WO2018004297A1 - 저항복비 특성 및 저온인성이 우수한 고강도 강판 및 그 제조방법 - Google Patents

저항복비 특성 및 저온인성이 우수한 고강도 강판 및 그 제조방법 Download PDF

Info

Publication number
WO2018004297A1
WO2018004297A1 PCT/KR2017/006956 KR2017006956W WO2018004297A1 WO 2018004297 A1 WO2018004297 A1 WO 2018004297A1 KR 2017006956 W KR2017006956 W KR 2017006956W WO 2018004297 A1 WO2018004297 A1 WO 2018004297A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
low temperature
less
temperature toughness
ratio
Prior art date
Application number
PCT/KR2017/006956
Other languages
English (en)
French (fr)
Inventor
김우겸
방기현
엄경근
유승호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2018566924A priority Critical patent/JP6771047B2/ja
Priority to EP17820573.8A priority patent/EP3480332B1/en
Priority to CN201780039727.2A priority patent/CN109328240B/zh
Publication of WO2018004297A1 publication Critical patent/WO2018004297A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength steel sheet excellent in resistivity ratio and low temperature toughness and a method of manufacturing the same.
  • Steels with resistance yield ratio not only have excellent formability by increasing the difference between yield strength and tensile strength, but also delay the plastic deformation time until fracture can occur and absorb energy in this process to prevent collapse by external force. can do. In addition, even if there is a deformation, it is possible to repair before collapse, thereby preventing damage to property and life due to damage to the structure.
  • the technology of two phase organization of steel was developed. Specifically, the first phase is soft ferrite, and the remaining second phase is martensite, pearlite, or bainite, thereby implementing a resistance ratio.
  • the impact toughness due to the hard two phase and the carbon content is increased for the second phase, so that the toughness of the weld is degraded, thereby causing brittle fracture of the structure at low temperature.
  • Patent Literature 1 has been developed as a technique for securing both resistance ratio and low temperature impact toughness.
  • the microstructure includes 2-10 vol% of MA (martensite / austenite mixed structure) and 90 vol% or more of cyclic ferrite, thereby ensuring resistance ratio and excellent low temperature toughness.
  • Patent Document 1 it is possible to implement a yield ratio of about 0.8 but there is an insufficient problem to secure the seismic characteristics can not implement a sufficient resistance yield ratio.
  • Patent Document 1 Korean Unexamined Patent Publication No. 2013-0076577
  • One aspect of the present invention is to provide a high-strength steel sheet excellent in resistance ratio ratio characteristics and low temperature toughness and a method of manufacturing the same.
  • One aspect of the present invention is by weight, C: 0.03-0.08%, Si: 0.05-0.3%, Mn: 1.0-2.0%, Al: 0.005-0.04%, Nb: 0.005-0.04%, Ti: 0.001-0.02 %, Cu: 0.05-0.4%, Ni: 0.6-2.0%, Mo: 0.08-0.3%, N: 0.002-0.006%, P: 0.01% or less, S: 0.003% or less, including remaining Fe and unavoidable impurities ,
  • the microstructure includes 80 to 92% of ferrite and 8 to 20% of MA (martensite / austenite mixed structure) as an area fraction, and the MA has a resistivity ratio characteristic of 3 ⁇ m or less in average size measured in equivalent diameter and It relates to a high strength steel sheet excellent in low temperature toughness.
  • MA martensite / austenite mixed structure
  • another aspect of the present invention is by weight, C: 0.03-0.08%, Si: 0.05-0.3%, Mn: 1.0-2.0%, Al: 0.005-0.04%, Nb: 0.005-0.04%, Ti: 0.001 to 0.02%, Cu: 0.05 to 0.4%, Ni: 0.6 to 2.0%, Mo: 0.08 to 0.3%, N: 0.002 to 0.006%, P: 0.01% or less, S: 0.003% or less, remaining Fe and unavoidable impurities Heating the slab including 1050 to 1200 ° C;
  • T is a value measured in mm of the thickness of the hot rolled steel sheet.
  • the present invention can be applied not only to shipbuilding and marine structural steel fields but also to industrial fields requiring molding and seismic characteristics.
  • Test No. 1 is a photograph taken with a scanning electron microscope (SEM) of the microstructure of Test No. 1 as an example of the invention.
  • the present inventors are able to secure a yield ratio of about 0.8 in the prior art, but it is possible to secure a certain degree of moldability, but it is not possible to implement a sufficient resistance ratio, recognizing that there is an insufficient problem of securing seismic characteristics, and solved this. In order to study deeply.
  • the base material lacks the hardness difference from the MA as an ecuous ferrite, MA It was found that the phase was formed at grain boundaries and the MA size was coarse to achieve sufficient resistance ratio.
  • the microstructure of the base material is made of ferrite, and the fine MA phase is uniformly distributed in the ferrite grain boundary and the inside of the grain, so that a resistivity ratio of 0.65 or less can be secured. It was confirmed that the control to include, and came to complete the present invention.
  • High-strength steel sheet having excellent resistance ratio and low temperature toughness is a weight%, C: 0.03 ⁇ 0.08%, Si: 0.05 ⁇ 0.3%, Mn: 1.0 ⁇ 2.0%, Al: 0.005 ⁇ 0.04%, Nb: 0.005 to 0.04%, Ti: 0.001 to 0.02%, Cu: 0.05 to 0.4%, Ni: 0.6 to 2.0%, Mo: 0.08 to 0.3%, N: 0.002 to 0.006%, P: 0.01% or less, S: 0.003% or less, including the remaining Fe and inevitable impurities,
  • the microstructure includes 80 to 92% of ferrite and 8 to 20% of MA (martensite / austenite mixed structure) in an area fraction, and the MA has an average size of 3 ⁇ m or less measured in a circular equivalent diameter.
  • C is an element that causes solid solution strengthening and exists as carbonitride by Nb to secure tensile strength.
  • Si serves to deoxidize molten steel by assisting Al, and is added to secure yield strength and tensile strength.
  • the Si content is less than 0.05%, the above effects are insufficient.
  • the Si content is more than 0.3%, the impact property may be degraded by coarsening of the MA, and the welding property may be degraded.
  • Mn contributes greatly to the strength increasing effect by solid solution strengthening and is an element that helps to form bainite.
  • the Mn content is less than 1.0%, the above effects are insufficient. On the other hand, excessive addition may cause a decrease in toughness due to the formation of MnS inclusions and segregation of the central portion, so the upper limit is 2.0%.
  • Al needs to be added 0.005% or more as a major deoxidizer of steel. However, when added in excess of 0.04%, the effect is saturated and may cause low temperature toughness by increasing the fraction and size of Al 2 O 3 inclusions.
  • Nb is an element that suppresses recrystallization during rolling or cooling by precipitation of solid solution or carbonitride, thereby making the structure fine and increasing the strength.
  • the Nb content is less than 0.005%, the above effects are insufficient.
  • the Nb content is more than 0.04%, there is a problem that can lower the toughness of the base metal and the toughness after welding.
  • Ti combines with oxygen or nitrogen to form precipitates, thereby inhibiting coarsening of tissues and contributing to miniaturization and improving toughness.
  • Cu is a component that does not significantly reduce the impact characteristics, and thus improves strength by solid solution and precipitation. In order to sufficiently improve the strength, it should be contained in 0.05% or more, but when the Cu content is more than 0.4%, surface cracks of the steel sheet due to Cu thermal shock may occur.
  • Ni is an element that can improve strength and toughness at the same time as the increase in content is not great, and is an element that helps to form bainite by decreasing the Ar3 temperature.
  • the Ni content is less than 0.6%, the above effects are insufficient. On the other hand, when the Ni content is more than 2.0%, the manufacturing cost may increase and the weldability may deteriorate.
  • Mo is an austenite stabilizing element that affects the amount of MA and plays a large role in improving the strength. It is also an element that prevents a drop in strength during heat treatment and helps to form bainite.
  • N is an element that forms a precipitate with Ti, Nb, Al and the like to make the austenite structure fine when the slab is heated to help improve strength and toughness.
  • the N content is less than 0.002%, the above effects are insufficient.
  • the N content is more than 0.006%, it causes surface cracking at high temperatures, forms precipitates, and the remaining N may exist in an atomic state to reduce toughness.
  • P may cause grain boundary segregation as impurities and cause the steel to be withdrawn. Therefore, it is important to control the upper limit and it is preferable to control it to 0.01% or less.
  • S as an impurity, mainly combines with Mn to form MnS inclusions, which are factors that inhibit low-temperature toughness. Therefore, it is important to control the upper limit, and in order to secure low temperature toughness, it is preferable to control S to 0.003% or less.
  • the remaining component of the present invention is iron (Fe).
  • impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification.
  • the microstructure of the high strength steel sheet having excellent resistivity ratio properties and low temperature toughness includes 80 to 92% of ferrite and 8 to 20% of MA in an area fraction, and the average of the MAs is measured by the equivalent diameter.
  • the size is 3 micrometers or less.
  • the fraction of microstructure means an area fraction unless otherwise specified.
  • Ferrite is to ensure basic toughness and strength, preferably 80% or more.
  • the upper limit is preferably 92%.
  • the ferrite does not contain an acicular ferrite. This is because the epoxy ferrite has a small hardness difference from the MA, and thus a sufficient resistance ratio cannot be secured.
  • the MA is less than 8%, it is difficult to secure a resistance ratio of 0.65 or less. If the MA is more than 20%, the impact toughness may be lowered and the elongation may be reduced. In addition, when the average size measured by the equivalent circular diameter of MA is more than 3 ⁇ m, MA is mainly formed in the grain boundary, it is difficult to ensure a uniform distribution and resistance ratio of MA.
  • unavoidable phases may be included in addition to the above-described ferrite and MA, but are not excluded.
  • pearlite of 1 area% or less may be included.
  • a plurality of straight lines are drawn up and down or left and right on a microstructure photograph having a size of 100 ⁇ m ⁇ 100 ⁇ m, and at this time, 5 to 13 MAs may be present on each line.
  • MA which mainly causes breakage, is present in the grain boundary, and when the above conditions are satisfied, the MA is evenly distributed in the grain boundary and inside the grain, which is advantageous in securing a resistance ratio.
  • the ratio of the MA present in the ferrite grains and the MA present in the grain boundary may be 1: 3 to 1:10.
  • the ratio refers to the ratio of the number of MA, because by satisfying the ratio can be uniformly distributed so that the MA present in the ferrite grains becomes 0.5 to 5 area%.
  • the ferrite may have an average size of 20 ⁇ m or less as measured by a circle equivalent diameter. If the average size of the ferrite is more than 20 ⁇ m it may be difficult to secure sufficient toughness and strength.
  • the steel sheet according to the present invention is normalized heat treatment
  • the microstructure of the steel sheet before the normalizing heat treatment may be 50 ⁇ 90 area% of bainite.
  • the microstructure of the steel sheet before the heat treatment is bainite with carbides present therein, it is possible to distribute MA evenly in the grain boundary and inside the grain after heat treatment. Therefore, the microstructure of the steel sheet before the heat treatment is preferably 50 to 90 area%. Do.
  • the steel sheet according to the present invention has a yield ratio of 0.5 to 0.65, the low temperature impact characteristics at -40 °C may be 100J or more. Yield ratio is 0.65 or less to increase the difference between yield strength and tensile strength, not only excellent formability, but also delay the time of plastic deformation until fracture can occur and absorb energy in this process to prevent collapse by external force can do.
  • the yield strength of the steel sheet is 350 ⁇ 400MPa, tensile strength may be 600MPa or more.
  • Another aspect of the present invention provides a method for producing a high strength steel sheet having excellent resistance ratio and low temperature toughness, comprising: heating a slab having the above-described alloy composition to 1050 to 1200 ° C; Hot rolling the heated slab to a finish rolling end temperature of 760 to 850 ° C. to obtain a hot rolled steel sheet; Cooling the hot rolled steel sheet to 450 ° C. or less at a cooling rate of 5 ° C./s or more; And a normalizing heat treatment step of heating the cooled hot-rolled steel sheet to a temperature range of 850 to 960 ° C., and then maintaining it for [1.3t + (10 to 30)] minutes.
  • the t is a value measured in mm of the hot rolled steel sheet.
  • the slab having the alloy composition described above is heated to 1050-1200 ° C.
  • the heating temperature is more than 1200 °C austenite grains may be coarsened to lower the toughness, if less than 1050 °C Ti, Nb, etc. are not sufficiently dissolved, the strength may be reduced.
  • the heated slab is hot rolled to a finish rolling end temperature of 760 to 850 ° C. to obtain a hot rolled steel sheet.
  • the rolling temperature of the heat-treated steel is about 850 ⁇ 1000 °C general rolling is applied.
  • Re-crystallization rolling during hot rolling is necessary to refine the austenite grain size, and it is advantageous in terms of physical properties as the rolling reduction per pass increases.
  • Unrecrystallized rolling must be completed at a temperature of at least Ar3 of the steel and is at least about 760 ° C. More specifically, the finish rolling end temperature may be defined at 760 to 850 ° C. If the finish rolling finish temperature is higher than 850 °C, it is difficult to suppress the ferrite-pearlite transformation, if it is less than 760 °C may lead to non-uniformity of the microstructure in the thickness direction, to reduce the reduction in the amount of reduction due to the load load of the rolling roll May not be able to form microstructures.
  • bainite structure is realized through cooling.
  • the initial structure of bainite is for uniform MA distribution after heat treatment.
  • MAs are mainly formed at grain boundaries, while in bainite structures, MAs are formed at both grain boundaries and inside grains.
  • the hot rolled steel sheet is cooled to 450 ° C. or less at a cooling rate of 5 ° C./s or more.
  • Bainite should be implemented to form fine and uniform MA. Cooling finish temperature and cooling rate are important factors for bainite formation.
  • the grain size may become coarse, and coarse carbide may cause coarse MA to be formed after heat treatment, which may lead to a decrease in toughness and more than 50 area% of bainite. Difficult to secure
  • cooling rate is less than 5 °C / s fine structure of the needle-like ferrite or ferrite + pearlite is formed in a large amount may cause a decrease in strength, and after the heat treatment, coarse ferrite + pearlite or second phase rather than the abnormal structure of ferrite + MA There may be a sudden drop in quantity, it is difficult to secure more than 50 area% bainite.
  • the normalizing temperature is less than 850 ° C or the holding time is less than (1.3t + 10) minutes, it is difficult to re-use cementite and pearlite in pearlite, bainite and MA. The remaining hardened phase will remain coarse.
  • the slab was manufactured using continuous casting.
  • the slabs were rolled, cooled, and normalized to heat treatment under the conditions shown in Table 2 to prepare steel sheets.
  • Table 3 below describes the bainite fraction and mechanical properties of the steel sheet before normalizing heat treatment.
  • Table 4 describes the MA fraction of the steel sheet after the normalizing heat treatment, the average MA size, the number of MAs over 100 ⁇ m, and the mechanical properties thereof. In the case of the invention, it was ferrite except for MA, and the average grain size of the ferrite was not described separately as 20 ⁇ m or less.
  • the average MA size is the average size measured by the diameter of the equivalent circle, and the number of MAs on a 100 ⁇ m line is obtained by drawing 10 straight lines up and down or left and right on a 100 ⁇ m ⁇ 100 ⁇ m microstructure photograph. The average number was described after measuring the number.
  • Table 3 shows the MA fraction, yield ratio and mechanical properties of the steel sheet prepared by the components A ⁇ H, manufacturing conditions 1 to 12.
  • the unit of each element content in Table 1 is weight%.
  • Invention steels A to D are steel sheets satisfying the component range defined by the present invention
  • comparative steels E to H are steel sheets which do not satisfy the component range defined by the present invention.
  • Comparative steel E is higher than C content
  • comparative steel F is lower than Mo content
  • comparative steel G is lower than Mn content
  • comparative steel H is lower than Ni content.
  • test Nos. 11 to 14 which are comparative examples, the manufacturing conditions presented in the present invention were satisfied, but the alloy composition did not satisfy the sufficient yield ratio, and the test Nos. 11 and 14 had an impact toughness of -40 ° C less than 100J. You can see that you are enthusiastic.
  • the MA fraction is higher than the comparative example.
  • Table 3 by securing a high bainite fraction before the normalized heat treatment, carbides in the grains of the initial bainite structure, the grains at the grain boundary are transformed into fine MA.

Abstract

본 발명의 일 측면은 중량%로, C: 0.03~0.08%, Si: 0.05~0.3%, Mn: 1.0~2.0%, Al: 0.005~0.04%, Nb: 0.005~0.04%, Ti: 0.001~0.02%, Cu: 0.05~0.4%, Ni: 0.6~2.0%, Mo: 0.08~0.3%, N: 0.002~0.006%, P: 0.01% 이하, S: 0.003% 이하, 나머지 Fe 및 불가피한 불순물을 포함하며, 미세조직은 면적분율로 페라이트를 80~92%, MA(마르텐사이트/오스테나이트 혼합조직)를 8~20% 포함하고, 상기 MA는 원상당 직경으로 측정한 평균크기가 3㎛이하인 저항복비 특성 및 저온인성이 우수한 고강도 강판에 관한 것이다.

Description

저항복비 특성 및 저온인성이 우수한 고강도 강판 및 그 제조방법
본 발명은 저항복비 특성 및 저온인성이 우수한 고강도 강판 및 그 제조방법에 관한 것이다.
조선, 해양 구조용 강재 분야뿐만 아니라 성형 및 내진 특성을 요구하는 산업 분야에 적용이 가능하기 위해서는 극저온 인성뿐만 아니라 저항복비 특성을 갖는 강재의 개발이 필요하다.
저항복비를 가지는 강재는 항복강도와 인장강도의 차이를 크게 함으로써 성형성이 우수할 뿐만 아니라, 파괴가 발생할 수 있을 때까지의 소성변형 시점을 늦추고 이 과정에서 에너지를 흡수하여 외력에 의한 붕괴를 방지할 수 있다. 또한 변형이 존재하더라도 붕괴전 보수를 가능하게 함으로써 구조물의 파손에 의한 재산 및 인명 피해를 방지할 수 있다.
저항복비를 확보하기 위하여 강재의 조직을 2상 조직화 하는 기술이 개발되었다. 구체적으로 제1상은 연질 페라이트, 나머지 제2상은 마르텐사이트, 펄라이트 또는 베이나이트로 함으로써 저항복비를 구현하였다.
하지만 경한 2상에 의한 충격인성의 저하와 제2상을 위해 탄소함량이 증가하여 용접부 인성이 열화되어 저온에서 구조물의 취성파괴를 일으킬 수 있는 문제점이 있었다.
이에 저항복비 및 저온 충격인성을 모두 확보하기 위한 기술로는 특허문헌 1이 개발되었다.
특허문헌 1에서는 미세조직을 2~10vol%의 MA(마르텐사이트/오스테나이트 혼합조직)와 90vol% 이상의 에시큘러 페라이트를 포함하도록 하여 저항복비 및 우수한 저온인성을 확보하고 있다.
특허문헌 1에 따를 경우, 약 0.8 정도의 항복비를 구현할 수 있으나 충분한 저항복비를 구현할 수 없어 내진 특성을 확보하기는 불충분한 문제점이 있다.
따라서, 항복비를 보다 낮게 확보할 수 있는 저항복비 특성 및 저온인성이 우수한 고강도 강판 및 그 제조방법에 대한 개발이 요구되고 있는 실정이다.
(선행기술문헌)
(특허문헌 1) 한국 공개특허공보 제2013-0076577호
본 발명의 일 측면은 저항복비 특성 및 저온인성이 우수한 고강도 강판 및 그 제조방법을 제공하기 위함이다.
한편, 본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일 측면은 중량%로, C: 0.03~0.08%, Si: 0.05~0.3%, Mn: 1.0~2.0%, Al: 0.005~0.04%, Nb: 0.005~0.04%, Ti: 0.001~0.02%, Cu: 0.05~0.4%, Ni: 0.6~2.0%, Mo: 0.08~0.3%, N: 0.002~0.006%, P: 0.01% 이하, S: 0.003% 이하, 나머지 Fe 및 불가피한 불순물을 포함하며,
미세조직은 면적분율로 페라이트를 80~92%, MA(마르텐사이트/오스테나이트 혼합조직)를 8~20% 포함하고, 상기 MA는 원상당 직경으로 측정한 평균크기가 3㎛ 이하인 저항복비 특성 및 저온인성이 우수한 고강도 강판에 관한 것이다.
또한, 본 발명의 다른 일 측면은 중량%로, C: 0.03~0.08%, Si: 0.05~0.3%, Mn: 1.0~2.0%, Al: 0.005~0.04%, Nb: 0.005~0.04%, Ti: 0.001~0.02%, Cu: 0.05~0.4%, Ni: 0.6~2.0%, Mo: 0.08~0.3%, N: 0.002~0.006%, P: 0.01% 이하, S: 0.003% 이하, 나머지 Fe 및 불가피한 불순물을 포함하는 슬라브를 1050~1200℃로 가열하는 단계;
상기 가열된 슬라브를 마무리 압연 종료온도가 760~850℃가 되도록 열간압연하여 열연강판을 얻는 단계;
상기 열연강판을 5℃/s 이상의 냉각속도로 450℃ 이하까지 냉각하는 단계; 및
상기 냉각된 열연강판을 850~960℃의 온도 범위까지 가열한 후, [1.3t+(10~30)]분 동안 유지하는 노멀라이징 열처리 단계;를 포함하는 저항복비 특성 및 저온인성이 우수한 고강도 강판의 제조방법에 관한 것이다.
(상기 t는 열연강판의 두께를 mm단위로 측정한 값이다.)
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있다.
본 발명에 의하면, 우수한 저항복비 특성 및 저온인성을 확보할 수 있으며, 특히 0.65 이하의 낮은 저항복비를 확보할 수 있어 성형성뿐만 아니라 우수한 내진특성을 확보할 수 있다.
이에 따라, 조선, 해양 구조용 강재 분야뿐만 아니라 성형 및 내진 특성을 요구하는 산업 분야에 적용이 가능하다.
도 1은 발명예인 시험번호 1의 미세조직을 광학현미경(Optical microscope, OM)을 이용하여 촬영한 사진이다.
도 2는 발명예인 시험번호 1의 미세조직을 주사전자현미경(Scanning electron microscope, SEM)을 이용하여 촬영한 사진이다.
도 3은 비교예인 시험번호 12의 미세조직을 광학현미경(Optical microscope, OM)을 이용하여 촬영한 사진이다.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
본 발명자들은 종래 기술로는 0.8 정도의 항복비를 확보할 수 있어 성형성은 어느 정도 확보할 수 있으나, 충분한 저항복비를 구현할 수 없어 내진 특성을 확보하기는 불충분한 문제점이 있음을 인지하고, 이를 해결하기 위하여 깊이 연구하였다.
그 결과, 저항복비 구현을 위해서는 모재와 제2상의 경도 차이가 클수록 유리하며, MA의 분포가 균일할수록 유리하다는 것과, 특허문헌 1의 경우 모재가 에시큘러 페라이트로 MA와의 경도 차이가 부족하며, MA 상이 결정립계에 형성되고 MA 크기가 조대하여 충분한 저항복비를 구현할 수 없다는 것을 알아내었다.
이에 모재의 미세조직을 페라이트로 하고, 미세한 MA 상이 페라이트 결정립계 및 결정립 내부에 균일하게 분포시킴으로써, 0.65 이하의 저항복비를 확보할 수 있으며, 이러한 조직을 확보하기 위해서는 노말라이징 열처리 전 조직이 베이나이트를 포함하도록 제어하여야 함을 확인하고, 본 발명을 완성하기에 이르렀다.
이하, 본 발명의 일 측면에 따른 저항복비 특성 및 저온인성이 우수한 고강도 강판에 대하여 상세히 설명한다.
본 발명의 일 측면에 따른 저항복비 특성 및 저온인성이 우수한 고강도 강판은 중량%로, C: 0.03~0.08%, Si: 0.05~0.3%, Mn: 1.0~2.0%, Al: 0.005~0.04%, Nb: 0.005~0.04%, Ti: 0.001~0.02%, Cu: 0.05~0.4%, Ni: 0.6~2.0%, Mo: 0.08~0.3%, N: 0.002~0.006%, P: 0.01% 이하, S: 0.003% 이하, 나머지 Fe 및 불가피한 불순물을 포함하며,
미세조직은 면적분율로 페라이트를 80~92%, MA(마르텐사이트/오스테나이트 혼합조직)를 8~20% 포함하고, 상기 MA는 원상당 직경으로 측정한 평균크기가 3㎛이하이다.
먼저, 본 발명의 일 측면에 따른 저항복비 특성 및 저온인성이 우수한 고강도 강판의 합금조성에 대하여 상세히 설명한다. 이하 각 원소 함량의 단위는 중량%이다.
C: 0.03~0.08%
본 발명에서 C은 고용강화를 일으키고 Nb 등에 의한 탄질화물로 존재하여 인장강도를 확보하기 위한 원소이다.
C 함량이 0.03% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 C 함량이 0.08% 초과인 경우에는 MA가 조대화되고 펄라이트가 생성되어 저온에서의 충격 특성을 열화시킬 수 있고, 베이나이트를 충분히 확보하기 어렵다.
Si: 0.05~0.3%
Si은 Al을 보조하여 용강을 탈산하는 역할을 수행하고, 항복강도 및 인장강도를 확보하기 위하여 첨가한다.
Si 함량이 0.05% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 Si 함량이 0.3% 초과인 경우에는 MA의 조대화에 의해 충격 특성이 열화 될 수 있으며 용접특성을 저하시킬 수 있다.
Mn: 1.0~2.0%
Mn은 고용강화에 의한 강도 증가 효과에 크게 기여하며, 베이나이트 형성에 도움을 주는 원소이다.
Mn 함량이 1.0% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 과도하게 첨가되면 MnS 개재물의 형성, 중심부 편석으로 인해 인성의 저하를 야기할 수 있으므로 상한은 2.0%로 한다.
Al: 0.005~0.04%
Al은 강의 주요한 탈산제로서 0.005% 이상 첨가될 필요가 있다. 하지만 0.04%를 초과하여 첨가할 경우 그 효과는 포화되고 Al2O3 개재물의 분율, 크기의 증가로 저온 인성을 저하시키는 원인이 될 수 있다.
Nb: 0.005~0.04%
Nb는 고용 또는 탄질화물을 석출함으로써 압연 또는 냉각중 재결정을 억제하여 조직을 미세하게 만들고 강도를 증가시키는 원소이다. Nb 함량이 0.005% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 Nb 함량이 0.04% 초과인 경우에는 모재 인성 및 용접 후 인성을 저하시킬 수 있는 문제점이 있다.
Ti: 0.001~0.02%
Ti는 산소 또는 질소와 결합하여 석출물을 형성함으로써, 조직의 조대화를 억제하여 미세화에 기여하고 인성을 향상시키는 역할을 한다.
Ti 함량이 0.001% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 Ti 함량이 0.02% 초과인 경우에는 석출물이 조대하게 형성되어 파괴의 원인이 될 수 있다.
Cu: 0.05~0.4%
Cu는 충격 특성을 크게 저하하지 않는 성분으로 고용 및 석출에 의해 강도를 향상시킨다. 충분한 강도 향상을 위해서는 0.05% 이상 함유되어야 하지만, Cu 함량이 0.4% 초과인 경우에는 Cu 열충격에 의한 강판의 표면크랙이 발생할 수 있다.
Ni: 0.6~2.0%
Ni은 함량의 증가에 따라 강도의 향상은 크지 않지만 강도와 인성을 동시에 향상시킬 수 있는 원소이며, Ar3 온도를 하락시켜 베이나이트 형성에 도움이 되는 원소이다.
Ni 함량이 0.6% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 Ni 함량이 2.0% 초과인 경우에는 제조비용이 증가하고 용접성이 열화될 수 있다.
Mo: 0.08~0.3%
Mo는 오스테나이트 안정화 원소로서 MA의 양을 증대시키는데 영향을 미치고 강도의 향상에 큰 역할을 한다. 또한 열처리 동안 강도의 하락을 방지하며, 베이나이트 형성에 도움을 주는 원소이다.
Mo 함량이 0.08% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 Mo 함량이 0.3% 초과인 경우에는 제조비용이 증가하고 모재 인성 및 용접 후 인성을 저하시킬 수 있는 문제점이 있다.
N: 0.002~0.006%
N은 Ti, Nb, Al 등과 함께 석출물을 형성하여 슬라브 가열시 오스테나이트 조직을 미세하게 만들어 강도와 인성 향상에 도움이 되는 원소이다.
N 함량이 0.002% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 N 함량이 0.006% 초과인 경우에는 고온에서 표면 크랙을 유발하고 석출물을 형성하고 잔류하는 N은 원자상태로 존재하여 인성을 감소시킬 수 있다.
P: 0.01% 이하
P는 불순물로서 입계편석을 일으켜 강을 취하시키는 원인이 될 수 있다. 따라서 그 상한을 제어하는 것이 중요하며 0.01% 이하로 제어하는 것이 바람직하다.
S: 0.003% 이하
S는 불순물로서 주로 Mn과 결합하여 MnS 개재물을 형성하고 이들은 저온인성을 저해하는 요인이 된다. 따라서 그 상한을 제어하는 것이 중요하며 저온 인성을 확보하기 위해서는 S를 0.003%이하로 제어하는 것이 바람직하다.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
이하, 본 발명의 일 측면에 따른 저항복비 특성 및 저온인성이 우수한 고강도 강판의 미세조직에 대하여 상세히 설명한다.
본 발명의 일 측면에 따른 저항복비 특성 및 저온인성이 우수한 고강도 강판의 미세조직은 면적분율로 페라이트를 80~92%, MA를 8~20% 포함하고, 상기 MA는 원상당 직경으로 측정한 평균크기가 3㎛ 이하이다. 이하, 미세조직의 분율은 특별한 언급이 없는 한 면적분율을 의미한다.
페라이트는 기본적인 인성 및 강도를 확보하기 위한 것으로 80% 이상인 것이 바람직하다. 또한, 충분한 MA을 확보하기 위해서 그 상한은 92%인 것이 바람직하다. 나아가, 상기 페라이트는 애시큘라 페라이트를 포함하지 않는 것이 바람직하다. 에시큘러 페라이트는 MA와의 경도 차이가 작기 때문에 충분한 저항복비를 확보할 수 없기 때문이다.
MA가 8% 미만인 경우에는 0.65 이하의 저항복비를 확보하기 어려우며, 20% 초과인 경우에는 충격인성이 저하될 수 있고, 연신율이 감소될 수 있다. 또한, MA의 원상당 직경으로 측정한 평균크기가 3㎛ 초과인 경우에는 MA가 주로 결정립계에 형성되어 MA의 균일한 분포 및 저항복비를 확보하기 어렵다.
상술한 페라이트 및 MA 이외에 기타 불가피한 상들이 포함될 수 있으며, 이를 배제하는 것은 아니다. 예를 들어 1 면적% 이하의 펄라이트가 포함될 수 있다.
이때, 우수한 저항복비 특성 및 저온인성을 확보하기 위해서는 MA 분율 및 크기뿐만 아니라, 본 발명의 강판에 100㎛ 직선 라인을 그었을때, 상기 직선 라인에 걸쳐 있는 MA가 5~13개 존재하는 것이 바람직하다.
즉, 100㎛×100㎛ 크기의 미세조직 사진에 상하 또는 좌우로 직선 라인을 수개 긋고 이때 각 라인에 걸리는 MA가 평균적으로 5~13개가 존재할 수 있다. 주로 파괴의 개시를 일으키는 MA는 결정립계에 존재하는 MA이며, 상기 조건을 만족하는 경우 MA가 결정립계와 결정립 내부에 고르게 분포하는 것이므로 저항복비를 확보하기에 유리하기 때문이다.
또한, 페라이트 결정립 내부에 존재하는 MA와 결정립계에 존재하는 MA의 비율이 1:3~1:10일 수 있다. 상기 비율은 MA 수의 비율을 의미하며, 상기 비율을 만족함으로써 페라이트 결정립 내부에 존재하는 MA가 0.5~5면적%가 되도록 균일하게 분포시킬 수 있기 때문이다.
또한, 상기 페라이트는 원상당 직경으로 측정한 평균크기가 20㎛ 이하일 수 있다. 페라이트 평균크기가 20㎛ 초과일 경우에는 충분한 인성 및 강도를 확보하기 어려울 수 있기 때문이다.
한편, 본 발명에 따른 강판은 노말라이징 열처리된 것이며, 상기 노말라이징 열처리 전 강판의 미세조직은 베이나이트가 50~90면적%일 수 있다.
열처리 전 강판의 미세조직을 탄화물이 내부에 존재하는 베이나이트로 함으로써 열처리 후 결정립계와 결정립 내부에 MA를 고르게 분포시킬 수 있기 때문에 열처리 전 강판의 미세조직은 베이나이트가 50~90면적%인 것이 바람직하다.
또한, 본 발명에 따른 강판은 항복비가 0.5~0.65이며, -40℃에서의 저온충격특성이 100J 이상일 수 있다. 항복비를 0.65 이하로 항복강도와 인장강도의 차이를 크게 함으로써 성형성이 우수할 뿐만 아니라, 파괴가 발생할 수 있을 때까지의 소성변형 시점을 늦추고 이 과정에서 에너지를 흡수하여 외력에 의한 붕괴를 방지할 수 있다.
따라서 조선, 해양 구조용 강재 분야뿐만 아니라 성형 및 내진 특성을 요구하는 산업 분야에도 바람직하게 적용할 수 있다.
이때, 상기 강판의 항복강도는 350~400MPa 이고, 인장강도는 600MPa 이상일 수 있다.
이하, 본 발명의 다른 일 측면인 저항복비 특성 및 저온인성이 우수한 고강도 강판의 제조방법에 대하여 상세히 설명한다.
본 발명의 다른 일 측면인 저항복비 특성 및 저온인성이 우수한 고강도 강판의 제조방법은 상술한 합금조성을 갖는 슬라브를 1050~1200℃로 가열하는 단계; 상기 가열된 슬라브를 마무리 압연 종료온도가 760~850℃가 되도록 열간압연하여 열연강판을 얻는 단계; 상기 열연강판을 5℃/s 이상의 냉각속도로 450℃ 이하까지 냉각하는 단계; 및 상기 냉각된 열연강판을 850~960℃의 온도 범위까지 가열한 후, [1.3t+(10~30)]분 동안 유지하는 노멀라이징 열처리 단계;를 포함한다. 상기 t는 열연강판의 두께를 mm단위로 측정한 값이다.
슬라브 가열 단계
상술한 합금조성을 갖는 슬라브를 1050~1200℃로 가열한다.
가열 온도가 1200℃ 초과인 경우에는 오스테나이트 결정립이 조대화되어 인성이 낮아질 수 있고, 1050℃ 미만인 경우에는 Ti, Nb 등이 충분히 고용되지 않아 강도가 하락할 수 있다.
열간압연 단계
상기 가열된 슬라브를 마무리 압연 종료온도가 760~850℃가 되도록 열간압연하여 열연강판을 얻는다.
통상의 열처리 강재의 압연온도는 850~1000℃ 정도로 일반적인 압연이 적용된다. 하지만 본 발명에서는 초기의 조직을 베이나이트로 형성시키는 것이 중요하다. 따라서 페라이트-펄라이트 조직을 나타내는 일반압연 대신 저온에서 압연을 종료하기 위한 제어압연 프로세스가 필요하다.
열간 압연시 재결정역 압연은 오스테나이트 결정립 사이즈를 미세화하기 위해 필요하며 패스당 압하율은 증대될수록 물성측면에서 유리하다.
미재결정역 압연은 강재의 Ar3 이상의 온도에서 완료하여야 하며 약 760℃ 이상을 의미한다. 보다 구체적으로 760~850℃로 마무리 압연 종료온도를 정의할 수 있다. 마무리 압연 종료온도가 850℃ 초과인 경우에는 페라이트-펄라이트 변태를 억제하기 어려우며, 760℃ 미만인 경우에는 두께방향의 미세조직의 불균일을 초래할 수 있고, 압열롤의 하중부하에 의한 압하량 감소로 구현하고자 하는 미세조직을 형성시킬지 못할 수 있다.
760~850℃의 온도 범위에서 마무리 압연을 종료함으로써 페라이트-펄라이트 변태를 억제하고 냉각을 통해 베이나이트 조직을 구현한다. 초기 조직을 베이나이트로 하는 것은 열처리 후 균일한 MA분포를 위한 것으로 페라이트-펄라이트 조직에서는 결정립계에 주로 MA들이 형성되는 반면 베이나이트 조직인 경우에는 결정립계와 결정립 내부 모두에 MA들이 형성된다.
냉각 단계
상기 열연강판을 5℃/s 이상의 냉각속도로 450℃ 이하까지 냉각한다.
열간 압연 후 가속냉각은 발명강의 목표 조직의 구현에 매우 중요하다. 미세하고 균일한 MA 형성을 위해 베이나이트를 구현하여야 하며 베이나이트 형성을 위해 냉각마침온도와 냉각속도가 중요한 요소이다.
냉각마침온도가 450℃ 초과인 경우에는 결정립의 크기가 조대해질 수 있으며 카바이드의 조대화로 인하여 열처리 후 조대한 MA의 형성이 야기되며 이는 인성의 저하를 가져올 수 있고, 베이나이트를 50면적% 이상 확보하기 어렵다.
냉각속도가 5℃/s 미만인 경우에는 침상 페라이트 또는 페라이트+펄라이트의 미세조직이 다량 형성되어 강도의 저하가 발생할 수 있으며, 열처리 후 페라이트+MA의 이상조직이 아닌 조대 페라이트+펄라이트 조직 또는 제2상의 급격한 수량 저하를 나타낼 수 있고, 베이나이트를 50면적% 이상 확보하기 어려운 문제점이 있다.
노멀라이징 열처리 단계
상기 냉각된 열연강판을 850~960℃의 온도 범위까지 가열한 후, [1.3t+(10~30)]분 동안 유지한다. 상기 t는 열연강판의 두께를 mm단위로 측정한 값이다.
노말라이징 온도가 850℃ 미만이거나 유지시간이 (1.3t+10)분 미만인 경우에는 펄라이트, 베이나이트 내의 시멘타이트와 MA상의 재고용이 어려워 고용된 C가 감소하게 되어 강도의 확보가 어려워질 뿐 아니라 최종적으로 남은 경화상이 조대하게 잔류하게 된다.
반면에 노멀라이징 온도가 960℃ 초과이거나 유지시간이 (1.3t+30)분 초과인 경우에는 베이나이트 결정립내에 존재하던 탄화물들이 모두 결정립계로 이동하거나 탄화물의 조대화가 발생하여 최종 MA 크기 및 균일분포를 형성시킬 수 없다. 또한 결정립 성장이 일어나 강도의 하락과 충격의 열화가 발생할 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
하기 표 1에 나타낸 성분조성을 갖는 용강을 마련한 후 연속주조를 이용하여 슬라브를 제조하였다. 상기 슬라브를 하기 표 2의 제조조건으로 압연, 냉각, 및 노말라이징 열처리하여 강판을 제조하였다.
하기 표 3에는 노말라이징 열처리 전 강판의 베이나이트 분율 및 기계적 물성을 측정하여 기재하였다.
하기 표 4에는 노말라이징 열처리 후 강판의 MA 분율, 평균 MA 크기, 100㎛에 걸리는 MA의 개수 및 기계적 물성을 측정하여 기재하였다. 발명예의 경우, MA 외에는 페라이트이었으며, 페라이트의 평균결정립 크기는 20㎛ 이하로 별도로 기재하지 않았다.
평균 MA 크기는 원상당 직경으로 측정한 평균크기이며, 100㎛ 라인에 걸리는 MA 수는 100㎛×100㎛ 크기의 미세조직 사진에 상하 또는 좌우로 직선 라인을 10개 긋고, 각 라인에 걸리는 MA의 개수를 측정한 후 평균 개수를 기재하였다.
구체적으로는 압연온도, 냉각종료온도, 열처리 시간에 대한 영향을 파악하고자 하였다. 그리고 표3에서는 성분 A~H, 제조조건 1~12에 의해 제조된 강판의 MA 분율, 항복비 및 기계적 물성을 나타내었다.
Figure PCTKR2017006956-appb-T000001
상기 표 1에서 각 원소 함량의 단위는 중량%이다. 발명강 A~D는 본 발명에서 규정하는 성분범위를 만족하는 강판이며, 비교강 E~H는 본 발명에서 규정하는 성분범위를 만족하지 못하는 강판이다. 비교강 E는 C 함량 초과, 비교강 F는 Mo 함량 미달, 비교강 G는 Mn 함량 미달, 비교강 H는 Ni 함량 미달인 강이다.
Figure PCTKR2017006956-appb-T000002
Figure PCTKR2017006956-appb-T000003
Figure PCTKR2017006956-appb-T000004
본 발명에서 제시한 합금조성 및 제조조건을 모두 만족하는 발명예들은 항복비를 0.65이하로 확보할 수 있으며, -40℃의 충격인성도 100J 이상으로 우수한 것을 확인할 수 있다.
비교예인 시험번호 6, 7, 9 및 10의 경우, 본 발명에서 제시한 합금조성은 만족하였으나, 제조조건을 만족하지 못하여 충분한 저항복비를 확보하지 못하였고, -40℃의 충격인성도 100J 미만으로 열위한 것을 확인할 수 있다.
비교예인 시험번호 11 내지 14의 경우, 본 발명에서 제시한 제조조건은 만족하였으나, 합금조성을 만족하지 못하여 충분한 저항복비를 확보하지 못하였으며, 시험번호 11 및 14는 -40℃의 충격인성도 100J 미만으로 열위한 것을 확인할 수 있다.
상기 표 4의 발명예를 살펴보면 비교예에 비하여 MA분율이 높음을 알 수 있다. 이는 상기 표 3에서 확인할 수 있듯이, 노말라이징 열처리 전 베이나이트 분율을 높게 확보함으로써, 초기의 베이나이트 조직의 결정립내, 결정립계에 있는 카바이드들이 미세한 MA로 변태된 것이다.
발명예인 시험번호 1의 미세조직을 촬영한 도 1 및 도 2를 보면, 미세하고 균일한 MA가 형성된 것을 알 수 있다.
반면에 비교예인 시험번호 12의 미세조직을 촬영한 도 3을 보면, 카바이드, 펄라이트가 주요 2상으로 나타나 MA의 분율이 낮고, 형성된 MA가 다각형의 형태이고 주로 결정립계에 존재하는 것을 알 수 있다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (9)

  1. 중량%로, C: 0.03~0.08%, Si: 0.05~0.3%, Mn: 1.0~2.0%, Al: 0.005~0.04%, Nb: 0.005~0.04%, Ti: 0.001~0.02%, Cu: 0.05~0.4%, Ni: 0.6~2.0%, Mo: 0.08~0.3%, N: 0.002~0.006%, P: 0.01% 이하, S: 0.003% 이하, 나머지 Fe 및 불가피한 불순물을 포함하며,
    미세조직은 면적분율로 페라이트를 80~92%, MA(마르텐사이트/오스테나이트 혼합조직)를 8~20% 포함하고, 상기 MA는 원상당 직경으로 측정한 평균크기가 3㎛이하인 저항복비 특성 및 저온인성이 우수한 고강도 강판.
  2. 제1항에 있어서,
    상기 강판에 100㎛ 직선 라인을 그었을때, 상기 직선 라인에 걸쳐 있는 MA가 5~13개 존재하는 것을 특징으로 하는 저항복비 특성 및 저온인성이 우수한 고강도 강판.
  3. 제1항에 있어서,
    페라이트 결정립 내부에 존재하는 MA와 결정립계에 존재하는 MA의 비율이 1:3~1:10인 것을 특징으로 하는 저항복비 특성 및 저온인성이 우수한 고강도 강판.
  4. 제1항에 있어서,
    상기 페라이트는 원상당 직경으로 측정한 평균크기가 20㎛이하인 것을 특징으로 하는 저항복비 특성 및 저온인성이 우수한 고강도 강판.
  5. 제1항에 있어서,
    상기 강판은 노말라이징 열처리된 것이며,
    상기 노말라이징 열처리 전 강판의 미세조직은 베이나이트가 50~90면적%인 것을 특징으로 하는 저항복비 특성 및 저온인성이 우수한 고강도 강판.
  6. 제1항에 있어서,
    상기 강판은 항복비가 0.5~0.65이며, -40℃에서의 저온충격특성이 100J이상인 것을 특징으로 하는 저항복비 특성 및 저온인성이 우수한 고강도 강판.
  7. 제1항에 있어서,
    상기 강판의 항복강도는 350~400MPa 이고, 인장강도는 600MPa 이상인 것을 특징으로 하는 저항복비 특성 및 저온인성이 우수한 고강도 강판.
  8. 중량%로, C: 0.03~0.08%, Si: 0.05~0.3%, Mn: 1.0~2.0%, Al: 0.005~0.04%, Nb: 0.005~0.04%, Ti: 0.001~0.02%, Cu: 0.05~0.4%, Ni: 0.6~2.0%, Mo: 0.08~0.3%, N: 0.002~0.006%, P: 0.01% 이하, S: 0.003% 이하, 나머지 Fe 및 불가피한 불순물을 포함하는 슬라브를 1050~1200℃로 가열하는 단계;
    상기 가열된 슬라브를 마무리 압연 종료온도가 760~850℃가 되도록 열간압연하여 열연강판을 얻는 단계;
    상기 열연강판을 5℃/s 이상의 냉각속도로 450℃ 이하까지 냉각하는 단계; 및
    상기 냉각된 열연강판을 850~960℃의 온도 범위까지 가열한 후, [1.3t+(10~30)]분 동안 유지하는 노멀라이징 열처리 단계;를 포함하는 저항복비 특성 및 저온인성이 우수한 고강도 강판의 제조방법.
    (상기 t는 열연강판의 두께를 mm단위로 측정한 값이다.)
  9. 제8항에 있어서,
    상기 냉각된 열연강판의 미세조직은 베이나이트가 50~90면적%인 것을 특징으로 하는 저항복비 특성 및 저온인성이 우수한 고강도 강판의 제조방법.
PCT/KR2017/006956 2016-07-01 2017-06-30 저항복비 특성 및 저온인성이 우수한 고강도 강판 및 그 제조방법 WO2018004297A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018566924A JP6771047B2 (ja) 2016-07-01 2017-06-30 低降伏比特性及び低温靭性に優れた高強度鋼板及びその製造方法
EP17820573.8A EP3480332B1 (en) 2016-07-01 2017-06-30 High strength steel plate having excellent low yield ratio characteristics and low temperature toughness and method for manufacturing same
CN201780039727.2A CN109328240B (zh) 2016-07-01 2017-06-30 低屈强比特性和低温韧性优异的高强度钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0083588 2016-07-01
KR1020160083588A KR101799202B1 (ko) 2016-07-01 2016-07-01 저항복비 특성 및 저온인성이 우수한 고강도 강판 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2018004297A1 true WO2018004297A1 (ko) 2018-01-04

Family

ID=60786060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006956 WO2018004297A1 (ko) 2016-07-01 2017-06-30 저항복비 특성 및 저온인성이 우수한 고강도 강판 및 그 제조방법

Country Status (5)

Country Link
EP (1) EP3480332B1 (ko)
JP (1) JP6771047B2 (ko)
KR (1) KR101799202B1 (ko)
CN (1) CN109328240B (ko)
WO (1) WO2018004297A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110373524A (zh) * 2019-07-16 2019-10-25 河钢股份有限公司承德分公司 一种90公斤级焊丝用钢热处理软化工艺
KR20210053218A (ko) * 2019-11-01 2021-05-11 가부시키가이샤 고베 세이코쇼 모재와 이음매의 저온 인성이 우수한 고장력 강판 및 그의 제조 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101917451B1 (ko) * 2016-12-21 2018-11-09 주식회사 포스코 저온인성이 우수한 저항복비 강판 및 그 제조방법
KR102236852B1 (ko) 2018-11-30 2021-04-06 주식회사 포스코 우수한 저항복비 및 저온인성 특성을 가지는 구조용강 및 그 제조방법
WO2023203815A1 (ja) * 2022-04-20 2023-10-26 Jfeスチール株式会社 鋼板およびその製造方法
JP7338811B1 (ja) 2022-04-20 2023-09-05 Jfeスチール株式会社 鋼板およびその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278656A (ja) * 1994-04-04 1995-10-24 Nippon Steel Corp 低降伏比高張力鋼の製造方法
JPH09256037A (ja) * 1996-03-22 1997-09-30 Nippon Steel Corp 応力除去焼鈍処理用の厚肉高張力鋼板の製造方法
JP2003003229A (ja) * 2001-06-19 2003-01-08 Nippon Steel Corp 疲労強度に優れた厚鋼板とその製造方法
KR20130076577A (ko) 2011-12-28 2013-07-08 주식회사 포스코 저항복비 특성 및 저온인성이 우수한 후 강판 및 그 제조방법
KR20140118313A (ko) * 2013-03-28 2014-10-08 현대제철 주식회사 열연강판 및 그 제조 방법
KR101482359B1 (ko) * 2012-12-27 2015-01-13 주식회사 포스코 극저온 인성이 우수하고 저항복비 특성을 갖는 고강도 강판 및 그의 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057490B2 (ja) * 1979-02-28 1985-12-16 新日本製鐵株式会社 低降伏比の高張力鋼板の製造方法
JP4485427B2 (ja) 2005-07-28 2010-06-23 株式会社神戸製鋼所 低降伏比高張力鋼板
JP5768603B2 (ja) * 2011-08-31 2015-08-26 Jfeスチール株式会社 高一様伸び特性を備え、かつ溶接部低温靱性に優れた高強度溶接鋼管、およびその製造方法
JP5761080B2 (ja) * 2012-03-01 2015-08-12 新日鐵住金株式会社 伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板及びその製造方法
CN103320692B (zh) * 2013-06-19 2016-07-06 宝山钢铁股份有限公司 超高韧性、优良焊接性ht550钢板及其制造方法
JP5728115B1 (ja) * 2013-09-27 2015-06-03 株式会社神戸製鋼所 延性および低温靭性に優れた高強度鋼板、並びにその製造方法
CN105420605A (zh) * 2015-11-30 2016-03-23 钢铁研究总院 一种超低屈强比冷轧双相钢及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278656A (ja) * 1994-04-04 1995-10-24 Nippon Steel Corp 低降伏比高張力鋼の製造方法
JPH09256037A (ja) * 1996-03-22 1997-09-30 Nippon Steel Corp 応力除去焼鈍処理用の厚肉高張力鋼板の製造方法
JP2003003229A (ja) * 2001-06-19 2003-01-08 Nippon Steel Corp 疲労強度に優れた厚鋼板とその製造方法
KR20130076577A (ko) 2011-12-28 2013-07-08 주식회사 포스코 저항복비 특성 및 저온인성이 우수한 후 강판 및 그 제조방법
KR101482359B1 (ko) * 2012-12-27 2015-01-13 주식회사 포스코 극저온 인성이 우수하고 저항복비 특성을 갖는 고강도 강판 및 그의 제조방법
KR20140118313A (ko) * 2013-03-28 2014-10-08 현대제철 주식회사 열연강판 및 그 제조 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110373524A (zh) * 2019-07-16 2019-10-25 河钢股份有限公司承德分公司 一种90公斤级焊丝用钢热处理软化工艺
CN110373524B (zh) * 2019-07-16 2021-05-04 河钢股份有限公司承德分公司 一种90公斤级焊丝用钢热处理软化工艺
KR20210053218A (ko) * 2019-11-01 2021-05-11 가부시키가이샤 고베 세이코쇼 모재와 이음매의 저온 인성이 우수한 고장력 강판 및 그의 제조 방법
KR102467116B1 (ko) 2019-11-01 2022-11-14 가부시키가이샤 고베 세이코쇼 모재와 이음매의 저온 인성이 우수한 고장력 강판 및 그의 제조 방법

Also Published As

Publication number Publication date
KR101799202B1 (ko) 2017-11-20
JP6771047B2 (ja) 2020-10-21
CN109328240A (zh) 2019-02-12
EP3480332B1 (en) 2021-10-13
EP3480332A4 (en) 2019-06-26
EP3480332A1 (en) 2019-05-08
JP2019524987A (ja) 2019-09-05
CN109328240B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2018004297A1 (ko) 저항복비 특성 및 저온인성이 우수한 고강도 강판 및 그 제조방법
WO2016104975A1 (ko) Pwht 후 인성이 우수한 고강도 압력용기용 강재 및 그 제조방법
WO2015099373A1 (ko) 용접열영향부 인성이 우수한 초고강도 용접구조용 강재 및 이의 제조방법
WO2018117497A1 (ko) 길이방향 균일 연신율이 우수한 용접강관용 강재, 이의 제조방법 및 이를 이용한 강관
WO2018117507A1 (ko) 저온인성이 우수한 저항복비 강판 및 그 제조방법
WO2018117450A1 (ko) 저온인성 및 후열처리 특성이 우수한 내sour 후판 강재 및 그 제조방법
WO2020022778A1 (ko) 내충돌 특성이 우수한 고강도 강판 및 이의 제조방법
WO2020111874A2 (ko) 용접열영향부 인성이 우수한 강재 및 이의 제조방법
WO2018030737A1 (ko) 취성균열전파 저항성이 우수한 극후물 강재 및 그 제조방법
WO2020111732A1 (ko) 저온인성과 연신율이 우수하며, 항복비가 작은 후물 고강도 라인파이프용 강재 및 그 제조방법
WO2018117470A1 (ko) 저온역 버링성이 우수한 고강도 강판 및 이의 제조방법
WO2017111398A1 (ko) 저온인성 및 수소유기균열 저항성이 우수한 후판 강재 및 그 제조방법
WO2018080108A1 (ko) 저온인성이 우수한 고강도 고망간강 및 그 제조방법
WO2020111856A2 (ko) 연성 및 저온 인성이 우수한 고강도 강재 및 이의 제조방법
WO2019124809A1 (ko) 취성균열 전파 저항성이 우수한 구조용 강재 및 그 제조방법
WO2019124765A1 (ko) 내충격특성이 우수한 고강도 강판 및 그 제조방법
WO2017111345A1 (ko) 저항복비형 고강도 강재 및 그 제조방법
WO2017111443A1 (ko) 열간 저항성이 우수한 고강도 구조용 강판 및 그 제조방법
WO2020111891A1 (ko) 저온파괴인성 및 연신율이 우수한 고강도 강판 및 그 제조방법
WO2020130436A2 (ko) 냉간 벤딩성이 우수한 고강도 구조용 강재 및 그 제조방법
WO2022065797A1 (ko) 연신율이 우수한 고강도 후물 열연강판 및 그 제조방법
WO2018117539A1 (ko) 용접성 및 연성이 우수한 고강도 열연강판 및 이의 제조방법
WO2021091140A1 (ko) 내구성이 우수한 고항복비형 후물 고강도강 및 그 제조방법
WO2017086745A1 (ko) 전단가공성이 우수한 고강도 냉연강판 및 그 제조방법
WO2020130329A1 (ko) 성형성이 우수한 고강도 열연강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017820573

Country of ref document: EP

Effective date: 20190201