WO2018003768A2 - Cooler container, cold tray, and red wine server - Google Patents

Cooler container, cold tray, and red wine server Download PDF

Info

Publication number
WO2018003768A2
WO2018003768A2 PCT/JP2017/023488 JP2017023488W WO2018003768A2 WO 2018003768 A2 WO2018003768 A2 WO 2018003768A2 JP 2017023488 W JP2017023488 W JP 2017023488W WO 2018003768 A2 WO2018003768 A2 WO 2018003768A2
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cold
container
cold storage
antifreeze
Prior art date
Application number
PCT/JP2017/023488
Other languages
French (fr)
Japanese (ja)
Other versions
WO2018003768A3 (en
Inventor
別所 久徳
夕香 内海
勝一 香村
大祐 篠崎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/314,197 priority Critical patent/US20190313818A1/en
Priority to JP2018525161A priority patent/JPWO2018003768A1/en
Publication of WO2018003768A2 publication Critical patent/WO2018003768A2/en
Publication of WO2018003768A3 publication Critical patent/WO2018003768A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G19/00Table service
    • A47G19/22Drinking vessels or saucers used for table service
    • A47G19/2288Drinking vessels or saucers used for table service with means for keeping liquid cool or hot
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
    • F25D3/06Movable containers
    • F25D3/08Movable containers portable, i.e. adapted to be carried personally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/006Other cooling or freezing apparatus specially adapted for cooling receptacles, e.g. tanks
    • F25D31/007Bottles or cans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/083Devices using cold storage material, i.e. ice or other freezable liquid using cold storage material disposed in closed wall forming part of a container for products to be cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/084Position of the cold storage material in relationship to a product to be cooled
    • F25D2303/0841Position of the cold storage material in relationship to a product to be cooled external to the container for a beverage, e.g. a bottle, can, drinking glass or pitcher
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/085Compositions of cold storage materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/803Bottles

Definitions

  • the present invention relates to a food container, food and drink, a cold storage container for performing temperature management of red wine, a cold storage dish, and a red wine server.
  • Insulations especially alcohols such as wine, beer and sake, beverages such as juice, water, etc., or foods, and pharmaceuticals, each has a suitable storage temperature, and the desired storage temperature of the insulation
  • a cold and warm container that can be reached more quickly and can be maintained at a desired temperature for a long time.
  • raw food such as sashimi has a low freshness when the temperature of the plate is high, and freezes when the temperature is too low, which impairs the flavor. Therefore, it is preferable to eat or store at 0-5 ° C.
  • chocolate is around 20 ° C
  • Camembert cheese is 15 to 16 ° C
  • fresh oysters are 0 to 5 ° C
  • honey is 18 ° C or higher
  • Gyokuro is 40 to 50 ° C
  • tea is around 60 ° C.
  • Patent Document 1 discloses a technique that enables the temperature of food placed on a plate or bat to be maintained by providing a heat insulating / cooling agent at the bottom of the plate or bat.
  • a wine cooler which includes a means for storing a wine bottle and fixing a cooling agent inside (bottle side). This eliminates the need to remove water droplets and the like adhering to the bottle.
  • the cold storage material is premised on a water-based cold insulation material (below 0 ° C.), in this configuration, the temperature is too low. As a result, the red wine cannot be kept at the drinking temperature (14-18 ° C.).
  • Patent Document 2 As a cold / heat-retaining agent used for the above-mentioned cold or heat-retaining dish, bat, wine cooler, etc., in Patent Document 2, it is suitable for cold preservation in the vicinity of room temperature, and contains a small amount of polymer to be mixed with hexadecane or tetradecane, and A technique related to a cold storage material having excellent flexibility is disclosed.
  • Patent Document 3 proposes a wine cooler provided with a fixing means that allows a cold insulation material to be detachably attached to the inner wall of the cold insulation container.
  • a step portion (rib) is provided in the cold storage container, and a cold insulating material is provided in the step portion.
  • the temperature of the upper surface of the plate is determined by the phase change temperature of the heat insulating / cooling agent, it is difficult to adjust the temperature of the plate for each appropriate temperature of various ingredients. In addition, it was necessary to prepare a heat insulating / cooling agent, which was complicated.
  • Patent Document 2 there is a possibility that the temperature of drinking red wine (14-18 ° C) can be maintained as the phase change temperature (temperature at which latent heat exists) of the regenerator material, but the regenerator material is simply placed in the wine bottle. It is difficult to keep it at a temperature other than the phase change temperature of the regenerator material, for example, 5 to 10 ° C. when drinking white wine. 18 ° C.), and it is not possible to hold red wine sufficiently at the drinking temperature (14-18 ° C.). Moreover, the concrete structure as a wine cooler is not shown. Furthermore, since the cool storage material used in Patent Document 2 is composed of an organic (petroleum, etc.) material, the material is flammable and is not suitable for the food and drink field.
  • the cool storage material used in Patent Document 2 is composed of an organic (petroleum, etc.) material, the material is flammable and is not suitable for the food and drink field.
  • Patent Document 3 a specific temperature related to the cryogen is not specified. For this reason, red wine cannot be sufficiently maintained at the drinking temperature (14 to 18 ° C.).
  • One embodiment of the present invention has been made in view of such circumstances, and provides a cold storage container capable of adjusting the outer surface temperature of the container on the buffer layer side to a temperature different from the melting point of the frozen material. With the goal.
  • the cold storage container of one embodiment of the present invention is a cold storage container that adjusts the temperature of a cold storage object that is a food or drink, and the cold storage container has at least a hollow structure region, and is specified in the region.
  • the heat storage layer conducts heat to the cold object through the buffer layer.
  • the heat absorption amount or the heat generation amount released from the heat storage layer is harmonized by the environmental temperature through the buffer layer, and the outer surface temperature on the buffer layer side of the container is equal to the melting point of the frozen material.
  • the outer surface temperature by the side of the buffer layer of a container can be adjusted suitably by adjusting the thickness of a buffer layer. That is, by changing the amount of the frozen material or the thickness of the buffer layer without changing the type of the frozen material, the appropriate temperature for various foods and drinks can be realized and the temperature can be maintained.
  • 6 is a table showing the amount of the frozen material and the thickness of the buffer layer in Examples 1-1 and 1-2 and Comparative Example 1-1. 6 is a graph showing the relationship between the thickness of the buffer layer and the upper surface temperature of the pan in Examples 1-1 and 1-2 and Comparative Example 1-1.
  • FIG. 6 is a table showing configurations of antifreeze materials and frozen materials of Comparative Examples 1 to 4 and Examples 1 to 4. It is a figure which shows the outline
  • FIG. It is a figure which shows the evaluation result I of the comparative example 1. It is a figure which shows the evaluation result II of the comparative example 1. It is a figure which shows the evaluation result I of the comparative example 2. It is a figure which shows the evaluation result II of the comparative example 2. It is a figure which shows the outline
  • FIG. 10 is a plan view of Comparative Example 3.
  • FIG. 10 is a side view of Comparative Example 3.
  • the present inventors hold the temperature of foods and foods and drinks in a cold storage container having a heat storage layer, the heat absorption amount or the heat generation amount released from the heat storage layer is harmonized by the environmental temperature through the buffer layer, and the container
  • the outer surface temperature on the buffer layer side can be different from the melting point of the frozen material, and the outer surface temperature on the buffer layer side of the container can be adjusted appropriately by adjusting the thickness of the buffer layer. And led to the present invention.
  • the present inventors can achieve an appropriate temperature for various foods and maintain the temperature by changing the amount of the frozen material or the thickness of the buffer layer without changing the type of the frozen material. did. Embodiments of the present invention will be specifically described below with reference to the drawings.
  • the cold storage container according to an embodiment of the present invention has at least a region having a hollow structure, and the region includes a heat storage layer including a frozen material that changes phase at a specific temperature, and the heat storage layer is separated from the region. And a buffer layer including an antifreeze material that is a fluid at a phase change temperature of the frozen material.
  • FIG. 1A is a cross-sectional view of a cold container 100 according to the present embodiment. As shown in FIG. 1A, the cold insulation container 100 according to the present embodiment has a hollow structure area inside the container body 110, and includes a heat storage layer 120 and a buffer layer 130 in the area.
  • the cold insulation object conducts heat with the heat storage layer 120 via the buffer layer 130.
  • the heat storage layer 120 and the buffer layer 130 may be separated by partitioning a hollow structure region of the container body 110 by providing a clearance or the like.
  • FIG. 1B is a cross-sectional view showing an example of the usage state of the cold insulation container 100 according to the present embodiment.
  • the cold storage container 100 according to the present embodiment may have a mounting surface 140 (upper surface) on which food or food is directly placed on the outer surface of the container body 110 on the buffer layer 130 side. In that case, as shown in FIG. 1B, food or food is directly placed on the mounting surface 140 for use.
  • the food or food placed on the mounting surface 140 is held at an appropriate temperature by conducting heat conduction with the heat storage layer 120 via the buffer layer 130.
  • the container body 110 has a hollow structure for containing the heat storage layer 120 and the buffer layer 130.
  • the container body 110 is made of a resin material such as polyethylene, polypropylene, polyester, polyurethane, polycarbonate, polyvinyl chloride, and polyamide, or a metal such as aluminum, stainless steel, copper, or silver, or an inorganic material such as glass, ceramic, or ceramic. Can do.
  • a resin material is preferable from the viewpoint of easy formation of a hollow structure and durability.
  • the container body 110 can be determined to have the appropriate temperature by sticking a temperature indicating material seal indicating that the temperature has reached the appropriate temperature, or kneaded into the resin.
  • FIG. By providing the heat insulating layer, the heat transfer between the heat storage layer 120, the buffer layer 130, and the object to be kept cold can be maintained, and the other heat input / output can be reduced. As a result, the holding time can be extended.
  • the heat storage layer 120 includes a frozen material 150 that changes phase at a specific temperature.
  • the material of the frozen material 150 is preferably a material that undergoes phase change in the range of ⁇ 20 ° C. to 80 ° C. as shown in the table of FIG.
  • a frozen material 150 composed of water, potassium chloride, sodium acetate, etc., which is low in toxicity for safety and health, and when the structure does not assume replacement of the frozen material 150, It is preferable that a preservative is added. And it is preferable that the material which forms the thermal storage layer 120 contains the supercooling inhibitor.
  • the supercooling inhibitor one that promotes nucleation of the frozen material 150 by rapidly decreasing the solubility near the phase change temperature of the frozen material 150 and precipitating crystals. Furthermore, a thing with low toxicity is preferable on safety and health. From such a viewpoint, if the frozen material 150 is water or an aqueous potassium chloride solution, alum, disodium hydrogen phosphate, and the like can be given.
  • the buffer layer 130 includes an antifreeze material 160 that is a fluid at the phase change temperature of the frozen material 150, and exists separately from the heat storage layer 120 in the hollow structure region of the container body 110.
  • a material liquid or gas material
  • the antifreeze material 160 has a specific gravity smaller than that of the frozen material 150, and is fluid at the phase change temperature of the frozen material 150 is used.
  • the frozen material 150 is water
  • air can be used as the antifreeze material 160.
  • the antifreeze material 160 has the phase change temperature of the frozen material 150. It only needs fluidity.
  • FIG. 3A to 3C are conceptual diagrams showing the steps of manufacturing the cold insulation container 100 according to the present embodiment.
  • a container body 110 having a hollow structure region as shown in FIG. 3A is prepared.
  • the container body 110 is preferably provided with an inlet 170 through which the frozen material 150 and the antifreeze material 160 can be injected.
  • the frozen material 150 is injected.
  • FIG. 3B the frozen material 150 is injected from the injection port 170 of the container body 110.
  • the injection method is not limited, but if the injection is made with the injection port facing upward, the frozen material 150 can be injected by its own weight.
  • the container main body 110 is provided with a liquid volume or a scale 180 of the temperature assumed for the liquid volume. Thereby, the liquid amount can be easily adjusted.
  • a preservative or a supercooling inhibitor it may be added after being added to the frozen material 150 or may be added after the frozen material 150 has been injected.
  • the amount of the frozen material 150 to be injected is adjusted to reduce the volume of the hollow portion of the container, and the air is mixed by sealing with a sealing plug as will be described later. 130.
  • the amount of the frozen material 150 to be injected is adjusted, and the antifreeze material 160 is injected into the remaining volume and sealed.
  • the antifreeze material 160 is made of a material that is incompatible with the frozen material 150, has a specific gravity smaller than that of the frozen material 150, and is a fluid at the phase change temperature of the frozen material 150.
  • phase separation is performed using the antifreeze material 160 that is not compatible with the frozen material 150 and has a small specific gravity.
  • the heat storage layer 120 and the buffer layer 130 can be easily created.
  • a plug 190 is plugged into the inlet 170 of the container body 110.
  • a method of plugging 190 there are a method of sealing with an existing method such as ultrasonic welding or heat welding, and a method of using a screw plug that can be freely opened and closed by hand.
  • ultrasonic welding or heat welding the user cannot adjust the amount of the frozen material 150 or the antifreeze material 160, but there is no possibility that the frozen material 150 or the antifreeze material 160 leaks.
  • the user can freely adjust the amount of the frozen material 150 and the antifreeze material 160.
  • the lower surface of the cold storage container 110 is left horizontally in a temperature environment equal to or lower than the phase change temperature of the frozen material 150, and is solidified so that at least the lower surface of the cold storage container 110 and the upper surface of the heat storage layer 120 are parallel.
  • Example 1-1 is an example of the cold tray according to the first embodiment.
  • a blow molded container material: polyethylene, outer shape: 220 ⁇ 140 ⁇ t20 mm / t0.8 mm
  • container body as shown in FIG. 3A was prepared.
  • 200 g of tap water was injected from the inlet using a liquid filling machine into the blow molded container. This was about 45% of the volume in the blow molded container.
  • the injection port was capped using an ultrasonic welding machine and sealed by welding. Thereby, the cold-reserving dish which used water as the heat storage layer and air as the buffer layer was produced.
  • the obtained cold storage dish was allowed to stand in a temperature environment equal to or lower than the phase change temperature and solidified.
  • the lower surface of the pan is left to stand horizontally, and is solidified so that at least the lower surface of the pan and the upper surface of the heat storage layer are parallel. Specifically, it was left horizontally in a freezer compartment of a general household refrigerator so that the bottom surface of the dish was in contact with the bottom surface in the cabinet.
  • the cold storage tray was taken out after 12 hours, it was confirmed that the heat storage layer was solidified.
  • the thickness of each layer was 20 mm (the thickness of the container material: 0.8 mm) while the thickness of the heat storage layer was about 7 mm and the thickness of the buffer layer was about 11 mm.
  • thermocouple was attached to the upper and lower surfaces of the cold storage dish on which the frozen material was solidified, and the temperature change with time was observed in a room temperature atmosphere (25 ° C.). The result at that time is shown in FIG.
  • the temperature of the lower surface was maintained at about 1 ° C. for 30 to 150 minutes after the start of measurement. This is due to the 0 ° C., which is the ice-water phase change temperature of the heat storage layer.
  • the temperature of the upper surface through the buffer layer was maintained at about 8 ° C. for 30 to 120 minutes, and was maintained at a temperature higher than the phase change temperature of the heat storage layer for a certain time. That is, it was confirmed that the cold air released from the heat storage layer is relaxed through the buffer layer inside the cold storage dish, and the upper surface of the dish can be set to a temperature different from the melting point of the frozen material.
  • Example 1-2 is an example of the cold tray according to the first embodiment.
  • Example 1-2 was a cold tray having the same configuration except that the amount of liquid inside the cold tray of Example 1-1 was changed from 200 g to 350 g.
  • the manufacturing method was the same as that of Example 1 except for the liquid amount.
  • Comparative Example 1-1 was a cold storage dish having the same configuration except that the amount of liquid inside the cold storage dish of Example 1-1 was changed from 200 g to 450 g (almost full water). The manufacturing method was the same as that in Example 1-1 except for the liquid amount.
  • FIG. 6A shows the thicknesses of the heat storage layer and the buffer layer inside the cold storage dish after freezing. As shown in FIG. 6A, it can be seen that in the order of Example 1-1, Example 1-2, and Comparative Example 1-1, the thickness of the buffer layer is thin, and the ability to buffer the cool air released from the heat storage layer is small. .
  • FIG. 6B shows a plot of the dish top surface temperature that can be held against the thickness of the buffer layer. It was confirmed that the dish top surface temperature increased linearly with respect to the thickness of the buffer layer. In other words, by adjusting the thickness of the buffer layer (the amount of liquid in the heat storage layer), it is possible to easily adjust the temperature of the upper surface of the dish. Can be provided without changing the type.
  • FIG. 7 is a cross-sectional view and a top view of the cold insulation container 100 according to the present embodiment. As shown in FIG. 7, the lower surface of the cold container 100 is flat, but the upper surface of the cold container 100 is stepped. In addition, since the internal heat storage layer 120 is kept horizontal, the thickness of the buffer layer 130 can be adjusted by creating regions with different thicknesses of the hollow structure in the container body 110. In addition, although it is stepped in FIG. 7, it may be inclined. Moreover, although the shape seen from the top of the cold storage container 100 is a rectangle in FIG. 7, it may be a circle and can be freely designed as necessary.
  • the manufacturing method of the cold insulating container 100 according to the present embodiment is the same as the manufacturing method of the cold insulating container 100 according to the first embodiment, except that the shape of the container main body 110 is different.
  • Example 2-1 is an example of the cold tray according to the second embodiment.
  • the width and depth of the container and the thickness of the resin were the same as in Example 1, and a blow molded container having a cross-sectional shape as shown in FIG. 7 was prepared.
  • the thickness of the region of the hollow structure was 31 mm, 25 mm, and 20 mm for each part. 450 g of water as a frozen material was poured into this blow molded container and sealed.
  • the thickness of the heat storage layer was 20 mm, and the thickness of the region of the hollow structure was 31 mm, 25 mm, and 20 mm.
  • the thickness of the buffer layer was 11 mm, 5 mm, and 0 mm, respectively.
  • the temperature of the upper surface of the dish in the area where the thickness of the hollow structure area is 31 mm, 25 mm, and 20 mm is 8 ° C., 4 ° C., and 0 ° C., respectively, and a cold storage dish having a plurality of temperature regions can be obtained with one dish.
  • This makes it possible to keep a plurality of foods having different optimum temperatures in one dish, which is suitable for an hors d'oeuvre dish or the like.
  • FIG. 8 is a cross-sectional view of the cutting board 200 according to the present embodiment.
  • the plug 190 of the inlet 170 for injecting the frozen material 150 is a screw plug. Thereby, the user can freely open and close, and the liquid amount can be adjusted.
  • the rest of the configuration is the same as the configuration of the first embodiment, but the thickness of the material of the container body is set to a thickness suitable for the application of the cutting board 200.
  • the manufacturing method of the cutting board 200 according to the present embodiment is the same as the manufacturing method of the cold insulation container 100 according to the first embodiment.
  • Example 3-1 is an example of the cutting board according to the third embodiment.
  • a blow molded container material: polyethylene, outer shape: 230 ⁇ 400 ⁇ t20 mm / t2 mm
  • 600 g of water was poured into this container and sealed with a screw cap. After freezing this in the freezer like Example 1, when the thickness of the buffer layer and the thickness of the heat storage layer were evaluated, they were 11 mm and 5 mm, respectively.
  • the surface temperature of the surface (upper surface) which cuts a foodstuff was measured, it confirmed that temperature was hold
  • the cutting board of the present embodiment can easily change the appropriate temperature simply by changing the amount of liquid in the heat storage layer and freezing it, so that various foods can be cut with the same cutting board (for example, 0 Tuna half-thawed at °C can be cut).
  • the cold storage container of one embodiment of the present invention is applied to a cold storage dish.
  • FIG. 9 is a cross-sectional view of the cold tray 210 according to the present embodiment.
  • the cold storage container 100 when the mounting surface 140 is provided, the cold storage container 100 itself can be used as a cold storage dish.
  • the cold storage container 100 having the mounting surface 140 is used.
  • the refrigerated dish is configured such that the temperature can be adjusted by changing the refrigerated container 100 to be attached.
  • the cold tray 210 has a hollow structure region inside the container body 110, and includes a heat storage layer 120 and a buffer layer 130 in the region, and the buffer layer 130.
  • a cold insulation container 100 having a mounting surface 140 for directly placing food or food on the outer surface of the side, an exterior part 220 for housing the cold insulation container 100, and a cold insulation container fixing part 230 for securing the cold insulation container 100 and the exterior part 220.
  • the configurations of the container body 110, the heat storage layer 120, the buffer layer 130, and the like are the same as those described above.
  • the exterior part 220 accommodates the cold insulation container 100 and is used as a cold preservation dish 210 as a whole.
  • the exterior part 220 can be formed of a resin material, a metal, or an inorganic material, like the container body 110.
  • the cold insulation container fixing part 230 can fix the cold insulation container 100 and the exterior part 220, what kind of material, installation position, etc. may be sufficient as it.
  • the shape of the exterior part 220 may be a shape for fixing the cold container 100.
  • the cold storage container 100 having the mounting surface 140 is fixed to the exterior portion 220 and is detachable, so that the cold storage container 100 can be adjusted to an appropriate temperature for each food simply by changing it for each temperature to be adjusted. be able to.
  • the trouble of adjusting the types and amounts of the frozen material 150 and the antifreeze material 160 of the cold container 100 can be saved.
  • the cold storage dish 210 is composed of the cold storage container 100 and the exterior part 220, and since the cold storage container 100 does not need to fulfill the function of the exterior part 220, compared to the case where the cold storage container 100 itself is used as a cold storage dish, The cold insulating container 100 can also be made relatively compact.
  • the cold storage container 100 which adjusts the kind and quantity of the frozen material 150 or the antifreeze material 160.
  • FIG. 9 the cold insulation container 100 in which the thickness of the buffer layer 130 is constant is used.
  • the cold insulation container 100 in which the thickness of the buffer layer 130 differs depending on the part is used. May be.
  • FIG. 10A and FIG. 10B are cross-sectional views of the cold tray 210 according to the present embodiment.
  • the container main body 110 can be separated into the upper plate 240 and the lower plate 250, and when the upper plate 240 and the lower plate 250 are combined, the inside of the container main body 110 becomes a hollow structure region.
  • the cold tray 210 As shown in FIG. 10A, the cold tray 210 according to the present embodiment has a hollow structure region inside the container body 110 in which the upper plate 240 and the lower plate 250 are combined, and the heat storage layer 120 and And a buffer layer 130, and a mounting surface 140 on which food or food is directly placed on the outer surface (the upper surface of the upper plate 240) on the buffer layer 130 side.
  • the upper plate 240 has a mounting surface 140 on the upper surface, and the lower surface becomes the upper portion of the hollow structure of the container body 110 when combined with the lower plate 250.
  • the lower dish 250 has a portion for containing the frozen material 150, and the heat storage layer 120 is formed by injecting the frozen material 150 into the lower dish 250 and solidifying it. Further, by combining the upper plate 240 and the lower plate 250, the air layer from the upper surface of the heat storage layer 120 to the lower surface of the upper plate 240 becomes the buffer layer 130.
  • the connection portion between the upper plate 240 and the lower plate 250 preferably has a structure that can be sealed so that air does not enter and exit in order to stabilize the temperature. Since the cool plate 210 according to the present embodiment can separate the upper plate 240 and the lower plate 250, the inner surface of the container body 110 can be easily washed and kept clean.
  • the container main body 110 of the cold tray 210 may include a spacer 260 as shown in FIG. 10B.
  • the spacer 260 By providing the spacer 260, the thickness of the buffer layer 130 can be adjusted.
  • the cold storage tray 210 according to the present embodiment uses a frozen material pack 270 in which the frozen material 150 is packaged by an existing method, instead of injecting the frozen material 150 into the lower plate 250 to form the heat storage layer 120. 120 may be formed.
  • the frozen material pack 270 since only the frozen material pack 270 needs to be set to be equal to or lower than the phase change temperature of the frozen material 150, it is not necessary to set the cold tray 210 or the lower plate 250 itself to be equal to or lower than the phase change temperature of the frozen material 150.
  • the thickness of the thermal storage layer 120 and the buffer layer 130 can be adjusted by changing the number of the frozen material packs 270 arranged for each portion of the lower dish 250.
  • the buffer layer 130 may be formed by using an antifreeze pack in which the antifreeze 160 is packaged. When the antifreeze material pack is used, the buffer layer 130 in which a material other than air is used as the antifreeze material 160 can be easily formed.
  • FIG. 11A is a cross-sectional view showing a usage state of the server for red wine according to the present embodiment.
  • the cold storage pack is composed of a first deep-drawn container 3 as a first accommodating part and a second deep-drawn container 5 as a second accommodating part, and the second accommodating part is a first accommodating part. It has a double structure that is stacked on the part.
  • the first deep-drawn container 3 is filled with a first cold storage material (freezing material) 3a
  • the second deep-drawn container 5 is filled with a second cold storage material (non-freezing material) 5a.
  • the second cold storage material (non-freezing material) 5a maintains a liquid phase state at the phase change temperature of the first cold storage material (freezing material) 3a.
  • the second regenerator material (antifreeze material) 5 a is in close contact with the wine bottle 10, and the lid member 7 closes the first deep-drawn container 3.
  • FIG. 11B is a cross-sectional view of the cold storage pack 1 according to the present embodiment.
  • the flange part 3 b of the first deep-drawn container 3 and the flange part of the second deep-drawn container 5 5b is joined.
  • the flange portion 3b of the first deep-drawn container 3 and the lid member 7 are joined.
  • a gap layer 9 exists between the lid member 7 and the first cold storage material 3a.
  • Patent Document 3 proposes a wine cooler provided with a fixing means that allows the cold insulation material to be detachably attached to the inner wall of the cold insulation container.
  • a conventional wine cooler has a cold insulation material and a wine bottle. It does not have a structure / structure that allows the Therefore, although it was not possible to quickly reach the temperature when drinking wine, according to the present embodiment, it is possible to make it closely contact, so that it is possible to rapidly reach the temperature when drinking.
  • FIG. 11C is a cross-sectional view showing a use state of a conventional wine cooler.
  • the conventional cold storage pack in the case where the first cold storage material 3a is included in the second cold storage material 5a (hereinafter also referred to as pack-in-pack structure), it is caused by gravity during use.
  • the position of the first regenerator material may be vertically downward.
  • the region where the cool storage material does not exist on the upper side of the wine bottle 10 becomes prominent, and heat may escape from the region where the cool storage material does not exist, and the wine bottle 10 may not be able to quickly reach the desired temperature. There is.
  • the cool storage pack 1 which concerns on this embodiment has the 1st deep-drawn container 3 filled with the 1st cool storage material 3a, and the 2nd cool storage material 5a. Since the filled second deep-drawn container 5 is fixed by the flange portion 3b and the flange portion 5b, it is possible to always maintain the positional relationship of the respective regenerators regardless of the influence of weight.
  • the sensible heat stored in the second cold storage material 5a can be reliably transmitted to the wine bottle 10 and the wine bottle 10 can be quickly reached the desired temperature. Further, the sensible heat and latent heat stored in the first cold storage material 3a are reliably transmitted to the wine bottle 10 via the second cold storage material 5a, thereby assisting the wine bottle 10 to quickly reach a desired temperature. At the same time, the wine bottle 10 can be held at a desired temperature for a long time.
  • Drawing 12A is a figure showing the concept of the 1st cool storage material used for the cool storage pack concerning this embodiment, and shows the concept in case a cold storage material has viscosity.
  • FIG. 12B is a diagram illustrating a concept when the regenerator material has no viscosity.
  • the first cold storage material (frozen material) and the second cold storage material (non-freezing material) have a viscosity capable of maintaining the shape with respect to their own weight.
  • the cold storage material when the temperature control of the cold insulation object is performed by leaning the cold storage pack, if the cold storage material is not viscous, the cold storage material is affected by gravity as the cold storage material changes from a solid phase to a liquid phase. And is displaced vertically downward. As a result, the temperature of the upper part of the cold insulation object cannot be sufficiently controlled. Moreover, as a result of the cold storage material being displaced vertically downward, an air gap is formed vertically above the heat storage material, and heat inflow and outflow are generated in the air gap, resulting in a decrease in the cold insulation effect.
  • the influence of gravity can be minimized by giving the cold storage material a viscosity.
  • the contact area between the cold storage pack and the cold insulation object is increased, and efficient heat exchange can be performed.
  • the cold storage pack according to the present embodiment gives the first cold storage material and the second cold storage material a low viscosity of about 1,000 cP (paint or the like). As a result, as shown in FIG. 12A, even when the temperature management of the cold insulation object is performed by leaning the cold storage pack, the cold insulation object can be sufficiently temperature-controlled.
  • a cold storage pack is produced using a stirring PTP packaging machine.
  • the method for manufacturing a cold storage pack includes at least a first deep-drawn container by a step of molding a first deep-drawn container (first housing portion) having a concave shape with a first mold and a second mold.
  • Forming a second deep-drawn container (second housing portion) having a concave shape larger than the concave shape of the first deep-cooled container, and a first cold storage that changes phase at a predetermined temperature in the first deep-drawn container
  • a step of filling a material (frozen material) a step of filling a second deep-drawn container with a second cold storage material (antifreeze material) that maintains a liquid phase state at the phase change temperature of the frozen material, and a second
  • the first deep-drawn container filled with the first cold storage material (freezing material) is stacked on the second deep-drawn container filled with the cold storage material (freezing material), and the lid material, the first Joining at least the flange portion of the deep-drawn container and the flange portion of the second deep-drawn container.
  • the following manufacturing method may be used. That is, the step of molding the first deep-drawn container (first housing portion) having a concave shape with the first mold and the second mold at least more than the concave shape of the first deep-drawn container.
  • the step of molding the second deep-drawn container (second housing portion) having a large concave shape, and the liquid phase state in the second deep-drawn container at the phase change temperature of the first cold storage material (freezing material) A step of filling the second cold storage material (antifreeze material) to be maintained, and a first deep-drawn container filled with the first cold storage material in the second deep-drawn container filled with the second cold storage material , A step of filling the first deep-drawn container with a first cold storage material that changes phase at a predetermined temperature, a lid, a flange portion of the first deep-drawn container, and a second Joining the flange portion of the deep-drawn container.
  • FIG. 13A and FIG. 13B are conceptual diagrams showing the steps of manufacturing the first deep-drawn container.
  • the hard film 31 is installed in the vacuum molding die 30 as a 1st metal mold
  • the first deep-drawn container is present between the lid material and the second deep-drawn container
  • the first deep-drawn container is composed of a three-layer film such as PE // NY // PP.
  • a three-layer film there is a concern that the seal strength becomes unstable.
  • the seal strength becomes unstable.
  • there is a heater on only one side of the sealer so that there is a problem that the sealing strength of the film sealed on the side where the heater is not present becomes weak.
  • the flowability is lower than that of a two-layer film, the number of manufacturing steps is large, and the price is high. Therefore, in this embodiment, it was set as the structure which dares to have a 2 layer film structure, and provides a through-hole in arbitrary part of a film.
  • a first deep-drawn container (first housing portion) 3 having a concave shape is formed.
  • FIG. 14A and FIG. 14B are conceptual diagrams showing steps of manufacturing the second deep-drawn container. As shown in FIG. 14A, second, a soft film 51 is placed in a vacuum molding die 50 as a die, and vacuum molding is performed using a vacuum molding machine.
  • FIG. 15 is a conceptual diagram showing a process of filling the second regenerator material (antifreeze material).
  • the second deep-drawn container 5 formed as described above is quantitatively filled with the second cold storage material (antifreeze material) 5a using a liquid filling machine.
  • a pump-type filling machine for a liquid filling machine.
  • the second regenerator material has a minimum viscosity that does not affect the material rebounding or popping out, and a minimum viscosity that maintains shape against its own weight in the filling process. For example, it preferably has a viscosity of about 1,000 to 10,000 cP. By having viscosity, it becomes possible to increase the filling rate of the regenerator material.
  • FIG. 16 is a conceptual diagram showing a process of thermocompression bonding a film.
  • the first deep-drawn container 3 formed as described above is positioned on the second deep-drawn container 5 filled with the second cold storage material (antifreeze material), and the first deep-drawn container 3 is positioned.
  • the film forming the container 3 and the film material forming the second deep-drawn container 5 are heat-welded.
  • a heat sealer is preferably used for thermocompression bonding of the film. Further, an ultrasonic welder may be used.
  • FIG. 17 is a schematic diagram showing a process of filling the first regenerator material (frozen material) 3a.
  • the first cold storage material 3a is quantitatively filled into the first deep-drawn container 3 formed as described above using a liquid filling machine.
  • a pump-type filling machine for a liquid filling machine.
  • the 1st cool storage material (frozen material) 3a has a viscosity with shape maintenance property with respect to own weight. For example, a viscosity of about 1,000 to 10,000 cP is more preferable. By having viscosity, it is possible to increase the filling rate of the regenerator material.
  • the filling rate of the regenerator material with respect to the volume of the container is preferably about 70 to 90%, and a state in which a void layer is formed between the container and the top surface of the container is preferable.
  • FIG. 18 is a conceptual diagram showing a process of thermocompression bonding a film.
  • the lid member 7 is positioned on the second deep-drawn container 5, and the film material forming the second deep-drawn container 5 and the lid material 7 are heat-welded.
  • a heat sealer is preferably used for thermocompression bonding of the film.
  • An ultrasonic welder may be used.
  • a through-hole 8 is provided in a part of the top surface of the film forming the second deep-drawn container 5, and at the time of welding in this step, the first deep-drawn container 3 is attached via the through-hole 8.
  • the film to be formed and the lid member 7 are preferably welded.
  • the second deep-drawn container may have a shape having bottom surfaces with different depths.
  • the second deep-drawn container is shaped so that the depth increases stepwise in the height direction, Adhesiveness with food and drink can be improved.
  • the welding means include ultrasonic welding, vibration welding, induction welding, high frequency welding, semiconductor laser welding, thermal welding, spin welding, and the like as described above. It is not limited.
  • the second regenerator material maintains a liquid phase state at the phase change temperature of the first regenerator material, and the second deep-drawn container contacts the food or drink as the heat receiver. It can be manufactured.
  • the weight of the object is the basic weight (R)
  • the minimum weight difference that can be perceived by humans with respect to the basic weight (R) is the discrimination threshold ( ⁇ R)
  • the Weber ratio ( ⁇ R / R) The value of is in the range of 0.05 to 0.2.
  • the weight of the wine bottle (including wine (liquid amount)) is compared with the red wine server “frozen material + antifreeze material” of one embodiment of the present invention. Estimate how much weight is acceptable.
  • FIG. 19 is a diagram showing an outline of the procedure of the comparative control experiment.
  • Comparative experiment I (Procedure I) (1) A wine bottle (bottle contents: 750 mL water) whose liquid temperature is kept at room temperature (around 25 ° C.) is prepared. (2) Wrap a frozen material, an antifreeze material, or both around the wine bottle that has been cooled (frozen) in a freezer (around -18 ° C). (3) A heat insulating material is wound around the outer periphery of a wound cold storage material (a frozen material that has been cooled (frozen), an antifreeze material, or both). A general-purpose AL vapor deposition + foamed PE is used as the heat insulating material. (4) The wine bottle is put in a heat storage box at 25 ° C., and the change in the water temperature in the bottle at the center of the bottle is measured.
  • FIG. 20 is a diagram showing an evaluation method of the comparative experiment I, and actually measures the “arrival time” and “holding time” of the liquid temperature after the start of wine cooling.
  • the reached temperature is the upper limit temperature (18 ° C.) when drinking red wine.
  • the result by the evaluation method I is referred to as an evaluation result I.
  • FIG. 21 is a diagram showing an evaluation method of the comparative experiment II, in which the “holding time” of the liquid temperature after the start of wine cooling is actually measured.
  • the holding temperature is the upper limit temperature (18 ° C.) when drinking red wine.
  • the result by the evaluation method II is referred to as an evaluation result II.
  • FIG. 22 is a table showing the structures of antifreeze materials and frozen materials of Comparative Examples 1 to 4 and Examples 1 to 4. As shown in FIG. 22, in Comparative Examples 1 to 4 and Examples 1 to 4, an antifreeze material and a frozen material were respectively produced, and evaluations I and II were performed according to the above procedures I and II. As shown in FIG. 22, Comparative Examples 1 to 4 and Examples 1 to 4 are different in the mounting form of the cold storage packs.
  • FIG. 23 is a diagram showing an outline of filling and packaging of the antifreeze material of Comparative Example 1.
  • A Tap water and NaCl (sodium chloride) are put into a stirring tank and stirred and dissolved at 150 rpm / 10 min to prepare a NaCl — 23 wt% aqueous solution.
  • B The pump is operated, and the aqueous solution prepared in (A) above is film-wrapped with a vertical pillow type packaging machine to produce a total of 300 g of antifreeze member (heat storage package).
  • the ONY_10um / LLDPE_50um product was used for the package film.
  • FIG. 24A is a diagram showing an evaluation result I of Comparative Example 1.
  • the material is an unfrozen material (non-freezing material), so the cooling capacity is low, and the liquid temperature cannot be cooled to the upper limit of 18 ° C. when drinking red wine.
  • FIG. 24B is a diagram showing an evaluation result II of Comparative Example 1. Adhesion to the wine bottle is good, but the material is unfrozen (non-frozen), so the cooling capacity is low, the liquid temperature rises over time, and the upper limit of 18 ° C for drinking red wine can be maintained. Was less than 30 minutes.
  • FIG. 25A is a diagram showing an evaluation result I of Comparative Example 2. It was confirmed that the material has a latent heat of freezing, has a higher cooling capacity than Comparative Example 1, and reaches the temperature when drinking red wine. However, due to the frozen material, the adhesion with the wine bottle was poor, and it was confirmed that neither the arrival time nor the retention time was sufficient.
  • FIG. 25B is a diagram showing an evaluation result II of Comparative Example 2. Since the material has a latent heat of fusion around 12 ° C., it was found that the temperature at the time of drinking red wine can be maintained for about 100 minutes after the start of measurement. However, with this configuration alone, as in the evaluation result I of Comparative Example 2, it is not possible to maintain wine near normal temperature at a sufficient drinking temperature (14 to 18 ° C.).
  • FIG. 26A is a diagram illustrating an outline of generating a cold storage pack according to Comparative Example 3
  • FIG. 26B is a plan view of Comparative Example 3
  • FIG. 26C is a side view of Comparative Example 3.
  • An antifreeze material [NaCl (sodium chloride) _23 wt% aqueous solution] was prepared in the same manner as in Comparative Example 1, and a frozen material [TBAB (tetrabutylammonium bromide) _41 wt% aqueous solution] was prepared in the same manner as in Comparative Example 2. did.
  • a pack-in-pack regenerator member (cold regenerator pack) in which a film pack was filled with an antifreeze material and a regenerator material formed into a film pack was produced using the vertical pillow type packaging machine shown in FIG. 26A.
  • the ONY_10um / LLDPE_50um product was used for the package film.
  • FIG. 27A is a diagram showing an evaluation result I of Comparative Example 3.
  • FIG. 27B is a diagram showing an evaluation result II of Comparative Example 3. It is sufficient compared with Comparative Examples 1 and 2 by realizing a configuration of antifreezing material + freezing material, that is, providing a “cooling function” with the frozen material while ensuring “adhesion” with the antifreezing material. While an ultimate temperature of 14 ° C. was obtained, a holding time equivalent to that of Comparative Example 2 was obtained. However, in this configuration, as in the evaluation result I of Comparative Example 3, the efficiency of heat exchange decreases due to the generation of a gap.
  • a cold storage member (cold storage pack) was prepared using a stirring PTP packaging machine.
  • a NaCl (sodium chloride) — 23 wt% aqueous solution was used as the antifreeze material, and a KCl (potassium chloride) — 20 wt% aqueous solution was used as the frozen material.
  • FIG. 28A is a diagram showing an evaluation result I of Comparative Example 4.
  • the composition of antifreeze material + frozen material that is, the structure that provides the “cooling function” with the frozen material while ensuring “adhesion” with the antifreeze material, and packs in with PTP packaging.
  • KCl melting point: -11 ° C
  • the liquid temperature is significantly lower than the temperature when drinking red wine (14-18 ° C), and the temperature when drinking red wine. It was confirmed that (14 to 18 ° C.) could not be maintained. It was confirmed that almost the same results were obtained when the frozen material was water.
  • FIG. 28B is a diagram showing an evaluation result II of Comparative Example 4. Also in this evaluation result, if a material with a low phase change temperature such as KCl (melting point: ⁇ 11 ° C.) is selected as the frozen material, the liquid temperature will be significantly lower than the drinking temperature (14-18 ° C.) of red wine. It was confirmed that the drinking temperature (14-18 ° C.) could not be maintained.
  • KCl melting point: ⁇ 11 ° C.
  • Example 1 A cold storage member (cold storage pack) was prepared using a stirring PTP packaging machine. 150 g of NaCl_23 wt% aqueous solution was used as the antifreeze material, and 150 g of TBAB_41 wt% aqueous solution was used as the frozen material.
  • FIG. 29A is a diagram showing an evaluation result I of Example 1.
  • the arrival time was improved from 25 minutes to 20 minutes and the holding time was also improved from 95 minutes to 120 minutes compared to Comparative Example 3.
  • FIG. 29B is a diagram showing an evaluation result II of Example 1. By having a structure based on PTP packaging, the holding time was improved from 105 minutes to 120 minutes compared to Comparative Example 3.
  • Example 2 A cold storage member (cold storage pack) was prepared using a stirring PTP packaging machine.
  • As the antifreeze material 100 g of NaCl — 23 wt% aqueous solution was used, and as the frozen material, 150 g of TBAB — 41 wt% aqueous solution was used.
  • FIG. 30A is a diagram showing an evaluation result I of Example 2.
  • FIG. 30B is a diagram showing an evaluation result II of Example 2. It was confirmed that by reducing the amount of the antifreeze material from 150 g to 100 g, the heat exchange efficiency from the frozen material to the wine bottle was improved and the holding time was lengthened.
  • Example 3 A cold storage member (cold storage pack) was prepared using a stirring PTP packaging machine. 300 g of NaCl_23 wt% aqueous solution was used as the antifreeze material and 150 g of TBAB_41 wt% aqueous solution was used as the frozen material.
  • FIG. 31A is a diagram showing an evaluation result I of Example 3.
  • FIG. 31B is a diagram showing an evaluation result II of Example 3. It was confirmed that by increasing the amount of the antifreeze material from 150 g to 300 g, the heat exchange efficiency from the frozen material to the wine bottle was lowered and the holding time was shortened.
  • Example 4 A cold storage member (cold storage pack) was prepared using a stirring PTP packaging machine. A cold storage pack in which 150 g of NaCl_23 wt% aqueous solution was used as the antifreeze material and 200 g of the thickened material was added to the TBAB_41 wt% aqueous solution added with CMC_5 wt% was used. By increasing the viscosity, the filling rate with respect to the filling container volume was improved by 20% from 60% to 80%.
  • FIG. 32A is a diagram showing an evaluation result I of Example 3.
  • the retention time was slightly longer than in Example 1 due to the increase in the filling rate of the frozen material due to thickening.
  • FIG. 32B is a diagram showing an evaluation result II of Example 4. Similar to the evaluation result I of Example 4, the retention time was slightly longer than that of Example 1 due to the increase in the filling rate of the frozen material by thickening.
  • FIG. 33 is a table summarizing the implementation results of Comparative Examples 1 to 4 and Examples 1 to 4. From the evaluation results, it is preferable to use a NaCl — 23 wt% aqueous solution for the antifreeze material and a TBAB — 41 wt% aqueous solution for the frozen material, and the mounting form of the cold storage pack is the PTP used in Comparative Example 4 from the viewpoint of heat exchange efficiency as described above. It has been found that packaging (deep-drawn containers) is preferred. And in Example 1 and Example 3, it turned out that the target specification of the server for red wine which concerns on this embodiment can be achieved.
  • 34A to 34C are graphs showing the relationship between the amount of antifreeze material and each performance (arrival time, holding temperature, ultimate temperature) based on the results of Examples 1 to 3.
  • the condition (amount of antifreeze material) satisfying each performance reasonably is 150 g.
  • FIG. 35A is a graph showing a change in the temperature of wine when the amount of antifreeze material (1) to (5) is used under a constant amount of frozen material (100 g).
  • FIG. 35B is a graph showing the relationship between the time for the wine temperature to reach 18 ° C. and the amount of antifreeze material.
  • the reaching time (14-18 ° C.) of red wine tends to be shortened in proportion to the amount of antifreeze, but when it exceeds a certain amount (200 g), it is saturated.
  • a certain amount 200 g
  • the heat capacity that can exchange heat in the bottle direction has been determined, and even if the mounting amount is increased beyond a certain amount, the thickness will only increase and it will not contribute to heat exchange in the bottle direction. it is conceivable that.
  • the amount of antifreeze material is less than 50 g, the time required to achieve the temperature for drinking red wine (14-18 ° C.) will exceed 20 minutes. Therefore, the amount of antifreeze material is preferably at least 50 g and 200 g. When the rapid cooling performance is pursued, the amount of antifreeze material is preferably 100 g or more and 200 g or less.
  • the thermal conductivity of the packaging material is (1) 0.1 W / m ⁇ K, (2 ) 0.25 W / m ⁇ K, (3) 1.0 W / m ⁇ K, (4) 5.0 W / m ⁇ K, (5) 50 W / m ⁇ K, (6) 100 W / m ⁇ K Measure the temperature change of the wine.
  • FIG. 36A is a graph showing the temperature change of wine by the packaging materials (1) to (6) having different thermal conductivities.
  • FIG. 36B is a graph showing the relationship between the time for the wine temperature to reach 18 ° C. and the thermal conductivity of the packaging material.
  • the thermal conductivity of the packaging material tends to shorten the time to reach the drinking temperature (14 to 18 ° C.) as the thermal conductivity increases, but 1.0 W / m ⁇ Since the difference is almost eliminated at K or higher, the thermal conductivity of the packaging material for packaging the antifreeze material or frozen material (particularly antifreeze material) is preferably 1.0 W / m ⁇ K or higher. It is also preferable to use aluminum (AL) having a high thermal conductivity (250 W / m ⁇ K) as a packaging material. Although gold, silver, and the like exist as materials having higher thermal conductivity than aluminum, it is not practical to use as a packaging material. This is because if the thermal conductivity is too high, there may be a possibility of heat dissipation loss to the outside.
  • FIG. 37 is a diagram showing an outline of verification.
  • Wine physical properties: water (specific heat, etc.), loading weight: 500 mL
  • a wine bottle 80 material: Glass / thickness 3 mm, outer dimension: ⁇ 76 ⁇ 200 mm
  • an antifreeze material is placed outside the wine bottle 80.
  • Layer 83 and frozen material layer 85 were installed.
  • the antifreeze layer 83 has a mounting weight of 100 to 200 g, a packaging form: a film / thickness of 50 ⁇ m, and an outer dimension: ⁇ 200 ⁇ 234 mm.
  • the frozen material layer 85 has a mounting weight of 100 to 200 g, a packaging form: a film / thickness of 50 ⁇ m, and an outer dimension: ⁇ 200 ⁇ 256 mm (indirect portion width: 10 mm ⁇ 6 locations).
  • FIG. 38 is a table summarizing the mounting weight of the antifreeze material and the frozen material, and the packaging material.
  • the verification procedure is as follows. (A) Freezing the frozen anti-freeze material and the frozen material in a film in a freezer ( ⁇ 18 ° C.). (B) An antifreeze material and a frozen material are mounted on a red wine bottle (500 mL) at room temperature (around 25 ° C.), and the temperature change of the wine liquid temperature in the wine bottle is measured.
  • FIG. 39 is a table summarizing the measurement results of the arrival time and the holding time depending on the combination of the weight of the antifreeze material and the frozen material and the packaging material.
  • FIG. 40 is a graph showing the temperature change of the wine liquid temperature of each combination. It was found that the arrival time and the holding time can be further improved by using a material having a high thermal conductivity for the packaging material.
  • FIG. 41 is a diagram showing the temperature distribution of the wine liquid temperature under condition 2, that is, a diagram conceptually showing the temperature distribution on the cross section in the vertical direction of the wine bottle.
  • a red wine bottle (500 mL) at room temperature (around 25 ° C) is allowed to reach the temperature for drinking red wine (14-18 ° C) in just 12 minutes, and then the temperature for drinking red wine (14- 18 ° C.) temperature can be maintained.
  • the liquid temperature inside the wine bottle is 2.981e + 002 [K] (24.95) at 0 minutes after the installation of the antifreeze layer and the frozen layer on the wine bottle. Only the liquid temperature on the surface side of the wine bottle is 2.551e + 002 [K] ( ⁇ 18.05 ° C.). However, after 10 minutes, the liquid temperature in the wine bottle is 2.874e + 002 [K] (14.25 ° C.), and after that, it is cooled to the red wine drinking temperature (14-18 ° C.). I understand.
  • FIG. 42 is a diagram showing a verification result regarding the concentration dependency of TBAB.
  • FIG. 42 is a graph showing the relationship between the TBAB concentration and the melting start external temperature.
  • the concentration of TBAB is (1)
  • the peak of the melting start extrapolation temperature is around 0 ° C.
  • the concentration of TBAB is (2)
  • the peak of the melting start extrapolation temperature is 6 to 10 ° C.
  • the concentration of TBAB is (3)
  • the melting start foreign capital temperature peak is 10 to 12 ° C.
  • FIG. 43 it can be seen that when the concentration of TBAB is 15 wt% or less, it has latent heat only around 0 ° C.
  • the concentration of TBAB is 15 wt% or less, it is not possible to maintain the temperature (14-18 ° C.) when drinking red wine.
  • the concentration of TBAB is preferably 20 wt% or more and 41 wt% or less.
  • One embodiment of the present invention can also adopt a configuration in which the label of the red wine bottle can be seen during cold storage, that is, a configuration in which a cold storage material is mounted around the half circumference of the wine bottle.
  • 44A and 44B are diagrams showing an outline of the configuration of the red wine server according to the seventh embodiment. The configuration of this embodiment is as follows.
  • the cold insulation performance of the server for red wine according to the seventh embodiment was measured.
  • the measuring method is as follows.
  • a wine bottle (water: 750 mL) is kept at 15 ° C.
  • B The red wine server according to the second embodiment is pre-frozen at 5 ° C.
  • C The temperature in the bottle is measured at room temperature (around 25 ° C.).
  • FIG. 45 is a diagram showing the measurement results of the cold insulation performance of the server for red wine according to the seventh embodiment. As shown in FIG. 45, it was confirmed that the red wine drinking temperature (14 to 18 ° C.) could be maintained for 150 minutes or more.
  • red wine can be maintained at an appropriate temperature (14 to 18 ° C.) while ensuring visibility so that the label of the wine bottle can be visually recognized.
  • one embodiment of the present invention can be used for red wine, ale beer having a drinking temperature around 13 ° C., or sake enjoying a cool temperature (around 15 ° C.).
  • the cold storage container of one embodiment of the present invention is a cold storage container that adjusts the temperature of a cold storage object that is a food or drink, and the cold storage container has at least a hollow structure region, A heat storage layer including a frozen material that changes phase at a specific temperature, and a buffer layer that is present separately from the heat storage layer in the region and includes an antifreeze material that is a fluid at the phase change temperature of the frozen material;
  • the heat storage layer conducts heat to the cold insulation object through the buffer layer.
  • the heat absorption amount or the heat generation amount released from the heat storage layer is harmonized by the environmental temperature through the buffer layer, and the outer surface temperature on the buffer layer side of the container may be different from the melting point of the frozen material. it can.
  • the outer surface temperature by the side of the buffer layer of a container can be adjusted suitably by adjusting the thickness of a buffer layer. In other words, by changing the amount of the frozen material or the thickness of the buffer layer without changing the type of the frozen material, it is possible to realize the appropriate temperature for various food materials and maintain the temperature.
  • the specific gravity of the antifreeze material is smaller than the specific gravity of the frozen material.
  • the lower layer of the hollow structure region becomes a heat storage layer, and the upper layer becomes a buffer layer, so that layer formation can be easily performed.
  • the frozen material is water.
  • the antifreeze material is air.
  • the cold insulation container of one embodiment of the present invention includes at least one through hole that penetrates the region of the hollow structure and the outside of the cold insulation container, and a plug that closes the through hole.
  • the cold storage container of one embodiment of the present invention includes a scale indicating the volume of the frozen material or the non-freezing material, or a predicted temperature of the contact surface with the cold storage object corresponding to the volume.
  • the cold insulation container of one embodiment of the present invention has a plurality of buffer layers having different distances from the heat storage layer to the contact surface with the cold insulation object.
  • the cold storage container of one Embodiment of this invention WHEREIN: The area
  • the frozen material and the antifreeze material do not come into contact with each other, so that various combinations of the frozen material and the antifreeze material can be used.
  • the cold-reserving dish of one embodiment of the present invention is the cold-reserving container according to any one of (1) to (8), wherein the cold-retaining container is cooled via the surface of the buffer layer among the surfaces of the cold-retaining container.
  • a food material placement part for placing the object is provided.
  • the cold storage container as it is as a cold storage dish.
  • the object to be kept cold can be kept at the adjusted temperature on the surface of the buffer layer.
  • the cold-reserving dish of one embodiment of the present invention includes a cold-reserving container, an exterior part that accommodates the cold-retained container, and a fixing part that fixes the cold-reserving container and the exterior part.
  • the server for red wine is a server for red wine that manages the temperature of red wine using at least one cold storage pack, and the cold storage pack has a temperature suitable for keeping red wine cold.
  • the antifreeze material maintains a liquid phase state at the phase change temperature of the frozen material, and the second storage portion comes into contact with the wine bottle, so that the second storage portion can be brought into close contact with the wine bottle. .
  • the sensible heat stored in the antifreeze material can be reliably transmitted to the red wine, and the red wine at room temperature (around 25 ° C.) can be quickly reached the desired temperature.
  • the sensible heat and latent heat stored by the frozen material through the antifreeze material is reliably transmitted to the red wine, thereby assisting the red wine to quickly reach the desired temperature, and the latent heat stored by the frozen material is ensured by the red wine. It is possible to keep red wine at a desired temperature for a long time.
  • the total weight of the frozen material and the weight of the antifreeze material is 300 g or less, and the weight of the antifreeze material is 100 g or more and 200 g. It is as follows.
  • the first storage portion and the second storage portion may have a heat of 1.0 W / m ⁇ K to 250.0 W / m ⁇ K. It is made of a material having conductivity.
  • the first storage unit and the second storage unit are deep-drawn containers having flange portions, and the first storage unit.
  • the flange part of the part and the lid member are joined.
  • a through hole is provided in an arbitrary part of the flange portion of the first housing portion, and the through hole has the through hole in the second housing portion. The flange portion and the lid member are directly joined.
  • the package strength is improved and the frozen material and the antifreeze material filled in the housing portion are prevented from leaking to the outside. can do.
  • the frozen material is composed of a tetrabutylammonium bromide aqueous solution, and the concentration of the tetrabutylammonium bromide aqueous solution is 20 wt% or more and 41 wt% or less.
  • the regenerator pack when the regenerator pack is used after being cooled in a refrigerator (around 3-5 ° C), the latent heat can be used to maintain the red wine at the drinking temperature (14-18 ° C). Can be used to cool the red wine to the drinking temperature (14 to 18 ° C.) using sensible heat. Tetrabutylammonium bromide is also non-flammable and therefore has excellent safety.
  • the frozen material is 1.5 wt% to 5.0 wt% sodium tetraborate, or 3.0 wt% to 10.0 wt%. Disodium hydrogen phosphate and 2.0 wt% or more and 5.0 wt% or less of sodium carbonate are added.
  • a frozen material can be frozen at 0 degreeC or more by adding a supercooling prevention agent to the frozen material which consists of tetrabutylammonium bromide aqueous solution.
  • the antifreeze material maintains a liquid phase state at the phase change temperature of the frozen material, and the second storage portion comes into contact with the wine bottle. It becomes possible to make it adhere to a wine bottle.
  • the sensible heat stored in the antifreeze material can be reliably transmitted to the red wine, and the red wine at room temperature (around 25 ° C.) can be quickly reached the desired temperature.
  • the sensible heat and latent heat stored by the frozen material through the antifreeze material is reliably transmitted to the red wine, thereby assisting the red wine to quickly reach the desired temperature, and the latent heat stored by the frozen material is ensured by the red wine. It is possible to keep red wine at a desired temperature for a long time.
  • the cooling performance and temperature holding performance of red wine can be improved.
  • a frozen material a cold storage material that melts below the temperature of drinking red wine (14-18 ° C), and as an antifreeze material, solidifies in a temperature range lower than the freezer temperature range (-18 to -20 ° C).
  • temperature management suitable for red wine can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Packages (AREA)
  • Table Devices Or Equipment (AREA)
  • Table Equipment (AREA)

Abstract

Provided are a cooler container, a cold tray, and a red wine server in which it is possible to adjust the outer surface temperature on the buffer layer side of the container to a temperature that differs from the melting point of a freezing material. Specifically provided is a cooler container for adjusting the temperature of an object to be cooled that is a beverage or food product, the cooler container having at least a region with a hollow structure and being provided with, in said region, a heat storing layer that includes a freezing material which changes phases at a prescribed temperature and a buffer layer that is provided in the region in a manner separated from the heat storing layer and includes a non-freezing material which is a fluid at the phase-change temperature of the freezing material. By providing the buffer layer, it is possible to make the outer surface temperature on the buffer layer side of the container a temperature that differs from the melting point of the freezing material.

Description

保冷容器、保冷皿および赤ワイン用サーバーCold container, cold plate and red wine server
 本発明は、食材や飲食物、赤ワインの温度管理を行なう保冷容器、保冷皿および赤ワイン用サーバーに関する。 The present invention relates to a food container, food and drink, a cold storage container for performing temperature management of red wine, a cold storage dish, and a red wine server.
 保温物、特にワイン、ビール、日本酒等のアルコール類、またはジュース、水等の飲料、或いは食品類、さらには医薬品類には、それぞれに適した保管温度が存在し、保温物の所望の保管温度に、より素早く到達させ、且つ、所望の温度で長時間維持が可能な保冷および保温容器が求められている。例えば、刺身等の生ものは、皿の温度が高い場合には、鮮度が低下し、低過ぎる場合には凍結し、風味を損なう。そのため、0~5℃で食することや保管することが好ましい。他にも、チョコレートは20℃前後、カマンベールチーズでは15~16℃、生牡蠣では0~5℃、はちみつでは18℃以上、玉露では40~50℃、紅茶では60℃前後と本来の触感や風味を損なわず食するための細かい温度帯が存在する。 Insulations, especially alcohols such as wine, beer and sake, beverages such as juice, water, etc., or foods, and pharmaceuticals, each has a suitable storage temperature, and the desired storage temperature of the insulation In addition, there is a need for a cold and warm container that can be reached more quickly and can be maintained at a desired temperature for a long time. For example, raw food such as sashimi has a low freshness when the temperature of the plate is high, and freezes when the temperature is too low, which impairs the flavor. Therefore, it is preferable to eat or store at 0-5 ° C. In addition, chocolate is around 20 ° C, Camembert cheese is 15 to 16 ° C, fresh oysters are 0 to 5 ° C, honey is 18 ° C or higher, Gyokuro is 40 to 50 ° C, tea is around 60 ° C. There is a fine temperature zone to eat without damaging.
 そのため、このような食材や飲食物を皿やバットといった保冷または保温容器に乗せる、または一時的に保存する場合には、その温度に保持できる容器が望まれる。このような観点に基づき、特許文献1では、保温・保冷剤を皿やバットの底部に備えることで、皿やバットに置かれた食材の温度を保持可能にする技術が開示されている。 Therefore, when such foods and foods are placed in a cold or heat insulating container such as a plate or a bat, or temporarily stored, a container capable of maintaining the temperature is desired. Based on such a viewpoint, Patent Document 1 discloses a technique that enables the temperature of food placed on a plate or bat to be maintained by providing a heat insulating / cooling agent at the bottom of the plate or bat.
 一方で、ワインは温度により風味や香りに大きな差を生じるため、より飲み頃の温度を維持できることが求められる。このような要求に対して、氷水を張ったワインクーラーが、広く使用されている。 On the other hand, wine has a great difference in flavor and aroma depending on the temperature, so it is required that the temperature at the time of drinking can be maintained. In response to such demands, wine coolers filled with ice water are widely used.
 しかしながら、上記ワインクーラーではワインクーラーからボトルを取り出す毎にワインボトルに付着した水滴等を取り除く必要があった。このような煩わしさを解消するため、ワインボトルを収納し、且つ内側(ボトル側)に保冷剤を固定可能な手段を備えたワインクーラーが提案されている。これによって、ボトルに付着した水滴等を取り除く必要はなくなるが、蓄冷材は、水をベースにした保冷材(0℃以下)が前提とされているため、この構成形態では、温度が下がり過ぎてしまい、赤ワインを飲み頃温度(14~18℃)に保持することができない。一方、蓄冷材がない場合、赤ワインの飲み頃温度(14~18℃)を保持できる時間は30分に満たない。即ち、電気によって温度を一定に保つワインセラー等を用いない限り、赤ワインを飲み頃温度に保持することはできないという課題がある。 However, in the above wine cooler, it is necessary to remove water droplets and the like attached to the wine bottle every time the bottle is taken out from the wine cooler. In order to eliminate such annoyance, a wine cooler has been proposed which includes a means for storing a wine bottle and fixing a cooling agent inside (bottle side). This eliminates the need to remove water droplets and the like adhering to the bottle. However, since the cold storage material is premised on a water-based cold insulation material (below 0 ° C.), in this configuration, the temperature is too low. As a result, the red wine cannot be kept at the drinking temperature (14-18 ° C.). On the other hand, when there is no cold storage material, the time during which red wine can be kept at a temperature (14-18 ° C.) is less than 30 minutes. That is, there is a problem that red wine cannot be kept at the temperature when drinking unless a wine cellar or the like that keeps the temperature constant by electricity is used.
 上記の保冷または保温する皿やバット、ワインクーラー等に用いる保冷・保温剤として、特許文献2では、常温近傍での保冷に適し、ヘキサデカンやテトラデカンと混合すべき高分子の含有量が少なく、且つ柔軟性に優れた蓄冷材に関する技術が開示されている。 As a cold / heat-retaining agent used for the above-mentioned cold or heat-retaining dish, bat, wine cooler, etc., in Patent Document 2, it is suitable for cold preservation in the vicinity of room temperature, and contains a small amount of polymer to be mixed with hexadecane or tetradecane, and A technique related to a cold storage material having excellent flexibility is disclosed.
 また、特許文献3では、保冷容器の内壁に保冷材を着脱自在に取付け可能とする固定手段を備えたワインクーラーが提案されている。保冷容器内に、段部(リブ)が設けられており、段部に保冷材が設けられている。この構成により、従来のワインクーラーに比べ、簡単な構造で、ワインボトルに水滴が付着しにくく、ワインボトルを挿入し易くしている。 Patent Document 3 proposes a wine cooler provided with a fixing means that allows a cold insulation material to be detachably attached to the inner wall of the cold insulation container. A step portion (rib) is provided in the cold storage container, and a cold insulating material is provided in the step portion. With this configuration, compared to a conventional wine cooler, water droplets are less likely to adhere to the wine bottle, making it easier to insert the wine bottle.
特開2010-203753号公報JP 2010-203753 A 特開2006-316194号公報JP 2006-316194 A 特開2010-047313号公報JP 2010-047313 A
 しかしながら、特許文献1の保冷皿は、皿の上面の温度は保温・保冷剤の相変化温度により決まっているため、種々の食材の適温ごとに、皿の温度を調整することが難しく、適温ごとに保温・保冷剤を準備する必要があり、煩雑であった。 However, since the temperature of the upper surface of the plate is determined by the phase change temperature of the heat insulating / cooling agent, it is difficult to adjust the temperature of the plate for each appropriate temperature of various ingredients. In addition, it was necessary to prepare a heat insulating / cooling agent, which was complicated.
 また、特許文献2では、蓄冷材の相変化温度(潜熱が存在する温度)帯として、赤ワインの飲み頃温度(14~18℃)を保持できる可能性はあるが、蓄冷材をワインボトルに単に巻くだけでは、蓄冷材の相変化温度以外の温度、例えば白ワインの飲み頃温度5~10℃に保持することが困難であり、常温(25℃近辺)の赤ワインを素早く飲み頃温度(14~18℃)に到達させることや、赤ワインを飲み頃温度(14~18℃)で十分に保持することができない。また、ワインクーラーとしての具体的構成が提示されていない。さらに、特許文献2で用いられている蓄冷材は、有機系(石油等)材料から構成されているため、材料に可燃性があり、飲食分野への適用は不向きである。 Further, in Patent Document 2, there is a possibility that the temperature of drinking red wine (14-18 ° C) can be maintained as the phase change temperature (temperature at which latent heat exists) of the regenerator material, but the regenerator material is simply placed in the wine bottle. It is difficult to keep it at a temperature other than the phase change temperature of the regenerator material, for example, 5 to 10 ° C. when drinking white wine. 18 ° C.), and it is not possible to hold red wine sufficiently at the drinking temperature (14-18 ° C.). Moreover, the concrete structure as a wine cooler is not shown. Furthermore, since the cool storage material used in Patent Document 2 is composed of an organic (petroleum, etc.) material, the material is flammable and is not suitable for the food and drink field.
 また、特許文献3では、保冷剤に関する具体的な温度が規定されていない。そのため、赤ワインを飲み頃温度(14~18℃)で十分に保持できない。 Further, in Patent Document 3, a specific temperature related to the cryogen is not specified. For this reason, red wine cannot be sufficiently maintained at the drinking temperature (14 to 18 ° C.).
 本発明の一実施形態は、このような事情に鑑みてなされたものであり、容器の緩衝層側の外面温度を、凍結材の融点とは異なる温度に調整が可能な保冷容器を提供することを目的とする。 One embodiment of the present invention has been made in view of such circumstances, and provides a cold storage container capable of adjusting the outer surface temperature of the container on the buffer layer side to a temperature different from the melting point of the frozen material. With the goal.
 上記の目的を達成するために、本発明の一実施形態は、以下のような手段を講じた。即ち、本発明の一実施形態の保冷容器は、飲食品である保冷対象物の温度調節を行なう保冷容器であって、前記保冷容器は、少なくとも中空構造の領域を有し、前記領域に、特定の温度で相変化する凍結材を含む蓄熱層と、前記領域で前記蓄熱層とは分離して存在し、前記凍結材の相変化温度で流体である不凍材を含む緩衝層と、を備え、前記緩衝層を介して、前記蓄熱層が前記保冷対象物に熱伝導を行なう。 In order to achieve the above object, one embodiment of the present invention takes the following measures. That is, the cold storage container of one embodiment of the present invention is a cold storage container that adjusts the temperature of a cold storage object that is a food or drink, and the cold storage container has at least a hollow structure region, and is specified in the region. A heat storage layer including a frozen material that changes in phase at a temperature of the material, and a buffer layer including an antifreeze material that is a fluid at the phase change temperature of the frozen material, the heat storage layer being separated from the heat storage layer in the region. The heat storage layer conducts heat to the cold object through the buffer layer.
 本発明の一実施形態によれば、緩衝層を介することで、蓄熱層から放出される吸熱量もしくは発熱量が環境温度により調和され、容器の緩衝層側の外面温度は、凍結材の融点とは異なる温度にすることができる。また、緩衝層の厚みを調整することで、適宜容器の緩衝層側の外面温度を調整することができる。つまり、凍結材の種類を変えることなく、凍結材の量または緩衝層の厚みを変えるだけで、種々の飲食品に対する適温を実現し、その温度を保持することができる。 According to one embodiment of the present invention, the heat absorption amount or the heat generation amount released from the heat storage layer is harmonized by the environmental temperature through the buffer layer, and the outer surface temperature on the buffer layer side of the container is equal to the melting point of the frozen material. Can be at different temperatures. Moreover, the outer surface temperature by the side of the buffer layer of a container can be adjusted suitably by adjusting the thickness of a buffer layer. That is, by changing the amount of the frozen material or the thickness of the buffer layer without changing the type of the frozen material, the appropriate temperature for various foods and drinks can be realized and the temperature can be maintained.
第1の実施形態に係る保冷容器を示す断面図である。It is sectional drawing which shows the cold storage container which concerns on 1st Embodiment. 第1の実施形態に係る保冷容器の使用状態の例を示す断面図である。It is sectional drawing which shows the example of the use condition of the cold storage container which concerns on 1st Embodiment. 凍結材の例とその相変化温度を示す表である。It is a table | surface which shows the example of frozen material, and its phase change temperature. 第1の実施形態に係る保冷容器の製造の工程を示す概念図である。It is a conceptual diagram which shows the process of manufacture of the cold storage container which concerns on 1st Embodiment. 第1の実施形態に係る保冷容器の製造の工程を示す概念図である。It is a conceptual diagram which shows the process of manufacture of the cold storage container which concerns on 1st Embodiment. 第1の実施形態に係る保冷容器の製造の工程を示す概念図である。It is a conceptual diagram which shows the process of manufacture of the cold storage container which concerns on 1st Embodiment. 第1の実施形態に係る保冷容器の容器本体の例を示す模式図である。It is a schematic diagram which shows the example of the container main body of the cold storage container which concerns on 1st Embodiment. 実施例1-1の保冷皿の表面温度の変化を示すグラフである。It is a graph which shows the change of the surface temperature of the cold storage tray of Example 1-1. 実施例1-1、1-2および比較例1-1の凍結材の液量と緩衝層の厚みを示す表である。6 is a table showing the amount of the frozen material and the thickness of the buffer layer in Examples 1-1 and 1-2 and Comparative Example 1-1. 実施例1-1、1-2および比較例1-1の緩衝層の厚みと皿の上面温度の関係を表すグラフである。6 is a graph showing the relationship between the thickness of the buffer layer and the upper surface temperature of the pan in Examples 1-1 and 1-2 and Comparative Example 1-1. 第2の実施形態に係る保冷容器を示す断面図である。It is sectional drawing which shows the cold storage container which concerns on 2nd Embodiment. 第3の実施形態に係るカッティングボードを示す断面図である。It is sectional drawing which shows the cutting board which concerns on 3rd Embodiment. 第4の実施形態に係る保冷皿を示す断面図である。It is sectional drawing which shows the cold storage tray which concerns on 4th Embodiment. 第5の実施形態に係る保冷皿を示す断面図である。It is sectional drawing which shows the cold storage tray which concerns on 5th Embodiment. 第5の実施形態に係る保冷皿を示す断面図である。It is sectional drawing which shows the cold storage tray which concerns on 5th Embodiment. 第6の実施形態に係る赤ワイン用サーバーの使用状態を示す断面図である。It is sectional drawing which shows the use condition of the server for red wine which concerns on 6th Embodiment. 第6の実施形態に係る蓄冷パックの断面図である。It is sectional drawing of the cool storage pack which concerns on 6th Embodiment. 従来のワインクーラーの使用状態を示す断面図である。It is sectional drawing which shows the use condition of the conventional wine cooler. 第1の蓄冷材(粘性有り)の概念を示す図である。It is a figure which shows the concept of a 1st cool storage material (with viscosity). 第1の蓄冷材(粘性無し)の概念を示す図である。It is a figure which shows the concept of a 1st cool storage material (no viscosity). 第1の深絞り容器の製造の工程を示す概念図である。It is a conceptual diagram which shows the process of manufacture of a 1st deep draw container. 第1の深絞り容器の製造の工程を示す概念図である。It is a conceptual diagram which shows the process of manufacture of a 1st deep draw container. 第2の深絞り容器の製造の工程を示す概念図である。It is a conceptual diagram which shows the process of manufacture of the 2nd deep draw container. 第2の深絞り容器の製造の工程を示す概念図である。It is a conceptual diagram which shows the process of manufacture of the 2nd deep draw container. 第2の蓄冷材(不凍材)を充填する工程を示す概念図である。It is a conceptual diagram which shows the process of filling a 2nd cool storage material (antifreeze material). フィルムを熱圧着する工程を示す概念図である。It is a conceptual diagram which shows the process of thermocompression bonding a film. 第1の蓄冷材(凍結材)を充填する工程を示す概要図である。It is a schematic diagram which shows the process of filling a 1st cool storage material (frozen material). フィルムを熱圧着する工程を示す概念図である。It is a conceptual diagram which shows the process of thermocompression bonding a film. 比較対照実験の手順の概要を示す図である。It is a figure which shows the outline | summary of the procedure of a comparison experiment. 比較対照実験Iの評価方法を示す図である。It is a figure which shows the evaluation method of the comparative control experiment I. 比較対照実の評価方法を示す図である。It is a figure which shows the evaluation method of a comparative comparison actual. 比較例1~4および実施例1~4の不凍材および凍結材の構成を示す表である。6 is a table showing configurations of antifreeze materials and frozen materials of Comparative Examples 1 to 4 and Examples 1 to 4. 比較例1の不凍材の充填および包装の概要を示す図である。It is a figure which shows the outline | summary of filling and packaging of the antifreeze material of the comparative example 1. FIG. 比較例1の評価結果Iを示す図である。It is a figure which shows the evaluation result I of the comparative example 1. 比較例1の評価結果IIを示す図である。It is a figure which shows the evaluation result II of the comparative example 1. 比較例2の評価結果Iを示す図である。It is a figure which shows the evaluation result I of the comparative example 2. 比較例2の評価結果IIを示す図である。It is a figure which shows the evaluation result II of the comparative example 2. 比較例3に係る蓄冷パックを生成する概要を示す図である。It is a figure which shows the outline | summary which produces | generates the cool storage pack which concerns on the comparative example 3. FIG. 比較例3の平面図である。10 is a plan view of Comparative Example 3. FIG. 比較例3の側面図である。10 is a side view of Comparative Example 3. FIG. 比較例3の評価結果Iを示す図である。It is a figure which shows the evaluation result I of the comparative example 3. 比較例3の評価結果IIを示す図である。It is a figure which shows the evaluation result II of the comparative example 3. 比較例4の評価結果Iを示す図である。It is a figure which shows the evaluation result I of the comparative example 4. 比較例4の評価結果IIを示す図である。It is a figure which shows the evaluation result II of the comparative example 4. 実施例1の評価結果Iを示す図である。It is a figure which shows the evaluation result I of Example 1. FIG. 実施例1の評価結果IIを示す図である。It is a figure which shows the evaluation result II of Example 1. FIG. 実施例2の評価結果Iを示す図である。It is a figure which shows the evaluation result I of Example 2. FIG. 実施例2の評価結果IIを示す図である。It is a figure which shows the evaluation result II of Example 2. FIG. 実施例3の評価結果Iを示す図である。It is a figure which shows the evaluation result I of Example 3. 実施例3の評価結果IIを示す図である。It is a figure which shows the evaluation result II of Example 3. 実施例4の評価結果Iを示す図である。It is a figure which shows the evaluation result I of Example 4. 実施例4の評価結果IIを示す図である。It is a figure which shows the evaluation result II of Example 4. 比較例1~4および実施例1~4の実施結果をまとめた表である。3 is a table summarizing the results of Comparative Examples 1 to 4 and Examples 1 to 4. 不凍材の量と各性能(到達時間)との関係を示したグラフである。It is the graph which showed the relationship between the quantity of antifreeze material, and each performance (arrival time). 不凍材の量と各性能(保持温度)との関係を示したグラフである。It is the graph which showed the relationship between the quantity of antifreeze material, and each performance (holding temperature). 不凍材の量と各性能(到達温度)との関係を示したグラフである。It is the graph which showed the relationship between the quantity of antifreeze material, and each performance (attainment temperature). 凍結材量一定(100g)の下、異なる量の不凍材を用いた場合のワインの温度変化を示したグラフである。It is the graph which showed the temperature change of the wine at the time of using a different amount of non-freezing material under fixed amount of frozen material (100g). ワインの温度が18℃に到達する時間と不凍材量との関係を示したグラフである。It is the graph which showed the relationship between the time when the temperature of wine reaches 18 degreeC, and the amount of antifreeze materials. 熱伝導率の異なる包装材によるワインの温度変化を示したグラフである。It is the graph which showed the temperature change of the wine by the packaging material from which heat conductivity differs. ワインの温度が18℃に到達する時間と包材の熱伝導率との関係を示したグラフである。It is the graph which showed the relationship between the time when the temperature of wine reaches 18 degreeC, and the thermal conductivity of a packaging material. 不凍材量および包装材の熱伝導率の急冷性能の検証の概要を示す図である。It is a figure which shows the outline | summary of verification of the quenching performance of the amount of antifreeze materials and the thermal conductivity of a packaging material. 不凍材と凍結材の搭載重量、包材材質をまとめた表である。It is a table that summarizes the weight of the antifreeze material, the weight of the frozen material, and the packaging material. 不凍材と凍結材の搭載重量と包材材質の組み合わせによる到達時間および保持時間の測定結果をまとめた図である。It is the figure which put together the measurement result of the arrival time and holding time by the combination of the mounting weight of a nonfreezing material and a frozen material, and a packaging material. 各組み合わせのワイン液温の温度変化を示すグラフである。It is a graph which shows the temperature change of the wine liquid temperature of each combination. 条件2におけるワイン液温の温度分布を示した図である。6 is a diagram showing a temperature distribution of wine liquid temperature under condition 2. FIG. TBABの濃度依存性に関する検証結果を示した図である。It is the figure which showed the verification result regarding the density | concentration dependence of TBAB. TBABの濃度と融解開始温度の関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of TBAB, and melting start temperature. 第7の実施形態に係る赤ワイン用サーバーの構成の概要を示す図である。It is a figure which shows the outline | summary of a structure of the server for red wine which concerns on 7th Embodiment. 第7の実施形態に係る赤ワイン用サーバーの構成の概要を示す図である。It is a figure which shows the outline | summary of a structure of the server for red wine which concerns on 7th Embodiment. 第7の実施形態に係る赤ワイン用サーバーの保冷性能の測定結果を示す図である。It is a figure which shows the measurement result of the cold storage performance of the server for red wine which concerns on 7th Embodiment.
 本発明者らは、蓄熱層を有する保冷容器で食材や飲食品の温度を保持するに際し、緩衝層を介することで、蓄熱層から放出される吸熱量または発熱量が環境温度により調和され、容器の緩衝層側の外面温度を、凍結材の融点とは異なる温度にすることができ、また、緩衝層の厚みを調整することで、適宜容器の緩衝層側の外面温度を調整することができることを見出し、本発明をするに至った。 When the present inventors hold the temperature of foods and foods and drinks in a cold storage container having a heat storage layer, the heat absorption amount or the heat generation amount released from the heat storage layer is harmonized by the environmental temperature through the buffer layer, and the container The outer surface temperature on the buffer layer side can be different from the melting point of the frozen material, and the outer surface temperature on the buffer layer side of the container can be adjusted appropriately by adjusting the thickness of the buffer layer. And led to the present invention.
 これにより、本発明者らは、凍結材の種類を変えることなく、凍結材の量または緩衝層の厚みを変えるだけで、種々の食材に対する適温を実現し、その温度を保持することを可能とした。以下、本発明の実施形態について、図面を参照しながら具体的に説明する。 As a result, the present inventors can achieve an appropriate temperature for various foods and maintain the temperature by changing the amount of the frozen material or the thickness of the buffer layer without changing the type of the frozen material. did. Embodiments of the present invention will be specifically described below with reference to the drawings.
 [第1の実施形態]
 [保冷容器の構成]
 本発明の一実施形態の保冷容器は、少なくとも中空構造の領域を有し、前記領域に、特定の温度で相変化する凍結材を含む蓄熱層と、前記領域で前記蓄熱層とは分離して存在し、前記凍結材の相変化温度で流体である不凍材を含む緩衝層とを備える。図1Aは、本実施形態に係る保冷容器100の断面図である。図1Aに示すように、本実施形態に係る保冷容器100は、容器本体110の内部に中空構造の領域を有し、当該領域に、蓄熱層120と、緩衝層130とを備える。本実施形態において、保冷対象物は、緩衝層130を介して蓄熱層120と熱伝導を行なう。なお、本実施形態では蓄熱層120と緩衝層130との間にしきり等はなく、凍結材150および不凍材160が相溶せず、層形成することにより蓄熱層120と緩衝層130とが分離して存在しているが、容器本体110の中空構造の領域にしきり等を設けて区画し、蓄熱層120と緩衝層130とを分離しても良い。
[First Embodiment]
[Structure of cold storage container]
The cold storage container according to an embodiment of the present invention has at least a region having a hollow structure, and the region includes a heat storage layer including a frozen material that changes phase at a specific temperature, and the heat storage layer is separated from the region. And a buffer layer including an antifreeze material that is a fluid at a phase change temperature of the frozen material. FIG. 1A is a cross-sectional view of a cold container 100 according to the present embodiment. As shown in FIG. 1A, the cold insulation container 100 according to the present embodiment has a hollow structure area inside the container body 110, and includes a heat storage layer 120 and a buffer layer 130 in the area. In this embodiment, the cold insulation object conducts heat with the heat storage layer 120 via the buffer layer 130. In this embodiment, there is no threshold between the heat storage layer 120 and the buffer layer 130, and the frozen material 150 and the antifreeze material 160 are not compatible with each other, and the heat storage layer 120 and the buffer layer 130 are formed by forming a layer. Although they exist separately, the heat storage layer 120 and the buffer layer 130 may be separated by partitioning a hollow structure region of the container body 110 by providing a clearance or the like.
 図1Bは、本実施形態に係る保冷容器100の使用状態の例を示す断面図である。本実施形態に係る保冷容器100は、容器本体110の緩衝層130側の外面に食品または食材を直接乗せる載置面140(上面)を有していても良い。その場合、図1Bに示すように、載置面140に食品または食材を直接乗せて使用する。載置面140に乗せた食品または食材は、緩衝層130を介して蓄熱層120と熱伝導を行なうことで適温に保持される。 FIG. 1B is a cross-sectional view showing an example of the usage state of the cold insulation container 100 according to the present embodiment. The cold storage container 100 according to the present embodiment may have a mounting surface 140 (upper surface) on which food or food is directly placed on the outer surface of the container body 110 on the buffer layer 130 side. In that case, as shown in FIG. 1B, food or food is directly placed on the mounting surface 140 for use. The food or food placed on the mounting surface 140 is held at an appropriate temperature by conducting heat conduction with the heat storage layer 120 via the buffer layer 130.
 容器本体110は、蓄熱層120や緩衝層130を内包するための中空構造となっている。容器本体110は、ポリエチレン、ポリプロピレン、ポリエステル、ポリウレタン、ポリカーボネート、ポリ塩化ビニル、ポリアミド等の樹脂材料や、アルミニウム、ステンレス、銅、銀等の金属、ガラス、陶磁器、セラミック等の無機材料により形成することができる。中空構造の作り易さと、耐久性の観点から樹脂材料であることが好ましい。また、容器本体110に、適温に達したことを示す示温材のシールの貼付や、樹脂に練り込むことで、適温であることが判断可能となるため好ましい。また、容器本体110の蓄熱層120側外面に断熱材により形成された断熱層を設けても良い。断熱層を設けることで、蓄熱層120、緩衝層130および保冷対象物との間の熱伝導を維持しつつ、それ以外の熱の出入りを低減できる。その結果、保持する時間を延ばすことが可能となる。 The container body 110 has a hollow structure for containing the heat storage layer 120 and the buffer layer 130. The container body 110 is made of a resin material such as polyethylene, polypropylene, polyester, polyurethane, polycarbonate, polyvinyl chloride, and polyamide, or a metal such as aluminum, stainless steel, copper, or silver, or an inorganic material such as glass, ceramic, or ceramic. Can do. A resin material is preferable from the viewpoint of easy formation of a hollow structure and durability. In addition, it is preferable that the container body 110 can be determined to have the appropriate temperature by sticking a temperature indicating material seal indicating that the temperature has reached the appropriate temperature, or kneaded into the resin. Moreover, you may provide the heat insulation layer formed with the heat insulating material in the heat storage layer 120 side outer surface of the container main body 110. FIG. By providing the heat insulating layer, the heat transfer between the heat storage layer 120, the buffer layer 130, and the object to be kept cold can be maintained, and the other heat input / output can be reduced. As a result, the holding time can be extended.
 蓄熱層120は、特定の温度で相変化する凍結材150を含む。凍結材150の材料としては、少なくとも食品や食材を対象とするため、図2Bの表に示すような-20℃から80℃の範囲で相変化する材料であることが好ましい。また、食品を取扱う観点から安全衛生上、毒性の低い、水や塩化カリウム、酢酸ナトリウム等により構成された凍結材150を用いることが好ましく、凍結材150の入れ替えを想定しない構造とするときは、防腐剤が添加されていることが好ましい。そして、蓄熱層120を形成する材料に過冷却抑制剤を含んでいることが好ましい。過冷却抑制剤としては、凍結材150の相変化温度付近で溶解度が急激に低下し、結晶を析出させることで、凍結材150の核発生を促進させるものが好ましい。さらに安全衛生上、毒性の低いものが好ましい。このような観点から、凍結材150が水や塩化カリウム水溶液であれば、ミョウバン、リン酸水素二ナトリウム等が挙げられる。 The heat storage layer 120 includes a frozen material 150 that changes phase at a specific temperature. The material of the frozen material 150 is preferably a material that undergoes phase change in the range of −20 ° C. to 80 ° C. as shown in the table of FIG. In addition, from the viewpoint of handling food, it is preferable to use a frozen material 150 composed of water, potassium chloride, sodium acetate, etc., which is low in toxicity for safety and health, and when the structure does not assume replacement of the frozen material 150, It is preferable that a preservative is added. And it is preferable that the material which forms the thermal storage layer 120 contains the supercooling inhibitor. As the supercooling inhibitor, one that promotes nucleation of the frozen material 150 by rapidly decreasing the solubility near the phase change temperature of the frozen material 150 and precipitating crystals. Furthermore, a thing with low toxicity is preferable on safety and health. From such a viewpoint, if the frozen material 150 is water or an aqueous potassium chloride solution, alum, disodium hydrogen phosphate, and the like can be given.
 緩衝層130は、凍結材150の相変化温度で流体である不凍材160を含み、容器本体110の中空構造の領域で蓄熱層120とは分離して存在している。不凍材160の材料としては、凍結材150と互いに相溶せず、凍結材150よりも比重が小さく、凍結材150の相変化温度で流動性がある材料(液体または気体の材料)を用いる。例えば、凍結材150が水の場合、不凍材160として空気を用いることができる。なお、容器本体110の中空構造の領域にしきり等を設けて蓄熱層120となる領域と緩衝層130となる領域とを分離する場合は、不凍材160は、凍結材150の相変化温度で流動性があれば良い。 The buffer layer 130 includes an antifreeze material 160 that is a fluid at the phase change temperature of the frozen material 150, and exists separately from the heat storage layer 120 in the hollow structure region of the container body 110. As the material of the antifreeze material 160, a material (liquid or gas material) that is incompatible with the frozen material 150, has a specific gravity smaller than that of the frozen material 150, and is fluid at the phase change temperature of the frozen material 150 is used. . For example, when the frozen material 150 is water, air can be used as the antifreeze material 160. In the case where a space or the like is provided in the hollow structure region of the container body 110 to separate the region that becomes the heat storage layer 120 and the region that becomes the buffer layer 130, the antifreeze material 160 has the phase change temperature of the frozen material 150. It only needs fluidity.
 [保冷容器の製造方法]
 次に、本実施形態に係る保冷容器100の製造方法について説明する。図3A~図3Cは、本実施形態に係る保冷容器100の製造の工程を示す概念図である。まず、図3Aに示すような、中空構造の領域を有する容器本体110を準備する。容器本体110は、凍結材150や不凍材160を注入できる注入口170が付いていることが好ましい。次に、凍結材150を注入する。図3Bに示すように、容器本体110の注入口170より凍結材150を注入する。注入方法は問わないが、注入口が上向きになるようにして注入すると、凍結材150を自重により注入することができる。
[Method of manufacturing cold container]
Next, a method for manufacturing the cold container 100 according to the present embodiment will be described. 3A to 3C are conceptual diagrams showing the steps of manufacturing the cold insulation container 100 according to the present embodiment. First, a container body 110 having a hollow structure region as shown in FIG. 3A is prepared. The container body 110 is preferably provided with an inlet 170 through which the frozen material 150 and the antifreeze material 160 can be injected. Next, the frozen material 150 is injected. As shown in FIG. 3B, the frozen material 150 is injected from the injection port 170 of the container body 110. The injection method is not limited, but if the injection is made with the injection port facing upward, the frozen material 150 can be injected by its own weight.
 図4に示すように、容器本体110に液量もしくは液量に想定される温度の目盛り180が配されていることが好ましい。これにより、容易に液量調整が可能となる。防腐剤や過冷却抑制剤を添加する場合は、凍結材150に添加したあと注入しても良いし、凍結材150を注入したあと添加しても良い。 As shown in FIG. 4, it is preferable that the container main body 110 is provided with a liquid volume or a scale 180 of the temperature assumed for the liquid volume. Thereby, the liquid amount can be easily adjusted. When adding a preservative or a supercooling inhibitor, it may be added after being added to the frozen material 150 or may be added after the frozen material 150 has been injected.
 空気を緩衝層130とする場合は、凍結材150を注入する量を調整し、容器の空洞部分の容積よりも減らし、後述するような密栓をすることで、空気が混入し、空気が緩衝層130となる。空気以外を緩衝層130とする場合は、凍結材150を注入する量を調整し、残った容積に不凍材160を注入し、密栓をする。不凍材160は、凍結材150と互いに相溶せず、凍結材150よりも比重が小さく、凍結材150の相変化温度で流体である材料を用いる。本実施形態のように容器本体110の中空構造の領域にしきり等が設けられていない場合でも、凍結材150と互いに相溶せず、且つ比重の小さい不凍材160を用いて相分離させることで、簡便に蓄熱層120と緩衝層130とを作り出すことができる。 When air is used as the buffer layer 130, the amount of the frozen material 150 to be injected is adjusted to reduce the volume of the hollow portion of the container, and the air is mixed by sealing with a sealing plug as will be described later. 130. When the buffer layer 130 other than air is used, the amount of the frozen material 150 to be injected is adjusted, and the antifreeze material 160 is injected into the remaining volume and sealed. The antifreeze material 160 is made of a material that is incompatible with the frozen material 150, has a specific gravity smaller than that of the frozen material 150, and is a fluid at the phase change temperature of the frozen material 150. Even in the case where the hollow structure region of the container body 110 is not provided with a hole or the like as in the present embodiment, phase separation is performed using the antifreeze material 160 that is not compatible with the frozen material 150 and has a small specific gravity. Thus, the heat storage layer 120 and the buffer layer 130 can be easily created.
 そして、図3Cに示すように、容器本体110の注入口170に栓190をする。栓190をする方法としては、超音波溶着や熱溶着等の既存の手法で密栓する方法や、ネジ栓としておき、手で自由に開閉できる栓とする方法がある。超音波溶着や熱溶着等で密栓する場合は、使用者が凍結材150や不凍材160の量を調整することはできないが、凍結材150や不凍材160が漏れる虞がない。手で自由に開閉できる栓の場合は、使用者が自由に凍結材150や不凍材160の量を調整できる。 Then, as shown in FIG. 3C, a plug 190 is plugged into the inlet 170 of the container body 110. As a method of plugging 190, there are a method of sealing with an existing method such as ultrasonic welding or heat welding, and a method of using a screw plug that can be freely opened and closed by hand. When sealing with ultrasonic welding or heat welding, the user cannot adjust the amount of the frozen material 150 or the antifreeze material 160, but there is no possibility that the frozen material 150 or the antifreeze material 160 leaks. In the case of a plug that can be freely opened and closed by hand, the user can freely adjust the amount of the frozen material 150 and the antifreeze material 160.
 最後に、凍結材150の相変化温度以下の温度環境で保冷容器110の下面を水平に静置し、少なくとも保冷容器110の下面と、蓄熱層120の上面が平行になるように凝固させる。このような工程により、本実施形態の保冷容器100が製造される。 Finally, the lower surface of the cold storage container 110 is left horizontally in a temperature environment equal to or lower than the phase change temperature of the frozen material 150, and is solidified so that at least the lower surface of the cold storage container 110 and the upper surface of the heat storage layer 120 are parallel. Through such processes, the cold container 100 of the present embodiment is manufactured.
 [実施例1-1]
 実施例1-1は、第1の実施形態に係る保冷皿の実施例である。まず、図3Aに示すようなブロー成型容器(材質:ポリエチレン、外形:220×140×t20mm/t0.8mm)(容器本体)を準備した。次に、ブロー成型容器に液体充填機を用いて、注入口から水道水を200g注液した。これは、ブロー成型容器内の容積の45%程度であった。最後に、超音波溶着機を用いて、注入口をキャップし、溶着により密栓した。これにより、水を蓄熱層、空気を緩衝層とした保冷皿を作製した。
[Example 1-1]
Example 1-1 is an example of the cold tray according to the first embodiment. First, a blow molded container (material: polyethylene, outer shape: 220 × 140 × t20 mm / t0.8 mm) (container body) as shown in FIG. 3A was prepared. Next, 200 g of tap water was injected from the inlet using a liquid filling machine into the blow molded container. This was about 45% of the volume in the blow molded container. Finally, the injection port was capped using an ultrasonic welding machine and sealed by welding. Thereby, the cold-reserving dish which used water as the heat storage layer and air as the buffer layer was produced.
 得られた保冷皿を相変化温度以下の温度環境で静置し、凝固させた。このとき、皿の下面は水平に静置し、少なくとも皿の下面と、蓄熱層の上面が平行になるように凝固させる。具体的には、一般的な家庭用冷蔵庫の冷凍室に、庫内の底面に、皿の下面が接触するように水平に静置した。12時間後に保冷皿を取り出すと、蓄熱層が凝固していることが確認された。また、各層の厚みは、保冷皿の厚みが20mm(容器の材料の厚み:0.8mm)であるのに対し、蓄熱層の厚みが約7mm、緩衝層の厚みが約11mmであった。 The obtained cold storage dish was allowed to stand in a temperature environment equal to or lower than the phase change temperature and solidified. At this time, the lower surface of the pan is left to stand horizontally, and is solidified so that at least the lower surface of the pan and the upper surface of the heat storage layer are parallel. Specifically, it was left horizontally in a freezer compartment of a general household refrigerator so that the bottom surface of the dish was in contact with the bottom surface in the cabinet. When the cold storage tray was taken out after 12 hours, it was confirmed that the heat storage layer was solidified. In addition, the thickness of each layer was 20 mm (the thickness of the container material: 0.8 mm) while the thickness of the heat storage layer was about 7 mm and the thickness of the buffer layer was about 11 mm.
 凍結材を凝固させた保冷皿の上面および下面に熱電対を貼り、室温雰囲気下(25℃)で時間に対する温度変化を観察した。その時の結果を図5に示す。測定開始後30~150分の間、下面の温度は約1℃に保持された。これは、蓄熱層の氷-水の相変化温度である0℃に起因するものである。一方で、緩衝層を介した上面の温度は、30~120分の間で約8℃に保持され、蓄熱層の相変化温度に比べ高い温度で一定時間保たれることが分かった。つまり、保冷皿内部の緩衝層を介することで、蓄熱層から放出される冷気が緩和され、凍結材の融点とは異なる温度に、皿上面を設定することが可能であることが確認された。 A thermocouple was attached to the upper and lower surfaces of the cold storage dish on which the frozen material was solidified, and the temperature change with time was observed in a room temperature atmosphere (25 ° C.). The result at that time is shown in FIG. The temperature of the lower surface was maintained at about 1 ° C. for 30 to 150 minutes after the start of measurement. This is due to the 0 ° C., which is the ice-water phase change temperature of the heat storage layer. On the other hand, it was found that the temperature of the upper surface through the buffer layer was maintained at about 8 ° C. for 30 to 120 minutes, and was maintained at a temperature higher than the phase change temperature of the heat storage layer for a certain time. That is, it was confirmed that the cold air released from the heat storage layer is relaxed through the buffer layer inside the cold storage dish, and the upper surface of the dish can be set to a temperature different from the melting point of the frozen material.
 [実施例1-2]
 実施例1-2は、第1の実施形態に係る保冷皿の実施例である。実施例1-2は、実施例1-1の保冷皿内部の液量を、200gから350gに変える以外は、同じ構成の保冷皿とした。製造方法は、実施例1の液量以外は、同じ方法で作製した。
[Example 1-2]
Example 1-2 is an example of the cold tray according to the first embodiment. Example 1-2 was a cold tray having the same configuration except that the amount of liquid inside the cold tray of Example 1-1 was changed from 200 g to 350 g. The manufacturing method was the same as that of Example 1 except for the liquid amount.
 [比較例1-1]
 また、比較例1-1は、実施例1-1の保冷皿内部の液量を、200gから450g(ほぼ満水)に変える以外は、同じ構成の保冷皿とした。製造方法は、実施例1-1の液量以外は、同じ方法で作製した。
[Comparative Example 1-1]
Further, Comparative Example 1-1 was a cold storage dish having the same configuration except that the amount of liquid inside the cold storage dish of Example 1-1 was changed from 200 g to 450 g (almost full water). The manufacturing method was the same as that in Example 1-1 except for the liquid amount.
 [実施例および比較例の評価と効果の確認]
 凍結後の保冷皿内部の蓄熱層と緩衝層の厚みを図6Aに示す。図6Aに示すように、実施例1-1、実施例1-2、比較例1-1の順に、緩衝層の厚みが薄く、蓄熱層から放出される冷気を緩衝させる能力が小さいことが分かる。次に、図6Bに緩衝層の厚みに対する、保持できる皿上面温度をプロットしたものを示す。緩衝層の厚みに対して、線形的に皿上面温度が上昇することが確認できた。つまり、緩衝層の厚み(蓄熱層の液量)を調整することで、容易に皿上面の温度を調整することが可能であり、食材や食品の一時的な保冷に適した皿を、凍結材の種類を変えることなく提供できる。
[Evaluation of Examples and Comparative Examples and Confirmation of Effects]
FIG. 6A shows the thicknesses of the heat storage layer and the buffer layer inside the cold storage dish after freezing. As shown in FIG. 6A, it can be seen that in the order of Example 1-1, Example 1-2, and Comparative Example 1-1, the thickness of the buffer layer is thin, and the ability to buffer the cool air released from the heat storage layer is small. . Next, FIG. 6B shows a plot of the dish top surface temperature that can be held against the thickness of the buffer layer. It was confirmed that the dish top surface temperature increased linearly with respect to the thickness of the buffer layer. In other words, by adjusting the thickness of the buffer layer (the amount of liquid in the heat storage layer), it is possible to easily adjust the temperature of the upper surface of the dish. Can be provided without changing the type.
 [第2の実施形態]
 [保冷容器の構成]
 図7は、本実施形態に係る保冷容器100の断面図および上面図である。図7に示すように保冷容器100の下面は平らであるが、保冷容器100の上面は階段状になっている。また、内部の蓄熱層120は、水平が保たれるため、容器本体110に中空構造の厚みが異なる領域を作製することで、緩衝層130の厚みを調整することができる。なお、図7では階段状であるが、傾斜状になっていても構わない。また、保冷容器100の上から見た形状は、図7では長方形であるが、円形でも構わず、必要に応じて自由にデザインすることができる。
[Second Embodiment]
[Structure of cold storage container]
FIG. 7 is a cross-sectional view and a top view of the cold insulation container 100 according to the present embodiment. As shown in FIG. 7, the lower surface of the cold container 100 is flat, but the upper surface of the cold container 100 is stepped. In addition, since the internal heat storage layer 120 is kept horizontal, the thickness of the buffer layer 130 can be adjusted by creating regions with different thicknesses of the hollow structure in the container body 110. In addition, although it is stepped in FIG. 7, it may be inclined. Moreover, although the shape seen from the top of the cold storage container 100 is a rectangle in FIG. 7, it may be a circle and can be freely designed as necessary.
 [保冷容器の製造方法]
 本実施形態に係る保冷容器100の製造方法は、容器本体110の形状が異なる以外は、第1の実施形態に係る保冷容器100の製造方法と同様である。
[Method of manufacturing cold container]
The manufacturing method of the cold insulating container 100 according to the present embodiment is the same as the manufacturing method of the cold insulating container 100 according to the first embodiment, except that the shape of the container main body 110 is different.
 [実施例2-1]
 実施例2-1は、第2の実施形態に係る保冷皿の実施例である。まず、容器の幅と奥行きおよび樹脂の厚みは実施例1と同じであり、図7のような断面形状を有するブロー成型容器を用意した。中空構造の領域の厚みは部分ごとに31mm、25mm、20mmとした。このブロー成型容器に凍結材として水を450g注入し、密栓した。
[Example 2-1]
Example 2-1 is an example of the cold tray according to the second embodiment. First, the width and depth of the container and the thickness of the resin were the same as in Example 1, and a blow molded container having a cross-sectional shape as shown in FIG. 7 was prepared. The thickness of the region of the hollow structure was 31 mm, 25 mm, and 20 mm for each part. 450 g of water as a frozen material was poured into this blow molded container and sealed.
 これを実施例1-1と同様に凍結し、蓄熱層と緩衝層の厚みを評価したところ、蓄熱層の厚みは、20mmであり、中空構造の領域の厚みが、31mm、25mm、20mmの領域における緩衝層の厚みは、それぞれ11mm、5mm、0mmであった。中空構造の領域の厚みが、31mm、25mm、20mmの領域における皿上面の温度は、それぞれ8℃、4℃、0℃であり、一つの皿で複数の温度領域を有する保冷皿が得られることが確認できた。これにより、一つの皿で適温が異なる複数の食材の保温が可能となり、オードブルの皿等に好適である。 When this was frozen in the same manner as in Example 1-1 and the thickness of the heat storage layer and the buffer layer was evaluated, the thickness of the heat storage layer was 20 mm, and the thickness of the region of the hollow structure was 31 mm, 25 mm, and 20 mm. The thickness of the buffer layer was 11 mm, 5 mm, and 0 mm, respectively. The temperature of the upper surface of the dish in the area where the thickness of the hollow structure area is 31 mm, 25 mm, and 20 mm is 8 ° C., 4 ° C., and 0 ° C., respectively, and a cold storage dish having a plurality of temperature regions can be obtained with one dish. Was confirmed. This makes it possible to keep a plurality of foods having different optimum temperatures in one dish, which is suitable for an hors d'oeuvre dish or the like.
 [第3の実施形態]
 [カッティングボードの構成]
 本実施形態では、本発明の一実施形態の保冷容器をカッティングボードに応用した。図8は、本実施形態に係るカッティングボード200の断面図である。本実施形態では、凍結材150を注入する注入口170の栓190をネジ栓とした。これにより、使用者が自由に開閉することが可能となり、液量を調整することができる。それ以外の構成は第1の実施形態の構成と同様であるが、容器本体の材料の厚みは、カッティングボード200の用途に適した厚みとする。
[Third Embodiment]
[Composition of cutting board]
In this embodiment, the cold storage container of one embodiment of the present invention is applied to a cutting board. FIG. 8 is a cross-sectional view of the cutting board 200 according to the present embodiment. In this embodiment, the plug 190 of the inlet 170 for injecting the frozen material 150 is a screw plug. Thereby, the user can freely open and close, and the liquid amount can be adjusted. The rest of the configuration is the same as the configuration of the first embodiment, but the thickness of the material of the container body is set to a thickness suitable for the application of the cutting board 200.
 [カッティングボードの製造方法]
 本実施形態に係るカッティングボード200の製造方法は、第1の実施形態に係る保冷容器100の製造方法と同様である。
[Manufacturing method of cutting board]
The manufacturing method of the cutting board 200 according to the present embodiment is the same as the manufacturing method of the cold insulation container 100 according to the first embodiment.
 [実施例3-1]
 実施例3-1は、第3の実施形態に係るカッティングボードの実施例である。まず、ブロー成型容器(材質:ポリエチレン、外形:230×400×t20mm/t2mm)を準備した。この容器に水を600g注液し、ネジ栓にて封をした。これを実施例1と同様に冷凍庫で凍結させた後に、緩衝層の厚みと蓄熱層の厚みを評価したところ、それぞれ、11mmと5mmであった。また食材を切る面(上面)の表面温度を測定したところ、8℃で温度が保持されるのを確認した。
[Example 3-1]
Example 3-1 is an example of the cutting board according to the third embodiment. First, a blow molded container (material: polyethylene, outer shape: 230 × 400 × t20 mm / t2 mm) was prepared. 600 g of water was poured into this container and sealed with a screw cap. After freezing this in the freezer like Example 1, when the thickness of the buffer layer and the thickness of the heat storage layer were evaluated, they were 11 mm and 5 mm, respectively. Moreover, when the surface temperature of the surface (upper surface) which cuts a foodstuff was measured, it confirmed that temperature was hold | maintained at 8 degreeC.
 このカッティングボードを用いて、モッツァレラチーズを切ったところ、所望の形状に切ることができた。一方で、比較例3-1として通常の木製のカッティングボード(上面温度25℃)と、比較例3-2として実施例3-1と同じ容器に水を満たし、緩衝層を持たないものを凍結したカッティングボード(上面温度0℃)を用意した。比較例3-1のカッティングボードを使用したときは、一部融解し、チーズがカッティングボードに粘着し、思うように切ることができなかった。また、比較例3-2のカッティングボードを使用したときは、チーズのカッティングボード接触部で一部凍結が見られた。 When this mozzarella cheese was cut using this cutting board, it could be cut into the desired shape. On the other hand, a normal wooden cutting board (upper surface temperature: 25 ° C.) as Comparative Example 3-1, and the same container as Example 3-1 were filled with water as Comparative Example 3-2 and frozen without a buffer layer. A cutting board (upper surface temperature 0 ° C.) was prepared. When the cutting board of Comparative Example 3-1 was used, it partially melted and the cheese adhered to the cutting board and could not be cut as expected. When the cutting board of Comparative Example 3-2 was used, partial freezing was observed at the cheese cutting board contact portion.
 したがって、チーズのような油脂成分を多く含み、温度により形状や柔らかさが変わる食材については、本実施例のカッティングボードを用いて、適温にて切断することで所望の形状に切断することが可能となる。また、本実施例のカッティングボードは、蓄熱層の液量を変えて凍結させるだけで、容易に適温が変更できるため、同一のカッティングボードで種々の食材を切ることが可能となる(例えば、0℃にて半解凍したマグロを切断することが可能)。 Therefore, foods that contain a lot of fat components such as cheese and whose shape and softness change with temperature can be cut into the desired shape by cutting at an appropriate temperature using the cutting board of this embodiment. It becomes. In addition, the cutting board of the present embodiment can easily change the appropriate temperature simply by changing the amount of liquid in the heat storage layer and freezing it, so that various foods can be cut with the same cutting board (for example, 0 Tuna half-thawed at ℃ can be cut).
 [第4の実施形態]
 本実施形態では、本発明の一実施形態の保冷容器を保冷皿に応用した。図9は、本実施形態に係る保冷皿210の断面図である。第1、第2の実施形態でも載置面140を有している場合は、保冷容器100自体を保冷皿として使用できるが、本実施形態では、載置面140を有している保冷容器100を着脱自在とし、装着する保冷容器100を変更することで管理する温度の調整ができる構成の保冷皿とした。
[Fourth Embodiment]
In this embodiment, the cold storage container of one embodiment of the present invention is applied to a cold storage dish. FIG. 9 is a cross-sectional view of the cold tray 210 according to the present embodiment. Even in the first and second embodiments, when the mounting surface 140 is provided, the cold storage container 100 itself can be used as a cold storage dish. However, in this embodiment, the cold storage container 100 having the mounting surface 140 is used. The refrigerated dish is configured such that the temperature can be adjusted by changing the refrigerated container 100 to be attached.
 [保冷皿の構成]
 図9に示すように、本実施形態に係る保冷皿210は、容器本体110の内部に中空構造の領域を有し、当該領域に、蓄熱層120と、緩衝層130とを備え、緩衝層130側の外面に食品または食材を直接乗せる載置面140を有する保冷容器100と、保冷容器100を収容する外装部220と、保冷容器100と外装部220とを固定する保冷容器固定部230とを備える。容器本体110、蓄熱層120、緩衝層130等の構成は、上記の構成と同様である。
[Composition of cold tray]
As shown in FIG. 9, the cold tray 210 according to the present embodiment has a hollow structure region inside the container body 110, and includes a heat storage layer 120 and a buffer layer 130 in the region, and the buffer layer 130. A cold insulation container 100 having a mounting surface 140 for directly placing food or food on the outer surface of the side, an exterior part 220 for housing the cold insulation container 100, and a cold insulation container fixing part 230 for securing the cold insulation container 100 and the exterior part 220. Prepare. The configurations of the container body 110, the heat storage layer 120, the buffer layer 130, and the like are the same as those described above.
 外装部220は、保冷容器100が収容されて、全体として保冷皿210として使用される。外装部220は、容器本体110と同様に、樹脂材料、金属、無機材料により形成することができる。保冷容器固定部230は、保冷容器100と外装部220とを固定することができれば、材料や設置される位置等はどのようなものであっても良い。また、外装部220の形状が保冷容器100を固定する形状となっていても良い。 The exterior part 220 accommodates the cold insulation container 100 and is used as a cold preservation dish 210 as a whole. The exterior part 220 can be formed of a resin material, a metal, or an inorganic material, like the container body 110. As long as the cold insulation container fixing part 230 can fix the cold insulation container 100 and the exterior part 220, what kind of material, installation position, etc. may be sufficient as it. Moreover, the shape of the exterior part 220 may be a shape for fixing the cold container 100.
 このように、載置面140を有する保冷容器100を外装部220に固定をし、着脱自在とすることで、保冷容器100を調節したい温度ごとに変更するだけで、食材ごとの適温に調整することができる。その結果、保冷容器100の凍結材150や不凍材160の種類や量を調整する手間が省ける。また、保冷皿210は、保冷容器100と外装部220とから構成され、保冷容器100は外装部220の機能を果たす必要がないため、保冷容器100自体を保冷皿として使用する場合と比べて、保冷容器100を相対的にコンパクトにすることもできる。なお、凍結材150や不凍材160の種類や量を調整する保冷容器100を使用しても構わない。また、図9では緩衝層130の厚みが一定である保冷容器100を使用しているが、第2の実施形態に記載したような、緩衝層130の厚みが部分により異なる保冷容器100を使用しても良い。 In this way, the cold storage container 100 having the mounting surface 140 is fixed to the exterior portion 220 and is detachable, so that the cold storage container 100 can be adjusted to an appropriate temperature for each food simply by changing it for each temperature to be adjusted. be able to. As a result, the trouble of adjusting the types and amounts of the frozen material 150 and the antifreeze material 160 of the cold container 100 can be saved. In addition, the cold storage dish 210 is composed of the cold storage container 100 and the exterior part 220, and since the cold storage container 100 does not need to fulfill the function of the exterior part 220, compared to the case where the cold storage container 100 itself is used as a cold storage dish, The cold insulating container 100 can also be made relatively compact. In addition, you may use the cold storage container 100 which adjusts the kind and quantity of the frozen material 150 or the antifreeze material 160. FIG. In addition, in FIG. 9, the cold insulation container 100 in which the thickness of the buffer layer 130 is constant is used. However, as described in the second embodiment, the cold insulation container 100 in which the thickness of the buffer layer 130 differs depending on the part is used. May be.
 [第5の実施形態]
 本実施形態では、本発明の一実施形態の保冷容器を保冷皿に応用した。図10Aおよび図10Bは、本実施形態に係る保冷皿210の断面図である。本実施形態では、容器本体110を上皿240と下皿250に分離可能とし、上皿240と下皿250とを組み合わせたときに容器本体110の内部が中空構造の領域となる構成とした。
[Fifth Embodiment]
In this embodiment, the cold storage container of one embodiment of the present invention is applied to a cold storage dish. FIG. 10A and FIG. 10B are cross-sectional views of the cold tray 210 according to the present embodiment. In the present embodiment, the container main body 110 can be separated into the upper plate 240 and the lower plate 250, and when the upper plate 240 and the lower plate 250 are combined, the inside of the container main body 110 becomes a hollow structure region.
 [保冷皿の構成]
 図10Aに示すように、本実施形態に係る保冷皿210は、上皿240と下皿250とを組み合わせた容器本体110の内部に中空構造の領域を有し、当該領域に、蓄熱層120と、緩衝層130とを備え、緩衝層130側の外面(上皿240の上面)に食品または食材を直接乗せる載置面140とを備える。
[Composition of cold tray]
As shown in FIG. 10A, the cold tray 210 according to the present embodiment has a hollow structure region inside the container body 110 in which the upper plate 240 and the lower plate 250 are combined, and the heat storage layer 120 and And a buffer layer 130, and a mounting surface 140 on which food or food is directly placed on the outer surface (the upper surface of the upper plate 240) on the buffer layer 130 side.
 上皿240は、上面に載置面140を有し、下面は下皿250と組み合わさったときに容器本体110の中空構造の上部となる。下皿250は、凍結材150を収容する部分を有し、下皿250に凍結材150を注入し凝固させることで蓄熱層120が形成される。また、上皿240と下皿250とを組み合わせることで、蓄熱層120の上面から上皿240の下面までの空気の層が緩衝層130となる。上皿240と下皿250との接続部分は、温度を安定させるために空気が出入りしないよう密閉できる構造であることが好ましい。本実施形態に係る保冷皿210は、上皿240と下皿250とを分離できるので、容器本体110の内面を容易に洗浄でき、清潔に保つことができる。 The upper plate 240 has a mounting surface 140 on the upper surface, and the lower surface becomes the upper portion of the hollow structure of the container body 110 when combined with the lower plate 250. The lower dish 250 has a portion for containing the frozen material 150, and the heat storage layer 120 is formed by injecting the frozen material 150 into the lower dish 250 and solidifying it. Further, by combining the upper plate 240 and the lower plate 250, the air layer from the upper surface of the heat storage layer 120 to the lower surface of the upper plate 240 becomes the buffer layer 130. The connection portion between the upper plate 240 and the lower plate 250 preferably has a structure that can be sealed so that air does not enter and exit in order to stabilize the temperature. Since the cool plate 210 according to the present embodiment can separate the upper plate 240 and the lower plate 250, the inner surface of the container body 110 can be easily washed and kept clean.
 本実施形態に係る保冷皿210の容器本体110は、図10Bに示すように、スペーサー260を備えても良い。スペーサー260を備えることで、緩衝層130の厚みを調整できる。また、本実施形態に係る保冷皿210は、下皿250に凍結材150を注入し蓄熱層120を形成する代わりに、凍結材150を既存の方法でパッケージした凍結材パック270を用いて蓄熱層120を形成しても良い。このときは、凍結材パック270のみを凍結材150の相変化温度以下にすれば良いので、保冷皿210または下皿250自体を凍結材150の相変化温度以下にする必要がなくなる。また、下皿250の部分ごとに配置する凍結材パック270の個数を変更することで、蓄熱層120および緩衝層130の厚みを調整できる。また、図には記載されていないが、不凍材160をパッケージした不凍材パックを用いて緩衝層130を形成しても良い。不凍材パックを用いると、空気以外の材料を不凍材160とした緩衝層130を容易に形成できる。 The container main body 110 of the cold tray 210 according to the present embodiment may include a spacer 260 as shown in FIG. 10B. By providing the spacer 260, the thickness of the buffer layer 130 can be adjusted. Further, the cold storage tray 210 according to the present embodiment uses a frozen material pack 270 in which the frozen material 150 is packaged by an existing method, instead of injecting the frozen material 150 into the lower plate 250 to form the heat storage layer 120. 120 may be formed. At this time, since only the frozen material pack 270 needs to be set to be equal to or lower than the phase change temperature of the frozen material 150, it is not necessary to set the cold tray 210 or the lower plate 250 itself to be equal to or lower than the phase change temperature of the frozen material 150. Moreover, the thickness of the thermal storage layer 120 and the buffer layer 130 can be adjusted by changing the number of the frozen material packs 270 arranged for each portion of the lower dish 250. Although not shown in the figure, the buffer layer 130 may be formed by using an antifreeze pack in which the antifreeze 160 is packaged. When the antifreeze material pack is used, the buffer layer 130 in which a material other than air is used as the antifreeze material 160 can be easily formed.
 [第6の実施形態]
 [赤ワイン用サーバーの構成]
 本発明の一実施形態の赤ワイン用サーバーは、少なくとも1つの蓄冷パックを備える。図11Aは、本実施形態に係る赤ワイン用サーバーの使用状態を示す断面図である。蓄冷パックは、第1の収容部としての第1の深絞り容器3と、第2の収容部としての第2の深絞り容器5とから構成され、第2の収容部は、第1の収容部に積重する二重構造を有する。
[Sixth Embodiment]
[Configuration of server for red wine]
The server for red wine of one embodiment of the present invention includes at least one cold storage pack. FIG. 11A is a cross-sectional view showing a usage state of the server for red wine according to the present embodiment. The cold storage pack is composed of a first deep-drawn container 3 as a first accommodating part and a second deep-drawn container 5 as a second accommodating part, and the second accommodating part is a first accommodating part. It has a double structure that is stacked on the part.
 第1の深絞り容器3には、第1の蓄冷材(凍結材)3aが充填されており、第2の深絞り容器5には、第2の蓄冷材(不凍材)5aが充填されている。第2の蓄冷材(不凍材)5aは、第1の蓄冷材(凍結材)3aの相変化温度において、液相状態を維持する。第2の蓄冷材(不凍材)5aは、ワインボトル10に密着し、蓋材7は、第1の深絞り容器3を閉塞する。 The first deep-drawn container 3 is filled with a first cold storage material (freezing material) 3a, and the second deep-drawn container 5 is filled with a second cold storage material (non-freezing material) 5a. ing. The second cold storage material (non-freezing material) 5a maintains a liquid phase state at the phase change temperature of the first cold storage material (freezing material) 3a. The second regenerator material (antifreeze material) 5 a is in close contact with the wine bottle 10, and the lid member 7 closes the first deep-drawn container 3.
 図11Bは、本実施形態に係る蓄冷パック1の断面図である。図11Bに示すように、蓄冷パック1の第1の深絞り容器3および第2の深絞り容器5において、第1の深絞り容器3のフランジ部3bと第2の深絞り容器5のフランジ部5bとが接合される。また、それとともに、第1の深絞り容器3のフランジ部3bと蓋材7とが接合される。また、蓋材7と第1の蓄冷材3aとの間には、空隙層9が存在する。 FIG. 11B is a cross-sectional view of the cold storage pack 1 according to the present embodiment. As shown in FIG. 11B, in the first deep-drawn container 3 and the second deep-drawn container 5 of the cold storage pack 1, the flange part 3 b of the first deep-drawn container 3 and the flange part of the second deep-drawn container 5 5b is joined. At the same time, the flange portion 3b of the first deep-drawn container 3 and the lid member 7 are joined. Further, a gap layer 9 exists between the lid member 7 and the first cold storage material 3a.
 このように、第2の蓄冷材5aが第1の蓄冷材3aの相変化温度で液相状態を維持し、第2の深絞り容器5がワインボトル10に接触するので、第2の深絞り容器5をワインボトル10に密着させることが可能となる。一方で、特許文献3では、保冷容器の内壁に保冷材を着脱自在に取付け可能とする固定手段を備えたワインクーラーが提案されているが、このような従来のワインクーラーは保冷材とワインボトルを密着させる構造・構成となっていない。そのため、素早くワインの飲み頃温度に到達させることができなかったが、本実施形態によれば、密着させることが可能なため、急速に飲み頃温度に到達させることが可能となる。 Thus, since the 2nd cold storage material 5a maintains a liquid phase state with the phase change temperature of the 1st cold storage material 3a, and the 2nd deep drawing container 5 contacts the wine bottle 10, 2nd deep drawing The container 5 can be brought into close contact with the wine bottle 10. On the other hand, Patent Document 3 proposes a wine cooler provided with a fixing means that allows the cold insulation material to be detachably attached to the inner wall of the cold insulation container. However, such a conventional wine cooler has a cold insulation material and a wine bottle. It does not have a structure / structure that allows the Therefore, although it was not possible to quickly reach the temperature when drinking wine, according to the present embodiment, it is possible to make it closely contact, so that it is possible to rapidly reach the temperature when drinking.
 図11Cは、従来のワインクーラーの使用状態を示す断面図である。図11Cに示すように、従来の蓄冷パックでは、第1の蓄冷材3aが第2の蓄冷材5a中に含まれている構造(以下、パックinパック構造ともいう)の場合、使用時に重力によって第1の蓄冷材の位置が鉛直下方となることがある。このような場合、ワインボトル10上部側に蓄冷材が存在しない領域が顕著となり、この蓄冷材が存在しない領域から熱が逃げ、ワインボトル10を所望の温度に素早く到達させることができなくなる可能性がある。 FIG. 11C is a cross-sectional view showing a use state of a conventional wine cooler. As shown in FIG. 11C, in the case of the conventional cold storage pack, in the case where the first cold storage material 3a is included in the second cold storage material 5a (hereinafter also referred to as pack-in-pack structure), it is caused by gravity during use. The position of the first regenerator material may be vertically downward. In such a case, the region where the cool storage material does not exist on the upper side of the wine bottle 10 becomes prominent, and heat may escape from the region where the cool storage material does not exist, and the wine bottle 10 may not be able to quickly reach the desired temperature. There is.
 これに対し、図11Aおよび図11Bに示すように、本実施形態に係る蓄冷パック1は、第1の蓄冷材3aが充填された第1の深絞り容器3と、第2の蓄冷材5aが充填された第2の深絞り容器5とがフランジ部3bとフランジ部5bで固定されているため、それぞれの蓄冷材の位置関係を重量の影響に依らず、常に維持することが可能となる。 On the other hand, as shown to FIG. 11A and FIG. 11B, the cool storage pack 1 which concerns on this embodiment has the 1st deep-drawn container 3 filled with the 1st cool storage material 3a, and the 2nd cool storage material 5a. Since the filled second deep-drawn container 5 is fixed by the flange portion 3b and the flange portion 5b, it is possible to always maintain the positional relationship of the respective regenerators regardless of the influence of weight.
 以上のような構成を採ることにより、第2の蓄冷材5aが蓄えた顕熱をワインボトル10に確実に伝え、ワインボトル10を所望の温度に素早く到達させることが可能となる。さらに、第2の蓄冷材5aを介して第1の蓄冷材3aが蓄えた顕熱および潜熱をワインボトル10に確実に伝えることで、ワインボトル10を所望の温度に素早く到達させることをアシストするとともに、ワインボトル10を所望の温度で長時間保持させることが可能となる。 By adopting the configuration as described above, the sensible heat stored in the second cold storage material 5a can be reliably transmitted to the wine bottle 10 and the wine bottle 10 can be quickly reached the desired temperature. Further, the sensible heat and latent heat stored in the first cold storage material 3a are reliably transmitted to the wine bottle 10 via the second cold storage material 5a, thereby assisting the wine bottle 10 to quickly reach a desired temperature. At the same time, the wine bottle 10 can be held at a desired temperature for a long time.
 [蓄冷材]
 図12Aは、本実施形態に係る蓄冷パックに用いる第1の蓄冷材の概念を示す図であり、蓄冷材に粘性を有する場合の概念を示す。図12Bは、蓄冷材に粘性がない場合の概念を示す図である。本実施形態に係る蓄冷パックは、第1の蓄冷材(凍結材)および第2の蓄冷材(不凍材)が、自重に対して形状維持可能な粘性を有する。
[Cool storage material]
Drawing 12A is a figure showing the concept of the 1st cool storage material used for the cool storage pack concerning this embodiment, and shows the concept in case a cold storage material has viscosity. FIG. 12B is a diagram illustrating a concept when the regenerator material has no viscosity. In the cold storage pack according to the present embodiment, the first cold storage material (frozen material) and the second cold storage material (non-freezing material) have a viscosity capable of maintaining the shape with respect to their own weight.
 図12Bに示すように、蓄冷パックを立て掛けて保冷対象物の温度管理を行なう場合、蓄冷材に粘性がないと、蓄冷材が固相から液相に相変化するにつれて、蓄冷材が重力の影響を受け、鉛直下方に変位する。これによって、保冷対象物の上部を十分に温度管理することができなくなってしまう。また、蓄冷材が鉛直下方に変位した結果、蓄冷材の鉛直上方に空隙が生じ、その空隙で熱の流入および流出が生じ、保冷効果が低下してしまう。 As shown in FIG. 12B, when the temperature control of the cold insulation object is performed by leaning the cold storage pack, if the cold storage material is not viscous, the cold storage material is affected by gravity as the cold storage material changes from a solid phase to a liquid phase. And is displaced vertically downward. As a result, the temperature of the upper part of the cold insulation object cannot be sufficiently controlled. Moreover, as a result of the cold storage material being displaced vertically downward, an air gap is formed vertically above the heat storage material, and heat inflow and outflow are generated in the air gap, resulting in a decrease in the cold insulation effect.
 そこで、図12Aに示すように、蓄冷材に粘性を持たせることによって、重力の影響を最小限に抑えることができる。その結果、蓄冷パックと保冷対象物との接触面積が大きくなり、効率的な熱交換を行なうことが可能となる。 Therefore, as shown in FIG. 12A, the influence of gravity can be minimized by giving the cold storage material a viscosity. As a result, the contact area between the cold storage pack and the cold insulation object is increased, and efficient heat exchange can be performed.
 蓄冷材に、重力の影響を受けない程度の粘性を持たせるには、多くの増粘剤を添加する必要がある。しかし、蓄冷材への増粘剤の添加量を増やし過ぎると、蓄冷材としての性能が低下する。そこで、本実施形態に係る蓄冷パックは、第1の蓄冷材および第2の蓄冷材に、1,000cP程度(塗料等)の低粘度を持たせる。これにより、図12Aに示すように、蓄冷パックを立て掛けて保冷対象物の温度管理を行なう場合であっても、保冷対象物を十分に温度管理することが可能となる。 In order to give the cold storage material a viscosity that is not affected by gravity, it is necessary to add many thickeners. However, if the amount of the thickener added to the cold storage material is increased too much, the performance as the cold storage material decreases. Therefore, the cold storage pack according to the present embodiment gives the first cold storage material and the second cold storage material a low viscosity of about 1,000 cP (paint or the like). As a result, as shown in FIG. 12A, even when the temperature management of the cold insulation object is performed by leaning the cold storage pack, the cold insulation object can be sufficiently temperature-controlled.
 [蓄冷パックの製造方法]
 次に、本実施形態の赤ワイン用サーバーで用いる蓄冷パックの製造方法について説明する。蓄冷パックは、撹拌PTP包装機を用いて作製する。蓄冷パックの製造方法は、第1の金型によって凹形状を有する第1の深絞り容器(第1の収容部)を成型する工程と、第2の金型によって、少なくとも第1の深絞り容器の凹形状よりも大きい凹形状を有する第2の深絞り容器(第2の収容部)を成型する工程と、第1の深絞り容器に、予め定められた温度で相変化する第1の蓄冷材(凍結材)を充填する工程と、第2の深絞り容器に、凍結材の相変化温度で液相状態を維持する第2の蓄冷材(不凍材)を充填する工程と、第2の蓄冷材(凍結材)が充填された第2の深絞り容器に、第1の蓄冷材(凍結材)が充填された第1の深絞り容器を積重させて、蓋材、第1の深絞り容器のフランジ部および第2の深絞り容器のフランジ部を接合する工程と、を少なくとも含む。
[Method of manufacturing cold storage pack]
Next, the manufacturing method of the cool storage pack used with the server for red wine of this embodiment is demonstrated. A cold storage pack is produced using a stirring PTP packaging machine. The method for manufacturing a cold storage pack includes at least a first deep-drawn container by a step of molding a first deep-drawn container (first housing portion) having a concave shape with a first mold and a second mold. Forming a second deep-drawn container (second housing portion) having a concave shape larger than the concave shape of the first deep-cooled container, and a first cold storage that changes phase at a predetermined temperature in the first deep-drawn container A step of filling a material (frozen material), a step of filling a second deep-drawn container with a second cold storage material (antifreeze material) that maintains a liquid phase state at the phase change temperature of the frozen material, and a second The first deep-drawn container filled with the first cold storage material (freezing material) is stacked on the second deep-drawn container filled with the cold storage material (freezing material), and the lid material, the first Joining at least the flange portion of the deep-drawn container and the flange portion of the second deep-drawn container.
 また、次のような製造方法であっても良い。即ち、第1の金型によって凹形状を有する第1の深絞り容器(第1の収容部)を成型する工程と、第2の金型によって、少なくとも第1の深絞り容器の凹形状よりも大きい凹形状を有する第2の深絞り容器(第2の収容部)を成型する工程と、第2の深絞り容器に、第1の蓄冷材(凍結材)の相変化温度で液相状態を維持する第2の蓄冷材(不凍材)を充填する工程と、第2の蓄冷材が充填された第2の深絞り容器に、第1の蓄冷材が充填された第1の深絞り容器を積重させる工程と、第1の深絞り容器に、予め定められた温度で相変化する第1の蓄冷材を充填する工程と、蓋材、第1の深絞り容器のフランジ部および第2の深絞り容器のフランジ部を接合する工程と、を少なくとも含む。 Also, the following manufacturing method may be used. That is, the step of molding the first deep-drawn container (first housing portion) having a concave shape with the first mold and the second mold at least more than the concave shape of the first deep-drawn container. The step of molding the second deep-drawn container (second housing portion) having a large concave shape, and the liquid phase state in the second deep-drawn container at the phase change temperature of the first cold storage material (freezing material) A step of filling the second cold storage material (antifreeze material) to be maintained, and a first deep-drawn container filled with the first cold storage material in the second deep-drawn container filled with the second cold storage material , A step of filling the first deep-drawn container with a first cold storage material that changes phase at a predetermined temperature, a lid, a flange portion of the first deep-drawn container, and a second Joining the flange portion of the deep-drawn container.
 図13Aおよび図13Bは、第1の深絞り容器の製造の工程を示す概念図である。図13Aに示すように、第1の金型としての真空成型金型30に、硬質フィルム31を設置し、真空成型機を用いて真空成型を行なう。 FIG. 13A and FIG. 13B are conceptual diagrams showing the steps of manufacturing the first deep-drawn container. As shown to FIG. 13A, the hard film 31 is installed in the vacuum molding die 30 as a 1st metal mold | die, and vacuum molding is performed using a vacuum molding machine.
 ここで、第1の深絞り容器は、蓋材と第2の深絞り容器との間に存在することから、例えば、PE//NY//PPのような3層から成るフィルムで構成するのが一般的である。しかしながら、3層フィルムの場合、シール強度が不安定になる懸念がある。特に、一般的なヒートシーラーでは、シーラーの片側にしかヒーターが存在しないため、ヒーターが存在しない側でシールされるフィルムのシール強度は弱くなるという課題がある。また、3層フィルムの場合、2層フィルムよりも流通性が低く、且つ製造工数が多く、高価格となるデメリットもある。したがって、本実施形態では、敢えて、2層フィルム構成とし、フィルムの任意の一部に貫通口を設ける構成とした。 Here, since the first deep-drawn container is present between the lid material and the second deep-drawn container, the first deep-drawn container is composed of a three-layer film such as PE // NY // PP. Is common. However, in the case of a three-layer film, there is a concern that the seal strength becomes unstable. In particular, in a general heat sealer, there is a heater on only one side of the sealer, so that there is a problem that the sealing strength of the film sealed on the side where the heater is not present becomes weak. In addition, in the case of a three-layer film, there are disadvantages that the flowability is lower than that of a two-layer film, the number of manufacturing steps is large, and the price is high. Therefore, in this embodiment, it was set as the structure which dares to have a 2 layer film structure, and provides a through-hole in arbitrary part of a film.
 このような工程により、図13Bに示すように、凹形状を有する第1の深絞り容器(第1の収容部)3が成形される。 By such a process, as shown in FIG. 13B, a first deep-drawn container (first housing portion) 3 having a concave shape is formed.
 図14Aおよび図14Bは、第2の深絞り容器の製造の工程を示す概念図である。図14Aに示すように、第2に金型としての真空成型金型50に、軟質フィルム51を設置し、真空成型機を用いて真空成型を行なう。 FIG. 14A and FIG. 14B are conceptual diagrams showing steps of manufacturing the second deep-drawn container. As shown in FIG. 14A, second, a soft film 51 is placed in a vacuum molding die 50 as a die, and vacuum molding is performed using a vacuum molding machine.
 図15は、第2の蓄冷材(不凍材)を充填する工程を示す概念図である。この工程では、上記のように形成した第2の深絞り容器5内に、液体充填機を用いて、第2の蓄冷材(不凍材)5aを定量充填する。なお、液体充填機には、ポンプ式充填機を使用することが好ましい。第2の蓄冷材としては、充填プロセス上、材料の跳ね返り・飛び出し等の影響がない最低限の粘性、且つ自重に対して形状維持性のある最低限の粘性を有することが好ましい。例えば、1,000~10,000cP程度の粘度を有することが好ましい。粘性を有することで、蓄冷材の充填率を増やすことも可能となる。 FIG. 15 is a conceptual diagram showing a process of filling the second regenerator material (antifreeze material). In this step, the second deep-drawn container 5 formed as described above is quantitatively filled with the second cold storage material (antifreeze material) 5a using a liquid filling machine. In addition, it is preferable to use a pump-type filling machine for a liquid filling machine. It is preferable that the second regenerator material has a minimum viscosity that does not affect the material rebounding or popping out, and a minimum viscosity that maintains shape against its own weight in the filling process. For example, it preferably has a viscosity of about 1,000 to 10,000 cP. By having viscosity, it becomes possible to increase the filling rate of the regenerator material.
 図16は、フィルムを熱圧着する工程を示す概念図である。この工程では、上記のように形成した第1の深絞り容器3を、第2の蓄冷材(不凍材)が充填された第2の深絞り容器5上に位置決めし、第1の深絞り容器3を形成するフィルムと第2の深絞り容器5を形成するフィルム材とを熱溶着する。このフィルムの熱圧着には、ヒートシーラーを用いることが好ましい。また、超音波溶着器を用いても良い。 FIG. 16 is a conceptual diagram showing a process of thermocompression bonding a film. In this step, the first deep-drawn container 3 formed as described above is positioned on the second deep-drawn container 5 filled with the second cold storage material (antifreeze material), and the first deep-drawn container 3 is positioned. The film forming the container 3 and the film material forming the second deep-drawn container 5 are heat-welded. A heat sealer is preferably used for thermocompression bonding of the film. Further, an ultrasonic welder may be used.
 図17は、第1の蓄冷材(凍結材)3aを充填する工程を示す概要図である。この工程では、上記のように形成した第1の深絞り容器3内に液体充填機を用いて、第1の蓄冷材3aを定量充填する。なお、液体充填機には、ポンプ式充填機を使用することが好ましい。また、第1の蓄冷材(凍結材)3aは、自重に対して形状維持性のある粘性を有することが好ましい。例えば、1,000~10,000cP程度の粘度がより好ましい。粘性を有することで、蓄冷材の充填率を増やすことが可能となる。容器の容積に対する蓄冷材の充填率は70~90%程度で、容器天面との間に空隙層が形成されている状態が好ましい。 FIG. 17 is a schematic diagram showing a process of filling the first regenerator material (frozen material) 3a. In this step, the first cold storage material 3a is quantitatively filled into the first deep-drawn container 3 formed as described above using a liquid filling machine. In addition, it is preferable to use a pump-type filling machine for a liquid filling machine. Moreover, it is preferable that the 1st cool storage material (frozen material) 3a has a viscosity with shape maintenance property with respect to own weight. For example, a viscosity of about 1,000 to 10,000 cP is more preferable. By having viscosity, it is possible to increase the filling rate of the regenerator material. The filling rate of the regenerator material with respect to the volume of the container is preferably about 70 to 90%, and a state in which a void layer is formed between the container and the top surface of the container is preferable.
 図18は、フィルムを熱圧着する工程を示す概念図である。この工程では、第2の深絞り容器5上に蓋材7を位置決めし、第2の深絞り容器5を形成するフィルム材と蓋材7とを熱溶着する。このフィルムの熱圧着には、ヒートシーラーを用いることが好ましい。また、超音波溶着機を用いても良い。蓋材7には、軟質プラスチックフィルムを使用することが好ましい。 FIG. 18 is a conceptual diagram showing a process of thermocompression bonding a film. In this step, the lid member 7 is positioned on the second deep-drawn container 5, and the film material forming the second deep-drawn container 5 and the lid material 7 are heat-welded. A heat sealer is preferably used for thermocompression bonding of the film. An ultrasonic welder may be used. For the lid member 7, it is preferable to use a soft plastic film.
 ここで、第2の深絞り容器5を形成するフィルムの天面の一部には、貫通口8が設けられ、本工程における溶着時には、貫通口8を介して第1の深絞り容器3を形成するフィルムと蓋材7とが溶着されることが好ましい。 Here, a through-hole 8 is provided in a part of the top surface of the film forming the second deep-drawn container 5, and at the time of welding in this step, the first deep-drawn container 3 is attached via the through-hole 8. The film to be formed and the lid member 7 are preferably welded.
 このように、第1の深絞り容器と、第2の深絞り容器が接合されることによって、第1の深絞り容器と第2の深絞り容器の位置関係が固定され、性能を向上させること、並びに繰り返し性能を向上させることができる。ここで、第2の深絞り容器は、図14A~図18に示されるように、深さの異なる底面を有する形状であっても良い。例えば、ワインボトルのような高さ方向にくびれ形状を有する受熱体の場合、第2の深絞り容器を高さ方向に深さが段階的に深くなるような形状とすることによって、受熱体としての飲食物との密着性を向上させることができる。接合手段としては、上記のような溶着として、超音波溶着、振動溶着、誘導溶着、高周波溶着、半導体レーザー溶着、熱溶着、スピン溶着等が挙げられるが、本発明の一実施形態は、これらに限定されない。 Thus, by joining the first deep-drawn container and the second deep-drawn container, the positional relationship between the first deep-drawn container and the second deep-drawn container is fixed, and the performance is improved. As well as the repetition performance can be improved. Here, as shown in FIGS. 14A to 18, the second deep-drawn container may have a shape having bottom surfaces with different depths. For example, in the case of a heat receiving body having a constricted shape in the height direction, such as a wine bottle, the second deep-drawn container is shaped so that the depth increases stepwise in the height direction, Adhesiveness with food and drink can be improved. Examples of the welding means include ultrasonic welding, vibration welding, induction welding, high frequency welding, semiconductor laser welding, thermal welding, spin welding, and the like as described above. It is not limited.
 以上のような製造方法により、第2の蓄冷材が第1の蓄冷材の相変化温度で液相状態を維持し、第2の深絞り容器が受熱体としての飲食物に接触する蓄冷パックを製造することが可能となる。 By the manufacturing method as described above, the second regenerator material maintains a liquid phase state at the phase change temperature of the first regenerator material, and the second deep-drawn container contacts the food or drink as the heat receiver. It can be manufactured.
 [赤ワイン用サーバー搭載上限量]
 本実施形態に係る赤ワイン用サーバーにおいて、ある程度数値が限定されるパラメータを以下に挙げる。
[Upper limit on red wine server]
In the red wine server according to the present embodiment, parameters whose numerical values are limited to some extent are listed below.
 [1]ワインとワインボトルに関する数値
(1)ワインの量:750mL
(2)ボトルの重さ(ワイン含む):1,200~1,500g
(3)ボトルのタイプ:ボルドー型
   (外形:φ70~80mm、高さ:290~300mm、
    このうち、くびれ形状を除くフラットな部分の高さ:180~200mm、
    赤ワイン用サーバーの不凍材部分が接触可能なボトル表面積:45,000mm2前後)
(4)飲み頃温度:14~18℃
[1] Numerical values related to wine and wine bottles (1) Amount of wine: 750 mL
(2) Bottle weight (including wine): 1,200-1,500 g
(3) Bottle type: Bordeaux type (External dimensions: φ70 ~ 80mm, Height: 290 ~ 300mm,
Among these, the height of the flat part excluding the constricted shape: 180-200mm,
(The bottle surface area that can be contacted by the antifreeze part of the server for red wine: around 45,000mm 2 )
(4) Drinking temperature: 14-18 ° C
 [2]不凍材および凍結材を包装する包材の物質性
(1)材質:ONY//LLDPE(ナイロン+低密度ポリエチレン構成が一般的) 
(2)厚み:50~60um(一般的で流通性が高い厚み)
(3)熱伝導率:0.33W/m・K
[2] Physical properties of non-freezing material and packaging material for packaging frozen material (1) Material: ONY // LLDPE (Nylon + low density polyethylene structure is common)
(2) Thickness: 50-60um (general thickness with high flowability)
(3) Thermal conductivity: 0.33 W / m · K
 次に、ウェーバーの法則による重量感覚の観点から、本実施形態に係る赤ワイン用サーバーの「凍結材+不凍材」の搭載上限量の目安を規定する。ウェーバーの法則によれば、「人にある刺激を与えたとき、その違いを知覚できる弁別閾は、その刺激の強さに比例する」と言われており、この法則を「重量感覚」の観点で検証した文献や論文等が存在する。また、対象物の形状や持ち方にも依存する(文献「東京女子医科大学雑誌:876-880,1976」)が、概ね以下のことが推察される。 Next, from the viewpoint of weight perception according to Weber's law, a standard for the upper limit amount of “frozen material + antifreeze material” of the server for red wine according to this embodiment is defined. According to Weber's law, it is said that "the discrimination threshold that can perceive the difference when a stimulus is given to a person is proportional to the strength of the stimulus". There are documents and papers verified in. In addition, although depending on the shape and way of holding of the object (literature “Tokyo Women's Medical University Journal: 876-880, 1976”), the following can be generally inferred.
 ウェーバーの法則から、対象物の重さを基本重量(R)とし、基本重量(R)に対して人が知覚できる最小の重量差を弁別閾(ΔR)とすると、ウェーバー比(ΔR/R)の値は、0.05~0.2の範囲にある。 From Weber's law, if the weight of the object is the basic weight (R), and the minimum weight difference that can be perceived by humans with respect to the basic weight (R) is the discrimination threshold (ΔR), the Weber ratio (ΔR / R) The value of is in the range of 0.05 to 0.2.
 次に、先に記載したパラメータの値を用いて、ワインボトル(ワイン(液量)含む)の重さに対して、本発明の一実施形態の赤ワイン用サーバー「凍結材+不凍材」の重さはどのくらい許容できるか、その目安を算出する。 Next, using the value of the parameter described above, the weight of the wine bottle (including wine (liquid amount)) is compared with the red wine server “frozen material + antifreeze material” of one embodiment of the present invention. Estimate how much weight is acceptable.
 ワインボトル(ワイン(液量)含む)の重さを1,500gとして、ウェーバー比を上限値の0.2と仮定した場合、基本重量(1,500g)に対して、人が知覚できる最小の重量は、1,500×0.2=300gとなる。つまり、実施形態に係る赤ワイン用サーバー「凍結材+不凍材」の重量は、300g以下であることが好ましいことが分かった。 Assuming that the weight of a wine bottle (including wine (liquid amount)) is 1,500 g and the Weber ratio is assumed to be the upper limit of 0.2, the minimum weight that can be perceived by humans with respect to the basic weight (1,500 g) The weight is 1,500 × 0.2 = 300 g. That is, it was found that the weight of the server for red wine “frozen material + antifreeze material” according to the embodiment is preferably 300 g or less.
 [比較対照実験]
 次に、本実施形態に係る赤ワイン用サーバーの目標仕様を、保持温度:14~18℃、保持温度までの到達時間≦20分、保持温度での保持時間≧120分とし、比較対照実験を行なった。以下、本実施形態に係る赤ワイン用サーバーの効果を検証するために行なった2種類の比較対照実験(比較対照実験I、II)について説明する。図19は、比較対照実験の手順の概要を示す図である。
[Comparative control experiment]
Next, the target specification of the server for red wine according to the present embodiment is set to a holding temperature: 14 to 18 ° C., an arrival time to the holding temperature ≦ 20 minutes, and a holding time at the holding temperature ≧ 120 minutes. It was. Hereinafter, two types of control experiments (Comparative Control Experiments I and II) performed to verify the effect of the server for red wine according to the present embodiment will be described. FIG. 19 is a diagram showing an outline of the procedure of the comparative control experiment.
 [1]比較対照実験I
 (手順I)
(1)液温が常温(25℃近辺)に保たれたワインボトル(ボトル中身:750mL水)を準備する。
(2)ワインボトル周囲に冷凍室内(-18℃前後)で冷却(凍結)させた凍結材、或いは不凍材、或いはその両方を巻きつける。
(3)巻きつけた蓄冷材(冷却(凍結)させた凍結材、或いは不凍材、或いはその両方)の外周に断熱材を巻きつける。断熱材には、汎用的なAL蒸着+発泡PEを用いる。
(4)ワインボトルを25℃環境下の保温庫に入れ、ボトル中央部のボトル内水温の変化を測定する。
[1] Comparative experiment I
(Procedure I)
(1) A wine bottle (bottle contents: 750 mL water) whose liquid temperature is kept at room temperature (around 25 ° C.) is prepared.
(2) Wrap a frozen material, an antifreeze material, or both around the wine bottle that has been cooled (frozen) in a freezer (around -18 ° C).
(3) A heat insulating material is wound around the outer periphery of a wound cold storage material (a frozen material that has been cooled (frozen), an antifreeze material, or both). A general-purpose AL vapor deposition + foamed PE is used as the heat insulating material.
(4) The wine bottle is put in a heat storage box at 25 ° C., and the change in the water temperature in the bottle at the center of the bottle is measured.
 (評価方法I)
 図20は、比較対照実験Iの評価方法を示す図であり、ワイン冷却開始後の液温の「到達時間」と「保持時間」を実測する。到達温度は、赤ワイン飲み頃の上限温度(18℃)とする。以下、評価方法Iによる結果を評価結果Iとする。
(Evaluation Method I)
FIG. 20 is a diagram showing an evaluation method of the comparative experiment I, and actually measures the “arrival time” and “holding time” of the liquid temperature after the start of wine cooling. The reached temperature is the upper limit temperature (18 ° C.) when drinking red wine. Hereinafter, the result by the evaluation method I is referred to as an evaluation result I.
 [2]比較対照実験II
 (手順II)
(1)液温が飲み頃(14~18℃)に保たれたワインボトル(ボトル中身:750mL水)を準備する。
(2)ワインボトル周囲に冷蔵室内(3~5℃前後)で冷却(凍結)させた凍結材、或いは不凍材、或いはその両方を巻きつける。
(3)巻きつけた蓄冷材(冷却(凍結)させた凍結材、或いは不凍材、或いはその両方)の外周に断熱材を巻きつける。断熱材には、汎用的なAL蒸着+発泡PEを用いる。
(4)ワインボトルを25℃環境下の保温庫に入れ、ボトル中央部のボトル内水温の変化を測定する。
[2] Comparative experiment II
(Procedure II)
(1) Prepare a wine bottle (bottle contents: 750 mL water) maintained at a liquid temperature (14-18 ° C.).
(2) Wrap a frozen material, an antifreeze material, or both around the wine bottle that has been cooled (frozen) in a refrigerator (around 3-5 ° C).
(3) A heat insulating material is wound around the outer periphery of a wound cold storage material (a frozen material that has been cooled (frozen), an antifreeze material, or both). A general-purpose AL vapor deposition + foamed PE is used as the heat insulating material.
(4) The wine bottle is put in a heat storage box at 25 ° C., and the change in the water temperature in the bottle at the center of the bottle is measured.
 (評価方法II)
 図21は、比較対照実験IIの評価方法を示す図であり、ワイン冷却開始後の液温の「保持時間」を実測する。保持温度は、赤ワイン飲み頃の上限温度(18℃)とする。以下、評価方法IIによる結果を評価結果IIとする。
(Evaluation Method II)
FIG. 21 is a diagram showing an evaluation method of the comparative experiment II, in which the “holding time” of the liquid temperature after the start of wine cooling is actually measured. The holding temperature is the upper limit temperature (18 ° C.) when drinking red wine. Hereinafter, the result by the evaluation method II is referred to as an evaluation result II.
 図22は、比較例1~4および実施例1~4の不凍材および凍結材の構成を示す表である。図22に示すように、比較例1~4および実施例1~4において、不凍材および凍結材をそれぞれ作製し、上記手順I、IIにしたがって評価I、IIを行なった。なお、図22に示すように、比較例1~4および実施例1~4は、蓄冷パックの搭載形態がそれぞれ異なっている。 FIG. 22 is a table showing the structures of antifreeze materials and frozen materials of Comparative Examples 1 to 4 and Examples 1 to 4. As shown in FIG. 22, in Comparative Examples 1 to 4 and Examples 1 to 4, an antifreeze material and a frozen material were respectively produced, and evaluations I and II were performed according to the above procedures I and II. As shown in FIG. 22, Comparative Examples 1 to 4 and Examples 1 to 4 are different in the mounting form of the cold storage packs.
 [比較例1]
 図23は、比較例1の不凍材の充填および包装の概要を示す図である。
(A)撹拌槽に水道水とNaCl(塩化ナトリウム)を入れ、150rpm/10min撹拌・溶解させ、NaCl_23wt%水溶液を作製する。
(B)ポンプを動作させ、上記(A)で作製した水溶液を、縦ピロー型包装機にてフィルム包装し、合計300gの不凍部材(蓄熱パッケージ)を作製する。なお、パッケージ用フィルムには、ONY_10um/LLDPE_50um品を用いた。
[Comparative Example 1]
FIG. 23 is a diagram showing an outline of filling and packaging of the antifreeze material of Comparative Example 1.
(A) Tap water and NaCl (sodium chloride) are put into a stirring tank and stirred and dissolved at 150 rpm / 10 min to prepare a NaCl — 23 wt% aqueous solution.
(B) The pump is operated, and the aqueous solution prepared in (A) above is film-wrapped with a vertical pillow type packaging machine to produce a total of 300 g of antifreeze member (heat storage package). In addition, the ONY_10um / LLDPE_50um product was used for the package film.
 比較例1の各評価結果は、以下の通りである。図24Aは、比較例1の評価結果Iを示す図である。ワインボトルとの密着性は良いが、材料は未凍結材(不凍材)のため、冷却能力が低く、赤ワインの飲み頃温度の上限18℃まで液温を冷却できないという結果を得た。 Each evaluation result of Comparative Example 1 is as follows. FIG. 24A is a diagram showing an evaluation result I of Comparative Example 1. Although the adhesion with the wine bottle is good, the material is an unfrozen material (non-freezing material), so the cooling capacity is low, and the liquid temperature cannot be cooled to the upper limit of 18 ° C. when drinking red wine.
 図24Bは、比較例1の評価結果IIを示す図である。ワインボトルとの密着性は良いが、材料は未凍結材(不凍材)のため、冷却能力が低く、時間経過とともに液温が上昇し、赤ワインの飲み頃温度の上限18℃を保持できたのは、30分弱であった。 FIG. 24B is a diagram showing an evaluation result II of Comparative Example 1. Adhesion to the wine bottle is good, but the material is unfrozen (non-frozen), so the cooling capacity is low, the liquid temperature rises over time, and the upper limit of 18 ° C for drinking red wine can be maintained. Was less than 30 minutes.
 [比較例2]
 比較例1と同様の手順で、TBAB(テトラブチルアンモニウムブロミド)_41wt%水溶液の凍結材を生成し、撹拌・包装機にて、合計300gの凍結部材(蓄熱パッケージ)を作製した。
[Comparative Example 2]
A frozen material of TBAB (tetrabutylammonium bromide) _41 wt% aqueous solution was produced in the same procedure as in Comparative Example 1, and a total of 300 g of frozen members (heat storage package) were produced with a stirring / packaging machine.
 比較例2の各評価結果は、以下の通りである。図25Aは、比較例2の評価結果Iを示す図である。材料は、凍結潜熱を有しており、比較例1に対して冷却能力が高く、赤ワインの飲み頃温度に到達することを確認した。しかしながら、凍結材料のため、ワインボトルとの密着性は悪く、到達時間、保持時間ともに十分ではないことを確認した。 Each evaluation result of Comparative Example 2 is as follows. FIG. 25A is a diagram showing an evaluation result I of Comparative Example 2. It was confirmed that the material has a latent heat of freezing, has a higher cooling capacity than Comparative Example 1, and reaches the temperature when drinking red wine. However, due to the frozen material, the adhesion with the wine bottle was poor, and it was confirmed that neither the arrival time nor the retention time was sufficient.
 図25Bは、比較例2の評価結果IIを示す図である。材料は、12℃近辺に融解潜熱を有しているため、測定開始後、約100分間は赤ワインの飲み頃温度を保持することができることが分かった。しかしながら、本構成のみでは、比較例2の評価結果Iと同様、常温近辺のワインを十分な飲み頃温度(14~18℃)に保持することはできない。  FIG. 25B is a diagram showing an evaluation result II of Comparative Example 2. Since the material has a latent heat of fusion around 12 ° C., it was found that the temperature at the time of drinking red wine can be maintained for about 100 minutes after the start of measurement. However, with this configuration alone, as in the evaluation result I of Comparative Example 2, it is not possible to maintain wine near normal temperature at a sufficient drinking temperature (14 to 18 ° C.).
 [比較例3]
 図26Aは、比較例3に係る蓄冷パックを生成する概要を示す図であり、図26Bは、比較例3の平面図であり、図26Cは、比較例3の側面図である。比較例1と同様の方法で、不凍材[NaCl(塩化ナトリウム)_23wt%水溶液]を作製し、比較例2と同様の方法で凍結材[TBAB(テトラブチルアンモニウムブロミド)_41wt%水溶液]を作製した。図26Aに示す縦ピロー型包装機を用いてフィルムパックの中に、不凍材とフィルムパック化された蓄冷材が充填されたパックinパック蓄冷部材(蓄冷パック)を作製した。なお、パッケージ用フィルムには、ONY_10um/LLDPE_50um品を用いた。
[Comparative Example 3]
FIG. 26A is a diagram illustrating an outline of generating a cold storage pack according to Comparative Example 3, FIG. 26B is a plan view of Comparative Example 3, and FIG. 26C is a side view of Comparative Example 3. An antifreeze material [NaCl (sodium chloride) _23 wt% aqueous solution] was prepared in the same manner as in Comparative Example 1, and a frozen material [TBAB (tetrabutylammonium bromide) _41 wt% aqueous solution] was prepared in the same manner as in Comparative Example 2. did. A pack-in-pack regenerator member (cold regenerator pack) in which a film pack was filled with an antifreeze material and a regenerator material formed into a film pack was produced using the vertical pillow type packaging machine shown in FIG. 26A. In addition, the ONY_10um / LLDPE_50um product was used for the package film.
 比較例3の各評価結果は、以下の通りである。図27Aは、比較例3の評価結果Iを示す図である。不凍材+凍結材の構成、即ち、不凍材によって「密着性」を確保しつつ、凍結材で「冷却機能」を与える構成を実現することで、比較例2に対して到達時間を、50分から25分に大幅に改善できることを確認した。また、保持時間についても、40分から95分に改善できることを確認した。ただし、この構成では、凍結材と不凍材が一つの袋に包装されているものの、固定されていないため、図11Cに示した通り、隙間発生により熱交換の効率が低下する。 Each evaluation result of Comparative Example 3 is as follows. FIG. 27A is a diagram showing an evaluation result I of Comparative Example 3. By realizing a configuration of antifreeze material + frozen material, that is, a structure that provides “cooling function” with the frozen material while ensuring “adhesion” by the antifreeze material, the arrival time with respect to the comparative example 2, It was confirmed that it can be greatly improved from 50 minutes to 25 minutes. It was also confirmed that the retention time could be improved from 40 minutes to 95 minutes. However, in this configuration, although the frozen material and the antifreeze material are packaged in one bag but are not fixed, as shown in FIG. 11C, the efficiency of heat exchange decreases due to the generation of a gap.
 図27Bは、比較例3の評価結果IIを示す図である。不凍材+凍結材の構成、即ち、不凍材によって「密着性」を確保しつつ、凍結材で「冷却機能」を与える構成を実現することで、比較例1、2に比べて十分な到達温度14℃を得るとともに、比較例2同等の保持時間を得た。しかしながら、本構成では、比較例3の評価結果Iと同様、隙間発生により熱交換の効率が低下する。 FIG. 27B is a diagram showing an evaluation result II of Comparative Example 3. It is sufficient compared with Comparative Examples 1 and 2 by realizing a configuration of antifreezing material + freezing material, that is, providing a “cooling function” with the frozen material while ensuring “adhesion” with the antifreezing material. While an ultimate temperature of 14 ° C. was obtained, a holding time equivalent to that of Comparative Example 2 was obtained. However, in this configuration, as in the evaluation result I of Comparative Example 3, the efficiency of heat exchange decreases due to the generation of a gap.
 [比較例4]
 撹拌PTP包装機を用いて、蓄冷部材(蓄冷パック)を作製した。不凍材には、NaCl(塩化ナトリウム)_23wt%水溶液、凍結材にはKCl(塩化カリウム)_20wt%水溶液を用いた。
[Comparative Example 4]
A cold storage member (cold storage pack) was prepared using a stirring PTP packaging machine. A NaCl (sodium chloride) — 23 wt% aqueous solution was used as the antifreeze material, and a KCl (potassium chloride) — 20 wt% aqueous solution was used as the frozen material.
 比較例4の各評価結果は、以下の通りである。図28Aは、比較例4の評価結果Iを示す図である。比較例4では、不凍材+凍結材の構成、即ち、不凍材によって「密着性」を確保しつつ、凍結材で「冷却機能」を与える構成であり、且つ、PTP包装により、パックinパックの課題であった不凍材~凍結材間のロス対策を反映した構成を実現した。しかし、凍結材にKClのような相変化温度の低い材料(融点:-11℃)を選定すると、液温が赤ワインの飲み頃温度(14~18℃)を大幅に下回り、赤ワインの飲み頃温度(14~18℃)を保持することができないことを確認した。なお、凍結材を水とした場合においても、ほぼ同様な結果となることを確認した。 Each evaluation result of Comparative Example 4 is as follows. FIG. 28A is a diagram showing an evaluation result I of Comparative Example 4. In Comparative Example 4, the composition of antifreeze material + frozen material, that is, the structure that provides the “cooling function” with the frozen material while ensuring “adhesion” with the antifreeze material, and packs in with PTP packaging. We realized a configuration that reflects the countermeasures against loss between antifreeze and frozen materials, which was an issue with packs. However, when a material with a low phase change temperature such as KCl (melting point: -11 ° C) is selected as the frozen material, the liquid temperature is significantly lower than the temperature when drinking red wine (14-18 ° C), and the temperature when drinking red wine. It was confirmed that (14 to 18 ° C.) could not be maintained. It was confirmed that almost the same results were obtained when the frozen material was water.
 図28Bは、比較例4の評価結果IIを示す図である。本評価結果においても、凍結材にKClのような相変化温度の低い材料(融点:-11℃)を選定すると、液温が赤ワインの飲み頃温度(14~18℃)を大幅に下回り、赤ワインの飲み頃温度(14~18℃)を保持することができないことを確認した。 FIG. 28B is a diagram showing an evaluation result II of Comparative Example 4. Also in this evaluation result, if a material with a low phase change temperature such as KCl (melting point: −11 ° C.) is selected as the frozen material, the liquid temperature will be significantly lower than the drinking temperature (14-18 ° C.) of red wine. It was confirmed that the drinking temperature (14-18 ° C.) could not be maintained.
 [実施例1]
 撹拌PTP包装機を用いて、蓄冷部材(蓄冷パック)を作製した。不凍材には、NaCl_23wt%水溶液150g、凍結材にはTBAB_41wt%水溶液150gを用いた。
[Example 1]
A cold storage member (cold storage pack) was prepared using a stirring PTP packaging machine. 150 g of NaCl_23 wt% aqueous solution was used as the antifreeze material, and 150 g of TBAB_41 wt% aqueous solution was used as the frozen material.
 実施例1の各評価結果は、以下の通りである。図29Aは、実施例1の評価結果Iを示す図である。PTP包装による構造を有することで、比較例3に対し、到達時間が25分から20分に改善され、且つ、保持時間も95分から120分に改善された。 Each evaluation result of Example 1 is as follows. FIG. 29A is a diagram showing an evaluation result I of Example 1. By having the structure by PTP packaging, the arrival time was improved from 25 minutes to 20 minutes and the holding time was also improved from 95 minutes to 120 minutes compared to Comparative Example 3.
 図29B、実施例1の評価結果IIを示す図である。PTP包装による構造を有することで、比較例3に対し、保持時間が105分から120分に改善された。 FIG. 29B is a diagram showing an evaluation result II of Example 1. By having a structure based on PTP packaging, the holding time was improved from 105 minutes to 120 minutes compared to Comparative Example 3.
 [実施例2]
 撹拌PTP包装機を用いて、蓄冷部材(蓄冷パック)を作製した。不凍材には、NaCl_23wt%水溶液100g、凍結材にはTBAB_41wt%水溶液150gを用いた。
[Example 2]
A cold storage member (cold storage pack) was prepared using a stirring PTP packaging machine. As the antifreeze material, 100 g of NaCl — 23 wt% aqueous solution was used, and as the frozen material, 150 g of TBAB — 41 wt% aqueous solution was used.
 実施例2の各評価結果は、以下の通りである。図30Aは、実施例2の評価結果Iを示す図である。不凍材の量を150gから100gへ減量することによって、凍結材からボトルへの熱交換効率が高まり、保持時間は長くなる一方、減量による冷却のための熱容量の合計値が減少しているため、到達時間は遅くなることを確認した。熱交換効率向上により、到達温度も実施例1よりも低くなることが分かった。 Each evaluation result of Example 2 is as follows. FIG. 30A is a diagram showing an evaluation result I of Example 2. By reducing the amount of antifreeze material from 150 g to 100 g, the heat exchange efficiency from the frozen material to the bottle increases and the holding time becomes longer, while the total value of the heat capacity for cooling due to the weight reduction decreases. , Confirmed that the arrival time will be slow. It was found that the ultimate temperature was lower than that of Example 1 due to the improvement of the heat exchange efficiency.
 図30B、実施例2の評価結果IIを示す図である。不凍材の量を150gから100gへ減量することによって、凍結材からワインボトルへの熱交換効率が向上し、保持時間は長くなることを確認した。 FIG. 30B is a diagram showing an evaluation result II of Example 2. It was confirmed that by reducing the amount of the antifreeze material from 150 g to 100 g, the heat exchange efficiency from the frozen material to the wine bottle was improved and the holding time was lengthened.
 [実施例3]
 撹拌PTP包装機を用いて、蓄冷部材(蓄冷パック)を作製した。不凍材には、NaCl_23wt%水溶液300g、凍結材にはTBAB_41wt%水溶液150gを用いた。
[Example 3]
A cold storage member (cold storage pack) was prepared using a stirring PTP packaging machine. 300 g of NaCl_23 wt% aqueous solution was used as the antifreeze material and 150 g of TBAB_41 wt% aqueous solution was used as the frozen material.
 実施例3の各評価結果は、以下の通りである。図31Aは、実施例3の評価結果Iを示す図である。不凍材の量を150gから300gへ増量することによって、凍結材からワインボトルへの熱交換効率が低下し、保持時間は縮まる一方、不凍材の量の増量による冷却のための熱容量の合計値が増大しているため、到達時間は早くなることを確認した。また、熱交換効率低下により、到達温度も実施例1よりも高くなることが分かった。 Each evaluation result of Example 3 is as follows. FIG. 31A is a diagram showing an evaluation result I of Example 3. By increasing the amount of antifreeze from 150 g to 300 g, the heat exchange efficiency from frozen material to wine bottle is reduced and the holding time is shortened, while the heat capacity for cooling by increasing the amount of antifreeze is reduced Since the value increased, it was confirmed that the arrival time was earlier. It was also found that the ultimate temperature was higher than that of Example 1 due to the decrease in heat exchange efficiency.
 図31Bは、実施例3の評価結果IIを示す図である。不凍材の量を150gから300gへ増量することによって、凍結材からワインボトルへの熱交換効率が低下し、保持時間は縮まることを確認した。 FIG. 31B is a diagram showing an evaluation result II of Example 3. It was confirmed that by increasing the amount of the antifreeze material from 150 g to 300 g, the heat exchange efficiency from the frozen material to the wine bottle was lowered and the holding time was shortened.
 [実施例4]
 撹拌PTP包装機を用いて、蓄冷部材(蓄冷パック)を作製した。不凍材には、NaCl_23wt%水溶液150g、凍結材にはTBAB_41wt%水溶液に、CMC_5wt%を加え、増粘させた材料を200g充填した蓄冷パックを用いた。増粘化することにより、充填容器容積に対する充填率を60%から80%へ20%向上させた。
[Example 4]
A cold storage member (cold storage pack) was prepared using a stirring PTP packaging machine. A cold storage pack in which 150 g of NaCl_23 wt% aqueous solution was used as the antifreeze material and 200 g of the thickened material was added to the TBAB_41 wt% aqueous solution added with CMC_5 wt% was used. By increasing the viscosity, the filling rate with respect to the filling container volume was improved by 20% from 60% to 80%.
 実施例4の各評価結果は、以下の通りである。図32Aは、実施例3の評価結果Iを示す図である。増粘化により、凍結材の充填率が向上したことにより、実施例1よりも保持時間が若干長くなった。 Each evaluation result of Example 4 is as follows. FIG. 32A is a diagram showing an evaluation result I of Example 3. The retention time was slightly longer than in Example 1 due to the increase in the filling rate of the frozen material due to thickening.
 図32Bは、実施例4の評価結果IIを示す図である。実施例4の評価結果Iと同様、増粘化により、凍結材の充填率が向上したことにより、実施例1よりも保持時間が若干長くなった。 FIG. 32B is a diagram showing an evaluation result II of Example 4. Similar to the evaluation result I of Example 4, the retention time was slightly longer than that of Example 1 due to the increase in the filling rate of the frozen material by thickening.
 図33は、比較例1~4および実施例1~4の実施結果をまとめた表である。評価結果から、不凍材にはNaCl_23wt%水溶液、凍結材にはTBAB_41wt%水溶液を用いることが好ましく、蓄冷パックの搭載形態は、前述した通り熱交換効率の観点から、比較例4で用いたPTP包装(深絞り容器)であることが好ましいことが分かった。そして、実施例1および実施例3では、本実施形態に係る赤ワイン用サーバーの目標仕様を達成できることが分かった。 FIG. 33 is a table summarizing the implementation results of Comparative Examples 1 to 4 and Examples 1 to 4. From the evaluation results, it is preferable to use a NaCl — 23 wt% aqueous solution for the antifreeze material and a TBAB — 41 wt% aqueous solution for the frozen material, and the mounting form of the cold storage pack is the PTP used in Comparative Example 4 from the viewpoint of heat exchange efficiency as described above. It has been found that packaging (deep-drawn containers) is preferred. And in Example 1 and Example 3, it turned out that the target specification of the server for red wine which concerns on this embodiment can be achieved.
 図34A~図34Cは、実施例1~3の結果から、不凍材の量と各性能(到達時間、保持温度、到達温度)との関係を示したグラフである。図34A~図34Cに示すように、不凍材の量が多過ぎると、凍結材との熱交換の観点から、保持時間が短くなり、到達温度が高くなってしまう傾向がある。一方、不凍材の量が少な過ぎると、密着性と熱容量の合計値との観点から、到達時間が長くなってしまう傾向がある。したがって、以上の結果から、各性能を程良く満たす条件(不凍材の量)は、150gであることが示唆された。 34A to 34C are graphs showing the relationship between the amount of antifreeze material and each performance (arrival time, holding temperature, ultimate temperature) based on the results of Examples 1 to 3. As shown in FIGS. 34A to 34C, if the amount of the antifreeze material is too large, the holding time tends to be short and the ultimate temperature tends to be high from the viewpoint of heat exchange with the frozen material. On the other hand, if the amount of the antifreeze material is too small, the reaching time tends to be long from the viewpoint of adhesion and the total value of heat capacity. Therefore, from the above results, it was suggested that the condition (amount of antifreeze material) satisfying each performance reasonably is 150 g.
 [不凍材量の最適化]
 常温(25℃近辺)の赤ワインボトル(750mL)を赤ワインの飲み頃温度(14~18℃)に到達させる系において、凍結材量を一定(100g)とした場合の不凍材量の最適化を検討する。凍結材量を一定(100g)にした状態で、不凍材量を(1)50g、(2)100g、(3)150g、(4)200g、(5)500gとした場合の、ワインの温度変化を測定した。なお、不凍材の包装材(厚さ=50um)の熱伝導率は、0.33W/m・Kとする。
[Optimization of antifreeze material]
Optimization of the amount of antifreeze material when the amount of frozen material is constant (100 g) in a system in which a red wine bottle (750 mL) at room temperature (around 25 ° C) reaches the temperature (14-18 ° C) when drinking red wine. consider. Wine temperature when the amount of antifreeze is (1) 50 g, (2) 100 g, (3) 150 g, (4) 200 g, (5) 500 g with the amount of frozen material constant (100 g) Changes were measured. The thermal conductivity of the antifreeze packaging material (thickness = 50 μm) is 0.33 W / m · K.
 図35Aは、凍結材量一定(100g)の下、(1)~(5)の不凍材量を用いた場合のワインの温度変化を示したグラフである。図35Bは、ワインの温度が18℃に到達する時間と不凍材量との関係を示したグラフである。 FIG. 35A is a graph showing a change in the temperature of wine when the amount of antifreeze material (1) to (5) is used under a constant amount of frozen material (100 g). FIG. 35B is a graph showing the relationship between the time for the wine temperature to reach 18 ° C. and the amount of antifreeze material.
 図35Aおよび図35Bに示す通り、不凍材量に比例して赤ワインの飲み頃温度(14~18℃)到達時間は短縮される傾向があるが、一定量(200g)を超えると、飽和する特徴が確認された。これは、ボトル方向に熱交換可能な熱容量は決まっており、ある一定量以上は搭載量を増やしても厚みが増すだけで、ボトル方向への熱交換には寄与できないという結果が示唆されたものと考えられる。また、不凍材量が50gより少ないと、赤ワインの飲み頃温度(14~18℃)達成に要する時間は、20分を超えてしまうことが示唆される。よって、不凍材量は、最低50g以上200g以下であることが好ましい。急冷性能を追究した場合には、不凍材量は、100g以上200g以下であることが好ましい。 As shown in FIG. 35A and FIG. 35B, the reaching time (14-18 ° C.) of red wine tends to be shortened in proportion to the amount of antifreeze, but when it exceeds a certain amount (200 g), it is saturated. The characteristics were confirmed. This suggests that the heat capacity that can exchange heat in the bottle direction has been determined, and even if the mounting amount is increased beyond a certain amount, the thickness will only increase and it will not contribute to heat exchange in the bottle direction. it is conceivable that. It is also suggested that if the amount of antifreeze material is less than 50 g, the time required to achieve the temperature for drinking red wine (14-18 ° C.) will exceed 20 minutes. Therefore, the amount of antifreeze material is preferably at least 50 g and 200 g. When the rapid cooling performance is pursued, the amount of antifreeze material is preferably 100 g or more and 200 g or less.
 [包装材の熱伝導率の最適化]
 不凍材量の検証で得られた最適化条件[凍結材量:100g、不凍材量:200g]において、不凍材や凍結材(特に不凍材)をパッケージする包材の熱伝導率を変化させた場合の実験結果について説明する。常温(25℃近辺)の赤ワインボトル(750mL)を赤ワインの飲み頃温度(14~18℃)に到達させる系において、包装材の熱伝導率を(1)0.1W/m・K、(2)0.25W/m・K、(3)1.0W/m・K、(4)5.0W/m・K、(5)50W/m・K、(6)100W/m・Kとした場合の、ワインの温度変化を測定する。
[Optimization of thermal conductivity of packaging materials]
Thermal conductivity of the packaging material for packaging antifreeze materials and frozen materials (especially antifreeze materials) under the optimization conditions obtained by verification of the amount of antifreeze materials (freeze material amount: 100 g, antifreeze material amount: 200 g) The experimental result when changing is described. In a system in which a red wine bottle (750 mL) at room temperature (around 25 ° C.) reaches the temperature (14 to 18 ° C.) when drinking red wine, the thermal conductivity of the packaging material is (1) 0.1 W / m · K, (2 ) 0.25 W / m · K, (3) 1.0 W / m · K, (4) 5.0 W / m · K, (5) 50 W / m · K, (6) 100 W / m · K Measure the temperature change of the wine.
 図36Aは、熱伝導率の異なる(1)~(6)の包装材によるワインの温度変化を示したグラフである。図36Bは、ワインの温度が18℃に到達する時間と包材の熱伝導率との関係を示したグラフである。 FIG. 36A is a graph showing the temperature change of wine by the packaging materials (1) to (6) having different thermal conductivities. FIG. 36B is a graph showing the relationship between the time for the wine temperature to reach 18 ° C. and the thermal conductivity of the packaging material.
 図36Aおよび図36Bに示す通り、包材の熱伝導率は、熱伝導率が高くなるほど、飲み頃温度(14~18℃)到達時間は短縮される傾向にあるが、1.0W/m・K以上ではその差異が殆どなくなることから、不凍材や凍結材(特に不凍材)をパッケージする包材の熱伝導率は1.0W/m・K以上が好ましい。また、包装材として高い熱伝導率(250W/m・K)を有するアルミニウム(AL)を用いることも好ましい。アルミニウムよりも高い熱伝導率を有する材料として金や銀等も存在するが、包装材として用いることは現実的ではない。これは、熱伝導率が高過ぎると、外部への放熱ロス発生の懸念も考えられるためである。 As shown in FIG. 36A and FIG. 36B, the thermal conductivity of the packaging material tends to shorten the time to reach the drinking temperature (14 to 18 ° C.) as the thermal conductivity increases, but 1.0 W / m · Since the difference is almost eliminated at K or higher, the thermal conductivity of the packaging material for packaging the antifreeze material or frozen material (particularly antifreeze material) is preferably 1.0 W / m · K or higher. It is also preferable to use aluminum (AL) having a high thermal conductivity (250 W / m · K) as a packaging material. Although gold, silver, and the like exist as materials having higher thermal conductivity than aluminum, it is not practical to use as a packaging material. This is because if the thermal conductivity is too high, there may be a possibility of heat dissipation loss to the outside.
 不凍材量および包装材の熱伝導率について、さらに急冷性能の検証を行なった。図37は、検証の概要を示す図である。ワインボトル80(材質:Glass/厚さ3mm、外形寸法:φ76×200mm)内にワイン(物性:水(比熱等)、搭載重量:500mL)が入っており、ワインボトル80の外側に不凍材層83および凍結材層85を設置した。 Further verification of the quenching performance was performed on the amount of antifreeze and the thermal conductivity of the packaging material. FIG. 37 is a diagram showing an outline of verification. Wine (physical properties: water (specific heat, etc.), loading weight: 500 mL) is contained in a wine bottle 80 (material: Glass / thickness 3 mm, outer dimension: φ76 × 200 mm), and an antifreeze material is placed outside the wine bottle 80. Layer 83 and frozen material layer 85 were installed.
 不凍材層83は、搭載重量:100~200g、包装形態:フィルム/厚さ50um、外形寸法:φ200×234mmである。凍結材層85は、搭載重量:100~200g、包装形態:フィルム/厚さ50um、外形寸法:φ200×256mm(間接部幅:10mm×6ヶ所)である。図38は、不凍材と凍結材の搭載重量、包材材質をまとめた表である。 The antifreeze layer 83 has a mounting weight of 100 to 200 g, a packaging form: a film / thickness of 50 μm, and an outer dimension: φ200 × 234 mm. The frozen material layer 85 has a mounting weight of 100 to 200 g, a packaging form: a film / thickness of 50 μm, and an outer dimension: φ200 × 256 mm (indirect portion width: 10 mm × 6 locations). FIG. 38 is a table summarizing the mounting weight of the antifreeze material and the frozen material, and the packaging material.
 検証手順は以下の通りである。
(A)フィルム包装した不凍材および凍結材を冷凍室(-18℃)で凍結させる。
(B)常温(25℃近辺)の赤ワインボトル(500mL)に、不凍材、凍結材を搭載し、ワインボトル内のワイン液温の温度変化を計測する。
The verification procedure is as follows.
(A) Freezing the frozen anti-freeze material and the frozen material in a film in a freezer (−18 ° C.).
(B) An antifreeze material and a frozen material are mounted on a red wine bottle (500 mL) at room temperature (around 25 ° C.), and the temperature change of the wine liquid temperature in the wine bottle is measured.
 図39は、不凍材と凍結材の搭載重量と包材材質の組み合わせによる到達時間および保持時間の測定結果をまとめた図である。図40は、各組み合わせのワイン液温の温度変化を示すグラフである。高い熱伝導率を有する材料を包装材に用いることで、到達時間および保持時間をさらに向上させることができることが分かった。 FIG. 39 is a table summarizing the measurement results of the arrival time and the holding time depending on the combination of the weight of the antifreeze material and the frozen material and the packaging material. FIG. 40 is a graph showing the temperature change of the wine liquid temperature of each combination. It was found that the arrival time and the holding time can be further improved by using a material having a high thermal conductivity for the packaging material.
 図41は、条件2におけるワイン液温の温度分布を示した図、即ち、ワインボトルの鉛直方向の断面上の温度分布を概念的に示した図である。条件2では、常温(25℃近辺)の赤ワインボトル(500mL)を、わずか12分で赤ワイン飲み頃温度(14~18℃)に到達させ、その後も122分の間、赤ワイン飲み頃温度(14~18℃)温度を保持することができている。 FIG. 41 is a diagram showing the temperature distribution of the wine liquid temperature under condition 2, that is, a diagram conceptually showing the temperature distribution on the cross section in the vertical direction of the wine bottle. Under condition 2, a red wine bottle (500 mL) at room temperature (around 25 ° C) is allowed to reach the temperature for drinking red wine (14-18 ° C) in just 12 minutes, and then the temperature for drinking red wine (14- 18 ° C.) temperature can be maintained.
 図41を用いて温度変化の状態をみると、ワインボトルへ不凍材層および凍結材層を設置後、0分では、ワインボトル内部の液温は、2.981e+002[K](24.95℃)となっており、ワインボトルの表面側の液温のみ、2.551e+002[K](-18.05℃)である。しかし、10分後には、ワインボトル内の液温は2.874e+002[K](14.25℃)となっており、その後も赤ワイン飲み頃温度(14~18℃)に冷却されていることが分かる。 Looking at the temperature change state with reference to FIG. 41, the liquid temperature inside the wine bottle is 2.981e + 002 [K] (24.95) at 0 minutes after the installation of the antifreeze layer and the frozen layer on the wine bottle. Only the liquid temperature on the surface side of the wine bottle is 2.551e + 002 [K] (−18.05 ° C.). However, after 10 minutes, the liquid temperature in the wine bottle is 2.874e + 002 [K] (14.25 ° C.), and after that, it is cooled to the red wine drinking temperature (14-18 ° C.). I understand.
 [TBAB水溶液の濃度]
 図42は、TBABの濃度依存性に関する検証結果を示した図である。図42はTBAB濃度と融解開始外資温度の関係を示すグラフである。図42に示す通り、TBABの濃度が(1)の場合、融解開始外挿温度のピークは、0℃前後となる。TBABの濃度が(2)の場合、融解開始外挿温度のピークは、6~10℃となる。TBABの濃度が(3)の場合、融解開始外資温度のピークは、10~12℃となる。また、図43に示すように、TBABの濃度が15wt%以下では、0℃前後にしか潜熱を有していないことが分かる。つまり、TBABの濃度が15wt%以下では、赤ワイン飲み頃温度(14~18℃)を保つことはできない。赤ワイン飲み頃温度(14~18℃)を保つためには、TBABの濃度は、20wt%以上41wt%以下であることが好ましい。
[Concentration of TBAB aqueous solution]
FIG. 42 is a diagram showing a verification result regarding the concentration dependency of TBAB. FIG. 42 is a graph showing the relationship between the TBAB concentration and the melting start external temperature. As shown in FIG. 42, when the concentration of TBAB is (1), the peak of the melting start extrapolation temperature is around 0 ° C. When the concentration of TBAB is (2), the peak of the melting start extrapolation temperature is 6 to 10 ° C. When the concentration of TBAB is (3), the melting start foreign capital temperature peak is 10 to 12 ° C. Further, as shown in FIG. 43, it can be seen that when the concentration of TBAB is 15 wt% or less, it has latent heat only around 0 ° C. That is, when the concentration of TBAB is 15 wt% or less, it is not possible to maintain the temperature (14-18 ° C.) when drinking red wine. In order to maintain the temperature when drinking red wine (14 to 18 ° C.), the concentration of TBAB is preferably 20 wt% or more and 41 wt% or less.
 [第7の実施形態]
 本発明の一実施形態は、保冷時に赤ワインボトルのラベルが見える構成、即ちワインボトルの半周部程度に蓄冷材を搭載した構成を採ることもできる。図44Aおよび図44Bは、第7の実施形態に係る赤ワイン用サーバーの構成の概要を示す図である。本実施形態の構成は、以下の通りである。
[Seventh Embodiment]
One embodiment of the present invention can also adopt a configuration in which the label of the red wine bottle can be seen during cold storage, that is, a configuration in which a cold storage material is mounted around the half circumference of the wine bottle. 44A and 44B are diagrams showing an outline of the configuration of the red wine server according to the seventh embodiment. The configuration of this embodiment is as follows.
 [第7の実施形態に係る赤ワイン用サーバーの構成]
・蓄冷材:TBAB_41wt%+水_60wt%
・包材:ONY_10um/LLDPE_50um品
・重量:200g
・形状:縦200mm×横150mm×厚さ10mm(縦方向に4分割されている)
[Configuration of Red Wine Server according to Seventh Embodiment]
-Cold storage material: TBAB_41wt% + water_60wt%
・ Packaging material: ONY_10um / LLDPE_50um ・ Weight: 200g
-Shape: 200 mm long x 150 mm wide x 10 mm thick (divided into 4 in the vertical direction)
 [保冷性能]
 第7の実施形態に係る赤ワイン用サーバーの保冷性能について測定した。測定方法は、以下の通りである。
(A)ワインボトル(水:750mL)を15℃に保持する。
(B)第2の実施形態に係る赤ワイン用サーバーを5℃で凍結前処理する。
(C)常温(25℃近辺)でボトル内の温度を測定する。
[Cooling performance]
The cold insulation performance of the server for red wine according to the seventh embodiment was measured. The measuring method is as follows.
(A) A wine bottle (water: 750 mL) is kept at 15 ° C.
(B) The red wine server according to the second embodiment is pre-frozen at 5 ° C.
(C) The temperature in the bottle is measured at room temperature (around 25 ° C.).
 図45は、第7の実施形態に係る赤ワイン用サーバーの保冷性能の測定結果を示す図である。図45に示した通り、赤ワイン飲み頃温度(14~18℃)を150分以上保持できることが確認できた。 FIG. 45 is a diagram showing the measurement results of the cold insulation performance of the server for red wine according to the seventh embodiment. As shown in FIG. 45, it was confirmed that the red wine drinking temperature (14 to 18 ° C.) could be maintained for 150 minutes or more.
 このような構成を採ることによって、ワインボトルのラベルを視認することができるよう、視認性を確保しつつ、赤ワインを適切な温度(14~18℃)に保持することができる。 By adopting such a configuration, red wine can be maintained at an appropriate temperature (14 to 18 ° C.) while ensuring visibility so that the label of the wine bottle can be visually recognized.
 なお、本発明の一実施形態は、赤ワインのほか、13℃近辺に飲み頃温度を有するエールビール、或いは、涼冷え温度(15℃近辺)を楽しむ日本酒にも用いることができる。 In addition, one embodiment of the present invention can be used for red wine, ale beer having a drinking temperature around 13 ° C., or sake enjoying a cool temperature (around 15 ° C.).
 本発明の一実施形態は、以下のような構成を採ることができる。すなわち、(1)本発明の一実施形態の保冷容器は、飲食品である保冷対象物の温度調節を行なう保冷容器であって、前記保冷容器は、少なくとも中空構造の領域を有し、前記領域に、特定の温度で相変化する凍結材を含む蓄熱層と、前記領域で前記蓄熱層とは分離して存在し、前記凍結材の相変化温度で流体である不凍材を含む緩衝層と、を備え、前記緩衝層を介して、前記蓄熱層が前記保冷対象物に熱伝導を行なう。 One embodiment of the present invention can adopt the following configuration. That is, (1) the cold storage container of one embodiment of the present invention is a cold storage container that adjusts the temperature of a cold storage object that is a food or drink, and the cold storage container has at least a hollow structure region, A heat storage layer including a frozen material that changes phase at a specific temperature, and a buffer layer that is present separately from the heat storage layer in the region and includes an antifreeze material that is a fluid at the phase change temperature of the frozen material; The heat storage layer conducts heat to the cold insulation object through the buffer layer.
 これにより、緩衝層を介することで、蓄熱層から放出される吸熱量もしくは発熱量が環境温度により調和され、容器の緩衝層側の外面温度は、凍結材の融点とは異なる温度にすることができる。また、緩衝層の厚みを調整することで、適宜容器の緩衝層側の外面温度を調整することができる。つまり、凍結材の種類を変えることなく、凍結材の量または緩衝層の厚みを変えるだけで、種々の食材に対する適温を実現し、その温度を保持することができる。 Thereby, the heat absorption amount or the heat generation amount released from the heat storage layer is harmonized by the environmental temperature through the buffer layer, and the outer surface temperature on the buffer layer side of the container may be different from the melting point of the frozen material. it can. Moreover, the outer surface temperature by the side of the buffer layer of a container can be adjusted suitably by adjusting the thickness of a buffer layer. In other words, by changing the amount of the frozen material or the thickness of the buffer layer without changing the type of the frozen material, it is possible to realize the appropriate temperature for various food materials and maintain the temperature.
 (2)また、本発明の一実施形態の保冷容器において、前記不凍材の比重は、前記凍結材の比重よりも小さい。 (2) Moreover, in the cold storage container of one embodiment of the present invention, the specific gravity of the antifreeze material is smaller than the specific gravity of the frozen material.
 これにより、容器本体の中空構造の領域が区切られていない場合でも、中空構造の領域の下層が蓄熱層となり、上層が緩衝層となり、簡便に層形成が可能となる。 Thereby, even when the hollow structure region of the container body is not divided, the lower layer of the hollow structure region becomes a heat storage layer, and the upper layer becomes a buffer layer, so that layer formation can be easily performed.
 (3)また、本発明の一実施形態の保冷容器において、前記凍結材は、水である。 (3) Moreover, in the cold storage container of one embodiment of the present invention, the frozen material is water.
 これにより、蓄熱層の形成が容易になり、また、食品を取扱う観点から安全性が向上する。 This makes it easy to form a heat storage layer and improves safety from the viewpoint of handling food.
 (4)また、本発明の一実施形態の保冷容器において、前記不凍材は、空気である。 (4) In the cold container according to the embodiment of the present invention, the antifreeze material is air.
 これにより、保冷容器製造の際、大気雰囲気下で凍結材を適量注入するだけで良く、不凍材を準備し注入する必要がなくなる。また、食品を取扱う観点から安全性が向上する。 This makes it necessary to inject an appropriate amount of the frozen material in the air atmosphere when manufacturing the cold container, and eliminates the need to prepare and inject the antifreeze material. In addition, safety is improved from the viewpoint of handling food.
 (5)また、本発明の一実施形態の保冷容器において、前記中空構造の領域と前記保冷容器の外界とを貫通する少なくとも一つの貫通孔と、前記貫通孔を閉塞する栓と、を備える。 (5) Moreover, the cold insulation container of one embodiment of the present invention includes at least one through hole that penetrates the region of the hollow structure and the outside of the cold insulation container, and a plug that closes the through hole.
 これにより、貫通孔から中空構造の領域に凍結材や不凍材を注入できる。また、貫通孔を閉塞する栓が開閉可能の場合、使用者が凍結材や不凍材の量を調整できる。 This makes it possible to inject frozen material or antifreeze material into the hollow structure region from the through hole. Further, when the plug that closes the through hole can be opened and closed, the user can adjust the amount of the frozen material or the antifreeze material.
 (6)また、本発明の一実施形態の保冷容器において、前記凍結材または前記不凍材の体積、または前記体積に対応する前記保冷対象物との接触面の予想温度を示す目盛を備える。 (6) Moreover, the cold storage container of one embodiment of the present invention includes a scale indicating the volume of the frozen material or the non-freezing material, or a predicted temperature of the contact surface with the cold storage object corresponding to the volume.
 これにより、凍結材や不凍材の量の調整が容易になる。 This makes it easy to adjust the amount of frozen and antifreeze materials.
 (7)また、本発明の一実施形態の保冷容器において、前記蓄熱層から前記保冷対象物との接触面への距離が異なる複数の緩衝層を有する。 (7) Moreover, the cold insulation container of one embodiment of the present invention has a plurality of buffer layers having different distances from the heat storage layer to the contact surface with the cold insulation object.
 これにより、一つの保冷容器で複数の表面温度の設定が可能となり、適温が異なる複数の食材の保温が可能となる。 This makes it possible to set a plurality of surface temperatures with a single cold container, and to keep a plurality of foods having different optimum temperatures.
 (8)また、本発明の一実施形態の保冷容器において、前記中空構造の領域は、前記凍結材が収容された前記蓄熱層を形成する第1の収容部と、前記不凍材が収容された前記緩衝層を形成する第2の収容部と、を備える。 (8) Moreover, the cold storage container of one Embodiment of this invention WHEREIN: The area | region of the said hollow structure accommodates the 1st accommodating part which forms the said thermal storage layer in which the said frozen material was accommodated, and the said antifreeze material. And a second accommodating portion that forms the buffer layer.
 これにより、凍結材と不凍材とが接触しないので、様々な組み合わせの凍結材と不凍材とが使用可能となる。 As a result, the frozen material and the antifreeze material do not come into contact with each other, so that various combinations of the frozen material and the antifreeze material can be used.
 (9)また、本発明の一実施形態の保冷皿は、上記(1)から(8)のいずれかに記載の保冷容器において、前記保冷容器の表面のうち、緩衝層の表面を介して保冷対象物を載置する食材載置部を備える。 (9) Moreover, the cold-reserving dish of one embodiment of the present invention is the cold-reserving container according to any one of (1) to (8), wherein the cold-retaining container is cooled via the surface of the buffer layer among the surfaces of the cold-retaining container. A food material placement part for placing the object is provided.
 これにより、保冷容器をそのまま保冷皿として使用できる。その結果、緩衝層の表面の調整温度で保冷対象物を保冷できる。 This makes it possible to use the cold storage container as it is as a cold storage dish. As a result, the object to be kept cold can be kept at the adjusted temperature on the surface of the buffer layer.
 (10)また、本発明の一実施形態の保冷皿において、保冷容器と、前記保冷容器を収容する外装部と、前記保冷容器と前記外装部とを固定する固定部と、を備える。 (10) Moreover, the cold-reserving dish of one embodiment of the present invention includes a cold-reserving container, an exterior part that accommodates the cold-retained container, and a fixing part that fixes the cold-reserving container and the exterior part.
 これにより、保冷容器を着脱自在にでき、装着する保冷容器を変更することで管理する温度の調整ができる。 This allows the cold storage container to be detachable, and the temperature to be managed can be adjusted by changing the cold storage container to be mounted.
 (11)また、本発明の一実施形態の赤ワイン用サーバーは、少なくとも1つの蓄冷パックを用いて赤ワインの温度管理を行なう赤ワイン用サーバーであって、前記蓄冷パックは、赤ワインの保冷に適切な温度範囲に含まれる特定の温度で相変化する凍結材が充填された第1の収容部と、前記第1の収容部に積重され、前記凍結材の相変化温度で液相状態を維持する不凍材が充填された第2の収容部と、前記第1の収容部を閉塞する蓋材と、を備え、前記第2の収容部がワインボトルに接触する。 (11) The server for red wine according to an embodiment of the present invention is a server for red wine that manages the temperature of red wine using at least one cold storage pack, and the cold storage pack has a temperature suitable for keeping red wine cold. A first storage unit filled with a frozen material that changes phase at a specific temperature included in the range, and a non-stacking state in a liquid phase state at the phase change temperature of the frozen material stacked in the first storage unit. A second housing portion filled with a frozen material; and a lid member that closes the first housing portion, wherein the second housing portion contacts the wine bottle.
 これにより、不凍材が凍結材の相変化温度で液相状態を維持し、第2の収容部がワインボトルに接触するので、第2の収容部をワインボトルに密着させることが可能となる。その結果、不凍材が蓄えた顕熱を赤ワインに確実に伝え、常温(25℃近辺)の赤ワインを所望の温度に素早く到達させることが可能となる。さらに、不凍材を介して凍結材が蓄えた顕熱および潜熱を赤ワインに確実に伝えることで、赤ワインを所望の温度に素早く到達させるアシストをするとともに、凍結材が蓄えた潜熱を赤ワインに確実に伝えることで、赤ワインを所望の温度で長時間保持させることが可能となる。 Accordingly, the antifreeze material maintains a liquid phase state at the phase change temperature of the frozen material, and the second storage portion comes into contact with the wine bottle, so that the second storage portion can be brought into close contact with the wine bottle. . As a result, the sensible heat stored in the antifreeze material can be reliably transmitted to the red wine, and the red wine at room temperature (around 25 ° C.) can be quickly reached the desired temperature. In addition, the sensible heat and latent heat stored by the frozen material through the antifreeze material is reliably transmitted to the red wine, thereby assisting the red wine to quickly reach the desired temperature, and the latent heat stored by the frozen material is ensured by the red wine. It is possible to keep red wine at a desired temperature for a long time.
 (12)また、本発明の一実施形態の赤ワイン用サーバーにおいて、前記凍結材の重量および前記不凍材の重量の合計は、300g以下であって、前記不凍材の重量は、100g以上200g以下である。 (12) In the server for red wine according to an embodiment of the present invention, the total weight of the frozen material and the weight of the antifreeze material is 300 g or less, and the weight of the antifreeze material is 100 g or more and 200 g. It is as follows.
 これにより、500~750mLの赤ワインを20分以内に飲み頃温度(14~18℃)に到達させることができる。 This allows 500 to 750 mL of red wine to reach the drinking temperature (14 to 18 ° C.) within 20 minutes.
 (13)また、本発明の一実施形態の赤ワイン用サーバーにおいて、前記第1の収容部および前記第2の収容部は、1.0W/m・K以上250.0W/m・K以下の熱伝導率を有する材料で形成されている。 (13) Moreover, in the server for red wine according to an embodiment of the present invention, the first storage portion and the second storage portion may have a heat of 1.0 W / m · K to 250.0 W / m · K. It is made of a material having conductivity.
 これにより、ワインボトルと不凍材との間で、熱交換が効率良く行なわれるため、急冷速度を上げ、且つ所望の温度帯で保冷効果が向上する。 As a result, heat exchange is efficiently performed between the wine bottle and the antifreeze material, so that the rapid cooling rate is increased and the cooling effect is improved in a desired temperature range.
 (14)また、本発明の一実施形態の赤ワイン用サーバーにおいて、前記第1の収容部および前記第2の収容部は、フランジ部を有する深絞り成型の容器であって、前記第1の収容部のフランジ部と前記蓋材とが接合されている。 (14) In the server for red wine according to one embodiment of the present invention, the first storage unit and the second storage unit are deep-drawn containers having flange portions, and the first storage unit. The flange part of the part and the lid member are joined.
 これにより、第1の収容部と第2の収容部の位置関係が固定されるため、冷却性能および温度保持性能を向上させることができる。 Thereby, since the positional relationship between the first housing portion and the second housing portion is fixed, the cooling performance and the temperature holding performance can be improved.
 (15)また、本発明の一実施形態の赤ワイン用サーバーにおいて、前記第1の収容部のフランジ部の任意の一部に貫通口が設けられ、前記貫通口で、前記第2の収容部のフランジ部と前記蓋材とが直接接合されている。 (15) Moreover, in the server for red wine according to an embodiment of the present invention, a through hole is provided in an arbitrary part of the flange portion of the first housing portion, and the through hole has the through hole in the second housing portion. The flange portion and the lid member are directly joined.
 これにより、第2の収容部のフランジ部と蓋材と直接接合する構成とすることにより、パッケージ強度を向上させ、収容部に充填された凍結材、不凍材が外部に漏洩するのを防止することができる。 Thereby, by adopting a structure in which the flange portion of the second housing portion and the lid member are directly joined, the package strength is improved and the frozen material and the antifreeze material filled in the housing portion are prevented from leaking to the outside. can do.
 (16)また、本発明の一実施形態の赤ワイン用サーバーにおいて、前記凍結材は、テトラブチルアンモニウムブロミド水溶液から成り、前記テトラブチルアンモニウムブロミド水溶液の濃度は、20wt%以上41wt%以下である。 (16) In the red wine server according to an embodiment of the present invention, the frozen material is composed of a tetrabutylammonium bromide aqueous solution, and the concentration of the tetrabutylammonium bromide aqueous solution is 20 wt% or more and 41 wt% or less.
 これにより、蓄冷パックを冷蔵庫(3~5℃前後)で冷却して使用した場合には、潜熱を利用して、赤ワインを飲み頃温度(14~18℃)に維持することができ、蓄冷パックを冷凍庫(-18℃前後)で冷却して使用した場合には、顕熱を利用して赤ワインを飲み頃温度(14~18℃)まで急冷することができる。また、テトラブチルアンモニウムブロミドは、非可燃性であるため、安全性も優れている。 As a result, when the regenerator pack is used after being cooled in a refrigerator (around 3-5 ° C), the latent heat can be used to maintain the red wine at the drinking temperature (14-18 ° C). Can be used to cool the red wine to the drinking temperature (14 to 18 ° C.) using sensible heat. Tetrabutylammonium bromide is also non-flammable and therefore has excellent safety.
 (17)また、本発明の一実施形態の赤ワイン用サーバーにおいて、前記凍結材は、1.5wt%以上5.0wt%以下の四ホウ酸ナトリウム、または3.0wt%以上10.0wt%以下のリン酸水素二ナトリウムおよび2.0wt%以上5.0wt%以下の炭酸ナトリウムが添加されている。 (17) Moreover, in the server for red wine of one embodiment of the present invention, the frozen material is 1.5 wt% to 5.0 wt% sodium tetraborate, or 3.0 wt% to 10.0 wt%. Disodium hydrogen phosphate and 2.0 wt% or more and 5.0 wt% or less of sodium carbonate are added.
 これにより、凍結材の過冷却を防ぐことができる。また、テトラブチルアンモニウムブロミド水溶液から成る凍結材に、過冷却防止剤を添加することにより、0℃以上で凍結材を凍結させることができる。 This can prevent overcooling of the frozen material. Moreover, a frozen material can be frozen at 0 degreeC or more by adding a supercooling prevention agent to the frozen material which consists of tetrabutylammonium bromide aqueous solution.
 以上説明したように、本実施形態によれば、不凍材が凍結材の相変化温度で液相状態を維持し、第2の収容部がワインボトルに接触するので、第2の収容部をワインボトルに密着させることが可能となる。その結果、不凍材が蓄えた顕熱を赤ワインに確実に伝え、常温(25℃近辺)の赤ワインを所望の温度に素早く到達させることが可能となる。さらに、不凍材を介して凍結材が蓄えた顕熱および潜熱を赤ワインに確実に伝えることで、赤ワインを所望の温度に素早く到達させるアシストをするとともに、凍結材が蓄えた潜熱を赤ワインに確実に伝えることで、赤ワインを所望の温度で長時間保持させることが可能となる。また、第1の収容部と第2の収容部の位置関係が固定されるため、赤ワインの冷却性能および温度保持性能を向上させることができる。 As described above, according to the present embodiment, the antifreeze material maintains a liquid phase state at the phase change temperature of the frozen material, and the second storage portion comes into contact with the wine bottle. It becomes possible to make it adhere to a wine bottle. As a result, the sensible heat stored in the antifreeze material can be reliably transmitted to the red wine, and the red wine at room temperature (around 25 ° C.) can be quickly reached the desired temperature. In addition, the sensible heat and latent heat stored by the frozen material through the antifreeze material is reliably transmitted to the red wine, thereby assisting the red wine to quickly reach the desired temperature, and the latent heat stored by the frozen material is ensured by the red wine. It is possible to keep red wine at a desired temperature for a long time. Moreover, since the positional relationship between the first storage portion and the second storage portion is fixed, the cooling performance and temperature holding performance of red wine can be improved.
 さらに、凍結材として、赤ワインの飲み頃温度(14~18℃)以下で融解する蓄冷材を、不凍材として、冷凍室の温度帯(-18~-20℃)よりも低い温度帯で凝固する蓄冷材を用いることで、赤ワインに適した温度管理を行なうことができる。 Furthermore, as a frozen material, a cold storage material that melts below the temperature of drinking red wine (14-18 ° C), and as an antifreeze material, solidifies in a temperature range lower than the freezer temperature range (-18 to -20 ° C). By using the regenerator material, temperature management suitable for red wine can be performed.
 なお、上記の説明において、食材等の保冷の場合について説明したが、凍結材の材料を適切なものに変更し、凍結材の温度を相変化温度より高い温度とすることで、食材等の保温ができる。 In the above description, the case of keeping food such as cold is explained, but the temperature of the frozen material is changed to an appropriate one, and the temperature of the frozen material is made higher than the phase change temperature, thereby keeping the food etc. Can do.
 なお、本国際出願は、2016年6月28日に出願した日本国特許出願第2016-128151号および2017年1月23日に出願した日本国特許出願第2017-009741号に基づく優先権を主張するものであり、日本国特許出願第2016-128151号および日本国特許出願第2017-009741号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2016-128151 filed on June 28, 2016 and Japanese Patent Application No. 2017-009741 filed on January 23, 2017. The entire contents of Japanese Patent Application No. 2016-128151 and Japanese Patent Application No. 2017-009741 are incorporated herein by reference.
1 蓄冷パック
3 第1の深絞り容器、第1の収容部
3a 第1の蓄冷材、凍結材
3b フランジ部
5 第2の深絞り容器、第2の収容部
5a 第2の蓄冷材、不凍材
5b フランジ部
7 蓋材
8 貫通口
9 空隙層
10 ワインボトル
30 真空成型金型
31 硬質フィルム
50 真空成型金型
51 軟質フィルム
80 ワインボトル
83 不凍材層
85 凍結材層
100 保冷容器
110 容器本体
120 蓄熱層
130 緩衝層
140 載置面
150 凍結材
160 不凍材
170 注入口
180 目盛り
190 栓
200 カッティングボード
210 保冷皿
220 外装部
230 固定部
240 上皿
250 下皿
260 スペーサー
270 凍結材パック
DESCRIPTION OF SYMBOLS 1 Cold storage pack 3 1st deep drawing container, 1st accommodating part 3a 1st cold storage material, frozen material 3b Flange part 5 2nd deep drawing container, 2nd accommodating part 5a 2nd cold storage material, non-freezing Material 5b Flange part 7 Cover material 8 Through-hole 9 Void layer 10 Wine bottle 30 Vacuum molding die 31 Hard film 50 Vacuum molding die 51 Soft film 80 Wine bottle 83 Antifreezing material layer 85 Freezing material layer 100 Cold storage container 110 Container body 120 Heat storage layer 130 Buffer layer 140 Placement surface 150 Freezing material 160 Antifreezing material 170 Inlet 180 Scale 190 Plug 200 Cutting board 210 Cooling tray 220 Outer portion 230 Fixing portion 240 Upper plate 250 Lower plate 260 Spacer 270 Freezing material pack

Claims (17)

  1.  飲食品である保冷対象物の温度調節を行なう保冷容器であって、
     前記保冷容器は、少なくとも中空構造の領域を有し、
     前記領域に、特定の温度で相変化する凍結材を含む蓄熱層と、
     前記領域で前記蓄熱層とは分離して存在し、前記凍結材の相変化温度で流体である不凍材を含む緩衝層と、を備え、
     前記緩衝層を介して、前記蓄熱層が前記保冷対象物に熱伝導を行なう保冷容器。
    A cold storage container that adjusts the temperature of a cold storage object that is a food or drink,
    The cold storage container has at least a hollow region.
    In the region, a heat storage layer including a frozen material that changes phase at a specific temperature;
    A buffer layer that is present separately from the heat storage layer in the region and includes an antifreeze material that is a fluid at a phase change temperature of the frozen material, and
    A cold insulation container in which the heat storage layer conducts heat to the cold insulation object via the buffer layer.
  2.  前記不凍材の比重は、前記凍結材の比重よりも小さい請求項1記載の保冷容器。 The cold storage container according to claim 1, wherein the specific gravity of the antifreeze material is smaller than the specific gravity of the frozen material.
  3.  前記凍結材は、水である請求項1または請求項2記載の保冷容器。 The cold storage container according to claim 1 or 2, wherein the frozen material is water.
  4.  前記不凍材は、空気である請求項1から請求項3のいずれかに記載の保冷容器。 The cold storage container according to any one of claims 1 to 3, wherein the antifreeze material is air.
  5.  前記中空構造の領域と前記保冷容器の外界とを貫通する少なくとも一つの貫通孔と、
     前記貫通孔を閉塞する栓と、を備える請求項1から請求項4のいずれかに記載の保冷容器。
    At least one through-hole penetrating the hollow structure region and the outside of the cold storage container;
    The cold insulation container in any one of Claims 1-4 provided with the stopper which obstruct | occludes the said through-hole.
  6.  前記凍結材または前記不凍材の体積、または前記体積に対応する前記保冷対象物との接触面の予想温度を示す目盛を備える請求項1から請求項5のいずれかに記載の保冷容器。 The cold storage container according to any one of claims 1 to 5, further comprising a scale indicating an expected temperature of a contact surface with the cold storage object corresponding to the volume of the frozen material or the antifreeze material or the volume.
  7.  前記蓄熱層から前記保冷対象物との接触面への距離が異なる複数の緩衝層を有する請求項1から請求項6のいずれかに記載の保冷容器。 The cold storage container according to any one of claims 1 to 6, comprising a plurality of buffer layers having different distances from the heat storage layer to a contact surface with the cold storage object.
  8.  前記中空構造の領域は、
     前記凍結材が収容された前記蓄熱層を形成する第1の収容部と、
     前記不凍材が収容された前記緩衝層を形成する第2の収容部と、を備える請求項1記載の保冷容器。
    The region of the hollow structure is
    A first storage portion that forms the heat storage layer in which the frozen material is stored;
    A cold storage container according to claim 1, further comprising: a second storage portion that forms the buffer layer in which the antifreeze material is stored.
  9.  請求項1から請求項8のいずれかに記載の保冷容器において、
     前記保冷容器の表面のうち、緩衝層の表面を介して保冷対象物を載置する食材載置部を備える保冷皿。
    In the cold insulation container in any one of Claims 1-8,
    A cold preservation dish provided with a food ingredient placing part for placing a cold preservation object through the surface of the buffer layer among the surfaces of the cold insulation container.
  10.  前記保冷容器を収容する外装部と、
     前記保冷容器と前記外装部とを固定する固定部と、を更に備える請求項9記載の保冷皿。
    An exterior part for housing the cold-insulated container;
    The cold-reserving dish according to claim 9, further comprising a fixing part that fixes the cold-reserving container and the exterior part.
  11.  少なくとも1つの蓄冷パックを用いて赤ワインの温度管理を行なう赤ワイン用サーバーであって、
     前記蓄冷パックは、
     赤ワインの保冷に適切な温度範囲に含まれる特定の温度で相変化する凍結材が充填された第1の収容部と、
     前記第1の収容部に積重され、前記凍結材の相変化温度で液相状態を維持する不凍材が充填された第2の収容部と、
     前記第1の収容部を閉塞する蓋材と、を備え、
     前記第2の収容部がワインボトルに接触する赤ワイン用サーバー。
    A red wine server that controls the temperature of red wine using at least one cold storage pack,
    The cold storage pack is
    A first storage section filled with a frozen material that changes phase at a specific temperature included in a temperature range suitable for keeping red wine cold;
    A second housing portion that is stacked in the first housing portion and filled with an antifreeze material that maintains a liquid phase state at the phase change temperature of the frozen material;
    A lid that closes the first accommodating portion,
    A server for red wine in which the second container comes into contact with a wine bottle.
  12.  前記凍結材の重量および前記不凍材の重量の合計は、300g以下であって、
     前記不凍材の重量は、100g以上200g以下である請求項11記載の赤ワイン用サーバー。
    The total of the weight of the frozen material and the weight of the antifreeze material is 300 g or less,
    The server for red wine according to claim 11, wherein the weight of the antifreeze material is 100 g or more and 200 g or less.
  13.  前記第1の収容部および前記第2の収容部は、1.0W/m・K以上250.0W/m・K以下の熱伝導率を有する材料で形成されている請求項11または請求項12記載の赤ワイン用サーバー。 The said 1st accommodating part and the said 2nd accommodating part are formed with the material which has the heat conductivity of 1.0 W / m * K or more and 250.0 W / m * K or less. The listed red wine server.
  14.  前記第1の収容部および前記第2の収容部は、フランジ部を有する深絞り成型の容器であって、前記第1の収容部のフランジ部と前記蓋材とが接合されている請求項11から請求項13のいずれかに記載の赤ワイン用サーバー。 The said 1st accommodating part and the said 2nd accommodating part are the containers of the deep drawing molding which have a flange part, Comprising: The flange part and the said cover material of the said 1st accommodating part are joined. The server for red wine according to claim 13.
  15.  前記第1の収容部のフランジ部の任意の一部に貫通口が設けられ、前記貫通口で、前記第2の収容部のフランジ部と前記蓋材とが直接接合されている請求項14記載の赤ワイン用サーバー。 The through hole is provided in an arbitrary part of the flange portion of the first housing portion, and the flange portion of the second housing portion and the lid member are directly joined at the through port. Red wine server.
  16.  前記凍結材は、テトラブチルアンモニウムブロミド水溶液から成り、
     前記テトラブチルアンモニウムブロミド水溶液の濃度は、20wt%以上41wt%以下である請求項11から請求項15のいずれかに記載の赤ワイン用サーバー。
    The frozen material comprises a tetrabutylammonium bromide aqueous solution,
    The server for red wine according to any one of claims 11 to 15, wherein a concentration of the tetrabutylammonium bromide aqueous solution is 20 wt% or more and 41 wt% or less.
  17.  前記凍結材は、1.5wt%以上5.0wt%以下の四ホウ酸ナトリウム、または3.0wt%以上10.0wt%以下のリン酸水素二ナトリウムおよび2.0wt%以上5.0wt%以下の炭酸ナトリウムが添加されている請求項11から請求項16のいずれかに記載の赤ワイン用サーバー。 The frozen material is 1.5 wt% or more and 5.0 wt% or less sodium tetraborate, or 3.0 wt% or more and 10.0 wt% or less disodium hydrogen phosphate and 2.0 wt% or more and 5.0 wt% or less. The server for red wine according to any one of claims 11 to 16, wherein sodium carbonate is added.
PCT/JP2017/023488 2016-06-28 2017-06-27 Cooler container, cold tray, and red wine server WO2018003768A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/314,197 US20190313818A1 (en) 2016-06-28 2017-06-27 Cooler container, cold tray, and red wine server
JP2018525161A JPWO2018003768A1 (en) 2016-06-28 2017-06-27 Cold container, cold plate and red wine server

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016128151 2016-06-28
JP2016-128151 2016-06-28
JP2017-009741 2017-01-23
JP2017009741 2017-01-23

Publications (2)

Publication Number Publication Date
WO2018003768A2 true WO2018003768A2 (en) 2018-01-04
WO2018003768A3 WO2018003768A3 (en) 2018-03-01

Family

ID=60785212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023488 WO2018003768A2 (en) 2016-06-28 2017-06-27 Cooler container, cold tray, and red wine server

Country Status (3)

Country Link
US (1) US20190313818A1 (en)
JP (1) JPWO2018003768A1 (en)
WO (1) WO2018003768A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109700276A (en) * 2018-11-20 2019-05-03 吴江市格瑞福金属制品有限公司 A kind of heat insulating mattress of the silicon layer containing dense oxide
JP2021133977A (en) * 2020-02-28 2021-09-13 積水化成品工業株式会社 Heat insulating container

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589553U (en) * 1992-05-22 1993-12-07 セイレイ工業株式会社 Lever stand structure in backhoe
JPH06171673A (en) * 1992-11-30 1994-06-21 Fushimi Jushi Kk Insulating bag for keeping coldness
JPH11225894A (en) * 1998-02-16 1999-08-24 Kazumi Higuchi Chopping board type cold insulator holding tray
JP2001330351A (en) * 2000-05-22 2001-11-30 Mitsubishi Cable Ind Ltd Composite cold storage substance and its use method
JP5402416B2 (en) * 2009-09-02 2014-01-29 玉井化成株式会社 Constant temperature storage container and transportation method
US10823477B2 (en) * 2013-06-28 2020-11-03 Sharp Kabushiki Kaisha Thermal energy storage member and storage container using the same, and refrigerator using the same
JP6226488B2 (en) * 2013-11-26 2017-11-08 シャープ株式会社 Heat storage material, heat storage member using the same, storage container, transport / storage container, building material, building
WO2016002596A1 (en) * 2014-06-30 2016-01-07 シャープ株式会社 Heat storage material and article using same
US20170153054A1 (en) * 2014-06-30 2017-06-01 Sharp Kabushiki Kaisha Cold insulation member
JP6221144B2 (en) * 2015-05-28 2017-11-01 シャープ株式会社 Heat storage pack, heat exchange unit, and method of manufacturing heat storage pack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109700276A (en) * 2018-11-20 2019-05-03 吴江市格瑞福金属制品有限公司 A kind of heat insulating mattress of the silicon layer containing dense oxide
JP2021133977A (en) * 2020-02-28 2021-09-13 積水化成品工業株式会社 Heat insulating container

Also Published As

Publication number Publication date
US20190313818A1 (en) 2019-10-17
WO2018003768A3 (en) 2018-03-01
JPWO2018003768A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
US5329778A (en) Thermally insulated bottle and method of assembly thereof
US4183226A (en) Refrigerated beverage holder
US5235819A (en) Method and apparatus for storing and distributing materials
US4986089A (en) Adjustable refrigeratable beverage wrap around holder
FI94853C (en) Container for food storage and distribution
JP6221144B2 (en) Heat storage pack, heat exchange unit, and method of manufacturing heat storage pack
WO2007049380A1 (en) Constant-temperature cold-reserving box and method of reserving cold at constant temperature
CN110595129B (en) Refrigeration device and method
WO2018003768A2 (en) Cooler container, cold tray, and red wine server
WO2014067927A1 (en) Container for temperature sensitive materials
JP7015254B2 (en) Cooling equipment, distribution packaging containers, distribution systems and distribution methods
US11209210B2 (en) Beverage containers and coolants therefore
WO2019235279A1 (en) Cooling tool, packaging container, and method for transporting cooled object
JP2017053612A (en) Use method of cold heat storage material, package and cold heat storage material
WO2003013318A1 (en) Cold storage box
JP5959705B1 (en) Method for using cold storage heat material, package, and cold storage heat material
WO2016190378A1 (en) Heat storage pack, heat exchange unit, and method for manufacturing heat storage pack
WO2015063820A1 (en) Heat-insulated box
JP2007217460A (en) Cold storage agent, cold storage agent pack, and pre-packaged chilled food using the cold storage agent pack
JP2006304850A (en) Heat-insulated or cold-insulated tableware
CN211365673U (en) Frozen dessert packaging container
KR101411601B1 (en) Ice pack for food
KR101748501B1 (en) cool and heat reserving apparatus
GB2434432A (en) Refrigeration unit for packaged beverages
JP2017046752A (en) Cooling and cold insulation container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820122

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2018525161

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820122

Country of ref document: EP

Kind code of ref document: A2