WO2018004101A1 - 무선 통신 시스템에서 심볼 간 위상 회전을 이용하여 추가 정보를 송수신하기 위한 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 심볼 간 위상 회전을 이용하여 추가 정보를 송수신하기 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018004101A1
WO2018004101A1 PCT/KR2017/001425 KR2017001425W WO2018004101A1 WO 2018004101 A1 WO2018004101 A1 WO 2018004101A1 KR 2017001425 W KR2017001425 W KR 2017001425W WO 2018004101 A1 WO2018004101 A1 WO 2018004101A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
phase rotation
symbols
primary
base station
Prior art date
Application number
PCT/KR2017/001425
Other languages
English (en)
French (fr)
Inventor
김규석
이길봄
이상림
안민기
최국헌
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Publication of WO2018004101A1 publication Critical patent/WO2018004101A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present disclosure relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving additional information using phase rotation between symbols in a wireless communication system.
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, a shortage of resources and users are demanding higher speed services, a more advanced mobile communication system is required. have.
  • An object of the present disclosure is to provide a method of transmitting and receiving additional information by using phase rotation between adjacent primary symbols and secondary symbols on a time axis for carrier frequency offset (CFO) and common phase error (CPE) compensation.
  • CFO carrier frequency offset
  • CPE common phase error
  • the present specification is to provide a method for transmitting and receiving the same symbol as the primary symbol on a specific frequency tone of the secondary symbol in a large CFO environment.
  • an object of the present disclosure is to provide a method for transmitting information indicating whether the same symbol as that of the primary symbol is transmitted on a specific frequency tone of the secondary symbol, and information related to a set of phase rotations applied to the secondary symbol.
  • a method for transmitting and receiving additional information using phase rotation between symbols in a wireless communication system is a rotation applicable to the phase rotation between symbols.
  • Receiving a primary symbol and a secondary symbol used in the phase difference estimation between the symbols from the base station, the primary symbol and the secondary symbol are data symbols adjacent to each other in a time domain, and the secondary symbol is the Apply a specific phase rotation to the primary symbol, the specific phase applied to the secondary symbol being included in the rotatable phases; Estimating the phase difference between the symbols using the received primary and secondary symbols; And decoding the received signal in consideration of the estimated phase difference.
  • the present specification is characterized in that the size of the additional information is determined according to a specific phase rotation applied to the secondary symbol.
  • the primary symbol and the secondary symbol may be received from the base station by repeating each symbol interval.
  • phase rotation herein is characterized in that the BPSK, QPSK, 16QAM or 64QAM modulation.
  • the present disclosure may further include receiving second control information from the base station indicating whether the specific phase rotation is applied to a specific frequency tone of the secondary symbol.
  • the second control information indicates that the specific phase rotation is not applied to a specific frequency tone of the secondary symbol
  • the same symbol as that of the primary symbol is transmitted to the specific frequency tone of the secondary symbol. It is characterized by.
  • the first control information and the second control information may be received through Downlink Control Channel (DCI) or Radio Resource Control (RRC) signaling.
  • DCI Downlink Control Channel
  • RRC Radio Resource Control
  • the second control information is characterized in that the specific phase rotation is not applied to a specific frequency tone of the secondary symbol only when the carrier frequency offset (CFO) is greater than the threshold value.
  • the primary symbol and the secondary symbol are each characterized by one symbol.
  • the present specification provides a terminal for receiving additional information using phase rotation between symbols in a wireless communication system, comprising: a radio frequency (RF) unit for transmitting and receiving a radio signal; And a processor for controlling the RF unit, the processor receiving, from a base station, first control information consisting of rotatable phases applicable to the inter-symbol phase rotation; Receive a primary symbol and a secondary symbol used for the phase difference estimation between the symbols from the base station, the primary symbol and the secondary symbol is a data symbol adjacent to each other in the time domain, the secondary symbol is the 1 Apply a specific phase rotation to the secondary symbol, the specific phase applied to the secondary symbol being included in the rotatable phases; Estimate a phase difference between the symbols using the received primary and secondary symbols; And decoding the received signal in consideration of the estimated phase difference.
  • RF radio frequency
  • the primary symbol and the secondary symbol are repeatedly transmitted adjacent to the time axis, and phase rotation between symbols is used to perform compensation for Carrie Frequency Offset (CFO) and Common Phase Error (CPE).
  • CFO Carrie Frequency Offset
  • CPE Common Phase Error
  • the present specification can efficiently perform compensation for CFO and CPE even in a large CFO environment by transmitting and receiving the same symbol as the primary symbol on a specific frequency tone of the secondary symbol.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 5 illustrates a reference signal pattern mapped to a downlink resource block pair in a wireless communication system to which the present invention can be applied.
  • FIG. 6 is a diagram illustrating an example of a power spectral density of an oscillator.
  • FIG. 7 is a diagram illustrating an example of a method of repeatedly transmitting two data symbols proposed in the present specification.
  • FIG. 8 is a diagram illustrating an example of a phase rotation method of a secondary symbol proposed in the present specification.
  • FIG. 9 is a diagram illustrating an example of a method of repeatedly transmitting data symbols to compensate for a large CFO proposed in the present specification.
  • FIG. 10 is a flowchart illustrating an example of a method for transmitting and receiving additional information using phase rotation between symbols proposed in the present specification.
  • FIG. 11 illustrates a block diagram of a wireless communication device to which the present invention can be applied.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • 3GPP LTE / LTE-A supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • Type 1A illustrates the structure of a type 1 radio frame.
  • Type 1 radio frames may be applied to both full duplex and half duplex FDD.
  • a radio frame consists of 10 subframes.
  • One subframe consists of two consecutive slots in the time domain, and subframe i consists of slot 2i and slot 2i + 1.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • uplink transmission and downlink transmission are distinguished in the frequency domain. While there is no restriction on full-duplex FDD, the terminal cannot simultaneously transmit and receive in half-duplex FDD operation.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. Since 3GPP LTE uses OFDMA in downlink, the OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • FIG. 1B illustrates a frame structure type 2.
  • an uplink-downlink configuration is a rule indicating whether uplink and downlink are allocated (or reserved) for all subframes.
  • Table 1 shows an uplink-downlink configuration.
  • 'D' represents a subframe for downlink transmission
  • 'U' represents a subframe for uplink transmission
  • 'S' represents a downlink pilot.
  • a special subframe consisting of three fields: a time slot, a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • GP is a section for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the uplink-downlink configuration can be classified into seven types, and the location and / or number of downlink subframes, special subframes, and uplink subframes are different for each configuration.
  • Switch-point periodicity refers to a period in which an uplink subframe and a downlink subframe are repeatedly switched in the same manner, and both 5ms or 10ms are supported.
  • the special subframe S exists every half-frame, and in case of having a period of 5ms downlink-uplink switching time, it exists only in the first half-frame.
  • subframes 0 and 5 and DwPTS are sections for downlink transmission only.
  • the subframe immediately following the UpPTS and the subframe subframe is always an interval for uplink transmission.
  • the uplink-downlink configuration may be known to both the base station and the terminal as system information.
  • the base station may notify the terminal of the change of the uplink-downlink allocation state of the radio frame by transmitting only an index of the configuration information.
  • the configuration information is a kind of downlink control information, which may be transmitted through a physical downlink control channel (PDCCH) like other scheduling information, and is commonly transmitted to all terminals in a cell through a broadcast channel as broadcast information. May be
  • PDCCH physical downlink control channel
  • Table 2 shows the configuration of the special subframe (length of DwPTS / GP / UpPTS).
  • the structure of a radio frame according to the example of FIG. 1 is just one example, and the number of subcarriers included in the radio frame or the number of slots included in the subframe and the number of OFDM symbols included in the slot may vary. Can be.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block (RB) includes 12 ⁇ 7 resource elements.
  • the number N ⁇ DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • up to three OFDM symbols in the first slot in a subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which PDSCH (Physical Downlink Shared Channel) is allocated. data region).
  • PDSCH Physical Downlink Shared Channel
  • An example of a downlink control channel used in 3GPP LTE includes a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid-ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • the PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for a hybrid automatic repeat request (HARQ).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
  • the PDCCH is a resource allocation and transmission format of DL-SCH (Downlink Shared Channel) (also referred to as a downlink grant), resource allocation information of UL-SCH (Uplink Shared Channel) (also called an uplink grant), and PCH ( Paging information in paging channel, system information in DL-SCH, resource allocation for upper-layer control message such as random access response transmitted in PDSCH, arbitrary terminal
  • DL-SCH Downlink Shared Channel
  • UL-SCH Uplink Shared Channel
  • PCH Paging information in paging channel, system information in DL-SCH, resource allocation for upper-layer control message such as random access response transmitted in PDSCH, arbitrary terminal
  • a set of transmission power control commands for individual terminals in a group, activation of voice over IP (VoIP), and the like may be carried.
  • the plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH consists of a set of one or a pluralit
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of available bits of the PDCCH are determined according to the association between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • the CRC is masked with a unique identifier (referred to as RNTI (Radio Network Temporary Identifier)) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • a unique identifier of the terminal for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
  • a paging indication identifier for example, P-RNTI (P-RNTI) may be masked to the CRC.
  • the system information more specifically, the PDCCH for the system information block (SIB), the system information identifier and the system information RNTI (SI-RNTI) may be masked to the CRC.
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) carrying uplink control information is allocated to the control region.
  • the data region is allocated a Physical Uplink Shared Channel (PUSCH) that carries user data.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • a PUCCH for one UE is allocated a resource block (RB) pair in a subframe.
  • RBs belonging to the RB pair occupy different subcarriers in each of the two slots.
  • This RB pair allocated to the PUCCH is said to be frequency hopping at the slot boundary (slot boundary).
  • Reference signal ( RS : Reference Signal)
  • the signal Since data is transmitted over a wireless channel in a wireless communication system, the signal may be distorted during transmission. In order to correctly receive the distorted signal at the receiving end, the distortion of the received signal must be corrected using the channel information.
  • a signal transmission method known to both a transmitting side and a receiving side and a method of detecting channel information using a distorted degree when a signal is transmitted through a channel are mainly used.
  • the above-mentioned signal is called a pilot signal or a reference signal (RS).
  • RS can be classified into two types according to its purpose. There are RSs for channel information acquisition and RSs used for data demodulation. Since the former has a purpose for the UE to acquire channel information on the downlink, it should be transmitted over a wide band, and a UE that does not receive downlink data in a specific subframe should be able to receive and measure its RS. It is also used for measurements such as handover.
  • the latter is an RS that the base station sends along with the corresponding resource when the base station transmits the downlink, and the UE can estimate the channel by receiving the RS, and thus can demodulate the data. This RS should be transmitted in the area where data is transmitted.
  • the downlink reference signal is one common reference signal (CRS: common RS) for acquiring information on channel states shared by all terminals in a cell, measurement of handover, etc. and a dedicated reference used for data demodulation only for a specific terminal. There is a dedicated RS. Such reference signals may be used to provide information for demodulation and channel measurement. That is, DRS is used only for data demodulation and CRS is used for both purposes of channel information acquisition and data demodulation.
  • CRS common reference signal
  • the receiving side measures the channel state from the CRS and transmits an indicator related to the channel quality such as the channel quality indicator (CQI), precoding matrix index (PMI) and / or rank indicator (RI). Feedback to the base station).
  • CRS is also referred to as cell-specific RS.
  • CSI-RS a reference signal related to feedback of channel state information
  • the DRS may be transmitted through resource elements when data demodulation on the PDSCH is needed.
  • the UE may receive the presence or absence of a DRS through a higher layer and is valid only when a corresponding PDSCH is mapped.
  • the DRS may be referred to as a UE-specific RS or a demodulation RS (DMRS).
  • FIG. 5 illustrates a reference signal pattern mapped to a downlink resource block pair in a wireless communication system to which the present invention can be applied.
  • a downlink resource block pair may be represented by 12 subcarriers in one subframe ⁇ frequency domain in a time domain in a unit in which a reference signal is mapped. That is, one resource block pair on the time axis (x-axis) has a length of 14 OFDM symbols in case of normal cyclic prefix (normal CP) (in case of FIG. 5 (a)), and an extended cyclic prefix ( extended CP: Extended Cyclic Prefix) has a length of 12 OFDM symbols (in case of FIG. 5 (b)).
  • normal CP normal cyclic prefix
  • extended CP Extended Cyclic Prefix
  • the resource elements (REs) described as '0', '1', '2' and '3' in the resource block grid are determined by the CRS of the antenna port indexes '0', '1', '2' and '3', respectively.
  • the location of the resource element described as 'D' means the location of the DRS.
  • the CRS is used to estimate a channel of a physical antenna and is distributed in the entire frequency band as a reference signal that can be commonly received to all terminals located in a cell. That is, this CRS is a cell-specific signal and is transmitted every subframe for the wideband.
  • the CRS may be used for channel quality information (CSI) and data demodulation.
  • CSI channel quality information
  • CRS is defined in various formats depending on the antenna arrangement at the transmitting side (base station).
  • base station In a 3GPP LTE system (eg, Release-8), RS for up to four antenna ports is transmitted according to the number of transmit antennas of a base station.
  • the downlink signal transmitting side has three types of antenna arrangements such as a single transmit antenna, two transmit antennas, and four transmit antennas. For example, if the number of transmitting antennas of the base station is two, CRSs for antenna ports 0 and 1 are transmitted, and if four, CRSs for antenna ports 0 to 3 are transmitted. If the base station has four transmit antennas, the CRS pattern in one RB is shown in FIG.
  • the reference signal for the single antenna port is arranged.
  • the reference signals for the two transmit antenna ports are arranged using time division multiplexing (TDM) and / or FDM frequency division multiplexing (FDM) scheme. That is, the reference signals for the two antenna ports are assigned different time resources and / or different frequency resources so that each is distinguished.
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • reference signals for the four transmit antenna ports are arranged using the TDM and / or FDM scheme.
  • the channel information measured by the receiving side (terminal) of the downlink signal may be transmitted by a single transmit antenna, transmit diversity, closed-loop spatial multiplexing, open-loop spatial multiplexing, or It may be used to demodulate data transmitted using a transmission scheme such as a multi-user MIMO.
  • a reference signal when a multiple input / output antenna is supported, when a reference signal is transmitted from a specific antenna port, the reference signal is transmitted to a location of resource elements specified according to a pattern of the reference signal, and the location of resource elements specified for another antenna port. Is not sent to. That is, reference signals between different antennas do not overlap each other.
  • mapping CRSs to resource blocks are defined as follows.
  • Equation 1 k and l represent a subcarrier index and a symbol index, respectively, and p represents an antenna port.
  • the position of the reference signal is in the frequency domain It depends on the value. Since is dependent on the cell ID (ie, the physical layer cell ID), the position of the reference signal has various frequency shift values according to the cell.
  • the position of the CRS may be shifted in the frequency domain according to the cell in order to improve channel estimation performance through the CRS.
  • reference signals in one cell are allocated to the 3k th subcarrier, and reference signals in another cell are allocated to the 3k + 1 th subcarrier.
  • the reference signals are arranged at six resource element intervals in the frequency domain, and are separated at three resource element intervals from the reference signal allocated to another antenna port.
  • reference signals are arranged at constant intervals starting from symbol index 0 of each slot.
  • the time interval is defined differently depending on the cyclic prefix length.
  • the reference signal In the case of the normal cyclic prefix, the reference signal is located at symbol indexes 0 and 4 of the slot, and in the case of the extended cyclic prefix, the reference signal is located at symbol indexes 0 and 3 of the slot.
  • the reference signal for the antenna port having the maximum value of two antenna ports is defined in one OFDM symbol.
  • the reference signals for reference signal antenna ports 0 and 1 are located at symbol indices 0 and 4 (symbol indices 0 and 3 for extended cyclic prefix) of slots,
  • the reference signal for is located at symbol index 1 of the slot.
  • the positions in the frequency domain of the reference signal for antenna ports 2 and 3 are swapped with each other in the second slot.
  • DRS is used to demodulate data. Precoding weights used for a specific terminal in multiple I / O antenna transmission are used without change to estimate the corresponding channel by combining with the transmission channel transmitted from each transmission antenna when the terminal receives the reference signal.
  • the 3GPP LTE system (eg, Release-8) supports up to four transmit antennas and a DRS for rank 1 beamforming is defined.
  • the DRS for rank 1 beamforming also indicates a reference signal for antenna port index 5.
  • Equation 2 shows a case of a general cyclic transpose
  • Equation 3 shows a case of an extended cyclic transpose
  • Equations 2 and 3 k and l represent subcarrier indices and symbol indices, respectively, and p represents an antenna port.
  • N_RB ⁇ PDSCH represents a frequency band of a resource block for PDSCH transmission.
  • the position of the reference signal is in the frequency domain It depends on the value. Since is dependent on the cell ID (ie, the physical layer cell ID), the position of the reference signal has various frequency shift values according to the cell.
  • LTE system evolution In the advanced LTE-A system, it should be designed to support up to eight transmit antennas in the downlink of the base station. Therefore, RS for up to eight transmit antennas must also be supported. Since the downlink RS in the LTE system defines only RSs for up to four antenna ports, when the base station has four or more up to eight downlink transmit antennas in the LTE-A system, RSs for these antenna ports are additionally defined. Must be designed. RS for up to eight transmit antenna ports must be designed for both the RS for channel measurement and the RS for data demodulation described above.
  • an RS for an additional up to eight transmit antenna ports should be additionally defined in the time-frequency domain in which CRS defined in LTE is transmitted every subframe over the entire band.
  • the RS overhead becomes excessively large.
  • the newly designed RS in the LTE-A system is divided into two categories, RS for channel measurement purpose (CSI-RS: Channel State Information-RS, Channel State Indication-RS, etc.) for selection of MCS, PMI, etc. ) And RS (Data Demodulation-RS) for data demodulation transmitted through eight transmit antennas.
  • CSI-RS Channel State Information-RS, Channel State Indication-RS, etc.
  • PMI PMI
  • RS Data Demodulation-RS
  • CSI-RS for the purpose of channel measurement has a feature that is designed for channel measurement-oriented purposes, unlike the conventional CRS is used for data demodulation at the same time as the channel measurement, handover, and the like. Of course, this may also be used for the purpose of measuring handover and the like. Since the CSI-RS is transmitted only for the purpose of obtaining information on the channel state, unlike the CRS, the CSI-RS does not need to be transmitted every subframe. In order to reduce the overhead of the CSI-RS, the CSI-RS is transmitted intermittently on the time axis.
  • the DM RS is transmitted to the UE scheduled in the corresponding time-frequency domain for data demodulation. That is, the DM-RS of a specific UE is transmitted only in a region where the UE is scheduled, that is, a time-frequency region in which data is received.
  • the eNB should transmit CSI-RS for all antenna ports. Transmitting CSI-RS for each subframe for up to 8 transmit antenna ports has a disadvantage in that the overhead is too large. Therefore, the CSI-RS is not transmitted every subframe but is transmitted intermittently on the time axis. Can be reduced. That is, the CSI-RS may be periodically transmitted with an integer multiple of one subframe or may be transmitted in a specific transmission pattern. At this time, the period or pattern in which the CSI-RS is transmitted may be set by the eNB.
  • the UE In order to measure the CSI-RS, the UE must transmit the CSI-RS index of the CSI-RS for each CSI-RS antenna port of the cell to which it belongs, and the CSI-RS resource element (RE) time-frequency position within the transmitted subframe. , And information about the CSI-RS sequence.
  • RE resource element
  • the eNB should transmit CSI-RS for up to eight antenna ports, respectively.
  • Resources used for CSI-RS transmission of different antenna ports should be orthogonal to each other.
  • the CSI-RSs for each antenna port may be mapped to different REs so that these resources may be orthogonally allocated in the FDM / TDM manner.
  • the CSI-RSs for different antenna ports may be transmitted in a CDM scheme that maps to orthogonal codes.
  • the eNB informs its cell UE of the information about the CSI-RS, it is necessary to first inform the information about the time-frequency to which the CSI-RS for each antenna port is mapped. Specifically, the subframe numbers through which the CSI-RS is transmitted, or the period during which the CSI-RS is transmitted, the subframe offset through which the CSI-RS is transmitted, and the OFDM symbol number where the CSI-RS RE of a specific antenna is transmitted and the frequency interval (spacing), the RE offset or shift value in the frequency axis.
  • PCRS Phase Compensation Reference Signal Signal
  • the UE If the UE detects an xPDCCH with DCI format B1 or B2 in subframe n intended for it, the UE receives DL PCRS at the PCRS antenna port indicated in the DCI at the corresponding subframe.
  • the UE detects an xPDCCH with DCI format A1 or A2 in subframe n intended for it, then the UE is the same one as the assigned DM-RS antenna port indicated in DCI except the conditions (condition 1 and condition 2) below.
  • two PCRS antenna ports are used to transmit UL PCRS in subframe n + 4 + m + 1.
  • Table 3 shows an example of the relative transmit power ratio of PCRS and xPUSCH on a given layer.
  • the PCRS associated with the xPUSCH is transmitted at (1) antenna port (p) p ⁇ ⁇ 40,41,42,43 ⁇ , and (2) present and only compensates for phase noise if the xPUSCH transmission is associated with the corresponding antenna port. Is a valid criterion for (3) is transmitted only on the physical resource blocks and symbols to which the corresponding xPUSCH is mapped.
  • Equation 4 For any antenna port of p ⁇ ⁇ 40, 41, 42, 43 ⁇ , the reference signal sequence r (m) is defined as Equation 4 below.
  • a pseudo-random sequence c (i) is defined by a gold sequence of length-31, and a pseudo random sequence generator is initialized at the beginning of each subframe, as shown in equation (5).
  • Resource element Mapping Mapping to resource elements
  • part of the reference signal sequence r (m) is Complex-value modulation symbol for the corresponding xPUSCH symbols in the subframe according to Is mapped to.
  • the resource element (k, l ') used for transmission of UE specific PCRS from one UE on any antenna port in set S is not used for transmission of xPUSCH on any antenna port in the same subframe. .
  • Baseband signals transmitted by the transmitting end are shifted to the passband by the carrier frequency generated by the oscillator, and signals transmitted through the carrier frequency are transmitted by the same carrier frequency by the same carrier frequency at the receiving end (e.g., terminal). Is converted to.
  • the signal received by the receiver may include distortion associated with the carrier.
  • the reason for such carrier frequency offset is that the oscillators used at the transmitter and the receiver are not the same or the Doppler frequency transition occurs as the terminal moves.
  • the Doppler frequency is proportional to the moving speed and the carrier frequency of the terminal and is defined as in Equation 7 below.
  • Equation 7 Denotes the carrier frequency, the Doppler frequency, the movement speed of the terminal, and the speed of light, respectively.
  • Equation 8 the normalized carrier frequency offset ⁇ is defined as in Equation 8 below.
  • Equation 8 Denotes a carrier frequency offset normalized to a carrier frequency offset, a subcarrier spacing, and a subcarrier spacing in order.
  • the received signal in the time domain is the result of multiplying the transmitted signal by the phase rotation
  • the received signal in the frequency domain is the result of shifting the transmitted signal in the frequency domain.
  • ICI inter-carrier-interference
  • Equation 9 the received signal in the frequency domain is expressed by Equation 9 below.
  • Equation 9 shows a received signal having a CFO in the frequency domain.
  • Equation 9 Denote subcarrier index, symbol index, FFT size, received signal, transmitted signal, frequency response, ICI due to CFO, and white noise in order.
  • Equation 9 when the carrier frequency offset exists, the amplitude and phase of the k-th subcarrier are distorted, and it can be seen that interference by adjacent subcarriers occurs.
  • interference by an adjacent subcarrier may be given by Equation 10 below.
  • Equation 10 represents the ICI caused by the CFO.
  • the baseband signal transmitted by the transmitter is shifted to the passband by the carrier frequency generated by the oscillator, and the signal transmitted through the carrier frequency is converted into the baseband signal by the same carrier frequency at the receiver.
  • the signal received by the receiver may include distortion associated with the carrier wave.
  • phase noise generated due to unstable characteristics of an oscillator used in a transmitter and a receiver may be mentioned.
  • This phase noise refers to the frequency fluctuating with time around the carrier frequency.
  • This phase noise is a random process with zero mean and is modeled as a Wiener process and affects the OFDM system.
  • phase noise tends to increase as the frequency of the carrier increases.
  • This phase noise tends to be characterized by a power spectral density with the same oscillator.
  • FIG. 6 is a diagram illustrating an example of a power spectral density of an oscillator.
  • the distortion of the signal due to the phase noise appears in the form of a common phase error (CPE) and inter-carrier interference (ICI) in an OFDM system.
  • CPE common phase error
  • ICI inter-carrier interference
  • Equation 11 shows the effect of the phase noise on the received signal of the OFDM system. That is, Equation 11 represents a received signal having phase noise in the frequency domain.
  • Equation 11 Indicates subcarrier index, symbol index, FFT size, received signal, transmitted signal, frequency response, common phase error due to phase noise, inter-carrier interference due to phase noise, white noise, and phase rotation due to phase noise, respectively.
  • the basic way to overcome the distortion is to estimate and compensate for the distortion with a reference signal (RS).
  • RS reference signal
  • the method of estimating / compensating distortion using RS may act as a system overhead due to an increase in resources used according to an increase in a reference signal.
  • the distortion may be estimated using data symbols other than the reference signals shared by the transmitter and the receiver.
  • another method for estimating distortion caused by phase noise and CFO may be using two adjacent symbols on the time axis, in particular, a data symbol.
  • the receiver may estimate phase differences between symbols due to CFO or phase noise without information on symbol values transmitted from the transmitter.
  • the method of estimating the phase difference between symbols by using two adjacent (data) symbols has the advantage that the CFO and the CPE can be estimated without detecting the symbol and can be used regardless of the modulation order.
  • the first embodiment provides a method of transmitting and receiving additional information (or bits or data) by using a phase (rotational) difference between adjacent (or consecutive) data symbols.
  • the transmitting end (for example, the base station) is the first symbol and the secondary two data symbols (eg QPSK, 16-QAM) adjacent to the time axis It consists of a symbol.
  • the secondary two data symbols eg QPSK, 16-QAM
  • the primary symbol indicates any constellation point among constellations defined in the physical channel (e.g. PDSCH, PDCCH).
  • the secondary symbol is defined by rotating the primary symbol by an arbitrary phase.
  • the rotatable phases form a set, and the transmitting end selects one phase of the set and applies the selected phase to the secondary symbol to transmit additional information or data to the receiving end.
  • the transmitting end may transmit a set constituting the rotatable phases to the receiving end using DCI or RRC signaling.
  • FIG. 7 is a diagram illustrating an example of a method of repeatedly transmitting two data symbols proposed in the present specification.
  • two data symbols adjacent to the time axis are composed of a primary symbol (P 0 ) 710 and a secondary symbol (P 1 ) 720, and the primary symbol and the secondary symbol are formed on the time axis. It can be seen that the structure is repeatedly arranged at one symbol interval.
  • DL CCH Control Channel
  • RS DM-RS
  • Equation 12 shows the definition of the primary symbol of the P 0 position and the secondary symbol of the P 1 position in FIG. 7.
  • Equation 12 Denotes an OFDM symbol index, a subcarrier index, the total number of OFDM symbols of a data symbol, a primary symbol defined in P 0 , a secondary symbol defined in P 1 , and a phase rotation value.
  • Equation 12 Corresponds to a modulation symbol defined in a physical channel (eg PDSCH, PDCCH) having an arbitrary modulation order such as BPSK, QPSK, 16QAM, or the like.
  • Equation 12 Corresponds to phase rotation of BPSK or QPSK according to the corresponding number of bits and can be applied to modulation of the secondary symbol.
  • FIG. 8 shows an example of a method of transmitting BPSK information corresponding to 1 bit and a method of transmitting QPSK information corresponding to 2 bits during QPSK primary symbol transmission.
  • FIG. 8 is a diagram illustrating an example of a phase rotation method of the secondary symbols proposed in the present specification.
  • the method of transmitting and receiving additional information by constructing two identical data symbols adjacent to each other on the time axis and applying phase rotation (eg BPSK, QPSK, 16QAM, etc.) to the secondary symbols corresponds to the phase difference between the two data symbols.
  • phase rotation eg BPSK, QPSK, 16QAM, etc.
  • the transmitting end may transmit all 6 bits (4 bits + 2 bits) of information to the receiving end.
  • the range that can be estimated may be limited according to the phase rotation defined between the primary symbol and the secondary symbol.
  • the first embodiment can increase the overall throughput by applying phase rotation to transmit additional information.
  • Equation 13 is a first step for blind phase error estimation proposed in the present specification.
  • Equation 13 Denotes the total number of OFDM symbols of the subcarrier index set where the data symbol transmitted for CFO and CPE compensation is located, and the data symbol transmitted for CFO and CPE compensation, respectively.
  • Equation 14 Equation 14
  • phase rotation applied to the secondary symbol is applied to the BPSK.
  • Equation 15 represents an equation corresponding to the second step.
  • Equation 15 b denotes additional information that is transmitted through phase rotation, that is, bit information.
  • Equation 16 the estimation of the additional information or additional data.
  • angle (x) means a phase value for the complex number x.
  • Equation 18 an estimation method when the modulation order of additional data is QPSK based on the Salping equation can be defined as in Equation 18 below.
  • Equation 19 represents an equation corresponding to the third step.
  • Equation 19 Are each Phase difference between, means the total number of subcarriers.
  • Equation 17 When using Equation 17 can be summarized as in Equation 20 below.
  • Equation 20 shows an example of a metric for blind phase error estimation.
  • the second embodiment provides a method of using the same symbol as the primary symbol without phase rotation in some frequency tones previously promised between the transmitting and receiving end among the secondary symbols defined in the first embodiment.
  • the range of phase rotation that can be estimated is limited according to the phase rotation value applied to the secondary symbol.
  • performance degradation may occur in an environment in which a very large CFO exists outside the range of presumable phase rotation.
  • the second embodiment provides a method of transmitting the same symbol as the primary symbol in some frequency tones of the secondary symbol to solve a problem in an environment in which a large CFO occurs.
  • the receiving end can estimate a phase rotation value without limiting the estimation range.
  • the receiver first estimates the CFO for frequency tones in which the same symbol is transmitted in the first and second symbols, and then precompensates the estimated CFO to estimate phase rotation between the two data symbols. .
  • the receiver first compensates the CFO outside the estimated range and obtains additional information by estimating phase rotation between data symbols, thereby preventing performance degradation for a large CFO and increasing throughput. It is effective.
  • FIG. 9 is a diagram illustrating an example of a method of repeatedly transmitting data symbols to compensate for a large CFO proposed in the present specification.
  • FIG. 9 shows a method of transmitting the same symbol as the primary symbol without phase rotation in the frequency tone of some of the secondary symbols.
  • Equation 21 shows definitions of a primary symbol 910 at a P 0 position, a secondary symbol 920 at a P 1 position, and a secondary symbol 930 at a P 2 position in FIG. 9.
  • the second symbol of the P 2 position P represents the same symbol as the first symbol of the 0 position
  • the second symbol of the P 1 position represents the symbols applied to phase rotation in the first symbol position of P 0.
  • Equation 21 Are the OFDM symbol index, the subcarrier index, the total number of OFDM symbols of the data symbol, the primary symbol defined in P 0 , the secondary symbol defined in P 1 , the symbol defined in P 2 (primary symbol), and the phase rotation value. Means.
  • the transmitting end may provide information indicating whether the same symbol as that of the primary symbol of the P 0 position is transmitted to the secondary symbol of the P 2 position by Downlink Control Information (DCI) or Radio Resource Control (RRC) signaling. It can be transmitted to the receiving end (eg, terminal) through (signaling).
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • the receiver may perform the first embodiment or the second embodiment method through the information indicating whether the same symbol is transmitted through the DCI or RRC signaling.
  • the number of data symbols that can be transmitted is reduced.
  • the transmitting end may inform the receiving end of a set of rotational phases applied to the secondary symbol by using DCI or RRC signaling.
  • the transmitting end may directly signal a set of phase rotations applied to the secondary symbol through DCI or RRC signaling to the receiving end.
  • phase rotation value in the set of phase rotations represents an additional bit value that can be transmitted through phase rotation of a secondary symbol.
  • the receiving end may also signal the ideal phase rotation set to the transmitting end through uplink control information (UCI) or RRC signaling.
  • UCI uplink control information
  • RRC Radio Resource Control
  • Table 4 below shows an example of a phase rotation set transmitted from the transmitting end to the receiving end or from the receiving end to the transmitting end.
  • Phase rotation Bit information Phase rotation 0 0 00 0 One + ⁇ 01 + ⁇ / 2 11 + ⁇ 10 + 3 ⁇ / 2
  • FIG. 10 is a flowchart illustrating an example of a method for transmitting and receiving additional information using phase rotation between symbols proposed in the present specification.
  • the terminal receives first control information composed of rotatable phases applicable to phase rotation between symbols from a base station (S1010).
  • the first control information represents a set or set of rotatable phases.
  • the terminal receives the primary symbol and the secondary symbol used for the phase difference estimation between the symbols from the base station (S1020).
  • phase difference between symbols means a phase difference between symbols generated by CFO or CPE.
  • the primary symbol and the secondary symbol mean data symbols adjacent to each other in the time domain, as described above in the first and second embodiments.
  • the secondary symbol applies a specific phase rotation to the primary symbol, and the specific phase applied to the secondary symbol is included in the rotatable phases. That is, the specific phase corresponds to any one of the rotatable phases.
  • the size of the additional information may be determined according to a specific phase rotation applied to the secondary symbol.
  • the specific phase rotation may be BPSK, QPSK, 16QAM or 64QAM modulation, so that additional information or bits transmitted may be as shown in Table 4 above.
  • the primary symbol and the secondary symbol are each received from the base station repeatedly at intervals of one symbol.
  • the primary symbol and the secondary symbol may each be composed of one symbol.
  • the terminal estimates a phase difference between the symbols by using the received primary and secondary symbols (S1030).
  • step S1030 the UE can compensate for the distortion due to the CFO or CPE.
  • the terminal decodes the received signal in consideration of the estimated phase difference (S1040).
  • the UE can accurately decode the received signal by compensating for distortion due to the CFO or CPE through the primary symbol and the secondary symbol.
  • the terminal may receive additional information bits from the base station according to a specific phase rotation applied to the secondary symbol.
  • the terminal may receive second control information from the base station indicating whether the specific phase rotation is applied to a specific frequency tone of the secondary symbol.
  • the second control information indicates that the specific phase rotation is not applied to a specific frequency tone of the secondary symbol
  • the same symbol as that of the primary symbol is transmitted to the specific frequency tone of the secondary symbol.
  • first control information and the second control information may be received through Downlink Control Channel (DCI) or Radio Resource Control (RRC) signaling.
  • DCI Downlink Control Channel
  • RRC Radio Resource Control
  • the second control information may indicate that the specific phase rotation is not applied to a specific frequency tone of the secondary symbol only when a carrier frequency offset (CFO) is greater than a threshold.
  • CFO carrier frequency offset
  • FIG. 11 illustrates a block diagram of a wireless communication device according to an embodiment of the present invention.
  • a wireless communication system includes a base station 1110 and a plurality of terminals 1120 located in an area of a base station 1110.
  • the base station 1110 includes a processor 1111, a memory 1112, and an RF unit 1113.
  • the processor 1111 implements the functions, processes, and / or methods proposed in FIGS. 1 to 10. Layers of the air interface protocol may be implemented by the processor 1111.
  • the memory 1112 is connected to the processor 1111 and stores various information for driving the processor 1111.
  • the RF unit 1113 is connected to the processor 1111 to transmit and / or receive a radio signal.
  • the terminal 1120 includes a processor 1121, a memory 1122, and an RF unit 1123.
  • the processor 1121 implements the functions, processes, and / or methods proposed in FIGS. 1 to 10. Layers of the air interface protocol may be implemented by the processor 1121.
  • the memory 1122 is connected to the processor 1121 and stores various information for driving the processor 1121.
  • the RF unit 1123 is connected to the processor 1121 and transmits and / or receives a radio signal.
  • the memories 1112 and 1122 may be inside or outside the processors 1111 and 1121, and may be connected to the processors 1111 and 1121 by various well-known means.
  • the base station 1110 and / or the terminal 1120 may have a single antenna or multiple antennas.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.

Abstract

본 명세서는 무선 통신 시스템에서 심볼(symbol) 간 위상 회전(phase rotation)을 이용하여 추가 정보를 송수신하기 위한 방법에 있어서, 단말에 의해 수행되는 방법은, 상기 심볼 간 위상 회전에 적용할 수 있는 회전 가능한 위상들로 구성된 제 1 제어 정보를 기지국으로부터 수신하는 단계; 상기 심볼 간 위상 차이 추정에 사용되는 1차 심볼 및 2차 심볼을 상기 기지국으로부터 수신하는 단계; 상기 수신된 1차 심볼 및 2차 심볼을 이용하여 상기 심볼 간 위상 차이를 추정하는 단계; 및 상기 추정된 위상 차이를 고려하여 수신 신호를 디코딩하는 단계를 포함하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 심볼 간 위상 회전을 이용하여 추가 정보를 송수신하기 위한 방법 및 이를 위한 장치
본 명세서는 무선 통신 시스템에 관한 것으로서, 보다 상세하게는 무선 통신 시스템에서 심볼 간 위상 회전을 이용하여 추가 정보를 송수신하기 위한 방법 및 이를 위한 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 CFO(Carrier Frequency Offset) 및 CPE(Common Phase Error) 보상을 위해 시간 축으로 인접하는 1차 심볼과 2차 심볼 간의 위상 회전을 이용하여 추가적인 정보를 송수신하는 방법을 제공함을 목적으로 한다.
또한, 본 명세서는 큰 CFO 환경에서 2차 심볼의 특정 주파수 톤에 1차 심볼과 동일한 심볼을 송수신하는 방법을 제공함을 목적으로 한다.
또한, 본 명세서는 2차 심볼의 특정 주파수 톤에 1차 심볼과 동일한 심볼이 전송되는지 여부를 나타내는 정보, 2차 심볼에 적용되는 위상 회전의 집합과 관련된 정보를 전송하는 방법을 제공함을 목적으로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서는 무선 통신 시스템에서 심볼(symbol) 간 위상 회전(phase rotation)을 이용하여 추가 정보를 송수신하기 위한 방법에 있어서, 단말에 의해 수행되는 방법은, 상기 심볼 간 위상 회전에 적용할 수 있는 회전 가능한 위상들로 구성된 제 1 제어 정보를 기지국으로부터 수신하는 단계; 상기 심볼 간 위상 차이 추정에 사용되는 1차 심볼 및 2차 심볼을 상기 기지국으로부터 수신하는 단계, 상기 1차 심볼 및 상기 2차 심볼은 시간 영역에서 서로 인접하는 데이터 심볼이며, 상기 2차 심볼은 상기 1차 심볼에 특정 위상 회전을 적용하며, 상기 2차 심볼에 적용되는 특정 위상은 상기 회전 가능한 위상들에 포함되며; 상기 수신된 1차 심볼 및 2차 심볼을 이용하여 상기 심볼 간 위상 차이를 추정하는 단계; 및 상기 추정된 위상 차이를 고려하여 수신 신호를 디코딩하는 단계를 포함하는 것을 특징으로 한다.
또한, 본 명세서는 상기 2차 심볼에 적용되는 특정 위상 회전에 따라 상기 추가 정보의 크기가 결정되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 1차 심볼 및 상기 2차 심볼은 각각 1 심볼 간격으로 반복하여 상기 기지국으로부터 수신되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 특정 위상 회전은 BPSK, QPSK, 16QAM 또는 64QAM 변조인 것을 특징으로 한다.
또한, 본 명세서는 상기 2차 심볼의 특정 주파수 톤(tone)에 상기 특정 위상 회전의 적용 여부를 나타내는 제 2 제어 정보를 상기 기지국으로부터 수신하는 단계를 더 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 제 2 제어 정보가 상기 2차 심볼의 특정 주파수 톤에 상기 특정 위상 회전이 적용되지 않음을 나타내는 경우, 상기 2차 심볼의 특정 주파수 톤에는 상기 1차 심볼과 동일한 심볼이 전송되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 제 1 제어 정보 및 상기 제 2 제어 정보는 DCI(Downlink Control Channel) 또는 RRC(Radio Resource Control) 시그널링을 통해 수신되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 제 2 제어 정보는 CFO(Carrier Frequency Offset)이 임계값보다 큰 경우에만 상기 2차 심볼의 특정 주파수 톤에 상기 특정 위상 회전이 적용되지 않음을 나타내는 것을 특징으로 한다.
또한, 본 명세서에서 상기 1차 심볼 및 상기 2차 심볼은 각각 1 심볼인 것을 특징으로 한다.
또한, 본 명세서는 무선 통신 시스템에서 심볼(symbol) 간 위상 회전(phase rotation)을 이용하여 추가 정보를 수신하기 위한 단말에 있어서, 무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛; 및 상기 RF 유닛을 제어하는 프로세서를 포함하고, 상기 프로세서는, 상기 심볼 간 위상 회전에 적용할 수 있는 회전 가능한 위상들로 구성된 제 1 제어 정보를 기지국으로부터 수신하며; 상기 심볼 간 위상 차이 추정에 사용되는 1차 심볼 및 2차 심볼을 상기 기지국으로부터 수신하며, 상기 1차 심볼 및 상기 2차 심볼은 시간 영역에서 서로 인접하는 데이터 심볼이며, 상기 2차 심볼은 상기 1차 심볼에 특정 위상 회전을 적용하며, 상기 2차 심볼에 적용되는 특정 위상은 상기 회전 가능한 위상들에 포함되며; 상기 수신된 1차 심볼 및 2차 심볼을 이용하여 상기 심볼 간 위상 차이를 추정하며; 및 상기 추정된 위상 차이를 고려하여 수신 신호를 디코딩하도록 제어하는 것을 특징으로 한다.
본 명세서는 시간 축으로 인접하게 1차 심볼 및 2차 심볼을 반복하여 전송하고, 심볼 간 위상 회전을 이용함으로써, CFO(Carrie Frequency Offset) 및 CPE(Common Phase Error)에 대한 보상을 수행하고, 추가 정보를 송수신함으로써, 수율(throughput)을 높일 수 있는 효과가 있다.
또한, 본 명세서는 2차 심볼의 특정 주파수 톤에 1차 심볼과 동일한 심볼을 송수신함으로써, 큰 CFO 환경에서도 CFO 및 CPE에 대한 보상을 효율적으로 수행할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 자원 블록 쌍에 매핑된 참조 신호 패턴을 예시한다.
도 6은 발진기(oscillator)의 전력 스펙트럼 밀도(power spectral density)의 일례를 나타낸 도이다.
도 7은 본 명세서에서 제안하는 2개의 데이터 심볼을 반복하여 전송하는 방법의 일례를 나타낸 도이다.
도 8은 본 명세서에서 제안하는 2차 심볼의 위상 회전 방법의 일례를 나타낸 도이다.
도 9는 본 명세서에서 제안하는 큰 CFO의 보상을 위해 데이터 심볼들을 반복하여 전송하는 방법의 일례를 나타낸 도이다.
도 10은 본 명세서에서 제안하는 심볼 간 위상 회전을 이용하여 추가 정보를 송수신하는 방법의 일례를 나타낸 순서도이다.
도 11은 본 발명이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
본 발명이 적용될 수 있는 무선 통신 시스템 일반
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
3GPP LTE/LTE-A에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1에서 무선 프레임의 시간 영역에서의 크기는 T_s=1/(15000*2048)의 시간 단위의 배수로 표현된다. 하향링크 및 상향링크 전송은 T_f=307200*T_s=10ms의 구간을 가지는 무선 프레임으로 구성된다.
도 1의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 타입 1 무선 프레임은 전이중(full duplex) 및 반이중(half duplex) FDD에 모두 적용될 수 있다.
무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 무선 프레임은 T_slot=15360*T_s=0.5ms 길이의 20개의 슬롯으로 구성되고, 각 슬롯은 0부터 19까지의 인덱스가 부여된다. 하나의 서브프레임은 시간 영역(time domain)에서 연속적인 2개의 슬롯(slot)으로 구성되고, 서브프레임 i는 슬롯 2i 및 슬롯 2i+1로 구성된다. 하나의 서브프레임을 전송하는데 걸리는 시간을 TTI(transmission time interval)이라 한다. 예를 들어, 하나의 서브 프레임은 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다.
FDD에서 상향링크 전송 및 하향링크 전송은 주파수 도메인에서 구분된다. 전이중 FDD에 제한이 없는 반면, 반이중 FDD 동작에서 단말은 동시에 전송 및 수신을 할 수 없다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(RB: Resource Block)을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부 반송파(subcarrier)를 포함한다.
도 1의 (b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다.
타입 2 무선 프레임은 각 153600*T_s=5ms의 길이의 2개의 하프 프레임(half frame)으로 구성된다. 각 하프 프레임은 30720*T_s=1ms 길이의 5개의 서브프레임으로 구성된다.
TDD 시스템의 타입 2 프레임 구조에서 상향링크-하향링크 구성(uplink-downlink configuration)은 모든 서브프레임에 대하여 상향링크와 하향링크가 할당(또는 예약)되는지 나타내는 규칙이다.
표 1은 상향링크-하향링크 구성을 나타낸다.
Figure PCTKR2017001425-appb-T000001
표 1을 참조하면, 무선 프레임의 각 서브프레임 별로, 'D'는 하향링크 전송을 위한 서브프레임을 나타내고, 'U'는 상향링크 전송을 위한 서브프레임을 나타내며, 'S'는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot) 3가지의 필드로 구성되는 스페셜 서브프레임(special subframe)을 나타낸다.
DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. GP는 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
각 서브프레임 i는 각 T_slot=15360*T_s=0.5ms 길이의 슬롯 2i 및 슬롯 2i+1로 구성된다.
상향링크-하향링크 구성은 7가지로 구분될 수 있으며, 각 구성 별로 하향링크 서브프레임, 스페셜 서브프레임, 상향링크 서브프레임의 위치 및/또는 개수가 다르다.
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환 시점(switching point)이라 한다. 전환 시점의 주기성(Switch-point periodicity)은 상향링크 서브프레임과 하향링크 서브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms가 모두 지원된다. 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 스페셜 서브프레임(S)은 하프-프레임 마다 존재하고, 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 첫번째 하프-프레임에만 존재한다.
모든 구성에 있어서, 0번, 5번 서브프레임 및 DwPTS는 하향링크 전송만을 위한 구간이다. UpPTS 및 서브프레임 서브프레임에 바로 이어지는 서브프레임은 항상 상향링크 전송을 위한 구간이다.
이러한, 상향링크-하향링크 구성은 시스템 정보로써 기지국과 단말이 모두 알고 있을 수 있다. 기지국은 상향링크-하향링크 구성 정보가 바뀔 때마다 구성 정보의 인덱스만을 전송함으로써 무선 프레임의 상향링크-하향링크 할당상태의 변경을 단말에 알려줄 수 있다. 또한, 구성 정보는 일종의 하향링크 제어정보로서 다른 스케줄링 정보와 마찬가지로 PDCCH(Physical Downlink Control Channel)를 통해 전송될 수 있으며, 방송 정보로서 브로드캐스트 채널(broadcast channel)을 통해 셀 내의 모든 단말에 공통으로 전송될 수도 있다.
표 2는 스페셜 서브프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
Figure PCTKR2017001425-appb-T000002
도 1의 예시에 따른 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 부 반송파의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 2를 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록(RB: resource block)은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 N^DL은 하향링크 전송 대역폭(bandwidth)에 종속한다.
상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 3을 참조하면, 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷(이를 하향링크 그랜트라고도 한다.), UL-SCH(Uplink Shared Channel)의 자원 할당 정보(이를 상향링크 그랜트라고도 한다.), PCH(Paging Channel)에서의 페이징(paging) 정보, DL-SCH에서의 시스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답(random access response)과 같은 상위 레이어(upper-layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP(Voice over IP)의 활성화 등을 나를 수 있다. 복수의 PDCCH들은 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH들을 모니터링할 수 있다. PDCCH는 하나 또는 복수의 연속적인 CCE(control channel elements)의 집합으로 구성된다. CCE는 무선 채널의 상태에 따른 부호화율(coding rate)을 PDCCH에 제공하기 위하여 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)들에 대응된다. PDCCH의 포맷 및 사용 가능한 PDCCH의 비트 수는 CCE들의 수와 CCE들에 의해 제공되는 부호화율 간의 연관 관계에 따라 결정된다.
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다.)가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록(SIB: system information block)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여, RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH을 동시에 전송하지 않는다.
하나의 단말에 대한 PUCCH에는 서브 프레임 내에 자원 블록(RB: Resource Block) 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
참조 신호( RS : Reference Signal)
무선 통신 시스템에서 데이터는 무선 채널을 통해 전송되기 때문에, 신호는 전송 중에 왜곡될 수 있다. 수신단에서 왜곡된 신호를 정확하게 수신하기 위하여, 수신된 신호의 왜곡은 채널 정보를 이용하여 보정되어야 한다. 채널 정보를 검출하기 위하여 송신측과 수신측 모두 알고 있는 신호 전송 방법과 신호가 채널을 통해 전송될 때 왜곡된 정도를 이용하여 채널 정보를 검출하는 방법을 주로 이용한다. 상술한 신호를 파일럿 신호 또는 참조 신호(RS: reference signal)라고 한다.
또한 최근 대부분의 이동통신 시스템에서 패킷을 전송할 때, 지금까지 한 개의 송신안테나와 한 개의 수신안테나를 사용했던 것에서 탈피, 다중송신안테나와 다중수신안테나를 채택해 송수신 데이터 효율을 향상시킬 수 있는 방법을 사용한다. 다중 입출력 안테나를 이용하여 데이터를 송수신할 때, 신호를 정확하게 수신하기 위하여 송신 안테나와 수신 안테나 간의 채널 상태가 검출되어야 한다. 따라서 각 송신 안테나는 개별적인 참조 신호를 가져야 한다.
이동 통신 시스템에서 RS는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 정보 획득을 위한 목적의 RS와 데이터 복조를 위해 사용되는 RS가 있다. 전자는 UE가 하향 링크로의 채널 정보를 획득하는데 그 목적이 있으므로, 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 UE라도 그 RS를 수신하고 측정할 수 있어야 한다. 또한 이는 핸드 오버 등의 측정 등을 위해서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 리소스에 함께 보내는 RS로서, UE는 해당 RS를 수신함으로써 채널 추정을 할 수 있고, 따라서 데이터를 복조할 수 있게 된다. 이 RS는 데이터가 전송되는 영역에 전송되어야 한다.
하향 참조 신호는 셀 내 모든 단말이 공유하는 채널 상태에 대한 정보 획득 및 핸드오버 등의 측정 등을 위한 하나의 공통 참조 신호(CRS: common RS)와 특정 단말만을 위하여 데이터 복조를 위해 사용되는 전용 참조 신호(dedicated RS)가 있다. 이와 같은 참조 신호들을 이용하여 복조(demodulation)와 채널 측정(channel measurement)을 위한 정보를 제공할 수 있다. 즉, DRS는 데이터 복조용으로만 사용되며 CRS는 채널 정보 획득 및 데이터 복조의 두 가지 목적으로 다 사용된다.
수신 측(즉, 단말)은 CRS로부터 채널 상태를 측정하고, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index) 및/또는 RI(Rank Indicator)와 같은 채널 품질과 관련된 지시자를 송신 측(즉, 기지국)으로 피드백한다. CRS는 셀 특정 기준신호(cell-specific RS)라고도 한다. 반면, 채널 상태 정보(CSI: Channel State Information)의 피드백과 관련된 참조 신호를 CSI-RS라고 정의할 수 있다.
DRS는 PDSCH 상의 데이터 복조가 필요한 경우 자원 요소들을 통해 전송될 수 있다. 단말은 상위 계층을 통하여 DRS의 존재 여부를 수신할 수 있으며, 상응하는 PDSCH가 매핑되었을 때만 유효하다. DRS를 단말 특정 참조 신호(UE-specific RS) 또는 복조 참조 신호(DMRS: Demodulation RS)라고 할 수 있다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 자원 블록 쌍에 매핑된 참조 신호 패턴을 예시한다.
도 5를 참조하면, 참조 신호가 매핑되는 단위로 하향링크 자원 블록 쌍은 시간 영역에서 하나의 서브 프레임 × 주파수 영역에서 12개의 부 반송파로 나타낼 수 있다. 즉, 시간 축(x축) 상에서 하나의 자원 블록 쌍은 일반 순환 전치(normal CP: normal Cyclic Prefix) 인 경우 14개의 OFDM 심볼의 길이를 가지고(도 5(a)의 경우), 확장 순환 전치(extended CP: extended Cyclic Prefix)인 경우 12개의 OFDM 심볼의 길이를 가진다(도 5(b)의 경우). 자원 블록 격자에서 '0', '1', '2' 및 '3'으로 기재된 자원 요소들(REs)은 각각 안테나 포트 인덱스 '0', '1', '2' 및 '3'의 CRS의 위치를 의미하며, 'D'로 기재된 자원 요소들은 DRS의 위치를 의미한다.
이하 CRS에 대하여 좀 더 상세하게 기술하면, CRS는 물리적 안테나의 채널을 추정하기 위해 사용되고, 셀 내에 위치한 모든 단말에 공통적으로 수신될 수 있는 참조 신호로써 전체 주파수 대역에 분포된다. 즉, 이 CRS는 cell-specific한 시그널로, 광대역에 대해서 매 서브 프레임마다 전송된다. 또한, CRS는 채널 품질 정보(CSI) 및 데이터 복조를 위해 이용될 수 있다.
CRS는 전송 측(기지국)에서의 안테나 배열에 따라 다양한 포맷으로 정의된다. 3GPP LTE 시스템(예를 들어, 릴리즈-8)에서는 기지국의 전송 안테나 개수에 따라서 최대 4개의 안테나 포트에 대한 RS가 전송된다. 하향링크 신호 송신 측은 단일의 송신 안테나, 2개의 송신 안테나 및 4개의 송신 안테나와 같이 3 종류의 안테나 배열을 가진다. 예를 들어 기지국의 송신 안테나의 개수가 두 개일 경우, 0번과 1번 안테나 포트에 대한 CRS가 전송되고, 네 개인 경우 0~3 번 안테나 포트에 대한 CRS가 각각 전송된다. 기지국의 송신 안테나가 4개일 경우 한 RB 에서의 CRS 패턴은 도 9와 같다.
기지국이 단일의 송신 안테나를 사용하는 경우, 단일 안테나 포트를 위한 참조 신호가 배열된다.
기지국이 2개의 송신 안테나를 사용하는 경우, 2개의 송신 안테나 포트를 위한 참조 신호는 시분할 다중화(TDM: Time Division Multiplexing) 및/또는 주파수 분할 다중화(FDM Frequency Division Multiplexing) 방식을 이용하여 배열된다. 즉, 2개의 안테나 포트를 위한 참조 신호는 각각이 구별되기 위해 서로 다른 시간 자원 및/또는 서로 다른 주파수 자원이 할당된다.
게다가, 기지국이 4개의 송신 안테나를 사용하는 경우, 4개의 송신 안테나 포트를 위한 참조 신호는 TDM 및/또는 FDM 방식을 이용하여 배열된다. 하향링크 신호의 수신 측(단말)에 의하여 측정된 채널 정보는 단일의 송신 안테나 전송, 송신 다이버시티, 폐쇄 루프 공간 다중화(closed-loop spatial multiplexing), 개방 루프 공간 다중화(open-loop spatial multiplexing) 또는 다중 사용자-다중 입출력 안테나(Multi-User MIMO)와 같은 전송 방식을 이용하여 전송된 데이터를 복조하기 위하여 사용될 수 있다.
다중 입출력 안테나가 지원되는 경우 참조 신호가 특정의 안테나 포트로부터 전송될 때, 상기 참조 신호는 참조 신호의 패턴에 따라 특정된 자원 요소들의 위치에 전송되며, 다른 안테나 포트를 위해 특정된 자원 요소들의 위치에 전송되지 않는다. 즉, 서로 다른 안테나 사이의 참조 신호는 서로 겹치지 않는다.
자원 블록에 CRS를 맵핑하는 규칙은 다음과 같이 정의된다.
Figure PCTKR2017001425-appb-M000001
수학식 1에서, k 및 l은 각각 부반송파 인덱스 및 심볼 인덱스를 나타내고, p는 안테나 포트를 나타낸다.
Figure PCTKR2017001425-appb-I000001
은 하나의 하향링크 슬롯에서의 OFDM 심볼의 수를 나타내고,
Figure PCTKR2017001425-appb-I000002
은 하향링크에 할당된 무선 자원의 수를 나타낸다.
Figure PCTKR2017001425-appb-I000003
는 슬롯 인덱스를 나타내고,
Figure PCTKR2017001425-appb-I000004
은 셀 ID를 나타낸다. mod 는 모듈로(modulo) 연산을 나타낸다. 참조 신호의 위치는 주파수 영역에서
Figure PCTKR2017001425-appb-I000005
값에 따라 달라진다.
Figure PCTKR2017001425-appb-I000006
는 셀 ID(즉, 물리 계층 셀 ID)에 종속되므로, 참조 신호의 위치는 셀에 따라 다양한 주파수 편이(frequency shift) 값을 가진다.
보다 구체적으로, CRS를 통해 채널 추정 성능을 향상시키기 위해 CRS의 위치는 셀에 따라 주파수 영역에서 편이될 수 있다. 예를 들어, 참조 신호가 3개의 부 반송파의 간격으로 위치하는 경우, 하나의 셀에서의 참조 신호들은 3k 번째 부반송파에 할당되고, 다른 셀에서의 참조 신호는 3k+1 번째 부반송파에 할당된다. 하나의 안테나 포트의 관점에서 참조 신호들은 주파수 영역에서 6개의 자원 요소 간격으로 배열되고, 또 다른 안테나 포트에 할당된 참조 신호와는 3개의 자원 요소 간격으로 분리된다.
시간 영역에서 참조 신호는 각 슬롯의 심볼 인덱스 0 에서부터 시작하여 동일 간격(constant interval)으로 배열된다. 시간 간격은 순환 전치 길이에 따라 다르게 정의된다. 일반 순환 전치의 경우 참조 신호는 슬롯의 심볼 인덱스 0 과 4에 위치하고, 확장 순환 전치의 경우 참조 신호는 슬롯의 심볼 인덱스 0 과 3에 위치한다. 2개의 안테나 포트 중 최대값을 가지는 안테나 포트를 위한 참조 신호는 하나의 OFDM 심볼 내에 정의된다. 따라서, 4개의 송신 안테나 전송의 경우, 참조 신호 안테나 포트 0 과 1을 위한 참조 신호는 슬롯의 심볼 인덱스 0 과 4 (확장 순환 전치의 경우 심볼 인덱스 0 과 3)에 위치하고, 안테나 포트 2 와 3을 위한 참조 신호는 슬롯의 심볼 인덱스 1에 위치한다. 안테나 포트 2 와 3을 위한 참조 신호의 주파수 영역에서의 위치는 2번째 슬롯에서 서로 맞바꿔진다.
이하 DRS에 대하여 좀 더 상세하게 기술하면, DRS는 데이터를 복조하기 위하여 사용된다. 다중 입출력 안테나 전송에서 특정의 단말을 위해 사용되는 선행 부호화(precoding) 가중치는 단말이 참조 신호를 수신하였을 때 각 송신 안테나에서 전송된 전송 채널과 결합되어 상응하는 채널을 추정하기 위하여 변경 없이 사용된다.
3GPP LTE 시스템(예를 들어, 릴리즈-8)은 최대로 4개의 전송 안테나를 지원하고, 랭크 1 빔포밍(beamforming)을 위한 DRS가 정의된다. 랭크 1 빔포밍을 위한 DRS는 또한 안테나 포트 인덱스 5 를 위한 참조 신호를 나타낸다.
자원 블록에 DRS를 맵핑하는 규칙은 다음과 같이 정의된다. 수학식 2는 일반 순환 전치인 경우를 나타내고, 수학식 3은 확장 순환 전치인 경우를 나타낸다.
Figure PCTKR2017001425-appb-M000002
Figure PCTKR2017001425-appb-M000003
수학식 2 및 수학식 3에서, k 및 l 은 각각 부반송파 인덱스 및 심볼 인덱스를 나타내고, p는 안테나 포트를 나타낸다.
Figure PCTKR2017001425-appb-I000007
은 주파수 영역에서 자원 블록 크기를 나타내고, 부반송파의 수로써 표현된다.
Figure PCTKR2017001425-appb-I000008
은 물리 자원 블록의 수를 나타낸다. N_RB^PDSCH은 PDSCH 전송을 위한 자원 블록의 주파수 대역을 나타낸다.
Figure PCTKR2017001425-appb-I000009
는 슬롯 인덱스를 나타내고,
Figure PCTKR2017001425-appb-I000010
는 셀 ID를 나타낸다. mod 는 모듈로(modulo) 연산을 나타낸다. 참조 신호의 위치는 주파수 영역에서
Figure PCTKR2017001425-appb-I000011
값에 따라 달라진다.
Figure PCTKR2017001425-appb-I000012
는 셀 ID(즉, 물리 계층 셀 ID)에 종속되므로, 참조 신호의 위치는 셀에 따라 다양한 주파수 편이(frequency shift) 값을 가진다.
LTE 시스템의 진화 발전된 형태의 LTE-A 시스템에서 기지국의 하향 링크로 최대 8개의 송신 안테나를 지원할 수 있도록 디자인되어야 한다. 따라서 최대 8개 송신 안테나에 대한 RS 역시 지원되어야 한다. LTE 시스템에서 하향 링크 RS는 최대 4개의 안테나 포트에 대한 RS만 정의되어 있으므로, LTE-A 시스템에서 기지국이 4개 이상 최대 8개의 하향 링크 송신 안테나를 가질 경우 이들 안테나 포트에 대한 RS가 추가적으로 정의되고 디자인되어야 한다. 최대 8개의 송신 안테나 포트에 대한 RS는 위에서 설명한 채널 측정을 위한 RS와 데이터 복조를 위한 RS 두 가지가 모두 디자인되어야 한다.
LTE-A 시스템을 디자인 함에 있어서 중요한 고려 사항 중 하나는 backward compatibility, 즉 LTE 단말이 LTE-A 시스템에서도 아무 무리 없이 잘 동작해야 하고, 시스템 또한 이를 지원해야 한다는 것이다. RS 전송 관점에서 보았을 때, LTE에서 정의되어 있는 CRS가 전 대역으로 매 서브 프레임마다 전송되는 시간-주파수 영역에서 추가적으로 최대 8개의 송신 안테나 포트에 대한 RS가 추가적으로 정의되어야 한다. LTE-A 시스템에서 기존 LTE의 CRS와 같은 방식으로 최대 8개의 송신 안테나에 대한 RS 패턴을 매 서브 프레임마다 전 대역에 추가하게 되면 RS 오버헤드가 지나치게 커지게 된다.
따라서, LTE-A 시스템에서 새로이 디자인되는 RS는 크게 두 가지 분류로 나누게 되는데, MCS, PMI 등의 선택을 위한 채널 측정 목적의 RS (CSI-RS: Channel State Information-RS, Channel State Indication-RS 등)와 8개의 전송 안테나로 전송되는 데이터 복조를 위한 RS(DM-RS: Data Demodulation-RS)이다.
채널 측정 목적의 CSI-RS는 기존의 CRS가 채널 측정, 핸드 오버 등의 측정 등의 목적과 동시에 데이터 복조를 위해 사용되는 것과 달리 채널 측정 위주의 목적을 위해서 디자인되는 특징이 있다. 물론 이 또한 핸드 오버 등의 측정 등의 목적으로도 사용될 수도 있다. CSI-RS가 채널 상태에 대한 정보를 얻는 목적으로만 전송되므로 CRS와 달리 매 서브 프레임마다 전송되지 않아도 된다. CSI-RS의 오버헤드를 줄이기 위하여 CSI-RS는 시간 축 상에서 간헐적으로 전송된다.
데이터 복조를 위해서 해당 시간-주파수 영역에서 스케줄링 된 UE에게 전용적(dedicated)으로 DM RS가 전송된다. 즉, 특정 UE의 DM-RS는 해당 UE가 스케줄링 된 영역, 즉 데이터를 수신 받는 시간-주파수 영역에만 전송되는 것이다.
LTE-A 시스템에서 eNB는 모든 안테나 포트에 대한 CSI-RS를 전송해야 한다. 최대 8개의 송신 안테나 포트에 대한 CSI-RS를 매 서브 프레임마다 전송하는 것은 오버헤드가 너무 큰 단점이 있으므로, CSI-RS는 매 서브 프레임마다 전송되지 않고 시간 축에서 간헐적으로 전송되어야 그 오버헤드를 줄일 수 있다. 즉, CSI-RS는 한 서브 프레임의 정수 배의 주기를 가지고 주기적으로 전송되거나 특정 전송 패턴으로 전송될 수 있다. 이 때 CSI-RS가 전송되는 주기나 패턴은 eNB가 설정할 수 있다.
CSI-RS를 측정하기 위해서 UE는 반드시 자신이 속한 셀의 각각의 CSI-RS 안테나 포트에 대한 CSI-RS의 전송 서브 프레임 인덱스, 전송 서브 프레임 내에서 CSI-RS 자원 요소(RE) 시간-주파수 위치, 그리고 CSI-RS 시퀀스 등에 대한 정보를 알고 있어야 한다.
LTE-A 시스템에 eNB는 CSI-RS를 최대 8개의 안테나 포트에 대해서 각각 전송해야 한다. 서로 다른 안테나 포트의 CSI-RS 전송을 위해 사용되는 자원은 서로 직교(orthogonal)해야 한다. 한 eNB가 서로 다른 안테나 포트에 대한 CSI-RS를 전송할 때 각각의 안테나 포트에 대한 CSI-RS를 서로 다른 RE에 맵핑함으로써 FDM/TDM방식으로 이들 자원을 orthogonal하게 할당할 수 있다. 또는 서로 다른 안테나 포트에 대한 CSI-RS를 서로 orthogonal한 코드에 맵핑시키는 CDM방식으로 전송할 수 있다.
CSI-RS에 관한 정보를 eNB가 자기 셀 UE에게 알려줄 때, 먼저 각 안테나 포트에 대한 CSI-RS가 매핑되는 시간-주파수에 대한 정보를 알려줘야 한다. 구체적으로, CSI-RS가 전송되는 서브 프레임 번호들, 또는 CSI-RS가 전송되는 주기, CSI-RS가 전송되는 서브 프레임 오프셋이며, 특정 안테나의 CSI-RS RE가 전송되는 OFDM 심볼 번호, 주파수 간격(spacing), 주파수 축에서의 RE의 오프셋 또는 쉬프트 값 등이 있다.
위상 보상 참조 신호(Phase Compensation Reference Signal:PCRS )
이하, PCRS에 대해 구체적으로 살펴보기로 한다.
DL PCRS 절차
UE가 자신을 위해 의도된 서브 프레임 n에서 DCI 포맷 B1 또는 B2를 갖는 xPDCCH를 검출하면, UE는 대응하는 서브프래임에서 DCI에 표시된 PCRS 안테나 포트에서 DL PCRS를 수신한다.
UL PCRS 절차
UE가 자신을 위해 의도된 서브 프레임 n에서 DCI 포맷 A1 또는 A2를 갖는 xPDCCH를 검출하면, UE는 아래 조건(조건 1 및 조건 2)를 제외하고 DCI에 표시된 할당된 DM-RS 안테나 포트와 동일한 하나 또는 두 개의 PCRS 안테나 포트를 사용하여 서브 프레임 n+4+m+1에서 UL PCRS를 전송한다.
- 조건 1: 만약 검출된 DCI의 이중(dual) PCRS 필드가 '1'로 설정되고, xPUSCH에 할당된 DM-RS 포트의 수가 '1'이면, UE는 DCI에 표시된 할당된 DM-RS 안테나 포트 및 특정 PCRS 안테나 포트와 동일한 부반송파 위치를 갖는 추가 PCRS 안테나 포트와 동일한 PCRS 포트를 사용하여 서브 프레임 n+4+m+1에서 UL PCRS를 송신한다.
- 조건 2: PCRS와 xPUSCH의 상대적 송신 전력 비율은 아래 표 3에 의해 정의된 송신 방식에 의해 결정된다.
표 3은 주어진 레이어(layer) 상에서 PCRS와 xPUSCH의 상대적인 송신 전력 비의 일례를 나타낸다.
Transmission Scheme Relative Transmit Power Ratio
Single-layer transmission 3 dB
Two-layer transmission 6 dB
이하에서, PCRS에 대해 좀 더 구체적으로 살펴본다.
xPUSCH와 연관된 PCRS는, (1) 안테나 포트(p) p∈{40,41,42,43}에서 전송되며, (2) 존재하고, xPUSCH 전송이 대응하는 안테나 포트와 관련되는 경우에만 위상 잡음 보상에 대한 유효한 기준이며, (3) 대응하는 xPUSCH가 매핑되는 물리 자원 블록들 및 심볼들 상에서만 전송된다.
시퀀스 생성(Sequence generation)
p∈{40,41,42,43}인 임의의 안테나 포트에 대해, 참조 신호 시퀀스 r(m)은 아래 수학식 4와 같이 정의된다.
Figure PCTKR2017001425-appb-M000004
의사 랜덤 시퀀스(pseudo-random sequence) c(i)는 길이-31의 골드 시퀀스에 의해 정의되며, 의사 랜덤 시퀀스 제너레이터(generator)는 수학식 5와 같이 각 서브프래임의 시작에서 초기화된다.
Figure PCTKR2017001425-appb-M000005
Figure PCTKR2017001425-appb-I000013
양(quantity)(i=0,1)은 아래와 같이 주어진다.
-
Figure PCTKR2017001425-appb-I000014
, 만약
Figure PCTKR2017001425-appb-I000015
에 대해 어떤 값도 상위 계층에 의해 제공되지 않는 경우.
-
Figure PCTKR2017001425-appb-I000016
,
Figure PCTKR2017001425-appb-I000017
에 대해 어떤 값이 상위 계층에 의해 제공되는 경우.
Figure PCTKR2017001425-appb-I000018
의 값은 달리 명시하지 않으면 0이다. xPUSCH 전송을 위해, 는 xPUSCH 전송과 연관된 DCI 포맷에 의해 주어진다.
자원 요소 매핑 (Mapping to resource elements)
안테나 포트 p∈{40,41,42,43}에 대해, 해당 xPUSCH 전송을 위해 할당된 주파수 영역 인덱스 nPRB를 가지는 물리 자원 블록에서, 참조 신호 시퀀스 r(m)의 일부는
Figure PCTKR2017001425-appb-I000019
에 따른 서브프래임에서 해당 xPUSCH 심볼들에 대한 복소수 값(complex-value) 변조 심볼
Figure PCTKR2017001425-appb-I000020
에 매핑된다.
xPUSCH 물리 자원 할당의 시작 물리 자원 블록 인덱스
Figure PCTKR2017001425-appb-I000021
및 xPUSCH 물리 자원 블록들의 개수
Figure PCTKR2017001425-appb-I000022
에 대해, 하나의 서브프래임에 대한 자원 요소 (k,l')는 아래 수학식 6과 같이 주어진다.
Figure PCTKR2017001425-appb-M000006
수학식 6에서, m'=0,1,2,...,
Figure PCTKR2017001425-appb-I000023
이고, l'는 하나의 서브프래임 내 심볼 인덱스를 나타내며,
Figure PCTKR2017001425-appb-I000024
는 주어진 서브프래임에 대한 xPUSCH의 마지막 심볼 인덱스를 나타낸다.
세트(set) S에서 임의의 안테나 포트 상에서 하나의 UE로부터 UE 특정 PCRS의 전송을 위해 사용되는 자원 요소 (k, l')는 동일한 서브프래임에서 임의의 안테나 포트 상에서 xPUSCH의 전송을 위해 사용되지 않는다.
여기서, S는 {40}, {41}, {42}이다.
반송파 주파수 오프셋(Carrier Frequency Offset:CFO ) 효과
송신단(예:기지국)에서 전송하는 기저대역 신호는 발진기에서 발생된 반송파 주파수에 의해 통과대역으로 천이되며, 반송파 주파수를 통해 전송되는 신호는 수신단(예:단말)에서 동일한 반송파 주파수에 의해 기저대역 신호로 변환된다.
이 때, 수신단에 의해 수신된 신호에는 반송파와 관련된 왜곡이 포함될 수 있다.
이러한 왜곡의 일례로, 송신단의 반송파 주파수와 수신단의 반송파 주파수 차이에 의해 발생하는 왜곡 현상이 있을 수 있다.
이와 같은 반송파 주파수 오프셋이 발생하는 이유는 송신단과 수신단에서 사용하는 발진기가 동일하지 않거나, 단말의 이동에 따라 도플러 주파수 천이가 발생하기 때문이다.
여기서, 도플러 주파수는 단말의 이동 속도와 반송파 주파수에 비례하며 아래 수학식 7과 같이 정의된다.
Figure PCTKR2017001425-appb-M000007
수학식 7에서,
Figure PCTKR2017001425-appb-I000025
는 각각 순서대로 반송파 주파수, 도플러 주파수, 단말의 이동 속도, 빛의 속도를 나타낸다.
또한, 정규화된(normalized) 반송파 주파수 오프셋(ε)은 아래 수학식 8과 같이 정의된다.
Figure PCTKR2017001425-appb-M000008
수학식 8에서,
Figure PCTKR2017001425-appb-I000026
는 각각 순서대로 반송파 주파수 오프셋, 부반송파 간격, 부반송파 간격으로 정규화된 반송파 주파수 오프셋을 나타낸다.
반송파 주파수 오프셋이 존재하는 경우, 시간 영역의 수신 신호는 송신한 신호에 위상 회전을 곱한 결과가 되며, 주파수 영역의 수신신호는 송신한 신호가 주파수 영역에서 이동(shift)한 결과가 된다.
이 경우, 다른 모든 부반송파(들)의 영향을 받게 되어, ICI(Inter-Carrier-Interference)가 발생하게 된다.
즉, 소수 배 반송파 주파수 오프셋이 발생하는 경우, 주파수 영역의 수신 신호는 아래 수학식 9와 같이 표현된다.
수학식 9는 주파수 영역에서 CFO를 가지는 수신 신호를 나타낸다.
Figure PCTKR2017001425-appb-M000009
수학식 9에서,
Figure PCTKR2017001425-appb-I000027
는 각각 순서대로 부반송파 인덱스, 심볼 인덱스, FFT 크기, 수신 신호, 송신 신호, 주파수 응답, CFO로 인한 ICI, 백색 잡음(white noise)를 나타낸다.
상기 수학식 9에서 정의된 바와 같이, 반송파 주파수 오프셋이 존재할 경우 k번째 부반송파의 진폭과 위상이 왜곡되고, 인접 부반송파에 의한 간섭이 발생함을 알 수 있다.
여기서, 반송파 주파수 오프셋이 존재할 경우, 인접 부반송파에 의한 간섭은 아래 수학식 10과 같이 주어질 수 있다.
수학식 10은 CFO로 인해 야기되는 ICI를 나타낸다.
Figure PCTKR2017001425-appb-M000010
위상 잡음(Phase Noise) 효과
앞서 살핀 것처럼, 송신단에서 전송하는 기저대역 신호는 발진기에서 발생된 반송파 주파수에 의해 통과대역으로 천이되며, 반송파 주파수를 통해 전송되는 신호는 수신단에서 동일한 반송파 주파수에 의해 기저대역 신호로 변환된다.
여기서, 상기 수신단에 의해 수신된 신호에는 반송파와 관련된 왜곡이 포함될 수 있다.
이러한 왜곡 현상의 일례로, 송신단과 수신단에서 사용하는 발진기의 특성이 안정적이지 못하여 발생되는 위상 잡음(phase noise)을 예로 들 수 있다.
이러한 위상 잡음은 주파수가 반송파 주파수 주위에서 시간에 따라 변동하는 것을 말한다.
이와 같은 위상 잡음은 평균이 0인 랜덤 프로세스로서 Wiener 프로세스로 모델링되며, OFDM 시스템에 영향을 준다.
또한, 아래 도 6에 도시된 바와 같이, 위상 잡음은 반송파의 주파수가 높아짐에 따라 그 영향이 커지는 경향을 보인다.
이러한 위상 잡음은 발진기가 같은 전력 스펙트럼 밀도(Power spectral density)에 따라 그 특성이 결정되는 경향을 갖는다.
도 6은 발진기(oscillator)의 전력 스펙트럼 밀도(power spectral density)의 일례를 나타낸 도이다.
이처럼, 위상 잡음으로 인한 신호의 왜곡 현상은 OFDM 시스템에서 공통 위상 오차(Common Phase Error:CPE)와 Inter-Carrier Interference(ICI) 형태로 나타난다.
아래 수학식 11은 위상 잡음이 OFDM 시스템의 수신 신호에 미치는 영향을 나타낸 식이다. 즉, 수학식 11은 주파수 영역에서 위상 잡음을 가지는 수신 신호를 나타낸다.
Figure PCTKR2017001425-appb-M000011
상기 수학식 11에서,
Figure PCTKR2017001425-appb-I000028
은 각각 순서대로 부반송파 인덱스, 심볼 인덱스, FFT 크기, 수신 신호, 송신 신호, 주파수 응답, phase noise 로 인한 common phase error, phase noise로 인한 Inter-carrier interference, 백색 잡음, phase noise로 인한 위상 회전을 나타낸다.
mmWave 대역과 같은 고주파 대역에서는 위상 잡음(phase noise) 및 CFO(Carrier Frequency Offset)의 영향이 크게 증가하기 때문에, 이로 인해 발생할 수 있는 왜곡(impairment)를 극복할 수 있는 방안이 필요하다.
왜곡을 극복할 수 있는 기본적인 방안은 참조 신호(reference signal:RS)로 왜곡을 추정하고 보상하는 것이다.
하지만, RS를 이용하여 왜곡을 추정/보상하는 방법은 reference signal의 증가에 따라 이에 사용되는 자원의 증가로 인해 시스템 overhead로 작용할 수 있다.
이때, 송신단과 수신단이 서로 공유하고 있는 reference signal이 아닌 data symbol을 이용하여 상기 왜곡(impairment)를 추정할 수 있다.
즉, 위상 잡음 및 CFO로 인해 발생하는 왜곡을 추정하는 또 다른 방법은 시간 축으로 인접한 두 심볼 특히, 데이터 심볼을 이용하는 방법이 있을 수 있다.
인접한 두 (데이터) 심볼이 서로 동일한 경우, 수신단은 송신단에서 전송된 심볼 값에 대한 정보 없이도 CFO 또는 phase noise로 인한 심볼 간 위상 차이의 추정이 가능하다.
즉, 상기 인접한 두 (데이터) 심볼을 이용하여 심볼 간 위상 차이를 추정하는 방법은 심볼의 검출 없이 CFO 및 CPE의 추정이 가능하고, 변조 차수(modulation order)와 무관하게 사용할 수 있다는 장점을 갖는다.
다만, 해당 방법은 두 심볼이 동일하기 때문에 수율(throghput)이 절반으로 감소할 수 있다는 단점이 있다.
따라서, 이하에서는 본 명세서에서 제안하는 인접하는 심볼 간 위상 회전(phase rotation) 차이를 이용하여 추가적인 정보(또는 비트)를 전송함으로써, 위상 회전 차이로 인해 throughput을 향상시키는 방법에 대해 관련 도면을 참고하여 구체적으로 살펴보기로 한다.
( 제 1 실시 예)
제 1 실시 예는 서로 인접한(또는 연속하는) 데이터 심볼(data symbol) 간의 위상 (회전) 차이를 이용하여 추가적인 정보(또는 비트 또는 데이터)를 송수신하는 방법을 제공한다.
즉, 도 7에 도시된 바와 같이, 본 명세서에서 제안하는 추가적인 정보를 전송하기 위해 송신단(예: 기지국)은 시간 축으로 인접한 두 data symbol (e.g. QPSK, 16-QAM)을 1차 symbol 및 2차 symbol로 구성한다.
여기서, 1차 symbol은 물리 채널(e.g. PDSCH, PDCCH)에 정의된 constellation 중 임의의 constellation point를 나타낸다.
2차 symbol은 1차 symbol을 임의의 위상만큼 회전(rotation)함으로써 정의한다.
여기서, 회전(rotation) 가능한 위상들은 하나의 집합을 이루고, 송신단이 상기 집합 중 하나의 위상을 선택하고, 상기 선택된 위상을 2차 심볼에 적용함으로써, 수신단으로 추가 정보 또는 데이터를 전송한다.
후술할 바와 같이, 상기 송신단은 상기 회전 가능한 위상들을 구성하는 집합을 DCI 또는 RRC signaling을 이용하여 수신단으로 전송할 수 있다.
도 7을 참조하여, 1차 심볼 및 2차 심볼에 대해 좀 더 구체적으로 살펴본다.
즉, 도 7은 본 명세서에서 제안하는 2개의 데이터 심볼을 반복하여 전송하는 방법의 일례를 나타낸 도이다.
도 7을 참조하면, 시간 축으로 인접한 두 data symbol은 1차 symbol(P0)(710) 및 2차 symbol(P1)(720)로 구성되며, 1차 심볼 및 2차 심볼은 시간 축에서 1 심볼 간격으로 반복하여 배치되는 구조를 가짐을 알 수 있다.
또한, DL CCH(Control Channel)은 첫 번째 심볼에서 매핑(또는 배치)되며, data symbol의 복조를 위한 RS(DM-RS)는 두 번째 심볼에서 매핑되는 것을 볼 수 있다.
아래 수학식 12는 도 7에서의 P0 위치의 1차 symbol과 P1 위치의 2차 symbol에 대한 정의를 나타낸 식이다.
Figure PCTKR2017001425-appb-M000012
상기 수학식 12의
Figure PCTKR2017001425-appb-I000029
은 각각 OFDM 심볼 인덱스, 부반송파 인덱스, data symbol의 전체 OFDM 심볼의 개수, P0에 정의되는 1차 symbol, P1에 정의되는 2차 symbol, 위상 회전 값을 의미한다.
또한, 상기 수학식 12의
Figure PCTKR2017001425-appb-I000030
은 BPSK, QPSK, 16QAM 등의 임의의 modulation order를 갖는 물리 채널(e.g. PDSCH, PDCCH)에서 정의되는 변조 심볼과 대응된다.
또한, 상기 수학식 12의
Figure PCTKR2017001425-appb-I000031
은 대응되는 bit 수에 따라 BPSK 또는 QPSK 등의 위상 회전과 대응되어 2차 symbol의 변조에 적용될 수 있다.
도 8은 QPSK 1차 symbol 전송 시에 에 1bit를 대응하여 BPSK 정보를 전송하는 방법과 2bit를 대응하여 QPSK 정보를 전송하는 방법의 일례를 나타낸다.
즉, 도 8은 본 명세서에서 제안하는 2차 심볼의 위상 회전 방법의 일례를 나타낸 도이다.
앞서 살핀, 시간 축으로 동일한 두 데이터 심볼을 인접하게 구성하고, 2차 심볼에 위상 회전(예:BPSK, QPSK, 16QAM 등)을 적용함으로써 추가 정보를 송수신하는 방법은 두 데이터 심볼의 위상 차이에 대응하는 데이터를 추가 정의함으로써 전체 수율(throughput)을 증가시킬 수 있다.
예를 들어, 16-QAM의 1차 심볼에 2bit 정보를 갖는 QPSK 위상 회전을 2차 심볼에 적용하는 경우, 송신단은 전체 6bit(4bit+2bit)의 정보를 수신단으로 전송할 수 있다.
즉, 제 1 실시 예는 1차 symbol과 2차 symbol에 동일한 symbol을 전송하는 방법과 비교할 때, 2bit의 추가 정보를 전송할 수 있게 된다.
다만, 제 1 실시 예는 1차 symbol과 2차 symbol 사이에 정의되는 위상 회전에 따라 추정 가능한 범위가 제한될 수 있다.
즉, 제 1 실시 예는 CFO 또는 phase noise의 영향이 큰 경우에는 성능 열화가 발생할 수 있다.
하지만, CFO 및 CPE 값이 작은 경우에는, 제 1 실시 예는 위상 회전을 적용하여 추가 정보를 전송함으로써, 전체 수율(throughput)을 높일 수 있게 된다.
앞서 살핀 제 1 실시 예는 아래 수학식들을 통해 구체적으로 정의 또는 추정될 수 있다.
즉, 아래 수학식들을 통해 시간 축으로 인접한 두 심볼을 통해 심볼 간 위상 차이 추정 및 추가 정보를 전송하는 방법을 좀 더 구체적으로 살펴본다.
먼저, 아래 수학식 13은 본 명세서에서 제안하는 블라인드 위상 에러 추정(blind phase error estimation)을 위한 첫 번째 단계이다.
Figure PCTKR2017001425-appb-M000013
상기 수학식 13에서,
Figure PCTKR2017001425-appb-I000032
은 각각 CFO 및 CPE 보상을 위해 전송되는 data symbol이 위치한 부반송파 인덱스 집합, CFO 및 CPE 보상을 위해 전송되는 data symbol의 전체 OFDM 심볼 개수를 의미한다.
또한,
Figure PCTKR2017001425-appb-I000033
은 각각 P0에 정의되는 1차 symbol에 대한 k번째 subcarrier의 수신 신호, P1에 정의되는 2차 symbol에 대한 k번째 subcarrier의 수신 신호를 의미한다.
앞서 살핀 수학식 11 및 12를 참조하여 상기 수학식 13을 다시 나타내면 아래 수학식 14와 같이 나타낼 수 있다.
Figure PCTKR2017001425-appb-M000014
다음으로, 블라인드 위상 에러 추정(blind phase error estimation)을 위한 두 번째 단계를 살펴본다.
여기서, 2차 심볼에 적용되는 위상 회전은 BPSK가 적용되는 것으로 가정하기로 한다.
아래 수학식 15는 두 번째 단계에 해당하는 수학식을 나타낸다.
Figure PCTKR2017001425-appb-M000015
상기 수학식 15에서, b는 위상 회전(phase rotation)을 통해 전송되는 추가 정보 즉, bit 정보를 의미한다.
여기서, 상기 추가 정보 또는 추가 데이터(additional data)에 대한 추정에 대해서는 아래 수학식 16을 통해 확인할 수 있다.
Figure PCTKR2017001425-appb-M000016
또한, 위상 잡음(phase noise)로 인한 심볼 간 위상 차이를 추정하기 위한 변수에 해당하는
Figure PCTKR2017001425-appb-I000034
는 아래 수학식 17을 통해 확인할 수 있다.
Figure PCTKR2017001425-appb-M000017
상기 수학식 17에서, angle(x)는 복소수 x에 대한 위상(phase) 값을 의미한다.
2차 심볼에 적용되는 위상 회전을 BPSK로 가정하여 살핀 수학식들을 바탕으로 additional data의 modulation order가 QPSK인 경우의 추정 방식은 아래 수학식 18과 같이 정의할 수 있다.
Figure PCTKR2017001425-appb-M000018
다음으로, 블라인드 위상 에러 추정(blind phase error estimation)을 위한 세 번째 단계를 살펴본다.
아래 수학식 19는 상기 세 번째 단계에 해당하는 수학식을 나타낸다.
Figure PCTKR2017001425-appb-M000019
상기 수학식 19에서,
Figure PCTKR2017001425-appb-I000035
은 각각
Figure PCTKR2017001425-appb-I000036
사이의 phase 차이, 전체 부반송파 수를 의미한다.
또한, 상기 수학식 19의
Figure PCTKR2017001425-appb-I000037
는 수학식 17을 이용하는 경우 아래 수학식 20과 같이 정리할 수 있다.
Figure PCTKR2017001425-appb-M000020
즉, 상기 수학식 20은 블라인드 위상 에러 추정을 위한 메트릭(metric)의 일례를 나타낸다.
살핀 것처럼, 수학식 19를 이용하는 경우, RS가 전송되는 전체 주파수 tone(또는 subcarrier)에 대한 추정(estimation) 값의 합(summation)을 통해 잡음(noise) 감소의 효과를 기대할 수 있음을 알 수 있다.
( 제 2 실시 예)
제 2 실시 예는 제 1 실시 예에서 정의한 2차 심볼 중 송/수신단 사이에 미리 약속된 일부 주파수 톤에 위상 회전이 없는 1차 심볼과 동일한 심볼을 사용하는 방법을 제공한다.
앞서 살핀 제 1 실시 예는 2차 심볼에 적용된 위상 회전 값에 따라 추정 가능한 phase rotation의 범위가 제한되는 단점이 있다.
따라서, 상기 제 1 실시 예는 추정 가능한 위상 회전의 범위를 벗어나는 매우 큰 CFO가 존재하는 환경에서는 성능 열화가 발생할 수 있게 된다.
따라서, 제 2 실시 예는 큰 CFO가 발생하는 환경에서의 문제점을 해결하기 위해 2차 심볼의 일부 주파수 톤에서는 1차 심볼과 동일한 심볼을 전송하는 방법을 제공한다.
즉, 송신단이 1차 심볼과 2차 심볼에 동일한 심볼을 전송하는 경우, 수신단은 추정 범위의 제한 없이 위상 회전(phase rotation) 값을 추정할 수 있게 된다.
즉, 수신단은 1차 심볼 및 2차 심볼에서 동일한 심볼이 전송되는 주파수 톤에 대해서 일차적으로 CFO에 대한 추정을 수행한 후, 상기 추정한 CFO를 선 보상하여 두 data symbol 간의 phase rotation을 추정하게 된다.
즉, 수신단은 추정 범위를 벗어나는 CFO에 대한 보상을 먼저 수행하고, data symbol 간의 phase rotation 추정을 통해 추가 정보를 획득함으로써, 큰 CFO에 대한 성능 열화를 방지할 수 있을 뿐만 아니라 수율(throughput)도 증대되는 효과가 있다.
도 9는 본 명세서에서 제안하는 큰 CFO의 보상을 위해 데이터 심볼들을 반복하여 전송하는 방법의 일례를 나타낸 도이다.
즉, 도 9는 2차 심볼 중 일부의 주파수 톤에서 위상 회전이 없는 1차 심볼과 동일한 심볼을 전송하는 방법을 나타낸다.
아래 수학식 21은 도 9의 P0 위치의 1차 symbol(910)과 P1 위치의 2차 symbol(920), P2 위치의 2차 심볼(930)에 대한 정의를 나타낸다.
여기서, P2 위치의 2차 심볼은 P0 위치의 1차 symbol과 동일한 심볼을 나타내며, P1 위치의 2차 symbol은 P0 위치의 1차 symbol에 위상 회전을 적용한 심볼을 나타낸다.
Figure PCTKR2017001425-appb-M000021
상기 수학식 21에서,
Figure PCTKR2017001425-appb-I000038
은 각각 OFDM 심볼 인덱스, 부반송파 인덱스, data symbol의 전체 OFDM 심볼수, P0에 정의되는 1차 symbol, P1에 정의되는 2차 symbol, P2에 정의되는 심볼(1차 symbol), 위상 회전 값을 의미한다.
여기서, 송신단(예:기지국)은 상기 P2 위치의 2차 심볼에 P0 위치의 1차 심볼과 동일 심볼이 전송되는지 여부를 나타내는 정보를 DCI(Downlink Control Information) 또는 RRC(Radio Resource Control) 시그널링(signaling)을 통해 수신단(예:단말)로 전송할 수 있다.
따라서, 상기 수신단은 상기 DCI 또는 RRC 시그널링을 통해 수신되는 동일 심볼 전송 여부를 나타내는 정보를 통해 앞서 살핀 제 1 실시 예 또는 제 2 실시 예 방법을 수행할 수 있다.
제 2 실시 예 즉, 큰 CFO 보상을 위해 2차 심볼의 특정 주파수 톤에 1차 심볼과 동일한 심볼을 전송하는 경우, 그만큼 전송 가능한 data symbol의 수가 줄어드는 단점이 있다.
따라서, 이러한 단점을 보완하기 위해, 송신단은 CFO가 큰 상황에서만 1차 심볼과 동일한 심볼을 2차 심볼로 전송할 수 있도록 DCI 또는 RRC 시그널링을 통해 2차 심볼에 1차 심볼과 동일한 심볼이 전송되는지 여부를 수신단으로 알려주는 것이 바람직하다.
추가적으로, 송신단은 DCI 또는 RRC 시그널링을 이용하여, 수신단으로 2차 심볼에 적용되는 회전(rotation) 가능한 위상들의 집합을 알려줄 수 있다.
시간 축으로 인접한 1차 symbol과 2차 symbol에 동일한 symbol을 전송하는 경우, CFO 및 CPE가 큰 경우에 대해서도 심볼 간 위상 회전 차이 추정에 대한 성능을 높일 수 있다.
하지만, CFO 및 CPE가 작은 경우에는 제 1 실시 예에서 살핀 바와 같이, 2차 symbol에 위상 차이를 적용하여 추가 정보를 전송하는 것이 성능 향상 또는 수율 향상을 위해 더 바람직할 수 있다.
따라서, 송신단은 수신단으로 DCI 또는 RRC 시그널링을 통해 2차 symbol에 적용되는 위상 회전의 집합을 직접 signaling할 수 있다.
즉, 상기 위상 회전의 집합 내 위상 회전 값은 2차 symbol의 위상 회전을 통해 전송할 수 있는 추가 비트 값을 나타낸다.
또한, 수신단 역시 이상적인 위상 회전 집합을 UCI(Uplink Control Information) 또는 RRC 시그널링을 통해 송신단으로 signaling할 수 있다.
아래 표 4는 송신단에서 수신단 또는 수신단에서 송신단으로 전송하는 위상 회전 집합의 일례를 나타낸다.
BPSK QPSK
Bit information Phase rotation Bit information Phase rotation
0 0 00 0
1 01 +π/2
11
10 +3π/2
도 10은 본 명세서에서 제안하는 심볼 간 위상 회전을 이용하여 추가 정보를 송수신하는 방법의 일례를 나타낸 순서도이다.
먼저, 단말은 심볼 간 위상 회전에 적용할 수 있는 회전 가능한 위상들로 구성된 제 1 제어 정보를 기지국으로부터 수신한다(S1010).
여기서, 상기 제 1 제어 정보는 회전 가능한 위상들의 세트 또는 집합 정보를 나타낸다.
이후, 상기 단말은 상기 심볼 간 위상 차이 추정에 사용되는 1차 심볼 및 2차 심볼을 상기 기지국으로부터 수신한다(S1020).
여기서, 상기 심볼 간 위상 차이는 CFO 또는 CPE로 발생하는 심볼 간 위상 차이를 의미한다.
여기서, 상기 1차 심볼 및 상기 2차 심볼은 앞서 제 1 실시 예 및 제 2 실시 예에서 살핀 바와 같이, 시간 영역에서 서로 인접하는 데이터 심볼을 의미한다.
또한, 상기 2차 심볼은 상기 1차 심볼에 특정 위상 회전을 적용하며, 상기 2차 심볼에 적용되는 특정 위상은 상기 회전 가능한 위상들에 포함된다. 즉, 상기 특정 위상은 상기 회전 가능한 위상들 중 어느 하나에 해당한다.
또한, 상기 2차 심볼에 적용되는 특정 위상 회전에 따라 상기 추가 정보의 크기가 결정될 수 있다.
상기 특정 위상 회전은 BPSK, QPSK, 16QAM 또는 64QAM 변조일 수 있으며, 이로 인해 추가적으로 전송되는 정보 또는 비트는 앞의 표 4와 같을 수 있다.
또한, 도 7 및 도 9에 도시된 바와 같이, 상기 1차 심볼 및 상기 2차 심볼은 각각 1 심볼 간격으로 반복하여 상기 기지국으로부터 수신된다.
상기 1차 심볼 및 상기 2차 심볼은 각각 1 심볼로 구성될 수 있다.
이후, 상기 단말은 상기 수신된 1차 심볼 및 2차 심볼을 이용하여 상기 심볼 간 위상 차이를 추정한다(S1030).
즉, S1030 단계를 통해 단말은 CFO 또는 CPE로 인한 왜곡을 보상할 수 있게 된다.
이후, 상기 단말은 상기 추정된 위상 차이를 고려하여 수신 신호를 디코딩한다(S1040).
즉, 상기 단말은 1차 심볼 및 2차 심볼을 통해 CFO 또는 CPE로 인한 왜곡을 보상함으로써, 수신 신호를 정확하게 디코딩할 수 있게 된다.
또한, 상기 단말은 2차 심볼에 적용된 특정 위상 회전에 따라 추가 정보 비트를 상기 기지국으로부터 수신할 수 있다.
추가적으로, 앞서 제 2 실시 예에서 살핀 것처럼, 상기 단말은 상기 2차 심볼의 특정 주파수 톤(tone)에 상기 특정 위상 회전의 적용 여부를 나타내는 제 2 제어 정보를 상기 기지국으로부터 수신할 수 있다.
여기서, 상기 제 2 제어 정보가 상기 2차 심볼의 특정 주파수 톤에 상기 특정 위상 회전이 적용되지 않음을 나타내는 경우, 상기 2차 심볼의 특정 주파수 톤에는 상기 1차 심볼과 동일한 심볼이 전송된다.
또한, 상기 제 1 제어 정보 및 상기 제 2 제어 정보는 DCI(Downlink Control Channel) 또는 RRC(Radio Resource Control) 시그널링을 통해 수신될 수 있다.
그리고, 상기 제 2 제어 정보는 CFO(Carrier Frequency Offset)이 임계값보다 큰 경우에만 상기 2차 심볼의 특정 주파수 톤에 상기 특정 위상 회전이 적용되지 않음을 나타낼 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 11은 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 11을 참조하면, 무선 통신 시스템은 기지국(1110)과 기지국(1110) 영역 내에 위치한 다수의 단말(1120)을 포함한다.
기지국(1110)은 프로세서(processor, 1111), 메모리(memory, 1112) 및 RF부(radio frequency unit, 1113)을 포함한다. 프로세서(1111)는 앞서 도 1 내지 도 10에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(1111)에 의해 구현될 수 있다. 메모리(1112)는 프로세서(1111)와 연결되어, 프로세서(1111)를 구동하기 위한 다양한 정보를 저장한다. RF부(1113)는 프로세서(1111)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
단말(1120)은 프로세서(1121), 메모리(1122) 및 RF부(1123)을 포함한다. 프로세서(1121)는 앞서 도 1 내지 도 10에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(1121)에 의해 구현될 수 있다. 메모리(1122)는 프로세서(1121)와 연결되어, 프로세서(1121)를 구동하기 위한 다양한 정보를 저장한다. RF부(1123)는 프로세서(1121)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(1112, 1122)는 프로세서(1111, 1121) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1111, 1121)와 연결될 수 있다.
또한, 기지국(1110) 및/또는 단말(1120)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 3GPP 시스템, 5G 시스템에 적용되는 예를 중심으로 설명하였으나, 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (10)

  1. 무선 통신 시스템에서 심볼(symbol) 간 위상 회전(phase rotation)을 이용하여 추가 정보를 송수신하기 위한 방법에 있어서, 단말에 의해 수행되는 방법은,
    상기 심볼 간 위상 회전에 적용할 수 있는 회전 가능한 위상들로 구성된 제 1 제어 정보를 기지국으로부터 수신하는 단계;
    상기 심볼 간 위상 차이 추정에 사용되는 1차 심볼 및 2차 심볼을 상기 기지국으로부터 수신하는 단계,
    상기 1차 심볼 및 상기 2차 심볼은 시간 영역에서 서로 인접하는 데이터 심볼이며,
    상기 2차 심볼은 상기 1차 심볼에 특정 위상 회전을 적용하며,
    상기 2차 심볼에 적용되는 특정 위상은 상기 회전 가능한 위상들에 포함되며;
    상기 수신된 1차 심볼 및 2차 심볼을 이용하여 상기 심볼 간 위상 차이를 추정하는 단계; 및
    상기 추정된 위상 차이를 고려하여 수신 신호를 디코딩하는 단계를 포함하는 것을 특징으로 하는 방법.
  2. 제 1항에 있어서,
    상기 2차 심볼에 적용되는 특정 위상 회전에 따라 상기 추가 정보의 크기가 결정되는 것을 특징으로 하는 방법.
  3. 제 1항에 있어서,
    상기 1차 심볼 및 상기 2차 심볼은 각각 1 심볼 간격으로 반복하여 상기 기지국으로부터 수신되는 것을 특징으로 하는 방법.
  4. 제 1항에 있어서,
    상기 특정 위상 회전은 BPSK, QPSK, 16QAM 또는 64QAM 변조인 것을 특징으로 하는 방법.
  5. 제 1항에 있어서,
    상기 2차 심볼의 특정 주파수 톤(tone)에 상기 특정 위상 회전의 적용 여부를 나타내는 제 2 제어 정보를 상기 기지국으로부터 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  6. 제 5항에 있어서,
    상기 제 2 제어 정보가 상기 2차 심볼의 특정 주파수 톤에 상기 특정 위상 회전이 적용되지 않음을 나타내는 경우, 상기 2차 심볼의 특정 주파수 톤에는 상기 1차 심볼과 동일한 심볼이 전송되는 것을 특징으로 하는 방법.
  7. 제 5항에 있어서,
    상기 제 1 제어 정보 및 상기 제 2 제어 정보는 DCI(Downlink Control Channel) 또는 RRC(Radio Resource Control) 시그널링을 통해 수신되는 것을 특징으로 하는 방법.
  8. 제 5항에 있어서,
    상기 제 2 제어 정보는 CFO(Carrier Frequency Offset)이 임계값보다 큰 경우에만 상기 2차 심볼의 특정 주파수 톤에 상기 특정 위상 회전이 적용되지 않음을 나타내는 것을 특징으로 하는 방법.
  9. 제 1항에 있어서,
    상기 1차 심볼 및 상기 2차 심볼은 각각 1 심볼인 것을 특징으로 하는 방법.
  10. 무선 통신 시스템에서 심볼(symbol) 간 위상 회전(phase rotation)을 이용하여 추가 정보를 수신하기 위한 단말에 있어서,
    무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛; 및
    상기 RF 유닛을 제어하는 프로세서를 포함하고, 상기 프로세서는,
    상기 심볼 간 위상 회전에 적용할 수 있는 회전 가능한 위상들로 구성된 제 1 제어 정보를 기지국으로부터 수신하며;
    상기 심볼 간 위상 차이 추정에 사용되는 1차 심볼 및 2차 심볼을 상기 기지국으로부터 수신하며,
    상기 1차 심볼 및 상기 2차 심볼은 시간 영역에서 서로 인접하는 데이터 심볼이며,
    상기 2차 심볼은 상기 1차 심볼에 특정 위상 회전을 적용하며,
    상기 2차 심볼에 적용되는 특정 위상은 상기 회전 가능한 위상들에 포함되며;
    상기 수신된 1차 심볼 및 2차 심볼을 이용하여 상기 심볼 간 위상 차이를 추정하며; 및
    상기 추정된 위상 차이를 고려하여 수신 신호를 디코딩하도록 제어하는 것을 특징으로 하는 단말.
PCT/KR2017/001425 2016-06-27 2017-02-09 무선 통신 시스템에서 심볼 간 위상 회전을 이용하여 추가 정보를 송수신하기 위한 방법 및 이를 위한 장치 WO2018004101A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662355307P 2016-06-27 2016-06-27
US62/355,307 2016-06-27

Publications (1)

Publication Number Publication Date
WO2018004101A1 true WO2018004101A1 (ko) 2018-01-04

Family

ID=60787439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001425 WO2018004101A1 (ko) 2016-06-27 2017-02-09 무선 통신 시스템에서 심볼 간 위상 회전을 이용하여 추가 정보를 송수신하기 위한 방법 및 이를 위한 장치

Country Status (1)

Country Link
WO (1) WO2018004101A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187636A1 (ko) * 2020-03-18 2021-09-23 엘지전자 주식회사 위상 잡음 보상 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010301A2 (en) * 1998-10-13 2000-02-24 Telefonaktiebolaget Lm Ericsson (Publ) Signalling transmission using phase rotation techniques in a digital communications system
US20090225822A1 (en) * 2008-03-07 2009-09-10 Miika Sakari Tupala System and Methods for Receiving OFDM Symbols Having Timing and Frequency Offsets
US8014456B1 (en) * 2006-05-31 2011-09-06 Marvell International Ltd. Preamble detection with multiple receive antennas
US20120300793A1 (en) * 2011-04-28 2012-11-29 Korea Ocean Research And Development Institute Apparatus and method of transmitting preamble having additional information in differential modulation packet data communication
US20160162423A1 (en) * 2013-08-08 2016-06-09 Qualcomm Incorporated N-phase signal transition alignment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010301A2 (en) * 1998-10-13 2000-02-24 Telefonaktiebolaget Lm Ericsson (Publ) Signalling transmission using phase rotation techniques in a digital communications system
US8014456B1 (en) * 2006-05-31 2011-09-06 Marvell International Ltd. Preamble detection with multiple receive antennas
US20090225822A1 (en) * 2008-03-07 2009-09-10 Miika Sakari Tupala System and Methods for Receiving OFDM Symbols Having Timing and Frequency Offsets
US20120300793A1 (en) * 2011-04-28 2012-11-29 Korea Ocean Research And Development Institute Apparatus and method of transmitting preamble having additional information in differential modulation packet data communication
US20160162423A1 (en) * 2013-08-08 2016-06-09 Qualcomm Incorporated N-phase signal transition alignment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187636A1 (ko) * 2020-03-18 2021-09-23 엘지전자 주식회사 위상 잡음 보상 방법 및 장치

Similar Documents

Publication Publication Date Title
WO2018225927A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2018182358A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2021054689A1 (en) Method and apparatus for uci multiplexing in wireless communication systems
WO2018128399A1 (ko) 무선 통신 시스템에서, 참조 신호를 전송하는 방법 및 이를 위한 장치
WO2018128297A1 (ko) 측정 정보를 보고하는 방법 및 이를 위한 단말
WO2018062937A1 (ko) 무선 통신 시스템에서의 데이터 송수신 방법 및 이를 위한 장치
WO2017213326A1 (ko) 무선 통신 시스템에서 위상 잡음 보상 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2017160100A2 (ko) 무선 통신 시스템에서 제어 정보를 송수신 하는 방법 및 이를 위한 장치
WO2018182150A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2020166818A1 (ko) 무선 통신 시스템에서, 사용자 장치에 의하여, srs를 송신하는 방법 및 장치
WO2016144100A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 수행하는 장치
WO2016064169A2 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 이를 위한 장치
WO2017043878A1 (ko) 협대역 사물인터넷을 지원하는 무선 접속 시스템에서 하향링크 물리 방송 채널 수신 방법 및 장치
WO2016006890A1 (ko) 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치
WO2014069944A1 (ko) 무선 통신 시스템에서 데이터를 송/수신하는 방법 및 장치
WO2016048055A1 (ko) 하향링크 제어 채널을 수신하는 방법 및 mtc 기기
WO2018182256A1 (ko) 무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치
WO2015163645A1 (ko) 무선 통신 시스템에서의 사운딩 참조 신호 전송 방법 및 단말
WO2011122852A2 (ko) 무선통신 시스템에서 제어채널을 모니터링하기 위한 방법 및 장치
WO2018182248A1 (ko) 무선 통신 시스템에서 단말의 위상 트래킹 참조 신호 수신 방법 및 이를 지원하는 장치
WO2019194545A1 (ko) 무선 통신 시스템에서 임의 접속 프리앰블을 송수신하기 위한 방법 및 이를 위한 장치
WO2014107088A1 (ko) 신호를 송수신하는 방법 및 장치
WO2016175576A1 (ko) 기계타입통신을 지원하는 무선 접속 시스템에서 채널상태정보를 피드백하는 방법 및 장치
WO2020130573A1 (en) Method and apparatus for configuration of common search space for discovery signal and channel
WO2016036097A1 (ko) 비면허대역을 지원하는 무선접속시스템에서 채널상태측정 및 보고 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820378

Country of ref document: EP

Kind code of ref document: A1