WO2018003790A1 - Polyester stretch blow-molded container and manufacturing method therefor - Google Patents

Polyester stretch blow-molded container and manufacturing method therefor Download PDF

Info

Publication number
WO2018003790A1
WO2018003790A1 PCT/JP2017/023551 JP2017023551W WO2018003790A1 WO 2018003790 A1 WO2018003790 A1 WO 2018003790A1 JP 2017023551 W JP2017023551 W JP 2017023551W WO 2018003790 A1 WO2018003790 A1 WO 2018003790A1
Authority
WO
WIPO (PCT)
Prior art keywords
blow
container
polyester
temperature
stretch
Prior art date
Application number
PCT/JP2017/023551
Other languages
French (fr)
Japanese (ja)
Inventor
温 小宮
玲太 石井
大樹 安川
友 山崎
友紀 栗原
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016137377A external-priority patent/JP6862698B2/en
Priority claimed from JP2016225662A external-priority patent/JP2018083630A/en
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Priority to US16/313,779 priority Critical patent/US11040476B2/en
Priority to CN201780040407.9A priority patent/CN109415134B/en
Priority to EP17820144.8A priority patent/EP3476756B1/en
Publication of WO2018003790A1 publication Critical patent/WO2018003790A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents

Definitions

  • the present invention relates to a thin stretched polyester stretch blow molded container and a method for producing the same, and more particularly, to a lightweight thin stretch polyester stretch blow molded container having heat resistance suitable for high temperature filling and a method for producing the same. About.
  • Polyester stretch blow molded containers formed by biaxial stretch blow molding of polyester preforms are widely used as containers for various beverages because they are excellent in transparency and light weight.
  • the heat resistant container has a problem that it becomes difficult to maintain heat resistance due to further thinning. In other words, when the contents are filled at a high temperature of 80 ° C. or higher, the container is greatly deformed, and its thinning is limited at present.
  • a means for heat-treating (heat fixing) the container after blow molding is widely adopted, but the average thickness of the container body is In a thin polyester stretch blow molded container that has been thinned to 280 ⁇ m or less, the container may be deformed by heating for heat setting, and it cannot be sufficiently crystallized by heat setting. When the contents were filled at a high temperature, deformation of the container could not be prevented, and as a result, the container body could not be sufficiently thinned.
  • Patent Document 1 discloses that in a dynamic viscoelasticity measurement, a tan ⁇ peak temperature is 113 ° C. or less and a tan ⁇ absolute value in the vertical direction of the container body.
  • a polyester container characterized in that is 0.18 or less has been proposed.
  • the polyester container exhibits excellent heat distortion resistance by blow stretching and heat setting so as to satisfy certain dynamic viscoelastic properties, for example, heat distortion resistance that can withstand high temperature sterilization treatment (retort treatment).
  • retort treatment high temperature sterilization treatment
  • Patent Document 1 is applied to a thick-walled polyester blow container, and the thinned and light-weight polyester blow container is used at the time of molding as described above. Since there exists a possibility that it may deform
  • an object of the present invention is to provide a stretch blow container made of polyester and a method for producing the same, in which the average thickness of the body portion is 280 ⁇ m or less, and the deformation that occurs during high temperature filling of the contents is effectively suppressed. is there.
  • the polyester stretch blow container of the first aspect of the present invention is a polyester stretch blow container having a trunk average thickness of 280 ⁇ m or less, and the dynamic viscoelasticity measurement is performed in the axial direction of the trunk central portion. Is provided with a tan ⁇ peak value of 0.23 to 0.29, and a tan ⁇ peak temperature at the peak value of 111 to 118 ° C.
  • a polyester stretch blow container characterized in that the tan ⁇ peak value is less than 0.25 and the peak temperature of tan ⁇ at the peak value is 119 ° C. or more is provided.
  • the degree of crystallinity measured by the density method measured for the central portion of the trunk is in the range of 29 to 38%; 2. For high temperature filling, Is preferred.
  • a method for producing a polyester stretch blow molded container wherein a polyester preform heated to a stretching temperature is stretched by stretching by a stretch rod and stretching by air blow,
  • the stretch temperature is in the range of 100 to 130 ° C.
  • the air blow uses blow air adjusted to a temperature in the range of 80 to 200 ° C.
  • the mold temperature in the heat setting is in the range of 130 to 160 ° C.
  • the air blow is composed of pre-blow performed simultaneously with stretching by the stretch rod and main blow performed simultaneously with completion of stretching by the stretch rod, and adjusted to a temperature in the range of 80 to 200 ° C. in both the pre-blow and the main blow.
  • Suitably blown air is used.
  • the stretch blow container made of polyester of the present invention has excellent heat resistance despite the fact that the trunk average thickness is reduced to 280 ⁇ m or less, and the content is 80 ° C. or higher, particularly 83 to 87 ° C. Even when a thermal history of filling and then lowering the temperature is received, thermal deformation of the container is effectively prevented.
  • the stretch blow container made of polyester of the present invention has excellent heat resistance despite the fact that the trunk average thickness is reduced to 280 ⁇ m or less, and the content is 80 ° C. or higher, particularly 83 to 87 ° C. Even when a thermal history of filling and then lowering the temperature is received, thermal deformation of the container is effectively prevented.
  • the tan ⁇ peak value is 0.23 to 0.29, and the tan ⁇ peak temperature at the peak value is in the range of 111 to 118 ° C.
  • the polyester stretch blow container of the aspect is set so as to positively generate a certain degree of thermal deformation (thermal expansion) when the contents are filled at a high temperature. For this reason, the container contracts due to subsequent decompression by cooling. When (absorption under reduced pressure) is performed, the thermal expansion at high temperature and the absorption under reduced pressure at the time of cooling have an appropriate balance, so that the final deformation of the container can be effectively avoided.
  • the polyester blow container (empty container) of the first aspect of the present invention is held in an 85 ° C. oven for 5 minutes, and this is brought to room temperature (23 ° C.).
  • the rate of change of the container based on the volume of the container before heating in the oven is 0.4 to 0.8%, which is larger than 0.3% or less of the conventional container, and is filled at high temperature. Thermal expansion is easy to occur.
  • the container is cooled, and the amount of contraction due to reduced pressure (the amount of absorption under reduced pressure) is the same as that of the conventional container.
  • the amount of shrinkage is small, the balance between thermal expansion and reduced pressure absorption is good, and deformation of the container after filling is effectively prevented.
  • the tan ⁇ peak value is less than 0.25 in the dynamic viscoelasticity measurement measured in the axial direction of the central portion of the trunk portion.
  • the crystal part indicates that the molecular chain stress is relaxed.
  • the peak temperature of tan ⁇ at the peak value is 119 ° C. or higher, which indicates that the ratio of the above-described amorphous portion is small and the degree of crystallization (orientation by stretching) is high. From these, it can be seen that the stretch-molded polyester container of the second aspect of the present invention has excellent heat resistance even in a thinned state.
  • the container is heated from the inner surface side to relieve strain on the inner surface side of the container, and promote self-heating of the container. It becomes possible to improve the heat resistance by promoting oriented crystallization. As a result, a polyester stretch blow container having the above-described characteristics can be formed.
  • a polyester stretch blow molded container formed under the same stretching conditions as in the examples except that blow air that is not heated is used has a tan ⁇ peak temperature of 118 ° C. or lower and a tan ⁇ peak value of 0.25 or higher, Inferior in properties (Comparative Examples 1 to 3).
  • polyester stretch blow molded containers formed by using blow air in the range of 80 to 200 ° C. from the time of pre-blow have the tan ⁇ peak temperature and the tan ⁇ peak value in the above-mentioned ranges, and have excellent heat resistance. (Examples 1 to 6).
  • FIG. 1 shows the schematic side view of the stretch blow container made from polyester of this invention. It is a figure which shows the relationship between the blow air temperature with respect to time in the biaxial stretch blow molding process in the manufacturing method of the polyester stretch blow container of the 2nd aspect of this invention, and a blow pressure. It is a figure which shows the result of the dynamic viscoelasticity measurement about the various bottles measured in Experimental example 1. FIG. It is a figure which shows the result of the dynamic viscoelasticity measurement about the various bottles measured in Experimental example 2.
  • FIG. 1 shows the schematic side view of the stretch blow container made from polyester of this invention. It is a figure which shows the relationship between the blow air temperature with respect to time in the biaxial stretch blow molding process in the manufacturing method of the polyester stretch blow container of the 2nd aspect of this invention, and a blow pressure. It is a figure which shows the result of the dynamic viscoelasticity measurement about the various bottles measured in Experimental example 1.
  • FIG. 2 shows the result of the dynamic viscoelasticity measurement about the various bottles measured in Experimental example 2.
  • the polyester stretch blow molded container of the present invention is generally indicated by 10, has a neck portion 1 and a trunk portion 3 connected to the neck portion 1. Is closed by a bottom 5.
  • the polyester blow container 10 having such a configuration is manufactured by molding a test tube-shaped preform by injection molding or the like, blow-molding the preform, and then heat-setting (heat-setting) it in an appropriate temperature range. However, a detailed manufacturing method will be described later.
  • the neck portion 1 is an unstretched portion (portion fixed by a mold during blow molding), and a thread 1a is appropriately formed on the outer surface according to the form of the cap attached to the container.
  • a support ring 1b is provided below 1a for supporting and conveying the preform and the container to be molded.
  • the body portion 3 (and the bottom portion 5) is a portion that is blow-drawn, and is a portion that is stretch-formed by blowing blow fluid in a state where the neck portion 1 of the preform is fixed.
  • the bottom portion 5 has a raised bottom shape, and a recess is formed on the bottom surface.
  • the polyester stretch blow container 10 of the present invention having the above-described form is thinned, and the average thickness of the body portion 3 which is a stretch-formed part is 280 ⁇ m or less, preferably 270 to 200 ⁇ m, more preferably. Is in the range of 250 to 200 ⁇ m, and weight reduction is realized by such thinning.
  • the tan ⁇ peak value is in the range of 0.23 to 0.29 and the tan ⁇ peak temperature at the peak value is in the range of 111 to 118 ° C., or the polyester stretch blow of the second aspect.
  • the tan ⁇ peak value is less than 0.25, particularly 0.18 to less than 0.25, particularly 0.22 to less than 0.25, and the peak temperature of tan ⁇ at the peak value is 119 ° C. or more, In particular, it is important to be in the range of 119 to 125 ° C.
  • Dynamic viscoelasticity measurement measures the mechanical properties of a sample by measuring stress or strain
  • tan ⁇ is a parameter called loss tangent, expressed as a ratio of loss elastic modulus / storage elastic modulus.
  • the loss elastic modulus is a loss due to an amorphous part
  • the storage elastic modulus is an elastic modulus due to a crystal part, both of which depend on temperature.
  • the temperature at which tan ⁇ exhibits a peak indicates an apparent glass transition point. Therefore, the smaller the tan ⁇ peak value, the more crystal parts are present, and the higher the peak temperature indicating this peak value, the higher the glass transition point, which causes deformation of the container at the time of high temperature filling of the contents. It shows that heat resistance is high.
  • the conventionally well-known thick heat-resistant polyester blow container (conventional heat-resistant container) is thick, it does not expand at the time of filling more than the blow container of this invention.
  • the amount of vacuum absorption by cooling after filling is the same, the amount of shrinkage from the container before filling is smaller in the blow container of the present invention than in the conventional heat-resistant container. Therefore, the conventional heat-resistant container can withstand deformation under reduced pressure and suppress deformation of the container after high-temperature filling, and the first polyester stretch blow container of the present invention is different from conventional heat-resistant containers in that it has thermal expansion. By properly balancing the vacuum absorption, it is a container that effectively suppresses deformation of the bottle after high temperature filling.
  • the peak value or peak temperature of tan ⁇ when the peak value or peak temperature of tan ⁇ is outside the above-mentioned range, the balance between the thermal expansion at the time of high temperature filling of the contents and the contraction due to the subsequent temperature drop is lost. As a result, the deformation that occurs during high temperature filling cannot be effectively prevented.
  • tan ⁇ peak value and peak temperature described above are prepared by cutting the container body into an appropriate size so as to include the central portion X in the body axial direction, and using a viscoelastic spectrometer. It is measured by applying a load from the axial direction of the container.
  • the stretch blow container made of polyester of the first aspect of the present invention a certain amount of thermal deformation occurs during high-temperature filling of the contents, so as to ensure form stability when such thermal deformation occurs.
  • the bottom portion 5 is raised to have a bottom shape and a recess is formed on the bottom surface.
  • the stretch blow container of the present invention described above is formed of a polyester capable of forming a preform by injection molding or compression molding.
  • a polyester polyethylene terephthalate usually formed from terephthalic acid and ethylene glycol is used. (PET) is preferably used.
  • PET polyethylene terephthalate usually has a glass transition point (Tg) of 50 to 90 ° C., particularly 55 to 80 ° C., and a melting point (Tm) of 200 to 275 ° C., particularly 220 to 270 ° C.
  • an ester derived from a dibasic acid other than terephthalic acid or a diol unit other than ethylene glycol provided that the ethylene terephthalate unit occupies 70 mol% or more, particularly 80 mol% or more in the ester repeating unit.
  • Copolyesters containing units can also be suitably used.
  • dibasic acids other than terephthalic acid include aromatic dicarboxylic acids such as isophthalic acid, phthalic acid, and naphthalenedicarboxylic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; succinic acid, adipic acid, sebacic acid, and dodecane.
  • diol component other than ethylene glycol examples include propylene glycol, 1,4-butanediol, diethylene glycol, and 1,6-hexylene glycol. , Cyclohexanedimethanol, and one or more of bisphenol A ethylene oxide adducts.
  • Such a polyester should have at least a molecular weight sufficient to form a film, and usually has an intrinsic viscosity (IV) of 0.6 to 1.4 dL / g, particularly 0.63 to 1. An injection grade in the range of 3 dL / g is used.
  • the above-mentioned polyester may be blended with known compounding agents (antioxidants, lubricants, etc.) per se.
  • a polyester may be used as an inner and outer layer, and an oxygen barrier layer and an oxygen absorption layer may be provided as an intermediate layer through an adhesive layer.
  • the oxygen barrier layer having the multilayer structure is formed of an oxygen barrier resin such as an ethylene-vinyl alcohol copolymer or polyamide, so long as the oxygen barrier property is not impaired.
  • the thermoplastic resin may be blended with other thermoplastic resins.
  • the oxygen absorbing layer is a layer containing an oxidizing polymer and a transition metal catalyst, as described in Japanese Patent Application Laid-Open No. 2002-240813, etc., and the oxidizing polymer is activated by the action of the transition metal catalyst. Is oxidized by oxygen, which absorbs oxygen and blocks the permeation of oxygen.
  • Such an oxidizable polymer and a transition metal catalyst are described in detail in the above Japanese Patent Application Laid-Open No. 2002-240813 and the like.
  • Is an olefin resin having a tertiary carbon atom for example, polypropylene or polybutene-1, or a copolymer thereof
  • a thermoplastic polyester or an aliphatic polyamide for example, polypropylene or polybutene-1, or a copolymer thereof
  • a xylylene group-containing polyamide resin for example, polypropylene or polybutene-1, or a copolymer thereof
  • a polymer eg, a polymer derived from a polyene such as butadiene
  • the inorganic salt, organic acid salt, or complex salt of transition metals, such as iron, cobalt, and nickel are typical.
  • each layer is known per se, for example, olefin graft-modified with carboxylic acids such as maleic acid, itaconic acid, fumaric acid or anhydrides thereof, amides, esters, etc. Resins; ethylene-acrylic acid copolymers; ion-crosslinked olefin copolymers; ethylene-vinyl acetate copolymers; and the like are used as adhesive resins.
  • the thickness of each layer described above may be set to an appropriate thickness as long as the average thickness of the body portion of the container wall after blow molding is in the above-described range (280 ⁇ m or less). Furthermore, it is also possible to provide a regrind layer in which scrap generated when molding a blow container is blended with a polyester virgin resin.
  • the polyester stretch blow container of the present invention uses a preform molded by injection molding or the like, and is subjected to stretch blow molding and heat setting, so that the above-mentioned average thickness of the body portion is 280 ⁇ m or less.
  • the peak value of tan ⁇ tend to be small and the peak temperature tends to be high.
  • laboratory experiments are performed in advance so that the dynamic viscoelastic properties (the peak value and the peak temperature of tan ⁇ ) are within a predetermined range.
  • Various conditions may be set according to the thickness of the stretch-formed part (corresponding to the body part of the container) of the molded preform.
  • the preform used for molding the stretch blow container made of polyester according to the present invention can be formed into a single layer or a multilayer structure by molding the above-mentioned polyester by a conventionally known method such as injection molding or compression molding. From the viewpoint of heat resistance, it is desirable that the neck portion of this be heated and crystallized.
  • Preform heating process The molded preform is heated to a stretching temperature before being subjected to stretch blow molding.
  • the outer surface temperature of the preform is in the range of 100 to 140 ° C. In particular, it is desirable to heat so that the temperature is in the range of 120 to 135 ° C and 100 to 130 ° C.
  • the outer surface temperature of the preform is in the range of 100 to 130 ° C. It is desirable to heat as is.
  • the preform may be whitened by thermal crystallization.
  • the preform can be heated by a conventionally known method.
  • the preform is heated at a normal temperature in combination with an infrared heater and an inner surface heater, and cooling due to the conveyance of the preform is taken into consideration. And it heats so that it may become the said temperature range at the time of blow molding.
  • the first blow container of the present invention such a two-stage blow is not suitable, and a normal one-stage blow is applied. This is because, when the container is formed by two-stage blowing, orientation crystallization by blow stretching is promoted, so that it becomes difficult to adjust the peak value and peak temperature of tan ⁇ within the above-described range.
  • the blow air is not particularly limited.
  • the second polyester stretch blow container is molded, it is 80 to 200 ° C., particularly 145. It is preferable to use blow air adjusted to a temperature of ⁇ 200 ° C. As long as blow air in this temperature range is used, it is possible to perform blow molding to the final molded product at the same flow rate without changing the flow rate of blow air even after stretching by the stretch rod. It is desirable to perform pre-blow with a small flow rate until the end of stretching with the rod, and to perform main blow with a greater flow rate than the pre-blow when stretching with the stretch rod is completed.
  • FIG. 2 is a diagram showing the relationship between the temperature and pressure of blow air over time in an example of a biaxial stretch blow molding process for molding the polyester stretch blow container of the second aspect of the present invention.
  • the blow process shown in FIG. 2 is a pre-blow process (0.02 to 0.6 seconds) in which the flow rate of blow air is small and the blow pressure is in the range of 0.5 to 2 MPa. It consists of a main blow step (0.6 to 3 seconds) in the range of 4 MPa, and a cooling step for cooling the container by injecting cooling air after the completion of the main blow.
  • blow air adjusted to a temperature of 80 to 200 ° C.
  • the stretch ratio in the biaxial stretch blow molding step is a range of 1.8 to 3.4 times in the longitudinal stretch ratio, 2.8 to 3.8 times in the circumferential direction, and 4 to 12 times in the area ratio. It is preferable that it exists in. Thereby, the average thickness of the body portion is reduced to 280 ⁇ m or less, and it becomes possible to obtain a final molded product that is reduced in weight.
  • the container after blow molding is subjected to heat fixation and then cooled to complete the final molded product.
  • the heat setting is a one-mold method that is performed simultaneously with blow molding using a mold used for blow molding, or a two-mold method in which a blow-molded container is taken out of the blow mold and reheated with a dedicated mold for heat setting.
  • the one mold method of forming in a short time is suitable.
  • the heating time becomes long, and it becomes difficult to set the heating temperature for molding the container of the present invention.
  • the heating temperature is set so as to satisfy a predetermined dynamic viscoelastic property (tan ⁇ ) according to the stretching temperature (preform temperature) and the stretching ratio described above.
  • the heat setting temperature is 130 ° C. or more and less than 150 ° C.
  • the heat setting time may be several seconds.
  • the heat setting temperature used when manufacturing a normal thick heat-resistant blow container is 150 ° C. or higher, which is higher than the heat setting temperature employed in the present invention.
  • the temperature when obtaining the polyester stretch blow container of the second aspect of the present invention, the temperature may be higher than that of the stretch blow container of the first aspect.
  • the heat setting temperature is 130 to 160 ° C.
  • the heat setting time may be several seconds.
  • the polyester stretch blow container of the present invention thus formed has a crystallinity of 29 to 38% by the density method at the body center portion X as described above, and particularly in the first embodiment. Excellent heat resistance is obtained when the crystallinity is in the range of 30 to 35%, and in the second embodiment, the crystallinity is in the range of 35 to 38%.
  • the stretch blow container made of polyester of the present invention is very thin, for example, a bottle having a full volume of 500 mL and a weight of 22 g or less, a bottle having a full volume of 2 L and a weight of 49 g or less, Considering that the weight of a commercially available 500 mL PET bottle is 28 g or more and the weight of a normal commercially available 2 L PET bottle is 65 g or more, in the present invention, a considerable weight reduction is realized by thinning.
  • Tan ⁇ in dynamic viscoelasticity measurement Referring to FIG. 1, a 5 mm ⁇ 40 mm test piece Y is cut out from the center X of the bottle body so that the long side direction is the bottle height direction, and a viscoelastic spectrometer (EXSTAR6000DMS: Seiko Instruments Inc.) Measurement was performed using The measurement conditions are shown below. From the obtained tan ⁇ curve (temperature plotted on the horizontal axis and tan ⁇ value on the vertical axis), the maximum value of tan ⁇ (tan ⁇ value) and the maximum temperature of tan ⁇ (peak temperature) were derived.
  • EXSTAR6000DMS Seiko Instruments Inc.
  • Measurement mode Tensile sine wave mode Distance between test specimens: 20 mm Frequency: 1Hz Minimum tension: 100mN Temperature rise profile: Temperature rise from 25 ° C. to 210 ° C. at 2 ° C./min (2) Measurement of rate of change The bottle is held in an 85 ° C. oven for 5 minutes and cooled to room temperature (23 ° C.). The volume of the container before heating and after cooling was measured, and the rate of change of the container with respect to the volume before heating was determined. (3) Average thickness measurement The thickness was measured every 20 mm in the longitudinal direction at 6 points in the circumferential direction of the bottle, and the average was obtained. (3) Measurement of heat resistance An empty bottle was filled with water heated to 87 ° C., showered at 77 ° C. for 5 minutes, and then naturally cooled. Thereafter, the deformation of the bottle was visually observed. Small deformation amount: ⁇ Medium deformation amount: ⁇ Large deformation amount: ⁇ Deformation amount cannot be commercialized Level: ⁇
  • Example 1 The following bottles molded under the conditions shown in Table 1 were measured for dynamic viscoelasticity. The results are shown in FIG. In addition, the crystallinity of the bottle of the present invention is also shown in FIG.
  • ⁇ , ⁇ , ⁇ , and ⁇ indicate the next bottles in Table 1 above.
  • Invention bottle (bottle for high temperature filling)
  • Thick heat-resistant bottle (conventional high-temperature filling bottle)
  • Two-stage blow bottle (high-temperature filling bottle blow-molded twice)
  • heat-resistant pressure bottle (bottle for carbonated beverages to be heat sterilized after filling, not compatible with high temperature filling)
  • the change rate was measured for the 500 ml bottle of the present invention and the thick heat-resistant bottle.
  • the results are shown in Table 2.
  • the bottle does not deform due to heat, so that a heat-resistant bottle with a thin wall and dynamic viscoelasticity outside the scope of the present invention could not be molded. .
  • the bottle of the first aspect of the present invention has a tan ⁇ peak value of 0.23 to 0.29 and a tan ⁇ peak temperature in the range of 111 to 118 ° C. from dynamic viscoelasticity measurement. Yes, it was confirmed that the bottle is more susceptible to heat shrinkage than the conventional thick heat-resistant bottle. As a result, since the rate of change of the bottle of the present invention is larger than that of the conventional thick heat-resistant bottle, the thermal expansion of the bottle after high-temperature filling at 80 ° C.
  • the bottle of the present invention can effectively prevent deformation of the bottle even if it is subjected to a heat history such as high temperature filling and subsequent temperature drop, although the bottle is thinned by weight reduction.
  • Example 2 The dynamic viscoelasticity, trunk average thickness, and heat resistance of each bottle (Example, Comparative Example) molded under the bottle size and molding conditions shown in Table 3 were measured. The results are shown in Table 3 and FIG.
  • the heat resistance is good when the tan ⁇ peak value is in the range of less than 0.25 and the tan ⁇ peak temperature is 119 ° C. or higher, and the heat resistance decreases when the value is away from the value. It was.
  • the average wall thickness of the bottle is 250 ⁇ m or less, it is more important that the temperature of the blow air is 145 ° C. or more.
  • Comparative Example 4 it can be confirmed that a bottle having an average wall thickness greater than 280 ⁇ m does not cause a decrease in heat resistance unlike a thinned bottle.
  • polyester stretch blow container of the present invention effectively suppresses deformation when the contents are filled at high temperature, a non-carbonated beverage that is filled at a high temperature of 80 ° C. or more, particularly 83 to 87 ° C., for example, It is suitably applied as a container for various fruit juices, water, or various chemical solutions. Further, since it is thinned to 280 ⁇ m or less and lightened, it is possible to save resources and reduce waste, and it can be suitably applied to general-purpose products that are mass-produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

The present invention relates to a polyester stretch blow-molded container, which is thin-walled with an average body section thickness of 280 µm or less and for which deformation that occurs during high temperature filling of contents is effectively limited, and is characterized in that the tanδ peak value and the tanδ peak temperature at said peak value in dynamic viscoelasticity measurements measured in the axial direction of the center portion of the body section satisfy either (i) tanδ peak value is in the range of 0.23-0.29 and the tanδ peak temperature at said peak value is in the range of 111-118°C, or (ii) tanδ peak value is less than 0.25 and the tanδ peak temperature at said peak value is in the range of 119°C or higher.

Description

ポリエステル製延伸ブロー成形容器及びその製造方法Polyester stretch blow molded container and method for producing the same
 本発明は、薄肉化されたポリエステル製延伸ブロー成形容器及びその製造方法に関するものであり、より詳細には、高温充填に適した耐熱性を有する軽量薄肉化ポリエステル製延伸ブロー成形容器及びその製造方法に関する。 The present invention relates to a thin stretched polyester stretch blow molded container and a method for producing the same, and more particularly, to a lightweight thin stretch polyester stretch blow molded container having heat resistance suitable for high temperature filling and a method for producing the same. About.
 ポリエステル製プリフォームを二軸延伸ブロー成形して成るポリエステル製延伸ブロー成形容器は、透明性及び軽量性に優れていることから、各種飲料等の容器として広く使用されている。
 近年、省資源、コスト削減、環境維持等の観点から、ポリエステル製延伸ブロー成形容器においても更なる薄肉化が求められている。しかしながら耐熱性容器においては、更なる薄肉化により耐熱性の維持が困難になるという問題が生じる。すなわち、内容物を80℃以上の温度で高温充填したとき等に容器が大きく変形してしまい、その薄肉化が制限されているのが現状である。
Polyester stretch blow molded containers formed by biaxial stretch blow molding of polyester preforms are widely used as containers for various beverages because they are excellent in transparency and light weight.
In recent years, from the viewpoints of resource saving, cost reduction, environmental maintenance, and the like, there is a demand for further thinning of polyester stretch blow molded containers. However, the heat resistant container has a problem that it becomes difficult to maintain heat resistance due to further thinning. In other words, when the contents are filled at a high temperature of 80 ° C. or higher, the container is greatly deformed, and its thinning is limited at present.
 すなわち、ポリエステル製延伸ブロー成形容器において耐熱性を向上させる手段としては、一般的にブロー成形後の容器を加熱処理(熱固定)する手段が広く採用されているが、容器胴部の平均厚みが280μm以下に薄肉化されている薄肉のポリエステル製延伸ブロー成形容器では、熱固定のための加熱により容器が変形してしまうおそれがあり、熱固定により十分に結晶化を行うことができないことから、内容物を高温充填した時に容器の変形を防止することができず、結果として、容器胴部を十分に薄肉化することができなかった。 That is, as a means for improving heat resistance in a stretch stretch blow molded container made of polyester, generally, a means for heat-treating (heat fixing) the container after blow molding is widely adopted, but the average thickness of the container body is In a thin polyester stretch blow molded container that has been thinned to 280 μm or less, the container may be deformed by heating for heat setting, and it cannot be sufficiently crystallized by heat setting. When the contents were filled at a high temperature, deformation of the container could not be prevented, and as a result, the container body could not be sufficiently thinned.
 ポリエステル製延伸ブロー成形容器の耐熱性を向上させた先行技術として、下記特許文献1には、動的粘弾性測定において、容器の胴部の垂直方向に関してtanδピーク温度が113℃以下かつtanδ絶対値が0.18以下であることを特徴とするポリエステル容器が提案されている。
 上記ポリエステル容器は、一定の動的粘弾性特性を満足するようにブロー延伸及び熱固定を行うことにより優れた耐熱変形性、例えば、高温殺菌処理(レトルト処理)にも耐え得る耐熱変形性を示しており、容器の動的粘弾性特性を一定の範囲に満足させることにより、レトルト処理にも耐え得るような優れた耐熱変形性を発現させている。
As a prior art for improving the heat resistance of a stretch blow molded container made of polyester, the following Patent Document 1 discloses that in a dynamic viscoelasticity measurement, a tan δ peak temperature is 113 ° C. or less and a tan δ absolute value in the vertical direction of the container body. A polyester container characterized in that is 0.18 or less has been proposed.
The polyester container exhibits excellent heat distortion resistance by blow stretching and heat setting so as to satisfy certain dynamic viscoelastic properties, for example, heat distortion resistance that can withstand high temperature sterilization treatment (retort treatment). In addition, by satisfying the dynamic viscoelastic characteristics of the container within a certain range, excellent heat distortion resistance that can withstand retort treatment is developed.
 しかしながら、上記特許文献1に開示されている技術は、厚肉のポリエステル製ブロー容器に適用されるものであり、薄肉化され、軽量化されたポリエステル製ブロー容器は、上述したように成形時の熱固定により変形してしまうおそれがあるため、特許文献1に開示されている技術を適用することができなかった。 However, the technique disclosed in Patent Document 1 is applied to a thick-walled polyester blow container, and the thinned and light-weight polyester blow container is used at the time of molding as described above. Since there exists a possibility that it may deform | transform by heat setting, the technique currently disclosed by patent document 1 was not able to be applied.
特開2006-306452号公報JP 2006-306452 A
 従って、本発明の目的は、胴部平均厚みが280μm以下の薄肉であり、しかも、内容物の高温充填に際して生じる変形が有効に抑制されたポリエステル製延伸ブロー容器及びその製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a stretch blow container made of polyester and a method for producing the same, in which the average thickness of the body portion is 280 μm or less, and the deformation that occurs during high temperature filling of the contents is effectively suppressed. is there.
 本発明の第一の態様のポリエステル製延伸ブロー容器によれば、胴部平均厚みが280μm以下のポリエステル製延伸ブロー容器であって、前記胴部中心部分の軸方向について測定した動的粘弾性測定において、tanδピーク値が0.23~0.29、該ピーク値におけるtanδのピーク温度が111~118℃であることを特徴とするポリエステル製延伸ブロー容器が提供される。
 本発明の第二の態様のポリエステル製延伸ブロー成形容器によれば、胴部平均厚みが280μm以下のポリエステル製延伸ブロー容器であって、前記胴部中心部分の軸方向について測定した動的粘弾性測定において、tanδピーク値が0.25未満であり、該ピーク値におけるtanδのピーク温度が119℃以上であることを特徴とするポリエステル製延伸ブロー容器が提供される。
According to the polyester stretch blow container of the first aspect of the present invention, it is a polyester stretch blow container having a trunk average thickness of 280 μm or less, and the dynamic viscoelasticity measurement is performed in the axial direction of the trunk central portion. Is provided with a tan δ peak value of 0.23 to 0.29, and a tan δ peak temperature at the peak value of 111 to 118 ° C.
According to the polyester stretch blow molded container of the second aspect of the present invention, a polyester stretch blow container having a trunk average thickness of 280 μm or less, wherein the dynamic viscoelasticity is measured in the axial direction of the trunk central portion. In the measurement, a polyester stretch blow container characterized in that the tan δ peak value is less than 0.25 and the peak temperature of tan δ at the peak value is 119 ° C. or more is provided.
 本発明のポリエステル製延伸ブロー成形容器においては、
1.前記胴部中心部分について測定した密度法による結晶化度が29~38%の範囲にあること、
2.高温充填用であること、
が好適である。
In the stretch blow molded container made of polyester of the present invention,
1. The degree of crystallinity measured by the density method measured for the central portion of the trunk is in the range of 29 to 38%;
2. For high temperature filling,
Is preferred.
 本発明によればまた、上記第二の態様のポリエステル製延伸ブロー成形容器の製造方法であって、延伸温度に加熱されたポリエステル製プリフォームをストレッチロッドによる延伸とエアブローによる延伸により延伸した後、熱固定して成るポリエステル製延伸ブロー容器の製造方法において、前記延伸温度が100~130℃の範囲にあり、前記エアブローが80~200℃の範囲の温度に調整されたブローエアを用いるものであり、前記熱固定における金型温度が130~160℃の範囲にあることを特徴とするポリエステル製延伸ブロー成形容器の製造方法が提供される。
 上記製造方法においては、前記エアブローが、ストレッチロッドによる延伸と同時に行うプレブローと、ストレッチロッドによる延伸終了と同時に行うメインブローから成り、プレブロー及びメインブローの両方において80~200℃の範囲の温度に調整されたブローエアが使用されていることが、好適である。
According to the present invention, there is also provided a method for producing a polyester stretch blow molded container according to the second aspect, wherein a polyester preform heated to a stretching temperature is stretched by stretching by a stretch rod and stretching by air blow, In a method for producing a polyester stretch blow container that is heat-set, the stretch temperature is in the range of 100 to 130 ° C., and the air blow uses blow air adjusted to a temperature in the range of 80 to 200 ° C., There is provided a method for producing a polyester stretch blow molded container, wherein the mold temperature in the heat setting is in the range of 130 to 160 ° C.
In the above manufacturing method, the air blow is composed of pre-blow performed simultaneously with stretching by the stretch rod and main blow performed simultaneously with completion of stretching by the stretch rod, and adjusted to a temperature in the range of 80 to 200 ° C. in both the pre-blow and the main blow. Suitably blown air is used.
 本発明のポリエステル製延伸ブロー容器においては、胴部平均厚みが280μm以下と薄肉化されているにもかかわらず、耐熱性に優れており、内容物を80℃以上、特に83~87℃温度で充填し、その後に降温するという熱履歴を受けた場合にも、容器の熱変形が有効に防止されている。
 本発明のポリエステル製延伸ブロー容器においては、胴部平均厚みが280μm以下と薄肉化されているにもかかわらず、耐熱性に優れており、内容物を80℃以上、特に83~87℃温度で充填し、その後に降温するという熱履歴を受けた場合にも、容器の熱変形が有効に防止されている。
 すなわち、上述した動的粘弾性測定において、tanδピーク値が0.23~0.29、該ピーク値におけるtanδのピーク温度が111~118℃の範囲にあるという特性を有する本発明の第一の態様のポリエステル製延伸ブロー容器は、内容物が高温充填されたときに積極的にある程度の熱変形(熱膨張)を生じるように設定されており、このため、その後の冷却による減圧によって容器が収縮(減圧吸収)したとき、高温時の熱膨張と冷却時の減圧吸収が適度なバランスを有しているため、最終的な容器の変形を有効に回避することができる。
 例えば、後述する実験例1に示されているように、本発明の第一の態様のポリエステル製ブロー容器(空容器)を85℃オーブン中で5分間保持させ、これを室温(23℃)に冷却したとき、オーブン中で加熱する前の容器の容積を基準としての該容器の変化率は0.4~0.8%であり、従来容器の0.3%以下と比べて大きく、高温充填時の熱膨張は起きやすい。その後、容器が冷却され、減圧による収縮量(減圧吸収量)は、従来容器と同様であるため、熱膨張が少ない従来容器の充填前からの収縮量よりも、本発明の容器の充填前容器からの収縮量は少なく、熱膨張と減圧吸収のバランスが上手くいき、充填完了後の容器の変形が有効に防止されている。
The stretch blow container made of polyester of the present invention has excellent heat resistance despite the fact that the trunk average thickness is reduced to 280 μm or less, and the content is 80 ° C. or higher, particularly 83 to 87 ° C. Even when a thermal history of filling and then lowering the temperature is received, thermal deformation of the container is effectively prevented.
The stretch blow container made of polyester of the present invention has excellent heat resistance despite the fact that the trunk average thickness is reduced to 280 μm or less, and the content is 80 ° C. or higher, particularly 83 to 87 ° C. Even when a thermal history of filling and then lowering the temperature is received, thermal deformation of the container is effectively prevented.
That is, in the dynamic viscoelasticity measurement described above, the tan δ peak value is 0.23 to 0.29, and the tan δ peak temperature at the peak value is in the range of 111 to 118 ° C. The polyester stretch blow container of the aspect is set so as to positively generate a certain degree of thermal deformation (thermal expansion) when the contents are filled at a high temperature. For this reason, the container contracts due to subsequent decompression by cooling. When (absorption under reduced pressure) is performed, the thermal expansion at high temperature and the absorption under reduced pressure at the time of cooling have an appropriate balance, so that the final deformation of the container can be effectively avoided.
For example, as shown in Experimental Example 1 to be described later, the polyester blow container (empty container) of the first aspect of the present invention is held in an 85 ° C. oven for 5 minutes, and this is brought to room temperature (23 ° C.). When cooled, the rate of change of the container based on the volume of the container before heating in the oven is 0.4 to 0.8%, which is larger than 0.3% or less of the conventional container, and is filled at high temperature. Thermal expansion is easy to occur. Thereafter, the container is cooled, and the amount of contraction due to reduced pressure (the amount of absorption under reduced pressure) is the same as that of the conventional container. The amount of shrinkage is small, the balance between thermal expansion and reduced pressure absorption is good, and deformation of the container after filling is effectively prevented.
 また本発明の第二の態様のポリエステル製延伸ブロー成形容器では、胴部中心部分の軸方向について測定した動的粘弾性測定において、tanδピーク値が0.25未満であり、このことは、非晶部分は分子鎖の応力が緩和された状態であることを示している。またピーク値におけるtanδのピーク温度が119℃以上であり、このことは上述した非晶部分の割合が少なく、結晶化(延伸による配向)の程度が高いことを示している。これらのことから、本発明の第二の態様のポリエステル製延伸ブロー成形容器は、薄肉化された状態でも優れた耐熱性を有していることがわかる。 Further, in the stretch blow molded container made of polyester of the second aspect of the present invention, the tan δ peak value is less than 0.25 in the dynamic viscoelasticity measurement measured in the axial direction of the central portion of the trunk portion. The crystal part indicates that the molecular chain stress is relaxed. In addition, the peak temperature of tan δ at the peak value is 119 ° C. or higher, which indicates that the ratio of the above-described amorphous portion is small and the degree of crystallization (orientation by stretching) is high. From these, it can be seen that the stretch-molded polyester container of the second aspect of the present invention has excellent heat resistance even in a thinned state.
 また上記製造方法においては、ブロー成形の初期の段階から高温のブローエアを流入することにより、容器を内面側から加熱して容器の内面側の歪を緩和し、容器の自己発熱を促進すると共に、配向結晶化を促進して耐熱性を向上することが可能になる。その結果、上述した特性を有するポリエステル製延伸ブロー容器を成形することが可能になるのである。 In the above manufacturing method, by flowing high-temperature blow air from the initial stage of blow molding, the container is heated from the inner surface side to relieve strain on the inner surface side of the container, and promote self-heating of the container. It becomes possible to improve the heat resistance by promoting oriented crystallization. As a result, a polyester stretch blow container having the above-described characteristics can be formed.
 本発明の上述した作用効果は後述する実験例2の結果からも明らかである。
 すなわち加熱しないブローエアを用いた以外は、実施例と同様の延伸条件で成形して成るポリエステル製延伸ブロー成形容器は、tanδピーク温度が118℃以下,tanδピーク値が0.25以上であり、耐熱性に劣っている(比較例1~3)。これに対して80~200℃の範囲にあるブローエアをプレブローの時から用いて成形して成るポリエステル製延伸ブロー成形容器は、tanδピーク温度及びtanδピーク値が上述した範囲にあり、優れた耐熱性を有していた(実施例1~6)。
The above-described effects of the present invention are also apparent from the results of Experimental Example 2 described later.
That is, a polyester stretch blow molded container formed under the same stretching conditions as in the examples except that blow air that is not heated is used has a tan δ peak temperature of 118 ° C. or lower and a tan δ peak value of 0.25 or higher, Inferior in properties (Comparative Examples 1 to 3). In contrast, polyester stretch blow molded containers formed by using blow air in the range of 80 to 200 ° C. from the time of pre-blow have the tan δ peak temperature and the tan δ peak value in the above-mentioned ranges, and have excellent heat resistance. (Examples 1 to 6).
本発明のポリエステル製延伸ブロー容器の概略側面図を示す図である。It is a figure which shows the schematic side view of the stretch blow container made from polyester of this invention. 本発明の第二の態様のポリエステル製延伸ブロー容器の製法における二軸延伸ブロー成形工程における時間に対するブローエア温度とブロー圧の関係を示す図である。It is a figure which shows the relationship between the blow air temperature with respect to time in the biaxial stretch blow molding process in the manufacturing method of the polyester stretch blow container of the 2nd aspect of this invention, and a blow pressure. 実験例1で測定した各種ボトルについての動的粘弾性測定の結果を示す図である。It is a figure which shows the result of the dynamic viscoelasticity measurement about the various bottles measured in Experimental example 1. FIG. 実験例2で測定した各種ボトルについての動的粘弾性測定の結果を示す図である。It is a figure which shows the result of the dynamic viscoelasticity measurement about the various bottles measured in Experimental example 2. FIG.
(ポリエステル製延伸ブロー容器)
 本発明のポリエステル製延伸ブロー成形容器は、図1にその一例を示すように、全体として10で示されており、首部1と首部1に連なる胴部3とを有しており、胴部3の下端は底部5によって閉じられている。
 このような形態のポリエステル製ブロー容器10は、試験管形状のプリフォームを射出成形等によって成形し、このプリフォームをブロー成形し、さらに適宜の温度範囲で熱固定(ヒートセット)することにより製造されるが、詳細な製造方法については後述する。
 また、首部1は未延伸部分(ブロー成形に際して金型で固定されている部分)であり、その外面には容器に装着するキャップの形態に応じて適宜螺条1aが形成されており、螺条1aの下方には、このプリフォームや成形される容器の支持搬送等のためにサポートリング1bが設けられている。
 一方、胴部3(及び底部5)は、ブロー延伸される部分であり、上記プリフォームの首部1を固定した状態でのブロー流体の吹込みにより、延伸成形される部分である。
 また、高温充填の際に容器に減圧吸収性を付与するために、図1に示すように、底部5は上げ底形状として、底面に凹部が形成されている。
(Polyester stretch blow container)
As shown in FIG. 1, the polyester stretch blow molded container of the present invention is generally indicated by 10, has a neck portion 1 and a trunk portion 3 connected to the neck portion 1. Is closed by a bottom 5.
The polyester blow container 10 having such a configuration is manufactured by molding a test tube-shaped preform by injection molding or the like, blow-molding the preform, and then heat-setting (heat-setting) it in an appropriate temperature range. However, a detailed manufacturing method will be described later.
The neck portion 1 is an unstretched portion (portion fixed by a mold during blow molding), and a thread 1a is appropriately formed on the outer surface according to the form of the cap attached to the container. A support ring 1b is provided below 1a for supporting and conveying the preform and the container to be molded.
On the other hand, the body portion 3 (and the bottom portion 5) is a portion that is blow-drawn, and is a portion that is stretch-formed by blowing blow fluid in a state where the neck portion 1 of the preform is fixed.
Further, in order to provide the container with reduced pressure absorbability during high temperature filling, as shown in FIG. 1, the bottom portion 5 has a raised bottom shape, and a recess is formed on the bottom surface.
 上記のような形態を有する本発明のポリエステル製延伸ブロー容器10は、薄肉化されたものであり、延伸成形部分である胴部3の平均厚みが280μm以下、好適には270~200μm、より好適には250~200μmの範囲にあり、このような薄肉化によって軽量化も実現されている。
 このように薄肉化されているポリエステル製延伸ブロー容器10において、本発明では、前述したとおり、胴部軸方向中心部分Xでの動的粘弾性測定(DMS或いはDMAとも呼ばれる)において、第一の態様のポリエステル製延伸ブロー容器においては、tanδピーク値が0.23~0.29の範囲及び該ピーク値におけるtanδのピーク温度が111~118℃の範囲、或いは第二の態様のポリエステル製延伸ブロー容器においては、tanδピーク値が0.25未満、特に0.18~0.25未満、特に0.22~0.25未満の範囲にあり、該ピーク値におけるtanδのピーク温度が119℃以上、特に119~125℃の範囲にあることが重要である。
The polyester stretch blow container 10 of the present invention having the above-described form is thinned, and the average thickness of the body portion 3 which is a stretch-formed part is 280 μm or less, preferably 270 to 200 μm, more preferably. Is in the range of 250 to 200 μm, and weight reduction is realized by such thinning.
In the polyester stretch blow container 10 thus thinned, in the present invention, as described above, in the dynamic viscoelasticity measurement (also referred to as DMS or DMA) at the trunk axial direction central portion X, the first In the polyester stretch blow container of the aspect, the tan δ peak value is in the range of 0.23 to 0.29 and the tan δ peak temperature at the peak value is in the range of 111 to 118 ° C., or the polyester stretch blow of the second aspect. In the container, the tan δ peak value is less than 0.25, particularly 0.18 to less than 0.25, particularly 0.22 to less than 0.25, and the peak temperature of tan δ at the peak value is 119 ° C. or more, In particular, it is important to be in the range of 119 to 125 ° C.
 動的粘弾性測定は、応力又は歪みを測定することにより、試料の力学的性質を測定するものであり、tanδは損失正接と呼ばれるパラメータであり、損失弾性率/貯蔵弾性率の比で表される。損失弾性率は非晶部に起因する損失であり、貯蔵弾性率は結晶部に起因する弾性率であり、いずれも温度に依存する。このtanδがピークを示す温度は、見かけのガラス転移点を示すものである。
 従って、tanδのピーク値が小さいほど結晶部が多く存在しており、このピーク値を示すピーク温度が高いほどガラス転移点が高いことを示し、内容物の高温充填時などにおいて容器の変形を生じることなく、耐熱性が高いことを示している。
Dynamic viscoelasticity measurement measures the mechanical properties of a sample by measuring stress or strain, and tan δ is a parameter called loss tangent, expressed as a ratio of loss elastic modulus / storage elastic modulus. The The loss elastic modulus is a loss due to an amorphous part, and the storage elastic modulus is an elastic modulus due to a crystal part, both of which depend on temperature. The temperature at which tan δ exhibits a peak indicates an apparent glass transition point.
Therefore, the smaller the tan δ peak value, the more crystal parts are present, and the higher the peak temperature indicating this peak value, the higher the glass transition point, which causes deformation of the container at the time of high temperature filling of the contents. It shows that heat resistance is high.
 一方、本発明の第一の態様のポリエテル製延伸ブロー容器のように、tanδのピーク値やピーク温度を設定することは、内容物の高温充填時での熱変形(熱膨張)性を高めるものであるが、同時に高温充填以後の降温(室温への冷却)による充填前容器からの必要収縮量を減らすことができ、この熱変形(熱膨張)と収縮とのバランスにより、内容物の高温充填に際して生じる変形が有効に抑制されるものである。
 つまり、第一の態様のポリエステル製延伸ブロー容器では、内容物を高温充填したときにある程度熱変形し、膨張するようになっている。そして、従来公知の厚肉の耐熱性ポリエステル製ブロー容器(従来の耐熱性容器)は、厚肉であるため、本発明のブロー容器よりも充填時に熱膨張しない。しかし、充填後の冷却による減圧吸収量は同じであるため、充填前容器からの収縮量は、従来の耐熱性容器よりも本発明のブロー容器が小さい。よって、従来の耐熱性容器は減圧吸収の変形に耐えて、高温充填後の容器変形を抑制し、本発明の第一のポリエステル製延伸ブロー容器は、従来の耐熱容器とは異なり、熱膨張と減圧吸収のバランスを上手くとることで、高温充填後のボトルの変形を有効に抑制する容器となっている。
On the other hand, setting the peak value and peak temperature of tan δ, like the stretch blow container made of polyether of the first aspect of the present invention, improves the thermal deformation (thermal expansion) property at the time of high temperature filling of the contents. However, at the same time, the amount of shrinkage required from the pre-filling container due to the temperature drop after cooling at high temperature (cooling to room temperature) can be reduced, and the high temperature filling of the contents by the balance between this thermal deformation (thermal expansion) and shrinkage. The deformation that occurs at the time is effectively suppressed.
That is, in the polyester stretch blow container of the first aspect, when the contents are filled at a high temperature, it is thermally deformed to some extent and expands. And since the conventionally well-known thick heat-resistant polyester blow container (conventional heat-resistant container) is thick, it does not expand at the time of filling more than the blow container of this invention. However, since the amount of vacuum absorption by cooling after filling is the same, the amount of shrinkage from the container before filling is smaller in the blow container of the present invention than in the conventional heat-resistant container. Therefore, the conventional heat-resistant container can withstand deformation under reduced pressure and suppress deformation of the container after high-temperature filling, and the first polyester stretch blow container of the present invention is different from conventional heat-resistant containers in that it has thermal expansion. By properly balancing the vacuum absorption, it is a container that effectively suppresses deformation of the bottle after high temperature filling.
 また、本発明のような薄肉容器において、tanδのピーク値やピーク温度が前述した範囲外となっている場合には内容物の高温充填時の熱膨張及びその後の降温による収縮とのバランスが崩れてしまい、結果として高温充填に際して生じる変形を有効に防止することはできない。 Further, in the thin-walled container as in the present invention, when the peak value or peak temperature of tan δ is outside the above-mentioned range, the balance between the thermal expansion at the time of high temperature filling of the contents and the contraction due to the subsequent temperature drop is lost. As a result, the deformation that occurs during high temperature filling cannot be effectively prevented.
 なお、上記のようなtanδのピーク値やピーク温度は前記胴部軸方向中心部分Xを含むように適当な大きさに容器胴部を切り取って試料片を作成し、粘弾性スペクトロメータを用いて容器の軸方向から荷重を加えることにより測定される。 Note that the tan δ peak value and peak temperature described above are prepared by cutting the container body into an appropriate size so as to include the central portion X in the body axial direction, and using a viscoelastic spectrometer. It is measured by applying a load from the axial direction of the container.
 また、本発明の第一の態様のポリエステル製延伸ブロー容器では、内容物の高温充填時にある程度の熱変形を生じるため、このような熱変形を生じたときの形態安定性を確保するために、図1に示されているように底部5を上げ底形状として、底面に凹部を形成しておくことが好適である。これにより、この容器が熱変形(膨張)したときに底部5の中心部が下がり、熱膨張による応力を緩和することができ、且つ容器を正立状態に保持しておくことができる。 In addition, in the stretch blow container made of polyester of the first aspect of the present invention, a certain amount of thermal deformation occurs during high-temperature filling of the contents, so as to ensure form stability when such thermal deformation occurs. As shown in FIG. 1, it is preferable that the bottom portion 5 is raised to have a bottom shape and a recess is formed on the bottom surface. Thereby, when this container is thermally deformed (expanded), the central portion of the bottom portion 5 is lowered, stress due to thermal expansion can be relieved, and the container can be held in an upright state.
 上述した本発明の延伸ブロー容器は、射出成形或いは圧縮成形によりプリフォームを成形可能なポリエステルにより成形されるが、このようなポリエステルとしては、通常、テレフタル酸とエチレングリコールとから形成されるポリエチレンテレフタレート(PET)が好適に使用される。
 このようなポリエチレンテレフタレートは、通常、ガラス転移点(Tg)が50~90℃、特に55~80℃、融点(Tm)が200~275℃、特に220~270℃の範囲にある。
The stretch blow container of the present invention described above is formed of a polyester capable of forming a preform by injection molding or compression molding. As such a polyester, polyethylene terephthalate usually formed from terephthalic acid and ethylene glycol is used. (PET) is preferably used.
Such polyethylene terephthalate usually has a glass transition point (Tg) of 50 to 90 ° C., particularly 55 to 80 ° C., and a melting point (Tm) of 200 to 275 ° C., particularly 220 to 270 ° C.
 また、エステル反復単位中、エチレンテレフタレート単位が70モル%以上、特に80モル%以上を占めるものであることを条件として、テレフタル酸以外の二塩基酸やエチレングリコール以外のジオール単位から誘導されるエステル単位を含む共重合ポリエステルも好適に使用することができる。このようなテレフタル酸以外の二塩基酸としては、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸;シクロヘキサンジカルボン酸等の脂環族ジカルボン酸;コハク酸、アジピン酸、セバチン酸、ドデカンジオン酸等の脂肪族ジカルボン酸;の1種又は2種以上の組合せが挙げられ、エチレングリコール以外のジオール成分としては、プロピレングリコール、1,4-ブタンジオール、ジエチレングリコール、1,6-ヘキシレングリコール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物等の1種又は2種以上が挙げられる。 In addition, an ester derived from a dibasic acid other than terephthalic acid or a diol unit other than ethylene glycol, provided that the ethylene terephthalate unit occupies 70 mol% or more, particularly 80 mol% or more in the ester repeating unit. Copolyesters containing units can also be suitably used. Examples of such dibasic acids other than terephthalic acid include aromatic dicarboxylic acids such as isophthalic acid, phthalic acid, and naphthalenedicarboxylic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; succinic acid, adipic acid, sebacic acid, and dodecane. Examples of the diol component other than ethylene glycol include propylene glycol, 1,4-butanediol, diethylene glycol, and 1,6-hexylene glycol. , Cyclohexanedimethanol, and one or more of bisphenol A ethylene oxide adducts.
 このようなポリエステルは、少なくともフィルムを形成するに足る分子量を有するべきであり、通常、その固有粘度(I.V.)は、0.6~1.4dL/g、特に0.63~1.3dL/gの範囲にある射出グレードのものが使用される。 Such a polyester should have at least a molecular weight sufficient to form a film, and usually has an intrinsic viscosity (IV) of 0.6 to 1.4 dL / g, particularly 0.63 to 1. An injection grade in the range of 3 dL / g is used.
 さらに、上記のポリエステルには、上述した動的粘弾性特性が維持される限りにおいて、それ自体公知の配合剤(酸化防止剤、滑剤等)が配合されていてもよいし、また、容器壁を係るポリエステルを内外層とし、中間層として酸素バリア層や酸素吸収層が接着剤層を介して設けられた多層構造とすることもできる。 Furthermore, as long as the above-mentioned dynamic viscoelastic properties are maintained, the above-mentioned polyester may be blended with known compounding agents (antioxidants, lubricants, etc.) per se. Such a polyester may be used as an inner and outer layer, and an oxygen barrier layer and an oxygen absorption layer may be provided as an intermediate layer through an adhesive layer.
 尚、上記の多層構造での酸素バリア層は、例えばエチレン-ビニルアルコール共重合体やポリアミドなどの酸素バリア性樹脂により形成されるものであり、その酸素バリア性が損なわれない限りにおいて、酸素バリア性樹脂に他の熱可塑性樹脂がブレンドされていてもよい。
 また、酸素吸収層は、日本国特開2002-240813号等に記載されているように、酸化性重合体及び遷移金属系触媒を含む層であり、遷移金属系触媒の作用により酸化性重合体が酸素による酸化を受け、これにより、酸素を吸収して酸素の透過を遮断する。このような酸化性重合体及び遷移金属系触媒は、上記の日本国特開2002-240813号等に詳細に説明されているので、その詳細は省略するが、酸化性重合体の代表的な例は、第3級炭素原子を有するオレフィン系樹脂(例えばポリプロピレンやポリブテン-1等、或いはこれらの共重合体)、熱可塑性ポリエステル若しくは脂肪族ポリアミド;キシリレン基含有ポリアミド樹脂;エチレン系不飽和基含有重合体(例えばブタジエン等のポリエンから誘導される重合体);などである。また、遷移金属系触媒としては、鉄、コバルト、ニッケル等の遷移金属の無機塩、有機酸塩或いは錯塩が代表的である。
 さらに、各層の接着のために使用される接着剤樹脂はそれ自体公知であり、例えば、マレイン酸、イタコン酸、フマル酸などのカルボン酸もしくはその無水物、アミド、エステルなどでグラフト変性されたオレフィン樹脂;エチレン-アクリル酸共重合体;イオン架橋オレフィン系共重合体;エチレン-酢酸ビニル共重合体;などが接着性樹脂として使用される。
 上述した各層の厚みは、ブロー成形後の容器壁の胴部の平均厚みが前述した範囲(280μm以下)となる限りにおいて、適宜の厚みに設定されればよい。
 さらに、ブロー容器を成形する際に発生するスクラップをポリエステルのバージンの樹脂とブレンドとしたリグラインド層を設けることも可能である。
The oxygen barrier layer having the multilayer structure is formed of an oxygen barrier resin such as an ethylene-vinyl alcohol copolymer or polyamide, so long as the oxygen barrier property is not impaired. The thermoplastic resin may be blended with other thermoplastic resins.
The oxygen absorbing layer is a layer containing an oxidizing polymer and a transition metal catalyst, as described in Japanese Patent Application Laid-Open No. 2002-240813, etc., and the oxidizing polymer is activated by the action of the transition metal catalyst. Is oxidized by oxygen, which absorbs oxygen and blocks the permeation of oxygen. Such an oxidizable polymer and a transition metal catalyst are described in detail in the above Japanese Patent Application Laid-Open No. 2002-240813 and the like. Is an olefin resin having a tertiary carbon atom (for example, polypropylene or polybutene-1, or a copolymer thereof), a thermoplastic polyester or an aliphatic polyamide; a xylylene group-containing polyamide resin; an ethylenically unsaturated group-containing polymer. A polymer (eg, a polymer derived from a polyene such as butadiene); Moreover, as a transition metal type catalyst, the inorganic salt, organic acid salt, or complex salt of transition metals, such as iron, cobalt, and nickel, are typical.
Further, the adhesive resin used for adhesion of each layer is known per se, for example, olefin graft-modified with carboxylic acids such as maleic acid, itaconic acid, fumaric acid or anhydrides thereof, amides, esters, etc. Resins; ethylene-acrylic acid copolymers; ion-crosslinked olefin copolymers; ethylene-vinyl acetate copolymers; and the like are used as adhesive resins.
The thickness of each layer described above may be set to an appropriate thickness as long as the average thickness of the body portion of the container wall after blow molding is in the above-described range (280 μm or less).
Furthermore, it is also possible to provide a regrind layer in which scrap generated when molding a blow container is blended with a polyester virgin resin.
(ポリエステル製延伸ブロー容器の製造方法)
 本発明のポリエステル性延伸ブロー容器は、射出成形等によって成形されたプリフォームを使用し、延伸ブロー成形及び熱固定の工程を経て、前述した胴部の平均厚みが280μm以下となるように延伸薄肉化することにより製造されるが、前述した動的粘弾性特性を満たすように各種条件を設定する必要がある。
 例えば、延伸倍率が高いとtanδのピーク値は小さく且つピーク温度が高くなる傾向にあり、ブローエアの温度が高いとtanδのピーク値は小さく且つピーク温度が高くなる傾向にあり、熱固定温度が高いとtanδのピーク値は小さく且つピーク温度が高くなる傾向があるので、これを利用して動的粘弾性特性(tanδのピーク値及びピーク温度)が所定の範囲となるように予めラボ実験を行い、成形されたプリフォームの延伸成形部(容器の胴部に対応)の厚みに応じて各種条件を設定すればよい。
(Production method of stretch blow container made of polyester)
The polyester stretch blow container of the present invention uses a preform molded by injection molding or the like, and is subjected to stretch blow molding and heat setting, so that the above-mentioned average thickness of the body portion is 280 μm or less. However, it is necessary to set various conditions so as to satisfy the dynamic viscoelastic properties described above.
For example, when the draw ratio is high, the tan δ peak value tends to be small and the peak temperature tends to be high, and when the blow air temperature is high, the tan δ peak value tends to be small and the peak temperature tends to be high, and the heat setting temperature is high. And the peak value of tan δ tend to be small and the peak temperature tends to be high. By using this, laboratory experiments are performed in advance so that the dynamic viscoelastic properties (the peak value and the peak temperature of tan δ) are within a predetermined range. Various conditions may be set according to the thickness of the stretch-formed part (corresponding to the body part of the container) of the molded preform.
[プリフォーム]
 本発明のポリエステル製延伸ブロー容器の成形に用いるプリフォームは、上述したポリエステルを従来公知の方法、例えば射出成形又は圧縮成形等により単層或いは多層構造に成形することができ、成形されたプリフォームの首部は、加熱して熱結晶化しておくことが耐熱性の点から望ましい。
[preform]
The preform used for molding the stretch blow container made of polyester according to the present invention can be formed into a single layer or a multilayer structure by molding the above-mentioned polyester by a conventionally known method such as injection molding or compression molding. From the viewpoint of heat resistance, it is desirable that the neck portion of this be heated and crystallized.
[プリフォームの加熱工程]
 成形されたプリフォームは、延伸ブロー成形に賦される前に延伸温度に加熱されるが、本発明の第一のポリエステル製延伸ブロー容器においては、プリフォームの外面温度が100~140℃の範囲、特に120~135℃、100~130℃の範囲にあるように加熱することが望ましく、本発明の第二のポリエステル製延伸ブロー容器においては、プリフォームの外面温度が100~130℃の範囲にあるように加熱することが望ましい。プリフォームの外面温度が140℃よりも高い場合には、プリフォームが熱結晶化により白化するおそれがあり、一方上記範囲よりも延伸温度が低い場合には、次いで行う二軸延伸ブロー成形工程において充分に延伸できないおそれがある。
 プリフォームの加熱方法は、従来公知の方法によって行うことができ、一般的には、常温のプリフォームを赤外線ヒータ及び内面加熱ヒータを組み合わせて本加熱を行い、プリフォームの搬送に伴う冷却を考慮してブロー成形時に上記温度範囲となるように加熱する。
[Preform heating process]
The molded preform is heated to a stretching temperature before being subjected to stretch blow molding. In the first polyester stretch blow container of the present invention, the outer surface temperature of the preform is in the range of 100 to 140 ° C. In particular, it is desirable to heat so that the temperature is in the range of 120 to 135 ° C and 100 to 130 ° C. In the second polyester stretch blow container of the present invention, the outer surface temperature of the preform is in the range of 100 to 130 ° C. It is desirable to heat as is. When the outer surface temperature of the preform is higher than 140 ° C., the preform may be whitened by thermal crystallization. On the other hand, when the stretching temperature is lower than the above range, in the subsequent biaxial stretch blow molding step There is a possibility that the film cannot be sufficiently stretched.
The preform can be heated by a conventionally known method. In general, the preform is heated at a normal temperature in combination with an infrared heater and an inner surface heater, and cooling due to the conveyance of the preform is taken into consideration. And it heats so that it may become the said temperature range at the time of blow molding.
[二軸延伸ブロー成形工程]
 二軸延伸ブロー成形工程においては、上述した加熱条件により均一且つ高温に加熱されたプリフォームが首部を固定されて、ブロー金型内に入れられた状態から、プリフォームをストレッチロッドによってその軸方向(縦方向)に延伸すると共に、ブローエアを流入することによって周方向(径方向)に延伸し、プリフォームは金型表面に接触して最終成形品の形状に賦形される。
 尚、ブロー成形の手段としては、一旦中間形状の成形体をブロー成形し、次いでこの中間形状の成形体を加熱した後、二次ブロー成形して最終成形体とする二段ブローが知られているが、本発明の第一のブロー容器を成形するには、このような二段ブローは適当でなく、通常の一段ブローが適用される。二段ブローにより容器を成形すると、ブロー延伸による配向結晶化が促進される結果、tanδのピーク値及びピーク温度を前述した範囲内に調節することが困難となってしまうからである。
[Biaxial stretch blow molding process]
In the biaxial stretch blow molding process, a preform heated to the uniform and high temperature under the above-described heating conditions is fixed in the neck and is placed in a blow mold. In addition to stretching in the (longitudinal direction), it is stretched in the circumferential direction (radial direction) by flowing blow air, and the preform comes into contact with the mold surface and is shaped into the shape of the final molded product.
As a means for blow molding, a two-stage blow is known in which an intermediate-shaped molded body is once blow-molded, and then this intermediate-shaped molded body is heated and then subjected to secondary blow molding to obtain a final molded body. However, in order to form the first blow container of the present invention, such a two-stage blow is not suitable, and a normal one-stage blow is applied. This is because, when the container is formed by two-stage blowing, orientation crystallization by blow stretching is promoted, so that it becomes difficult to adjust the peak value and peak temperature of tan δ within the above-described range.
 本発明の第一の態様のポリエステル製延伸ブロー容器を成形する場合には、ブローエアについて特に限定はないが、第二のポリエステル製延伸ブロー容器を成形する場合には、80~200℃、特に145~200℃の温度に調整されたブローエアを使用することが好ましい。この温度範囲にあるブローエアを使用する限り、ストレッチロッドによる延伸を終了した後もブローエアの流量を変化させずにそのままの流量で最終成形品までブロー成形を行うこともできるが、好適には、ストレッチロッドによる延伸を終了するまでは、流量の少ないプレブローを行い、ストレッチロッドによる延伸が終了した時点で、上記プレブローよりも流量の多いメインブローを行うことが望ましい。 When the polyester stretch blow container of the first aspect of the present invention is molded, the blow air is not particularly limited. However, when the second polyester stretch blow container is molded, it is 80 to 200 ° C., particularly 145. It is preferable to use blow air adjusted to a temperature of ˜200 ° C. As long as blow air in this temperature range is used, it is possible to perform blow molding to the final molded product at the same flow rate without changing the flow rate of blow air even after stretching by the stretch rod. It is desirable to perform pre-blow with a small flow rate until the end of stretching with the rod, and to perform main blow with a greater flow rate than the pre-blow when stretching with the stretch rod is completed.
 図2は、本発明の第二の態様のポリエステル製延伸ブロー容器を成形するための二軸延伸ブロー成形工程の一例における経時に対するブローエアの温度及び圧力の関係を示す図である。この図2に示すブロー工程は大まかに言って、ブローエアの流入量が少なく、ブロー圧力が0.5~2MPaの範囲にあるプレブロー工程(0.02~0.6秒)、ブロー圧力が2~4MPaの範囲にあるメインブロー工程(0.6~3秒)、メインブロー終了後冷却エアを流入して容器を冷却するクーリング工程からなっている。
 本発明においては、プレブローの段階においても80~200℃の温度に調整されたブローエアが流入されており、これにより延伸温度に加熱されたプリフォームの温度を低下させることがなく、ストレッチロッドによる軸方向の延伸を均一に且つ効率よく行うことができる。またメインブローにおいても高温のブローエアを用いていることから、成形されつつある容器内面の歪を緩和することができ、後述する熱固定による外面からの加熱と相俟って、更に耐熱性を向上させることが可能になる。更に高温のブローエアを維持したまま比較的高い圧力で流入することから、延伸成形のサイクルを耐熱性のために長くする必要がなく、容器の自己発熱によっても耐熱性が向上されている。
FIG. 2 is a diagram showing the relationship between the temperature and pressure of blow air over time in an example of a biaxial stretch blow molding process for molding the polyester stretch blow container of the second aspect of the present invention. In general, the blow process shown in FIG. 2 is a pre-blow process (0.02 to 0.6 seconds) in which the flow rate of blow air is small and the blow pressure is in the range of 0.5 to 2 MPa. It consists of a main blow step (0.6 to 3 seconds) in the range of 4 MPa, and a cooling step for cooling the container by injecting cooling air after the completion of the main blow.
In the present invention, blow air adjusted to a temperature of 80 to 200 ° C. is introduced even at the pre-blow stage, so that the temperature of the preform heated to the stretching temperature is not lowered, and the shaft by the stretch rod is used. Direction stretching can be performed uniformly and efficiently. In addition, since high-temperature blow air is used in the main blow, distortion of the inner surface of the container being molded can be alleviated, and heat resistance is further improved in combination with heating from the outer surface by heat fixation described later. It becomes possible to make it. Furthermore, since it flows in at a relatively high pressure while maintaining high-temperature blown air, it is not necessary to lengthen the stretch molding cycle for heat resistance, and the heat resistance is also improved by self-heating of the container.
 尚、二軸延伸ブロー成形工程における延伸倍率は、縦延伸倍率が1.8~3.4倍、周方向倍率が2.8~3.8倍であり、面積倍率が4~12倍の範囲にあることが好ましい。これにより胴部の平均肉厚が280μm以下に薄肉化され、軽量化された最終成形品を得ることが可能となる。 The stretch ratio in the biaxial stretch blow molding step is a range of 1.8 to 3.4 times in the longitudinal stretch ratio, 2.8 to 3.8 times in the circumferential direction, and 4 to 12 times in the area ratio. It is preferable that it exists in. Thereby, the average thickness of the body portion is reduced to 280 μm or less, and it becomes possible to obtain a final molded product that is reduced in weight.
[熱固定工程]
 ブロー成形後の容器は、熱固定に賦された後、冷却されて最終成形品として完成する。
 熱固定は、ブロー成形に使用する金型を用いてブロー成形と同時に行われるワンモールド法や、ブロー成形された容器をブロー金型から取り出し、熱固定専用の金型で再加熱するツーモールド法が知られているが、本発明の第一の態様のブロー容器を製造するには、短時間で成形するワンモールド法が好適である。ツーモールド法では、ブロー成形体が一旦冷却された後に加熱するため、加熱時間が長くなってしまい、本発明の容器を成形する加熱温度の設定が困難となるからである。
[Heat setting process]
The container after blow molding is subjected to heat fixation and then cooled to complete the final molded product.
The heat setting is a one-mold method that is performed simultaneously with blow molding using a mold used for blow molding, or a two-mold method in which a blow-molded container is taken out of the blow mold and reheated with a dedicated mold for heat setting. However, in order to manufacture the blow container according to the first aspect of the present invention, the one mold method of forming in a short time is suitable. In the two-mold method, since the blow molded body is heated after being cooled once, the heating time becomes long, and it becomes difficult to set the heating temperature for molding the container of the present invention.
 ワンモールド法による熱固定において、加熱温度は前述した延伸温度(プリフォーム温度)や延伸倍率に応じて所定の動的粘弾性特性(tanδ)を満足するように設定されるが、本発明の第一の態様のポリエステル製延伸ブロー容器を得る場合には、この熱固定温度は130℃以上、150℃未満であり、熱固定時間は数秒でよい。例えば、通常の厚肉の耐熱ブロー容器を製造する際に使用される熱固定温度は150℃以上であり、本発明で採用している熱固定温度と比較して高い範囲にある。
 一方、本発明の第二の態様のポリエステル製延伸ブロー容器を得る場合には、第一の態様の延伸ブロー容器に比して高温でもよく、この場合には熱固定温度は130~160℃の範囲であり、熱固定時間は数秒でよい。
In the heat setting by the one mold method, the heating temperature is set so as to satisfy a predetermined dynamic viscoelastic property (tan δ) according to the stretching temperature (preform temperature) and the stretching ratio described above. In the case of obtaining a stretch blow container made of polyester of one embodiment, the heat setting temperature is 130 ° C. or more and less than 150 ° C., and the heat setting time may be several seconds. For example, the heat setting temperature used when manufacturing a normal thick heat-resistant blow container is 150 ° C. or higher, which is higher than the heat setting temperature employed in the present invention.
On the other hand, when obtaining the polyester stretch blow container of the second aspect of the present invention, the temperature may be higher than that of the stretch blow container of the first aspect. In this case, the heat setting temperature is 130 to 160 ° C. The heat setting time may be several seconds.
 このように成形された本発明のポリエステル製延伸ブロー容器は、前述したとおり、胴部中心部分Xでの密度法による結晶化度が29~38%の範囲にあり、特に第一の態様においては結晶化度が30~35%の範囲、第二の態様においては結晶化度が35~38%の範囲にあるとき、優れた耐熱性を有している。
 また本発明のポリエステル製延伸ブロー容器は、非常に薄肉であり、例えば、満注容積が500mL容積のボトルで22g以下の重量、満注容積が2L容積のボトルで49g以下の重量であり、通常の市販500mLペットボトルの重量が28g以上、通常の市販2Lペットボトルの重量が65g以上であることを考えると、本発明では、薄肉化によりかなりの軽量化が実現されている。
The polyester stretch blow container of the present invention thus formed has a crystallinity of 29 to 38% by the density method at the body center portion X as described above, and particularly in the first embodiment. Excellent heat resistance is obtained when the crystallinity is in the range of 30 to 35%, and in the second embodiment, the crystallinity is in the range of 35 to 38%.
The stretch blow container made of polyester of the present invention is very thin, for example, a bottle having a full volume of 500 mL and a weight of 22 g or less, a bottle having a full volume of 2 L and a weight of 49 g or less, Considering that the weight of a commercially available 500 mL PET bottle is 28 g or more and the weight of a normal commercially available 2 L PET bottle is 65 g or more, in the present invention, a considerable weight reduction is realized by thinning.
 本発明を次の実験例により説明する。
 なお、以下の実験例で採用している各種測定法は以下の通りである。
The invention is illustrated by the following experimental example.
Various measurement methods employed in the following experimental examples are as follows.
(1)動的粘弾性測定におけるtanδ
 図1を参照して、ボトル胴部の中心Xより、長辺方向がボトル高さ方向となるように5mm×40mmの試験片Yを切り出し、粘弾性スペクトロメータ(EXSTAR6000DMS:セイコーインスツルメンツ(株))を用いて測定を行った。測定条件を以下に示す。得られたtanδ曲線(温度を横軸、tanδ値を縦軸としてプロットしたもの)から、tanδの極大値(tanδ値)及びtanδの極大温度(ピーク温度)を導出した。
    測定モード:引っ張り正弦波モード
    試験片標点間距離:20mm
    振動数:1Hz
    最小張力:100mN
    昇温プロファイル:25℃から210℃まで2℃/分にて昇温
(2)変化率の測定
 ボトルを85℃オーブン中で5分間保持させ、これを室温(23℃)に冷却して、オーブン中で加熱する前と冷却後の容器の容積を測定し、加熱前容積を基準としての該容器の変化率を求めた。
(3)平均肉厚測定
 ボトルの周方向6点について縦方向20mmごとに肉厚を測定し、その平均を求めた。
(3)耐熱性測定
 空のボトルに、水を87℃に加熱して充填を行い、77℃5分シャワーをかけた後、自然冷却を行った。その後、ボトルの変形を目視で観察した。
 変形量小:◎  変形量中:○  変形量大:△  変形量が製品化不可レベル:×
(1) Tan δ in dynamic viscoelasticity measurement
Referring to FIG. 1, a 5 mm × 40 mm test piece Y is cut out from the center X of the bottle body so that the long side direction is the bottle height direction, and a viscoelastic spectrometer (EXSTAR6000DMS: Seiko Instruments Inc.) Measurement was performed using The measurement conditions are shown below. From the obtained tan δ curve (temperature plotted on the horizontal axis and tan δ value on the vertical axis), the maximum value of tan δ (tan δ value) and the maximum temperature of tan δ (peak temperature) were derived.
Measurement mode: Tensile sine wave mode Distance between test specimens: 20 mm
Frequency: 1Hz
Minimum tension: 100mN
Temperature rise profile: Temperature rise from 25 ° C. to 210 ° C. at 2 ° C./min (2) Measurement of rate of change The bottle is held in an 85 ° C. oven for 5 minutes and cooled to room temperature (23 ° C.). The volume of the container before heating and after cooling was measured, and the rate of change of the container with respect to the volume before heating was determined.
(3) Average thickness measurement The thickness was measured every 20 mm in the longitudinal direction at 6 points in the circumferential direction of the bottle, and the average was obtained.
(3) Measurement of heat resistance An empty bottle was filled with water heated to 87 ° C., showered at 77 ° C. for 5 minutes, and then naturally cooled. Thereafter, the deformation of the bottle was visually observed.
Small deformation amount: ◎ Medium deformation amount: ○ Large deformation amount: △ Deformation amount cannot be commercialized Level: ×
(実験例1)
 表1に示した条件で成形した下記ボトルについて、動的粘弾性を測定した。結果を図3に示す。合わせて、本発明ボトルの結晶化度も図3内に示す。
(Experimental example 1)
The following bottles molded under the conditions shown in Table 1 were measured for dynamic viscoelasticity. The results are shown in FIG. In addition, the crystallinity of the bottle of the present invention is also shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 尚、図3において、■、〇、●及び△は、上記表1中の次のボトルを示す。
  ■:本発明ボトル(高温充填用ボトル)
  〇:厚肉耐熱ボトル(従来の高温充填用ボトル)
  ●:2段ブローボトル(2回ブロー成形した高温充填用ボトル)
  △:耐熱圧ボトル(充填後加温殺菌する炭酸飲料用ボトル、高温充填対応不可)
In FIG. 3, ▪, ○, ●, and Δ indicate the next bottles in Table 1 above.
■: Invention bottle (bottle for high temperature filling)
○: Thick heat-resistant bottle (conventional high-temperature filling bottle)
●: Two-stage blow bottle (high-temperature filling bottle blow-molded twice)
Δ: heat-resistant pressure bottle (bottle for carbonated beverages to be heat sterilized after filling, not compatible with high temperature filling)
 また、500mlの本発明ボトルと厚肉耐熱ボトルについて変化率の測定を行った。結果を表2に示す。尚、本発明ボトル用PFを厚肉耐熱ボトルと同条件で成形しようとすると、熱変形してボトルとならないため、薄肉で動的粘弾性が本発明の範囲以外の耐熱ボトルは成形できなかった。 Moreover, the change rate was measured for the 500 ml bottle of the present invention and the thick heat-resistant bottle. The results are shown in Table 2. In addition, when trying to mold the PF for a bottle of the present invention under the same conditions as a thick heat-resistant bottle, the bottle does not deform due to heat, so that a heat-resistant bottle with a thin wall and dynamic viscoelasticity outside the scope of the present invention could not be molded. .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本実験例より、本発明の第一の態様のボトルは、動的粘弾性測定よりtanδピーク値が0.23~0.29、該ピーク値におけるtanδのピーク温度が111~118℃の範囲であり、従来の厚肉耐熱ボトルよりも、熱収縮が起きやすいボトルであることが確認できた。この結果より、従来の厚肉耐熱ボトルよりも本発明ボトルは変化率が大きいため、80℃以上の高温充填後のボトルの熱膨張は本発明ボトルの方が大きくなり、ボトルの冷却後の減圧による変化量は同じ容量のボトルであれば同一であることから、充填前ボトルからの減圧による変形量は本発明ボトルが少ないことがわかる。よって、本発明のボトルは、軽量化により薄肉化されたボトルでありながら、高温充填、その後の降温といった熱履歴を受けてもボトルの変形を有効に防止することができる。 From this experimental example, the bottle of the first aspect of the present invention has a tan δ peak value of 0.23 to 0.29 and a tan δ peak temperature in the range of 111 to 118 ° C. from dynamic viscoelasticity measurement. Yes, it was confirmed that the bottle is more susceptible to heat shrinkage than the conventional thick heat-resistant bottle. As a result, since the rate of change of the bottle of the present invention is larger than that of the conventional thick heat-resistant bottle, the thermal expansion of the bottle after high-temperature filling at 80 ° C. or higher is greater in the bottle of the present invention, and the reduced pressure after cooling the bottle Since the amount of change due to is the same for bottles of the same capacity, it can be seen that the amount of deformation due to decompression from the bottle before filling is small for the bottle of the present invention. Therefore, the bottle of the present invention can effectively prevent deformation of the bottle even if it is subjected to a heat history such as high temperature filling and subsequent temperature drop, although the bottle is thinned by weight reduction.
(実験例2)
 表3に示したボトルサイズ、成形条件で成形した各ボトル(実施例、比較例)の動的粘弾性、胴部平均肉厚、耐熱性を測定した。結果を表3,図4に示す。
(Experimental example 2)
The dynamic viscoelasticity, trunk average thickness, and heat resistance of each bottle (Example, Comparative Example) molded under the bottle size and molding conditions shown in Table 3 were measured. The results are shown in Table 3 and FIG.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 結果から分かるように、tanδピーク値が0.25未満の範囲、tanδピーク温度119℃以上の範囲にあると、耐熱性が良好であり、その値から離れると耐熱性が低下することが確認できた。特に、ボトルの平均肉厚が250μm以下であると、ブローエアの温度が145℃以上あることがより重要で有る。また、比較例4からも分かるように、平均肉厚が280μmより厚いボトルでは、薄肉化されたボトルのような耐熱性低下は起きないことが確認できる。 As can be seen from the results, the heat resistance is good when the tan δ peak value is in the range of less than 0.25 and the tan δ peak temperature is 119 ° C. or higher, and the heat resistance decreases when the value is away from the value. It was. In particular, when the average wall thickness of the bottle is 250 μm or less, it is more important that the temperature of the blow air is 145 ° C. or more. Further, as can be seen from Comparative Example 4, it can be confirmed that a bottle having an average wall thickness greater than 280 μm does not cause a decrease in heat resistance unlike a thinned bottle.
 本発明のポリエステル製延伸ブロー容器は、内容物を高温充填する際の変形が有効に抑制されていることから、80℃以上、特に83~87℃の温度で高温充填される非炭酸飲料、例えば各種果汁や水、或いは各種の薬液の容器として好適に適用される。
 また280μm以下に薄肉化され、軽量化されていることから、省資源及び廃棄物の減量化も可能であり、大量生産される汎用品に好適に適用できる。
Since the polyester stretch blow container of the present invention effectively suppresses deformation when the contents are filled at high temperature, a non-carbonated beverage that is filled at a high temperature of 80 ° C. or more, particularly 83 to 87 ° C., for example, It is suitably applied as a container for various fruit juices, water, or various chemical solutions.
Further, since it is thinned to 280 μm or less and lightened, it is possible to save resources and reduce waste, and it can be suitably applied to general-purpose products that are mass-produced.
1:首部、3:胴部、5:底部、10:ブロー容器。 1: neck, 3: body, 5: bottom, 10: blow container.

Claims (6)

  1.  胴部平均厚みが280μm以下のポリエステル製延伸ブロー容器であって、前記胴部中心部分の軸方向について測定した動的粘弾性測定において、tanδピーク値が0.23~0.29、該ピーク値におけるtanδのピーク温度が111~118℃であることを特徴とするポリエステル製延伸ブロー容器。 A polyester stretch blow container having an average body thickness of 280 μm or less, wherein the tan δ peak value is 0.23 to 0.29 in the dynamic viscoelasticity measurement measured in the axial direction of the center portion of the body portion. A polyester stretch blow container having a peak temperature of tan δ of 111 to 118 ° C.
  2.  胴部平均厚みが280μm以下のポリエステル製延伸ブロー容器であって、前記胴部中心部分の軸方向について測定した動的粘弾性測定において、tanδピーク値が0.25未満であり、該ピーク値におけるtanδのピーク温度が119℃以上であることを特徴とするポリエステル製延伸ブロー容器。 It is a polyester stretch blow container having an average trunk thickness of 280 μm or less. In the dynamic viscoelasticity measurement measured in the axial direction of the central part of the trunk, the tan δ peak value is less than 0.25. A polyester stretch blow container having a peak temperature of tan δ of 119 ° C. or higher.
  3.  前記胴部中心部分について測定した密度法による結晶化度が29~38%の範囲にある請求項1又は2記載のポリエステル製延伸ブロー容器。 3. The polyester stretch blow container according to claim 1 or 2, wherein the crystallinity measured by the density method measured for the central portion of the trunk is in the range of 29 to 38%.
  4.  高温充填用に使用される請求項1~3の何れかに記載のポリエステル製延伸ブロー容器。 The polyester stretch blow container according to any one of claims 1 to 3, which is used for high temperature filling.
  5.  延伸温度に加熱されたポリエステル製プリフォームをストレッチロッドによる延伸とエアブローによる延伸により延伸した後、熱固定して成るポリエステル製延伸ブロー容器の製造方法において、
     前記延伸温度が100~130℃の範囲にあり、前記エアブローが80~200℃の範囲の温度に調整されたブローエアを用いるものであり、前記熱固定における金型温度が130~160℃の範囲にあることを特徴とする請求項2記載のポリエステル製延伸ブロー成形容器の製造方法。
    In a method for producing a polyester stretch blow container, which is obtained by stretching a polyester preform heated to a stretch temperature by stretching by a stretch rod and stretching by air blow, followed by heat setting.
    The stretching temperature is in the range of 100 to 130 ° C., the air blow is performed using blow air adjusted to a temperature in the range of 80 to 200 ° C., and the mold temperature in the heat setting is in the range of 130 to 160 ° C. The method for producing a stretch blow molded container made of polyester according to claim 2.
  6.  前記エアブローが、ストレッチロッドによる延伸と同時に行うプレブローと、ストレッチロッドによる延伸終了と同時に行うメインブローから成り、プレブロー及びメインブローの両方において80~200℃の範囲の温度に調整されたブローエアが使用されている請求項5記載のポリエステル製延伸ブロー成形容器の製造方法。 The air blow consists of a pre-blow performed simultaneously with stretching by the stretch rod and a main blow performed simultaneously with the completion of stretching by the stretch rod. Blow air adjusted to a temperature in the range of 80 to 200 ° C. is used in both the pre-blow and the main blow. The manufacturing method of the stretch blow molding container made from polyester of Claim 5 which has.
PCT/JP2017/023551 2016-06-28 2017-06-27 Polyester stretch blow-molded container and manufacturing method therefor WO2018003790A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/313,779 US11040476B2 (en) 2016-06-28 2017-06-27 Stretch-blow formed polyester container and method of producing the same
CN201780040407.9A CN109415134B (en) 2016-06-28 2017-06-27 Polyester stretch blow molded container and method for producing same
EP17820144.8A EP3476756B1 (en) 2016-06-28 2017-06-27 Polyester stretch blow-molded container and manufacturing method therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016127784 2016-06-28
JP2016-127784 2016-06-28
JP2016-137377 2016-07-12
JP2016137377A JP6862698B2 (en) 2016-06-28 2016-07-12 Polyester blow container
JP2016-225662 2016-11-21
JP2016225662A JP2018083630A (en) 2016-11-21 2016-11-21 Polyester stretch blow molding vessel and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2018003790A1 true WO2018003790A1 (en) 2018-01-04

Family

ID=60785416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023551 WO2018003790A1 (en) 2016-06-28 2017-06-27 Polyester stretch blow-molded container and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2018003790A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137058A (en) * 2004-11-11 2006-06-01 Toyo Seikan Kaisha Ltd Manufacturing method of plastic bottle container
WO2008044793A1 (en) * 2006-10-12 2008-04-17 Toyo Seikan Kaisha, Ltd. Biaxially stretched thin-walled polyester bottle
WO2008123401A1 (en) * 2007-03-28 2008-10-16 Toyo Seikan Kaisha, Ltd. Biaxially stretched blow-molded container and process for producing the same
JP2011195188A (en) * 2010-03-23 2011-10-06 Toyo Seikan Kaisha Ltd Heat-resistant polyester orientation-molded container
JP2012012487A (en) * 2010-06-30 2012-01-19 Adeka Corp Method of manufacturing plastic bottle
JP2014008636A (en) * 2012-06-28 2014-01-20 Yoshino Kogyosho Co Ltd Method for positively pressurizing vessel inside and filling vessel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137058A (en) * 2004-11-11 2006-06-01 Toyo Seikan Kaisha Ltd Manufacturing method of plastic bottle container
WO2008044793A1 (en) * 2006-10-12 2008-04-17 Toyo Seikan Kaisha, Ltd. Biaxially stretched thin-walled polyester bottle
WO2008123401A1 (en) * 2007-03-28 2008-10-16 Toyo Seikan Kaisha, Ltd. Biaxially stretched blow-molded container and process for producing the same
JP2011195188A (en) * 2010-03-23 2011-10-06 Toyo Seikan Kaisha Ltd Heat-resistant polyester orientation-molded container
JP2012012487A (en) * 2010-06-30 2012-01-19 Adeka Corp Method of manufacturing plastic bottle
JP2014008636A (en) * 2012-06-28 2014-01-20 Yoshino Kogyosho Co Ltd Method for positively pressurizing vessel inside and filling vessel

Similar Documents

Publication Publication Date Title
JP3978012B2 (en) Multilayer container and manufacturing method thereof
US20080048368A1 (en) Heat-resistant polyester container and method of producing the same
JP4840367B2 (en) Method for producing biaxially stretched polyester bottle
JP4599900B2 (en) Preform and blow molded container comprising the preform
JP5018881B2 (en) Heat and pressure resistant polyester bottle and method for producing the same
JP4052055B2 (en) Stretch blow molding method for plastic bottle containers
JP5239480B2 (en) Polyethylene terephthalate bottle
CN109415134B (en) Polyester stretch blow molded container and method for producing same
JP2001150522A (en) Polyester container and method of manufacturing the same
JP7059563B2 (en) Preform manufacturing method
JP2018083630A (en) Polyester stretch blow molding vessel and its manufacturing method
WO2018003790A1 (en) Polyester stretch blow-molded container and manufacturing method therefor
JP6862698B2 (en) Polyester blow container
JP4721138B2 (en) Flat container made of polyester resin
JPH0531792A (en) Manufacture of heat resistant container
JP2004330617A (en) Heat-resistant polyester container and its production method
JP5347254B2 (en) Heat and pressure resistant polyester bottle and method for producing the same
JP4811700B2 (en) Retort-compatible polyester container and method for producing the same
JP3835428B2 (en) Heat-resistant stretched resin container
JP2016210089A (en) Production method for thin-walled heat resistant polyester bottle
JP3742644B2 (en) polyester
JPH07257537A (en) Heat and pressure resistant vessel and production method
CN115485122A (en) Multi-layer preform and container
JPH02269638A (en) Heat-resistant plastic bottle
JPH02269636A (en) Heat resistant plastic bottle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017820144

Country of ref document: EP

Effective date: 20190128