1为本发明一实施例的结构剖视示意图;
图2为本发明一实施例的局部剖视图;
图3为图1的A-A剖视图;
图4A为显示本发明一实施例的排水格网的立体图;
图4B为显示本发明一实施例的排水格网的剖面图;以及
图4C为显示本发明一实施例的排水格网的平面图。
其中,附图标记说明如下:
10  过滤集水装置
11  工程过滤层
12  过滤集水管
13  排水层
131 网线
132 连接肋条
14  防水层
20  减压进水装置
21  进水管
22  逆止阀
23  排气阀
24  出水管
241 流量表
30  基础底版
31  基础水箱
311 水位面
312 排放管
40  土层
t   厚度
P1、P2间距
具体实施方式
以下配合图式及附图标记对本发明的实施方式做更详细的说明,使熟悉本领域的技术人员在研读本说明书后能据以实施。
图1为本发明实施例的结构剖视示意图,图2、图3分别为本发明的局部剖视图、A-A断面剖视图,显示过滤集水装置的各层排列状态及与进水管的连接关系。本发明所提供的控制基础底版下静水压装置,包含:至少一过滤集水装置10以及至少一减压进水装置20。所述的过滤集水装置10设置于基础底版30下方与土层40之间,且所述过滤集水装置10包括至少一工程过滤层11、至少一过滤集水管12、至少一排水层13以及至少一防水层14。上述各层分别依序由下而上排置于基础底版30下方与土层40之间。以下,将先进一步针对过滤及水装置10的各层进行详细说明。
所述的工程过滤层11设于土层40上方;工程过滤层11用以过滤土石颗粒、残骸等等物理性的杂物,且具有高透水性,可防止过滤集水装置10的物理性阻塞状况。在本发明的实施例中,所述的工程过滤层11为工程用的热熔型不织布。热熔型不织布是透过热熔型高聚乙烯纤维压制成型,其具有耐酸碱、不腐爛、高透水性及有效防止大于#200筛土壤颗粒通过等特性。
所述的过滤集水管12设置于工程过滤层11与排水层13之间的管路,用以过滤及收集地下渗流水。在本发明的实施例中,过滤集水管12的外部部分包覆有不织布。
所述的排水层13是设置于过滤集水管12与防水层14之间,作为渗流水的流动通道。排水层13以不腐蚀、抗压强度高的材料,例如:高密度聚乙烯(HDPE)、高密度PVC(HPVC)、高密度PE等等,制成一种高透水性的格网结构。在本发明的实施例中,排水层13是采用如图4A~图4C中所示的排水格网。
如图4A~图4C所示,排水格网是由平行排列的多条网线131以及平行排列的多条连接肋条132所组成。连接肋条132相对于网线131具有一角度,且连接肋条132设置于网线上131以连接并固定所述网线。如图4B所示,在本发明的实施例中,连接肋条132中的每一个具有上窄下宽的梯形的剖面形状,且所述排水格网的厚度t为6.2mm。此外,如图4C所示,排水格网 的各个相邻的网线之间的间距P1为6.0mm,且排水格网的各个相邻的连接肋条132之间的间距P2为11.0mm。
在将上述的排水格网设置在过滤集水管12与防水层14之间时,排水格网的连接肋条132的一面朝向基础底版30的方向摆放,换言之,排水格网的连接肋条的一面朝上摆放。此外,在铺设排水格网时,相邻的排水格网之间是透过搭接或是对接的方式结合,且连接处可以透过束带绑扎。透过上述的排水格网,可以确保基底渗流水均匀疏导,维持水压力稳定符合设计要求。
所述的防水层14是设置于基础底版30下方的无筋混凝土与排水层13之间,用以防止灌制无筋混凝土时的土石、杂物渗漏于排水层13中而阻塞渗流水的流动通道。防水层14为完全不透水层,利用不透水、不腐蚀材料所制成,例如;PVC...等等不透水材料。在本发明的实施例中,是采用高强度不透水PE不作为防水层14。
以下,将配合图1针对减压进水装置10的结构进行说明。所述的减压进水装置10组设于基础底版30上方的一基础水箱31内。在本发明的实施例中,减压进水装置10包括:至少一进水管21、至少一逆止阀22以及至少一出水管24。
所述的进水管21与所述过滤集水装置10的过滤集水管12连通。所述的逆止阀22设置于所述进水管21的通道中,用以限定进水管21中的渗流水的流向,使所述进水管21中的渗流水仅能从过滤集水装置10的过滤集水管12往进水管21的方向单向流动。如此一来,可以防止渗流水逆向回流、夹带空气进入过滤集水管12及排水层13中,藉此避免空气中的二氧化碳(CO2)与渗流水中的钙离子Ca++、硅离子Si++...等矿物离子作用,进而产生如碳酸钙CaCO3、碳酸硅SiCO3...等矿物质,导致过滤集水管12、排水层13以及进水管21等结构结垢阻塞。
所述的出水管24与所述进水管21连接。在本发明的实施例中,出水管24的出水口低于基础水箱31的水位面311,避免渗流水流出时,空气中的二氧化碳(CO2)与渗流水中的矿物离子作用而产生矿物质结垢阻塞出水管24的出水口。此外,出水管24处可以设置一流量表241,用以量测渗流水量,藉此观测并监控土层40中地下水的水位、水压。
在本发明的实施例中,于减压进水装置20于进水管21顶端可以设置至 少一排气阀23,该排气阀23的位置高于基础水箱31的水位面311。排气阀23可以用于收集进水管21中渗流水所挟带的空气或气体并将其排出,藉此有效减少渗流水的空气或气体而减少二氧化碳(CO2)与渗流水中的矿物离子作用而产生矿物质结垢现象。
本发明在具体实施时,减压进水装置20的进水管21的开关阀门213为开启状态。基础底版30下方土层40中的地下渗流水由过滤集水装置10收集,经由工程过滤层11过滤其中的土石粒块、垃圾、残屑等等物理性杂物后,在排水层13中流动。接着,渗流水由过滤集水管12收集,流入减压进水装置20的进水管21中并通过逆止阀22。渗流水中的空气、气体会向上经由排气阀23排出,而渗流水则继续流入出水管24,由出水管24的出水口排放于基础水箱31中的水位面311下方,达到减低地下水压的目的,并增加基础水箱31的总重量,藉以平衡结构体重力及地下水浮力。
基础水箱31的水位面311经计算基础水箱31总重量而设定,可在基础水箱31侧边设至少一排放管312,该排放管312的高度与设定水位面311相同,藉由排放管312将高出水位面311的水排放入结构体的废水池或放流。
此外,地下渗流水的水压及其产生的上浮力常会随着周遭环境变化,所以基础底版30下方土层40中的地下渗流水的水压及其上浮力也不会保持一定值,只有在水压及其上浮力超过结构体的总重临界值时,才需要利用本发明的减压进水装置20进行减水压的动作。
在本发明的另一实施例中(未在图中示出),过滤集水管12以及工程过滤层11之间可以进一步设置有至少一第二排水层。第二排水层可以具有与排水层13相同的排水格网的结构,藉此进一步增进过滤集水装置的疏水性能。
本发明的控制基础底版下静水压装置,相较于传统的抗浮桩技术而言,除了具有较短工期的优点以外,由于省略了抗浮桩,因此可以不需要使用重型机械施工、运弃土方及混凝土,进而间接减少整体社会的用水、弃运污染及CO2的排放,并且减少施工时造成的环境污染;此外,本发明的控制基础底版下静水压装置更可以提升结构整体的安全性,保障基底不会因为外部水位变动而破裂,因而解决了现有抗浮桩技术年度渗漏维修的问题及费用。
由以上实施例可知,本发明所提供之控制基础底版下静水压装置确具产业上的利用价值,惟以上的叙述仅为本发明的较佳实施例说明,熟悉本领域 的技术人员可依据上述的说明而作其它种种的改良,惟这些改变仍属于本发明之精神及以下所界定的专利范围中。

Claims (7)

  1. 一种控制基础底版下静水压装置,其特征在于,包括:
    至少一过滤集水装置,设置于基础底版下方与土层之间,该过滤集水装置包括至少一工程过滤层、至少一过滤集水管、至少一排水层以及至少一防水层,其中,上述各层分别依序由下而上排置于基础底版下方与土层之间;
    至少一减压进水装置,组设于基础底版上方的一基础水箱,该减压进水装置系包括:
    至少一进水管,与该过滤集水装置的该过滤集水管连通;
    至少一逆止阀,设置于该进水管的通道中,该逆止阀限定该进水管中的渗流水的流向,使该进水管中的渗流水仅能从该过滤集水装置的该过滤集水管往该进水管的方向单向流动;以及
    至少一出水管,与该进水管连接;
    其中,该过滤集水装置中的该排水层为一排水格网,该排水格网是由平行排列的多条网线以及平行排列的多条连接肋条所组成,所述连接肋条相对于所述网线具有一角度,所述连接肋条系设置于所述网线上以连接并固定所述网线,且该排水格网的所述连接肋条的一面朝向该基础底版的方向摆放。
  2. 根据权利要求1所述的控制基础底版下静水压装置,其特征在于,所述连接肋条中的每一个具有上窄下宽的梯形的剖面形状。
  3. 根据权利要求1或2所述的控制基础底版下静水压装置,其特征在于,该过滤集水管以及该工程过滤层之间进一步设置有至少一第二排水层,且该第二排水层具有与该排水层相同的结构。
  4. 根据权利要求1所述的控制基础底版下静水压装置,其特征在于,该工程过滤层为一热熔型不织布。
  5. 根据权利要求1所述的控制基础底版下静水压装置,其特征在于,该过滤集水管外部部分包覆有一不织布。
  6. 根据权利要求1所述的控制基础底版下静水压装置,其特征在于,该排水格网的厚度为6.2mm,该排水格网的所述连接肋条之间的间距为11.0mm,且该排水格网的所述网线之间的间距为6.0mm。
  7. 根据权利要求1所述的控制基础底版下静水压装置,其特征在于,该 防水层为一PE布。
PCT/CN2016/000250 2016-05-09 2016-05-09 控制基础底版下静水压装置 WO2017193226A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/000250 WO2017193226A1 (zh) 2016-05-09 2016-05-09 控制基础底版下静水压装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/000250 WO2017193226A1 (zh) 2016-05-09 2016-05-09 控制基础底版下静水压装置

Publications (1)

Publication Number Publication Date
WO2017193226A1 true WO2017193226A1 (zh) 2017-11-16

Family

ID=60266161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000250 WO2017193226A1 (zh) 2016-05-09 2016-05-09 控制基础底版下静水压装置

Country Status (1)

Country Link
WO (1) WO2017193226A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108487331A (zh) * 2018-03-21 2018-09-04 东北大学 一种集廊道排水和肥槽防渗为一体的地下结构抗浮系统
CN111305282A (zh) * 2020-04-06 2020-06-19 福建工程学院 软弱富水地层地铁车站抗浮体系及其施工方法
CN111705846A (zh) * 2020-06-08 2020-09-25 金建工程设计有限公司 一种蓄水池及其设计计算方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228805A (en) * 1992-03-19 1993-07-20 Jeffery Chang Water pressure reducing structure of a raft foundation bottom plate
CN2152830Y (zh) * 1993-03-06 1994-01-12 章致一 筏基底板减水压结构
CN200996153Y (zh) * 2006-10-13 2007-12-26 中联工程顾问股份有限公司 基础板减水压结构
CN101353892A (zh) * 2007-07-24 2009-01-28 章致一 重力场的三度空间排水方法及其结构
CN101634152A (zh) * 2008-07-25 2010-01-27 高甫 高流量土工复合排水网及其生产方法
CN102409687A (zh) * 2011-09-24 2012-04-11 王奇伟 一种三维塑料拉伸网及其制作方法
CN205742298U (zh) * 2016-05-09 2016-11-30 中联工程顾问股份有限公司 控制基础底版下静水压装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228805A (en) * 1992-03-19 1993-07-20 Jeffery Chang Water pressure reducing structure of a raft foundation bottom plate
CN2152830Y (zh) * 1993-03-06 1994-01-12 章致一 筏基底板减水压结构
CN200996153Y (zh) * 2006-10-13 2007-12-26 中联工程顾问股份有限公司 基础板减水压结构
CN101353892A (zh) * 2007-07-24 2009-01-28 章致一 重力场的三度空间排水方法及其结构
CN101634152A (zh) * 2008-07-25 2010-01-27 高甫 高流量土工复合排水网及其生产方法
CN102409687A (zh) * 2011-09-24 2012-04-11 王奇伟 一种三维塑料拉伸网及其制作方法
CN205742298U (zh) * 2016-05-09 2016-11-30 中联工程顾问股份有限公司 控制基础底版下静水压装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108487331A (zh) * 2018-03-21 2018-09-04 东北大学 一种集廊道排水和肥槽防渗为一体的地下结构抗浮系统
CN111305282A (zh) * 2020-04-06 2020-06-19 福建工程学院 软弱富水地层地铁车站抗浮体系及其施工方法
CN111705846A (zh) * 2020-06-08 2020-09-25 金建工程设计有限公司 一种蓄水池及其设计计算方法
CN111705846B (zh) * 2020-06-08 2022-04-15 金建工程设计有限公司 一种蓄水池及其设计计算方法

Similar Documents

Publication Publication Date Title
US10267029B2 (en) Modular tessellation assembly for storage of water underground
WO2017193226A1 (zh) 控制基础底版下静水压装置
CN200996153Y (zh) 基础板减水压结构
CN112144584A (zh) 自流排水限压抗浮结构及施工方法
JP3660917B2 (ja) 雨水等を貯留及び/又は浸透する施設及びこの施設に使用する充填部材
CN205776409U (zh) 控制岩土层中超额孔隙水压装置
CN210684945U (zh) 一种雨水收集池
TWM526592U (zh) 控制基礎底版下靜水壓裝置
KR100806259B1 (ko) 우수차집장치
TW201311971A (zh) 地層構造維護與地下水補注儲存裝置
CN214245855U (zh) 隔水控压抗浮结构
CN205742298U (zh) 控制基础底版下静水压装置
CN210482215U (zh) 适于平原水库库盆的防渗排水排气结构
WO2018006185A1 (zh) 控制岩土层中超额孔隙水压装置
CN210658473U (zh) 一种装配式排水盲沟抗浮结构
CN209873496U (zh) 高速公路蒸发结构
CN112195980A (zh) 隔水控压抗浮结构及施工方法
CN206360052U (zh) 一种海绵式雨水渗透收排系统
KR102356194B1 (ko) 관로형 스크린부를 장착한 빗물침투형 저류 시스템
KR200426719Y1 (ko) 터널형 빗물 침투 및 저류 시스템
CN219951877U (zh) 船闸闸墙后排水系统
CN220013741U (zh) 一种应用于深基坑的抗浮盲沟排水体系
CN216405324U (zh) 一种淤地坝漂浮体控制柔性放水装置
CN219100282U (zh) 一种深基坑施工中水收集资源化利用系统
CN220620354U (zh) 一种地下液体导排系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901182

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901182

Country of ref document: EP

Kind code of ref document: A1