JP2004330617A - Heat-resistant polyester container and its production method - Google Patents

Heat-resistant polyester container and its production method Download PDF

Info

Publication number
JP2004330617A
JP2004330617A JP2003129750A JP2003129750A JP2004330617A JP 2004330617 A JP2004330617 A JP 2004330617A JP 2003129750 A JP2003129750 A JP 2003129750A JP 2003129750 A JP2003129750 A JP 2003129750A JP 2004330617 A JP2004330617 A JP 2004330617A
Authority
JP
Japan
Prior art keywords
heat
polyester container
temperature
mold
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003129750A
Other languages
Japanese (ja)
Inventor
Munehisa Hirota
宗久 廣田
Seishi Shibata
誠士 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2003129750A priority Critical patent/JP2004330617A/en
Publication of JP2004330617A publication Critical patent/JP2004330617A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/22Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/24Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/26Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/28Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3012Preforms or parisons made of several components at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/302Preforms or parisons made of several components at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • B29C2949/303Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components having more than three components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • B29C2949/3034Preforms or parisons made of several components having components being injected having two or more components being injected
    • B29C2949/3036Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • B29C2949/3034Preforms or parisons made of several components having components being injected having two or more components being injected
    • B29C2949/3036Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected
    • B29C2949/3038Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected having more than three components being injected

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester container which is excellent in heat resistance, can perform retort sterilization treatment at a high temperature after the packing/sealing of food, drink etc., and prevents the deformation of the barrel part of the container subjected to the retort sterilization treatment, and to provide a method for producing the container. <P>SOLUTION: The temperature T of the heat-resistant polyester container, when the shrinkage rate of the barrel part is 0.66%, is at least 120°C. The shrinkage rate is 0.66% at the temperature T when a test piece having a distance between gauge marks of 20 mm is cut out from the barrel part, heated at 3°C/min from 30°C without applying a preliminary load, and subjected to TMA measurement, and the shrinkage rate is defined by the formula: shrinkage rate=shrinkage quantity/distance between gauge marks×100 (%). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ポリエチレンテレフタレート等のポリエステル樹脂から成るプリフォームを二軸延伸ブロー成形することによって得られる耐熱ポリエステル容器に関し、特に、ベビーフード、ジャム等の食品、或いはミルク入りコーヒー等の飲料を充填、密封後、レトルト殺菌を行うポリエステル容器及びその製造方法に関するものである。
【0002】
【従来の技術】
ポリエチレンテレフタレート等のポリエステル樹脂から成るプリフォームを、ガラス転移点(Tg)以上で熱結晶化温度以下に加熱した後、二軸延伸ブロー成形を行って広口の瓶状、或いはボトル状としたポリエステル容器は、透明性、耐衝撃性、ガスバリヤー性等に優れ、各種の食品、調味料、飲料等に広く採用されている。
そして、一般的には、前述したポリエステル容器に耐熱性を付与するため、ポリエステル樹脂からなるプリフォームの口部を適宜加熱によって結晶化させ、二軸延伸ブロー成形時に結晶化を行うと共に、前記成形時の歪みを除去する結晶化温度以上のヒートセットを行っているが、70℃以上の温度条件下では熱収縮によって著しく変形してしまう。
【0003】
また、より一層ポリエステル容器に耐熱性を付与するため、ポリエステル樹脂からなるプリフォームの口部を適宜加熱によって結晶化させ、前記プリフォームを一次ブロー金型により二軸延伸ブロー成形して一次中間成形品とし、シュリンクオーブンで十分加熱して高結晶化して二次中間成形品とし、この二次中間成形品を二次ブロー金型で二軸延伸ブロー成形する方法として、例えば特公平7−67732号が提案されている。
そして、この方法は、一次ブロー成形によって二軸延伸ブロー成形された一次中間成形品を加熱して二次中間成形品に強制的に収縮成形し、この二次中間成形品をほとんど延伸変形させることなく壜体にブロー成形を行うものである。
【0004】
しかしながら、耐熱性ポリエステル容器の胴部には、殺菌時の熱による膨張、或いは殺菌後の減圧による変形を防止するために減圧吸収用パネル(ミラー部)等の減圧吸収構造、補強ビード、リブ等の補強構造といった種々の構造を形成する必要があるが、前述した特公平7−67732号に提案されている二次中間成形品をほとんど延伸変形させることなく壜体にブロー成形を行う方法では、ポリエステル容器の胴部に前記減圧吸収パネル、補強ビード等を形成することは不可能である。
特に、ベビーフード等の食品、ミルク入りコーヒー等の飲料を充填後に100℃以上、特に120℃で20乃至50分といった高温でレトルト殺菌を行う減圧吸収パネル、補強ビード等を有する耐熱性ポリエステル容器とすることはできない。
また、二次中間成形品と最終容器が同一、或いはほぼ同一であるため、前記二次中間成形品を二次金型で二軸延伸ブロー成形する際に、前記金型による型バサミを生じ易い。
【0005】
一方、本出願人は、ポリエステル容器において、前述した高温でのレトルト殺菌時における底部の変形、白化に着目し、少なくとも容器の底部がDSC曲線上で150℃以上、融解開始点以下に吸熱ピークを有するポリエステル容器とその製造方法として特開2001−150522号を提案したが、前記レトルト殺菌時における胴部の変形に対する解決課題が残されていた。
【0006】
【発明が解決しようとする課題】
そこで本発明は、耐熱性に優れ、食品、飲料等を充填・密封後に高温でレトルト殺菌処理を行うことが可能で、前記レトルト殺菌処理を行っても、容器の胴部の変形を生じない高耐熱性を有するポリエステル容器及びその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明によれば、ポリエステル容器であって、胴部における収縮率が0.66%となる時の温度Tが120℃以上であることを特徴とする耐熱性ポリエステル容器が提供される。
但しTは、前記胴部より標点間距離20mmを有する試験片を切り出し、予備荷重なし、30℃より昇温レート3℃/minの条件下でTMA測定を行い、収縮率=収縮量/標点間距離×100(%)で定義される収縮率が0.66%となるときの温度である。
また、本発明によれば、前記収縮率と温度Tが、胴部に形成された減圧吸収パネル間の柱部における値である前記耐熱性ポリエステル容器が提供される。
また、本発明によれば、ポリエステル樹脂から成るプリフォームを一次金型で二軸延伸ブロー成形して一次中間成形品とし、前記一次中間成形品を加熱収縮させて二次中間成形品とした後、前記二次中間成形品を150乃至210℃に加熱した二次金型によって、胴部の厚み減少率が5%以上となるように二軸延伸ブロー成形すると共にヒートセットする耐熱性ポリエステル容器の製造方法が提供される。
さらに、本発明によれば、前記厚み減少率が、胴部に形成された減圧吸収パネル間の柱部における値である耐熱性ポリエステル容器の製造方法が提供される。
【0008】
【発明の実施の形態】
本発明の耐熱性ポリエステル容器は、ポリエステル容器であって、胴部の収縮率が0.66%となる時の温度が120℃以上であることを特徴とする。そして、前記収縮率が0.66%となる時の温度が120℃未満であると、高温によるレトルト殺菌時の耐熱性が劣る。
【0009】
本発明において、温度Tは、熱収縮させた二次中間成形品を二次金型により二軸延伸ブロー成形すると共にヒートセットして得られた、ポリエステル容器の胴部から、図4に示すように標点間距離20mmを有する試験片を切り出し、予備荷重なし、30℃から昇温レート3℃/minの条件下でTMA測定を行った結果(図5)において、収縮率を式1としたとき、0.66%収縮時の温度と定義したものである。
特に、前述した収縮率とその時の温度Tは、胴部に形成された減圧吸収パネル間の柱部における値であることが好ましく、その部位で測定することにより本発明の耐熱性ポリエステル容器の優位性が明瞭に現れる。
【0010】
そして、前述した収縮率が0.66%となる時の温度Tが120℃以上であると、ポリエステル容器の容積収縮率を低くでき、例えば、2%以下に抑制することが可能となる。
即ち、前記収縮率が0.66%収縮時の温度Tが120℃以上であれば、熱収縮させた二次中間成形品の胴部が二次金型で十分に二軸延伸され、且つヒートセットされたこと示し、従来のポリエステル容器に比較して耐熱性が大幅に向上する。そのため、容器内にベビーフード等の食品、ミルク入りコーヒー等の飲料充填後に、100℃以上、特に120℃で20乃至50分といった高温でレトルト殺菌処理を行うことが可能となる。
【0011】
本発明のポリエステル容器は、ポリエステル樹脂から成るプリフォームの口部を適宜加熱手段により結晶化させて前記口部に耐熱性を付与し、前記プリフォームをガラス転移点(Tg)以上の温度、例えば、95乃至115℃に加熱し、一次金型によって二軸延伸ブロー成形して一次中間成形品とし、前記一次中間成形品を加熱して熱収縮させて前記二軸延伸ブロー成形時の歪みを除去して二次中間成形品とした後、次いで、前記二次中間成形品を150乃至210℃に加熱した二次金型によって胴部の厚み減少率が5%以上好ましくは5%乃至30%となるように二軸延伸ブロー成形する共にヒートセットを行うことにより得ることができる。
ここで厚み減少率とは、前記熱収縮後の二次中間成形品における胴部の肉厚をt1、二次金型による二軸延伸ブロー成形、ヒートセットして得られたポリエステル容器の胴部の肉厚をt2とした時、
厚み減少率=(t1−t2)/t1×100(%)・・・(式2)
で表され、その値が5%未満となると、ブロー成形時の型バサミや、しわの発生といった成形不良が生じ、30%を超えると二次ブロー成形時に破裂や取り出し後の変形といった問題が生じる。
また、前記厚み減少率において、二次金型によるポリエステル容器の胴部の肉厚t2を、胴部に形成された減圧吸収パネル間の柱部における値とすることが好ましく、その部位で測定することにより本発明の耐熱性ポリエステル容器の製造方法の優位性が明瞭に現れる。
【0012】
前記一次金型による二軸延伸ブロー成形時の金型温度は、成形によって得られる一次中間成形品の胴部と底部に対応する部分の温度が同一の場合は、室温乃至250℃で、金型温度が250℃を越えると材料の溶解が生じ、離型不良が生じる。
また、成形によって得られる一次中間成形品の胴部と底部に対応する部分の一次金型の温度を相違させることが、首部より胴部にかけての収縮を安定化させる点で好ましい。その場合、胴部に対応する部分の温度は70℃乃至250℃が好ましく、70℃未満であると、加熱不十分のため十分に収縮安定性を得ることが不可能となり、250℃を越えると材料の溶解が生じ、離型不良が生じる。
となる。一方、底部に対応する部分の温度は室温乃至250℃が好ましく、250℃を越えると材料の溶解が生じ、離型不良が生じる。
【0013】
また、前記一次中間成形品を加熱して熱収縮させる際の加熱条件は、表面の平均温度が100℃乃至250℃になるようにコントロールするのが好ましく、平均温度が100℃未満であると、二次金型における延伸ブロー時に十分に賦形できなくなり、250℃を越えると、材料の溶解が生じ、二次ブローでの破裂や、熱結晶化による白化の原因となる。
【0014】
さらに、前記二次金型による二軸延伸ブロー成形時の金型温度は、成形される二次中間成形品の胴部と底部に対応する部分の温度はそれぞれ150℃乃至210℃で、150℃未満であると、成形応力が十分に緩和されないために、目標とする耐熱性を得ることができなくなり、210℃を越えると、離型不良が生じ、取り出し時の変形や外観不良につながる。
そして、必要に応じて、二次金型からポリエステル容器の取り出し時の変形を防止するため、20乃至25℃のエアーで0.5秒乃至3秒のクーリングブローを行う。
【0015】
ポリエステル樹脂から成るプリフォームを一次金型で二軸延伸ブロー成形、加熱処理による熱収縮、二次金型による二軸延伸ブロー成形するにあたって、前記一次金型、加熱処理による熱収縮、二次金型による温度制御は種々提案されているが、本発明においては、ベビーフード等の食品、ミルク入りコーヒー等の飲料充填後に100℃以上、特に120℃で20乃至50分といった高温でレトルト殺菌処理を行っても胴部が変形しない高耐熱ポリエステル容器とするため、特に、熱収縮させた二次中間成形品を二次金型によって、胴部の前述した(式2)より表される厚み減少率が5%以上、好ましくは5%乃至30%となるように二軸延伸ブロー成形すると共にヒートセットする。
【0016】
本発明のポリエステル容器を構成する材料としては、二軸延伸ブロー成形及び結晶化可能なポリエステル樹脂であれば任意のものを使用でき、エチレンテレフタレートレート系熱可塑性ポリエステル、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、或いはこれらのポリエステル類とポリオレフィン、ポリカーボーネートやアリレート樹脂等のブレンド物を使用することができる。本発明のポリエステル容器に用いるエチレンテレフタレート系熱可塑性ポリエステルは、エステル反復単位の大部分、一般に70モル%以上、特に80モル%以上をエチレンテレフタレート単位で占めるものであり、ガラス転移点(Tg)が50乃至90℃、特に55℃乃至80℃で、融点(Tm)が200乃至275℃、特に220乃至270℃である熱可塑性ポリエステル樹脂が好適である。
【0017】
このような熱可塑性ポリエステル樹脂としては、ホモポリエチレンテレフタレートが耐熱性の点で好適であるが、エチレンテレフタレート単位以外のエステル単位の少量を含む共重合体ポリエステルも使用できる。
【0018】
テレフタル酸以外の二塩基酸としては、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸;シクロヘキサンジカルボン酸等の脂環族ジカルボン酸;コハク酸、アジピン酸、セバチン酸、ドデカンジオン酸等の脂肪族ジカルボン酸の1種又は2種以上の組合せが挙げられる。
また、エチレングリコール以外のジオール成分としては、プロピレングリコール、1,4−ブタンジオール、ジエチレングリコール、1,6−ヘキシレングリコール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物等の1種又は2種以上が挙げられる。
【0019】
また、エチレンテレフタレート系熱可塑性ポリエステルに、ガラス転移点の比較的高い、例えば、ポリエチレンナフタレート、ポリカーボーネート、或いはポリアリレート等を5乃至25%程度ブレンドした複合材を用いることができ、それにより高温時の材料強度を高めることもできる。さらに、ポリエチレンテレフタレートと前記ガラス転移点の比較的高い材料を積層化して用いることもできる。また、前記したポリエステル樹脂には、必要に応じて滑剤、改質剤、顔料、紫外線吸収剤等を配合しても良い。
【0020】
本発明で用いるエチレンテレフタレート系熱可塑性ポリエステルは、少なくともフィルムを形成するに足りる分子量を有するべきであり、用途に応じて射出グレード或いは押出グレードのものが使用される。その固有粘度(IV)は、一般的に0.6乃至1.4dl/g、特に0.63乃至1.3dl/gの範囲にあるものが好ましい。
【0021】
また、本発明のポリエステル容器は、内外層を構成するポリエステル樹脂層の中間層にガスバリヤー層を形成した多層構成としても良い。ガスバリヤー層を構成する熱可塑性樹脂としては、例えば、エチレン−ビニルアルコール共重合体、ポリアミド、ポリ塩化ビニリデン系樹脂、ポリビニルアルコール、フッ素樹脂等が挙げられる。
【0022】
特に好ましいガスバリヤー樹脂としては、エチレン含有量が20乃至60モル%、特に25乃至50モル%であるエチレン−酢酸ビニル共重合体を、ケン化度が96モル%以上、特に99モル%以上となるようにケン化して得られるエチレン−酢酸ビニル共重合体ケン化物が挙げられる。
他の好ましいガスバリヤー性樹脂としては、炭素数100個当たりアミド基の数が5乃至50個、特に6乃至20個の範囲にあるポリアミド類、;例えば、ナイロン6、ナイロン6,6、ナイロン6/6,6共重合体、メタキシリレンアジパミド(MXD6)、ナイロン6,10、ナイロン11、ナイロン12、ナイロン13等が挙げられる。
【0023】
本発明のポリエステル容器は、単層の場合は酸化可能な有機成分のコバルト等の遷移金属触媒の酸化による酸素捕集を行っても良く、酸化有機成分としては、ポリアミド、特にキシリレン基含有ポリアミドが挙げられる。
【0024】
また、本発明のポリエステル容器は、前記ガスバリヤー層(中間層)に酸素吸収性を付加しても良く、前記ガスバリヤー層の樹脂自体が酸素吸収性を有する多層構成としても良い。このような樹脂としては、例えば樹脂の酸化反応を利用したものが挙げられ、酸化性の有機材料、例えば、ポリブタジエン、ポリイソプレン、ポリプロピレン、エチレン・酸化炭素共重合体、6−ナイロン、12−ナイロン、メタキシリレンジアミン(MX)ナイロンのようなポリアミド類に、酸化触媒としてコバルト、ロジウム、銅等の遷移金属を含む有機酸塩類や、ベンゾフェン、アセトフェン、クロロケトン類の様な光増感剤を加えたものが使用できる。これらの酸化吸収材料を使用した場合は、紫外線、電子線のような高エネルギー線を照射することによって、一層の効果を発現させることもできる。
【0025】
また、前記ガスバリヤー層の樹脂に酸化可能な有機成分を含有させて、ガスバリヤー層の酸化劣化によるガスバリヤー性の低下を生じることなく酸素吸収性を発現しても良い。このような酸化有機成分としては、ポリエンから誘導されるポリエン系重合体が好ましく、カルボン酸、カルボン酸無水物基、水酸基が導入されていることが好ましい。これらの官能基してはアクリル酸、メタクリル酸、マレイン酸、不飽和カルボン酸、無水マレイン酸、不飽和カルボン酸の無水物等が挙げられ、遷移金属触媒としてはコバルトが好ましい。
【0026】
また、前記ガスバリヤー層を構成する樹脂に還元性を有する金属粉、例えば、還元性鉄粉、還元性亜鉛、還元性錫粉、金属低位酸化物、還元性金属化合物の一種又は二種以上を組み合わせたものを主成分としたもの等が挙げられ、これらは必要に応じて、アルカリ金属、アルカリ土類金属の水酸化物、炭酸塩、亜硫酸塩、有機酸塩、ハロゲン化物、さらに活性炭、活性アルミナのような助剤とも組み合わせて使用することができる。或いは、多価フェノールを骨格内に有する高分子化合物、例えば、多価フェノール含有フェノール・アルデヒド樹脂等が挙げられる。これらの酸素吸収剤は、透明、或いは半透明を確保するため、一般に平均粒径10μm以下、特に5μm以下が好ましい。
【0027】
前記ガスバリヤー層樹脂、酸素吸収剤樹脂、酸素吸収材料には、充填剤、着色剤、耐熱安定剤、耐候安定剤、酸化防止剤、老化防止剤、光安定剤、紫外線吸収剤、帯電防止剤、金属石鹸やワックス等の滑剤、改質剤を配合できる。
さらに、前記多層構成とする際に、各樹脂層間に、必要により接着剤、或いは接着剤層を介在させることもできる。
【0028】
前記樹脂を使用したプリフォームの作製に当たっては、従来公知の射出成形機を用いて射出用プリフォーム金型の形状に対応したプリフォームを製造する。
また、多層構成の場合は、共射出成形機を用いて、内外層をポリエステル樹脂とし、内外層の間に少なくとも一層の中間層、或いはそれ以上の中間層を挿入し、射出用プリフォーム金型の形状に対応した多層プリフォームを製造する。
また、多段射出機により、まず、第一次金型でポリエステル樹脂から成る第一次プリフォームを射出形成し、次いで前記一次プリフォームを第二次金型に移してその表面に中間層を構成する樹脂を射出して二次プリフォームとし、さらに、前記二次プリフォームを第三時金型に移してその表面にポリエステル樹脂を射出して外層を形成して多層プリフォームを製造することもできる。
【0029】
さらに、圧縮成形によってプリフォームを製造することもでき、この場合、溶融樹脂塊を実質上温度低下なしに雌型に供給すると共に雄型で圧縮成形する。
また、多層の場合は、内外層を構成する溶融樹脂塊中に中間層樹脂を設け、この溶融樹脂塊を実質上温度低下なしに雌型に供給すると共に雄型で圧縮成形する。
【0030】
尚、このようにして得られたプリフォームの口頸部に耐熱性を与えるため、プリフォーム段階で前記口頸部を熱処理により結晶化し白化させる。
また、二軸延伸ブロー成形後に二延伸部分の口頸部を結晶化し白化させても良い。
【0031】
次に、図面により本発明を説明するが、以下の説明は本発明を限定するものではない。
図1は、広口タイプの耐熱性ポリエステル容器であって、このポリエステル容器1は、広口の口部2、肩部3、胴部4及び底部5から成り、前記胴部には減圧吸収パネル6が形成されている。
この広口の耐熱性ポリエステル容器1は、口部2が熱処理により結晶化され、肩部3、胴部4と底部5が、後述する二次金型によりヒートセットされたポリエステル容器であり、前述した胴部4の減圧吸収パネル部6の間における柱部7の収縮率が0.66%となる時の温度がTが120℃以上である。
【0032】
この広口耐熱性ポリエステル容器の製造は、第2図に示すようにポリエステルから成るプリフォーム10の口部を適宜加熱して結晶化させた後、一次金型で二軸延伸ブロー成形を行い一次中間成形品11とし、前記一次中間成形品11を加熱オーブンで熱収縮させ前記二軸延伸ブロー成形時の歪みを除去して二次中間成形品12とした後、次いで、前記二次中間成形品12を二次金型で胴部に減圧吸収パネル部6を形成し、前記熱収縮後の二次中間成形品12における胴部の肉厚をt1とし、二次金型による二軸延伸ブロー成形、ヒートセット後のポリエステル容器1の胴部4における減圧吸収パネル部6の間の柱部における肉厚をt2とした時、前述した(式2)より表される厚み減少率が5%以上好ましくは5%乃至30%になるように二軸延伸ブロー成形する共にヒートセットして広口タイプのポリエステル容器1とする。
【0033】
図3は他のポリエステル容器を示す図で、ポリエステル容器21はボトル状で、口部22、肩部23、上胴部24a、下胴部24b、底部25から成り、前記下胴部24bには減圧吸収パネル部26と柱部27が、また、前記上胴部24aと下胴部24bの境界部分には補強凹ビード28が形成されており、その製造方法は前述した方法と同様である。
【0034】
【実施例】
[実施例1]
ポリエチレンテレフタレート樹脂から成るプリフォームの口部を適宜手段により結晶化(白化)させた後、プリフォームをガラス転移点以上の115℃に加熱し、胴部および底部に対応する部分とも160℃に加熱した一次金型で、延伸倍率が縦2.8倍、横2.8倍、面積7.8倍の二軸延伸ブロー成形を行い、最終のポリエステル容器よりも大きい胴径100mm、高さ100mmの横断面形状が円形の一次中間成形とした。
次に、前記一次中間成形品をオーブン加熱して、表面温度が平均180℃となるように加熱して熱収縮させて、胴部の肉厚(t1)0.5mm(首下から45mmの位置)、胴径65mm、高さ90mmの横断面形状が円形の二次中間成形品とした。
次いで、この二次中間成形品を、少なくとも胴部4に対応する部分の温度が150℃の二次金型で縦1.01倍、横1.04倍、面積1.05倍の二軸延伸ブロー成形を行い、口部2を除く肩部3、胴部及び底部を3秒間のヒートセットを行い、減圧吸収パネル部6を有し、前記パネル部6の間における柱部7の肉厚(t2)0.475mm(首下から45mmの位置)(厚み減少率=(t1−t2)/t1×100=5%)、胴径70mm、高さ95mmの図1に示す広口の耐熱性ポリエステル容器1とした。
さらに、二次金型からポリエステル容器1を取り出す際に、容器内に25℃のエアーを1秒間ブローするクーリングブローを行った。
【0035】
[実施例2]
実施例1において、二次金型の温度を160℃、二軸延伸ブロー成形における延伸倍率を、縦1.1倍、横1.18倍、面積1.3倍とした以外は、実施例1と同様のポリエステル容器1を作製した。
【0036】
[実施例3]
ポリエチレンテレフタレート樹脂から成るプリフォームの口部を適宜手段により結晶化(白化)させた後、プリフォームをガラス転移点以上の105℃に加熱し、胴部に対応する部分を130℃に、底部に対応する部分を90℃に加熱した一次金型で、延伸倍率が縦2.8倍、横3.5倍、面積9.8倍の二軸延伸ブロー成形を行い、最終のポリエステル容器よりも大きい胴径85mm、高さ210mmの横断面形状が円形の一次中間成形とした。
次に、前記一次中間成形品をオーブン加熱して、表面温度が平均180℃となるように加熱して熱収縮させて、胴部の肉厚(t1)0.48mm(首下から80mmの位置)、胴径56mm、高さ158mmの横断面形状が円形の二次中間成形品とした。
次いで、この二次中間成形品を、少なくとも胴部24a、24bに対応する部分の温度が180℃の二次金型で縦1.03倍、横1.17倍、面積1.2倍の二軸延伸ブロー成形を行い、口部22を除く肩部23、胴部24及び底部25を2秒間のヒートセットを行い、減圧吸収パネル部26を有し、前記パネル部26の間の柱部37における肉厚(t2)0.38mm(首下から80mmの位置)(厚み減少率=(t1−t2)/t1×100=20%)、胴径70mm、高さ165mmの図3に示すボトル状の耐熱性ポリエステル容器20とした。
さらに、二次金型からポリエステル容器20を取り出す際に、容器内に25℃のエアーを0.8秒間ブローするクーリングブローを行った。
【0037】
[実施例4]
実施例3において、二次金型の温度を210℃、二軸延伸ブロー成形における延伸倍率を、縦1.01倍、横1.09倍、面積1.1倍とした以外は、実施例3と同様のポリエステル容器1を作製した。
【0038】
[比較例1]
実施例1において、二次金型の温度を130℃、二軸延伸ブロー成形における延伸倍率を、縦1倍、横1.02倍、面積1.02倍とした以外は、実施例1と同様のポリエステル容器1を作製した。
【0039】
[比較例2]
実施例3において、二次金型の温度を140℃、二軸延伸ブロー成形における延伸倍率を、縦1.01倍、横1.02倍、面積1.03倍とした以外は、実施例1と同様のポリエステル容器1を作製した。
【0040】
【評価】
[収縮率]
ポリエステル容器の胴部における減圧吸収パネル部間の柱部より標点間距離20mm、幅3mmの図4に示す試験片を切り出し、TMA測定を行った。
測定器として動的粘弾性測定装置(Seiko Instruments Inc,DMS−6100)を用い、試験片への予備荷重0(N)、昇温条件は3℃/minとしてTMA測定を行った。
図5に示すように、X軸を試験片温度(℃)、Y軸を試験片の収縮率とし、30℃の収縮率を0%とし、収縮量/標点間距離から求め、前記収縮率が0.66%となるの時の温度Tを確認した。
その結果を表1に示す。
【0041】
[耐熱性]
ポリエステル容器に、25℃でミルク入りコーヒーを充填し、ポリプロピレンから成るプラスチック製螺子キャップで密封した後、120℃で30分間レトルト殺菌した時の容器の収縮率を表1に示す。
【0042】
【表1】

Figure 2004330617
【0043】
【発明の効果】
本発明の耐熱性ポリエステル容器によれば、耐熱性に優れ、食品、飲料等を充填・密封後に高温でレトルト殺菌処理を行うことが可能となり、前記レトルト殺菌処理を行っても、容器の胴部の変形を生じないため商品価値を損なうことがない。
また、本発明の耐熱性ポリエステル容器の製造方法によれば、従来のポリエステル容器に比較して耐熱性が大幅に向上したポリエステル容器を容易に製造することができる。
【図面の簡単な説明】
【図1】本発明の耐熱性ポリエステル容器の参考図
【図2】本発明の耐熱性ポリエステル容器の製造方法の参考図
【図3】本発明の耐熱性ポリエステル容器の他の例の参考図
【図4】TMA測定における試験片の参考図
【図5】TMA測定結果の参考図
【符号の説明】
1 ポリエステル容器
2 口部
3 肩部
4 胴部
5 底部
6 減圧吸収パネル部
7 柱部
10 プリフォーム
11 一次中間成形品
12 二次中間成形品[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat-resistant polyester container obtained by biaxially stretch-blow-molding a preform made of a polyester resin such as polyethylene terephthalate, particularly, baby food, food such as jam, or filling of beverage such as milk-containing coffee, The present invention relates to a polyester container for performing retort sterilization after sealing and a method for producing the same.
[0002]
[Prior art]
After heating a preform made of a polyester resin such as polyethylene terephthalate to a temperature above the glass transition point (Tg) and below the thermal crystallization temperature, biaxial stretch blow molding is performed to make a wide-mouth bottle-shaped or bottle-shaped polyester container. Has excellent transparency, impact resistance, gas barrier properties, etc., and is widely used in various foods, seasonings, beverages and the like.
In general, in order to impart heat resistance to the above-described polyester container, the opening of the preform made of the polyester resin is appropriately crystallized by heating, and the crystallization is performed at the time of biaxial stretch blow molding, and the molding is performed. Although heat set at a crystallization temperature or higher for removing distortion at the time is performed, under a temperature condition of 70 ° C. or higher, the material is significantly deformed by thermal shrinkage.
[0003]
Further, in order to further impart heat resistance to the polyester container, the mouth portion of the preform made of the polyester resin is appropriately crystallized by heating, and the preform is biaxially stretch-blow-molded with a primary blow mold to form a primary intermediate molding. As a method of biaxially stretch-blow-molding a secondary intermediate molded product using a secondary blow mold, for example, Japanese Patent Publication No. 7-67732 Has been proposed.
Then, this method heats the primary intermediate molded product biaxially stretch blow-molded by the primary blow molding to forcibly shrink the secondary intermediate molded product into a secondary intermediate molded product, and almost stretch-deforms the secondary intermediate molded product. Instead of blow molding bottles.
[0004]
However, in order to prevent expansion due to heat during sterilization or deformation due to reduced pressure after sterilization, a reduced pressure absorbing structure such as a reduced pressure absorbing panel (mirror portion), reinforcing beads, ribs, etc. are provided on the body of the heat resistant polyester container. It is necessary to form various structures such as a reinforcement structure, but in the method of blow molding a bottle without hardly stretching and deforming the secondary intermediate molded product proposed in Japanese Patent Publication No. Hei 7-67732, It is impossible to form the reduced pressure absorbing panel, the reinforcing beads, and the like on the body of the polyester container.
In particular, a heat-resistant polyester container having a vacuum absorption panel, a reinforcing bead, or the like that performs retort sterilization at a high temperature such as 100 ° C. or more, particularly at 120 ° C. for 20 to 50 minutes after filling foods such as baby foods and beverages such as milk-containing coffee. I can't.
In addition, since the secondary intermediate product and the final container are the same or almost the same, when the secondary intermediate product is biaxially stretch blow-molded with a secondary mold, mold scissors due to the mold are likely to occur. .
[0005]
On the other hand, the applicant of the present invention has focused on the deformation of the bottom and whitening during the retort sterilization at a high temperature described above in the polyester container. Japanese Patent Application Laid-Open No. 2001-150522 has been proposed as a polyester container having the same and a method for producing the same, but there remains a problem to be solved with respect to deformation of the trunk during the retort sterilization.
[0006]
[Problems to be solved by the invention]
Therefore, the present invention is excellent in heat resistance and can perform a retort sterilization treatment at a high temperature after filling and sealing a food, a beverage, and the like, and even when the retort sterilization treatment is performed, deformation of a body of a container does not occur. An object of the present invention is to provide a polyester container having heat resistance and a method for producing the same.
[0007]
[Means for Solving the Problems]
According to the present invention, there is provided a heat-resistant polyester container which is a polyester container, wherein the temperature T at which the shrinkage ratio in the body becomes 0.66% is 120 ° C. or more.
However, for T, a test piece having a gauge length of 20 mm was cut out from the body part, and TMA measurement was performed under the condition of a preheating rate of 30 ° C. and a temperature rising rate of 3 ° C./min. This is the temperature at which the shrinkage defined by the distance between points × 100 (%) becomes 0.66%.
Further, according to the present invention, there is provided the heat-resistant polyester container, wherein the shrinkage ratio and the temperature T are values in a column portion between the reduced-pressure absorption panels formed in the body portion.
Further, according to the present invention, a preform made of a polyester resin is biaxially stretch blow-molded in a primary mold to form a primary intermediate molded product, and the primary intermediate molded product is heated and shrunk to form a secondary intermediate molded product. A heat-resistant polyester container which is biaxially stretch blow-molded and heat-set by a secondary mold in which the secondary intermediate product is heated to 150 to 210 ° C. so that the thickness reduction rate of the body is 5% or more. A manufacturing method is provided.
Further, according to the present invention, there is provided a method for producing a heat-resistant polyester container, wherein the thickness reduction rate is a value in a column portion between reduced-pressure absorption panels formed in a body portion.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The heat-resistant polyester container of the present invention is a polyester container, wherein the temperature at which the shrinkage of the body becomes 0.66% is 120 ° C. or more. If the temperature at which the shrinkage is 0.66% is less than 120 ° C., the heat resistance during retort sterilization at high temperatures is inferior.
[0009]
In the present invention, as shown in FIG. 4, the temperature T is determined from the body of the polyester container obtained by subjecting the heat-shrinked secondary intermediate molded product to biaxial stretch blow molding using a secondary mold and heat setting. A test piece having a distance between gauge points of 20 mm was cut out, and TMA measurement was performed under the condition of a temperature rising rate of 3 ° C./min from 30 ° C. without a preload. It is defined as the temperature at the time of 0.66% shrinkage.
In particular, the above-mentioned shrinkage ratio and the temperature T at that time are preferably values in the column portion between the reduced pressure absorbing panels formed in the body portion, and by measuring at that portion, the superiority of the heat-resistant polyester container of the present invention is obtained. Sex appears clearly.
[0010]
When the temperature T at which the above-mentioned shrinkage rate becomes 0.66% is 120 ° C. or more, the volume shrinkage rate of the polyester container can be reduced, and for example, can be suppressed to 2% or less.
That is, if the temperature T at which the shrinkage rate is 0.66% shrinkage is 120 ° C. or more, the body of the heat-shrinked secondary intermediate molded product is sufficiently biaxially stretched by a secondary mold, and This indicates that the heat resistance is greatly improved as compared with the conventional polyester container. Therefore, it is possible to perform retort sterilization at a high temperature of 100 ° C. or higher, particularly 120 ° C. for 20 to 50 minutes after filling the container with food such as baby food or beverage such as milk-containing coffee.
[0011]
In the polyester container of the present invention, the mouth of the polyester resin preform is appropriately crystallized by a heating means to impart heat resistance to the mouth, and the preform is heated to a temperature equal to or higher than the glass transition point (Tg), for example, , Heated to 95 to 115 ° C, biaxially stretch blow-molded with a primary mold to form a primary intermediate molded product, and the primary intermediate molded product is heated and contracted to remove distortion during the biaxial stretch blow molding. Then, after the secondary intermediate molded article is formed, the secondary intermediate molded article is heated to 150 to 210 ° C. to reduce the thickness of the body by 5% or more, preferably 5% to 30%. It can be obtained by performing biaxial stretch blow molding and heat setting at the same time.
Here, the thickness reduction rate means the thickness of the body portion of the secondary intermediate molded product after the heat shrinkage, t1, the biaxial stretch blow molding with a secondary mold, and the body portion of the polyester container obtained by heat setting. When the thickness of t is t2,
Thickness reduction rate = (t1−t2) / t1 × 100 (%) (2)
When the value is less than 5%, molding defects such as mold scissors and wrinkles during blow molding occur, and when it exceeds 30%, problems such as rupture and deformation after removal during secondary blow molding occur. .
In the thickness reduction rate, it is preferable that the thickness t2 of the body of the polyester container formed by the secondary mold is a value at the column between the reduced-pressure absorption panels formed on the body, and measurement is performed at that portion. This clearly shows the superiority of the method for producing a heat-resistant polyester container of the present invention.
[0012]
The mold temperature during biaxial stretch blow molding by the primary mold is from room temperature to 250 ° C. when the temperature of the portion corresponding to the body and bottom of the primary intermediate molded product obtained by molding is the same. If the temperature exceeds 250 ° C., the material is melted, resulting in poor mold release.
Further, it is preferable to make the temperature of the primary mold corresponding to the body and the bottom of the primary intermediate molded product obtained by molding different from each other in terms of stabilizing the shrinkage from the neck to the body. In this case, the temperature of the portion corresponding to the body is preferably 70 ° C. to 250 ° C. If it is lower than 70 ° C., it becomes impossible to obtain sufficient shrinkage stability due to insufficient heating. Dissolution of the material occurs, resulting in mold release failure.
It becomes. On the other hand, the temperature of the portion corresponding to the bottom is preferably from room temperature to 250 ° C.
[0013]
Further, the heating conditions for heating and shrinking the primary intermediate molded product are preferably controlled so that the average temperature of the surface is 100 ° C. to 250 ° C., and when the average temperature is less than 100 ° C., When stretch blowing in a secondary mold, it is not possible to sufficiently shape the material. When the temperature exceeds 250 ° C., the material is dissolved, which causes rupture in the secondary blowing and whitening due to thermal crystallization.
[0014]
Further, the mold temperature at the time of biaxial stretch blow molding by the secondary mold is such that the temperatures of the portions corresponding to the body and bottom of the secondary intermediate molded product to be formed are 150 ° C. to 210 ° C., respectively, and 150 ° C. If it is less than 1, molding stress is not sufficiently relaxed, so that the target heat resistance cannot be obtained. If it exceeds 210 ° C., mold release failure occurs, leading to deformation during removal and poor appearance.
Then, if necessary, in order to prevent deformation at the time of removing the polyester container from the secondary mold, cooling blow is performed with air at 20 to 25 ° C. for 0.5 to 3 seconds.
[0015]
In performing biaxial stretch blow molding of a preform made of a polyester resin with a primary mold, heat shrinkage by heat treatment, and biaxial stretch blow molding with a secondary mold, the primary mold, heat shrinkage by heat treatment, secondary metal Although various types of temperature control by a mold have been proposed, in the present invention, retort sterilization treatment is performed at a high temperature of 100 ° C. or more, particularly at 120 ° C. for 20 to 50 minutes after filling a food such as baby food or a coffee containing milk. In order to obtain a highly heat-resistant polyester container in which the trunk is not deformed even when the heat treatment is performed, in particular, the heat-shrinkable secondary intermediate molded product is subjected to the secondary mold to reduce the thickness of the trunk by the above-mentioned (formula 2). Is 5% or more, preferably 5% to 30%.
[0016]
As a material constituting the polyester container of the present invention, any material can be used as long as it is a polyester resin that can be biaxially stretch blow-molded and crystallizable, and ethylene terephthalate-based thermoplastic polyester, polybutylene terephthalate, polyethylene naphthalate and the like can be used. Or a blend of these polyesters with a polyolefin, a polycarbonate or an arylate resin. The ethylene terephthalate-based thermoplastic polyester used in the polyester container of the present invention occupies most of the ester repeating unit, generally 70 mol% or more, particularly 80 mol% or more, with the glass transition point (Tg). A thermoplastic polyester resin having a melting point (Tm) of 50 to 90 ° C, particularly 55 to 80 ° C, and 200 to 275 ° C, particularly 220 to 270 ° C is suitable.
[0017]
As such a thermoplastic polyester resin, homopolyethylene terephthalate is preferable in terms of heat resistance, but a copolymer polyester containing a small amount of an ester unit other than the ethylene terephthalate unit can also be used.
[0018]
Examples of dibasic acids other than terephthalic acid include aromatic dicarboxylic acids such as isophthalic acid, phthalic acid, and naphthalenedicarboxylic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; succinic acid, adipic acid, sebacic acid, and dodecandioic acid Or a combination of two or more aliphatic dicarboxylic acids.
As the diol component other than ethylene glycol, one or more of propylene glycol, 1,4-butanediol, diethylene glycol, 1,6-hexylene glycol, cyclohexane dimethanol, and an ethylene oxide adduct of bisphenol A are used. Is mentioned.
[0019]
A composite material obtained by blending about 5 to 25% of ethylene terephthalate-based thermoplastic polyester with a relatively high glass transition point, for example, polyethylene naphthalate, polycarbonate, or polyarylate, can be used. Material strength at high temperatures can also be increased. Furthermore, polyethylene terephthalate and the above-mentioned material having a relatively high glass transition point can be laminated and used. Further, a lubricant, a modifier, a pigment, an ultraviolet absorber and the like may be added to the polyester resin as required.
[0020]
The ethylene terephthalate thermoplastic polyester used in the present invention should have at least a molecular weight sufficient to form a film, and an injection grade or an extrusion grade is used depending on the use. Its intrinsic viscosity (IV) is generally in the range of 0.6 to 1.4 dl / g, preferably 0.63 to 1.3 dl / g.
[0021]
Further, the polyester container of the present invention may have a multilayer structure in which a gas barrier layer is formed in an intermediate layer of the polyester resin layers constituting the inner and outer layers. Examples of the thermoplastic resin constituting the gas barrier layer include ethylene-vinyl alcohol copolymer, polyamide, polyvinylidene chloride-based resin, polyvinyl alcohol, and fluororesin.
[0022]
As a particularly preferred gas barrier resin, an ethylene-vinyl acetate copolymer having an ethylene content of 20 to 60 mol%, particularly 25 to 50 mol%, has a saponification degree of 96 mol% or more, particularly 99 mol% or more. And a saponified ethylene-vinyl acetate copolymer obtained by saponification.
Other preferred gas barrier resins include polyamides having 5 to 50, especially 6 to 20, amide groups per 100 carbon atoms; for example, nylon 6, nylon 6,6, nylon 6 / 6,6 copolymer, meta-xylylene adipamide (MXD6), nylon 6,10, nylon 11, nylon 12, nylon 13, and the like.
[0023]
The polyester container of the present invention, in the case of a single layer, may perform oxygen collection by oxidation of a transition metal catalyst such as cobalt as an oxidizable organic component, and as the oxidized organic component, a polyamide, particularly a xylylene group-containing polyamide. No.
[0024]
Further, the polyester container of the present invention may have an oxygen-absorbing property added to the gas barrier layer (intermediate layer), or may have a multilayer structure in which the resin itself of the gas-barrier layer has oxygen-absorbing property. Examples of such a resin include those utilizing an oxidation reaction of the resin, and oxidizing organic materials such as polybutadiene, polyisoprene, polypropylene, ethylene / carbon oxide copolymer, 6-nylon, and 12-nylon Addition of an organic acid salt containing a transition metal such as cobalt, rhodium, copper, or a photosensitizer such as benzophene, acetophene, or chloroketone to an polyamide such as meta-xylylenediamine (MX) nylon as an oxidation catalyst. Can be used. When these oxidation absorbing materials are used, further effects can be exhibited by irradiating high energy rays such as ultraviolet rays and electron beams.
[0025]
Further, an oxidizable organic component may be contained in the resin of the gas barrier layer, so that the gas barrier layer can exhibit oxygen absorption without lowering the gas barrier property due to oxidative deterioration. As such an oxidized organic component, a polyene-based polymer derived from a polyene is preferable, and it is preferable that a carboxylic acid, a carboxylic anhydride group, and a hydroxyl group have been introduced. Examples of these functional groups include acrylic acid, methacrylic acid, maleic acid, unsaturated carboxylic acid, maleic anhydride, and anhydride of unsaturated carboxylic acid. Cobalt is preferred as the transition metal catalyst.
[0026]
Further, a metal powder having a reducing property to the resin constituting the gas barrier layer, for example, one or two or more of a reducing iron powder, a reducing zinc, a reducing tin powder, a metal lower oxide, and a reducing metal compound. Examples thereof include those having a combination as a main component, and these are, if necessary, alkali metal, alkaline earth metal hydroxide, carbonate, sulfite, organic acid salt, halide, activated carbon, active carbon, It can be used in combination with auxiliaries such as alumina. Alternatively, a polymer compound having a polyhydric phenol in the skeleton, for example, a phenol-aldehyde resin containing a polyhydric phenol may be used. In order to ensure transparency or translucency, these oxygen absorbers generally have an average particle size of 10 μm or less, particularly preferably 5 μm or less.
[0027]
Fillers, colorants, heat stabilizers, weather stabilizers, antioxidants, antioxidants, light stabilizers, ultraviolet absorbers, antistatic agents include the gas barrier layer resin, oxygen absorber resin, and oxygen absorbing material. And lubricants and modifiers such as metal soaps and waxes.
Further, in the multilayer structure, an adhesive or an adhesive layer may be interposed between the resin layers as necessary.
[0028]
In producing a preform using the resin, a preform corresponding to the shape of an injection preform mold is manufactured using a conventionally known injection molding machine.
In the case of a multi-layer structure, a co-injection molding machine is used, the inner and outer layers are made of a polyester resin, and at least one intermediate layer or more intermediate layers are inserted between the inner and outer layers to form an injection preform mold. A multi-layer preform corresponding to the shape is manufactured.
Further, by a multi-stage injection machine, first, a primary preform made of a polyester resin is injection-formed in a primary mold, and then the primary preform is transferred to a secondary mold to form an intermediate layer on the surface thereof. To form a secondary preform by injecting a resin to be formed, and further, transferring the secondary preform to a third mold and injecting a polyester resin on the surface thereof to form an outer layer, thereby producing a multilayer preform. it can.
[0029]
Furthermore, a preform can be manufactured by compression molding, in which case the molten resin mass is supplied to the female mold without substantially lowering the temperature and compression molded by the male mold.
In the case of a multilayer, an intermediate layer resin is provided in a molten resin mass constituting the inner and outer layers, and the molten resin mass is supplied to a female mold without substantially lowering the temperature and compression molded by a male mold.
[0030]
In order to impart heat resistance to the mouth and neck of the preform thus obtained, the mouth and neck are crystallized and whitened by heat treatment at the preform stage.
After the biaxial stretch blow molding, the mouth and neck of the bistretched portion may be crystallized and whitened.
[0031]
Next, the present invention will be described with reference to the drawings, but the following description does not limit the present invention.
FIG. 1 shows a wide-mouth type heat-resistant polyester container. This polyester container 1 includes a wide-mouthed mouth 2, a shoulder 3, a body 4 and a bottom 5, and a reduced-pressure absorbing panel 6 is provided on the body. Is formed.
The wide-mouthed heat-resistant polyester container 1 is a polyester container in which the mouth portion 2 is crystallized by heat treatment, and the shoulder portion 3, the body portion 4, and the bottom portion 5 are heat-set by a secondary mold described later. The temperature T at which the shrinkage of the column portion 7 between the reduced pressure absorbing panel portions 6 of the body portion 4 becomes 0.66% is 120 ° C. or more.
[0032]
As shown in FIG. 2, the wide-mouth heat-resistant polyester container is manufactured by appropriately heating the mouth of a preform 10 made of polyester to crystallize, then performing biaxial stretch blow molding in a primary mold to perform a primary intermediate molding. The primary intermediate molded article 11 is heat-shrinked in a heating oven to remove distortion during the biaxial stretching blow molding to form a secondary intermediate molded article 12, and then the secondary intermediate molded article 12 is formed. Is formed in the body by means of a secondary mold, the thickness of the body in the secondary intermediate molded product 12 after the heat shrinkage is set to t1, and biaxial stretch blow molding is performed by a secondary mold. Assuming that the thickness of the pillar portion between the reduced pressure absorbing panel portions 6 in the body portion 4 of the polyester container 1 after the heat setting is t2, the thickness reduction rate represented by the above-mentioned (Equation 2) is preferably 5% or more. To be between 5% and 30% Heat set together axially stretch blow molding a polyester container 1 wide-mouthed type.
[0033]
FIG. 3 is a view showing another polyester container. The polyester container 21 has a bottle shape and includes a mouth 22, a shoulder 23, an upper body 24a, a lower body 24b, and a bottom 25. The lower body 24b has A reduced-pressure absorption panel section 26 and a column section 27 are formed, and a reinforcing concave bead 28 is formed at a boundary between the upper body section 24a and the lower body section 24b. The manufacturing method is the same as that described above.
[0034]
【Example】
[Example 1]
After the mouth of the preform made of polyethylene terephthalate resin is crystallized (whitened) by appropriate means, the preform is heated to 115 ° C. above the glass transition point, and the portions corresponding to the body and bottom are also heated to 160 ° C. In the primary mold, a stretch ratio of 2.8 times in length, 2.8 times in width, and 7.8 times in area were subjected to biaxial stretch blow molding, and a body diameter of 100 mm and a height of 100 mm larger than the final polyester container. The primary intermediate molding was a circular cross section.
Next, the primary intermediate molded product is heated in an oven, heated so that the surface temperature becomes 180 ° C. on average, and thermally shrunk, and the thickness (t1) of the body portion is 0.5 mm (at a position 45 mm below the neck). ), A secondary intermediate molded product having a body diameter of 65 mm and a height of 90 mm and having a circular cross section.
Next, the secondary intermediate molded product is biaxially stretched in a secondary mold having a temperature of at least a portion corresponding to the body 4 at 150 ° C. in a length of 1.01 times, a width of 1.04 times and an area of 1.05 times. Blow molding is performed, and the shoulder 3, the trunk, and the bottom excluding the mouth 2 are heat-set for 3 seconds to have a reduced-pressure absorption panel 6, and the thickness of the column 7 between the panel 6 ( t2) 0.475 mm (position of 45 mm from below the neck) (thickness reduction rate = (t1−t2) / t1 × 100 = 5%), wide-mouth heat-resistant polyester container shown in FIG. 1 having a body diameter of 70 mm and a height of 95 mm. It was set to 1.
Further, when the polyester container 1 was taken out of the secondary mold, cooling blow was performed in which air at 25 ° C. was blown into the container for one second.
[0035]
[Example 2]
Example 1 Example 1 was repeated except that the temperature of the secondary mold was 160 ° C and the stretching ratio in the biaxial stretch blow molding was 1.1 times, 1.18 times and 1.3 times the area. The same polyester container 1 was prepared.
[0036]
[Example 3]
After the mouth of the preform made of polyethylene terephthalate resin is crystallized (whitened) by appropriate means, the preform is heated to 105 ° C. above the glass transition point, the portion corresponding to the body is heated to 130 ° C., and the bottom is heated to 130 ° C. The corresponding portion is subjected to biaxial stretch blow molding with a primary mold heated to 90 ° C. and a draw ratio of 2.8 times vertically, 3.5 times horizontally and 9.8 times area, which is larger than the final polyester container. The primary intermediate molding was a cylinder having a body diameter of 85 mm and a height of 210 mm and a circular cross section.
Next, the primary intermediate molded product is heated in an oven, heated so that the surface temperature becomes an average of 180 ° C., and thermally shrunk, and the wall thickness (t1) of the body is 0.48 mm (at a position 80 mm below the neck). ), A secondary intermediate molded product having a body diameter of 56 mm and a height of 158 mm and having a circular cross section.
Next, the secondary intermediate molded product is processed into a secondary mold having a temperature of at least a portion corresponding to the body portions 24a and 24b of 180 ° C. by 1.03 times length, 1.17 times width, and 1.2 times area. Axial stretch blow molding is performed, and the shoulder portion 23, the body portion 24, and the bottom portion 25 excluding the mouth portion 22 are heat-set for 2 seconds, and a reduced pressure absorbing panel portion 26 is provided, and a column portion 37 between the panel portions 26 is provided. (T2) 0.38 mm (at a position 80 mm from below the neck) (thickness reduction rate = (t1−t2) / t1 × 100 = 20%), body diameter 70 mm, height 165 mm, as shown in FIG. The heat-resistant polyester container 20 was obtained.
Further, when taking out the polyester container 20 from the secondary mold, cooling blow was performed in which air at 25 ° C. was blown into the container for 0.8 seconds.
[0037]
[Example 4]
Example 3 Example 3 was repeated except that the temperature of the secondary mold was 210 ° C., and the stretching ratio in the biaxial stretch blow molding was 1.01 times, 1.09 times and 1.1 times the area. The same polyester container 1 was prepared.
[0038]
[Comparative Example 1]
In the same manner as in Example 1, except that the temperature of the secondary mold was set at 130 ° C. and the stretching ratio in the biaxial stretch blow molding was set at 1 × length, 1.02 × width, and 1.02 × area. Was prepared.
[0039]
[Comparative Example 2]
Example 1 was the same as Example 3 except that the temperature of the secondary mold was 140 ° C., and the stretching ratio in the biaxial stretch blow molding was 1.01 times the length, 1.02 times the width, and 1.03 times the area. The same polyester container 1 was prepared.
[0040]
[Evaluation]
[Shrinkage factor]
A test piece shown in FIG. 4 having a distance between gauge points of 20 mm and a width of 3 mm was cut out from the column between the reduced-pressure absorbing panels in the trunk of the polyester container, and subjected to TMA measurement.
Using a dynamic viscoelasticity measuring device (Seiko Instruments Inc., DMS-6100) as a measuring device, TMA measurement was performed with a preliminary load of 0 (N) applied to the test piece and a temperature rise condition of 3 ° C./min.
As shown in FIG. 5, the X-axis is the test piece temperature (° C.), the Y-axis is the shrinkage rate of the test piece, and the shrinkage rate at 30 ° C. is 0%. Was 0.66%.
Table 1 shows the results.
[0041]
[Heat-resistant]
Table 1 shows the shrinkage ratio of the container when the polyester container was filled with milk-containing coffee at 25 ° C., sealed with a plastic screw cap made of polypropylene, and then sterilized by retort at 120 ° C. for 30 minutes.
[0042]
[Table 1]
Figure 2004330617
[0043]
【The invention's effect】
According to the heat-resistant polyester container of the present invention, excellent heat resistance, it is possible to perform retort sterilization at a high temperature after filling and sealing foods and beverages, etc. Since no deformation occurs, the commercial value is not impaired.
Further, according to the method for producing a heat-resistant polyester container of the present invention, it is possible to easily produce a polyester container having significantly improved heat resistance as compared with a conventional polyester container.
[Brief description of the drawings]
FIG. 1 is a reference drawing of the heat-resistant polyester container of the present invention.
FIG. 2 is a reference drawing of the method for producing a heat-resistant polyester container of the present invention.
FIG. 3 is a reference drawing of another example of the heat-resistant polyester container of the present invention.
FIG. 4 is a reference diagram of a test piece in TMA measurement.
FIG. 5 is a reference diagram of TMA measurement results.
[Explanation of symbols]
1 polyester container
2 mouth
3 shoulder
4 torso
5 bottom
6 Decompression absorption panel
7 pillar
10 preforms
11 Primary intermediate molded products
12 Secondary intermediate molded products

Claims (4)

ポリエステル容器であって、胴部における収縮率が0.66%となる時の温度Tが120℃以上であることを特徴とする耐熱性ポリエステル容器。
但しTは、前記胴部より標点間距離20mmを有する試験片を切り出し、予備荷重なし、30℃より昇温レート3℃/minの条件下でTMA測定を行い、収縮率=収縮量/標点間距離×100(%)で定義される収縮率が0.66%となるときの温度である。
A heat-resistant polyester container, wherein the temperature T at which the shrinkage ratio in the body becomes 0.66% is 120 ° C. or more.
However, for T, a test piece having a gauge length of 20 mm was cut out from the body part, and TMA measurement was performed under the condition of a preheating rate of 30 ° C. and a temperature rising rate of 3 ° C./min. This is the temperature at which the shrinkage defined by the distance between points × 100 (%) becomes 0.66%.
前記収縮率と温度Tが、胴部に形成された減圧吸収パネル間の柱部における値であることを特徴とする請求項1に記載の耐熱性ポリエステル容器。2. The heat-resistant polyester container according to claim 1, wherein the shrinkage ratio and the temperature T are values in a column portion between the reduced pressure absorbing panels formed in the body portion. 3. ポリエステル樹脂から成るプリフォームを一次金型で二軸延伸ブロー成形して一次中間成形品とし、前記一次中間成形品を加熱収縮させて二次中間成形品とした後、前記二次中間成形品を150乃至210℃に加熱した二次金型によって、胴部の厚み減少率が5%以上となるように二軸延伸ブロー成形すると共にヒートセットすることを特徴とする耐熱性ポリエステル容器の製造方法。A preform made of a polyester resin is biaxially stretch blow-molded in a primary mold to form a primary intermediate molded product, and the primary intermediate molded product is heated and shrunk into a secondary intermediate molded product. A method for producing a heat-resistant polyester container, comprising performing biaxial stretch blow molding and heat-setting with a secondary mold heated to 150 to 210 ° C. so that a thickness reduction rate of a body portion is 5% or more. 前記厚み減少率が、胴部に形成された減圧吸収パネル間の柱部における値であることを特徴とする請求項3に記載の耐熱性ポリエステル容器の製造方法。The method for producing a heat-resistant polyester container according to claim 3, wherein the thickness reduction rate is a value in a column portion between the reduced-pressure absorption panels formed in the body portion.
JP2003129750A 2003-05-08 2003-05-08 Heat-resistant polyester container and its production method Withdrawn JP2004330617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129750A JP2004330617A (en) 2003-05-08 2003-05-08 Heat-resistant polyester container and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129750A JP2004330617A (en) 2003-05-08 2003-05-08 Heat-resistant polyester container and its production method

Publications (1)

Publication Number Publication Date
JP2004330617A true JP2004330617A (en) 2004-11-25

Family

ID=33505459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129750A Withdrawn JP2004330617A (en) 2003-05-08 2003-05-08 Heat-resistant polyester container and its production method

Country Status (1)

Country Link
JP (1) JP2004330617A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013860A (en) * 2014-07-02 2016-01-28 キッコーマン株式会社 Heat packing vacuum container
JP2016108056A (en) * 2016-03-03 2016-06-20 キッコーマン株式会社 Heat storage pressure reduction container
JP2017210266A (en) * 2016-05-26 2017-11-30 株式会社吉野工業所 Synthetic resin blow molded bottle
CN112638781A (en) * 2018-09-07 2021-04-09 东洋制罐集团控股株式会社 Heat-resistant multilayer container and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013860A (en) * 2014-07-02 2016-01-28 キッコーマン株式会社 Heat packing vacuum container
JP2016108056A (en) * 2016-03-03 2016-06-20 キッコーマン株式会社 Heat storage pressure reduction container
JP2017210266A (en) * 2016-05-26 2017-11-30 株式会社吉野工業所 Synthetic resin blow molded bottle
CN112638781A (en) * 2018-09-07 2021-04-09 东洋制罐集团控股株式会社 Heat-resistant multilayer container and method for producing same
CN112638781B (en) * 2018-09-07 2022-11-25 东洋制罐集团控股株式会社 Heat-resistant multilayer container and method for producing same

Similar Documents

Publication Publication Date Title
JP3918613B2 (en) Heat resistant polyester container and method for producing the same
JP4314794B2 (en) Method for producing biaxially stretched polyester container
JP3978012B2 (en) Multilayer container and manufacturing method thereof
US8808611B2 (en) Method of producing biaxially stretched polyester bottles
JP4599900B2 (en) Preform and blow molded container comprising the preform
EP1253000B1 (en) Polyester container and method of manufacturing the same
JP2019064025A (en) Multilayer preform and multilayer container
JP4586224B2 (en) Polyester container manufacturing method
JP6909441B2 (en) Manufacturing method of multi-layer preform and manufacturing method of multi-layer container
JP2004330617A (en) Heat-resistant polyester container and its production method
CN109415134B (en) Polyester stretch blow molded container and method for producing same
WO2018003790A1 (en) Polyester stretch blow-molded container and manufacturing method therefor
JP2016210089A (en) Production method for thin-walled heat resistant polyester bottle
JP2018083630A (en) Polyester stretch blow molding vessel and its manufacturing method
JP2004168039A (en) Preform, its manufacturing method, and container produced by biaxially stretching the preform
JP2018002299A (en) Polyester blow container
JPH04361013A (en) Piece for forming bottle stopper section and bottle made of saturated polyester with said bead and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070323